
 Application Note

R01AN7333EJ0100 Rev.1.00 Page 1 of 28
2024.11.26

RZ/T2H
Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes) - Absolute Encoder

Introduction
This document describes encoder-based vector control of permanent magnet motors (9 axes) using an
evaluation board equipped with the RZ/T2H MPU from Renesas Electronics.

The targeted software for this application note is only to be used for reference purposes only and Renesas
Electronics Corporation does not guarantee the operations. Please use this after carrying out a thorough
evaluation in a suitable environment.

Operating device
Operations of the target software of this application note are checked by using the following device.

・RZ/T2H (R9A09G077M44GBG)

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 2 of 28
2024.11.26 ··

Contents

1. Introduction .. 3
1.1 Summary ... 3
1.2 Function ... 3

2. Software configuration ... 4
2.1 Basic specifications ... 4
2.2 Operating environment .. 5
2.3 File configuration ... 6

3. Firmware details .. 7
3.1 Initialization process .. 7
3.2 Main process ... 8
3.3 Periodic interruption process ... 9
3.4 Communication process .. 10
3.5 Data Types .. 10
3.6 Global Variables .. 11
3.7 Enumerations .. 11

4. Motor control process .. 12
4.1 9-axes motor control .. 12
4.2 m_background function ... 13
4.2.1 bootstrap_charge function ... 13
4.2.2 pos_read function .. 13
4.2.3 pos_loop function .. 13
4.2.4 vel_loop function.. 14
4.2.5 crnt_read function .. 14
4.2.6 crnt_loop function .. 15

5. Interlock process ... 17

6. Data Recording .. 18

7. ASCII Communication Protocol ... 21

8. Reference documents .. 27

Revision History .. 28

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 3 of 28
2024.11.26 ··

1. Introduction
1.1 Summary
This firmware performs vector control of permanent magnet motors using encoders.

1.2 Function
The firmware implements the following main functions:

 Encoder-based vector control of permanent magnet motors (9 axes)

 Communication with RZ/T2H Motion Control Utility

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 4 of 28
2024.11.26 ··

2. Software configuration
2.1 Basic specifications
Table 2-1 shows basic specifications.

Table 2-1 Basic specifications

Item Description
Control method Vector control
Rotar position detection Absolute encoder
Input voltage DC 24 [V]
PWM frequency e2 studio：20 [kHz]

EWARM：10 [kHz]
Dead time 1 [us]
Current control period e2 studio：50 [us]

EWARM：100 [us]
Speed control period 100[us]
Position control period 100[us]
Speed command range CW：0 [rpm] ～ 3000 [rpm]

CCW：0 [rpm] ～ 3000 [rpm]
Position command range -2147483647 [ec] ～ 2147483647 [ec]
Position resolution 0.0055 [degree] (216)
Rotate direction CW direction: Position [ec] decreases

CCW direction: Position [ec] increases
Compiler optimization e2 studio：Optimize (-O1)

EWARM：Low
Protection function - POEG

- Interlock process

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 5 of 28
2024.11.26 ··

2.2 Operating environment
Table 2-2 shows operating environment. Table 2-3 shows the development tool. Table 2-4 shows hardware
configuration.

Table 2-2 Operating environment

Integrated Development
Environment (IDE) e2 studio IAR Embedded Workbench for Arm

IDE version 2024-10 9.60.2 + patch
(EWARM patch for RZ/T2H Rev.1.0)

FSP version 2.2.0 FSP Smart Configurator
2024-10

Toolchain version GNU Arm Embedded
12.2.1.arm-12-24 -

In Circuit Emulator (ICE) J-Link OB IAR I-jet

Table 2-3 Development tool

Tool name Tool Version
RZ/T2H Motion Control Utility 1.0.0.0

Table 2-4 Hardware configuration

Equipment Model name
RZ/T2H Evaluation Board RTK9RZT2H0CW1000BJ
 MPU R9A09G077M44GBG

729-pin FCBGA, RAM 2[MB]
 On-board memory OctaFlash: 64[MB]
 Operating frequency Cortex-R52 CPU0: 1000[MHz]

Cortex-R52 CPU1 and Cortex-A55 are unused.
 Operating voltage DC 15[V]/3[A], 24[V]/3[A]
 Operating mode xSPI0 boot mode (x1 boot serial flash)
Bus Board RTK0EM0000Z03000BJ
Inverter Board RTK0EM0000B15010BJ
 Operating voltage DC 24[V]
Motor
/Encoder
(manufactured by TAMAGAWA SEIKI)

TSM3101N2001E020
/TS5669N124 (FA-CODER®)

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 6 of 28
2024.11.26 ··

2.3 File configuration
Table 2-5 shows the file configuration.

Table 2-5 File configuration

Item Description
rzt_cfg Configuration files for FSP

rzt_gen Generated files

rzt\arm Files related to CMSIS

rzt\board Files related to evaluation boards

rzt\fsp Files related to FSP

cg_src\r_cg_scifa.c SCI driver

cg_src\r_cg_systeminit.c Initialization process

inc\apl Header files for source files under src/apl

src\apl\m_commands.c Command process

src\apl\m_commutation.c Vector control

src\apl\m_control.c Motor control

src\apl\m_interlocks.c Interlock process

src\apl\m_interpreter.c Command determination process

src\apl\m_phasing.c Phasing process

src\apl\m_pid_calc.c PID calculation process

src\apl\m_pos_read.c Position acquisition process

src\apl\m_recorder.c Data recording process

src\drv\dsm DSMIF driver

src\drv\m_rzt.c Driver-related process

src\hal_entry.c Main process

src\encoder\FACoder FACoder driver

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 7 of 28
2024.11.26 ··

3. Firmware details
3.1 Initialization process
The initialization process is completed after the device reset operation. Table 3-1 shows functions related to
the initialization process.

Table 3-1 Initialization process

Function Description
R_Systeminit R_Systeminit function initializes peripherals. The peripherals to be initialized

are as follows.

・GPT

・ELC

・DSMIF

・POEG

・SCI

・XSPI

Input: None
Output: None

m_startup m_startup function performs the following initialization:

- Initialization of t_motor type variables

- Lighting of LEDs on the board

- Initialization of absolute encoder

Input: None
Output: None

m_Restore m_Restore function reads the motor parameters from the flash memory. The
read parameter is set in a member variable of the t_motor type structure.

Input: (t_console *) pc, (t_motor *) pm
Output: None

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 8 of 28
2024.11.26 ··

3.2 Main process
The main process is defined as m_background function. The m_background function is called in while loop in
hal_entry.c. Table 3-2 shows functions related to the main process.

Table 3-2 Main process

Function Description
m_interpreter The m_interpreter function executes commands received from the RZ/T2H

Motion Control Utility.

Input: (t_console *) pc

Output: None

m_rec_begin The m_rec_begin function records data for the Motion Scope of the RZ/T2H
Motion Control Utility.

Input: None

Output: None

interlocks The interlocks function stops the PWM output when the motor's position
deviation, velocity, and current values exceed the limit values.

Input: (t_motor *) pm

Output: None

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 9 of 28
2024.11.26 ··

3.3 Periodic interruption process
The periodic interruption process does encoder-based vector control. The process is implemented in
m_background function in m_control.c. Table 3-3 shows functions related to the periodic interruption
process.

Table 3-3 Periodic interruption process

Function Description
bootstrap_charge The bootstrap_charge function waits and gets offset value for DSMIF.

Input: (t_motor *) pm
Output: None

pos_read The pos_read function gets the position from the absolute encoder.
The pos_read function is implemented in the file m_pos_read.c.
Input: (t_motor *) pm
Output: None

pos_loop The pos_loop function does position control.

The pos_loop function is implemented in the file m_control.c.

Input: (t_motor *) pm
Output: None

vel_loop The vel_loop function does speed control.

The vel_loop function is implemented in the file m_control.c.
Input: (t_motor *) pm
Output: None

crnt_read The crnt_read function takes the value of the DSMIF and converts it to a
current value.
The crnt_read function is implemented in the file m_rzt.c.
Input: (t_motor *) pm
Output: None

crnt_loop The crnt_loop function performs vector control from position and current
values.
The crnt_loop function is implemented in the file m_control.c.
Input: (t_motor *) pm
Output: None

m_recorder The m_recorder function acquires data for the Motion Scope function of the
RZ/T2H Motion Control Utility.
The m_recorder function is implemented in the file m_recorder.c.
Input: None
Output: None

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 10 of 28
2024.11.26 ··

3.4 Communication process
The communication process receives commands from Motion Control Utility and transmits the result of
command execution. Table 3-4 shows functions related to the communication process.

Table 3-4 Communication process

Function Description

m_rx_interrupt The m_rx_interrupt function is called when a receive buffer full interrupt
occurs.

It reads data from the received data register, manipulates the member
variables of the t_console type variable, and decodes the received command.

The m_rx_interrupt function is implemented in m_rzt.c file.

Input: (t_console *) pc

Ouput: None

m_tx_interrupt The m_tx_interrupt function is called when a transmitted data empty interrupt
occurs. It writes the data of the t_console variable to the transmit data
register.

The m_tx_interrupt function is implemented in m_rzt.c file.

Input: (t_console *) pc

Output: None

3.5 Data Types
Table 3-5 shows main data types.

Table 3-5 Data types

Data type Description

t_motor This structure contains the motor position, speed, current value, gain, limit
value, address of the compare match register, etc.

t_motor_pars This structure contains parameters that are stored in flash memory.

t_console This structure contains variables used for communication with the RZ/T2H
Motion Control Utility, the address of the SCI register, etc.

t_command This structure contains a table for associating variables and functions with
ASCII commands sent from the RZ/T2H Motion Control Utility.

t_trace This structure contains variables related to the Motion Scope function of the
RZ/T2H Motion Control Utility.

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 11 of 28
2024.11.26 ··

3.6 Global Variables
Table 3-6 shows the main global variables.

Table 3-6 Global variables

Data structure instance Description

t_motor
g_st_m[MOTOR_NUM]

t_motor array (number of elements: MOTOR_NUM)

t_console con2 These variables are dedicated for each of the communication interfaces
providing serial connection to a host computer.

long g_tick This variable is incremented every time slice. It is used to coordinate the
operation between real-time tasks and the main loop.

short g_suspend This flag is intended for temporarily preventing the real-time functions from
executing. Its purpose is to enable time-sensitive operations such as writing
flash memory from being affected by the real-time functions.

t_command Commands[] This is an array of command data structures where all host commands are
defined. They consist of ASCII name, type and pointer to either function that
executes the command or variable that holds the referenced parameter.

3.7 Enumerations
Table 3-7 shows the main enumerations.

Table 3-7 Enumerations

Enumeration Description

ETYPE Defines the different encoder types supported

CommutationModes Defines the different operations of the current loop algorithm

PacketCode Defines the type of the packet received

PacketError Defines the possible errors reported by the packet protocol interpreter

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 12 of 28
2024.11.26 ··

4. Motor control process
4.1 9-axes motor control
The m_background function executes the bootstrap_charge, pos_read, pos_loop, vel_loop, crnt_read, and
crnt_loop functions for the number of times specified by MOTOR_NUM. MOTOR_NUM is a #define directive
that determines the number of motor to be controlled. MOTOR_NUM is defined in m_common.h. Figure 4-1
shows a flowchart of 9-axes motor control.

Start

bootstrap_charge()

pos_read()

pos_loop()
vel_loop()

crnt_read()

crnt_loop()

End

× MOTOR_NUM

× MOTOR_NUM

× MOTOR_NUM

× MOTOR_NUM

× MOTOR_NUM

Figure 4-1 9-axes motor control

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 13 of 28
2024.11.26 ··

4.2 m_background function
4.2.1 bootstrap_charge function
The bootstrap_charge function waits and gets offset value of DSMIF.

4.2.2 pos_read function
The pos_read function gets the position of the absolute encoder.

Table 4-1 shows t_motor member variables related to pos_read function.

Table 4-1 t_motor member variables related to pos_read function

Variable Description

encoder_type This variable specifies the type of encoder.

Since this firmware uses FACODER as an absolute encoder, the
encoder_type is initialized to ETYPE_APE_FACODER.

4.2.3 pos_loop function
The pos_loop function gets position error from reference position(cmd_pos64) and current
position(crnt_pos64), calls pid_calc_pos64 function and gets speed reference(in_vel64) to input into speed
controller.

Table 4-2 shows t_motor member variables related to pos_loop function.

Table 4-2 t_motor member variables related to pos_loop function

Variable Description

crnt_kp Proportional Gain (Position Control)
crnt_ki Integral Gain (Position Control)
crnt_kd Differential Gain (Position Control)
integral_limit Integral limit value (Position Control)
crnt_kvff Speed feedforward gain (Position Control)
crnt_kaff Acceleration feedforward gain (Position Control)
crnt_bias Output bias value (Position Control)
cmd_vel Reference speed
cmd_acc Reference acceleration
pos_loop_limit Output limit value (Position Control)
pos_error2 Position error
derivative_err2 Position error derivative
integral_err2 Position error integral

The KP, KI, KD, VFF, and AFF commands of the ASCII communication protocol commands in the Motion
Control Utility change the buff_kp, buff_ki, buff_kd, buff_kvff, and buff_kaff. When update_ctrl function is
executed, the values of these variables are assigned to crnt_kp, crnt_ki, crnt_kd, crnt_kvff, and crnt_kaff.

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 14 of 28
2024.11.26 ··

4.2.4 vel_loop function
The vel_loop function calculates speed error from reference speed(in_vel64) and current speed(crnt_vel64),
call pid_calc_vel64 function and gets q-axis reference value(output_q) to input into current controller.

Table 4-3 shows t_motor member variables related to vel_loop function.

Table 4-3 t_motor member variables related to vel_loop function

Variable Description

crnt_kp_vel Proportional Gain (Speed Control)
crnt_ki_vel Integral Gain (Speed Control)
crnt_kd_vel Differential Gain (Speed Control)
integral_limit_vel Integral limit value (Speed Control)
PiOut_limit_vel Output limit value (Speed Control)
vel_error2 Speed error
derivative_err2_vel Speed error derivative
integral_err2_vel Speed error integral
output_q q-axis current [mA]

The VKP, VKI, and VKD commands of the ASCII communication protocol commands in the Motion Control
Utility change the buff_kp_vel, buff_ki_vel, and buff_kd_vel. When update_ctrl function is executed, the
values of these variables are assigned to the crnt_kp, crnt_ki, and crnt_kd.

4.2.5 crnt_read function
The crnt_read function gets the value of DSMIF and convert it into U, V and W phase current.

Table 4-4 shows t_motor member variables related to crnt_read function.

Table 4-4 t_motor member variables related to crnt_read function

Variable Description

adc1_raw DSMIF CH0 conversion value for each unit

adc2_raw DSMIF CH1 conversion value for each unit

adc3_raw DSMIF CH2 conversion value for each unit

adc_iu U phase current [mA]

adc_iv V phase current [mA]

adc_iw W phase current [mA]

crnt_volt Bus board voltage [V]

total_current Sum of absolute values of U phase current and V phase current [mA]

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 15 of 28
2024.11.26 ··

4.2.6 crnt_loop function
The crnt_loop function executes the processes below.

1. Electrical angle calculation

2. commutate_foc function

3. commutate_svm function

4. update_pwm funciton

In addition to the process, the crnt_loop function executes the phasing process when the “aligning” variable
is one.

4.2.6.1 Phasing process
The phasing process passes current from U phase to the V and W phases and aligns the d-axis of the rotor
with u-axis.

Table 4-5 shows t_motor member variables related to phasing process.

Table 4-5 t_motor member variables related to phasing process

Variable Description

aligning Flags for phasing process

phasing_mode_crnt Phasing mode variable

This value is initialized as PIM_FORCED to call forced_phasing
function.

phasing_time Phasing process time

phasing_power Phasing process duty ration

phasing_origin Encoder value after phasing process

4.2.6.2 Electrical angle calculation
This process gets electrical angle(phase_angle) from current position(crnt_pos) and the
positon(phase_origin) where d-axis aligns with u-axis and then calculate sin and cos value from angle_rad.

Table 4-6 shows t_motor member variables related to electrical angle calculation.

Table 4-6 t_motor member variables related to electrical angle calculation

Variable Description

phase_angle Electrical angel [ec]

angle_rad Rotor position [rad]

counts2rad Coefficient value to convert electrical angle [ec] into radians.

angle_sin Sin function value calculated from angle_rad

angle_cos Cos function value calculated from angle_rad

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 16 of 28
2024.11.26 ··

4.2.6.3 commutate_foc function
The commutate_foc function converts U and V phase current into alpha and beta axis current. Then, it gets d
and q axis current from alpha and beta axis current. Next, the function executes PI calculations to get d and
q axis voltage. Finally, it converts d and q axis voltage into alpha and beta axis voltage.

Table 4-7 shows t_motor member variables related to commutate_foc function.

Table 4-7 t_motor member variables related to commutate_foc function

Variable Description

p_iu The pointer variable to adc_iu that has U phase current value

p_iv The pointer variable to adc_iv that has V phase current value

foc_id d-axis current [mA]

foc_iq q-axis current [mA]

foc_id_err d-axis current error [mA]

foc_iq_err q-axis current error [mA]

foc_id_err_int d-axis current error integral [mA]

foc_iq_err_int q-axis current error integral [mA]

output_d d-axis current reference value [mA]

output_q q-axis current reference value [mA]

foc_kp Proportional Gain (Current Control)

foc_ki Integral Gain (Current Control)

foc_vd d-axis voltage

foc_vq q-axis voltage

foc_alpha α-axis voltage

foc_beta β-axis voltage

4.2.6.4 commutate_svm function
The commutate_svm function converts alpha and beta axis voltage into three phases voltage and performs
space vector modulation.

4.2.6.5 update_pwm function
The update_pwm function updates duty ratios of U, V and W phase PWM signals.

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 17 of 28
2024.11.26 ··

5. Interlock process
The interlock process monitors the variables related to motor control and stops PWM signal output when it
detects the abnormal value or state. This process is called by every 1ms as the main process.

Table 5-1 shows the interlock function.

Table 5-1 Interlock process

Function Description
Inverter Over Current This function sets the 26 bits of the status (ErrSts) when the total

current (total_current) exceeds the overcurrent threshold (tc_limit) for
a certain period (tc_limit_time) or more continuously.

Initial tc_limit value：TC_LIMIT＿VAL_DFLT
Initial tc_limit_timer value：TC_LIMIT_TIME_VAL_DFLT

Position Error This function sets the 17 bits of the status (ErrSts) when the position
error (pos_error) exceeds the position error threshold
(pos_error_limit) for a certain period (pos_error_timer) or more.

Initial pos_error_limit value：POS_ERROR_LIMIT_VAL_DFLT
Initial pos_error_time value：
POS_ERROR_LIMIT_TIME_VAL_DFLT

Bus board Under Voltage This function sets 28 bits of the status (ErrSts) when the bus board
voltage (crnt_volt) falls below the low voltage threshold (Lvolt_Val).

Initial Lvolt_Val value：LVOLT_VAL_DFLT

Bus Board Over Voltage This function sets 27 bits of the status (ErrSts) when the bus board
voltage (crnt_volt) exceeds the overvoltage threshold (Hvolt_Val).

Initial Hvolt_Val value：HVOLT_VAL_DFLT

Inverter Fault (POEG) This function sets the 25 bits of the status (ErrSts) when the PIDF bit
of the POEG0GD0 of POEG0 reaches 1.

Overload Pre-detect This function sets 21 bits of the status (ErrSts) when the total current
(total_current) exceeds the threshold value (Ovc_Val).

Initial Ovc_Val value：OVC_VAL_DFLT

Over Speed This function sets 20 bits of the status (ErrSts) when the speed
(crnt_vel) exceeds the threshold (Ovs_Val).

Initial Ovs_Val value：OVS_VAL_DFLT

Instructed Speed Difference This function sets 19 bits of the status (ErrSts) when the velocity
error (vel_error) exceeds the threshold value (WOvs_Val) for 5
consecutive seconds.

Initial WOvs_Val value：WOVS_VAL_DFLT

Maximum Limit Position
Minimum Limit Position

 This function sets 15 bits of the status (ErrSts) when the position
reaches the upper threshold (WPosMax_Val).
When the position is less than or equal to the lower threshold of
position (WPosMin_Val), set the 13 bits of the status (ErrSts).

Initial WPosMax_Val value：WPOSMAX_VAL_DFLT
Initial WPosMin_Val value：WPOSMIN_VAL_DFLT
This function is disabled by default.

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 18 of 28
2024.11.26 ··

6. Data Recording
The Data Recording functions are intended to enable the analysis of the system behavior in real time. It is an
indispensable tool for analyzing the performance of the different control loops, their configuration parameters
and their efficiency in application specific contest. The data recorder stores up to four user defined
parameters in buffers during system operation. The support functions and configuration parameters enable
the selection of rate of recording, which variables are recorded, when the recording is started and when it is
supposed to end.

The length of the recording as number of samples is defined by the macro-TRACE_BUFFER_SIZE. By
default, it is set to 512. This value can be increased when the application requires longer records and the
RAM memory is available. All buffers are combined into a single array named traceData[], The data type of
the array is short – 16-bit integer. For this reason, when a 32-bit variable is being recorded, its value is split
between the fist and the fourth buffers. When the data is reported, it is combined appropriately.

The host gets the data using the RVAL command. Table 6-1 shows the mapping between the code of the
RVAL command and data variables.

Table 6-1 codes and data variables

Codes Data variables

0 crnt_pos

1 crnt_vel

2 crnt_acc

3 I2t_integral

4 - 7 Reserved

8 pos_error

9 output_q

10 Reserved

11 foc_id

12 foc_iq

13 foc_id_err

14 foc_iq_err

15 adc1_raw

16 adc2_raw

17 pvt_points

18 foc_vd

19 foc_vq

20 g_counter

21 phase_angle

22 adc3_raw

23 captured_pos

24 pos_error2

25 Integral_err2

26 vel_error2

27 Integral_err2_vel

28 foc_id_err_int

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 19 of 28
2024.11.26 ··

29 foc_iq_err_int

30 est_trq

31 angle_rad

The start and stop conditions of the data recorder are configured by the ASCII command TRACE (variable
trace.Trigger). The table below describes the possible settings representing different trigger conditions:

Table 6-2 trigger conditions

TRACE codes Trigger Start Condition Trigger Stop Condition

0 N/A Stop data recording

1 Start recording immediately. Stop when the motion is completed.
This trigger is useful for examining the
end of a motion.

2 Start recording immediately. Stop when the buffer is full. This trigger
is useful for examining the beginning of
a motion.

3 Start recording on start of motion. Stop at the end of motion.

4 Start recording immediately. Stop on input change. The input bit
mask is defined in the trace.Level
variable.

5 Start recording immediately. Stop on value exceeding the threshold
defined in trace.Level variable.

6 Start recording immediately. Stop on value below the threshold
defined in trace.Level variable.

7 Start on PWM output change. Stop when the buffer is full.

8 Start recording on input change. Input mask
is defined in the trace.Level variable.

Stop when the buffer is full.

9 Start on value exceeding the threshold
defined in trace.Level variable.

Stop when the buffer is full.

10 Start on value below the threshold defined
in trace.Level variable.

Stop when the buffer is full.

The recorder operates synchronously to the real-time task that executes every 50us. The rate of the recorder
can be expressed as multiples of this time interval. The multiple factor is set by the ASCII command TRATE
and stored in the variable trace.RateMult. For example, if the desired rate of the data recorder is 1ms then
the TRATE should be set to 20.
Another variable evaluated during some of the trigger conditions is the ASCII command TLEVEL (variable
trace.Level). The value of this variable is the threshold that the recorded variable is compared against.
Depending on the trigger code, the condition to start recording can test for value either bigger or smaller than
the threshold.
The function invoked periodically to test the start trigger condition is m_rec_begin().
The function invoked periodically to test the stop trigger condition and perform the recording is m_recorder().
The recorder mode of operation is reported by the ASCII command TMODE (variable trace.Mode). The
meaning of the codes stored is described in the table below:

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 20 of 28
2024.11.26 ··

Table 6-3 TMODE codes

TMODE codes Modes of operation / status

0 Idle, stops recording if started

1 Recorder is armed – ready to start on beginning of motion

2 Recording in ongoing. Stop once the buffer is full.

3 Recording in circular buffer. Stop once the motion completes.

Once the data recording is completed, the host can use the command PLAY to get content of the recording
buffers. The function implementing this request is m_Play(). It also formats binary packet response if the
invocation context is packet command handler.

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 21 of 28
2024.11.26 ··

7. ASCII Communication Protocol
The ASCII protocol is based on commands consisting of ASCII characters terminated with Carriage Return
(CR, ASCII 13). The controller responds with an optional data string followed by a prompt.

The ASCII protocols uses the following communication parameters:

115,200 bps, 8 data bits, 1 stop bit, no parity
When the command is accepted the prompt consist of CR, Line Feed (LF, ASCII 10) and Greater Than sign
(>). When the command is rejected the prompt has Question Mark (?) instead of the Greater Than sign.

Example:

POS ; Host command terminated by CR

120 ; Reply Data String

> ; Reply Prompt

The variable names entered at the command prompt report the value of the referenced variable. If a
parameter follows the name it is interpreted as a request to set the variable to a new value. Some variables
are read-only. An attempt to set a value to them will be reported as invalid command. Examples:

>POS ; Request value of the variable POS

2100

>POS 2000 ; Set POS to a new value

>POS ; Report the new value

2000

>

The full set of ASCII commands is described in the next table.

Table 7-1 ASCII commands

Command Size R/W Description
STA 2H R Status word

short act_state
ERR 2 R Position error [ec]

short pos_error
ADC1 2 R U phase current (A/D conversion value)

short adc1_raw
ADC2 2 R V phase current (A/D conversion value)

short adc2_raw
TC 2U R Sum of absolute values of U phase current and V phase current

[mA]
unsigned short total_current

CV 4 R Current speed [rpm]
long crnt_vel

VEL 4 R/W Reference speed [ec/cycle time]
long buffMotion.velocity

ACC 4 R/W Reference acceleration [ec/cycle time2]
long buffMotion.acceleration

DEC 4 R/W Reference deceleration [ec/cycle time2]
long buffMotion.deceleration

PRO 2U R/W Velocity profile mode (fixed value: 0)
short dflt_vgp_mode

KP 2U R/W Propotional gain (position control)
short buff_kp

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 22 of 28
2024.11.26 ··

Command Size R/W Description
KI 2U R/W Integral gain (position control)

short buff_ki
KD 2U R/W Differential gain (position control)

short buff_kd
IL 2U R/W Integral limit value (position control)

short integral_limit16
VFF 2U R/W Speed feedforward gain (position control)

short buff_kvff
AFF 2U R/W Acceleration feedforward gain (position control)

short buff_kaff
MAX 2U R/W Position error limit [ec]

short buff_err_limit
ETIME 2U R/W Position error detection time

short pos_error_time
DS 2U R/W Data skip interval (fixed value: 0)

short crnt_ds
MLIMIT 2U R/W Output limit value (position control)

long pos_loop_limit
BIAS 2 R/W Output bias value (position control)

short crnt_bias
ASTOP 2U R/W Auto stop mode (fixed value: 0)

short auto_stop_mode
PIMODE 2U R/W Phasing mode (fixed value: 0)

short phasing_mode
PITIME 2U R/W Phasing time

short phasing_time
PIOUT 2U R/W Phasing output

short phasing_power
PMAP 2U R/W PWM output phase selection (fixed value: 0)

short phase_config
PORIGIN 4 R The origin of phase [ec]

long phase_origin
PCMODE 2U R/W Commutation mode (fixed value: 4)

short commutation_mode
PPAIRS 2U R/W The number of pole pair (fixed value: 5)

short pole_pairs
PCOUNTS 4 R/W Encoder counts per rotation in electrical angle [ec]

long ec_per_ecycle
ECPR 4 R/W Encoder counts per rotation in mechanical angle [ec]

long ec_per_rev
PANGLE 2 R Electrical angle [ec]

short phase_angle
CLIMIT 2U R/W

(Func)
Over current detect threshold [mA]
m_CurrentLimit()
unsigned short tc_limit

CTIME 2U R/W Over current detect time
unsigned short tc_limit_time

IDM 2 R d axis current [mA]
short foc_id

IQM 2 R q axis current[mA]
short foc_iq

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 23 of 28
2024.11.26 ··

Command Size R/W Description
IQERR 2 R q axis current error[mA]

short foc_iq_err
QKP 2U R/W Propositonal gain (current control)

short foc_kp
QKI 2U R/W Integral gain (current control)

short foc_ki
ECP 4 R Positon reference value when position error is detected [ec]

long mecmd_pos
ECV 4 R Speed reference value when position error is detected

long mecmd_vel
EPO 4 R Current position when position error is detected [ec]

long mecrnt_pos
U 2 R/W U phase PWM output

unsigned short PhaseU
V 2 R/W V phase PWM output

unsigned short PhaseV
W 2 R/W W phase PWM output

unsigned short PhaseW
PHASES 2U R/W Motor type (fixed value: 3)

short motor_type
TMODE 2U R/W Data recording mode

short trace.Mode
TRATE 2U R/W Data recording rate

short trace.RateMult
TLEVEL 4 R/W Data recording threshold

float trace.Level
ABS 4 R/W

(Func)
Absolute reference position [ec]
m_Abs()
long buffMotion.position

REL 4 R/W
(Func)

Relative reference position [ec]
m_Rel()
long buffMotion.position_rel

POS 4 R/W
(Func)

Current position [ec]
m_Position()
volatile long crnt_pos

IND 4 R
(Func)

Index position [ec]
m_Index()
volatile long index_pos

GO 4 W
(Func)

m_Go()
long buffMotion.position

FWD 0 W
(Func)

Rotate forward
m_Forward()

REV 0 W
(Func)

Rotate backward
m_Reverse()

ON 0 W
(Func)

Enable servo control
m_ServoOn()

OFF 0 W
(Func)

Disable servo control
m_ServoOff()

ENABLE 0 W
(Func)

Enable PWM output
m_PowerOn()

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 24 of 28
2024.11.26 ··

Command Size R/W Description
DISABLE 0 W

(Func)
Disable PWM output
m_PowerOff()

STOP 0 W
(Func)

Stop rotation in reference deceleration
m_SmoothStop()

ABORT 0 W
(Func)

Stop rotation in maximum deceleration
m_AbruptStop()

ALIGN 0 W
(Func)

Execute the phasing process
m_AlignPhase()

VER string R
(Func)

Firmware version
m_Version()
const char *s_version

PWM 2 R/W
(Func)

Reference q axis current [mA]
m_PosLoopCmd()
short pos_loop_cmd

IQCMD 2 R/W
(Func)

Reference q axis current [mA]
m_OutputIQ()
short output_q

IDCMD 2 R/W
(Func)

Reference d axis current [mA]
m_OutputID()
short output_d

CH1 2 R/W
(Func)

Data channel 1
m_LogChannel0()

CH2 2 R/W
(Func)

Data channel 2
m_LogChannel1()

CH3 2 R/W
(Func)

Data channel 3
m_LogChannel2()

CH4 2 R/W
(Func)

Data channel 4
m_LogChannel3()

TRACE 2 R/W
(Func)

Data recording start/stop
m_Trace()
short trace.Trigger

PLAY 4 x 4 R
(Func)

Data acquisition
m_Play()

PINVERT 2 R/W
(Func)

Invert sign of current position (fixed value: 0)
m_PosInvert()
short pos_inv_mode

SAVE 0 W
(Func)

Save motor parameters into the flash memory
(This command is not supported for EWARM.)
m_Save()

RESTORE 0 W
(Func)

Restore motor parameters from the flash memory
(This command is not supported for EWARM.)
m_Restore()

ETYPE 2 R/W
(Func)

Encoder type (fixed value: 3)
m_EncoderType()
short encoder_type

EBAUDRATE 4 R/W
(Func)

Encoder baudrate (fixed value: 2500 [kHz])
m_EncBaudrate()
long enc_baudrate

ESTATUS 2H R
(Func)

Encoder status
m_EncStatus()
unsigned short enc_status

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 25 of 28
2024.11.26 ··

Command Size R/W Description
TBSIZE 2U R Data recording size

short trace.buff_size
QKD 2U R/W Differential gain (current control)

short foc_kd
VKP 2U R/W Proposional gain (speed control)

short buff_kp_vel
VKI 2U R/W Integral gain (speed control)

short buff_ki_vel
VKD 2U R/W Diffrential gain (speed control)

short buff_kd_vel
ELVOLT 4 R/W

(Func)
Low voltage detection threshold [V]
m_Elvolt()
long Lvolt_Val

EHVOLT 4 R/W
(Func)

Over voltage detection threshold [V]
m_Ehvolt()
long Hvolt_Val

EWPOSMIN 4 R/W
(Func)

Minimum value of position error detection [ec]
m_EwposMin()
long WPosMin_Val

EWPOSMAX 4 R/W
(Func)

Maximum value of position error detection [ec]
m_EwposMax()
long WPosMax_Val

EOVS 4 R/W
(Func)

Over speed detection threshold [rpm]
m_Eovs()
long Ovs_Val

EWOVS 4 R/W
(Func)

Speed error detection threshold [ec/cycle time]
m_Ewovs()
long WOvs_Val

ERRMASK 4H R/W
(Func)

Error status mask
m_Emask()
unsigned long ErrMsk

EVOLT 2 R Bus board voltage [V]
long crnt_volt

EQUERY 4H R Error status
unsigned long ErrSts

ERESET 0 W
(Func)

Clear error status
m_Ereset()
unsigned long ErrSts

EOVC 4 R/W
(Func)

Over current predetect threshold [mA]
m_Eovc()
long Ovc_Val

CTRLMODE 2U R/W
(Func)

Control mode
0: Position control
1: Speed controls

m_CtrlMode()
unsigned short ctrl_mode

COMDIR 2U R/W
(Func)

Rotation direction (CW/CCW)
m_CommandDirection()
unsigned short cmd_dir

COMVEL 2 R/W
(Func)

Reference speed [rpm]
m_CommandVelocity()
short cmd_vel_rpm

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 26 of 28
2024.11.26 ··

Command Size R/W Description
RVAL 2, 4,

8, 4H
R/W

(Func)
Read value
m_ReadValue()

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 27 of 28
2024.11.26 ··

8. Reference documents
・RZ/T2H Startup Manual (RZ/T2H Motion Control Utility) (R01AN7334)

・RZ/T2H Program Writing Guide (R01AN7335)

・e2 studio Integrated Development Environment User's Manual: Getting Started (R20UT4535)

RZ/T2H Vector Control for Permanent Magnetic Synchronous Motor with Encoder (9-axes)

R01AN7333EJ0100 Rev.1.00 Page 28 of 28
2024.11.26 ··

Revision History

Rev. Date
Description
Page Summary

1.00 2024.11.26 - First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

○ Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the EU and other
countries. All rights reserved.

○Ethernet is a registered trademark of Fuji Xerox Co., Ltd.
○IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers Inc
○EtherCAT® and TwinCAT® are registered trademark and patented technology, licensed by Beckhoff

Automation GmbH, Germany.
○A-format is a trademark of the Nikon Corporation.
○BiSS is a registered trademark of iC-Haus GmbH.
○EnDat is a registered trademark of Dr.Johannes Heidenhain GmbH.
○FA-CODER is a registered trademark of Tamagawa Seiki Co., Ltd.
○HIPERFACE DSL is a registered trademark of SICK AG.
○Additionally all product names and service names in this document are a trademark or a registered

trademark which belongs to the respective owners.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction
	1.1 Summary
	1.2 Function

	2. Software configuration
	2.1 Basic specifications
	2.2 Operating environment
	2.3 File configuration

	3. Firmware details
	3.1 Initialization process
	3.2 Main process
	3.3 Periodic interruption process
	3.4 Communication process
	3.5 Data Types
	3.6 Global Variables
	3.7 Enumerations

	4. Motor control process
	4.1 9-axes motor control
	4.2 m_background function
	4.2.1 bootstrap_charge function
	4.2.2 pos_read function
	4.2.3 pos_loop function
	4.2.4 vel_loop function
	4.2.5 crnt_read function
	4.2.6 crnt_loop function
	4.2.6.1 Phasing process
	4.2.6.2 Electrical angle calculation
	4.2.6.3 commutate_foc function
	4.2.6.4 commutate_svm function
	4.2.6.5 update_pwm function

	5. Interlock process
	6. Data Recording
	7. ASCII Communication Protocol
	8. Reference documents
	Revision History

