RENESAS APPLICATION NOTE

RZ/T1 Group RO1AN2989EJ0131

Initial Settings of the Microcomputers Incorporating the R-IN Engine Rev.1.31
Jul. 13,2018

Outline

This application note describes a sample program for making initial settings of the RZ/T1 microcomputers incorporating
the R-IN Engine.

The features of this program are as follows:
e The Cortex-R4 core makes initial settings after it is released from the reset state and releases the Cortex-M3 from
reset. The R4 core then generates an inter-CPU interrupt, and makes LED 0 flash with a predetermined period.
e The Cortex-M3 core makes initial settings after it is released from the reset state and waits for the inter-CPU
interrupt request from the Cortex-R4. On reception of the interrupt, the M3 core lights up LED 1.

e Pressing the switch SW2 makes the Cortex-R4 write “LED data” including the state of LED 0 (on or off) to the
shared memory area. For its own part, the M3 core constantly reads the LED data in the shared memory and reflects
the state read from there in LED 1.

Target Devices

RZ/T1 group

When applying the sample program covered in this application note to another microcomputer, modify the program
according to the specifications for the target microcomputer and conduct an extensive evaluation and testing of the
modified program.

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 1 of 46
Jul. 13,2018

o > w b

Table of Contents

SPECIICALIONS ...ttt a e e e e e e e aaaaaaaaaeaa et e e erara—a———— 4
Operating ENVIFONMENT ... e e e e e e e e ennbe e e e e eneee 5
R P (= To [N o] o] [for=T i o] T Vo) (= TSR 6
Peripheral MOAUIEScooi ettt e e et e e e e e e e e e e e e eeeeeaeeeaeannnennnees 7
L V0 17T 8
51 Hardware Structure EXample........ ... e 8
5.2 L 10 ES T =T T PPPERPN 8
RS T0 iA1= - SRS 9
6.1 OPEratioN OVEIVIEBWottt ettt e e e e e e e et e e e e e e e e e e seeeaabasaeereaaaaaeaaaans 9
6.1.1 (=T 0= = 1110 o I SRR 10
6.2 1Y =T 0o oV 1 = o S PUSSPPRRRR 10
6.2.1 Section Assignment for the Sample Program............cccoviiiiiiiiiiiie e 10
6.2.2 MPU SEtiNGS. ..ot 13
6.2.3 Exception Processing Vector Table...........cc.uiiii e 13
6.3 L1 =Y 4 U o PRSP 14
6.4 FiXed-Width INteger TYPES. . oot e e e e e e e e e e e e e e e eeeeees 14
6.5 (070] 011 e= a1 T = 3 (o] o 0o o = PP 15
6.6 Structures/Unions/Enumerated TYPeS........eeiiiiiiiiiiiiiiit et 15
6.7 (€1 (o] o F= 1Y 2= Ty F= o[SRS 16
6.8 g2 1) o 1 RS 16
6.9 Specification Of FUNCHIONSuiie e 17
6.9.1 RS T 1Y L PSPPI 17
6.9.2 RUSHM _MEMCPY oiiiieiiiiiiieeete ettt e e e e e e s e e e et e e e aea e e e e e s e aanrsneaeeeees 17
6.9.3 R_OSHM _Load UINE32eeiiiieie ettt e e e nrre e e e 17
6.9.4 ST 1Y I o= Vo 0 77 TP 18
6.9.5 R_SHM_LoAd_UINETB ...ttt e e e et e e e e enree e e s e 18
6.9.6 RS T 1Y I I = Vo 10 3 T PSR 18
6.9.7 RUSHM_LOAd_UINEB ...t s e e e e e 18
6.9.8 RUSHM_LOAA_ N8 ..ottt e e et e e e nb e e e 19
6.9.9 MAIN (COMEX-RA) ... e e 19
6.9.10 INIt_CM3 (COMEX-RA) ... 19
6.9.11 MAIN (COMEX-M3)....eeeeie e 19
6.9.12 R_IRQO_ISI (COMEeX-RA) ... ittt 20
6.9.13 IRQ_INTERCPU _IRQHANAIETc.ciiiiiiiiee ettt 20
6.10 oo = o RSP 21
6.10.1 Initialization Processing of Shared Memory Driver...........cccooiiiiiiiieiieiieeee e 21
6.10.2 Processing to Copy Ranges of Memory to and from the Shared Memory Area........... 22

6.10.3 Processing to Load a Value (4-Byte Unsigned Int Type) to and
from the Shared MemOry Ar€accoi i 23

6.10.4

Processing to Load a Value (4-Byte Signed Int Type) to and

from the Shared MemOIy Ar€acooiiiiiiiieeeee et 23
6.10.5 Processing to Load a Value (2-Byte Unsigned Int Type) to and
from the Shared MemOry Areacooo i 23
6.10.6 Processing to Load a Value (2-Byte Signed Int Type) to and
from the Shared MemOry Areacooo i 24
6.10.7 Processing to Load a Value (1-Byte Unsigned Int Type) to and
from the Shared MemOry Ar€a ..o 24
6.10.8 Processing to Load a Value (1-Byte Signed Int Type) to and
from the Shared MemOry Ar€ao 24
6.10.9 Main Processing (COMEX-RA)oouiiiiiiit e 25
6.10.10 Initialization Processing of the Cortex-M3 Coreccccuuiiiiiiiiiiieeee e 26
6.10.11 Main Processing (CorteX-M3)........cccociiiiiiiiiiii e eae e 27
6.10.12 R_IRQ9 Interrupt (IRQ Pin Interrupt 5) ProCessingccccuveeeiiiiieieeiiiieieeesiiieeee e 28
6.10.13 Inter-CPU INterrupt ProCeSSINGccoeiiiiiiiieiiiiiee ettt e e e ee e enbeeee e 28
7. S T=Tag] o] [o oo =T 1 o TSP PURPRPRT 29
8. Related DOCUMENTES ..ottt e e e e e ettt e e e e e e e e e e e e e e nneeneeeeeaaeeeaaaannns 30

Appendix1.Supplementary Notes on Development Environments ..o, 31

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

1. Specifications

Table 1.1 lists the peripheral modules to be used and their applications and Figure 1.1 shows the operating
environment.

Table 1.1 Peripheral Modules and Applications

Peripheral Module Application

Clock generator (CPG) Supplying the CPU clock and low-speed on-chip oscillator clock

Interrupt controller (ICUA) Handling interrupts through an external interrupt input pin (IRQ5) and inter-CPU
interrupts

Extended internal RAM The shared memory area (extended internal instruction RAM, “RAM I”) and mem-
ory area for the program of the Cortex-M3 (extended internal data RAM, “RAM D”)

Error control module (ECM) Initializing the ERROROUT# pin

General-purpose input/output ports Pins which control switching the LEDs on and off

Host computer ™

(Host/Func)

1 EINEXE:

Mic/
Headphones
DC5V output
(ccosen) RZ/T4 Evaluation Board
Serial RTK7910022C00000BR

Note 1. Indicates the device that the user needs to prepare.

Figure 1.1 Operating Environment

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 4 of 46
Jul. 13,2018

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

2. Operating Environment

The sample program described in this application note is for the environment below.

Table 2.1 Operating Environment

Item

Description

Microcomputer

RZ/T1 group

Operating frequency

CPUCLK (Cortex-R4): 450 MHz
ICLK (Cortex-M3): 150 MHz

Operating voltage

33V

Integrated development environment

Embedded Workbench® for Arm, version 8.20.2 from IAR Systems
DS-5TM 5.26.2 from Arm
e2 studio 6.1.0 from Renesas

Operating mode

SPI boot mode
16-bit-bus boot mode

Board

RZ/T1 Evaluation Board (RTK7910022C00000BR)

Devices
(functions to be used on the board)

¢ NOR flash memory (connected to CS0 and CS1 spaces)
Manufacturer: Macronix International Co., Ltd.
Model: MX29GL512FLT2I-10Q

o SDRAM (connected to CS2 and CS3 spaces)
Manufacturer: Integrated Silicon Solution Inc.
Model: 1IS42S16320D-7TL

e Serial flash memory
Manufacturer: Macronix International Co., Ltd.
Model: MX25L51245G

RO1AN2989EJ0131 Rev.1.31
Jul. 13, 2018

RENESAS

Page 5 of 46

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-

3. Related Application Notes

The application note related to this document is listed below for reference.

e RZ/T1 Group Application Note: Initial Settings

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 6 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

4. Peripheral Modules

The basics of the clock generator (CPG), the interrupt controller (ICUA), the error control module (ECM), extended
internal RAM, and general-purpose input/output ports are described in the “RZ/T1 Group User's Manual: Hardware.”

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 7 of 46
Jul. 13,2018

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

S.
5.1

Hardware

Hardware Structure Example

Figure 5.1 shows an example of hardware structure.

RZ/T1
ICUA Power consumption
(Interrupt Control Unit A) Cortex-R4 reducer
. Register-writing protection
Extended internal RAM Cortex-M3 I/0 port function
PF7 P56
LEDO | LED1
Figure 5.1 Example of Hardware Structure
5.2 Pins Used
Table 5.1 lists the pins to be used and their functions.
Table 5.1 Pins and Functions
Pin Name Input/Output Description
MDO Input Select the operating mode
MD1 Inout MDO =L and MD1 = L and MD2 = L (SPI boot mode)
P MDO =L and MD1 = H and MD2 = L (16-bit-bus boot mode)
MD2 Input
IRQ5 Input SW2 (IRQ pin interrupt)
PF7 Output Switches LED 0 on and off.
P56 Output Switches LED 1 on and off.

RO1AN2989EJ0131 Rev.1.31
Jul. 13, 2018

RENESAS Page 8 of 46

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.

Software

This section explains the case of EWARM (from IAR systems) unless otherwise stated.

6.1

Operation Overview

The sample program described in this application note makes initial settings of the Cortex-R4 and Cortex-M3 cores.

1.

The program for the Cortex-R4 core makes initial settings after power for the core is switched on. This core copies
the program code for the Cortex-M3 from the external flash memory into the extended internal RAM, and releases
the M3 core from the reset state. Note that the R4 core does not copy the code for the M3 core if the program is to be
executed directly from the RAM. After making settings for the LED-controlling port pins and interrupts, the R4
core generates an inter-CPU interrupt to notify the M3 core of completion of the initial settings.

The program for the Cortex-M3 core makes initial settings after it is released from the reset state (software reset 2)
and waits for an inter-CPU interrupt from the Cortex-R4 core.

The Cortex-R4 core makes LED 0 flash on and off with a predetermined period. The state of LED 0 (switched on or
off) is written to the shared memory area (extended internal RAM) on detection of the switch SW2 being pressed.
On its side, the Cortex-M3 core constantly reads LED data from the shared memory and turns LED 1 on or off
according to the value read (the initial value is “on”). For example, if SW2 is pressed while LED 0 is off, the state of
LED 0 is reflected in LED 1, resulting in LED 1 being switched off.

Figure 6.1 shows the processing for initial settings of the microcomputers incorporating the R-IN engine in outline.

Cortex-R4
T TTTTTTTTTTTsm ST 1 Note.
H I Refer to the "RZ/T1 Group Application Note:
[H Initial setting I Initial Settings" for the initial settings of the
, ! Cortex-R4.
| | |
1 Copy the program for the Cortex-M3 g
! 1
| (from an external flash memory to H
i the extended internal RAM 1) 1
| i Cortex-M3
' | Releases SOftWare =—-- = - oo oo oo .
' . . ! reset 2 H H
1 ortex-M3 is released from reset i . 1
Q) A 1 (release from software reset 2) J 1 Initial setting H
! ! : | :
: | ! : :
! Port setting | ! Interrupt setting !
: (LEDO, LED1) | : !
1
! ‘ : : ;
1 1 <
! Interrupt setting : ! !
1
L i ‘ 1 Notifies completion of i i
H .
' Inter-CPU interrupt is . port setting H Inter-CPU H
H generated ! . interrupt received? H
(2) ' i Shared memory ' i
H I (extended internal RAM D) | Yes -
i L pmmmmmmmmmmmme ' i
i b i i
1
: LED 0 flashes on and H -H-" Read LED_DATA | i
i o ! i LED_DATA : i | :
3 ! P = i Indicate state of lighting of LED 1 !
@) i 1y (onoroff) i ' | (LED_DATA) i
1 ! 1
1 1 1 1
1 State of LED 0 is written on detection of L " |— '
| SW2 being pressed.] i : i
L e e e e T B i
Figure 6.1 Overview of Processing for Initial Settings of the Microcomputers incorporating the R-IN Engine
RO1AN2989EJ0131 Rev.1.31 -IENESAS Page 9 of 46

Jul. 13, 2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.1.1 Preparation

Make appropriate setting for SW4 on the RZ/T1 Evaluation Board (RTK7910022C00000BR) depending on the project
to be used. Table 6.1 shows the settings of SW4. Detailed settings of SW4 are described in the “RZ/T1 Evaluation Board
RTK7910022C00000BR User's Manual” (see Section 8, Related Documents).

Table 6.1 Settings of SW4
Sample Program SW4-1 SW4-2 SW4-3 SW4-4 SW4-5 SW4-6
16-bit-bus boot mode version ON OFF ON ON ON OFF
SPI boot mode version ON ON ON ON ON OFF

RAM exectuion version Either of the above combinations.

6.2 Memory Map

The address space of the RZ/T1 group and the memory map of the RZ/T1 Evaluation Board are described in the “RZ/T1
Group Application Note: Initial Settings” and the “RZ/T1 Group User's Manual: Hardware.”

6.2.1 Section Assignment for the Sample Program

Table 6.2 lists the sections to be used in this sample program. Figure 6.2 shows the assignment of sections (for the
Cortex-R4 in the 16-bit-bus boot version) as an example.

The details of the sections for the Cortex-R4 are described in the “RZ/T1 Group Application Note: Initial Settings”.

Table 6.2 Sections to be Used (Cortex-R4)
Loading Execution
Area Name Description Type Area Area
VECTOR_WBLOCK Reset and exception processing vector table Code — ATCM
USER_PRG_WBLOCK User application program area (for execution) Code — ATCM
USER_DATA_WBLOCK User application program variable area (for execution) Data — ATCM
CSTACK Stack area Data — ATCM
SVC_STACK Supervisor (SVC) mode stack area Data — ATCM
IRQ_STACK IRQ mode stack area Data — ATCM
FIQ_STACK FIQ mode stack area Data — ATCM
UND_STACK Undefined (UND) mode stack area Data — ATCM
ABT_STACK Abort (ABT) mode stack area Data — ATCM
LDR_DATA_WBLOCK Loader program variable area (for execution) Data — BTCM
LDR_PRG_WBLOCK Loader program area (for execution) Code — BTCM
Idr_param Loader parameters*? Data FLASH*2 —
LDR_PRG_RBLOCK Loader program area (for storing)*? Code FLASH*2 —
LDR_DATA_RBLOCK Loader program variable area (for storing)*! Data FLASH*2 —
VECTOR_RBLOCK Reset and exception processing vector table area (for storing)*! Code FLASH*2 —
USER_PRG_RBLOCK User application program area (for storing)*? Code FLASH*2 —
User application program area for the Cortex-M3 (for storing)*3
USER_DATA_RBLOCK User application program variable area (for storing)*’ Data FLASH*2 —

Note 1. The RAM execution version does not have this area.

Note 2. This is assigned to the NOR flash memory in the case of the 16-bit-bus boot mode version and to the serial flash memory in
the case of the SPI boot mode version.

Note 3. The RAM execution version does not have this area. Instead of this area, according to the section assignment of the Cortex-
M3, the development tool directly downloads the program to the area in extended internal RAM | from which it will be

executed.

RO1AN2989EJ0131 Rev.1.31
Jul. 13, 2018

RENESAS

Page 10 of 46

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

Table 6.3 Sections to be Used (Cortex-M3)

Area Name Description Type Loading Area Execution Area

vectors Vector area Code Extended internal RAM | Extended internal RAM |
readonly User application program area Code Extended internal RAM | Extended internal RAM |
_SHARED_MEM Shared memory area Data Extended internal RAM D Extended internal RAM D
readwrite User application program variable area Data Extended internal RAM D Extended internal RAM D
HEAP Heap area Data Extended internal RAM D Extended internal RAM D
CSTACK Stack area Data Extended internal RAM D Extended internal RAM D

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 11 of 46

Jul. 13, 2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

Section assignment Section assignment
(loaded view) (execution view)
ATCM 4) ATCM
0000 0000h The loader program [| VECTOR_WBLOCK
0000 0040h copies the program
to this area and
jumps to the start
address USER_PRG_WBLOCK
. d (user application program)
0007 0000h
USER_DATA_WBLOCK
@ CSTACK
SVC_STACK
Stack d.
ackreserve IRQ_STACK
- FIQ_STACK
UND_STACK
(3) The loader ABT_STACK
program copies the
BTCM program to this area. BTCM
0080 0000h
| LDR_DATA_WBLOCK
0080 2000h
LDR_PRG_WBLOCK LDR_PRG_WBLOCK
(loader program) - (Io_ader p_rogram)
. (1 .
Extended internal RAM | The program is Extended internal RAM |
0400 0000h copied to this area » (CM3_SECTION)
on boot after reset
is released, and
External NOR f!aSh jumps to the start External NOR flash
(CSO0 area) address. (CSO area)’
4000 0000h Idr_param" Idr_param
4000 004Ch’
LDR_PRG_RBLOCK LDR_PRG_RBLOCK
4000 604Ch™
LDR_DATA_RBLOCK LDR_DATA_RBLOCK
4002 0000h™" | VECTOR_RBLOCK |) VECTOR_RBLOCK
4002 0040h"
USER_PRG_RBLOCK L USER_PRG_RBLOCK
CM3_SECTION]»
. (5)
4009 0000h" . .
USER_DATA_RBLOCK The program is copied as USER_DATA_RBLOCK
J part of processing to initialize
the CM3.
Note 1. This corresponds to the serial flash (SPIBSC area) in case of SPI boot version. Read addresses as if the start
address is 1000 0000h.
Note 2. The loader parameters (Idr_param section) are used in boot processing. Refer to the “RZ/T1 Group User's
Manual: Hardware for details.

Figure 6.2 Assignment of Sections (for the Cortex-R4 in the 16-Bit-Bus Boot Version)

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 12 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

Section assignment

Extended internal RAM |’
0000 0000h vectors

readonly

Extended internal RAM D

2000 0o000h| ~SHARED MEM
2000 1000h readwrite
HEAP
CSTACK

Note: The sections in extended internal RAM | are copied by the Cortex-R4 as the CM3_SECTION.

Figure 6.3 Assignment of Sections (Cortex-M3)

6.2.2 MPU Settings
MPU settings are described in the “RZ/T1 Group Application Note: Initial Settings.”

6.2.3 Exception Processing Vector Table

Exception processing vector table is found in the “RZ/T1 Group Application Note: Initial Settings.”

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 13 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.3 Interrupts

Table 6.4 lists the interrupts used in the sample program.

Table 6.4 Interrupts Used in Sample Program
Interrupt (Source ID) Priority Process in Outline
Inter-CPU interrupt (IRQ1) 15 The Cortex-R4 notifies the Cortex-M3 of the completion of initial settings (applicable to the
Cortex-R4 and Cortex-M3).
IRQ pin interrupt 5 (IRQ9) 15 State of lighting of LED 0 (switched on or off) is written to the shared memory on detection

of SW2 being pressed (applicable to the Cortex-R4).

6.4 Fixed-Width Integer Types

Table 6.5 lists the fixed-width integers for sample program.

Table 6.5 Fixed-Width Integers for Sample Program

Symbol Description
int8_t 8-bit signed integer (defined in the standard library)
int16_t 16-bit signed integer (defined in the standard library)
int32_t 32-bit signed integer (defined in the standard library)
int64_t 64-bit signed integer (defined in the standard library)
uint8_t 8-bit unsigned integer (defined in the standard library)
uint16_t 16-bit unsigned integer (defined in the standard library)
uint32_t 32-bit unsigned integer (defined in the standard library)
uint64_t 64-bit unsigned integer (defined in the standard library)
RO1AN2989EJ0131 Rev.1.31 RENESAS Page 14 of 46

Jul. 13, 2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.5 Constants/Error Codes

Table 6.6 lists the constants used in the sample program. Detail on the program of the Cortex-R4 core is found in the
“RZ/T1 Group Application Note: Initial Settings.”

Table 6.6 Constants Used in the Sample Program
Constant Name Value Description
LED_OUTPUT_HIGH (1) Output value indicating the lighting state of the LED
SHM_SUCCESS (0) “Successful” control flag for the shared memory driver
SHM_ERR (-1) “Unsuccessful” control flag for the shared memory driver
SHM_SEMFNO_TOTAL (8) Total number of the semaphore flags for the shared memory driver
SHM_ SEMFNO_0 (0) Semaphore flag 0 for the shared memory driver
SHM_ SEMFNO_1 (1) Semaphore flag 1 for the shared memory driver
SHM_ SEMFNO_2 (2) Semaphore flag 2 for the shared memory driver
SHM_ SEMFNO_3 (3) Semaphore flag 3 for the shared memory driver
SHM_ SEMFNO_4 (4) Semaphore flag 4 for the shared memory driver
SHM_ SEMFNO_5 (5) Semaphore flag 5 for the shared memory driver
SHM_ SEMFNO_6 (6) Semaphore flag 6 for the shared memory driver
SHM_ SEMFNO_7 (7) Semaphore flag 7 for the shared memory driver

6.6 Structures/Unions/Enumerated Types

Figure 6.4 is the structures, unions, and enumerated types used in the sample program. Detail on the program of the
Cortex-R4 core is described in the “RZ/T1 Group Application Note: Initial Settings.”

/* Shared memory struct */
/* Size MAX 4KB */
struct st_shm

{
uint32_t LED DATA;

b

/* struct of [SYSTEM.SYTSEMFn] register */

typedef struct
{
union
{
unsigned long LONG;
struct
{
unsigned long SEMF:1;
unsigned long :31;
} BIT;
} SYTSEMF;
} st_sytsemf;
Figure 6.4 Structures/Unions/Enumerated Types Used in Sample Program
RO1AN2989EJ0131 Rev.1.31 RENESAS Page 15 of 46

Jul. 13, 2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.7 Global Variables

Table 6.7 lists the global variables. Detail on the program of the Cortex-R4 core is described in the “RZ/T1 Group
Application Note: Initial Settings.”

Table 6.7 Global Variables

Type Variable Name Description Function
uint8_t g_ready_flag Initialization completion flag of the Cortex-R4 init_main.c (Cortex-M3)
uint32_t g_led_data Variable to indicate the state of the LED main.c (Cortex-R4)

init_main.c (Cortex-M3)

6.8 Functions

Table 6.8 lists the functions. Detail on the program of the Cortex-R4 core is described in the “RZ/T1 Group Application
Note: Initial Settings.”

Table 6.8 Functions
Function Name Page
R_SHM_Init 17
R_SHM_memcpy 17
R_SHM_Load_uint32 17
R_SHM_Load_int32 18
R_SHM_Load_uint16 18
R_SHM_Load_int16 18
R_SHM_Load_uint8 18
R_SHM_Load_int8 19
main (Cortex-R4) 19
init_cm3 (Cortex-R4) 19
R_IRQ9_isr (Cortex-R4) 20
main (Cortex-M3) 19
IRQ_INTERCPU_IRQHandler(Cortex-M3) 20

Note: The functions are common among cores unless otherwise specified.

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 16 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.9 Specification of Functions

Specifications of the functions used in the sample program are as follows.

6.9.1 R_SHM_Init
R_SHM_Init

Synopsis Initializing the shared-memory driver
Declaration int32_t R_SHM_Init (uint32_t semfno)

Description This function makes initial settings of the specified semaphore register to be used for the shared
memory driver.

Arguments uint32_t semfno Specifies the number of the semaphore register to be initialized as a value
fromOto 7.

Return value SHM_SUCCESS: succeeded.
SHM_ERR: failed.

Remarks None

6.9.2 R_SHM_memcpy
R_SHM_memcpy

Synopsis Copies data to and from the shared memory area
Declaration int32_t R_SHM_memcpy(void *dst, void *src, size_t size)

Description This function copies multiple bytes of data to and from the shared memory area.

Arguments void *dst Pointer to the address of the destination memory area
void *src Pointer to the address of the source memory area
size_t size Size of memory to be transferred.

Return value SHM_SUCCESS: succeeded
SHM_ERR: failed

Remarks None

6.9.3 R_SHM_Load_uint32

R_SHM_Load_uint32
Synopsis Function for loading four bytes of unsigned int type data to and from the shared memory
Declaration int32_t R_SHM_Load_uint32(uint32_t *dst, uint32_t *src)
Description This function loads four bytes of unsigned int type data to and from the shared memory.

Arguments uint32_t *dst Pointer to the address of the destination memory area
uint32_t *src Pointer to the address of the source memory area
Return value None

Remarks None

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 17 of 46
Jul. 13,2018

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.9.4 R_SHM_Load_int32
R_SHM_Load_int32
Synopsis Function for loading four bytes of signed int type data to and from the shared memory
Declaration int32_t R_SHM_Load_int32(int32_t *dst, int32_t *src)
Description This function loads four bytes of singed int type data to and from the shared memory.
Arguments int32_t *dst Pointer to the address of the destination memory area
int32_t *src Pointer to the address of the source memory area
Return value None
Remarks None
6.9.5 R_SHM_Load_uint16

R_SHM_Load_uint16

Synopsis
Declaration
Description

Arguments

Return value

Remarks

6.9.6

Function for loading two bytes of unsigned int type data to and from the shared memory area
int32_t R_SHM_Load_uint16(uint16_t *dst, uint16_t *src)

This function loads two bytes of unsigned int type data to and from the shared memory area.
uint16_t *dst
uint16_t *src

Pointer to the address of the destination memory area
Pointer to the address of the source memory area
None

None

R_SHM_Load_int16

R_SHM_Load_int16

Synopsis
Declaration
Description

Arguments

Return value

Remarks

Function for loading two bytes of signed int type data to and from the shared memory area
int32_t R_SHM_Load_int16(int16_t *dst, int16_t *src)

This function loads two bytes of signed int type data to and from the shared memory area.
int16_t *dst
int16_t *src

None

Pointer to the address of the destination memory area

Pointer to the address of the source memory area

None

6.9.7 R_SHM_Load_uint8
R_SHM_Load_uint8
Synopsis Function for loading one byte of unsigned int type data to and from the shared memory area
Declaration int32_t R_SHM_Load_uint8(uint8_t *dst, uint8_t *src)
Description This function loads one byte of unsigned int type data to and from the shared memory area.
Arguments uint8_t *dst Pointer to the address of the destination memory area
uint8_t *src Pointer to the address of the source memory area
Return value None
Remarks None
RO1AN2989EJ0131 Rev.1.31 RENESAS Page 18 of 46

Jul. 13, 2018

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.9.8

R_SHM Load int8

R_SHM_Load_int8

Synopsis
Declaration
Description

Arguments

Return value

Remarks

6.9.9 main

Function for loading one byte of signed int type data to and from the shared memory area
int32_t R_SHM_Load_int8(int8_t *dst, int8_t *src)

This function loads one byte of signed int type data to and from the shared memory area.
int8_t *dst

int8_t *src

Pointer to the address of the destination memory area
Pointer to the address of the source memory area
None

None

(Cortex-R4)

main

Synopsis
Declaration
Description
Arguments

Return value

Remarks

6.9.10

Main processing

int main (void)

This is the user application program for the Cortex-R4 core.
None

None

None

init_cm3 (Cortex-R4)

init_cm3

Synopsis
Declaration

Description

Arguments
Return value

Remarks

6.9.11

Initialization processing of the Cortex-M3 core
void init_cm3(void)

This function copies the program code for the Cortex-M3 from an external flash memory to the
extended internal RAM and releases the M3 from the reset state.

None
None

When the program is run directly from RAM, it does not have to be copied, so only releasing the
Cortex-M3 from the reset state proceeds in this case.

main (Cortex-M3)

main

Synopsis
Declaration
Description
Arguments

Return value

Remarks

Main processing

int main(void)

This is the user application program for the Cortex-M3 core.
None

None

None

RO1AN2989EJ0131 Rev.1.31

Jul. 13, 2018

RENESAS Page 19 of 46

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.9.12 R_IRQY_isr (Cortex-R4)

R_IRQ_9_isr
Synopsis IRQ9 interrupt (IRQ pin interrupt 5) handling
Declaration void R_IRQ9_isr(void)

Description This function writes the state of lighting of LED 0 to the shared memory.

Arguments None
Return value None

Remarks None

6.9.13 IRQ_INTERCPU_IRQHandler

IRQ_INTERCPU_IRQHandler
Synopsis Inter-CPU interrupt handling
Declaration void IRQ_INTERCPU_IRQHandler(void)

Description This function handles interrupt processing in response to interrupt requests from the Cortex-R4
core and sets the g_ready_flag.

Arguments None
Return value None

Remarks None

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 20 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.10 Flowchart

6.10.1 Initialization Processing of Shared Memory Driver

Figure 6.5 shows the initialization processing of the shared memory driver.

C R_SHM_Init)

Designated semfno is out
of the stipulated range?

Returned value = SHM_ERR

Redefine the semaphore SEMFREG <« Pointer to the SYTSEMFn register with the
register number stipulated in semfno.
*1
r—-— - - -1--—-—- - - - — — — — — — — /7
| cnaple read clear function. SYTSEMFEN.SEMFEN « 1 |
| et the target resource to be SYTSEMEn.SEMEnN < 1 |
available.

Returned value =
SHM_SUCCESS

Note 1. The steps within the broken lines are only included when running the program for the Cortex-R4.

Figure 6.5 Initialization Processing of Shared Memory Driver
RO1AN2989EJ0131 Rev.1.31 RENESAS Page 21 of 46

Jul. 13, 2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.10.2 Processing to Copy Ranges of Memory to and from the Shared Memory Area

Figure 6.6 shows the processing to copy ranges of memory to and from the shared memory area.

(R_SHM_memcpy >

Target resource is
available?

Yes

Processing to copy
contents of memory

Set the target resource to SYTSEMFn.SEMFn < 1
be available

Returned value =
SHM_SUCCESS

Figure 6.6 Processing to Copy Ranges of Memory to and from the Shared Memory Area
ROTAN2989EJ0131 Rev.1.31 RENESAS Page 22 of 46

Jul. 13, 2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.10.3 Processing to Load a Value (4-Byte Unsigned Int Type) to and from the Shared
Memory Area

Figure 6.7 shows the processing to load four bytes of unsigned int type data to and from the shared memory area.

< R_SHM_Load_uint32 >

Target resource is
available?

Four-byte unsigned int type
data is loaded

Set the target resource to
be available

Returned value =
SHM_SUCCESS

Figure 6.7 Processing to Load a Value (4-Byte Unsigned Int Type) to and from the Shared Memory Area

6.10.4 Processing to Load a Value (4-Byte Signed Int Type) to and from the Shared
Memory Area

For the flowchart of this processing, see Figure 6.7. Note that the value loaded in this processing is of the four-byte
signed int type.

6.10.5 Processing to Load a Value (2-Byte Unsigned Int Type) to and from the Shared
Memory Area

For the flowchart of this processing, see Figure 6.7. Note that the value loaded in this processing is of the two-byte
unsigned int type.

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 23 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.10.6 Processing to Load a Value (2-Byte Signed Int Type) to and from the Shared
Memory Area

For the flowchart of this processing, see Figure 6.7. Note that the value loaded in this processing is of the two-byte
signed int type.

6.10.7 Processing to Load a Value (1-Byte Unsigned Int Type) to and from the Shared
Memory Area

For the flowchart of this processing, see Figure 6.7. Note that the value loaded in this processing is of the one-byte
unsigned int type.

6.10.8 Processing to Load a Value (1-Byte Signed Int Type) to and from the Shared
Memory Area

For the flowchart of this processing, see Figure 6.7. Note that the value loaded in this processing is of the one-byte
signed int type.

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 24 of 46
Jul. 13,2018

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.10.9

Main Processing (Cortex-R4)

Figure 6.8 shows the flowchart of main processing of the Cortex-R4.

=

Initialization process

of the shared The semaphore register 0 is initialized.
memory driver

Value indicating the state of The four-byte unsigned int type value LED_DATA, which
the LED (on or o%) is loaded to indicates the state of the LED (on or off), is loaded.
the shared memory LED_DATA LED_OUTPUT_DATA

Initialization process
of the Cortex-M3 core

Initial settings of the ports (PF7, P56) connected to the LEDs

Port setting PF7: output port
‘ P56: output port
ECM setting
Interrupt setting Settings of the inter-CPU interrupt (IRQ1) and the external pin interrupt (IRQ5)
Inter-CPU interrupt is CPUINT.CM3INT 1
generated
LED 0 flashes Toggle the output from PF7.

Figure 6.8

Main Processing (Cortex-R4)

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 25 of 46

Jul. 13, 2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.10.10 Initialization Processing of the Cortex-M3 Core

Figure 6.9 shows the flowchart of initialization processing of the Cortex-M3 core.

ST

Copying the program for the Program for the Cortex-M3 is copied from an external

" Cortex-M3 flash memory to the extended internal RAM 1.

Execute the software reset 2 to release the Cortex-M3
Release from software reset 2 from the reset state.

SWRR2 0000 0000H
(Return)

Note 1. This step is not included when the program is to be executed from the RAM.

Figure 6.9 Initialization Processing of Cortex-M3
RO1AN2989EJ0131 Rev.1.31 RENESAS Page 26 of 46

Jul. 13, 2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.10.11

Figure 6.10 shows the flowchart of main processing of the Cortex-M3.

D

Interrupt setting

Main Processing (Cortex-M3)

Setting of inter-CPU interrupt (IRQ1).

Initialization of the
shared memory
driver

The semaphore register 0 is initialized.

The four-byte unsigned int type value
LED_DATA, which indicates the state of the LED
(on or off), is loaded from the shared memory.
g_led data < ED_DATA

Value indicating the state
of lighting of the LED is
loaded from the shared

memory

Inter-CPU interrupt is
generated?
(g_ready _flag=17?)

Yes

Indication of the lighting state
of LED 1

High level is being output from P56
(indicated by LED_DATA).

[
»

Value indicating the state
of lighting of the LED is
loaded from the shared

memory

Control output from LED 1

depending on the indicated

state of the LED

The four-byte unsigned int type value LED_DATA,
which indicates the state of the LED (on or off), is
loaded from the shared memory.

g_led data < ED_DATA

High or low level output from P56 depending on
LED_DATA

Figure 6.10

Main Processing (Cortex-M3)

RO1AN2989EJ0131 Rev.1.31
Jul. 13, 2018

RENESAS Page 27 of 46

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

6.10.12 R_IRQ9 Interrupt (IRQ Pin Interrupt 5) Processing
Figure 6.11 shows the flowchart of R_IRQ9 interrupt (IRQ Pin interrupt 5) processing.

C R_IRQ9_isr >

Reads the T_tgtg (‘)’f lighting of | 1 cady flag PORTF.PODR.BIT.B7
Value indicating the state The four-byte unsigned int type value
of lighting of the LED is LED_DATA, which indicates the state of the
written to the shared LED (on or off) is loaded.
memory LED DATA g_led data

< Return >

Figure 6.11 R_IRQ9 Interrupt (IRQ Pin Interrupt 5) Processing

6.10.13 Inter-CPU Interrupt Processing

Figure 6.12 shows the flowchart of inter-CPU interrupt processing.

QRQ_INTERCPU_IRQHandIeD

The flag indicating generation of
Set g_ready_flag an inter-CPU interrupt is set.
g_ready flag 1

(Return >

Figure 6.12 Inter-CPU Interrupt Processing

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 28 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating

7. Sample Program

Download the sample program from the Renesas Electronics website.

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 29 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

8. Related Documents

e User's Manual: Hardware
RZ/T1 Group User's Manual: Hardware
Download the latest version from the Renesas Electronics website.

RZ/T1 Evaluation Board RTK7910022C00000BR User's Manual
Download the latest version from the Renesas Electronics website.

e Technical Update/Technical News
Download the latest version from the Renesas Electronics website.

e User's Manual: Development Environment
The latest version for the IAR integrated development environment (IAR Embedded Workbench® for Arm) is
available from the [AR Systems website.
The latest version for the Arm integrated development environment (Development Studio 5T™) is available from
the Arm website.

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 30 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

Appendix-1. Supplementary Notes on Development Environments

This section shows the settings required to perform debugging for the sample program for the Cortex-R4 core and the R-
IN engine (Cortex-M3 core) in each available development environment and the debugging procedures.

(EWARM from TAR systems)

<Steps up to debugging of the sample program (when booting is through the SPI)>

(1) Start up the EWARM environment. Go to [File] > [Open] > [Workspace] and then specify RZ T1 init cm3.eww.
The project for the Cortex-M3 will start.

(2) Select the [Rebuild All] item from the [Project] menu to rebuild the project. The binary file RZ T1 init cm3.bin is
generated.

(3) Start up another EWARM environment. Go to [File] > [Open] > [Workspace] and then specify
RZ TI1 init_serial.eww. The project for the Cortex-R4 will start. Rebuild the project in the same manner as in step
).

(4) While the RZ/T1 evaluation board and I-jet are connected, click on the [Download and debug] button in the

[Project] toolbar in the project for the Cortex-R4. Similarly, click on the [Attach to Running Target] button in the
[Project] toolbar in the project for the Cortex-M3.

Help
£,2< B >RNF RO =6cOlimau:in 3P = < >R Be=6c0.in 3
~ 8 X [cstartup M x it main
Z1 Reset_Handler ()
Q|- /A PROGRAM 7

Systen by loader program
Fies » . vosen by prog
© @RZT init seral.. v

i coomon

E

FZ_T1_int_cm3

Disassembly

caxl|l G0 [][venw -
P T _ D‘Sﬂssgmhlynxn 00000 HOVS RO. RO
Disassembly ad 0x1: 0=00 DCs. o0 .

Debug Log Disassembly Debug Log D‘sa;ernnbryn = - =

Ready ng2, Col22 System AP UM = |Reagy Ln 95, Col 1 System | CAP| NUM

Note: Debugging of the project for the Cortex-M3 is not possible at this point because the core is in the reset state. Debugging of

the project for the Cortex-R4 can proceed.

RO1AN2989EJ0131 Rev.1.31 -IENESAS Page 31 of 46

Jul. 13, 2018

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

(5) Release the Cortex-M3 core from the reset state by the project for the Cortex-R4 by executing the process in its
function init_cm3. The Cortex-M3 core is released from the reset state and debugging of the program for the
Cortex-M3 core is then possible.

File Edit View Project Debug Disassembly Ljet/TAGiet Tools

boot - IAR Embedded Workbench IDE - ARM.

Window Help.

- IAR Embedded Workbench IDE - AR

File Edit View Project Debug Disassembly Ljet/TAGjet Iools

Window Help

Debuglog | Disassembly

Ready

Ln 101, Col 22 System _ CAP UM I

ho@a & x8n D Cc 1S Q>$=< 00 RO= G CcO e :n 3 ho@a & x| dc 2 Q>%2< 0> RO=6cO 03
‘Workspace ¥ B X | loader_initasm _init main.c init.em3.c X Workspace ¥ @ X | cstartup Mc x init main.c
Db < ini_em3g 70 [[oeoes = |Reset_Handler
| . /ERoGEAN 7 A
© @ RZ_T1_init_cm3 - Debug
2 o
int
|- i sarup.
| B sample_on Harovwr.
B #izder __ccaRM ouput
tprages 5
pendis /
D
{
‘/ 2632 o) stackp - (utnca2_c) stackm)/2);
= oray stack xegion
void init_cns(void) __sex,_conTROL (0x
=N
const void 'p_ozg: __tar_inic_core();
volatile unsigned int psize; Tierlinicvp0:
unsigned char 'p;
_ematng);
"
+ 7 M5 R start addse:
_SECTION" int _low_level_init (void)
s - 13 SECTION") ; B1
memcpy (P, P_OXg, P 4
asa("asb"); 7/ Ensuring data-
2 (Cortex-us) 4/
Debugging of the project for the
® Cortex-M3 becomes possible.
-
ars
RZ_T1_ini_seria_boot > v ||[RzTinicens < > v
Disassembly v 3 x | Disassembly vax
Goto [Da00200 <] [Memoy 5 Goto [ReseLander] [Memay 9
Dsassemby ~ Dsassembly ~
) Reset_Handler
Ox66: Oxf3be 0xBE6E ISB 0%40003d8: 0zebl0 0z0052 ADDS.W RO, R0, R2, ISR #1
R_RST VriteDisable(): yoide stackp = _sfe('CSTACK'):
o ?|
5 024000320 0z£381 028809 HSR PSP, RL
Ox6e: 0xbdl3 FoP RO, RI, R4, PC} v 024000324 022002 ¥ovS R0, #2 v

Debuglog Disassembly

Ready

tn9 Col17 System_Cap UM _FEE B

(6) This sample program uses inter-CPU interrupts from the Cortex-R4 core to the Cortex-M3 core. If you want to
debug in the order of the actual operation, execute the project for the Cortex-M3 in advance through the interrupt
settings and loading of data from the shared memory, and then execute the project for the Cortex-R4 to generate the
inter-CPU interrupt.

¥ RZ T1_init_serial_boot - IAR Embedded Workbench IDE - ARM 8.20.1

@ RZ_T1_init_cm3 - IAR Embedded Workbench IDE - ARM 8.20.1

E@RZ_Tl_ inits.. v

i Qutput

the ECM fi

s
scm_init():

lize the ICU settings +/

/e
icu_initl);

Lerrupt to Cortex-M3 4/

while (1)
=) 1

Inter-CPU interrupt is generated

/* Toggle the PF7 output level(LEDO) */
PORTF.PODR.BIT.B7 *= 1;

soft_wait(); // Soft vait for blinking LEDO

= B

T AR KRR KE AR KRR ER R AL EA KA KRR

I

ing as following.

LR r—r

smd Tam Tawal

File Edit View Project Debug Disassembly |jet/TAGjet Tools Window Help Eile Edit View Project Debug Disassembly |jetdTAGjet Tools Window Help

ihnm@ = XD c | el bt ot A me = XEG D C Claao g o

Workspace ¥ B X | |oaderinit initmain x w Workspace v B X | init main x cstartup M 57

o ~ man{) f11 Debug ~ |main{) fu
T t(): =

Files & . BefERiEl) Files . m &

B @®RZ_T1_init_c... +

H startup
B Output

advance.

Proceed with the steps up
to the “while” statement in

/% Ensbles interrupts betveen the CPUs(CM3) */

NVIC_ClearPendingIRQ(INTERCPU_IRQn): // Clear INTERCE
NVIC SetPriority(INTERCEU IRGn, 10); // Set prio
NVIC EnableIRQ(INTERCEU_IROn): // Enable INTERC

/% Initialize shared memory driver */
R_SEM Init(SHM _SYS SEMENO):

/* Load the led data from shared memory of SHM.LED DAT
R_SEM Load uint32({uint3Z t *)eg led data, (uint3Zc *

/% Wait for setting the LEDI port by Cortex-REF 4/

5 while(1 != g ready flag):

/* Set LEDL to led data(Initial
PORTS.PODR.BIT.Bé = g_led_data;

status is high level)

while(l)
{

soft_wait(); // Soft wait
/4 Ioad the led data from shared memory of

B_SHM Load uint32{{uint32 t *)sg_led data,
PORTS.PODR.BIT.Bé = g led data;

SHM.LEL
(uint3z

RO1AN2989EJ0131 Rev.1.31

Jul. 13, 2018

RENESAS

Page 32 of 46

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

(7) Debugging of the cores can then proceed without following given procedures.

<Project settings for the sample program>

Settings of EWARM related to the sample program for making initial settings of the microcomputers incorporating the

R-IN engine are shown below. The details of the project for the Cortex-R4 core are given in the “RZ/T1 Group

Application Note: Initial Settings.”

Table.

Settings in the Project for the Sample Program (Cortex-R4)

Build Action

Build action set-
ting

Pre-build command line

cmd /c "copy /Y "$PROJ_DIRS$¥. .¥. ¥Cortex-
M3¥Device¥Renesas¥RIN_Engine¥Source¥Project¥Init¥lAR¥Debug¥
Exe¥RZ_T1_init_cm3.bin"
"$PROJ_DIR$¥cm3.bin¥RZ_T1_init_cm3.bin™

Linker

Input*1

Keep symbols

CM3_SECTION

Raw binary image

File: $PROJ_DIR$¥cm3.bin¥RZ_T1_init_cm3.bin
Symbol: CM3_SECTION

Section: CM3_SECTION

Alignment: 4

Debugger

Extra options

Use command line options

Switch checkmarks on

Synchronous Asynchronous

--drv_default_breakpoint=1
--macro_param_etm_rute=2
--jet_emu_param=UseCTI=0*2

--drv_default_breakpoint=1
--macro_param_etm_rute=2
--jet_sigprobe_opt=shared

Multicore

Symmetric multicore

The number of cores: 1

Asymmetric multicore
Enable multicore master mode

Synchronous Asynchronous

Switch checkmarks on Don't switch checkmarks on
Port: 53461

Slave work space:
$PROJ_DIRS\..\. \Cortex-M3\
Device\Rensas\RIN_Engine\
Project\Init\
IAR\RZ_T1_init_cm3.eww

Slave project: RZ_T1_init_cm3
Slave configuration: Debug
Attach the slave to running target:
Switch checkmarks on

Note 1. The binary image for the Cortex-M3 is fetched into the section CM3_SECTION.

Note 2. This is required for EWARM V8.10.1 or later.

Table. Settings in the Project for the Sample Program (Cortex-M3)
Output Converter
Output Generation of additional output file Switch checkmarks on:

Output format: binary

Output file Switch checkmarks on:
Override default $PROJ_DIR$¥RZ_T1_init_cm3.bin
Debugger
Extra options Use command line options Synchronous Asynchronous

--drv_default_breakpoint=1 --drv_default_breakpoint=1

--jet_sigprobe_opt=shared

Details on the option settings are described in the C-SPY debugging guide C-SPY Macro from the IAR Systems and in

related documents.

RO1AN2989EJ0131 Rev.1.31

Jul. 13, 2018

RENESAS

Page 33 of 46

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

(DS-5 from Arm)

<Steps up to debugging of the sample program (when booting is through the SPT)>

(1) Create a folder to use as a workspace on your PC, where the sample program will be stored.

(2) Start up the DS-5 environment. Specify the folder in which you stored the sample programs in step 1 as the
workspace.

(3) Go to [File] > [Import]. On the [Import] window, select [Existing Projects into Workspace] in the [General] folder
and click on the [Next] button.

< Import =
Select
Y
))] rE
Create new projects from an archive file or directory.] E]

Select an import source:

type filter text

4 (= General

L Archive File
é Existing Projects into Workspace |
T TIE Syatern
[T} Preferences
> = CfC++
> = CV5
> (= Install

> (= Remote Systems

» = Run/Debug
» (= Scatter File Editor
» [= Target Configuration Editor
> (= Team
'f?;' < Back Mext > Finish Cancel
RO1AN2989EJ0131 Rev.1.31 RENESAS Page 34 of 46

Jul. 13, 2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

(4) Select the [Select archive file:] radio button and click on the [Browse..] button. Select the compressed program file
“RZ T1 _R-IN init sflash.zip” on the list in the window and click on the [Finish] button.

. R
Import Projects r :"““1
Select a directory to search for existing Eclipse projects. 4
Select root directory: Browse
o seiect archve ie: | ¥ <2 T _-IN_iit sfoshzp + | Browsen
Projects:
V| RZ_T_cm3_sample (RZ_T_cm3_sample) | Select All ‘
[¥] RZ_T_sflash_sample (RZ_T_sflash_sample) | |
Deselect All
| Refresh |
Options
Search for n projects
"I Hide projects that already exist in the workspace
Working sets
[C] Add project to working sets
I/?> < Back Next = Finish l | Cancel

(5) Select [Build All] from the [Project] menu. On completion of building, select [Run] from the [Project] menu and
then select [Debug Configurations].

(6) While the RZ/T1 evaluation board and ULINK?2 are connected, go to [DS-5 Debugger] and select [sflash] to show
the window for configurations. Then, click on [Browse] and open the connection browser window as shown below.
Select the target connection from the list in the window. Click on [Debug] in the debug configurations window and
start debugging of the Cortex-R4.

Note: If you are using the sample program to be run from the RAM, skip the following step (7) to step (9), so only release the debug
connection ram (Cortex-R4) from reset.

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 35 of 46
Jul. 13,2018

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

& Debug Configurations

Create, manage, and run configurations

type filter text

[€] C/C++ Application
[€] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[€] C/C++ Remote Application
&% DS-5 Debugger

&% cm3_dual
single

.

&' TronPython unittest
=] Java Applet

[3] Java Application

Ju JUnit

& Jythen run

& Jython unittest

@ Launch Group

EA pypev Django

£3 PyDev Goegle App Run
& Python Run

& Python unittest

Z, Remote Java Application

Filter matched 21 of 21 items

@

€ Configuration for connection type 'Bare Metal Debug’ is not valid - Connection cannot be empty.

Name: sflash

8- Connection ., Files| 4 Debugger | i OS Awareness| (= Arguments| B8 Environment

Select target

Select the manufacturer, board, project type and deli
Renesas / RZ/T1 R75910x17 (Generic) / Bare Metal

r
& Connection Browser

Connection Browser

Select a target connection
Filter platforms
Debug Cortex-M3
Debug Cortex-R4
» RZ/T1 R75910x18 (Generic)
> RZ/T1 RTK7910018500000BE
> RZ/T1 RTK79100185%0000BE
> RZ/T1 RTK7910022C00000BR

Target Connection | ULINK2 -
DTSL Options Configure ULINK2 g} @ I

DS-5 Debugger will connect to a ULINK2 to debug a ||

Keil Software Keil ULINK2

mn

Connectiens

Bare Metal Debug | Connection

@)

(7) When the PC is connected to the target, RZ T sflash sample.ds, the script file for writing to serial flash memory, is
automatically executed from the ¥RZ T sflash sample¥script_sflash folder.

File Edit
L -

%5 Debug Con... 52 | [Project Ex...

Navigate Search Project Run

BERE-R i B h s
1 Remote Sy..

Window

-

T cm3_dual disconnected
~ & sflash connected
it Cortex-R4 #1 stopped on breakpoint

Status: connected

& sflash connected (Renesas - RZ/T1 R75210x17 (Generic))

Sl TR Y R I B S - S

Help
i . -
= B | | History B Commands & Seripts 52 aria = B , Break.. o Regist.. 52
Tk 2R $ o
i Favorites 4, Linked: sflash +
g“mm Register Set: | Al registers v
Use case

- Name Valus | size | Access |
B (= Core 4 of Mregi.. ~

@ RO Ox00082608 32 RW

re R1 Ox68082677 32 R/W

e R2 Ox00082678 32 RW

re R3 Ox68412462 32 R/W
@ R4 Ox00000000 32 RW L
=5 0. 2 e Eve. 0 =
<

&, Linkedt sflash -
B 90 -[Address [sizex100 =
[Address | Opcode | Di

~

W AppC.. 2 [Target

&, Linkedt sflash -

Verify e =
1oop=5{ Flash Programming success!!||

finish
Flash Programming Complete v
<

RO1AN2989EJ0131 Rev.1.31
Jul. 13, 2018

RENESAS Page 36 of 46

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

(8) On completion of writing to the flash memory by the script, the message “Flash Programming Complete” appears in

the application console window.

)

Apply a system reset. Set the hardware breakpoint immediately before the init cm3 function, which is used to

release the Cortex-M3 core from the reset state, and proceed with the steps up to the target process. To set a
hardware breakpoint, right-click on the number for the row of the target process and select [DS-5 Breakpoint] from

the menu, then select [Toggle Hardware Breakpoint].

2 DS-5 Debug - RZ_T_sflash_sample/src/sample/init_cm3.c - Eclipse Platform
FEile Edit Source Refactor Navigate Seagrch Project Run Window Help
| ig - N~ ™5~ T el e

-

4+ Debug Control I3
cES R L TR RS RN NN
4 ‘i sflash connected
4 3 Cortex-R4 #1 stopped on breakpoint #2
= init_cm3+0x30
= main+0x20

W& sflash connected
No OS Support

[8 init_em3.c 2

Private riables and fun s

static const uint32_t g_cm3_address

zing Cortex-M3 settings

ze Coriex-M3 settings of RZ/TL.
Cortex-iM3 code

9 * Arguments
* Return Value : none
void init_em3(void)

volatile const unsigned char *p_org;
volatile unsigned int psize;
unsigned char %p;

/= Copy the Cortex-M3 program code */
p = (unsigned char *)(exeipoeeoe+oxe); /
p_org = (unsigned char *)g_cm3_address;
psize = g om3_size;
memcpy(p, p_org, psize);

_asm(*dsk") // Ensuring data-changing

= = t 2 (Cortex-M3) =/
R RST WriteEnable();
SYSTEM.SWRR2.LONG = @x@00G8060; // Release Software reset 2
__asm("ish");
R_RST_writeDisable();

nd of func

[Commands [History 4 Scripts 53
[Epinit_RZ-T.ds
[EoRZ_T_sflash_sample.ds|
[B3RZ_T_cm3.ds

Epinit_Rz-T_2.ds

= (uint32_t)&Load$$LRSSLOAD_MODULESSSBasE;
static const uint32_t g_cm3_size = (uint32_t)8Load$$LRSSLOAD_MODULESSSLengths

M3 RAM start address for Cortex-R4

// Ensuring instruction-changing

By 2 Rewer = 8

T

[E=SE=R =<1

Quick Access | % | F[FR)

= Va... B o0 =g
$ =
G Linked: sflash =
Value
3 variables

Name
® (= Locals
[(= File Static Variables 0 of 7 variables

Type|Count Size Loc:

[= Globals 0 of 4 variables
4 [»
18} Disa... i3 =8
" IR

5 Linked: sflash =
Size:100

B & v Address
Address| Opcode

Disassembly

n

I App Console 5% i Ta

G Linked: sflash =

(10) Go to [Run] > [Debug Configurations...] and open the widow of debug configurations. Select [DS-5 Debugger] and
then [cm3_dual] and select the target for connection with ULINK2 in the same manner as in step (6), and make the

debugging connection. At this point, reset vector catch is enabled on the Cortex-M3 by the script file

“RZ_ T cm3.ds”.

RO1AN2989EJ0131 Rev.1.31
Jul. 13, 2018

RENESAS

Page 37 of 46

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

2 DS-5 Debug - RZ_T_sflash_sample/src/sample/init_cm3.c - Eclipse Platform
Eile Edit Source Refactor Navigate Segrch Project Run Window Help

- SRR RSN EL R R il cRelarn

=1 SlC v ot o] \ bl

&% cm3_dual connecting

| cm3_dual connecting [source RZ_T_cm3.ds] [1 pending] |
2K easn conn [EpRZ_T_cm3.ds

- #i Cortex-R4 #1 stopped on breakpoint #2 [Binit_ RZ-T_2.ds

#4 Debug Control ¢ = O | Commands [History # Scripts 57

cfiash_cample. ds

Mo OS Support
g init_em3.c 32
685
69 Private variables and functions
71 static const uint32_t g_cm3_address = (uint32_t)8Load$$LRISLOAD_MODULES$SBase;
72 static const uint32_t g_cm3_size = (uint32_t)&Load$$LRIFLOAD_MODULESSSLength;
£

Outline
* Function Name
“ Description

x-1M3 settings of RZ/T1.
13 code

* Arguments
* Return Value :

= void init cm3(void)

volatile const unsigned char *p_org;
volatile unsigned int psize;
unsigned char *p;

/* Copy the Cortex-M3 program code

p_org = (unsigned char *)g cm3_address;

psize = g_cm3_size;

memcpy(p, p_org, psize);

_asm("dsb"); // Ensuring data-changing

/* Release the Software reset 2 (fortsx-M3) */
R_RST WriteEnable();
_asm("ish"); /! Ensuring instruction-changing
SYSTEM.SWRR2.LONG = @x00000000; // Release Software reset 2
__asm("isb");

R_RST WriteDisable();

]

p = (unsigned char *)(@x04000000+0x@); // M3 RAM start address for Cortex-Re

End of function init cm3

&=

[E=8 Hol =3

Quick Access | 15 | B [&R)
Z Rger = O e-va. B o = B
-

%, Linked: cm3_dual =
Variable information is not available.

= B i Disa.. = 2 0 = a
G, Linked: cm3_dual ~
Disassembly information is not available.
[l App Console 52 [Target Consale v = 8
B EEE ~
<G Linked: cm3_dual =
»
executing debug commands -_m

Note: Debugging of the project for the Cortex-M3 is not possible at this point because the core is in the reset state.

2 Launching em3_dual

Launching

[] Always run in background

Run in Background] l

Cancel Details > =

Note: The window shown above may pop up while connecting to the Cortex-M3. In this case, select [Run in Background].

RO1AN2989EJ0131 Rev.1.31
Jul. 13, 2018

RENESAS

Page 38 of 46

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

(11) Connect “sflash” (the Cortex-R4) as the target. When the Cortex-M3 is released from the reset state, debugging of
“cm3_dual” connection (the Cortex-M3) can then start. The program stops at reset handler, which is set as the

breakpoint in the previous step.

& DS-5 Debug - RZ_T_cm3_sample/Devi |_Engi T
File Edit Source Refactor Navigate Search Project Run Window Help
Cla#-DA-®I-OL-i 00~
£ Debug Control & = B8
TR T R A - |
4 ' cm3_dual connected
4 i Cortex-M3 #1 stopped on breakpoint
= Reset_Handler
= OxFFFFFFFE
4 " flash connected
» ¥ Cortex-R4 #1 stopped

-

W cm3_dual connected
Ne OS Support

[} init_main.c [g] init_cm3.c ig] cstartup_M.c 52

__attribute_ (({section("handlers rom”))) void Reset_Handler(void)

Gl i e

__set_MSP((uint32_t)&ImageSSARN_LIB_STACKHEAPSSZISSLimit);
__set_CONTROL(@x80600062) ;

/ SystemInit();
__main();

if (SysTick Config(SystemCoreClock / 1608)) { /* ims */
while(1);

#endif

fain program

Writable

" set_PSP((uint32_t)&ImageS$ARM_LIB STACKHEAPSSZISSLimit - x200);

/DS-5/cstartup_M.c - Eclipse Platform

8 Commands 2 =)

& Linked: cm3_dual =
ignore 18 @
break-stop-on-cores 18
unsilence 18
Breakpoint 18 unsilenced
hbreak -d -p *@xoeeeeeee
Hardware breakpoint 19 at @xB6060080
condition 19
break-seript 19 ""
ignore 19 @
break-stop-on-cores 19
unsilence 19
Breakpoint 19 unsilenced
select-frame @
select-frame 1
select-frame @
« i

Command:

/# main stack
// temporary area

in thread mode, use PSP & privileged access

Smart Insert 2715:1

=l o=

Quick Access | 1 | [[FH)

w Bl D HF = 8 @-va. 3 m =8

$ =
o
% Linked: cm3_dual *

Name value Type|Count|Size|Locz
B Locals 0 variables
&= File Static Variables 0 of 1 variables
B (&= Globals 0 of 4 variables
v « I ’
= O | 3 Disa... 22 = 8
- £ =

‘S, Linked: cm3_dual ~
B @ ~ Address Size:100

Address| Opcode

Disassembly

m

=

[App Console 52 il i =|

G, Linked: cm3_dual ~

(12) Debugging of further cores can be done by following the same procedure as described from step (6) of the
procedure for EWARM from IAR Systems.

Note:

with ULINK2 needs to be selected in the debugging configuration.

Debugging of the Cortex-M3 alone is possible by using the debug connection “cm3_single”. Note that the target for connection

RO1AN2989EJ0131 Rev.1.31
Jul. 13, 2018

RENESAS

Page 39 of 46

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

<Project settings for the sample program>

Setting of DS-5 related to the sample program for making the initial settings of the LSI chips incorporating the R-IN
engine is shown below.

Table. Settings in the Project for the Sample Program (Cortex-R4)

Project -> Properties -> C/C++ Build -> Settings

Build Steps*1 Pre-build steps Command: fromelf --bin --output =../cm3.bin
././RZ_T_cm3_sample/Debug/RZ_T_cm3_sample.axf

Post-build steps Command: after_build.bat ${ProjName}
This command is not specified when the program is run directly from RAM.

Note 1. The binary image for the Cortex-M3 is fetched into the section CM3_SECTION.

Details on the option setting are described in the related documents from Arm.

(e2 studio from Renesas)

<Steps up to debugging of the sample program (when booting is through the SPI)>

(1) Create a folder to use as a workspace on your PC, where the sample program will be stored.

(2) Start up the e2 studio environment. Specify the folder in which you stored the sample programs in step 1 as the
workspace.

(3) Go to [File] > [Import]. On the [Import] window, select [Existing Projects into Workspace] in the [General] folder
and click the [Next] button.

Import = []
Select \
-
Create new projects from an archive file or directory. H

Select an import source:

type filter text

4 (= General -
[Archive File
@ Convert CCRX to GNURX Project
D5-5 KPIT GNUARM-BZ/MNOME Project
(% Existing Projects into Workspace
T FIIE System
i HEW Project
[T} Preferences
=% Rename & Import Existing C/C++ Project into Workspace
T Renesas Commeon Project File

m

> = CfC++ 3
.’?). < Back Next > Eir Cancel
RO1AN2989EJ0131 Rev.1.31 RENESAS Page 40 of 46

Jul. 13, 2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

(4) Select the [Select archive file:] radio button and click on the [Browse..] button. Select the compressed program file
“RZ T1 R-IN init sflash.zip” and click on the [Finish] button.

Import oy E@

Import Projects
Select a directory te search for existing Eclipse projects. E/

() Select root directory:
@ Select archive file: c:¥ I - - 71 _R-IN_init_sflash.zip - |[Browse... |

Projects:

[as]
=]
m

sample_cm3 (sample_cm3) I Select All]
sample_cr4 (sample_cr4)

[Deselect Al]

l Refresh ‘

Options

Search for nested projects

Copy projects into workspace
[Hide projects that already exist in the workspace
Working sets

[[] Add project to working sets

@ < Back Next > Finish] [Cancel

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 41 of 46
Jul. 13,2018

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

(5) Select [Build All] from the [Project] menu. On completion of building, select [Run] from the [Project] menu and

then select [Debug Configurations].
(6) While the RZ/T1 evaluation board and J-Link are connected, go to [Renesas GDB Hardware Debugging] and select
[sample cr4 HardwareDebug] to show the window for configurations. Click on [Debug] in the debug

configurations window and start debugging of the Cortex-R4.

Debug Configurations

Create, manage, and run configurations

EIEEN
type filter text
[T] C/C++ Application
[E] C/C++ Remote Application
[t Debug-only
[£] GDB Hardware Debugging

= Launch Group

» [£7 GDB Simulator Debugging (RL78, SH, RHE50)

Mame: sample_cr4 HardwareDebug

[l Main™_%¥ Debugger| b= Startup| &, Source|] Common

Project:
sample_cr4
C/C++ Application:

HardwareDebug¥sample_crd.x

Browse...

¥

4 [t Renesas GDB Hardware Debugging Variables...] [Search Project... I [Browse... I
7] sample_cm3 HardwareDebug Build (if required) before launching
:. sample_cm3 HardwareDebug Load modules
[sample_cr4 HardwareDebug Build configuration: | Use Active vl
[R Simulator Deb RX
[¢7 Renesas Simulator Debugging (RX)) Enable auto build) Disable auto build
@ Use workspace settings Configure Workspace Settings...
Filter matched 13 of 15 items Apply s
\/?:' Debug l [Close
RO1AN2989EJ0131 Rev.1.31 -IENESAS Page 42 of 46

Jul. 13, 2018

RZ/T1 Group

Initial Settings of the Microcomputers Incorporating the R-IN Engine

(7) After connecting to the target, resume the program by clicking on the [Resume] button, and proceed with the steps
up to the process of writing the program for the Cortex-M3.

v [sample_crdx [1]
w o Thread #11 (single core) (Suspended : Breakpoint)
= loader_init2() at loader_init2.c:123 0x802310
= Oxfff0982
5 Dy/Renesas/ed_studicS20/DebugComp/arm-none-eabi-gdb (7.8.2)
5 GDB server

&4 General R

[£] l0ader_initz.c 2
- void loader_init2(void) ~
888822e8 {
/* Check the reset source */

29882270 reset_check();

/% Set CPU clock and LOCO clock */
cpg_init();

= Set ATCM acce
f* Caution: ATC

ATC
atem_waitset (ATCM_WAT

to l-wait with optimization
is permitted if CPUCLK =
OPT is permitted if CPUCLK
_OPT);

BBEA22FB

/* Initialize the bus settings *
bus_init();

88882388

/* Copy the application program from external memory to ATCM

88582304 copy_to_atem();

* Initialize I1, D1 Cache and MPU setting */
80382308 cache_init();

/* Set RZ/T1 to Low-vector (SCTLR.V = @)
set_low_vec();

copy_cm3(); l (1)

/% Jump to _main() */
__exit(main());

1 98sez3ec

S eBsel3le

88882314

i 9052324 }

@ End of function loader_init2[]

© + Function Name : reset_check[] v

< >

Bcon.. = : A

|E| Debug - sample_cm3/Device/Renesas/RIN_Engine/Source/Templates/e2studic/start.asm - e studic b O X

Eile Edit Navigate Search Project Renesas Views Run Window Help

- [2-&-Fune exdzF{er=s Mg a06-0-Q- 503 Gy 7 | T C/C-+ |45 Debug

%5 Debug 2 (2) == 0, 1l Registers &2 = g 4
0, v 3% BE i e < tE|rieté Y g

~ [£7 sample_crd HardwareDebug [Renesas GDB Hardware Debugging] Name Value Description

start.asm 22

a

g

8
83
B4
8

£

sample_cr4 HardwareDebug [Renesas GDB Hardware Debugging] Di/Renesas/e2_studio520/DebugComp/arm-none-eabi-gdb (7.8.2)

Writable

General Purpose and FPU Register Group

r_icu_i

_PowerON_Reset

stack_init:
* Stack setting
ldr r@,=_sys_stack
msr msp,r@

ldr r@,=_tmp_stack
msr psp,r@

£ use psp */
movs r@,#2
msr control,r@

data_init:
/* Initialire variables has initialized
1dr mdata
1ldr data_start
ldr r2, -_data_end
cp rz, rl
beq clear_bss

value. */

copy_to_LDR_DATA:
ldro r3, [r@]
strb r3, [rl)]
add r@, r@, #1
add ri, rl, #1
cmp r2, rl
bne copy_to_LDR_DATA

dsb f*Ensuring data-changing */

Smart Insert

106:9 #

RO1AN2989EJ0131 Rev.1.31
Jul. 13, 2018

RENESAS

Page 43 of 46

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

(8) From [Run] on the menu bar, click on [Debug Configurations...] to open the debug configurations window, go to
[Renesas GDB Hardware Debugging] and select [sample_cm3 HardwareDebug]. Click on [Debug] in the debug
configurations window.

Since the program for the Cortex-M3 core has not yet been written, debugging the project for the Cortex-M3 is not
possible at this point.

Note: On clicking the [Debug] button, a message window appears as below asking whether to disconnect the previous debugging
session or not. Here, select [No] because this is for both the Cortex-R4 core and the R-IN engine (Cortex-M3 core).

Launcher ==
: A previous Renesas GDB debug session is still active.

Do you want to terminate all previous sessions before starting the new session?
Clicking Mo will not terminate existing sessions and may result in unstable debug operation.

[Always terminate

Yes l | No | | Cancel

(9) On the [Debug] tabbed page, select “Thread #xxx” from the “Sample cr4.x” folder. Then, from [Run] on the menu
bar, click on [Step Over F6] to execute writing of the program for the Cortex-M3.

(10) Resume the program by clicking the [Resume] button while “Thread #xxx” from the “Sample cm3.x” folder is
selected. Debugging on the Cortex-M3 can then start.

Note: The debugger releases the Cortex-M3 from the reset state on the debugging process, which is followed by releasing of the
reset by the Cortex-R4, and there is no problem with these processes. When the debugger is not used, only the latter process
proceeds.

(11) Debugging of further cores can be done by following the same procedure as described from step (6) of the
procedure for EWARM from IAR Systems.

Note: Debugging on the Cortex-R4 is possible by selecting the “Thread #xxx” in the “Sample_cr4.x” folder and on the Cortex-M3 by
selecting the “Thread #xxx” in the “Sample_cm3.x” folder.

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 44 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

<Project settings for the sample program>

Setting of e2 studio related to the sample program for making the initial settings of the microcomputers incorporating the
R-IN engine is shown below.

Table. Settings in the Project for the Sample Program (Cortex-R4)

Project -> Properties -> Project References

Project references for ‘sample_cr4™*1 sample_cm3 Switch checkmark on

Note 1. Building the project for the Cortex-R4 automatically builds the project for the Cortex-M3..

Table. Settings in the Project for the Sample Program (Cortex-M3)

Project -> Properties -> C/C++ Build -> Settings

Build Steps*1 Post-build steps Command: arm-none-eabi-objcopy -I elf32-littlearm -O binary sample _cm3.x cm3.bin &
arm-none-eabi-objcopy -l binary -O elf32-littlearm -B arm --rename-section
.data=.cm3,alloc,data,readonly,load,contents cm3.bin cm3.0 & copy /
Y cm3.0..¥. ¥sample_cr4¥cm3.bin¥cm3.0

Note 1. The data is copied from the Cortex-M3 and fetched into the section “.cm3” in the Cortex-R4 as the binary image.

Table. Debug Configuration for the Sample Program

Run -> Debug Configurations

Debugger -> Reset on connection “NO”
Connect!on Settings -> Reset before run [sample_cr4 HardwareDebug]:
Connection “YES”

[sample_cm3 HardwareDebug], [sample_cm3 HardwareDebug
Load modules]:
“NO”

Startup Runtime options [sample_cr4 HardwareDebug, sample_cm3 HardwareDebug]
Switch checkmark on the “Set break point at:” and set
“ PowerON_Reset”. *1

Run commands [sample_cm3 HardwareDebug]
Set “set $pc=& PowerON_Reset”.*1

Note 1. "_PowerON_Reset" is the entry point for each project. Replace it if the entry point is different.

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 45 of 46
Jul. 13,2018

RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine

Website and Support

Renesas Electronics website
http://www.renesas.com/
Inquiries

http://www.renesas.com/inquiry

RO1AN2989EJ0131 Rev.1.31 RENESAS Page 46 of 46
Jul. 13,2018

Revision History Application Note: Initial Settings of the Microcomputers Incorporating the R-IN Enging

Description
Rev. Date
Page Summary
1.00 Nov. 30, 2015 — First Edition issued
1.10 Mar. 01, 2016 | 2. Operating Environment
5 Table 2.1 Operating Environment, Integrated development environment, partially amended
6. Software
9 Description added
15 6.2.4 Required Memory Size, title of Table 6.7 amended, Table 6.8 and Table 6.9 added
Appendix 1. Supplementary Notes on Development Environments
36 “DS-5 from ARM” and “e2studio from Renesas”, fully amended
1.20 Aug. 09, 2017 All Cortex-R4F — Cortex-R4, modified
2. Operating Environment
5 Table 2.1 Operating Environment: The description of the integrated development environ-
ment, modified
6. Software
— | 6.2.4 Required Memory Size, deleted
Appendix-1. Supplementary Notes on Development Environments
31 (EWARM from IAR systems) <Steps up to debugging of the sample program (when booting
is through the SPI)>
(4) modified: [Debug without Downloading] — [Attach to Running Target]
33 (EWARM from IAR systems) <Project settings for the sample program>
Table. Settings in the Project for the Sample Program (Cortex-R4): Modified. Notes 2 and
3, deleted.
44 (e2 studio from Renesas) <Steps up to debugging of the sample program (when booting is
through the SPI)>
(7): The description modified. The figure modified.
45 (e2 studio from Renesas) <Steps up to debugging of the sample program (when booting is
through the SPI)>
(8): The description added
45 (e2 studio from Renesas) <Steps up to debugging of the sample program (when booting is
through the SPI)>
(9): The description modified. The figure deleted.
46 (e2 studio from Renesas) <Project settings for the sample program>
Table. Debug Configuration for the Sample Program: Note 1, added
1.30 Apr. 27,2018 All "ARM" changed to "Arm"
2. Operating Environment
5 Table 2.1 Operating Environment: The description in the integrated development
environments, modified; The version number of the integrated development environment
from IAR Systems, modified; The description of “Devices (functions to be used on the
board)”, modified
6. Software
9 6.1 Operation Overview: The error in step 3, corrected
10 Table 6.1 Settings of SW4: The names of the sample programs, modified
10 6.2.1 Section Assignment for the Sample Program: The error, corrected
10 Table 6.2 Sections to be Used (Cortex-R4): The description in Note 1 and Note 3, modified
11 Table 6.3 Sections to be Used (Cortex-M3): The HEAP line moved to below the readwrite
line; The MAIN_STACK area, deleted
13 Figure 6.3 Assignment of Sections (Cortex-M3): The HEAP line moved to below the
readwrite line; The MAIN_STACK area, deleted
16 Table 6.7 Global Variables: The function of type uint32_t, modified
7. Sample Program
29 | The description, modified
8. Related Documents
30 | The description, modified

Revision History Application Note: Initial Settings of the Microcomputers Incorporating the R-IN Enging

Description
Rev. Date
Page | Summary
1.30 Apr. 27,2018 Appendix-1. Supplementary Notes on Development Environments
31,32 (EWARM from IAR systems): Images in steps (4) to (6) for debugging the sample program,
modified
33 Table. Settings in the Project for the Sample Program (Cortex-R4): Debugger: The
description in Debugger/Extra options/Synchronous, modified. Note 2, added.
36 (DS-5 from ARM): The description and image in step (7) for debugging the sample
program, modified
45 Table. Settings in the Project for the Sample Program (Cortex-M3): Modified
45 Table. Debug Configuration for the Sample Program: The description in Startup/Run
commands, modified
1.31 Jul. 13, 2018 — Revision with updating of the sample program

All trademarks and registered trademarks are the property of their respective owners.

C-48

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSl are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LS| is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

— The characteristics of Microprocessing unit or Microcontroller unit products in the same group but
having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by
you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the
product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or
other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.

10. Itis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third
party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

RENESAS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0

	Introduction
	Target Devices
	Table of Contents
	1. Specifications
	2. Operating Environment
	3. Related Application Notes
	4. Peripheral Modules
	5. Hardware
	5.1 Hardware Structure Example
	5.2 Pins Used

	6. Software
	6.1 Operation Overview
	6.1.1 Preparation

	6.2 Memory Map
	6.2.1 Section Assignment for the Sample Program
	6.2.2 MPU Settings
	6.2.3 Exception Processing Vector Table

	6.3 Interrupts
	6.4 Fixed-Width Integer Types
	6.5 Constants/Error Codes
	6.6 Structures/Unions/Enumerated Types
	6.7 Global Variables
	6.8 Functions
	6.9 Specification of Functions
	6.9.1 R_SHM_Init
	6.9.2 R_SHM_memcpy
	6.9.3 R_SHM_Load_uint32
	6.9.4 R_SHM_Load_int32
	6.9.5 R_SHM_Load_uint16
	6.9.6 R_SHM_Load_int16
	6.9.7 R_SHM_Load_uint8
	6.9.8 R_SHM_Load_int8
	6.9.9 main (Cortex-R4)
	6.9.10 init_cm3 (Cortex-R4)
	6.9.11 main (Cortex-M3)
	6.9.12 R_IRQ9_isr (Cortex-R4)
	6.9.13 IRQ_INTERCPU_IRQHandler

	6.10 Flowchart
	6.10.1 Initialization Processing of Shared Memory Driver
	6.10.2 Processing to Copy Ranges of Memory to and from the Shared Memory Area
	6.10.3 Processing to Load a Value (4-Byte Unsigned Int Type) to and from the Shared Memory Area
	6.10.4 Processing to Load a Value (4-Byte Signed Int Type) to and from the Shared Memory Area
	6.10.5 Processing to Load a Value (2-Byte Unsigned Int Type) to and from the Shared Memory Area
	6.10.6 Processing to Load a Value (2-Byte Signed Int Type) to and from the Shared Memory Area
	6.10.7 Processing to Load a Value (1-Byte Unsigned Int Type) to and from the Shared Memory Area
	6.10.8 Processing to Load a Value (1-Byte Signed Int Type) to and from the Shared Memory Area
	6.10.9 Main Processing (Cortex-R4)
	6.10.10 Initialization Processing of the Cortex-M3 Core
	6.10.11 Main Processing (Cortex-M3)
	6.10.12 R_IRQ9 Interrupt (IRQ Pin Interrupt 5) Processing
	6.10.13 Inter-CPU Interrupt Processing

	7. Sample Program
	8. Related Documents
	Appendix-1. Supplementary Notes on Development Environments
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

