
 APPLICATION NOTE

R01AN3466EJ0100 Rev.1.00 Page 1 of 27
Sep 30, 2016

RZ/A1H Group
USB Host Human Interface Device Class Driver (HHID)

Introduction
This application note describes USB Host Human Interface Device Class Driver (HHID). This driver
operates in combination with the USB Basic Host Driver (USB-BASIC-F/W). It is referred to below as the
HHID.

Target Device
RZ/A1H Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to comply with the alternate MCU.

Related Documents
1. Universal Serial Bus Revision 2.0 specification

http://www.usb.org/developers/docs/
2. USB Class Definitions for Human Interface Devices Version 1.1
3. HID Usage Tables Version 1.1

http://www.usb.org/developers/docs/

4. RZ/A1H Group,RZ/A1H Group User's Manual: Hardware (Document No.R01UH0403EJ)
5. RZ/A1H Group USB Host and Peripheral Interface Driver (Document No.R01AN3291EJ)
6. RZ/A1H Group Downloading Program to NOR Flash Memory Using ARM® Development Studio 5

(DS-5™) Semihosting Function (for GENMAI) (Document No.R01AN1957EJ)
7. RZ/A1H Group I/O definition header file (Document No.R01AN1860EJ)
8. RZ/A1H Group Example of Initialization (for GENMAI) (Document No.R01AN1864EJ)

• Renesas Electronics Website
http://www.renesas.com/

• USB Devices Page
http://www.renesas.com/prod/usb/

R01AN3466EJ0100
Rev.1.00

Sep 30, 2016

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/
http://www.renesas.com/
http://www.renesas.com/prod/usb/

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 2 of 27
Sep 30, 2016

Contents

1. Overview .. 3

2. Module Configuration ... 6

3. System Resources ... 6

4. Target Peripheral List (TPL) ... 6

5. Compile Setting .. 7

6. Human Interface Device Class (HID) .. 8

7. USB Human Interface Device Class Driver (HHID) ... 11

8. Sample Application ... 25

9. Setup .. 26

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 3 of 27
Sep 30, 2016

1. Overview
The HHID, when used in combination with the USB-BASIC-F/W, operates as a USB host human interface
device class driver (HHID).
This module supports the following functions.
・ Data communication with a connected HID device (USB mouse, USB keyboard)
・ Issuing of HID class requests to a connected HID device
・ HCDC can connect maximum 3 HID devices to 1 USB channel by using USB Hub.

1.1 Please be sure to read
It is recommended to use the APIs described in the document (Document No: R01AN3291EJ) when
creating an application program using this driver.
That document is located in the "reference_documents" folder within the package.
[Note]

a. The document (Document No: R01AN3291EJ) also provides how to create an application program
using the APIs described above.

b. If the APIs described in the document (Document No: R01AN3291EJ) are used, there is no need to
use the API described in “7.2. HHID API Functions” of this document of this document.

1.2 Operation Confirmation Conditions
The operation of the USB Driver module has been confirmed under the conditions listed in Table 1.1.

Table 1.1 Operation Confirmation Conditions
Item Description

MCU RZ/A1H
Operating frequency (Note) CPU clock (Iφ): 400 MHz
 Image-processing clock (Gφ): 266.37 MHz
 Internal bus clock (Bφ): 133.33 MHz
 Peripheral clock 1 (P1φ): 66.67 MHz
 Peripheral clock 0 (P0φ): 33.33 MHz
Operating voltage Power supply voltage (I/O): 3.3 V
 Power supply voltage (internal): 1.8 V
Integrated development
environment

ARM Integrated Development Environment

 • ARM Development Studio (DS-5TM) Version 5.16
 IAR Integrated Development Environment
 • IAR Embedded Workbench for ARM Version 7.40
Compiler ARM C/C++ Compiler/Linker/Assembler Ver.5.03 [Build 102]
 KPIT GNUARM-RZ v14.01
 IAR C/C++ Compiler for ARM 7.40
Operating mode Boot mode 0
 (CS0-space 16-bit booting)
Communication setting of terminal
software

Communication speed: 115200 bps

 Data length: 8 bits
 Parity: None
 Stop bit length: 1 bit
 Flow control: None
Board GENMAI board
 R7S72100 CPU board (RTK772100BC00000BR)
Device Serial interface (D-sub 9-pin connector)
(Functions used on the board) USB1 connector, USB2 connector

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 4 of 27
Sep 30, 2016

1.3 Limitations
The following limitations apply to the HHID.

1. The HID driver must analyze the report descriptor to determine the report format (This HID driver
determines the report format from the interface protocol alone.)

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 5 of 27
Sep 30, 2016

Terms and Abbreviations
APL : Application program
cstd : Prefix of function and file for Peripheral & Host Common Basic (USB low level)

F/W
HCD : Host control driver of USB-BASIC-FW
HDCD : Host device class driver (device driver and USB class driver)
HHID : Host human interface device
HID : Human interface device class
hstd : Prefix of function and file for Host Basic (USB low level) F/W
HUBCD : Hub class sample driver
MGR : Peripheral device state manager of HCD
non-OS : USB basic firmware for OS less system
PP : Pre-processed definition
Scheduler : Used to schedule functions, like a simplified OS.
Scheduler Macro : Used to call a scheduler function (non-OS)
Task : Processing unit
USB : Universal Serial Bus
USB-BASIC-FW : USB basic firmware for RZ/A1H Group

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 6 of 27
Sep 30, 2016

2. Module Configuration
The HHID comprises the HID class driver and device drivers for mouse and keyboard.
When data is received from the connected USB device, HCD notifies the application. Conversely, when the
application issues a request, HCD notifies the USB device.
Figure 2-1 shows the structure of the HHID-related modules. Table 2.1 lists the modules and an overview
of each.

User Application (APL)

USB Host Human Interface Device Driver (HHID)

USB Host Control Driver (HCD)

USB Host Controller (Hardware)

MGR/HUB
(USB manager)

(HUB driver)

Figure 2-1 Software Block Diagram

Table 2.1 Module Function Descriptions

Module Name Description
APL User application program.

The terminal software the information received from the HID device.
HHID The HHID analyzes requests from HID devices.

Notifies APL key operation information to the HID host via the HCD.
HCD/MGR USB host Hardware Control Driver

3. System Resources
The resources used by HHID are listed below.

Table 3.1 Task information
Function Name Task ID Priority Description
usb_hhid_task USB_HHID_TSK USB_PRI_3 HHID Task

Table 3.2 Mailbox information

Mailbox Name Using Task ID Task Queue Description
USB_HHID_MBX USB_HHID_TSK FIFO order For HHID

Table 3.3 Memory pool information

Memory Pool Name Task Queue Memory Block(Note) Description
USB_HHID_MPL FIFO order 40byte For HHID

[Note]: The maximum number of memory blocks for the entire system is defined in USB_BLKMAX. The
default value is 20.

4. Target Peripheral List (TPL)
When using a USB host driver (USB-BASIC-F/W) and device class driver in combination, it is necessary to
create a target peripheral list (TPL) for each device driver.
For details on the TPL, refer to “How to Set a Targeted Peripheral List” in the Application Note of the USB
Host and Peripheral Interface Driver (Document No: R01AN3291EJ).

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 7 of 27
Sep 30, 2016

5. Compile Setting
In order to use this module, it is necessary to set the USB-BASIC-F/W as a host. Refer to USB Basic
Firmware application note (Document No. R01AN3291EJ) for information on USB-BASIC-F/W settings.
Please modify r_usb_hhid_config.h when User sets the module configuration option.
The following table shows the option name and the setting value.

Configuration options in r_usb_hhid_config.h
USB_CFG_HHID_INT_IN
USB_CFG_HHID_INT_IN2
USB_CFG_HHID_INT_IN3

Specifies the pipe number which is used at the data transfer.
(Specifies any one from USB_PIPE6 to USB_PIPE8.
Don’t specify the same pipe number.)

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 8 of 27
Sep 30, 2016

6. Human Interface Device Class (HID)
6.1 Basic Functions

This software complies with the HID class specification. The main functions of the driver are as follows.
(1) HID device access
(2) Class request notifications to the HID device
(3) Data communication with the HID device

6.2 Class Requests (Host to Device Requests)
Table 6.1 lists the class requests supported by the driver.

Table 6.1 HID Class Requests
Symbol Request Code Description

a USB_GET_REPORT 0x01 Receives a report from the HID device
b USB_SET_REPORT 0x09 Sends a report to the HID device
c USB_GET_IDLE 0x02 Receives a duration (time) from the HID device
d USB_SET_IDLE 0x0A Sends a duration (time) to the HID device
e USB_GET_PROTOCOL 0x03 Reads a protocol from the HID device
f USB_SET_PROTOCOL 0x0B Sends a protocol to the HID device
 USB_GET_REPORT_DESCRIPT

OR
Standard Transmits report descriptor

 USB_GET_HID_DESCRIPTOR Standard Transmits an HID descriptor

The class request data formats supported in this software are described below.

a). GetReport Request Format
Table 6.2 shows the GetReport request format.
Receives a report from the device in a control transfer.

Table 6.2 GetReport Format
bmRequestType bRequest wValue wIndex wLength Data
0xA1 GET_REPORT

(0x01)
ReportType &
ReportID

Interface ReportLength Report

b). SetReport Request Format

Table 6.3 shows the SetReport request format.
Sends report data to the device in a control transfer.

Table 6.3 SetReport Format
bmRequestType bRequest wValue wIndex wLength Data
0x21 SET_REPORT

(0x09)
ReportType &
ReportID

Interface ReportLength Report

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 9 of 27
Sep 30, 2016

c). GetIdle Request Format
Table 6.4 shows the GetIdle request format.
Acquires the intarval time of the report notification (interrupt transfer). Idle rate is indicated in 4 ms units.

Table 6.4 GetIdle Format
bmRequestType bRequest wValue wIndex wLength Data
0xA1 GET_IDLE

(0x02)
0(Zero) &
ReportID

Interface 1(one) Idle rate

d). SetIdle Request Format

Table 6.5 shows the SetIdle request format.
Sets the interval time of the report notification (interrupt transfer). Duration time is indicated in 4 ms units.

Table 6.5 SetIdle Format
bmRequestType bRequest wValue wIndex wLength Data
0x21 SET_IDLE

(0x0A)
Duration &
ReportID

Interface 0(zero) Not applicable

e). GetProtocol Request Format

Table 6.6 shows the GetProtocol request format.
Acquires current protocol (boot protocol or report protocol) settings.

Table 6.6 GetProtocol Format
bmRequestType bRequest wValue wIndex wLength Data
0xA1 GET_PROTOC

OL
(0x03)

0(Zero) Interface 1(one) 0(BootProtocol) /
1(ReportProtocol)

f). SetProtocol Request Format

Table 6.7 shows the SetProtocol request format.
Sets protocol (boot protocol or report protocol).

Table 6.7 SetProtocol Format
bmRequestTy
pe

bRequest wValue wIndex wLength Data

0x21 SET_PROTO
COL
(0x03)

0(BootProtocol)
/
1(ReportProtoc
ol)

Interface 0(zero) Not applicable

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 10 of 27
Sep 30, 2016

6.2.1 Class Request Structure
The table below shows the structure used by the APIs control() and R_usb_hhid_class_request() to issue
HHID specific requests.

Table 6.1 USB_HHID_CLASS_REQUEST_PARM_t structure
Type Member name Description
uint16_t devadr Device address
USB_REGADR_t ipp USB IP base address
uint16_t ip USB IP Number
uint16_t bRequestCode Class request code
void* tranadr Transfer data buffer
uint32_t tranlen Transfer size
uint16_t duration Response interval time rate to Interrupt transfer (4ms units)
uint8_t set_protocol Protocol value (Boot Protocol(=0)/Report Protocol(=1))
uint8_t* get_protocol Protocol value stored address
USB_CB_t complete Class request processing end call-back function

6.2.2 HID-Report Format
(1). Receive Report Format

Table 6.8 shows the receive report format used for notifications from the HID device.
Reports are received in interrupt IN transfers or class request GetReport.

Table 6.8 Receive Report Format
Offset Keyboard Mode Mouse Mode
Data length 8 Bytes 3 Bytes
0 (Top Byte) Modifier keys b0: Button 1

b1: Button 2
b2-7: Reserved

+1 Reserved X displacement
+2 Keycode 1 Y displacement
+3 Keycode 2 -
+4 Keycode 3 -
+5 Keycode 4 -
+6 Keycode 5 -
+7 Keycode 6 -

(2). Transmit Report Format

Table 6.9 shows the format of the transmit report sent to the HID device.
Reports are sent in the class request SetReport.

Table 6.9 Transmit Report Format
Offset Keyboard Mouse
Data length 1 Byte Not supported
0 (Top Byte) b0: LED 0 (NumLock)

b1: LED 1(CapsLock)
b2: LED 2(ScrollLock)
b3: LED 3(Compose)
b4: LED 4(Kana)

-

+1 ~ +16 - -
(3). Note

The report format used by HID devices for data communication is based on the report descriptor. This HID
driver does not acquire or analyze the report descriptor; rather, the report format is determined by the
interface protocol code. User modifications must conform to the HID class specifications.

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 11 of 27
Sep 30, 2016

7. USB Human Interface Device Class Driver (HHID)
7.1 Basic Functions

The HHID driver provides the following basic functions.
(1) Provides data transmit/receive services and a HID device.
(2) Provides HID class request services.

7.2 HHID API Functions
Table 7.1 shows the HHID driver API.

[Note]

If you want to use the API, which is described in USB Host and Peripheral Interface Driver (Document No:
R01AN3291EJ), in the application program, you do not need to use the following API.

Table 7.1 HHID API Function List
Function Description
R_usb_hhid_task HHID Task
R_usb_hhid_DriverRelease Releases the host HID class.
R_usb_hhid_TransferEnd USB data transfer termination request
R_usb_hhid_DeviceInformation Gets the HID device state information.
R_usb_hhid_ChangeDeviceState Changes the device state.
R_usb_hhid_GetReportLength Gets the report length.
R_usb_hhid_SetPipeRegistration Sets the hardware pipe configuration.
R_usb_hhid_get_hid_protcol Gets the protocol code
R_usb_hhid_driver_start HHID driver start processing.
R_usb_hhid_class_request Sends the class request
R_usb_hhid_PipeTransfer USB data transfer reques
R_usb_hhid_class_check Descriptor checking process
R_usb_hhid_get_pipetbl Gets the pipe information address

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 12 of 27
Sep 30, 2016

7.2.1 R_usb_hhid_task

HHID Task

Format
void R_usb_hhid_task(USB_VP_INT_t stacd)

Argument
stacd Task Start Code (No used）

Return Value
－ －

Description
HHID processing task.
HHID task processes requests from the application, and notifies the application of the results.

Note
1. Call this API in the user application program or the class driver.
2. This API is registered for scheduling by the task switching processing routine.

Example
void usb_apl_task_switch(void)
{
 while(1)
 {
 /* Scheduler */
 R_usb_cstd_Scheduler();

 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 R_usb_hstd_HcdTask((USB_VP_INT)0); /* HCD Task */
 R_usb_hstd_MgrTask((USB_VP_INT)0); /* MGR Task */
 R_usb_hhub_Task((USB_VP_INT)0); /* HUB Task */
 R_usb_hhid_task((USB_VP_INT)0); /* HHID Task */
 usb_hhid_main_task((USB_VP_INT)0); /* HHID Application Task */
 }
 else
 {
 /* Idle Task (sleep sample) */
 R_usb_cstd_IdleTask(0);
 }
 }
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 13 of 27
Sep 30, 2016

7.2.2 R_usb_hhid_DriverRelease

Release the hid driver

Format
void R_usb_hhid_DriverRelease(USB_UTR_t *ptr)

Argument
*ptr Pointer to USB Transfer structure

Return Value
－ －

Description
Release the registerd HHID class driver

Note
1. When the registered HHID is unnecessary, please call this function in the user application program

or class driver.
2. Please set the following member of USB_UTR_t structure.

USB_REGADR_t ipp ：USB register base address
uint16_t ip ：USB IP Number

Example
void usb_smp_task(void)
{
 USB_UTR_t *ptr;
 ：
 R_usb_hhid_DriverRelease(ptr);
 ：
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 14 of 27
Sep 30, 2016

7.2.3 R_usb_hhid_PipeTransfer

USB data transfer request

Format
USB_ER_t R_usb_hhid_PipeTransfer (USB_UTR_t *ptr, uint8_t *buf, uint32_t size,
 USB_CB_t complete, uint16_t pipe)

Argument
*ptr Pointer to USB Transfer structure
*buf Pointer to the data buffer area
size Read data size
complete Call-back function
pipe Pipe No.

Return Value
USB_E_OK Success
USB_E_ERROR Failure

Description
This function requests a data transfer to the USB device.
When data transfer ends (specified data size reached, short packet received, error occurred), the call-
back function is called.
Information on remaining transmit/receive data length, status, error count and transfer end is available
in the parameter of the call-back function.

Note
1. Call this function from the user application program or class driver.
2. Specify the area other than the auto variable (stack) area to the 2nd argument.
3. When the received data is n times of the maximum packet size and less than the specified size in the

argument (size), it is considered that the data transfer is not ended and a callback function
(complete) is not generated.

4. Please set the following member of USB_UTR_t structure.
USB_REGADR_t ipp ：USB register base address
uint16_t ip ：USB IP Number

Example
USB_ER_t usb_smp_task(void)
{
 ：
 usbip.ip = USB_HOST_USBIP_NUM;
 usbip.ipp = R_usb_cstd_GetUsbIpAdr(usbip.ip);
 ：
 R_usb_hhid_PipeTransfer(&usbip, buf, size, (USB_CB_t)usb_data_received);

}

/* Callback function */
void usb_data_received(USB_UTR_t *mess, uint16_t data2, uint16_t data3)
{
 :
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 15 of 27
Sep 30, 2016

7.2.4 R_usb_hhid_TransferEnd

USB data transfer termination request

Format
USB_ER_t R_usb_hhid_TransferEnd(USB_UTR_t *ptr, uint16_t pipe, uint16_t status)

Argument
*ptr Pointer to USB Transfer structure
pipe Pipe No.
status USB communication status

Return Value
USB_E_OK Success.
USB_E_ERROR Failure

Description
This function forces data transfer via the pipes to end.
The function executes a data transfer forced end request to the HCD. After receiving the request, the
HCD executes the data transfer forced end request processing.
When a data transfer is forcibly ended, the function calls the call-back function set in
(R_usb_hhid_PipeTransfer) at the time the data transfer was requested. The remaining data length of
transmission and reception, status, the number of times of a transmission error, and the information on
forced termination are set to the argument (ptr) of this callback function

Note
1. Call this function from the user application program or class driver.
2. Please set the following member of USB_UTR_t structure.

USB_REGADR_t ipp ：USB register base address
uint16_t ip ：USB IP Number

3. Specify the area other than the auto variable (stack) area to the 1st argument.

Example
void usb_smp_task(USB_UTR_t *ptr)
{
 uint16_t status;
 uint16_t pipe;
 ：
 pipe = USB_PIPE1;
 status = USB_DATA_STOP;

 /* Transfer end request */
 err = R_usb_hhid_TransferEnd(ptr, pipe, status);

 return err;
 ：
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 16 of 27
Sep 30, 2016

7.2.5 R_usb_hhid_DeviceInformation

Get the HID device information

Format
void R_usb_hhid_DeviceInformation(USB_UTR_t *ptr, uint16_t devaddr, uint16_t *tbl)

Argument
*ptr Pointer to USB Transfer structure
devaddr USB device address
*tbl Pointer to the table address for device information storing

Return Value
－ －

Description
The information on the device connected to the USB port is acquired.
The information stored in a device information table is shown below.

［0］Root port number to which device is connected
［1］Device state
［2］Configuration number
［3］Interface class code 1
［4］Connection speed
［5］--

［6］--
［7］--
［8］Status of rootport0
［9］Status of rootport1

Note
1. Call this function from the user application program or class driver.
2. Please set the following member of USB_UTR_t structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP Number

3. This class driver does not support multiple interfaces, [5], [6] and [7] above are not used.
4. Use a 20-byte area for argument *tbl.

Example
void usb_smp_task(void)
{
 USB_UTR_t usbip;
 uint16_t tbl[10];
 ：
 usbip.ip = USB_HOST_USBIP_NUM; /* Setting USB IP No */
 /* Confirm the device information */
 R_usb_hhid_DeviceInformation(&usbip, devaddr, &tbl);
 ：
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 17 of 27
Sep 30, 2016

7.2.6 R_usb_hhid_ChangeDeviceState

Changes device state

Format
void R_usb_hhid_ChangeDeviceState(USB_UTR_t *ptr, uint16_t msginfo)

Argument
*ptr Pointer to USB Transfer structure
msginfo USB communication status

Return Value
－ －

Description
This function changes the device state.
The following values are set to msginfo and change of the USB device State is required of HCD by
calling this function.

msginfo Description
USB_DO_GLOBAL_SUSPEND Request to change to suspend state
USB_DO_GLOBAL_RESUME Request to execute resume signal

Note
1. Call this function from the user application program or class driver.
2. Please set the following member of USB_UTR_t structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP Number

3. Specify the area other than the auto variable (stack) area to the 1st argument.

Example
void usb_smp_task(void)
{
 :
 usbip.ip = USB_HOST_USBIP_NUM;
 usbip.ipp = R_usb_cstd_GetUsbIpAdr(USB_HOST_USBIP_NUM);
 :
 /* Change the device state request */
 R_usb_hhid_ChangeDeviceState(&usbip, USB_DO_GLOBAL_SUSPEND);
 :
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 18 of 27
Sep 30, 2016

7.2.7 R_usb_hhid_SetPipeRegistration

Set USB hardware pipe configuration

Format
void R_usb_hhid_SetPipeRegistration(USB_UTR_t *ptr, uint16_t devadr)

Argument
*ptr Pointer to USB Transfer structure
devadr USB device address

Return Valaue
－ －

Description
This function configures the hardware pipes. Each pipe is set according to the contents of the pipe
information registered during HHID registration.

Note
1. Call this function from the user application program during initialization.
2. Please set the following member of USB_UTR_t structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP Number

Example
void usb_smp_task(void)
{
 ：
 R_usb_hhid_SetPipeRegistration (ptr, devadr);
 ：
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 19 of 27
Sep 30, 2016

7.2.8 R_usb_hhid_get_hid_protocol

Get the protocol code

Format
uint8_t R_usb_hhid_get_hid_protocol(uint16_t ipno, uint16_t devadr)

Argument
ipno USB module number
devadr Device address

Return Value
－ Protocol code of USB device（bInterfaceProtocol）

Description
This function gets the interface protocol value of the connected USB device.

Note
1. Call this function from the user application program or class driver.
2. bInterfaceProtocol is included in Interface Descriptor.
3. Specifies USB module number which HID device is connected to in the argument “ipno”.

USB Module USB Module Number
USB0 USB_IP0
USB1 USB_IP1

Example
void usb_smp_task(void)
{
 uint8_t protocol;
 ：
 /* Gets the interface protocol value */
 protocol = R_usb_hhid_get_hid_protocol(USB_IP0, devadr);
 ：
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 20 of 27
Sep 30, 2016

7.2.9 R_usb_hhid_driver_start

HHID driver start

Format
void R_usb_hhid_driver_start(USB_UTR_t *ptr)

Argument
*ptr Pointer to USB Transfer structure

Return Value
－ －

Description
This function sets the priority of HHID driver task.
The sent and received of message are enable by the priority is set.

Note
1. Call this function from the user application program during initialization.
2. Please set the following member of USB_UTR_t structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP Number

Example
void usb_hstd_task_start(void)
{
 USB_UTR_t *ptr;
 ：
 ptr->ip = USB_HOST_USBIP_NUM; /* USB IP No */
 ptr->ipp = R_usb_cstd_GetUsbIpAdr(ptr->ip); /* USB IP base address */
 ：
 R_usb_hhid_driver_start(ptr); /* Host Class Driver Task Start Setting */
 usb_hstd_usbdriver_start(ptr); /* Host USB Driver Start Setting */
 usb_hapl_registration(ptr); /* Host Application Registration */
 usb_hapl_task_start(ptr); /* Host Application Task Start Setting */
 ：
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 21 of 27
Sep 30, 2016

7.2.10 R_usb_hhid_class_request

Send HID class request

Format
USB_ER_t R_usb_hhid_class_request(void *pram)

Argument
*pram HID class request structure. See 6.2.1 .

Return Value
USB_E_OK Success.
USB_E_ERROR Failure

Description
This function request HID class request issue to HID driver.

Note
1. Call this function from the user application program or class driver. Please refer to “Example”.
2. The class requests listed below can be called using this API. Please assign the desired Request

Code to “bRequestCode” member in USB_HHID_REQUEST_PARAM_t structure before calling.
Class Request Definition Value
Get_Descriptor(HID) USB_HID_GET_HID_DESCRIPTOR
Get_Descriptor(Report) USB_HID_GET_REPORT_DESCRIPTOR
Get_Descriptor(Physical) USB_HID_GET_PHYSICAL_DESCRIPTOR
Set_Report USB_HID_SET_REPORT
Get_Report USB_HID_GET_REPORT
Set_Idle USB_HID_SET_IDLE
Get_Idle USB_HID_GET_IDLE
Set_Protocol USB_HID_SET_PROTOCOL
Get_Protocol USB_HID_GET_PROTOCOL

Example
void usb_hhid_smpl_set_report(USB_UTR_t *ptr, uint16_t devadr, uint8_t *p_data,
uint16_t length, USB_CB_t complete)
{
 USB_HHID_CLASS_REQUEST_PARM_t class_req;

 /* SET_REPORT */
 class_req.bRequestCode = USB_HID_SET_REPORT;

 class_req.devadr = devadr;
 class_req.ip = ptr->ip;
 class_req.ipp = ptr->ipp;
 class_req.tranadr = p_data;
 class_req.tranlen = length;
 class_req.complete = complete;

 R_usb_hhid_class_request((void*)&class_req);

}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 22 of 27
Sep 30, 2016

7.2.11 R_usb_hhid_GetReportLength

Gets HID Report length

Format
uint16_t R_usb_hhid_GetReportLength(uint16_t ipno, uint16_t devadr)

Argument
ipno USB module number
devadr Device address

Return Value
－ Max packet size

Description
This function gets the max packet size of the connected USB device.

Note
1. Call this function from the user application program.
2. Specifies USB module number which HID device is connected to in the argument “ipno”.

USB Module USB Module Number
USB0 USB_IP0
USB1 USB_IP1

Example
void usb_smp_task(void)
{
 uint16_t usb_smp_report_length;
 ：
 usb_smp_report_length = R_usb_hhid_GetReportLength(USB_IP0, devadr);
 ：
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 23 of 27
Sep 30, 2016

7.2.12 R_usb_hhid_class_check

Gets the descriptor information

Format
USB_ER_t R_usb_hhid_class_check(USB_UTR_t *ptr, uint16_t **table)

Argument
*ptr Pointer to USB Transfer structure
**table Pointer to the pipe information table

[0]：Device descriptor
[1]：Configuration descriptor
[2]：Interface descriptor
[3]：Result of the descriptor checking
[4]：HUB category
[5]：USB port number
[6]：Transfer speed
[7]：Device address
[8]：Pipe information table

Return Value
－ －

Description
This API is a class driver registration function. During HHID registration at startup, this function is
registered as a callback function in the classcheck member in the driver registration structure, and it is
called when a configuration descriptor is received during enumeration.
The function sets the descriptor check result (table[3]) to USB_DONE if the check result is OK and to
USB_ERROR if the check result is NG.
The function acquires the descriptor information for the peripheral device.

Note
－

Example
void usb_hhid_registration(USB_UTR_t *ptr)
{
 USB_HCDREG_t driver;

 driver.ifclass = (uint16_t)USB_IFCLS_HID;
 :
 driver.classcheck = (USB_CB_CHECK_t)&R_usb_hhid_class_check;
 :
 driver.devresume = (USB_CB_INFO_t)&usb_hhid_dummy_function;
 R_usb_hstd_DriverRegistration(ptr, (USB_HCDREG_t*)&driver);
}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 24 of 27
Sep 30, 2016

7.2.13 R_usb_hhid_get_pipetbl

Get pipe information table address

Format
uint16_t* R_usb_hhid_get_pipetbl (USB_UTR_t *ptr, uint16_t devadr)

Argument
*ptr Pointer to USB Transfer structure
devadr Device address

Return Value
－ －

Description
Gets the address of the pipe information table used for data communication with the device at the
address passed by the second argument.

Note
1. Call this function from the user application program
2. Please set the following member of USB_UTR_t structure.

USB_REGADR_t ipp ：USB register base address
uint16_t ip ：USB IP Number

3. Specify the area other than the auto variable (stack) area to the 1st argument.

Example
void R_usb_hhid_SetPipeRegistration(USB_UTR_t *ptr, uint16_t devadr)
{
 uint16_t *pipetbl;

 pipetbl = R_usb_hhid_get_pipetbl(ptr, devadr);
 pipetbl[3] |= (uint16_t)(devadr << USB_DEVADDRBIT);
 R_usb_hstd_SetPipeRegistration(ptr, pipetbl, pipetbl[0]);

}

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 25 of 27
Sep 30, 2016

8. Sample Application
8.1 Application Specifications

Transfers data to and from an HID device (mouse or keyboard) connected to the GENMAI. Data received
from the HID device is displayed on an terminal software.

[Note]

1. Up to three HID devices can be connected to a single USB module by using a USB hub.

8.2 Application Processing
The APL comprises two parts: initial setting and main loop. The following gives the processing summary for
each part.

8.2.1 Initial Setting

In the initial setting part, the initial setting of the USB controller and the initialization of the application
program are performed.

8.2.2 Main Loop

The main loop performs processing to receive data from the HID device as part of the main routine. An
overview of the processing of the main loop is presented below.

1. When the R_USB_GetEvent function is called after an HID device attaches to the USB host
(GENMAI) and enumeration finishes, USB_STS_CONFIGURED is set as the return value. When the
APL confirms USB_STS_CONFIGURED, it calls the R_USB_Write function to request transmission
of data to the HID device.

2. When the R_USB_GetEvent function is called after sending of class request SET_PROTOCOL to
the HID device has finished, USB_STS_REQUEST_COMPLETE is set as the return value. When
the APL confirms USB_STS_REQUEST_COMPLETE, it calls the R_USB_Read function to make a
data receive request for data sent by the HID device.

3. When the R_USB_GetEvent function is called after reception of data from the HID device has
finished, USB_STS_READ_COMPLETE is set as the return value. When APL is confirming the
USB_STS_READ_COMPLETE, to display the data received from the HID device to the terminal
software. Then, call the R_USB_Read function, it is possible to transmit and receive data is data
reception request of data is from the HID device.

4. The processing in step 3, above, is repeated.

HHID APL
(usb_main)

Initial settings

USB_STS_CONFIGURED ?
Yes

Yes

No

No

USB_STS_REQUEST
_COMPLETE ?

Class request transmit
request

Yes

No

Data receive request
(R_USB_Read)

USB_STS_READ_
COMPLETE ?

Data receive request
(R_USB_Read)

Get USB event
(R_USB_GetEvent)

Figure 8-1 Main Loop

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 26 of 27
Sep 30, 2016

8.3 Display Information
The APL displays on the terminal software screen the connection state of the HID device and data received
from the connected HID device.

Mouse connected : Displays on the LCD the amount of movement on the X and Y axes.
Keyboard connected : Displays on the LCD the last input key data.

The terminal software indication does not change when the data received from the HID device is NULL (no
key on keyboard pressed, mouse not moved on X or Y axes).

9. Setup
9.1 Hardware
Figure 9-1 shows an example operating environment for the HMSC. Refer to the associated instruction
manuals for details on setting up the evaluation board and using the emulator, etc.

Figure 9-1 Example Operating Environment

RZ/A1H Group USB Host Human Interface Device Class Driver (HHID)

R01AN3466EJ0100 Rev.1.00 Page 27 of 27
Sep 30, 2016

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
 http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Rev.

Date

Description
Page Summary

1.00 Sep 30, 2016 — First edition issued

 General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage
notes on the products covered by this document, refer to the relevant sections of the document as well as
any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Overview
	1.1 Please be sure to read
	1.2 Operation Confirmation Conditions
	1.3 Limitations

	2. Module Configuration
	3. System Resources
	4. Target Peripheral List (TPL)
	5. Compile Setting
	6. Human Interface Device Class (HID)
	6.1 Basic Functions
	6.2 Class Requests (Host to Device Requests)
	6.2.1 Class Request Structure
	6.2.2 HID-Report Format

	7. USB Human Interface Device Class Driver (HHID)
	7.1 Basic Functions
	7.2 HHID API Functions
	7.2.1 R_usb_hhid_task
	7.2.2 R_usb_hhid_DriverRelease
	7.2.3 R_usb_hhid_PipeTransfer
	7.2.4 R_usb_hhid_TransferEnd
	7.2.5 R_usb_hhid_DeviceInformation
	7.2.6 R_usb_hhid_ChangeDeviceState
	7.2.7 R_usb_hhid_SetPipeRegistration
	7.2.8 R_usb_hhid_get_hid_protocol
	7.2.9 R_usb_hhid_driver_start
	7.2.10 R_usb_hhid_class_request
	7.2.11 R_usb_hhid_GetReportLength
	7.2.12 R_usb_hhid_class_check
	7.2.13 R_usb_hhid_get_pipetbl

	8. Sample Application
	8.1 Application Specifications
	8.2 Application Processing
	8.2.1 Initial Setting
	8.2.2 Main Loop

	8.3 Display Information

	9. Setup
	9.1 Hardware

