
 APPLICATION NOTE 

R01AN0534EJ0100  Rev.1.00  Page 1 of 37 
May 19, 2011  

RX610 Group 
Clock Synchronous Single Master Control Software Using the SCI 

Introduction 
This application note explains how to control a single master in clock synchronous (three-wire method) serial 
communications through the RX610 group’s serial communications interface and how to use the sample code for this 
application. 

The SPI mode single master can be controlled by adding control of SPI slave device selection through port control. 

This sample code lies in a lower-level layer of the software for controlling a SPI device as a slave device. 

Software in the upper-level layer for controlling the slave device is separately available, so please obtain this as well. 

Target Device 
Corresponding MCU: RX610 group 

Device used for checking the operation of the sample code: Renesas Electronics R1EX25xxx series 
 SPI Serial EEPROM 

 
When applying the contents of this application note to other series of microcomputers, make necessary modifications to 
and make extensive evaluations of the sample code according to the specifications for the microcomputer to be used. 

Contents 

1. Specifications .................................................................................................................................... 2 

2. Conditions of Checking the Operation of the Software..................................................................... 3 

3. Related Application Notes................................................................................................................. 3 

4. Hardware Description........................................................................................................................ 4 

5. Software Description ......................................................................................................................... 5 

6. Application Example........................................................................................................................ 29 

7. Usage Notes.................................................................................................................................... 36 

 

R01AN0534EJ0100
Rev.1.00

May 19, 2011



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 2 of 37 
May 19, 2011  

1. Specifications 
This software program controls a single master for clock synchronous (three-wire method) serial communications 
through the SCI of RX610 group products. The SPI mode single master can be controlled by adding control of SPI slave 
device selection through port control. 

Table 1 summarizes the peripheral devices to be used and their uses. Figure 1 illustrates a sample configuration. 

The major functions are summarized below. 

• This software is a block-type device driver for using the SCI of an RX610 as the master device in clock synchronous 
single master communications. 

• It can only be used with a single user-configured channel; that is, it cannot be used with multiple channels. 
• The sample code does not support chip-select control. To control the SPI device, the chip-select control must be 

separately embedded. 
• Both big endian and little endian modes are supported 
• This software supports MSB-first transfer. 
• The software supports transfer by the CPU but not by the DMAC. 
• It does not support using an interrupt to start the transfer. 
 
Table 1 Peripheral Devices Used and their Uses 

Peripheral Device Use 
SCI Clock synchronous (three-wire method) serial 

1 channel (required) 
Port For SPI slave device select control signals. As many ports as 

there are SPI slave devices in use are necessary (required). 
Not used by this sample code. 

 

RX610

SCI

Slave

Device

Port

Clock synchronous (three-wire method) serial

Slave device select control signal

 

Figure 1   Sample Configuration 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 3 of 37 
May 19, 2011  

2. Conditions of Checking the Operation of the Software 
The sample code described in this application note has been confirmed to run normally under the operating conditions 
given below. 

Table 2 Operating Conditions 

Item Description 
Microcomputer used for evaluation RX610 group (program ROM 2 MB/RAM 128 KB) 
Memory used for evaluation Renesas Electronics R1EX25xxx series SPI Serial EEPROM 
Operating frequency ICLK: 100 MHz, PCLK: 50 MHz 
Operating voltage 3.3 V 
Integrated development environment Renesas Electronics 

High-performance embedded Workshop Version 4.07.00.007 
Renesas Electronics 
RX family C/C++ compiler package (Toolchain  1.0.0.0) 

C compiler 

Compiler options: 
The default settings for the integrated development environment 
are used. 

Endian Big endian/Little endian 
Version of the sample code Ver.2.00 
Software used for evaluation Renesas Electronics 

The R1EX25xxx series' SPI serial EEPROM control software, 
Ver.2.00 

Evaluation board used Renesas Starter Kit for the RX610 
 
 

3. Related Application Notes 
The applications notes that are related to this application note are listed below. Reference should also be made to those 
application notes. 

• Renesas R1EX25xxx Series Serial EEPROM Control Software (R01AN0565EJ) 
 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 4 of 37 
May 19, 2011  

4. Hardware Description 

4.1 List of Pins 
Table 3 lists the pins that are used and their uses. 

Table 3 List of Pins Used 

Pin Name I/O Description 
SCK 
(CLK of figure 2) 

Output Clock output 

TxD 
(DataOut of figure 2) 

Output Master data output 

RxD 
(DataIn of figure 2) 

Input Master data input 

Port 
(Port(CS#) of figure 2) 

Output Storage device select output 
Not used by this sample code. 

 

4.2 Reference Circuit 
Figure 2 shows a sample wiring configuration. 

SPI

Device

Vcc

CLK

D

Q

HOLD#

WP#

CE#

• The names of the MCU pins used for serial I/O are dependent on the individual MCU.

• In this application note, pin names CLK, DataIn, DataOut, and Port (CS#) are used in accordance with the

sample code.

RX610

DataOut

CLK

DataIn

Port(CS#)

Must be pulled up with an external resistor.

Must be pulled up

with external resistors.
CLK: Clock output pin

DataOut: Data output pin

DataIn: Data input pin

 

Figure 2   Sample Wiring Diagram for an RX610 SCI and an SPI Slave Device 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 5 of 37 
May 19, 2011  

5. Software Description 

5.1 Operation Outline 
The SCI's clock synchronous (three-wire method) serial communication function is used to realize the clock 
synchronous single master control. 

The sample code explained in this section provides the following control functions: 

• Controls the input/output of the data in the clock synchronous mode (using an internal clock). 
 
In this sample code, the byte offset value of the data on the device is made equal to the byte offset value in the source or 
destination memory as illustrated in the figure below. 

Byte offset value on the device

0 1 ⋅ ⋅ ⋅ 508 509 510 511

Byte offset value in memory

0 1 ⋅ ⋅ ⋅ 508 509 510 511
 

Figure 3   Storage Format of the Transferred Data 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 6 of 37 
May 19, 2011  

5.1.1 Clock Synchronous Mode Timing 
The SPI mode 3 (CPOL=1, CPHA=1) timing shown in Figure 4 is used to control the SPI slave device. 

CLK

DataOut D7 D6 D5 D0

DataIn

The level of the CLK pin is held high when no transfer processing is in progress.

• MCU->SPI slave device transmission: Transmission of transmit data is started on the falling edge of the

 transfer clock.

• SPI slave device->MCU reception: The receive data is taken in on the rising edge of the transfer clock.

• MSB first mode transfer

⋅ ⋅ ⋅

⋅ ⋅ ⋅

D7 D6 D5 D0⋅ ⋅ ⋅

 

Figure 4   Clock Synchronous Mode Timing Setup 
For available serial clock frequencies, see the datasheets for the individual MCUs and SPI slave devices. 

 

5.1.2 SPI Slave Device CE# Pin Control 
The CE# pin of the SPI slave device is not controlled in this sample code. To control the SPI device, the CE# pin 
control must be embedded in the SPI slave device. 

The recommended method is connecting the CE# pin of the SPI slave device to is recommended to the port pin of the 
MCU and control it as an MCU general port output. 

Secure the time between the falling edge of the CE# signal of the SPI device (the Port signal of the MCU (CS#)) and 
that of the CLK signal of the SPI device (the clock signal of the MCU) as the setup time of the CE# pin of the SPI 
device. 

Secure the time between the rising edge of the CLK signal of the SPI device (the CLK signal of the MCU) and that of 
the CE# signal of the SPI device (the Port signal of the MCU (CS#)) as the hold time of the CE# pin of the SPI device. 

Check the datasheet for the SPI device in use and set up the software wait times that are appropriate to your system. 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 7 of 37 
May 19, 2011  

5.2 Software Control Outline 
5.2.1 Software Configuration 
The sample code ranks in the lower-level layer of the SPI device control software as a slave device. 

The sample code realizes the control the clock synchronous single master by using SPI mode 3 (CPOL = 1 and CPHA = 
1) without controlling the CE# pin of the SPI slave device. 

Slave device control software

Serial I/O (SIO) driver

Slave

device

Driver I/F layer (MCU/serial IP dependent)

Serial driver (MCU/serial IP dependent)

Clock

synchronous

single master

software

 

Figure 5   Software Configuration 

 
The following transmission and reception are realized. 

(1) Send data using the clock synchronous single master software. 
(2) Receive data using the clock synchronous single master software. 
 
This sample code is made up of the following five basic routines: 

• Serial enabling 
Set the DataIn pin for port input, set the DataOut and CLK pins high, Enable serial I/O and set the bit rate. 

• Serial disabling 
Disable serial I/O, set the DataIn pin for port input, set the DataOut and CLK pins high. 

• Serial opening 
Disable serial I/O, set the DataIn pin for port input, set the DataOut and CLK pins for port input. 

• Data transmission 
Send data to the SPI device. 

• Data reception 
Receive data from the SPI device. 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 8 of 37 
May 19, 2011  

5.2.2 Serial Enabling (R_SIO_Enable()) 
Sets the DataIn pin to be used for serial I/O for port input and set the DataOut and CLK pins high. 

Enables the serial I/O function and switches the DataIn pin for data input, the DataOut pin for data output, and the CLK 
pin for clock output. 

Sets the baud rate (bit rate) to be used for serial I/O. 

5.2.3 Serial Disabling (R_SIO_Disable()) 
This routine switches the pin to be used for serial I/O to a port pin and sets the DataIn pin for port input and sets the 
DataOut and CLK pins high. 

5.2.4 Serial Opening (R_SIO_Open_Port()) 
This routine switches the pin to be used for serial I/O to a port pin and sets the DataIn, DataOut, and CLK pins for port 
input. 

5.2.5 Data Transmission (R_SIO_Tx_Data()) 
This routine sends data using the serial I/O function. 

This routine sends data according to the transmission setting. 

5.2.6 Data Reception (R_SIO_Rx_Data()) 
This routine receives data using the serial I/O function. 

This routine receives data according to the transmission/reception settings. 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 9 of 37 
May 19, 2011  

5.3 Sizes of Required Memory 
Table 4 lists the sizes of the required memory areas. 

Table 4 Sizes of Required Memory 

Memory Used Size Remarks 
ROM 838 bytes (little endian) R_SIO_sci_rx.c 
RAM 0 bytes (little endian) R_SIO_sci_rx.c 
Maximum user stack size 168 bytes  
Maximum interrupt stack size —  
Note: The sizes of required memory areas vary with the version and compiler options of the C compiler. 

The above-mentioned memory sizes vary with the endian mode adopted. 
 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 10 of 37 
May 19, 2011  

5.4 File Configuration 
Table 5 lists the files that are used for the sample code. The table excludes the files that are automatically generated by 
the integrated development environment. 

 
Table 5 File Configuration 

\an_r01an0534ej_rx610 <DIR> Folder for the sample code 
 r01an0534ej0100_rx610.pdf   Application note 
 \r01an0534ej_rx610_src <DIR>  Folder for storing the programs 
  \com *1 <DIR> Folder for storing the common functions 
   mtl_com.c   Miscellaneous common function definitions 
   mtl_com.h.common   Common header file 
   mtl_com.h.RX600   Common function header file 
   mtl_endi.c   Common file (related to endian setting) 
   mtl_mem.c   Common file (standard library function) 
   mtl_os.c mtl_os.h   Common file (standard library function) 
   mtl_str.c   Common file (standard library function) 
   mtl_tim.c mtl_tim.h   Common file (related to loop timer) 
   mtl_tim.h.sample   Sample for setting the value in the loop timer 
  \r_sio_sci_rx <DIR> Folder for clock synchronous single master control 

software using the SCI for the RX610 
   R_SIO.h   Header file 
   R_SIO_sci.h.rx610   I/F module common definitions 
   R_SIO_sci_rx.c   I/F module 

Note: *1 The file in the com folder is used in the slave device control software, too. Use the latest file. 
 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 11 of 37 
May 19, 2011  

5.5 List of Constants 
5.5.1 Return Values 
Table 6 lists the return values that are returned by the sample code. 

 
Table 6 Return Values 

Constant Name Value Description 
SIO_OK (error_t)( 0) Successful Operation 
SIO_ERR_PARAM (error_t)(-1) Parameter Error 
SIO_ERR_HARD (error_t)(-2) Hardware Error 
SIO_ERR_OTHER (error_t)(-7) Other Error 
 
 

5.5.2 Miscellaneous Definitions 
Table 7 lists miscellaneous definitions that are used in the sample code. 

 
Table 7 Miscellaneous Definitions 

Constant Name Value Description 
SIO_LOG_ERR 1 Log type: Error 
SIO_TRUE (uint8_t)0x01 Flag "ON" 
SIO_FALSE (uint8_t)0x00 Flag "OFF" 
SIO_HI (uint8_t)0x01 Port "H" 
SIO_LOW (uint8_t)0x00 Port "L" 
SIO_OUT (uint8_t)0x01 Port output setting 
SIO_IN (uint8_t)0x00 Port input setting 
SIO_TX_WAIT (uint16_t)50000 SIO transmission completion waiting time 

50000 × 1 µs = 50 ms 
SIO_RX_WAIT (uint16_t)50000 SIO receive completion waiting time 

50000 × 1 µs = 50 ms 
SIO_DMA_TX_WAIT (uint16_t)50000 DMA transmission completion waiting time 

50000 × 1 µs = 50 ms 
SIO_DMA_RX_WAIT (uint16_t)50000 DMA receive completion waiting time 

50000 × 1 µs = 50 ms 
SIO_T_SIO_WAIT (uint16_t)MTL_T_1US SIO transmit&receive completion waiting polling time 
SIO_T_DMA_WAIT (uint16_t)MTL_T_1US DMA transmit&receive completion waiting polling time 
SIO_T_BRR_WAIT (uint16_t)MTL_T_10US BRR setting wait time 
 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 12 of 37 
May 19, 2011  

5.6 Structures and Unions 
Shown below are the structures that are used in the sample code. 

 
/* uint32_t <-> uint8_t conversion */ 
typedef union { 
 uint32_t ul; 
 uint8_t  uc[4]; 
} SIO_EXCHG_LONG;         /* total 4byte      */ 
 
 
/* uint16_t <-> uint8_t conversion */ 
typedef union { 
 uint16_t us; 
 uint8_t  uc[2]; 
} SIO_EXCHG_SHORT;         /* total 2byte      */ 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 13 of 37 
May 19, 2011  

5.7 List of Functions 
Table 8 lists the functions that are used in the sample code. 

 
Table 8 List of Functions 

Function Name Outline 
R_SIO_Init_Driver() Initialize driver. 
R_SIO_Disable() Disable serial I/O. 
R_SIO_Enable() Enable serial I/O. 
R_SIO_Open_Port() Open serial I/O. 
R_SIO_Tx_Data() Send serial I/O data. 
R_SIO_Rx_Data() Receive serial I/O data. 
 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 14 of 37 
May 19, 2011  

5.8 Function Details 
5.8.1 Driver Initialization 
 
R_SIO_Init_Driver 
Synopsis Initializes driver. 
Headers R_SIO.h, R_SIO_sci.h, mtl_com.h 
Declaration error_t R_SIO_Init_Driver(void) 
Explanation • Initializes the driver. Disables the serial I/O function and set the pin in the port. 

• This function must be called only once at system start time. 
• Set the slave device select signal high before calling this function. 

Arguments None 
Return value SIO_OK ; Successful operation 
Remarks Performs the following processing, considering the previous use conditions. 

• Stops transmission/reception. 
• Clears the PER, FER, and OERE flags of the SSR. 

 

Disable serial I/O

R_SIO_Disable()

Disables the serial I/O function and sets port.

Start

End  

Figure 6   Driver Initialization Processing Outline 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 15 of 37 
May 19, 2011  

5.8.2 Serial I/O Disable Setup Processing 
 
R_SIO_Disable 
Synopsis Performs serial I/O disable setup processing. 
Headers R_SIO.h, R_SIO_sci.h, mtl_com.h 
Declaration error_t R_SIO_Disable(void) 
Explanation • Disables the serial I/O function and sets the pin in the port. 

Disables serial I/O. 
Sets the pin to be used for serial I/O in the port. 

• Set the slave device select signal high before calling this function. 
Arguments None 
Return value SIO_OK ; Successful operation 
Remarks • Writes 00h to SMR and SCR to initialize the driver. (Writes 00h to SCR 

according to the initialization procedure in the hardware manual) 
• For transmission and reception, reads the PER, FER, and OERE flags of SSR 

and then clears them to 0. 
• Sets serial I/O to be used to the module stop state. 
• Can be called to disable the serial I/O function when serial I/O is not used. 

 

Disable serial I/O function

SIO_DISABLE()

Initialize port

SIO_IO_INIT()

Disables serial I/O function.

• Writes 00h to SCR. Sets 00h as a default.

 Sets Asynchronous mode and On-chip baud rate generator.

 Writes 0b to TEIE, RE, TE, RIE, and TIE.

• Writes 00h to SMR. Sets Asynchronous mode and PCLK.

• Writes 0b to the ORER flag of SSR. Clears the ORER flag.

• Writes 0b to the FER flag of SSR. Clears the FER flag.

• Writes 0b to the PER flag of SSR. Clears the PER flag.

• Writes 1b to serial I/O: sets the module stop state.

 

End

Start

Sets DataIn pin for port input and sets DataOut pin high,

Sets CLK pin high.

• Writes 1b to the DataIn pin (ICR): enables the input buffer.

 Writes 0b to the DataIn pin (DDR): Input port

• Writes 1b to the DataOut pin (DR): Output high

 Writes 1b to the DataOut pin (DDR): Output port

 Writes 1b to the DataOut pin (DR): Output high

• Writes 1b to the CLK pin (DR): Output high

 Writes 1b to the CLK pin (DDR): Output port

 Writes 1b to the CLK pin (DR): Output high

 

Figure 7   Serial I/O Disable Setup Processing Outline 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 16 of 37 
May 19, 2011  

5.8.3 Serial I/O Enable Setup Processing 
 
R_SIO_Enable 
Synopsis Performs serial I/O enable setup processing. 
Headers R_SIO.h, R_SIO_sci.h, mtl_com.h 
Declaration error_t R_SIO_Enable(uint8_t BrgData) 
Explanation • Enables the serial I/O function and sets the bit rate. 

Sets the pin to be used for serial I/O in the port. 
Enables the serial I/O and sets the bit rate. 

• Call this function after calling R_SIO_Disable() 
• Call this function before performing serial I/O data transmission processing and 

serial I/O data reception processing. 
• To change the bit rate, disable serial I/O setting, and then, use this function. 

Arguments uint8_t BrgData ; Bit rate setting value 
Return value SIO_OK ; Successful operation 
Remarks • Sets the serial I/O to be used to the module stop off state. 

• Executes the following processing according to the initialization flow chart in 
the hardware manual. (Assumes that a default value 00h is written to SCR by 
calling R_SIO_Disable()) 
(1) SCR TIE=RIE=TE=RE=TEIE=0b (A default value, 00h, has been written to 

SCR) 
(2) Set CKE of SCR (by this function) 
(3) Set SMR (by this function) 
(4) Set SCMR (by this function) 
(5) Set BBR (by this function) 
(6) Software wait time: 10 µs: assumes that the bit rate is 0.1 Mbps or more 

(by this function) 
Reconsider the wait time if wait time is not enough. 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 17 of 37 
May 19, 2011  

Initialize port

SIO_IO_INIT()

Enable serial I/O function

SIO_ENABLE(BrgData)

Software wait(10 µs)

mtl_wait_lp()

Enables the serial I/O function and sets the bit rate.

• Writes 0b to serial I/O: Turns off the module stop state.

• Writes 01h to SCR. Sets CKE.

 Writes 01b to CKE. (Sets the SCK pin of the internal clock

 to clock output at clock synchronous setup)

 Writes 0b to TEIE, RE, TE, RIE, and TIE.

• Writes 80h to SMR. Selects PCLK and clock synchronous mode.

• Writes 72h to SCMR. LSB first.

• Writes 0b to the ORER flag of SSR. Clears the ORER flag.

• Writes 0b to the FER flag of SSR. Clears the FER flag.

• Writes 0b to the PER flag of SSR. Clears the PER flag.

• Writes 00h to SEMR. (Not required to do because it is the setup

 in asynchronous mode. Sets the default.)

• Sets the bit rate in BRR.

 

End

Start

Sets DataIn pin for port input and sets DataOut pin high,

Sets CLK pin high.

• Writes 1b to the DataIn pin (ICR): enables the input buffer.

 Writes 0b to the DataIn pin (DDR): Input port

• Writes 1b to the DataOut pin (DR): Output high

 Writes 1b to the DataOut pin (DDR): Output port

 Writes 1b to the DataOut pin (DR): Output high

• Writes 1b to the CLK pin (DR): Output high

 Writes 1b to the CLK pin (DDR): Output port

 Writes 1b to the CLK pin (DR): Output high

 

Figure 8   Serial I/O Enable Setup Processing Outline 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 18 of 37 
May 19, 2011  

5.8.4 Serial I/O Open Setup Processing 
 
R_SIO_Open_Port 
Synopsis Performs SIO port (DataOut, DataIn, and CLK) open setup processing. 
Headers R_SIO.h, R_SIO_sci.h, mtl_com.h 
Declaration error_t R_SIO_Open_Port(void) 
Explanation • Sets the pin used for serial I/O to "open" (input state). 

• Set the slave device select signal high before calling this function. 
Arguments None 
Return value SIO_OK ; Successful operation 
Remarks • Prepared to connect and disconnect removable media. Use this function before 

connecting and disconnecting the removable media. Perform serial I/O disable 
setup processing before disconnecting the removable media. 

 

Open port

SIO_IO_OPEN()

Start

End

Sets DataIn pin for port input and sets DataOut pin for port input,

Sets CLK pin for port input.

• Writes 1b to the DataIn pin (ICR): enables the input buffer.

 Writes 0b to the DataIn pin (DDR): Input port

• Writes 0b to the DataOut pin (DDR): Input port

• Writes 0b to the CLK pin (DDR): Input port  

Figure 9   Serial I/O Open Setup Processing Outline 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 19 of 37 
May 19, 2011  

5.8.5 Serial I/O Data Transmission Processing 
 
R_SIO_Tx_Data 
Synopsis Performs serial I/O data transmission processing. 
Headers R_SIO.h, R_SIO_sci.h, mtl_com.h 
Declaration error_t R_SIO_Tx_Data(uint16_t TxCnt, uint8_t FAR* pData) 
Explanation • Transmits a specified number of bytes of pData. 

• Perform serial I/O enable setup processing before calling this function. 
• Perform serial I/O disable setup processing in case of unsuccessful operation 

after calling this function. 
Arguments uint16_t TxCnt ; Number of transmitted bytes 

uint8_t FAR* pData ; Transmit data storage buffer pointer 
Return value SIO_OK ; Successful operation 

SIO_ERR_HARD ; Hardware error 
Remarks • Executes the following processing according to the initialization flow chart in 

the hardware manual. 
(1) Sets TE, RE, TIE, RIE, and TEIE of SCR. 

• After completion of transmission, set TE, RE, TIE, RIE, and TEIE to 0b 
according to the serial transmission flow chart in the hardware manual. 

• Recommended to perform serial I/O disable setup processing if this function is 
not continuously used. 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 20 of 37 
May 19, 2011  

Sets to 50,000.

(1 µs × 50,000 times = 50 ms)

IR = 1

IR = 0

pData++

TxCnt--

Performs bit conversion, and then, writes to TDR

Writes 0b to IR

Repeats this flow

until TxCnt is 0.

TEND = 1

TEND = 0

Disables serial I/O transmission.

• Writes 01h to SCR. Disables transmission/reception.

 Sets CKE to 01b (sets the SCK pin of the internal clock to clock

 output), TEIE, RE, TE, RIE and TIE to 0b.

Sets A1h in SCR. Enable transmission setup.

Sets CKE to 01b (sets the SCK pin of the internal clock to clock

output), TEIE, RE, and RIE to 0b, and TE and TIE to 1b.

Because interrupt takes time,

whether TEND is 0 is not

checked after the data write.

Disable serial I/O transmission

SIO_TX_DISABLE()

Enable serial I/O transmission

SIO_TX_ENABLE()

Start

End

Set TxWait (the number of timeout counts)

Sets to 50,000.

(1 µs × 50,000 times = 50 ms)
Set TxWait (the number of timeout counts)

Wait the Tx wait subtraction for 1 µs

Wait the Tx wait subtraction for 1 µs

Subtract the number of transmitted bytes

Clear the TXI interrupt flag.

Update data storage pointer

Write transmit data

TXI interrupt flag

TEND flag

 

Figure 10   Serial I/O Data Transmission Processing Outline 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 21 of 37 
May 19, 2011  

5.8.6 Serial I/O Data Reception Processing 
 
R_SIO_Rx_Data 
Synopsis Performs serial I/O data reception processing. 
Headers R_SIO.h, R_SIO_sci.h, mtl_com.h 
Declaration error_t R_SIO_Rx_Data(uint16_t RxCnt, uint8_t FAR* pData) 
Explanation • Receives a specified number of data and stores it in pData. 

• Perform serial I/O enable setup processing before calling this function. 
• Perform serial I/O disable setup processing in case of unsuccessful operation 

after calling this function. 
Arguments uint16_t RxCnt ; Number of received bytes 

uint8_t FAR* pData ; Receive data storage buffer pointer 
Return value SIO_OK ; Successful operation 

SIO_ERR_HARD ; Hardware error 
Remarks • Executes the following processing according to the initialization flow chart in 

the hardware manual. 
(1) Sets TE, RE, TIE, RIE, and TEIE of SCR. 

• After completion of reception, set TE, RE, TIE, RIE, and TEIE to 0b according 
to the serial transmission flow chart in the hardware manual. 

• Not cause overrun errors because clock is generated by one-byte dummy data 
transmission and one-byte master reception is performed. Therefore, overflow 
confirmation processing is skipped in the flow chart. 

• Recommended to perform serial I/O disable setup processing if this function is 
not continuously used. 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 22 of 37 
May 19, 2011  

Repeats this flow

until RxCnt is 0.

Reads from RDR.

Converts bits.

Sets F1h in SCR. Sets CKE.

Sets the SCK pin of the internal clock to clock output,

TEIE to 0b, RE, TE, RIE and TIE to 1b.

Enable serial I/O transmission/reception

SIO_TRX_ENABLE()

Start

Disable serial I/O transmission/reception

SIO_TRX_DISABLE()

End

Sets to 50,000.

(1 µs × 50,000 times = 50 ms)
Set RxWait (the number of timeout counts)

Sets to 50,000.

(1 µs × 50,000 times = 50 ms)
Set RxWait (the number of timeout counts)

Wait the Rx wait subtraction for 1 µs

pData++

RxCnt--
Subtract the number of received bytes

Update data storage pointer

Writes dummy data to TDR.

Writes 0b to IR
Clear the TXI interrupt flag.

Writes 0b to IR
Clear the RXI interrupt flag.

Convert the bits of receive data

Read receive data

Write transmit dummy data

IR = 1

IR = 0
TXI interrupt flag

Wait the Rx wait subtraction for 1 µs

IR = 1

IR = 0
RXI interrupt flag

Disables serial I/O transmission/reception.

• Writes 01h to SCR. Disables transmission/reception.

 Sets CKE to 01b (sets the SCK pin of the internal clock to clock

 output), TEIE, RE, TE, RIE and TIE to 0b.

 

Figure 11   Serial I/O Data Reception Processing Outline 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 23 of 37 
May 19, 2011  

5.9 Macro Function Specifications 
The macro function used in this sample code is explained below. 

5.9.1 Macro Function  SIO_IO_INIT() 
1. Purpose 

Sets the input pin to the port input state and the output pin to the port output state. 
2. Function 

Sets the DataIn pin to the port input state and the DataOut and CLK pins to the port output state. 
Performs the following processing. Review the processing as necessary. 
(1) Sets the DataIn pin to the port input. 
(2) Sets the DataOut pin to the port "H" output. 
(3) Sets the CLK pin to the port "H" output. 

 
5.9.2 Macro Function  SIO_IO_OPEN() 
1. Purpose 

Sets the input and output pins to the port input state. 
2. Function 

Sets the DataIn, DataOut, and CLK input pins to the port input state. 
Performs the following processing. Review the processing as necessary. 
(1) Sets the DataIn pin to the port input. 
(2) Sets the DataOut pin to the port input. 
(3) Sets the CLK pin to the port input. 

3. Remarks 
Use this function to put all the pins in the Hi-z state before connecting and after disconnecting the removable media. 

 
5.9.3 Macro Function  SIO_DATAI_INIT() 
1. Purpose 

Sets the DataIn pin to the port input state. 
2. Function 

Performs the following processing. Review the processing as necessary. 
(1) Sets the DataIn pin to the port input. 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 24 of 37 
May 19, 2011  

5.9.4 Macro Function  SIO_DATAO_INIT() 
1. Purpose 

Sets the DataOut pin to the port "H" output. 
2. Function 

Performs the following processing. Review the processing as necessary. 
(1) Sets the DataOut pin to the port "H" output. 

 
5.9.5 Macro Function  SIO_DATAO_OPEN() 
1. Purpose 

Sets the DataOut pin to the port input state. 
2. Function 

Performs the following processing. Review the processing as necessary. 
(1) Sets the DataOutn pin to the port input. 

 
5.9.6 Macro Function  SIO_CLK_INIT() 
1. Purpose 

Sets the CLK pin to the port "H" output. 
2. Function 

Performs the following processing. Review the processing as necessary. 
(1) Sets the CLK pin to the port "H" output. 

 
5.9.7 Macro Function  SIO_CLK_OPEN() 
1. Purpose 

Sets the CLK pin to the port input state. 
2. Function 

Performs the following processing. Review the processing as necessary. 
(1) Sets the CLK pin to the port input. 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 25 of 37 
May 19, 2011  

5.9.8 Macro Function  SIO_ENABLE() 
1. Purpose 

Initializes serial I/O and enables the function. Performs the common processing to enable transmission, reception, or 
transmission/reception. Furthermore, sets the bit rate. 

2. Function 
Enables serial I/O according to the hardware manual. Reconsider the processing as necessary. 
Performs the following processing in the RX610. 
(1) Sets the module stop off state by using the module stop control register. 
(2) Performs the common processing to enable transmission and transmission/reception setups. 

Sets the following common parts of transmission and transmission/reception setups. 
• Sets TIE, RIE, TE, RE, and TEIE of SCR to 0. 
• Sets the CKE[1:0] bits of SCR. 
• Sets transmission/reception format in the SMR and SCMR. 
• Reads the ORER, FER, and PER flags of SSR, clear them to 0, and check whether these flags have been 

cleared. 
• Sets SEMR. 
• Writes a value in BRR. 

3. Remarks 
Perform wait processing, after the bit rate is set and then the macro function is completed, in case of serial I/O 
requiring wait processing. 
Paired with SIO_DISABLE(). Perform SIO_DISABLE() and then finish the processing, if SIO_ENABLE() is 
performed. 

 
5.9.9 Macro Function  SIO_DISABLE() 
1. Purpose 

Disables the serial I/O function. 
2. Function 

Disables the serial I/O function. Performs the common processing to disable transmission and 
transmission/reception setups. Reconsider the processing as necessary. 
Performs the following processing in the RX610. 
(1) Sets 00h as a default value in SCR and stops transmission/reception. 
(2) Sets 00h as a default value in SMR. 
(3) Reads the ORER, FER, and PER flags of SSR, clear them to 0, and check whether these flags have been cleared. 
(4) Sets the module stop state by using the module stop control register. 

3. Remarks 
Paired with SIO_ENABLE(). Perform SIO_DISABLE() and then finish the processing, if SIO_ENABLE is 
performed. 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 26 of 37 
May 19, 2011  

5.9.10 Macro Function  SIO_TX_ENABLE() 
1. Purpose 

Enables serial I/O transmission. 
2. Function 

Enables serial I/O transmission according to the hardware manual. Enables the transmission after switching the pin 
from the port function to serial I/O function. Reconsider the processing as necessary. 
Performs the initialization procedure for the rest after SIO_ENABLE() and for transmission setting only. 
Performs the following processing in the RX610. 
(1) Enables transmission. 

Sets TE and TIE of SCR to 1b and then enables transmission. 
3. Remarks 

Paired with SIO_TX_DISABLE(). Perform SIO_TX_DISABLE() and then finish the processing, if 
SIO_TX_ENABLE is performed. 

 
5.9.11 Macro Function  SIO_TX_DISABLE() 
1. Purpose 

Disables the serial I/O transmission function. 
2. Function 

Disables transmission according to the inverse processing of SIO_TX_ENABLE(). Switches the pin from the serial 
I/O function to the port function after disabling transmission. Reconsider the processing as necessary. 
Performs the following processing in the RX610. 
(1) Disables transmission. 

Sets TE, RE, TIE, RIE, and TEIE of SCR to 0b and then disables transmission. 
3. Remarks 

Paired with SIO_TX_ENABLE(). Perform SIO_TX_DISABLE() and then finish the processing, if 
SIO_TX_ENABLE is performed. 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 27 of 37 
May 19, 2011  

5.9.12 Macro Function  SIO_TRX_ENABLE() 
1. Purpose 

Enables serial I/O transmission/reception. 
2. Function 

Enables serial I/O transmission/reception according to the hardware manual. Enables the transmission/reception 
after switching the pin from the port function to serial I/O function. Reconsider the processing as necessary. 
Performs the initialization procedure for the rest after SIO_ENABLE() and for transmission/reception setting only. 
Performs the following processing in the RX610. 
(1) Enables transmission/reception. 

Sets TE, RE, TIE and RIE of SCR to 1b and then enables transmission/reception. 
3. Remarks 

Paired with SIO_TRX_DISABLE(). Perform SIO_TRX_DISABLE() and then finish the processing, if 
SIO_TRX_ENABLE is performed. 

 
5.9.13 Macro Function  SIO_TRX_DISABLE() 
1. Purpose 

Disables the serial I/O transmission/reception function. 
2. Function 

Disables transmission/reception according to the inverse processing of SIO_TRX_ENABLE(). Switches the pin 
from the serial I/O function to the port function after disabling transmission/reception. Reconsider the processing as 
necessary. 
Performs the following processing in the RX610. 
(1) Disables transmission/reception. 

Sets TE, RE, TIE, RIE, and TEIE of SCR to 0b and then disables transmission/reception. 
3. Remarks 

Paired with SIO_TRX_ENABLE(). Perform SIO_TRX_DISABLE() and then finish the processing, if 
SIO_TRX_ENABLE is performed. 

 
5.9.14 Macro Function  SIO_SSR_CLEAR() 
1. Purpose 

Clears the error flag in SSR. 
2. Function 

Clears the ORER, FER, and PER flags. 
Performs the following processing on each of the flags in case of RX610. 
(1) Clears the flags to 0 if they are set to 1. 
(2) Reads the flags to confirm that they are set to 0. 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 28 of 37 
May 19, 2011  

5.10 State Transition Diagram 
Figure 12 shows the state transition diagram. 

Initialize port

Disable SCI

Open port

R_SIO_Enable()

R_SIO_Disable()

R_SIO_Open_Port()

R_SIO_Disable()

R_SIO_Init_Driver()

Puts the used pin in the Hi-z

(input state) when the removable

media is disconnected.

R_SIO_Tx_Data()

R_SIO_Rx_Data()

Initialize port

Enable SCI

R_SIO_Tx_Data()

R_SIO_Rx_Data()

Data communication

 

Figure 12     State Transition Diagram 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 29 of 37 
May 19, 2011  

6. Application Example 
This section gives an example of settings for the serial I/O control section. 

Examples of the settings for usage are given below. 

The locations where settings are made are identified by the comments header "/** SET **/" in the defining file. 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 30 of 37 
May 19, 2011  

6.1 mtl_com.h (common header file) 
This is the header file for functions to be in common use. 

Each mtl_com.h.XXX (excluding mtl_com.h.common) is made for the evaluation of a given MCU. Use the appropriate 
header file after renaming it mtl_com.h. If there is no header file for the MCU to be evaluated, make mtl_com.h with 
reference to mtl_com.h.XXX. 

1. Defining the header files for the OS 
This sample code is independent of the OS. 
In the example given below, the OS is not to be used. 
That is, the settings in the sample code are for when the OS is not to be used, so the code is independent of the OS. 
This sample code does, however depend on other software. 

 
/* In order to use wai_sem/sig_sem/dly_tsk for microITRON (Real-Time OS)-
compatible,   */ 
/* include the OS header file that contains the prototype declaration.  */ 
/* When not using the OS, put the following 'define' and 'include' as comments.
     */ 
//#define MTL_OS_USE        /* Use OS          */ 
//#include <RTOS.h>       /* OS header file       */ 
//#include "mtl_os.h"         

 
2. Defining the header file with the common access area defined 

The header file of MCU function register definitions is included. 
The main reason for including this header file is for the device driver to use the port pins. 
Include the header file that corresponds to the MCU. 
The header file for the RX610 is included in the example below. 
This header file must be included if the sample code is to be used. 

 
/* In order to use definitions of MCU SFR area,          */ 
/* include the header file of MCU SFR definition.         */ 
#include "iodefine.h"        /* definition of MCU SFR    */ 

 
3. Defining the loop timer 

The following header file is included so that the software loop timer is available for use. 
This is used to secure waiting time for the device driver. 
Comment out the "#include" directive if the software loop timer is not to be used. 
The software loop timer is to be used in this example. 
This header file must be included if the sample code is to be used. 

 
/* When not using the loop timer, put the following 'include' as comments. */ 
#include "mtl_tim.h" 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 31 of 37 
May 19, 2011  

4. Defining the endian 
Either little endian or big endian can be specified. 
The setting below is for big endian. 

 
/* When using M16C or SuperH for Little Endian setting, define it.    */ 
/* When using other MCUs, put 'define' as a comment.        */ 
//#define MTL_MCU_LITTLE        /* Little Endian      */ 

 
5. Defining high-speed endian processing 

High-speed processing by mtl_end.c can be specified. Processing becomes high-speed if the M16C is in use. 
In the case of the RX family, leave this commented out so that the definition is not made. 

 
/* When using M16C, define it.                */ 
/* It performs the fast processes of 'mtl_endi.c'.         */ 
//#define MTL_ENDI_HISPEED     /* Uses the high-speed function.  */ 

 
6. Defining the standard library to be used 

Define the type of standard library to be used. 
Leave the "#define" below commented out if the library attached to the compiler is to handle the indicated 
processing. 
The library attached to the compiler is to be used in the example below. 

 
/* Specify the type of user standard library.           */ 
/* When using the compiler-bundled library for the following processes,  */ 
/* put the following 'define' as comments.            */ 
/* memcmp() / memmove() / memcpy() / memset() / strcat() / strcmp() / strcpy() 
/ strlen()     */ 
//#define MTL_USER_LIB       /* use optimized library     */ 

 
7. Defining the RAM area to be accessed 

Define the RAM area to be accessed. 
This obtains more efficient processing by standard functions and some other processes. 
Define MTL_MEM_NEAR in the case of the RX family. 

 
/* Define the RAM area to be accessed by the user process.      */ 
/* Efficient operations for standard functions and processes are applied.  */ 
//#define MTL_MEM_FAR    /* Supports Far RAM area of M16C/60    */ 
#define MTL_MEM_NEAR    /* Supports Near RAM area.   (Others)  */ 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 32 of 37 
May 19, 2011  

6.1.1 mtl_tim.h 
This is included by the include directive for the loop timer in mtl_com.h. 

The effects of the settings depend on the MCU, clock, and compiler options in use. 

If the system is cache-equipped, make settings on the assumption that the instruction cache is enabled and that the code 
for loop-timer processing is stored in the cache. 

Repeat measurement and adjust the settings according to the conditions of usage. 
 
/* Define the counter value for the timer.            */ 
/* Specify according to the user MCU, clock and wait requirements.    */ 
#if 1 
/* Setting for 12.5MHz no wait Ix8 = 100MHz(Compile Option "-optimize=1" or "-
optimize=1 -speed")*/ 
#define MTL_T_1US       30  /* loop Number of   1us    */ 
#define MTL_T_2US       60  /* loop Number of   2us    */ 
#define MTL_T_4US      120  /* loop Number of   4us    */ 
#define MTL_T_5US      150  /* loop Number of   5us    */ 
#define MTL_T_10US      300  /* loop Number of  10us    */ 
#define MTL_T_20US      600  /* loop Number of  20us    */ 
#define MTL_T_30US      900  /* loop Number of  30us    */ 
#define MTL_T_50US     1500  /* loop Number of  50us    */ 
#define MTL_T_100US    3000  /* loop Number of 100us    */ 
#define MTL_T_200US    6000  /* loop Number of 200us    */ 
#define MTL_T_300US    9000  /* loop Number of 300us    */ 
#define MTL_T_400US ( MTL_T_200US * 2 )  /* loop Number of 400us */ 
#define MTL_T_1MS    30000  /* loop Number of   1ms    */ 
#endif 

 
Times for the above values have not been measured, so the settings are not necessarily appropriate. Perform evaluation 
as required. 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 33 of 37 
May 19, 2011  

6.2 Setting up the Control Software for Clock Synchronous Single Master 
Operation 

The locations where settings are made are identified by the comments header "/** SET **/" in the defining file. 

6.2.1 R_SIO.h 
1. Defining the wait time after setting up the BRR 

Setting the BRR of the SCI is followed by a software wait until one bit of data is transferred. Set this wait time as 
required. 
The default setting is for 10 µs. 
Supposing transfer at 100 kHz and usage with Multimedia Cards, make the setting for 10 µs. 

 
#define SIO_T_BRR_WAIT   (uint16_t)MTL_T_10US /* BRR setting wait time  */ 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 34 of 37 
May 19, 2011  

6.2.2 R_SIO_sci.h 
This is the definition file for the SCI. 

Each R_SIO_sci.h.XXX is made for the evaluation of a given MCU. Use the appropriate header file after renaming it 
R_SIO_sci.h. If there is no header file for the MCU to be evaluated, make R_SIO_sci.h with reference to the 
R_SIO_sci.h.XXX files. 

1. Defining the operating mode to be used 
The resources of the MCU to be used can be set. 
If processing is to be of MSB-first CRC-CCITT calculations, specify SIO_OPTION_2 as in the following example. 
CRC-CCITT calculations are unnecessary when control is of serial EEPROM or serial Flash memory. In such cases, 
comment the definition out. 
The separate R_SIO_sci_rx_mmc.c file is needed to perform CRC-CCITT calculations for controlling Multimedia 
Cards. 

 
/*--------------------------------------------------------------------------*/ 
/*  Define the combination of the MCU's resources.         */ 
/*--------------------------------------------------------------------------*/ 
//#define SIO_OPTION_1  /* Low speed */ /* SI/O         */ 
#define SIO_OPTION_2   /*     */ /* SI/O       + CRC calculation */ 

 
2. Defining the form of CRC calculation to be used 

Define the form of CRC calculation to be used. 
CRC-CCITT calculation is not used when control is of serial EEPROM or serial Flash memory. In such cases, 
comment the definition out. 
To control multimedia cards, define both CRC-CCITT calculation and CRC-CCITT calculation at the same time. 

 
/*--------------------------------------------------------------------------*/ 
/*  Define the CRC calculation.               */ 
/*--------------------------------------------------------------------------*/ 
#define SIO_CRCCCITT_USED  /* CRC-CCITT used       */ 
#define SIO_CRC7_USED    /* CRC7 used         */ 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 35 of 37 
May 19, 2011  

3. Defining the pins to be used 
Define the pins to be used. 

 
/*--------------------------------------------------------------------------*/ 
/*  Define the control port.                 */ 
/*  Delete comment of a related macrodefinition, and please validate setting. */ 
/*--------------------------------------------------------------------------*/ 
#define SIO_DR_DATAO  PORT2.DR.BIT.B6    /* SIO DataOut    */ 
#define SIO_PORT_DATAI PORT2.PORT.BIT.B5   /* SIO DataIn    */ 
#define SIO_DR_CLK   PORT2.DR.BIT.B7    /* SIO CLK     */ 
#define SIO_DDR_DATAO  PORT2.DDR.BIT.B6   /* SIO DataOut    */ 
#define SIO_DDR_DATAI  PORT2.DDR.BIT.B5   /* SIO DataIn    */ 
#define SIO_DDR_CLK  PORT2.DDR.BIT.B7   /* SIO CLK     */ 
#define SIO_ICR_DATAI  PORT2.ICR.BIT.B5   /* SIO DataIn    */ 

 
4. Defining the module stop register 

Specify the module stop register that contains the stop bit for the SCIF to be used. 
 
#define SIO_MSTPCR_SCI SYSTEM.MSTPCRB.BIT.MSTPB30 /* SCI Module stop setting */ 

 
5. Defining the SCI channel to be used 

Specify the SCI channel to be used. 
Channel 1 is used in the example below. 

 
/*----------------- SIO definitions -----------------*/ 
 
#define SIO_SMR    SCI1.SMR.BYTE   /* Serial mode register   */ 
#define SIO_SCR    SCI1.SCR.BYTE   /* Serial control register  */ 
#define SIO_SSR    SCI1.SSR.BYTE   /* Serial status register  */ 
#define SIO_SCMR   SCI1.SCMR.BYTE   /* Smart card mode register  */ 
#define SIO_BRR    SCI1.BRR     /* Bit rate register    */ 
#define SIO_SEMR   SCI1.SEMR.BYTE   /* Serial extend mode register */ 
#define SIO_TXBUF   SCI1.TDR   /* SCI Transmit FIFO data register */ 
#define SIO_RXBUF   SCI1.RDR   /* SCI Receive FIFO data register  */ 
 
#define SIO_ORER   SCI1.SSR.BIT.ORER  /* SCI Overrun error flag  */ 
#define SIO_FER    SCI1.SSR.BIT.FER  /* SCI Framing error flag  */ 
#define SIO_PER    SCI1.SSR.BIT.PER  /* SCI Parity error flag   */ 
#define SIO_TXEND   SCI1.SSR.BIT.TEND  /* SCI Transmit end flag   */ 
#define SIO_TXNEXT   ICU.IR[220].BIT.IR  /* SCI Transmit data empty  */ 
#define SIO_RXNEXT   ICU.IR[219].BIT.IR  /* SCI Receive data full   */ 

 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 36 of 37 
May 19, 2011  

7. Usage Notes 

7.1 Usage Notes to be Observed when Building the Sample Code 
To incorporate the sample code, include R_SIO.h and R_SIO_sci.h (after renaming R_SIO_sci.h.XXX). 

7.2 Unnecessary Functions 
Unused functions waste ROM capacity, so we recommend excluding them by commenting them out and so on. 

7.3 Using Other MCUs 
Other MCUs can easily be used. 

The files to be prepared are as follows: 

• A common I/O module definition file corresponding to R_SIO_sci.h.XXX 
• A header definition file corresponding to mtl_com.h.XXX 
 
Make them by referring the attachment. 



RX610 Group Clock Synchronous Single Master Control Software Using the SCI 

R01AN0534EJ0100  Rev.1.00  Page 37 of 37 
May 19, 2011  

Website and Support 
Renesas Electronics Website 

http://www.renesas.com/ 
 
Inquiries 

http://www.renesas.com/inquiry 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All trademarks and registered trademarks are the property of their respective owners. 

http://www.renesas.com/
http://www.renesas.com/inquiry


 

A-1 

Revision Record 
Description 

Rev. Date Page Summary 
1.00 May 19, 2011 — First edition issued 
    
    
    
    
    
    
    
    
 



 

 

General Precautions in the Handling of MPU/MCU Products 
 
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the 
products covered by this document, refer to the relevant sections of the document as well as any technical updates that 
have been issued for the products. 
 

1.  Handling of Unused Pins 

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual. 

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an 
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an 
associated shoot-through current flows internally, and malfunctions occur due to the false 
recognition of the pin state as an input signal become possible. Unused pins should be handled as 
described under Handling of Unused Pins in the manual. 

2.  Processing at Power-on 

The state of the product is undefined at the moment when power is supplied. 

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and 
pins are undefined at the moment when power is supplied. 
In a finished product where the reset signal is applied to the external reset pin, the states of pins 
are not guaranteed from the moment when power is supplied until the reset process is completed. 
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function 
are not guaranteed from the moment when power is supplied until the power reaches the level at 
which resetting has been specified. 

3.  Prohibition of Access to Reserved Addresses 

Access to reserved addresses is prohibited. 

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access 
these addresses; the correct operation of LSI is not guaranteed if they are accessed. 

4.  Clock Signals 

After applying a reset, only release the reset line after the operating clock signal has become stable. 
When switching the clock signal during program execution, wait until the target clock signal has 
stabilized. 

⎯ When the clock signal is generated with an external resonator (or from an external oscillator) 
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. 
Moreover, when switching to a clock signal produced with an external resonator (or by an external 
oscillator) while program execution is in progress, wait until the target clock signal is stable. 

5.  Differences between Products 

Before changing from one product to another, i.e. to a product with a different part number, confirm 
that the change will not lead to problems. 

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may 
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect 
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity 
to noise, and amount of radiated noise. When changing to a product with a different part number, 
implement a system-evaluation test for the given product. 

 



 

 

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas 

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to 

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or 

technical information described in this document.  No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.  You are fully responsible for 

the incorporation of these circuits, software, and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the 

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and 

regulations.  You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to 

the development of weapons of mass destruction.  Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is 

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free.  Renesas Electronics 

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades:  "Standard", "High Quality", and "Specific".  The recommended applications for each Renesas Electronics product 

depends on the product's quality grade, as indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular application.  You may not use any Renesas 

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 

which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the 

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.  

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard":  Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;  

  personal electronic equipment; and industrial robots.

 "High Quality":  Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically  

 designed for life support.

 "Specific":   Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical  

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage 

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the 

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and 

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to guard them against the 

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to 

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because the evaluation of microcomputer software alone is very difficult, 

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product.  Please use Renesas Electronics 

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.  Renesas Electronics assumes 

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1)  "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2)  "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel:  +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany   
Tel: +49-211-65030, Fax: +49-211-6503-1327 

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China 
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China 
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898 

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd. 
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation. All rights reserved. 

Colophon 1.1 


	Specifications
	Conditions of Checking the Operation of the Software
	Related Application Notes
	Hardware Description
	List of Pins
	Reference Circuit

	Software Description
	Operation Outline
	Clock Synchronous Mode Timing
	SPI Slave Device CE# Pin Control

	Software Control Outline
	Software Configuration
	Serial Enabling (R_SIO_Enable())
	Serial Disabling (R_SIO_Disable())
	Serial Opening (R_SIO_Open_Port())
	Data Transmission (R_SIO_Tx_Data())
	Data Reception (R_SIO_Rx_Data())

	Sizes of Required Memory
	File Configuration
	List of Constants
	Return Values
	Miscellaneous Definitions

	Structures and Unions
	List of Functions
	Function Details
	Driver Initialization
	Serial I/O Disable Setup Processing
	Serial I/O Enable Setup Processing
	Serial I/O Open Setup Processing
	Serial I/O Data Transmission Processing
	Serial I/O Data Reception Processing

	Macro Function Specifications
	Macro Function  SIO_IO_INIT()
	Macro Function  SIO_IO_OPEN()
	Macro Function  SIO_DATAI_INIT()
	Macro Function  SIO_DATAO_INIT()
	Macro Function  SIO_DATAO_OPEN()
	Macro Function  SIO_CLK_INIT()
	Macro Function  SIO_CLK_OPEN()
	Macro Function  SIO_ENABLE()
	Macro Function  SIO_DISABLE()
	Macro Function  SIO_TX_ENABLE()
	Macro Function  SIO_TX_DISABLE()
	Macro Function  SIO_TRX_ENABLE()
	Macro Function  SIO_TRX_DISABLE()
	Macro Function  SIO_SSR_CLEAR()

	State Transition Diagram

	Application Example
	mtl_com.h (common header file)
	mtl_tim.h

	Setting up the Control Software for Clock Synchronous Single
	R_SIO.h
	R_SIO_sci.h


	Usage Notes
	Usage Notes to be Observed when Building the Sample Code
	Unnecessary Functions
	Using Other MCUs


