
 APPLICATION NOTE

R01AN0287EU0300 Rev.3.00 Page 1 of 55
February 22, 2013

RX600 & RX200 Series
The Flash Loader Project

Introduction
The Flash Loader project is a flexible system that’s goal is to help users add the ability to upgrade their firmware in-the-
field. The Flash Loader project gives users a framework to build off of so that they can customize the project to meet
their own specific needs. Each piece of the project is documented in this application note to help the user see how and
what needs to be changed for their own implementation.

Target Device
The following is a list of devices that are currently supported by this project:

• RX610 Group

• RX621, RX62N, RX62T Groups

• RX630, RX631, RX63N Groups

• RX210 Groups

Related Documents
• The Flash Loader Project – SD Card Implementation (R01AN1535EU0100)

• Simple Flash API for RX (R01AN0544EU0240)

Contents

1. Overview ... 2

2. API Information .. 4

3. Flash Loader on the Device .. 8

4. Flash Loader on the Host .. 12

5. Implementing Flash Loader with Your Project .. 16

6. Storing Firmware Images in Internal Memory ... 26

7. Board Notes .. 31

8. Flash Loader Communications Protocol ... 37

9. API Functions .. 41

10. Demo Projects ... 46

Website and Support ... 55

R01AN0287EU0300
Rev.3.00

February 22, 2013

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 2 of 55
February 22, 2013

1. Overview
The Flash Loader project is meant to help users implement in-the-field upgradability in their designs. Other projects
have performed aspects of this project but the goal was to cover all required aspects. An example is the Flash-Over-
CAN project. This works great for customers using CAN but what if you wanted to use Ethernet or USB? The Flash
Loader project was designed to be modular so that users can modify it to meet their needs. Some of the requirements
when designing the project were:

o Flexible system capable of adapting to customer’s needs

o Hardware agnostic

o Error checking built into project

o Not reliant on external protocols

o Packets used for communications to enable transfer retries

o Should not interfere with user’s application

o All source code is available for MCU and Windows applications

These requirements became a subset of the features offered and helped shape the Flash Loader project.

1.1 Background Information
To help understand the rest of the Flash Loader project some background information is presented in this section.

1.1.1 Terms Used
This section will define some terms that will be used throughout the rest of this document.

Figure 1-1 : Pieces of the Flash Loader Project

Device: This is the MCU that the user is implementing the Flash Loader project on. It is the MCU that receives the
firmware update and uses it at some point.

Host: The Host is the computer, MCU, etc… that communicates with the Device. It sends the Device new firmware
images, asks for information about what it is currently running, and has the ability to erase parts of the Device’s Flash
Loader Storage area.

Load Image: Once the user has a new firmware image they want to transfer to the Device they convert it into a Load
Image. The Load Image contains the data the Device needs to update its firmware and check for communications errors.

Storage: The Flash Loader Storage is memory that is set aside to be used by the Flash Loader project. It holds Load
Images that the Device receives from the Host.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 3 of 55
February 22, 2013

1.1.2 Load Image Information
When sending a new firmware update to the Device the data is called a Load Image. A Load Image is the user’s
firmware formatted to work with the Flash Loader project. Load Images are generated from the S-Record (*.mot) file
that is generated when you compile and link your project. There are several reasons that we convert the S-Record file
instead of just using it straight from the linker. The main reasons are:

1. File Size: S-Record files are stored as ASCII text which makes them human readable but large in size.

2. Line Size: S-Record files have a very limited line size (257 bytes max per line)

3. Block ID: In order to make retries as easy as possible Load Image packets have a unique identifier so the Device
can easily figure out where to restart the transfer.

4. Error Checking: A checksum is used with an S-Record file while we wanted to use a CRC value.

1.1.3 Load Image Format
Every Load Image is made up of one header which describes the file as a whole and then some number of Data Blocks.

Figure 1-2 : Inside a Load Image

In the Flash Loader project the file header is called a Load File Header. The format for this header can be seen in
Appendix A. Each Data Block, which can be thought of as a packet for transmission, has its own header called a Data
Block Header. The format for this header can be seen in Appendix B.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 4 of 55
February 22, 2013

2. API Information
This Middleware API follows the Renesas API naming standards.

2.1 Hardware Requirements
This middleware requires your MCU support the following features:

• Timer able to generate timer tick

• Ability to rewrite memory area where application code is stored

2.2 Hardware Resource Requirements
This section details the hardware peripherals that this middleware requires. Unless explicitly stated, these resources
must be reserved for the middleware and the user cannot use them.

Note that the resources shown below are only for the default Flash Loader implementation that comes packaged with
this application note. The Flash Loader project is meant to be modified to meet the needs of the user’s application. This
means that these resources will most likely differ for your own design.

2.2.1 CRC
CRCs are used for catching communication errors.

2.2.2 Flash Control Unit (FCU)
The FCU takes care of programming and erasing internal memory. This middleware uses the FCU and therefore should
not be used by the middleware user.

2.2.3 RSPI
One RSPI channel is used for communicating with a SPI flash.

2.2.4 SCI
One SCI channel is used for communicating with a Flash Loader Host.

2.2.5 WDT
The watchdog timer is used to reset the MCU when a new firmware image has been downloaded.

2.2.6 CMT (compare match timer)
This timer is used to generate a timer tick that drives the state machine. The user is responsible for calling the state
machine so they can use any timer they wish. The CMT is listed here because it is used in the demo and in the
bootloader.

2.3 Software Requirements
This middleware depends on the following packages.

2.3.1 r_crc_rx
This package is used for generating CRC codes.

2.3.2 r_flash_api_rx
This package is used for rewriting the MCU’s internal ROM and data flash.

2.3.3 r_glyph
This package is used for controlling the LCD on RDK boards (i.e. RDKRX62N, RDKRX63N).

2.3.4 r_rspi_rx
This package is used for communicating with an external SPI flash.

2.3.5 r_sci_async_1ch_rx
This package is used for communicating with a Host over an asynchronous serial channel.

2.3.6 r_spi_flash
This package is used for interfacing to a SPI flash. While the r_rspi_rx package implements the low-level drivers to
communicate with the SPI flash, this package is used to send commands and control the SPI flash.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 5 of 55
February 22, 2013

2.3.7 r_cmt_rx
This package is used to control a CMT channel which generates a timer tick that drives the state machine.

2.3.8 r_delay
This package is used to implement delays. This is currently only used by the r_glyph module.

2.4 Supported Toolchains
This middleware is tested and working with the following toolchains:

• Renesas RX Toolchain v1.02.01

2.5 Header Files
All API calls are accessed by including a single file: r_flash_loader_rx_if.h. This header file is supplied with this
middleware’s project code.

2.6 Integer Types
This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 6 of 55
February 22, 2013

2.7 Configuration Overview
The core Flash Loader code is configured through the r_flash_loader_rx_config.h header file. The configuration options
available in this header file are shown in the table below.

Configuration Options in r_flash_loader_rx_config.h

FL_CFG_DATA_BLOCK_MAX_BYTES

Maximum block data size supported. sizeof(fl_block_header_t) is
added to this #define when declaring the receive buffer. This is
done because the r_fl_mot_converter.py program accepts a
parameter to set the data block size. That parameter does not take
into account the block header size so neither does this one.

FL_CFG_TIMEOUT_ENABLE

Whether to use a timeout or not. A timeout occurs when
FL_CFG_TIMEOUT_TICKS go by without receiving an expected
response from the host. If a reply is not expected then a timeout will
not occur. Using a timeout helps the state machine not get stuck
when the host goes down during communications.

• '0' means do not use a timeout.
• '1' means do use a timeout.

FL_CFG_TIMEOUT_TICKS

Number of ticks of the state machine before a timeout occurs. The
time for each tick will depend on the frequency of the timer that is
used to call the state machine. For example, if the state machine is
called at 50Hz then the time for each tick is 20ms.

FL_CFG_MEM_NUM_LOAD_IMAGES

Number of load image slots available. The larger this number, the
more firmware images that can be stored at once. Making this
number larger also potentially means that each firmware image will
have less room available. The reason for this is that firmware
images are stored at reserved static locations.

FL_CFG_MEM_BASE_ADDR

Starting address of where Flash Loader load images are stored. The
address for each load image will be based on this address. For
example, if FL_CFG_MEM_MAX_LI_SIZE_BYTES is 0x10000
then the addresses would be the following if
FL_CFG_MEM_NUM_LOAD_IMAGES was set to 4:

• Address of Load Image 0: 0x00000000
• Address of Load Image 1: 0x00010000
• Address of Load Image 2: 0x00020000
• Address of Load Image 3: 0x00030000

FL_CFG_MEM_MAX_LI_SIZE_BYTES
Maximum supported load image size. If a host sends a request to
download a new image that is larger than this, the MCU will deny
the request.

Table 2-1 : Module configuration options

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 7 of 55
February 22, 2013

2.8 Adding Middleware to Your Project
This section details how to add the Flash Loader code to your own project. The Flash Loader project is made up of two
projects: a bootloader and a user application.

2.8.1 Flash Loader Bootloader
1. Copy the ‘r_flash_loader_rx’ directory (packaged with this application note) to your project directory.
2. Add the following source files to your project.

a. src\r_fl_bootloader.c
b. src\r_fl_downloader.c
c. src\r_fl_store_manager.c
d. src\r_fl_utilities.c

3. Add the source file from the ‘communications’ directory that corresponds to your project’s method of
communication between the Host and Device.

4. Add the source file from the ‘memory’ directory that corresponds to your project’s method of communication
between the Device and Storage.

5. Add an include path to the 'r_flash_loader' directory.
6. Add an include path to the 'r_flash_loader\src' directory.
7. Copy r_flash_loader_config_reference.h from 'ref' directory to your desired location and rename to

r_flash_loader_config.h.
8. Configure middleware through r_flash_loader_config.h.
9. If you are placing the bootloader in the User Boot area then make sure to:

a. Configure your linker to place the code in the correct area.
b. Configure your BSP to choose User Boot Mode. This is done by configuring r_bsp_config.h if you

are using the r_bsp package.
c. Read Section 5.4.10 for information about using the Flash API from the User Boot Area.

2.8.2 Flash Loader User Application

1. Copy the ‘r_flash_loader_rx’ directory (packaged with this application note) to your project directory.
2. Add the following source files to your project.

a. src\r_fl_app_header.c
b. src\r_fl_downloader.c
c. src\r_fl_store_manager.c
d. src\r_fl_utilities.c

3. Add the source file from the ‘communications’ directory that corresponds to your project’s method of
communication between the Host and Device.

4. Add the source file from the ‘memory’ directory that corresponds to your project’s method of communication
between the Device and Storage.

5. Add an include path to the 'r_flash_loader' directory.
6. Add an include path to the 'r_flash_loader\src' directory.
7. Copy r_flash_loader_config_reference.h from 'ref' directory to your desired location and rename to

r_flash_loader_config.h.
8. Configure middleware through r_flash_loader_config.h.
9. Add a #include for r_flash_loader_rx_if.h to files that need to use this package.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 8 of 55
February 22, 2013

3. Flash Loader on the Device
The Flash Loader project on the Device can be split into two separate distinct parts: the Flash Loader Downloader, and
the Flash Loader Bootloader.

3.1 Flash Loader Downloader
The Flash Loader Downloader is the part of the Flash Loader that users add to their own projects. It implements the
communications protocols, error checking, and the state machine that handles Flash Loader operations. The Flash
Loader Downloader consists of six source files which will be covered in detail.

3.1.1 r_fl_app_header.c
Information about the Load Image you are currently working on is stored in this file. There is a structure named
g_fl_cur_app_header that holds this information. The members of this structure correspond to the entries in a Load File
Header (Appendix A). This structure is the only source of communications between the Load Image currently running
on the Device and the Flash Loader Bootloader. The Bootloader can read this structure and find out information about
the Load Image used for error checking and for checking against other Load Images.

3.1.2 r_fl_comm_*type*.c
The code associated with enabling communications between the Host and the Device is stored in this file. The *type*
portion of the name indicates what communications medium is being used. The default Flash Loader implementation
that comes packaged with this application note uses asynchronous serial for communications therefore the name of the
file is r_fl_comm_uart.c. The functions in this file are:

1. fl_com_init: Initializes everything needed to start communications with the host.

2. fl_com_receive: Sets up the communications medium for receiving next data.

3. fl_com_bytes_received: Reports how many bytes have been received since fl_com_receive was last called.

4. fl_com_transmit: Used to transmit data to the host.

5. fl_com_send_status: Returns whether the last transmission is complete or not.

3.1.3 r_fl_downloader.c
This file contains the Flash Loader state machine and 2 public API functions: R_FL_DownloaderInit() and
R_FL_StateMachine(). The state machine handles the communication protocols and commands from the host. There
are configuration options that can be controlled in the associated header file r_fl_downloader.h. The functions in this
file are:

1. R_FL_DownloaderInit: Initializes the state machine and calls functions to initialize communications and storage.

2. fl_receive_reset: Resets reception after a timeout has occurred.

3. R_FL_StateMachine: The Flash Loader state machine. Controls what operations happen when commands are
received from the host. This is where the communications protocols are implemented.

The Flash Loader state machine has the option to use timeouts. By default, timeouts are enabled. Timeouts allow the
Flash Loader state machine to reset when the state machine is stuck in a certain state because the Host for some reason
could not continue communications. Controlling whether timeouts are enabled and changing the timeout period are
discussed in Section 2.7.

3.1.4 r_fl_store_manager.c
The file r_fl_store_manager.c contains functions that implement a simple file system on the Flash Loader Storage.
r_fl_store_manager.c relies on low-level functions in r_fl_memory_*type*.c for access to the Flash Loader Storage.
This file also has functions for handling retries after a communications error has occurred.

One of the goals of the Flash Loader project was that the code should not interfere with the user’s application code. In
order to do this some Flash Loader Storage operations were split up. This means that for an erase there could be a
function to start the erase, a function to check the erase, and a function to finish the erase. This method was chosen to
keep the simplicity of the state machine while not getting in the way of other user code. Because there may be several
functions to complete one task, not all of the functions in r_fl_store_manager.c are listed below.

1. fl_is_store_busy : Returns whether the Flash Loader Storage is currently busy with another operation.

2. fl_start_erase_load_block : Starts the erase of a Load Image in Flash Loader Storage.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 9 of 55
February 22, 2013

3. fl_store_retry_init : Starts the process of retrying a failed Load Image transfer.

4. fl_store_block_init : Starts the process of storing a Load Image into Flash Loader Storage.

5. fl_get_load_image_headers : Returns a list of Load Images available in Flash Loader Storage.

6. fl_verify_load_image : Runs tests and checks to see if a Load Image in Flash Loader Storage is valid.

7. fl_get_latest_image : Returns which Load Image in Flash Loader Storage was the most recent to be downloaded.

8. fl_find_matching_image : Checks Load Images in Flash Loader storage to see if there is a match against the
information sent in. This is used to make sure a user does not download the same Load Image twice, and for
checking to see if a retry is needed.

3.1.5 r_fl_memory_*type*.c
The file r_fl_memory_*type*.c contains functions that perform low-level memory operations on the memory used for
holding Flash Loader data. While r_fl_store_manager.c implements the file system, this file takes care or reading,
writing, and erasing actual bytes on the Flash Loader Storage device. The functions contained in this file are:

1. fl_mem_init: Initializes resources needed for talking to Flash Loader Storage.

2. fl_mem_read: Reads data from Flash Loader Storage.

3. fl_mem_write: Writes data to Flash Loader Storage.

4. fl_mem_erase: Erases data in Flash Loader Storage.

5. fl_mem_get_busy: Returns whether Flash Loader Storage is still busy processing previous operation.

3.1.6 r_fl_utilities.c
The file r_fl_utilities.c contains utility functions that may be used in multiple source files and don’t necessarily belong
in any of the other Flash Loader source files. Users can modify this file if needed and can add their own functions. By
default, the functions that come in r_fl_utilities.c are:

1. fl_check_application: Runs a check on MCU flash (CRC-16 by default) to validate the current running image. If
the image in MCU flash is deemed invalid then the Flash Loader Bootloader will wait for a new image.

2. fl_reset: Performs an internal reset on the MCU. This is used when the user’s application is running and a new
image is received. By default the Flash Loader project will reset immediately using the Watchdog Timer (WDT)
once the image has been successfully downloaded.

3. fl_signal: This is used to signal to the outside world that the MCU does not have a valid image to run and is
waiting in the Flash Loader Bootloader for a new image. An example would be to flash an LED, put a message on
a LCD, or send out a status command.

4. fl_check_bootloader_bypass: This function is used to determine if a user is requesting that the normal Flash
Loader Bootloader checking be skipped. If it is skipped then the Flash Loader Bootloader will not check Flash
Loader Storage for a new image and will not check the internal Device memory for a valid image. Instead it will
go straight into waiting for a new Load Image. This is a helpful bypass for when a bad image has been
programmed into the Device. For instance, if the user has a bug in their code that prevents the Flash Loader state
machine from running with their application then the Flash Loader Bootloader will still let it run if the image is
error free in terms of a valid byte-for-byte image. This bypass effectively allows you to wipe out the bad Load
Image without having to erase the Device’s internal memory manually. An example of how to implement a bypass
would be to have the user hold several buttons at once when resetting the Device.

5. R_FL_GetVersion: Returns the current version of the Flash Loader code.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 10 of 55
February 22, 2013

3.2 Flash Loader Bootloader
The Flash Loader Bootloader is the part of the project that uses the Load Images downloaded from the Host. Once the
Device has successfully downloaded a new Load Image it will reset when it is ready to update. After the reset the Flash
Loader Bootloader is run before any user application code. The Flash Loader Bootloader will look for a new Load
Image. If a new Load Image is found the bootloader will validate the image and then program it into the Device’s
internal memory. If a new Load Image is not found, or if the image is found to be invalid, then the bootloader will look
for an image already programmed into the Device’s internal memory. If a Load Image Header is found then the
application will be validated in the Device’s internal memory. If the image is valid the bootloader will jump to the
application. If the image is not found to be valid then the code will signal that a valid image has not been found, start
the Flash Loader state machine, and will wait for a new Load Image download request. To see a diagram of the
execution flow of the Flash Loader Bootloader refer to Appendix C.

3.2.1 Using User Boot Mode
The Flash Loader project was designed around the use of a feature in Renesas MCUs referred to as User Boot Mode.
Most Renesas MCUs can reset into at least 2 modes. The two most common modes are Boot Mode and Single-Chip
Mode. In Boot Mode a factory programmed kernel is run that allows the user to program the MCU’s internal memory
across a serial interface. No user code can be run from Boot Mode. Single-chip mode is the ‘regular’ mode where an
address is fetched from a location in memory and that is where the MCU will start executing after reset. A bootloader
can work in Single-Chip Mode but it makes it more difficult since the user’s application needs to be aware of the
bootloader. The user will have to do things like change the vector table to make sure that their user application does not
interfere with the reset vector the bootloader has already programmed in. Another cause of concern is that bootloaders
erase internal memory. If the bootloader is residing in the same memory as the user’s application then if the code is not
written properly, or if there is an error during erasure/programming, then the bootloader could be compromised.

The Flash Loader project gets around these issues by using User Boot Mode. User Boot Mode is designed to make
using custom bootloaders easier. Features that are typical of User Boot Mode are having a separate reset vector (or
static reset location) and having a separate memory area. Figure 3-1 graphically shows the User Boot Mode memory
area and reset vector. After mentioning the drawbacks of using a bootloader in Single-Chip Mode previously, you can
see how User Boot Mode removes these problems. The user’s application does have to be cautious of the bootloader
because it has its own reset vector that will not interfere. Accidentally erasing or overwriting the bootloader is not a
fear either because when executing out of the User Application space (‘program ROM’ in Figure 3-1) the Device is not
allowed to erase or program the User Boot area. The User Boot area can only be programmed or erased when the MCU
is put into regular Boot Mode.

Figure 3-1 : User Boot Mode

If your MCU does not have User Boot Mode this does not mean that you cannot use the Flash Loader project. It does
mean that the user will have to make modifications to the default project to handle the issues of keeping the bootloader
in user program space (like the issues mentioned previously).

Memory Area Description MCU Address

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 11 of 55
February 22, 2013

3.2.2 r_fl_bootloader.c
r_fl_bootloader.c contains all of the functions required by the bootloader. These functions are:

• main – This is the main function of the bootloader. This is where all of the important bootloader decisions are
made. This follows the diagram displayed in Appendix C.

• fl_write_new_image – After a new Load Image has been found and verified the bootloader will program it into the
Device’s internal memory. This function takes in a Load Image and performs the programming.

• fl_process_write_buffer – This function writes a Data Block into the Device’s internal memory.

• fl_flush_write_buffer – Program pages can span blocks. This function needs to be called to flush the buffer in the
end.

To be able to erase and write the Device’s internal memory the Flash Loader project uses the Renesas supplied Simple
Flash API. The Flash API for your device can be found on the Renesas website.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 12 of 55
February 22, 2013

4. Flash Loader on the Host
4.1 Preparing to Use Host Applications
With the default Flash Loader implementation the Host is a PC. The Host applications are written in Python which
means it is easy to read, modify, and move to other platforms that support Python. Python 2.7.2 was used for the
development of this application note. Any version of Python 2 that is 2.7 or later should work for these applications.
Python 2.* can be downloaded from the Python website here:

http://www.python.org/download/

Python 3.* may work with these applications but this has not been tested.

Along with the standard Python libraries, 2 external libraries were also used.

4.1.1 crcmod
The first library is named crcmod and it is used for generating CRC codes for the MOT converter application discussed
in Section 4.2. This library can be downloaded from the following link:

http://crcmod.sourceforge.net/

Please read the ‘Installation’ section on the website for installing this library. At the time this application note was
published, the link to the ‘Installation’ section was the following:

http://crcmod.sourceforge.net/intro.html#installation

4.1.2 pySerial
pySerial is a Python library that is used for accessing the serial port on a PC. It is used by the Host application that
transfers a Load Image to the Device. This application is discussed in Section 4.3. This library can be downloaded from
the following link:

http://pyserial.sourceforge.net/

Please read the ‘Installation’ section on the website for installing this library. At the time this application note was
published, the link to the ‘Installation’ section was the following:

http://pyserial.sourceforge.net/pyserial.html#installation

http://www.python.org/download/�
http://crcmod.sourceforge.net/�
http://crcmod.sourceforge.net/intro.html#installation�
http://pyserial.sourceforge.net/�
http://pyserial.sourceforge.net/pyserial.html#installation�

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 13 of 55
February 22, 2013

4.2 Making a Load Image
In this section we will talk about the Host application that converts S-Record files into Load Images. The reason for
using Load Images and the format used are explained in Section 1.1.2. The S-Record converter that comes standard
with the Flash Loader project is named r_fl_mot_converter.py. It is a command line application that takes in a number
of arguments. Descriptions of the input parameters for the application are shown in Table 4-1. While this application
comes standard, it does not have to be used. The protocols used by the Flash Loader project are supplied which means
the user could write their own application if they wished. The user would only need to modify this application if they
wanted to change something in the protocol/format used for Load Images.

Input Parameter Description
-i, --input The path to the input S-Record file

-o, --output *1
The name and path desired for the output Load Image. This parameter is
optional and if not supplied then the default value will be the original file name
with its file extension removed and ‘.bch’ added.

-d, --data_size *1

This controls the maximum size of the data field in an individual Data Block.
You would want to change this parameter to optimize throughput on your
communications medium. For instance, if you are using a wireless
connection then you would probably want the block size to be small so that if
an error occurs on a block (packet) then you can retry and not lose a lot of
previous progress. On the other hand, if you have a wired connection then
you might want to use a larger block size to decrease block overhead (header
information, CRC, pointer to next block, etc). This value also corresponds to
the size of the receive buffer on the Device that will be receiving the file. The
Device cannot receive a Load Image if that image’s max block size is larger
than its internal receive buffer. The size of the Device’s internal receive buffer
is controlled by the FL_CFG_DATA_BLOCK_MAX_BYTES #define located in
r_flash_loader_rx_config.h. This parameter is optional and if not supplied then
the default value will be 2048.

-f, --fill_space *1

This option allows you to merge close blocks of data by putting 0xFF’s in
between them. The reason you would want to do this would be to save on
the overhead of separate blocks when the space in between two blocks is
relatively close. For example, if you had two blocks, each 10 bytes wide, that
were separated by 2 bytes of empty space then it would be more efficient to
have one block and put 2 bytes of 0xFF’s in between the data than to have
two separate blocks. This parameter allows you to specify the maximum
bytes between two blocks that you want to fill. This parameter is optional and
if not supplied then the default value will be 64.

-l, --location *1

This specifies the address of the structure g_fl_cur_app_header. The MOT
File Converter needs to know this so that it can read the ID and version
number of the Load Image and fill in the empty fields. You can see which
fields are handled by the MOT File Converter by looking in the file
r_fl_app_header.c and looking for the comment ‘(Handled by file converter)’
above a structure member. This parameter is optional and if not supplied then
the default value will be 0xFFFFFE00.

-m, --mask *1

This specifies the value the user used for the valid mask in the
g_fl_cur_app_header structure. This enables the application to verify that a
application header was actually found. This value should match the definition
for the FL_LI_VALID_MASK macro. This parameter is optional and if not
supplied then the default value will be 0xAA.

--formatting
This is a flag, not a parameter. If you use this option then the script will return
information on the layout of the binary file. Headers, blocks, and other details
are described.

Table 4-1 : r_fl_mot_converter.py Input Parameters

1 This parameter is optional

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 14 of 55
February 22, 2013

4.3 Transferring a Load Image
The r_fl_serial_flash_loader.py application is used by the Host to transmit a Load Image from the Host to the Device.
This application is written in Python which has advantages discussed in Section 4.1. By default this application will
transmit using asynchronous serial. If the user decides to use another communications medium, then they will either
need to modify this file, or write their own. This is encouraged and is the reason the communications protocols are
supplied with the Flash Loader project. If the user writes their own application the input parameters will likely change,
but the parameters used with the default application are explained below in Table 4-2.

Input Parameter Description

-p, --port
The port number to use for communications (e.g. to use COM4 you would use
‘-p 3’ since COM1 = ‘-p 0’)

-c, --command *2

The command you want to send to the Device. Available commands are:

• ‘info’ - This is an information request that responds back with what
image is currently running on the Device and what Load Images are
residing in Flash Loader Storage.

• ‘load’ - This command requests permission and transmits a Load
Image to the Device. The Load Image transferred will be stored in
Flash Loader Storage.

• ‘erase’ - This command will erase Load Images from Flash Loader
Storage.

This parameter is optional and if not supplied then the ‘info’ command will be
used.

-f, --file
If the command specified is a Load command then this parameter is the path
to the Load Image you want to transfer to the Device

-q, --quiet *2 If specified some messages will be suppressed.

-b, --block
If the command specified is an Erase command then this parameter will
specify which Load Block should be erased.

Table 4-2 : r_fl_serial_flash_loader.py Input Parameters

2 This parameter is optional

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 15 of 55
February 22, 2013

4.4 Host Applications Example
Below is an example showing how to use the Host applications to make a Load Image and transfer it to the Device.
Listed below is the information we have:

• Input File = input.mot

• Desired output file = load_image.bch

• Maximum data block size = 2048 bytes

• Fill space if space between blocks is less than or equal to 50 bytes

• The application header is at flash address 0xFFFFFE00

• COM4 is used on the Host

We’ll start by converting the S-Record file into a Load Image. Note that these examples assume that python.exe has
been added to the system path. If this has not been done then the user will need to specify the location of python.exe
instead of just calling ‘python’. An example would be ‘C:\Python27\python.exe r_fl_mot_converter.py …’.

>>python r_fl_mot_converter.py –i input.mot –o load_image.bch –d 2048 –f 50 –l
0xFFFFFE00

Now that we have a Load Image we need to check to see if the Device has an open spot in Flash Loader Storage. We
can get information about the status of Flash Loader Storage by issuing an Information command.

>>python r_fl_serial_flash_loader.py –p 3 –c info

Let’s now assume that the Information command came back and all the spots were full. We can delete the first spot
using an erase command.

>>python r_fl_serial_flash_loader.py –p 3 –c erase –b 0

After the erase has finished we can send a command to download the new Load Image.

>>python r_fl_serial_flash_loader.py –p 3 –c load –f load_image.bch

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 16 of 55
February 22, 2013

5. Implementing Flash Loader with Your Project
This section will cover making the Flash Loader project work with your system. Each sub-section will cover a topic
that will need to be addressed when modifying the project to meet your requirements. The example projects that come
with this application note and are referenced throughout this section have these properties:

• RX62N/RX63N MCU for Device

• Has User Boot Mode and User Boot area

• Has 16-bit CRC Generator

• PC for Host

• Asynchronous Serial for communications between Host and Device

• External SPI Flash Memory for Flash Loader Storage

• 16-bit CRC-CCITT for error checking

• Using Renesas High-Performance Embedded Workshop (HEW) or E2Studio for IDE

• Using Renesas RX Toolchain

5.1 Modifying Flash Loader Device Source Files
In this section we will go through each file and discuss what, if anything, needs to be changed and why you would
change it. For a general overview of each file refer to Section 3.1.

5.1.1 r_fl_app_header.c
r_fl_app_header.c contains information about this application image. By default, the only two values that need to be
changed in the g_fl_cur_app_header structure are the Image ID (2nd entry) and the Version Number (3rd entry). For
more information on each structure entry refer to Appendix A. The user can set these two entries to anything they want.
The intent of these two entries was to have the Image ID be static for a particular application with the Version Number
updating for each revision. When setting the entries, users should take care to recognize the format of each member.
The Image ID and Version Number are 1 byte unsigned entries for example. The fl_image_header_t structure is
defined in r_fl_types.h.

The other entries in the structure are handled by other applications. More information on these entries is below.

• Size of Load Image *3

• Max Block Data Size *
 – This entry represents the total size of the Load Image in bytes.

3 – This entry represents the maximum number of bytes that will be used for the data
portion of a Data Block.

• Load Image CRC *3 – This entry holds the CRC of the Load Image. The CRC code covers all Data Block headers
and data. This CRC code is used for validating Load Images as a whole and is used in the bootloader to validate a
Load Image before its data is written into the Device. If the user decides to use another means for error checking,
this entry will need to be changed.

• Raw CRC – This entry holds the CRC of the actual application image as it sits in the Device’s memory. This CRC
is used for checking a firmware image that has already been programmed into the Device. This CRC is created
using every byte of the Device’s user application memory area. This is not handled by any Flash Loader
application. In the example Flash Loader project this CRC value is calculated using the RX Toolchain’s linker.
For more information on how this is done refer to Section 5.4.1. If the user does not wish to use this method, or if
the toolchain they are using does not support the output of a CRC calculation, then they will need to implement it
themselves. A Host or Device-side application could be used to compute this value. For example, if this is done on
the Device-side then the same function that is used to check the image CRC could be used to obtain the CRC in the
first place.

3 This entry is handled by r_fl_mot_converter.py. If the user does not use r_fl_mot_converter.py to make their Load
Image then they will need to either hard code this value or implement this functionality in their own application.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 17 of 55
February 22, 2013

• Address of 1st Data Block – This entry holds the address of the first data block. Each Data Block header will then
have the address of the next block. This is handled by r_fl_store_manager.c code when the Load Image is stored in
Flash Loader Storage.

• Successfully Stored – This value is written by r_fl_store_manager.c code after the Load Image has been
successfully downloaded and stored into Flash Loader Storage. This entry is used to determine Load Image
priority (higher number Load Images are chosen first) and to make sure images were successfully downloaded.

Once the g_fl_cur_app_header structure has been properly filled out then care must also be taken to make sure the
structure is put in the proper place in memory. The Flash Loader Bootloader and MOT File Converter both look at a
predefined memory address for the g_fl_cur_app_header structure. By default this location is 0xFFFFFE00. If the user
changes the location of this structure then they will need to make sure and change the address throughout the Flash
Loader project.

5.1.2 r_fl_comm_*type*.c
r_fl_comm_*type*.c contains the Device code for communicating with the Host. The *type* portion of the filename
should correspond to what communications medium is being used. The Flash Loader project comes packaged with a
UART implementation and the file is named r_fl_comm_uart.c. If the user wishes to use a different communications
medium then they will need to create a new r_fl_comm_*type*.c source file and implement the functions prototyped in
r_fl_comm.h.The basic needs are to be able to transmit a buffer, receive into a buffer, and report back on how many
bytes have been received.

5.1.3 r_fl_downloader.c
The state machine for the Flash Loader project is contained in r_fl_downloader.c. This file will not be changed by the
user unless they want to change the protocols that are used in Flash Loader project. For instance, if the user wanted to
add a new command to the communications protocol then they would add that capability in r_fl_downloader.c.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 18 of 55
February 22, 2013

5.1.4 r_fl_memory_*type*.c
The low-level communications routines that are used to communicate with the Flash Loader Storage are contained in
this source file. The *type* portion of the filename should correspond to what communications medium is being used.
The Flash Loader project comes packaged with a SPI flash implementation and the file is named
r_fl_memory_spi_flash.c. If the user wishes to use a different communications medium then they will need to create a
new r_fl_memory_*type*.c source file and implement the functions prototyped in r_fl_memory.h. The functions in
r_fl_memory_*type*.c offer the basic functions of reading, writing, and erasing portions of the Flash Loader Storage
device.

If the user is going to use a SPI flash for their Flash Loader Storage then they will need to define the specifics for that
SPI flash in the g_fl_li_mem_info structure in r_fl_memory_spi_flash.c. This structure has the following members:

• erase_size – This is the minimum erase size capable of the memory device. This is important when it comes to the
ability to retry Load Image transfers. If the erase size is large, this means that more progress might be lost when a
retry occurs. An example is shown below in Figure 5-1. In this example each memory is shown with how the data
blocks line up in erase sectors. The first memory device with the larger minimum erase size is forced to put
multiple blocks inside of each erase sector. The #2 memory device, with the smaller minimum erase size, is able to
put each data block in its own erase sector. In the example, Data Block 20 has an error. The #2 memory device in
this case will only have to erase sector 20 and will ask the Host to send Data Block 20 again. The device with the
larger minimum erase size on the other hand will have to erase sector 1 which means Data Blocks 11-20 will all be
deleted. In this case the Device will have to ask the Host to start again with Data Block 11. This is a limitation of
using memory devices with large erase sectors.

#1 - Memory Device with Large Minimum Erase Size

Erase Sector 0 Erase Sector 1 Erase Sector 2

Data Block 10 Data Blocks 11-19 Data Block 20 (Bad)

No Erase Must Erase Must Erase

#2 - Memory Device with Small Minimum Erase Size

Erase Sector 17 Erase Sector 18 Erase Sector 19 Erase Sector 20 Erase Sector 21

Data Block 17 Data Block 18 Data Block 19 Data Block 20 (Bad)

No Erase No Erase No Erase Must Erase

Figure 5-1 : Minimum Erase Size

• max_program_size – Different types of memory devices vary in how much can be programmed in one operation.
This structure member specifies the maximum number of bytes that can be programmed with one program
command. Starting with v3.0 of the Flash Loader project, the SPI flash driver code has been updated so that it will
perform multiple program commands if necessary. For example, if 128 bytes is sent in to program and the device
can only program 64 bytes per program command then 2 program commands will be issued. This means that this
member will only dictate when to split up program operations if the user wants to do so. If using a different driver,
then this member may be a requirement.

• addresses[] – This array contains starting addresses for Load Images. If the user specifies that they want to store 2
Load Images then this array will be 3 entries long. The 1st entry will be the starting address of the 1st Load Image
and the 2nd entry will be the starting address for the 2nd Load Image. The 3rd entry is used to store the maximum
address for Load Image data and is used for checking purposes.

5.1.5 r_fl_store_manager.c
r_fl_store_manager.c contains functions that implement a simple file system on the Flash Loader Storage device. This
file interacts with the Flash Loader Storage device using function calls found in r_fl_memory_*type*.c. This separation
makes the code in r_fl_store_manager.c portable and therefore should not be modified by the user unless they want to
change the way the file system works.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 19 of 55
February 22, 2013

5.1.6 r_fl_utilities.c
As mentioned in Section 3.1.6 r_fl_utilities.c contains functions that do not necessarily belong in other Flash Loader
source files. The user can modify this file to add or remove functions as they see fit.

5.2 Modifying Flash Loader Host Applications
All of the Flash Loader application code that runs on the Host is written in Python. Users can modify this code to meet
their needs or they can use their own code. Users should feel free to use their own code as long as the code matches the
Flash Loader protocols for communications and the format for Load Images.

5.3 Making a Flash Loader Bootloader Project
5.3.1 Choosing a Communications Medium
Making the Flash Loader Bootloader project is very similar to building your user application. One of the first things the
user has to decide is whether or not they are going to include the same communications medium in the bootloader as
their user application. For example, if the user application is going to perform Flash Loader communications over USB,
will the Flash Loader Bootloader also use USB? The Flash Loader Bootloader does not require that it have any
communications at all. If the bootloader does not have its own communication methods then it will require that the
Load Images be acquired by some other means (e.g. the user application). This is not the safest option because if an
error occurs and no Load Image is present then the bootloader can do nothing. If the regular Flash Loader state
machine is also included in the bootloader (as is done in the example project) then there is always a failsafe since the
User Boot area can only be erased in Boot Mode.

The main limitation with including the same communications medium in the Flash Loader Bootloader is size. The User
Boot area on most devices is usually relatively small compared to the User Application Area which means it might not
be possible to use the same communications method. For example, if your USB stack requires 40kB then it will not fit
in the 16kB User Boot area which many RX devices have. One option in this case is to use a different communications
medium for the bootloader.

5.3.2 Building the Project & Using r_fl_bootloader.c
After choosing the communications medium the user can move on to building their Flash Loader Bootloader project. If
the user is including the Flash Loader state machine then they should follow the directions in Section 2.8.1. The
bootloader source code in r_fl_bootloader.c will not need to be changed unless the user wants to change part of the
bootloader protocol. There are other important features that will need to be addressed:

1. Setting the User Boot area Reset Vector – As discussed in Section 3.2.1 the User Boot area sometimes has its
own reset vector. If this is the case then the user will need to make sure and put the correct value in this address.
In the default Flash Loader implementation, this is taken care of in the file vecttbl.c which is located in the r_bsp
package. The user could do this themselves as well by using code similar to the following:

#pragma address UB_ResetVector = 0xFF7FFFFC

void * const UB_ResetVector[] = {

/* User Boot Reset Vector */

 (void *) PowerON_Reset_PC

};

This code takes the address of the function ‘PowerON_Reset_PC’ and puts it in the User Boot area Reset Vector
location. When the Device is reset into User Boot Mode this is the address that will be fetched.

2. Jumping to the User Application – After the bootloader has verified the image currently in the Device’s internal
memory it will jump to the user application. This is done by looking at the reset vector used in Single-Chip Mode.
There are two #define’s used to add this functionality:

• #define MCU_RESET_VECTOR – This #define gives the memory address for where the reset vector for the
user application can be found. This value will need to be changed depending on where the user puts their
application’s reset vector. This does not have to match the reset vector of the Device but it is convenient to do
this so that in the case that the Device is started in Single-Chip Mode it will still have an application to run.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 20 of 55
February 22, 2013

• #define JUMP_TO_APPLICATION – This #define makes a function call out of the address defined in
MCU_RESET_VECTOR. When the bootloader is ready to jump to the user application it can just call
JUMP_TO_APPLICATION(). This #define will only need to be changed if the user’s Device does not use 32-
bit addressing.

3. Setting Bootloader Location – The bootloader should reside in the User Boot area so the user should make sure to
configure the linker to place the code at the correct memory location.

5.4 Usage Notes
5.4.1 Application Code CRC Generation with Renesas RX Linker
The ‘Raw CRC’ as referenced in Section 5.1.1 is generated by the Renesas RX Linker in the example Flash Loader
project that comes with this application note. This, along with the fact that the RX has a hardware 16-bit CRC
Generator peripheral, was the reason that 16-bit CRC-CCITT was chosen for error checking. This is also the reason
that there are two CRC seeds used by default. In the file r_fl_utilities.h there are two CRC seeds: FL_CRC_SEED and
RX_LINKER_SEED. The Renesas RX linker uses RX_LINKER_SEED to seed its CRC calculation and also does a
bitwise NOT operation at the end. CRC calculations that are done by applications within the Flash Loader project (Host
and Device) use FL_CRC_SEED for the seed value and do not perform a bitwise NOT at the end.

To get to the CRC calculation options within HEW do the following:

1. With your HEW project open go to Build >> RX Standard Toolchain’

2. Click on the ‘Link/Library’ tab.

3. Change ‘Category’ to ‘Output’

4. Change ‘Show entries for’ to ‘Generate CRC Code’

Figure 5-2 : Example CRC Output By Linker

Now you can choose what kind of CRC calculation you want to use, where to put the result, and what ranges of
memory to use for the calculation. Figure 5-2 shows an example setup. Notice that the ‘Output address’ is not included
in the CRC calculation. This is because this address is where the linker will place the result of the CRC calculation
when it is done. The value for ‘Output address’ relates to the location of the ‘Raw CRC’ value in the
g_fl_cur_app_header structure in r_fl_app_header.c.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 21 of 55
February 22, 2013

If using E2Studio, the user will need to input the command to generate the CRC manually. Please reference the RX
Family C/C++ Compiler Package User’s Manual for more information. To setup the CRC calculation options within
E2Studio do the following:

1. Right click on your project folder and click Properties.

2. Navigate to C/C++ Build >> Settings >> Tool Settings >> Converter >> User.

3. Click the Add button to add a new user-defined option.

4. In the window that pops up, add the command-line argument for the RX Toolchain to generate the proper CRC
code. Click OK. For this example the following command was used:
-crc=FFFFFE0D=FFF00000-FFFFFE0C,FFFFFE0F-FFFFFFFF:little
This specifies to put the result at 0xFFFFFE0D and that the calculated range should be from 0xFFF00000 to
0xFFFFFFFF while skipping the location where the generated CRC will be placed (0xFFFFFE0D-0xFFFFFE0E).
The ‘little’ option specifies to store the CRC little-endian.

5. Scroll to the bottom of the Properties window and click Apply.

If the toolchain you use for your project does not have the option to output a CRC code then you can still write one
yourself. As was discussed above you will still need to make sure to output the CRC result in the correct location in
memory and remember to not include the spot in memory where the CRC calculation will be placed.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 22 of 55
February 22, 2013

5.4.2 Setting Address of g_fl_cur_app_header
In r_fl_app_header.c the structure g_fl_cur_app_header is placed in a constant section named APPHEADER. This is
done using the Renesas RX Toolchain compiler directive ‘#pragma section C APPHEADER’. The ‘C’ option specifies
that this is constant data. Since a unique section name is used, the user must specify the address of this section in their
linker settings. The RX linker allows each section to have 1-byte, 2-byte, and 4-byte aligned subsections where each is
differentiated in the linker setup by adding ‘_1’, ‘_2’, or ‘_4’ respectively to the end of the section name. Since the
g_fl_cur_app_header structure is specified to be packed (1-byte aligned, no padding bytes) in r_fl_types.h the section
name that should be added to the linker is APPHEADER_1. The Flash Loader project by default, places the
APPHEADER_1 section at address 0xFFFFFE00. The APPHEADER_1 section must be specified at the same address
in the linker settings for both the bootloader and user application projects. The section is used by the user application for
placing the structure in memory at a specific location. The section is defined in the bootloader application so that the
bootloader knows where to look for the image header.

#pragma section C APPHEADER

5.4.3 Programming Bootloader into User Boot area
Renesas’ Flash Development Toolkit (FDT) is used for programming the Flash Loader Bootloader into the User Boot
area. This is done the same as you would program in any other file except for one difference. After adding the
bootloader’s MOT File to the FDT project the user should right-click on it and select ‘User Boot Flash’ as shown in
Figure 5-3. This tells FDT that the MOT file contains data that should go in the User Boot area. If this option is not
selected then FDT will ignore the User Boot area data contained in the MOT file.

Figure 5-3 : Setting up FDT

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 23 of 55
February 22, 2013

When programming the User Boot area with FDT you may get a warning saying that the MOT file “exceeds the flash
ROM size” of your part. The reason this message is displayed is because the MOT file has data outside of the User Boot
area and FDT will not program it in. By default the Flash Loader Bootloader project will define the fixed vector table
and will therefore have data outside of the User Boot area. In this case, click ‘Yes’ in the warning dialog. After the
download has finished the User Boot area will be programmed but not any other areas of flash. If you wish to program
in the other areas, such as the fixed vector table, then uncheck the ‘User Boot Flash’ option that was selected earlier and
perform another download. This time the User Boot area will be ignored and the user application flash will be
programmed. For more information about using the fixed vector table with the Flash Loader Bootloader please
reference Section 5.4.6.

5.4.4 Batch Files Included with Project
There are several batch files that are included with the Flash Loader project. These batch files will most likely not work
for your system without some modifications. These batch files are included for convenience. Things that will need to
be modified in the files are file locations and port numbers for communications. Once these changes are made the user
can add these batch files to their HEW projects and run them by double-clicking them in HEW. This is easier than
having to open a command prompt window every time you want to send a Flash Loader command to the Device.

In E2Studio the default action for double-clicking on a batch file is to open it for reading. These batch files can still be
used by creating an External Tools configuration. This is accessed in E2Studio by clicking Run >> External Tools >>
External Tools Configurations.
5.4.5 Difference between USB Boot Mode and User Boot Mode
USB Boot Mode and User Boot Mode are the same operating mode and both modes use the User Boot area. The name
‘USB Boot Mode’ is used because when a RX with USB support comes from the factory it will have a USB bootloader
stored in the User Boot area. In order to use the Flash Loader project the User Boot area will need to be erased which
will erase the default USB bootloader. If the user has erased the factory USB bootloader and wishes to get it back, a
binary image for their MCU can be downloaded off of the Renesas website.

5.4.6 Bootloader and Fixed Vector Table
The default Flash Loader Bootloader defines the fixed vector table (FVT). Some people see this as a problem because
this area will be erased and rewritten when a firmware image is programmed in. The problem is that a good rule of
thumb is that you should never erase an active vector. This is true and this was not overlooked in the design of the
project. The reason the FVT is defined in the default bootloader project is that the FVT has exception vectors that
cannot be turned off. While a bootloader should be well tested and free of exceptions, having a failsafe will appeal to
some users. Also, having the FVT defined may be helpful when debugging the bootloader to properly catch any
exceptions.

If the user wishes to remove the FVT from their bootloader application then they can do so by deleting the
Fixed_Vectors[] array in the file vecttbl.c. If this is done then the user must ensure that none of the exceptions in the
FVT are triggered. If they are triggered then the MCU will fetch an address from memory that is either erased or has
unknown contents.

5.4.7 Getting into User Boot Mode with RX63x and RX200 MCUs
To get into User Boot Mode with RX610 and RX62x MCUs, the user needed to correctly drive the MD0 and MD1 pins.
Starting with the RX63x and RX200 MCUs, the user must drive the MD and PC7 pins as well as set the appropriate UB
Codes in the Option-Setting Memory registers. These registers are discussed in the hardware manual under the Option-
Setting Memory >> UB Codes section. Basically, some constant values have to be put in a flash location to enter User
Boot Mode. If the user is using the r_bsp package (the workspace that comes with this application note does) then this is
taken care of in the source file vecttbl.c.

5.4.8 Calling Flash Loader State Machine
Flash Loader versions previous to v3.0 had code internal to the Flash Loader project that would setup a timer and call
the Flash Loader state machine from an interrupt service routine. Starting with v3.0, calling the state machine is now the
responsibility of the user. This was done because many users’ systems will have their own timer ticks and there is no
reason for the Flash Loader to ‘waste’ a resource that the user may already have dedicated for another task. The default
Flash Loader workspace that comes packaged with this project does include timer code (through r_cmt_rx package) to
call the state machine but it is external to the Flash Loader project.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 24 of 55
February 22, 2013

5.4.9 Enabling User Boot Mode in r_bsp Package
The Flash Loader project is built using the Renesas Board Support Package (r_bsp). This package provides all the code
needed to bring the MCU out of reset and get it ready to run the user’s application. After starting up the MCU the last
thing the r_bsp code will do is call main(). The r_bsp package is configured using the file r_bsp_config.h. Since the
bootloader uses the User Boot Area, which has its own reset vector, the r_bsp package must know to put the reset vector
at the correct location. The user configures the r_bsp to do this using the macro BSP_CFG_USER_BOOT_ENABLE in
r_bsp_config.h. Set this macro to ‘1’ to enable user boot mode. Note that this macro should be set to ‘1’ for the Flash
Loader Bootloader and to ‘0’ for the Flash Loader User Application.
5.4.10 Calling Flash API from User Boot Area
By default, the Renesas RX Toolchain will use 24 bits for the maximum distance that a branch instruction can jump to.
The options are 16, 24, or 32 bits. The smaller the chosen value, the smaller the compiled code will be. The reason for
this is that if you choose 16 or 24 bits then you are guaranteeing the Renesas RX Toolchain that the destination of all
branches will be within the range specified and therefore the compiler does not need to reserve 32 bits for branches.
With this guarantee the toolchain can save 1 byte per branch with 24 bit offsets or 2 bytes per branch with 16 bit offsets.

With regular applications, 24 bits will usually be fine. When using User Boot Mode with the Flash API though, 32 bit
branches are required. The reason for this is that the Flash API has to put some code in RAM when programming or
erasing ROM. Since the end of the User Boot Area is 0xFF800000 and the beginning of RAM is 0x00000000 this
means there is a distance of 0x800000. This appears to be within 24 bits, but branches can have positive or negative
offsets so the offset is a 2’s complement number and therefore the range is half in each direction. This means that calls
to Flash API routines in the User Boot Area cannot reach the functions in RAM with 24 bit branches. If the user does
not change this setting in the Renesas RX Toolchain then the user will get a ‘L2330 (E) Relocation size overflow’ error.

Note that this setting only applies to the Flash Loader Bootloader (since it resides in the User Boot Area) and not the
Flash Loader User Application.

To set the Renesas RX Toolchain to use 32 bit branches in HEW, follow these steps:

1. Open up your project in HEW.

2. Go to Build >> RX Standard Toolchain.

3. Click the right arrow at the top-right of the ‘RX Standard Toolchain’ window until you can see the ‘CPU’ tab.

4. Click the ‘CPU’ tab.

5. Click the ‘Details…’ button.

6. In the window that comes up (‘CPU details’) choose ’32 bit’ for ‘Width of divergence of function’.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 25 of 55
February 22, 2013

To set the Renesas RX Toolchain to use 32 bit branches in E2Studio, follow these steps:

1. Right click on your project folder and click Properties.

2. Navigate to C/C++ Build >> Settings >> Tool Settings >> CPU >> Advanced.

3. Change the dropdown for ‘Width of divergence of function’ to ’32 bit’.

4. Click the Apply button at the bottom of the pane.

5. Click OK to exit the Properties window.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 26 of 55
February 22, 2013

6. Storing Firmware Images in Internal Memory
Some users will want to forgo the use of external memory for holding firmware updates and will instead want to store
the images internally. While this is possible, there are extra precautions that must be followed that are not present when
using external memory. This section will cover the precautions that must be made and why external memory may be the
easier choice in your project.

6.1 Example Setups
Throughout this section the following setups will be referenced.

6.1.1 Firmware Images Stored in External Memory
This is how the Flash Loader project is configured ‘out of the box’. Firmware images are stored in an external memory
area (shown on the right) and programmed into the flash areas on the MCU (shown on left). Only 1 firmware image is
stored in the MCU’s ROM and Data Flash at one time.

6.1.2 Firmware Images Stored Directly in Internal Memory
Instead of having a separate external memory for firmware images, images are stored in the same ROM area as the
user’s application. With this setup there is no ‘holding area’ for the firmware image. A holding area is a memory area
where the firmware image is stored, but is not executed from. For example, in Section 6.1.1 the holding area is the
external memory. In this example a new firmware image is downloaded in-place. This means that once the image is
downloaded, it is ready to be executed. There is no stage where the Flash Loader Bootloader takes the image from a
holding area and programs it into the ROM.

Communications

MCU

ROM

Data Flash

RAM

External Memory

Image #n

Image #2

Image #1

MCU

ROM – Image #1

Data Flash

RAM

ROM – Image #2

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 27 of 55
February 22, 2013

6.1.3 Firmware Images Stored Directly in Internal Memory with Holding Area
This setup is similar to the one described in Section 6.1.2 in that images are stored in MCU ROM except that there is a
holding area where images are stored, but not executed from. When a new firmware image is downloaded it will
always be stored in the ROM holding area before it is programmed in to the Image #1 space. The differences this leads
to in your project are described later in the section.

6.1.4 Firmware Images Stored Directly in Internal Memory with Holding Area
This setup is the same as Section 6.1.3 except that there are multiple holding areas. The differences this leads to in your
project are discussed later in this section.

6.2 Cost of Doubling Internal ROM Size
This will have to be investigated on a case-by-case basis but sometimes doubling the size of the internal ROM on a
MCU will cost more than buying an external memory like a SPI flash. If board space is an issue, then obviously adding
an external memory unit may be impossible.

MCU

ROM – Holding Area

Data Flash

RAM

ROM – Image #1

MCU

Data Flash

RAM

ROM – Holding Area 1

ROM – Holding Area 2
 ROM – Image #1

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 28 of 55
February 22, 2013

6.3 Precautions when Storing Images in Internal ROM
The information below is applicable to the setups described in Sections 6.1.2, 6.1.3, and 6.1.4.

One of the features of the Flash Loader project is that it is supposed run alongside the user application while not
interfering. This is easy when an external memory is used because the data is sent to the memory and stored. There are
no precautions that need to be made as far as accessing the data that has been buffered to be stored. When a receive
buffer is full and ready to be stored functions are run from ROM, they access data in the RAM buffer, and write the data
to the external memory. This is not as easily done when storing data in the same ROM area as where the program is
executing. The reason for this is that when programming the internal ROM on a RX device, any ROM access during
the operation will cause a ROM Access Violation error.

To prevent this error from occurring, the user must make sure that their program does not access ROM in any way
while the ROM is being programmed. Let’s first look at the scenario where the ROM background operation (BGO)
feature is not used. This means that when the ROM write routine is started, it does not return until the operation has
finished. Some of the ways ROM could be accessed to generate this error are listed below.

• An interrupt occurs and the vector table, which is by default stored in ROM, is accessed.

• An interrupt occurs (vector table is in RAM) and the interrupt is located in ROM.

• An interrupt occurs (vector table is in RAM) and the interrupt service routine accesses constant data in ROM.

• A DMAC/DTC is activated which tries to read or write to ROM.

Let’s now look at some extra situations that could occur if the ROM BGO functionality is enabled. Note that these are
extra situations, the bullets above also apply.

• After the ROM write has been started the function returns to the calling function which is located in ROM.

• A user function that is located in ROM is accessed while the ROM write operation is still on-going in the
background.

• While the ROM write operation is still on-going in the background the user code attempts to read constant data
from ROM.

To prevent these errors from occurring the user should take the following precautions:

If ROM BGO is enabled or disabled:

• Copy or move the relocatable vector table to RAM.

• Make sure that any interrupt service routines (ISRs) that need to be run during the flash operation are run from
RAM.

• Make sure the addresses for the ISRs in the vector table that might be run during the flash operation point to
the location of the ISR in RAM.

• Make sure that any ISRs that run during flash operations do not try to access ROM in any way.

• If a DMAC/DTC is set to access ROM then take the necessary steps to prevent the unit from activating.

If ROM BGO is enabled (the ROM write function will return while operation is still on-going):

• The function that called the ROM write function cannot be located in ROM.

• Any code run before the ROM write operation finishes cannot be located in ROM.

• Any memory accesses made before the ROM write operation finishes cannot be made to ROM.

As stated earlier, one of the features of the Flash Loader project is that firmware image downloads occur in the
background. It should be clear that when storing images in internal ROM, this feature begins to fade. While it is easier
to disable ROM BGO operations and wait for the operation to finish, this can take a significant amount of time away
from the user application. If ROM BGO is used then the user application will not be stalled as long, but extra
precautions must be made to make sure ROM is not accessed before the ROM write operation finishes.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 29 of 55
February 22, 2013

6.4 Precautions When Not Using a Holding Area
The information below is applicable to the setup described in Section 6.1.2.

When not using a holding area for a firmware image the user is able to execute the program immediately after it is
downloaded. There is no need to move the program to internal ROM because it is already located there. There are
issues though that must be addressed with this design.

The main issue that must be addressed is that by default the Renesas RX toolchain outputs position dependent code and
position dependent data. Position dependent code means that branches and jumps can use real addresses inside the
MCU. Position dependent data means that data can be referenced from real addresses. This works fine when the
program is always programmed into the same location, but this not the case when there is no holding area. If the user
has allocated two image sections in the MCU’s internal ROM then the image could end up in either section. If the user
writes the application for one image location, then it will not work in the other, and vice versa.

There are multiple ways to get around this problem. Two will be discussed in this section.

The first, and most thorough, way to address this problem is to change the RX toolchain to output position independent
code (PIC) and position independent data (PID). As the name suggests this removes the use of real addresses as was
done previously. Instead, all function calls and data accesses are done relative to a base register. The downside to this
approach is that programs may be less efficient and a ‘master’ application is required to perform some initialization
before the application is run. The master application could reside in the User Boot Area and be part of the bootloader.
The generation of PIC and PID was introduced in v1.01 of the Renesas RX Toolchain. Please refer to the RX Family
C/C++ Compiler Package V.1.01 User’s Manual for more information. The section that should be referenced is Section
8.4 “Usage of PIC/PID Function”. Once the user application has been compiled to use PIC and PID and the master
application has been written to call the application then the image can be placed anywhere in the internal ROM.

Another approach would be to have rules that are followed on where applications are placed. This is not a thorough fix
as the previous example was. If the user forgets one of these rules then the application does have the chance of failing.
An example list of rules that could be followed is below.

• There are 2 image ‘slots’

• Images that have an odd version number will go in lower addressed slot.

• Images that have an even version number will go in the higher addressed slot.

The downside to this approach it removes the guarantee that users will always have the option of going back to an older
firmware image in the event they find something wrong in the current image. As an example, assume the MCU has two
images programmed in. The images are version 1 and version 2. Version 2 of the application has a bug that makes the
application reset the MCU. The bootloader recognizes that the image has a bug and therefore decides to revert back to
version 1 of the application. This can be done according to the rules above as long as the images are odd and even.
Now let’s assume the current image is version 1, version 2 was never downloaded, and version 3 is requested for
download. According to the rules above the version 1 code would have to first be deleted. This means that the
bootloader would have to run, delete the current running image, and then download a new image that could have a
possible bug. Also, if there was a power down while version 3 was being downloaded (version 1 already deleted) then
the MCU would be stuck with only the bootloader.

6.5 Using a Holding Area with Internal ROM
The information below is applicable to the setups described in Sections 6.1.3 and 6.1.4.

When using a holding area with firmware images that are stored internally the benefit is that the user does not have to
use PIC or PID as described in Section 6.4. Since the location of the program is fixed the user can write their
application to always reside in that area. The downside to this approach compared to the setup described in Section
6.1.2 is that the user loses the ability to revert back to an earlier version of the code without downloading the previous
image again when there is only 1 holding area. The reason for this is that the area that is reserved for a running image
in Section 6.1.2 is now reserved for just holding an image.

If the user has a setup like the one shown in Section 6.1.4 that has multiple holding areas then the user would still have
the option of reverting to a previous firmware revision. The downside to the approach of having multiple holding areas
in internal ROM is that the internal ROM is now divided into 3 or more regions instead of 2. To account for this the
user might be required to use a MCU with larger internal ROM or decrease the maximum size allowed for their
application.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 30 of 55
February 22, 2013

6.6 Table Comparing Setups
The table below shows the requirements of each setup for comparison purposes. Please refer to the sub-sections of
Section 6 for more information on each requirement.

Requirement

External Memory
–

Multiple Holding
Areas

Internal Flash
–

No Holding Area
2 Images

Internal Flash
–

1 Holding Area

Internal Flash
 –

Multiple Holding
Areas

Able to access ROM while
storing firmware image True False False False

No requirement to move data,
code, vector table to RAM
while storing firmware image

True False False False

Must either limit application
size or buy MCU with larger
ROM area

True False False False

No chance of erasing currently
running image when erasing
firmware download

True False False False

Can revert to previous revision
without Host intervention True True False True

No requirement to use PIC and
PID True False True True

Application is able to use all of
MCU’s internal ROM True False False False

Requires minimal amount of
modification to the ‘out-of-box’
Flash Loader code

True False False False

Requires no extra board space False True True True

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 31 of 55
February 22, 2013

7. Board Notes
This section gives specific information to help with using the Flash Loader project on different boards.

7.1 RDKRX62N Notes – Green Boards (Before Rev 5.0)
7.1.1 Choosing Operating Mode on RX62N RDK
The RDKRX62N allows the user to specify which operating mode the MCU should be in after reset using SW5. Below
is a screenshot from the RDK board’s schematic that shows how to set the MCU in different operation modes. Note
that User Boot Mode is the same as USB Boot Mode. Example usage with the Flash Loader project would be 1=ON,
2=OFF in order to put the MCU in Boot Mode and program the User Boot area and 1=OFF, 2=ON in order to boot from
the User Boot area and run the Flash Loader Bootloader.

Figure 7-1 : Choosing Operating Mode on RDK

7.1.2 Using Serial Boot Mode with the RDKRX62N
In order to program the RX62N using serial boot mode on the RX62N RDK jumpers need to be put in place to connect
the RS232 header on the RDK board to SCI channel 1. By default the RDK comes configured with SCI channel 2
connected to the RS232 header. Starting with Revision 3 of the RDK board the user has the option of connecting SCI
channel 1 to the RS232 header by shorting JP14 and JP15 on the back side of the RDK board. By default JP14 and
JP15 are open. It should be noted that the example Flash Loader project uses SCI channel 2 to communicate with the
PC Host and when debugging the E1/E20/JLink use SCI channel 1. This means that you will encounter problems if you
leave JP14 and JP15 shorted and try to debug the example Flash Loader project. This is because Flash Loader
communications and debugger communications will interfere with each other. To avoid this it is recommended that the
user have a way of shorting or opening JP14 and JP15 easily. An example would be to have headers on JP14 and JP15
and use shunts to short or open the connection. When the user wants to program the User Boot area with their
bootloader application they would short JP14 and JP15. When the user wants to debug their User Application they
would open JP14 and JP15.

Figure 7-2 : Connecting SCI Channel 1 to RS232 Header on RDK

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 32 of 55
February 22, 2013

7.2 RDKRX62N Notes – Blue Boards (Rev 5.0 & Higher)
7.2.1 Choosing Operating Mode on RX62N RDK
The RDKRX62N allows the user to specify which operating mode the MCU should be in after reset using SW5. Below
is a screenshot from the RDK board’s schematic that shows how to set the MCU in different operation modes. Note
that User Boot Mode is the same as USB Boot Mode. Example usage with the Flash Loader project would be 1=ON,
2=OFF in order to put the MCU in Boot Mode and program the User Boot area and 1=OFF, 2=ON in order to boot from
the User Boot area and run the Flash Loader Bootloader.

Figure 7-3 : Choosing Operating Mode on RDK

7.2.2 Using Serial Boot Mode with the RDKRX62N
Starting with Rev 5.0 of the RDKRX62N an analog mux was added to automatically choose the correct SCI channel for
the on-board DB9 connector based on the operating mode selection from SW5. When the user chooses Single-Chip
Mode, SCI2 will be chosen for the DB9 connector. When the user chooses Boot Mode, SCI1 will be chosen for the
DB9 connector enabling serial programming with FDT.

Figure 7-4 : Analog mux now chooses correct SCI channel

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 33 of 55
February 22, 2013

7.3 RDKRX63N Notes
7.3.1 Choosing Operating Mode on RX63N RDK
The RDKRX63N allows the user to specify which operating mode the MCU should be in after reset using SW5. Below
is a screenshot from the RDK board’s schematic that shows how to set the MCU in different operation modes. Note
that User Boot Mode is the same as USB Boot Mode. Example usage with the Flash Loader project would be 1=ON,
2=ON in order to put the MCU in Boot Mode and program the User Boot area and 1=ON, 2=OFF in order to boot from
the User Boot area and run the Flash Loader Bootloader.

Figure 7-5 : Choosing Operating Mode on RDK

7.3.2 Using Serial Boot Mode with the RDKRX63N
The RDKRX63N has an analog mux that automatically chooses the correct SCI channel for the on-board DB9
connector based on the operating mode selection from SW5. When the user chooses Single-Chip Mode, SCI2 will be
chosen for the DB9 connector. When the user chooses Boot Mode, SCI1 will be chosen for the DB9 connector enabling
serial programming with FDT.

Figure 7-6 : Analog mux now chooses correct SCI channel

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 34 of 55
February 22, 2013

7.3.3 User Boot DB9 Conflict
When putting the RDKRX63N in User Boot Mode using SW5, the analog mux will automatically choose SCI1 for the
on-board DB9 connector. This means that User Boot Mode cannot be debugged because SCI1 will not be connected to
the JLink debug pins. Since SCI2 is used for Host communications, this also means that the Device cannot
communicate with the Host unless the code is changed. To get around this perform the following actions:

1. Boot the MCU into User Boot Mode following the instructions in Section 7.3.1
2. After the device has reset, change the first switch on SW5 to OFF.

By changing SW5 after the MCU has reset, the MCU will stay in User Boot Mode, but the SCI channels will be
connected as they would be in Single-Chip Mode. When doing this the user must remember to change the first switch of
SW5 every time they perform a reboot. If this switch is not made every time then the MCU will reboot into Single-Chip
Mode instead of User Boot Mode.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 35 of 55
February 22, 2013

7.4 RSK+RX62N Notes
7.4.1 Choosing Operating Mode on RSK+RX62N
The RSK+RX62N allows the user to specify which operating mode the MCU should be in after reset using SW4. Below
is a screenshot from the RSK board’s schematic that shows how to set the MCU in different operation modes. Note that
User Boot Mode is the same as USB Boot Mode. Example usage with the Flash Loader project would be 1=ON,
2=OFF in order to put the MCU in Boot Mode and program the User Boot area and 1=OFF, 2=ON in order to boot from
the User Boot area and run the Flash Loader Bootloader.

Figure 7-7 : Choosing Operating Mode on RSK+RX62N

7.4.2 Using Serial Boot Mode with the RSK+RX62N
The RSK+RX62N allows the user to choose which SCI channel is connected to the on-board DB9 connector using the
J15 and J16 jumpers. A screenshot from the board’s schematic is shown below. By default SCI2-A is chosen (pins 2
and 3 are shorted) which is OK during Single-Chip Mode. For Boot Mode SCI1-B will need to be selected so the user
must change the jumpers on J15 and J16 to short pins 1 and 2.

Figure 7-8 : Connecting SCI Channel 1 to RS232 Header on RSK+RX62N

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 36 of 55
February 22, 2013

7.5 RSK+RX63N Notes
7.5.1 Choosing Operating Mode on RSK+RX63N
The RSK+RX63N allows the user to specify which operating mode the MCU should be in after reset using SW4. Below
is a screenshot from the RSK board’s schematic that shows how to set the MCU in different operation modes. Note that
User Boot Mode is the same as USB Boot Mode. Example usage with the Flash Loader project would be 1=ON,
2=OFF in order to put the MCU in Boot Mode and program the User Boot area and 1=ON, 2=ON in order to boot from
the User Boot area and run the Flash Loader Bootloader. When the user wants to use User Boot mode they should also
verify that the J5 header has PC7 chosen (short pins 2-3).

Figure 7-9 : Choosing Operating Mode on RSK+RX63N

7.5.2 Using Serial Boot Mode with the RSK+RX63N
The RSK+RX63N allows the user to choose which SCI channel is connected to the on-board DB9 connector using the
J12 and J13 jumpers. A screenshot from the board’s schematic is shown below. By default SCI0 is chosen (pins 1 and 2
are shorted) which is OK during Single-Chip Mode. For Boot Mode, SCI1 will need to be selected so the user must
change the jumpers on J12 and J13 to short pins 2 and 3.

Figure 7-10 : Connecting SCI Channel 1 to RS232 Header on RSK+RX63N

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 37 of 55
February 22, 2013

8. Flash Loader Communications Protocol
Diagrams showing the communications protocol used with the Flash Loader project are shown in this section. All of the
communications protocols are handled by the Host in r_fl_serial_flash_loader.py and by the Device in
r_fl_downloader.c.

8.1 Initializing Communications
Shown below is not an actual command but how communications start between the Host and the Device.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 38 of 55
February 22, 2013

8.2 Information Request Command

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 39 of 55
February 22, 2013

8.3 Erase Command

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 40 of 55
February 22, 2013

8.4 Load Command

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 41 of 55
February 22, 2013

9. API Functions
9.1 Summary
The following functions are included in this API:

Function Description

R_FL_DownloaderInit() Initializes Flash Loader Downloader

R_FL_StateMachine() Calls the Flash Loader State Machine

R_FL_GetVersion() Returns the current version of this API

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 42 of 55
February 22, 2013

9.2 R_FL_DownloaderInit
Initializes everything needed to run the Flash Loader Downloader.

Format
void R_FL_DownloaderInit(void);

Parameters
None

Return Values
None

Properties
Prototyped in file “r_flash_loader_if.h”
Implemented in file “r_fl_downloader.c”

Description
This function initializes everything needed before starting the Flash Loader state machine. Examples include
initializing hardware for: Host to Device communications, Device to Storage communications, and CRC
calculations.

Reentrant
Yes

Example
/* Initialize the Flash Loader code. */
R_FL_DownloaderInit();

/* Now start timer tick that will trigger Flash Loader state machine. */
...

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 43 of 55
February 22, 2013

9.3 R_FL_StateMachine
Calls the state machine that runs the Flash Loader Downloader.

Format
void R_FL_StateMachine(void);

Parameters
None

Return Values
None

Properties
Prototyped in file “r_flash_loader_if.h”
Implemented in file “r_fl_downloader.c”

Description
This function implements the Flash Loader state machine. The communications protocol between the Host
and Device is implemented inside this function. This function also takes care of storing the downloaded
firmware image. This function should be called periodically by the user (i.e. from a timer tick). When called
the function will first check the receive buffer to see if any data has been received from the Host. If data has
been received then the state machine will process the data accordingly.

Reentrant
No, but the state machine does protect against multiple calls (i.e. only one process is allowed in at any given
time)

Example
bool g_sm_process;

void main(void)
{
 uint32_t cmt_channel;

 /* Initialize state machine process flag. */
 g_sm_process = false;

 /* Initialize the Flash Loader code. */
 R_FL_DownloaderInit();

 /* Create periodic timer to call Flash Loader state machine. */
 R_CMT_CreatePeriodic(USER_APP_CMT_FREQUENCY,
 fl_trigger_sm,
 &cmt_channel);

 while (1)
 {
 /* Call state machine after flag has been set. */
 if (true == g_sm_process)
 {
 /* Trigger state machine. */
 R_FL_StateMachine();

 g_sm_process = false;
 }

 /* Do other work. */
 }
}

/* CONTINUED ON NEXT PAGE */

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 44 of 55
February 22, 2013

/* CMT Interrupt Service Routine that will set a flag which will alert the
 main() loop that the Flash Loader state machine should be called. */
static void fl_trigger_sm (void * pdata)
{
 /* Create periodic timer to call Flash Loader state machine. */
 g_sm_process = true;
}

Special Notes:
The user gets to control how often the state machine is called. The frequency at which the state machine
needs to be called will depend upon the response time requirements of the user. Since the sent data will
never overfill the receive buffer, there is no reason to worry about buffer overflow. The faster the state
machine is called, the quicker the Device will respond to the host. The downside of this is that as the
frequency at which the state machine is called increases, so does the overhead imposed on the entire
system by state machine processing. While this overhead may not be large since the state machine will exit
if there is nothing new to process, it should not be ignored.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 45 of 55
February 22, 2013

9.4 R_FL_GetVersion
Returns the current version of the module.

Format
uint32_t R_FL_GetVersion(void);

Parameters
None.

Return Values
Version of the Flash Loader project.

Properties
Prototyped in file “r_flash_loader_rx_if.h”
Implemented in file “r_fl_utilities.c”

Description
This function will return the version of the currently installed Flash Loader code. The version number is
encoded where the top 2 bytes are the major version number and the bottom 2 bytes are the minor version
number. For example, Version 4.25 would be returned as 0x00040019.

Reentrant
Yes.

Example
uint32_t cur_version;

/* Get version of installed Flash Loader. */
cur_version = R_FL_GetVersion();

/* Check to make sure version is new enough for this application’s use. */
if (MIN_VERSION > cur_version)
{
 /* This Flash Loader version is not new enough and does not have XXX feature
 that is needed by this application. Alert user. */

}

Special Notes:
• This function is specified to be an inline function in r_fl_utilities.c.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 46 of 55
February 22, 2013

10. Demo Projects
This application note contains demo projects for both HEW and E2Studio. For HEW the demo is packaged as an entire
HEW workspace which contains projects for each Renesas development board. For E2Studio, each Renesas
development board has its own zipped project that can be imported into an existing E2Studio workspace. This version
of the Flash Loader Project includes projects for the following boards:

• RSKRX62N

• RSKRX63N

• RDKRX62N

• RDKRX63N

There are two projects per supported board (e.g. 2 for RDKRX62N, 2 for RSKRX63N, etc). These projects are:

• FL_Bootloader_*board* – This is the Flash Loader Bootloader project prebuilt for the board referenced by
board. If the user wants to modify the bootloader then they can edit this project. When the user is ready to
program in the bootloader to their MCU then they can get the S-Record file from this project’s ‘Release’ directory.

• FL_UserApp_*board* – This is a pre-setup Flash Loader user application for the board referenced by *board*. It
does nothing but run the Flash Loader state machine and show a message on the LCD. The purpose of this project
is to give the user a shell project that they can use if they wish. Everything is preconfigured for Flash Loader use
so the user can also use it as a reference for their own Flash Loader project.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 47 of 55
February 22, 2013

10.1 HEW Workspace
The HEW workspace that comes packaged with this application note has a project for each supported Renesas
development board. The only code that changes between these projects is the board support code that is used along with
the demo and Flash Loader code. To choose a project follow these steps:

1. Open the HEW workspace

2. Right-click on the project you wish to load in the navigation pane (by default on left) and click ‘Set as Current
Project’.

3. Flash Loader code uses the r_bsp package for startup code, board support code, and for getting MCU

information. The r_bsp package is easily configured through the platform.h header file which is located in the
r_bsp folder. To configure the r_bsp package, open up platform.h and uncomment the #include for the board
you are using. For example, to run the demo on a RSK+RX63N board, the user would uncomment the #include
for ‘./board/rskrx63n/r_bsp.h’ macro and make sure all other board #includes are commented out.

4. You can now build the demos.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 48 of 55
February 22, 2013

10.2 E2Studio Projects
E2Studio handles workspaces differently than HEW and therefore projects must be imported into your existing
E2Studio workspace. In order to use the demo for your development board follow these steps:

1. The E2Studio projects are distributed as a self-extracting archive with this application note. The first thing that
will need to be done is to extract this archive. Double click on the self-extracting archive file (should be *.exe
under Workspace\e2studio directory).

2. Choose where to extract the projects and click Extract.

3. Open your E2Studio workspace

4. Click File >> Import

5. Choose General >> Existing Projects into Workspace and click Next.

6. Click ‘Select archive file’ and click browse.

7. Browse to the directory where you extracted the E2Studio projects and choose the zip file for your
development board.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 49 of 55
February 22, 2013

8. Check the box next to the project you wish to import and click Finish. In this screenshot the RDKRX63N
project is being imported.

5. The VEE API code and demo workspace use the r_bsp package for startup code, board support code, and for
getting MCU information. The r_bsp package is easily configured through the platform.h header file which is
located in the r_bsp folder. To configure the r_bsp package, open up platform.h and uncomment the #include
for the board you are using. For example, to run the demo on a RSK+RX63N board, the user would
uncomment the #include for ‘./board/rskrx63n/r_bsp.h’ macro and make sure all other board #includes are
commented out.

6. You can now build the demo.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 50 of 55
February 22, 2013

10.3 Debugging Projects
10.3.1 E1 or JLink
All UserApp demos can be debugged with no issues. If using an E1/E20 for debugging then the Bootloader demos can
be debugged with no issues. If using JLink for debugging then extra steps will need to be followed for debugging. The
reason there is a difference is because the E1 controls the mode pins on the RX MCU while the JLink does not. This
means that the E1 has the ability to put the MCU into factory boot mode while the JLink does not. The User Boot Area
on RX MCUs can only be programmed in factory boot mode. This means that the JLink has no way of programming
the Bootloader into the User Boot Area. There are two ways around this:

1. Modify the Bootloader project’s linker settings so that the Bootloader is placed in User Application space. By
doing this you cannot test the programming of new firmware images (since it would overwrite the currently
running program) but you can test out the code and download firmware updates into the Flash Loader Storage
area.

2. Program the Bootloader image into the User Boot Area using FDT (Renesas Flash Development Toolkit) and
then debug. By doing this the user is ‘fooling’ the JLink into believing that it actually programmed the User
Boot Area. The way this works is that the user first builds their project. They then program the image into the
User Boot Area using FDT. The user then switches back to their development project and connects as they
normally would. When the user chooses to download the code to the MCU the JLink will attempt to program
the image but it will not actually do anything. At this point the user can set hardware breakpoints, eventpoints,
and debug as usual. Software breakpoints cannot be used because they require that ROM be reprogrammed.
Anytime the Bootloader code is modified the user will have to switch over to FDT to program the User Boot
Area again before debugging.

10.3.2 Configuring Debug Session for User Boot Mode
No matter what board and debugger are being used the user should always put the MCU into Single-Chip Mode when
connecting for debugging. If Single-Chip Mode is not selected then the debugger will not be able to connect to MCU.

When debugging code in User Boot Mode the user needs to configure the debugger to use User Boot Mode. The main
difference with this configuration is that the MCU will fetch the User Boot reset vector instead of the User Application
reset vector on reset.

In HEW this is done in the Initial Settings window that pops up when the user wishes to debug. Click the ‘Startup and
Communication’ tab and choose ‘User boot mode’ from the ‘Mode Pin Setting’ drop down.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 51 of 55
February 22, 2013

In E2Studio this is done through the Debug Configurations window. Select the Debugger >> Connection Settings and
then change the ‘Mode pin’ drop down to ‘User boot mode’. Click Apply to ensure the settings are accepted.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 52 of 55
February 22, 2013

Appendix A : Load File Header Format
All fields are least-significant-byte (LSB) first.

Load File Header
Field Number

of Bytes
Name in C
Structure Description

Valid Mask 1 valid_mask
This is a constant value that signifies that this is a Load

Image. If this mask is not correct then no other checking
will be done on the Load Image.

Image ID 1 image_ID
This is an identifier for the application that is currently

running. This helps distinguish between different
applications that might run on the Device.

Version
Number 1 version_num

This is the version number that applies to this Load Image.
This helps distinguish between different versions of the

same application.
Size of Load

Image 4 load_image_size This tells how large this Load Image is in bytes.

Max Block
Data Size 4 max_block_size

Since packets are used to split up the data, this identifies
the largest size a data block can be. If this block size is

too large then the Device will not be able to download the
Load Image when the Host requests a new transfer.

Load Image
CRC 2 image_crc

This is the CRC of the Load Image as it sits in the Flash
Loader Storage area. This is used for verifying that a

Load Image was successfully downloaded.

Raw CRC 2 raw_crc
This is the CRC of the entire memory area of the Device
when this Load Image is programmed into the Device’s

User Application area.
Address of

1st Data
Block

4 start_address
Data blocks are stored in a linked list fashion inside of the

Flash Loader Storage area. This address points to the
first data block.

Successfully
Stored 4 successfully_stored

This entry denotes that this image was successfully
downloaded and verified using the Image CRC. It is also a

unique identifier that allows for Load Images to be
compared against when they were downloaded. An

example, the first Load Image downloaded might have a
value of 1 for this field while an image downloaded later

would have 2.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 53 of 55
February 22, 2013

Appendix B : Data Block Header Format
All fields are least-significant-byte (LSB) first.

Data Block Header
Field Number

of Bytes
Name in C
Structure Description

Valid Mask 1 valid_mask
This is a constant value that signifies that this is a Data
Block Header. If this mask is not correct then no other

checking will be done on the Data Block.

Sequence
ID 2 sequence_ID

A unique identifier for this block. This is what allows
retries to be done easily since the Device can send to the

Host the last Data Block it received successfully.
Flash

Address 4 flash_address The address in the Device’s memory where this data
should go.

Size of Data 4 data_size Number of bytes of data after the block header.
Data CRC 2 data_crc CRC-16 value of the data

Next Block
Address 4 next_block_address

Blocks are connected in a linked list fashion. Each block
points to the next block. This is the address of the next

block.

Data data_size data

This is not part of the Data Block Header but it is part of
the Data Block. This is the data that will be programmed

into the Device at the address specified by
‘flash_address’.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 54 of 55
February 22, 2013

Appendix C : Flash Loader Bootloader Diagram
This flowchart shows the execution flow of the default Flash Loader Bootloader.

RX600 & RX200 Series The Flash Loader Project

R01AN0287EU0300 Rev.3.00 Page 55 of 55
February 22, 2013

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/�
http://www.renesas.com/inquiry�

A-1

Revision Record

Rev.

Date

Description
Page Summary

1.00 Sep.28.10 — First edition issued
2.00 Mar.30.11 — Updated for use with RX62N RDK
2.10 Jun.21.11 — Added Section 6 on storing firmware images internally
3.00 Feb.05.13 — • Moved to FIT template (added Overview, API

Information, and API Functions sections).
• Updated document to reflect new names based on

Coding Standards v4.0 compliance.
• This package was modified to be FIT compliant and

more modular. This meant many smaller changes were
made.

• Added ‘Board Notes’ section which details how to
configure supported boards.

• Because of FIT compliance this code now works with
many RX boards instead of just the RDKRX62N.

• Added information about fixed vector table when using
bootloader in User Boot Area.

• Added more information on using Python and which
external packages were used.

• Added ‘Calling Flash API from User Boot Area’ section.
• Added references to SD card implementation and the

Flash API for RX
• Added RX200 to list of available devices.
• Added R_FL_GetVersion API information.
• Added ‘Enabling User Boot Mode in r_bsp Package’

subsection.
• Added steps for using E2Studio throughout

“Implementing Flash Loader with Your Project” section.
• Added ‘Demo Projects’ section.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
⎯ The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

	1. Overview
	1.1 Background Information
	1.1.1 Terms Used
	1.1.2 Load Image Information
	1.1.3 Load Image Format

	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.2.1 CRC
	2.2.2 Flash Control Unit (FCU)
	2.2.3 RSPI
	2.2.4 SCI
	2.2.5 WDT
	2.2.6 CMT (compare match timer)

	2.3 Software Requirements
	2.3.1 r_crc_rx
	2.3.2 r_flash_api_rx
	2.3.3 r_glyph
	2.3.4 r_rspi_rx
	2.3.5 r_sci_async_1ch_rx
	2.3.6 r_spi_flash
	2.3.7 r_cmt_rx
	2.3.8 r_delay

	2.4 Supported Toolchains
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Adding Middleware to Your Project
	2.8.1 Flash Loader Bootloader
	2.8.2 Flash Loader User Application

	3. Flash Loader on the Device
	3.1 Flash Loader Downloader
	3.1.1 r_fl_app_header.c
	3.1.2 r_fl_comm_*type*.c
	3.1.3 r_fl_downloader.c
	3.1.4 r_fl_store_manager.c
	3.1.5 r_fl_memory_*type*.c
	3.1.6 r_fl_utilities.c

	3.2 Flash Loader Bootloader
	3.2.1 Using User Boot Mode
	3.2.2 r_fl_bootloader.c

	4. Flash Loader on the Host
	4.1 Preparing to Use Host Applications
	4.1.1 crcmod
	4.1.2 pySerial

	4.2 Making a Load Image
	4.3 Transferring a Load Image
	4.4 Host Applications Example

	5. Implementing Flash Loader with Your Project
	5.1 Modifying Flash Loader Device Source Files
	5.1.1 r_fl_app_header.c
	5.1.2 r_fl_comm_*type*.c
	5.1.3 r_fl_downloader.c
	5.1.4 r_fl_memory_*type*.c
	5.1.5 r_fl_store_manager.c
	5.1.6 r_fl_utilities.c

	5.2 Modifying Flash Loader Host Applications
	5.3 Making a Flash Loader Bootloader Project
	5.3.1 Choosing a Communications Medium
	5.3.2 Building the Project & Using r_fl_bootloader.c

	5.4 Usage Notes
	5.4.1 Application Code CRC Generation with Renesas RX Linker
	5.4.2 Setting Address of g_fl_cur_app_header
	5.4.3 Programming Bootloader into User Boot area
	5.4.4 Batch Files Included with Project
	5.4.5 Difference between USB Boot Mode and User Boot Mode
	5.4.6 Bootloader and Fixed Vector Table
	5.4.7 Getting into User Boot Mode with RX63x and RX200 MCUs
	5.4.8 Calling Flash Loader State Machine
	5.4.9 Enabling User Boot Mode in r_bsp Package
	5.4.10 Calling Flash API from User Boot Area

	6. Storing Firmware Images in Internal Memory
	6.1 Example Setups
	6.1.1 Firmware Images Stored in External Memory
	6.1.2 Firmware Images Stored Directly in Internal Memory
	6.1.3 Firmware Images Stored Directly in Internal Memory with Holding Area
	6.1.4 Firmware Images Stored Directly in Internal Memory with Holding Area

	6.2 Cost of Doubling Internal ROM Size
	6.3 Precautions when Storing Images in Internal ROM
	6.4 Precautions When Not Using a Holding Area
	6.5 Using a Holding Area with Internal ROM
	6.6 Table Comparing Setups

	7. Board Notes
	7.1 RDKRX62N Notes – Green Boards (Before Rev 5.0)
	7.1.1 Choosing Operating Mode on RX62N RDK
	7.1.2 Using Serial Boot Mode with the RDKRX62N

	7.2 RDKRX62N Notes – Blue Boards (Rev 5.0 & Higher)
	7.2.1 Choosing Operating Mode on RX62N RDK
	7.2.2 Using Serial Boot Mode with the RDKRX62N

	7.3 RDKRX63N Notes
	7.3.1 Choosing Operating Mode on RX63N RDK
	7.3.2 Using Serial Boot Mode with the RDKRX63N
	7.3.3 User Boot DB9 Conflict

	7.4 RSK+RX62N Notes
	7.4.1 Choosing Operating Mode on RSK+RX62N
	7.4.2 Using Serial Boot Mode with the RSK+RX62N

	7.5 RSK+RX63N Notes
	7.5.1 Choosing Operating Mode on RSK+RX63N
	7.5.2 Using Serial Boot Mode with the RSK+RX63N

	8. Flash Loader Communications Protocol
	8.1 Initializing Communications
	8.2 Information Request Command
	8.3 Erase Command
	8.4 Load Command

	9. API Functions
	9.1 Summary
	9.2 R_FL_DownloaderInit
	9.3 R_FL_StateMachine
	9.4 R_FL_GetVersion

	10. Demo Projects
	10.1 HEW Workspace
	10.2 E2Studio Projects
	10.3 Debugging Projects
	10.3.1 E1 or JLink
	10.3.2 Configuring Debug Session for User Boot Mode

	Website and Support

