

レゾルバ付き 2 相ステッピングモータを使用した 2 軸アームロボットのリファレンスガイド RX24T、RX72M、RAA3064002GFP/RAA3064003GFP

ユーザーズマニュアル

本資料に記載の全ての情報は本資料発行時点のものであり、ルネサス エレクトロニクスは、 予告なしに、本資料に記載した製品または仕様を変更することがあります。 ルネサス エレクトロニクスのホームページなどにより公開される最新情報をご確認ください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、パーソナル機器、産業用ロボット等 高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等 当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある 機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器 と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用 途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を 負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。) から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。)によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体 デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲 内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責 任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に 支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカル アップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、Vi∟ (Max.) から Vi⊢ (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、Vi∟ (Max.) から Vi⊢ (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス(予約領域)のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

安全にお使い頂く為に

本項では、本製品を安全にお使いいただくための注意事項について説明しています。製品をお使いになる前に必ずお読みください。

表記の意味

本書では、製品を安全にお使いいただくための事項を次のように記載しています。

この取扱説明書に記載されている表示内容を守らなかった場合、人的傷害を負う可能性、または物的損害が発生する可能性について、想定される内容を次のとおり表しています。

企 危険	使用者が死亡または重症を負うことが想定され、かつ その切迫性が高い内容を示します。
企 警告	使用者が死亡または重症を負うことが想定される内容 を示します。
<u> </u>	人が傷害を負うことが想定される、もしくは物理的損害の発生が想定される内容を示します。

本製品の警告表示

■ 危険項目

通電中はモータに触れないでください。

●本製品の使用は、電気的および機械的なコンポーネント、システムに精通し、かつ取り扱いに関するリスクを熟知した、インバータモータ制御およびモータの取り扱いに関して教育・訓練された人、あるいはスキルを持った人(以下「ユーザー」)に限定します。 マニュアルに記載されている注意事項をよく読み、使用者を限定してください。

- 本製品には危険な可能性のある高温の部品が含まれています。 通電中は製品やケーブルに触れないでください。
- 基板やコネクタ、ケーブルに導電性物質やゴミが付着していないかよく確認してください。

• 電源を供給する前に、モータが絶縁され、安定した場所に置かれていることを確認してください。

■ 警告項目

於警告

動作中および電源遮断後の 30 秒間は端子に高電圧が印加されています。 この間は端子や製品に触れないでください。

プラグ、コネクタ、ケーブルは必ず確実に差し込み、奥まで差し込まれていることを確認してください。接続が不完全な場合、火災、火傷、感電、ケガの原因となります。

マニュアルに記載されている電源装置を使用してください。 火災、やけど、感電、けが、故障の原因となります。

システムを一定期間使用しない場合やシステムを移動する場合は、電源を切り、すべてのケーブルを取り外します。

火災、やけど、感電、故障の原因となります。

これにより、落雷による損傷からシステムが保護されます。

電源供給を停止(遮断)できる機構(スイッチ、コンセントなど)に手が届くところでご使用ください。

緊急時には、速やかに電源を遮断する必要がある場合があります。

本製品では主電源回路の GND が CPU ボードの GND に接続されています。ユーザが製品を評価する場合、 測定器の接続方法によっては製品や測定器を破損する可能性がありますのでご注意ください。

万一、煙や異臭、異常な音、異常な発熱などが発生したときは、直ちに電源供給を停止してください。 そのまま使用すると、火災、やけど、感電の原因になります。

本製品を分解、改造または修理はしないでください。 火災、やけど、感電、けが、故障の原因となります。

試験室や実験室でのモータ制御の初期評価以外の目的に製品を使用しないでください。製品またはその一部を他の機器に組み込まないでください。 製品の電源が入っているときは、ケーブルやコネクタの抜き差しをしないでください。

製品には安全保護ケースは付いておりません。安全保護のため、ユーザは製品を覆う必要があります。 火災、感電、やけど、故障の原因となります。

本来の用途以外に使用した場合、期待通りの性能が発揮できない場合があります。

■ 注意項目

高温注意!

モータは熱くなります。 触れると火傷を負う恐れがあります。

システムの電源をオンまたはオフにするときは、マニュアルに指定されている手順に従ってください。発熱や故障の原因となります。

静電気注意

静電気防止バンドを使用してください。 誤動作や不安定な動作の原因となります。

略語、略称の説明

略語/略称	正式名称	備考
MCU	マイクロコントローラ	_
デモ機	レゾルバ付き2相ステッピングモータを使用	非売品
	した2軸アームロボット	
42□モータ	42mm 角レゾルバ付き 2 相ステッピングモー	ミネベアミツミ製。詳細仕様はミネベアミツ
	タ	ミ様へお問合せください。
85□モータ	85mm 角レゾルバ付き 2 相ステッピングモー	ミネベアミツミ製。詳細仕様はミネベアミツ
	タ	ミ様へお問合せください。
42□ボード	42mm 角用モータ制御基板。	非売品
	MCU として RX24T 搭載。	
85□ボード	85mm 角用モータ制御基板。	非売品
	MCU として RX24T 搭載。	
NC 制御ボード	NC 制御用システム制御基板	NC : Numerical Control
		デモ機では Renesas Starter Kit +
		for RX72M
		(型名 RTK5572MNDS10000BE)を使用
RMW	モータ制御開発支援ツール	ルネサスエレクトロニクス製
	"Renesas Motor Workbench"	モータ制御開発支援ツール
RDC	レゾルバデジタルコンバータ IC	42□ボード、85□ボードにはルネサス製のレ
		ゾルバデジタルコンバータ IC を搭載(型名:
		RAA3064002GFP)
GUI	グラフィカルユーザーインターフェース	デモ機では2軸アームロボット用 GUI
		「Demo_Ver1.1」を使用

目次

1.	デモ機の仕様	1
1.1	デモ機の全体構成	
1.2	モータ制御基板	4
1.2.1	ハード仕様	4
1.2.2	ソフトウェア仕様	11
1.3	NC 制御ボード	12
1.4	ステッピングモータ	13
1.5	メカ部品	15
1.6	GUI	17
1.7	組立と配線	18
2. I	NC 制御ソフトウェア仕様	22
2.1	概要	22
2.1.1		
2.2	制御座標系の定義	23
2.3	基本操作	
2.3.1	動作手順	24
2.3.2	コマンド、API 一覧	25
2.3.3	output_state の出力フォーマット	26
2.3.4	パラメーター覧	27
2.3.5	エラー処理	28
2.4	実現方式	30
2.4.1	補間演算	30
2.4.2	加減速演算	33
2.4.3	関節角度演算	35
2.4.4	誤差補正	37
2.5	タイムチャート	38
2.6	使用する周辺機能と端子一覧	39
2.6.1	SCI6 • SCI10	40
2.6.2	CRC	41
2.7	プロジェクト構成	42
2.7.1	動作条件	42
2.7.2	構成イメージ	42
	デモ機の動作方法	
	チューニング	
	オフセット調整	
	共振抑制フィルタ調整	
3.2	GUI によるデモ動作	
	準備	
	ワーク原点登録	
	ティーチング	
3.2.4	デモ動作	49

3.3	取り扱い注意事項	50
改訂記	已録	51

レゾルバ付き2相ステッピングモータを使用した2軸アームロボットのリファレンスガイド

RX24T、RX72M、RAA3064002GFP/RAA3064003GFP

1. デモ機の仕様

本章では、デモ機の全体構成および、各部の仕様について説明します。なお、サンプルコードとアプリケーションノートはリファレンスデザインの Web ページから入手可能です。

1.1 デモ機の全体構成

図 1-1 にデモ機の外観図を、図 1-2 にシステム構成図を、図 1-3 に制御系概略図を示します。また、表 1-1 にデモ機の構成品リストを示します。

アーム1には、円筒筐体内に格納された85□モータが接続され、アーム1の先端に42□モータおよび42□モータの回転に応じて動作するアーム2が接続されます。アーム2の先端にはレーザモジュールを取り付けて、地面方向に向けてレーザライトが照射されるようにしています。42□モータおよび85□モータには、42□ボードならびに85□ボードを一体構造で取り付けており、RS485を介して接続されたNC制御ボードからの制御指令を受けて各モータが回転しアームを動作させます。また、アーム2、アーム1の原点位置を検出するための原点センサをアーム1と円筒筐体に取り付けており、原点センサの信号は42□ボード、85□ボードへ接続されます。システム制御基板はPCとUSBにより接続され、PC上のGUIで作成された動作コマンドから、モータへの制御指令を生成します。42□ボードと85□ボードは24V電源、NC制御ボードは5V電源で駆動します。また、レーザモジュールにはNC制御ボード上で生成される3V電源を供給します。

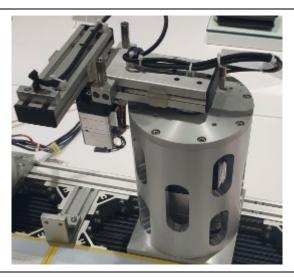


図 1-1 デモ機外観

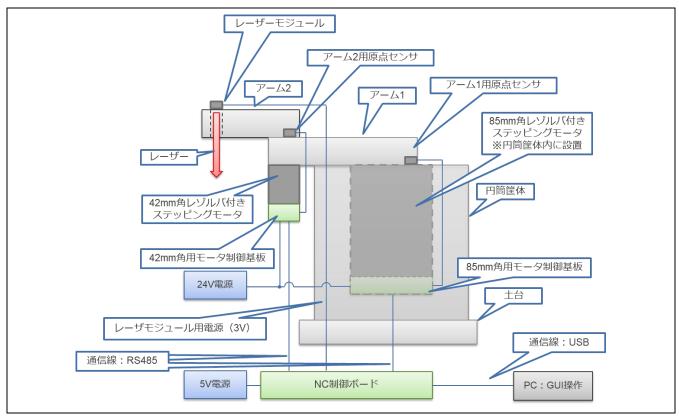


図 1-2 システム構成図

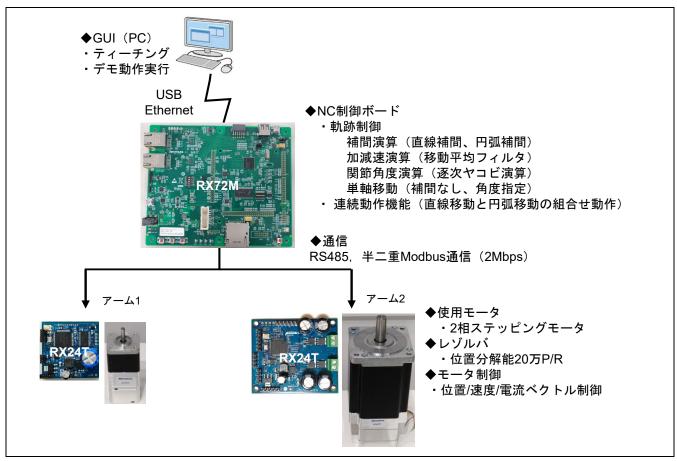


図 1-3 制御系概略図

表 1-1 デモ機構成品リスト

分類	名称	内容	関連ファイル
モータ制御基板	42mm 角用モータ制 御基板	42mm 角ステッピングモータ駆動 用制御基板。42mm 角ステッピン グモータの反軸側に取り付け。 RX24T および RDC-IC 搭載	回路図面:R12TU0106 部品表:R12TU0107 PCB パターン図:R12TU0108 S/W: RX24T_ROBOT42_STM_RSLV_ FOC
	85mm 角用モータ制 御基板	85mm 角ステッピングモータ駆動 用制御基板。85mm 角ステッピン グモータの反軸側に取り付け。 RX24T および RDC-IC 搭載	回路図面:R12TU0109 部品表:R12TU0110 PCB パターン図:R12TU0111 S/W: RX24T_ROBOT85_STM_RSLV_ FOC
ステッピング モータ	42mm 角 レゾルバ付き ステッピング モータ	機電一体構造用の 42mm 角ステッピングモータ(ミネベアミツミ製)。アーム 2 の駆動用モータ。	型式、詳細仕様については、ミネベアミツミ様へお問い合わせください。 お問合せ URL: https://pr.minebeamitsumi.com/steppingmotor/
	85mm 角 レゾルバ付き ステッピング モータ	機電一体構造用の 85mm 角ス テッピングモータ(ミネベアミツ ミ製)。アーム 1 の駆動用モー タ。	型式、詳細仕様については、ミネベアミツミ様へお問い合わせください。 お問合せ URL: https://pr.minebeamitsumi.com/steppingmotor/
システム制御基板	システム制御基板	2 軸の CP 制御用。ルネサス製マ イコン「RX72M」のスタータ キットを使用。	Renesas Starter Kit + for RX72M 【RTK5572MNDS10000BE】 https://www.renesas.com/jp/ja/products/microcontrollers-microprocessors/rx-32-bit-performance-efficiency-mcus/rx72m-starter-kit-plus-renesas-starter-kit-rx72m
メカ部品	デモ機用構造部品	アーム、円筒筐体、土台、原点センサなどの構造品。詳細は関連 ファイルに記載。	構造図面:R12TU0118
電源	24V 電源 5V 電源	42mm 角用モータ制御基板、 85mm 角用モータ制御基板の電源。DC24V、3A 以上 システム制御基板の電源。	_
PC	GUI 用 PC	DC5V。 デモ動作を実行させるための GUI 用 PC。 GUI 駆動のため以下の要件を満たすこと 対応 OS: Win.7、8.1、10 の32bit/64bit .NET Framework 4.7.2 以降が必要	
	GUI	ティーチングおよびデモ機を動作 させるための GUI	ファイル名:Demo_Ver1.1.exe

1.2 モータ制御基板

1.2.1 ハード仕様

表 1-2 にモータ制御基板のシステム仕様を示します。モータ制御基板は、42口ボードと 85口ボードの 2 種 類あり、いずれもルネサス製 MCU(RX24T、64pin) およびルネサス製 RDC-IC を搭載し、2 相のレゾルバ 付きステッピングモータを FAST Decay 方式で駆動することが可能です。なお、ルネサス製 RDC-IC はレゾ ルバの角度誤差補正機能を有していますが、本デモ機で使用する 42ロボードおよび 85ロボードでは未使用と しています。

表 1-2 モータ制御基板のシステム仕様

各ボードの詳細回路図は 42ロボード: R12TU0106、85ロボード: R12TU0109 を参照ください。

			85□ボード
入力電源	モータ電源	DC24V	同左
	デカップリング	330uF	400uF
	コンデンサ		
内部発生電源	ゲートドライバ電源	無し	12V
		(ゲートドライバ内で生成)	
	ロジック電源、	5V	同左
	アナログ電源		
制御マイコン	MCU 型名	R5F524TAADFM	同左
		(64pin, 256K, Ver.A)	
	ファームウェア	MD/FINED ピンを使用	同左
	書き換え	(1 線式)	
		※14 ピンコネクタは非搭載	
ドライバ	ゲートドライバ	FET 内蔵ゲートドライバ	TI 社 UCC27282
		(TI 社 DRV8844)	(耐圧 120V)
		耐圧 60V	駆動電流 2.5A
	ドライバ FET	定格電流 1.75Arms	Vishay 社 SQJB90EP(耐
			圧 80V)
			定格電流 30A
インタフェース	通信	RMW、パルス列、RS485	同左
	サーボ制御	無し	同左
	センサ	レゾルバ(RDC-IC 搭載:	同左
		型名 RAA3064002GFP)、	
		原点センサ(DOG/FLS/RLS)	
モータ制御	ゲート駆動方式	FastDecay	同左
	電流検出	ソース電流 2 相を RDC 内蔵アンプ	同左
		で増幅	
保護機能	過電流検知	電源電流で検出。過電流検出時は	同左
		PWM 出力停止(POE)。	
	ゲートドライバ	ThermalShutDown/OverCurrent	無し
	ハードウェアリセット	リセットスイッチ押下により初期	同左
		状態に戻す。	

(1) 42ロボードの機能ブロック図

図 1-4 に 42ロボードの機能ブロック図を示します。

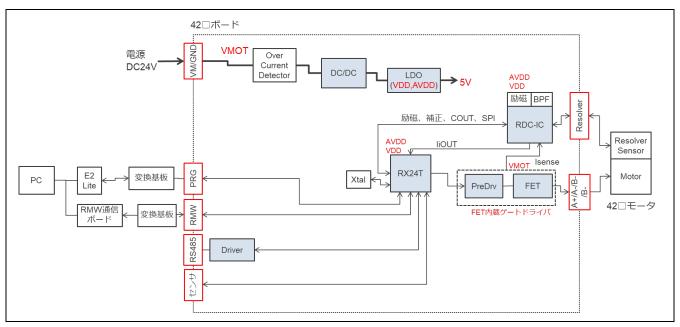


図 1-4 42ロボードの機能ブロック図

(2) 42ロボードの外観

図 1-5 に 42ロボードの外観図を示します。

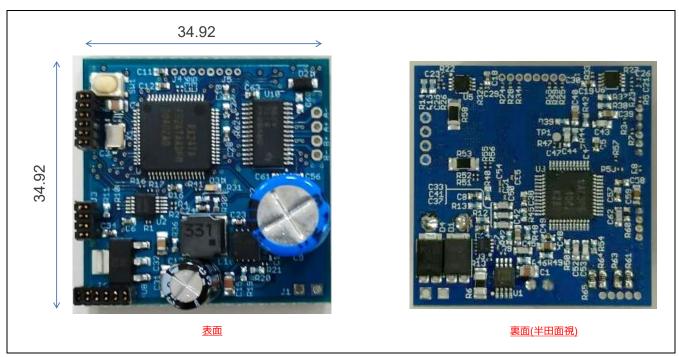


図 1-5 42ロボード外観図

(3) 42ロボードの部品配置

図 1-6 に 42ロボードの部品配置図を示します。また、表 1-3 に 42ロボードの I/F コネクタ仕様を示します。

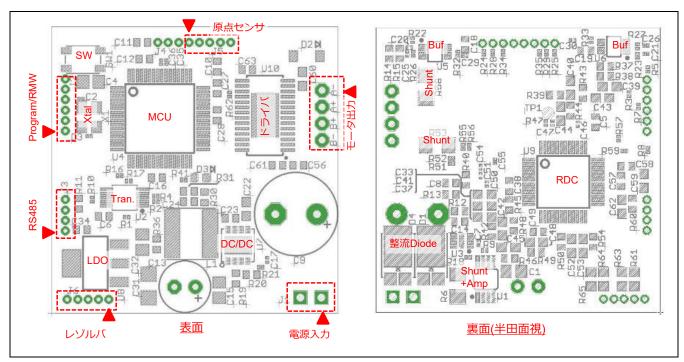


図 1-6 42ロボード部品配置図

表 1-3 I/F コネクタ仕様 (42ロボード)

項目	機能	端子(1pin から順に記載)	コネクタ形状
電源	電源入力	GND, V+	2.54mm pitch, 2pin
モータ	モータ出力	A-, A+, B+, B-	2.0mm pitch, 4pin
通信	Program (E1/E2lite)	GND, RX, TX, +5V, MD/FINED, RES#	1.27mm pitch, 6pin
	RMW	GND, RX, TX, +5V (pin は Program と兼用)	1.27mm pitch, 4pin
	RS485	GND, B/Z, A/Y, NC	1.27mm pitch, 4pin
センサ	レゾルバ	XBN, XBP, XAP, XAN, EXC	1.27mm pitch, 5pin
	原点センサ	GND, +5V, RLS, FLS, DOG	1.27mm pitch, 5pin

(4) 42ロボードの MCU ピン割り当て

表 1-4 に 42ロボードの MCU ピン割り当てを示します。

表 1-4 MCU ピン割り当て(42ロボード)

端子 番号	端子名	方向	接続信号機能	接続先
1	MTIOC9D	0	RDC I/F(CARRIER 信号)	RDC
5	IRQ4	I	MCU_FLS	センサ
12	SSLA1	0	RDC I/F (CS#信号)	RDC
13	TMO1	0	RDC I/F(CLK 信号)	RDC
14	PD5	0	RDC I/F(RESET#信号)	RDC
15	PD4	0	UART I/F(RE#信号)	RS485
16	TMO0	0	RDC I/F(PWMINA 信号)	RDC
17	RXD5	1	UART I/F(RX 信号)	RMW
18	TXD5	0	UART I/F(TX 信号)	RMW
19	IRQ3	1	RDC I/F(ALARM#信号)	RDC
20	RSPCKA	0	RDC I/F(SCLK 信号)	RDC
21	TXD6	0	UART I/F(RS485 トランシーバーの DI 信号)	RS485
22	RXD6	I	UART I/F(RS485 トランシーバーの RO 信号)	RS485
24	POE4#	1	OverCurrent 信号	過電流検知
26	_	_	_	_
27	MTIOC7A	I	RDC I/F(COUT 信号)	RDC
28	P93	0	UART I/F(DE 信号)	RS485
29	P92	0	LED	LED
30	MTIOC7C	0	RDC I/F(CC 信号)	RDC
31	P90	0	nRESET	ゲートドライバ
33	MTIOC4C	0	モータゲート駆動 PWM B+L	ゲートドライバ
34	MTIOC3D	0	モータゲート駆動 PWM A+L	ゲートドライバ
35	P73	0	PWM_EN	ゲートドライバ
36	MTIOC4A	0	モータゲート駆動 PWM B+H	ゲートドライバ
37	MTIOC3B	0	モータゲート駆動 PWM A+H	ゲートドライバ
38	IRQ5	1	MCU_CLR	上位機器
40	MTCLKC	1	MCU_PULSE	上位機器
42	MTCLKD	I	MCU_DIR	上位機器
43	TMO6	0	RDC I/F(PWMINB 信号)	RDC
44	MOSIA	0	RDC I/F(SDI 信号)	RDC
45	MISOA	I	RDC I/F(SDO 信号)	RDC
46	MTIOC9A	0	RDC I/F(CARRIER 信号)	RDC
49	IRQ2	I	nFault	ゲートドライバ
50	IRQ1	I	MCU_RLS	上位機器
51	IRQ0	1	MCU_DOG	センサ
52	AN207	1	電源電圧検出	電圧検出回路
53	AN206	1	MNTOUT	RDC
55		_	_	_
55	AN101	1	モータ電流検出 B	RDC
56	AN100	1	モータ電流検出 A	RDC

(5) 85ロボードの機能ブロック図

図 1-7 に 85ロボードの機能ブロック図を示します。

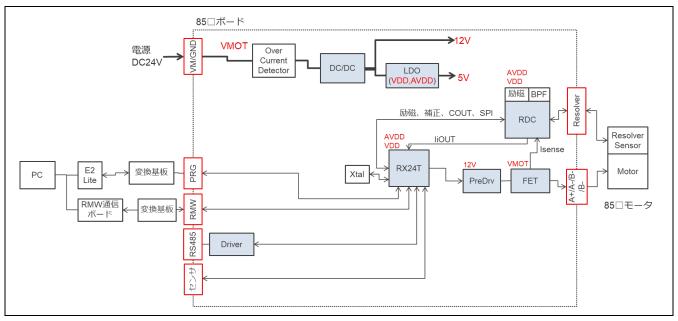


図 1-7 85ロボードの機能ブロック図

(6) 85□ボードの外観

図 1-8 に 85ロボードの外観図を示します。

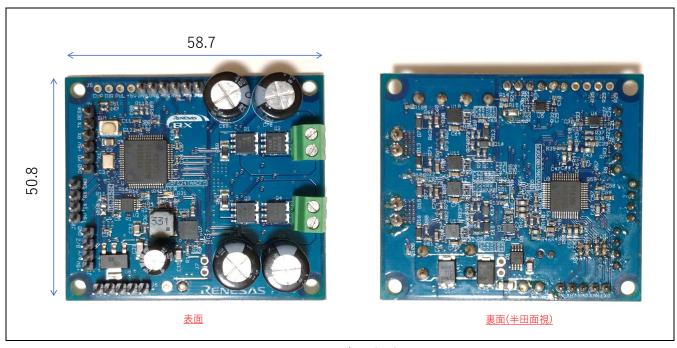


図 1-8 85□ボード外観図

(7) 85ロボードの部品配置

図 1-9 に 85ロボードの部品配置図を示します。また、表 1-5 に 85ロボードの I/F コネクタ仕様を示します。

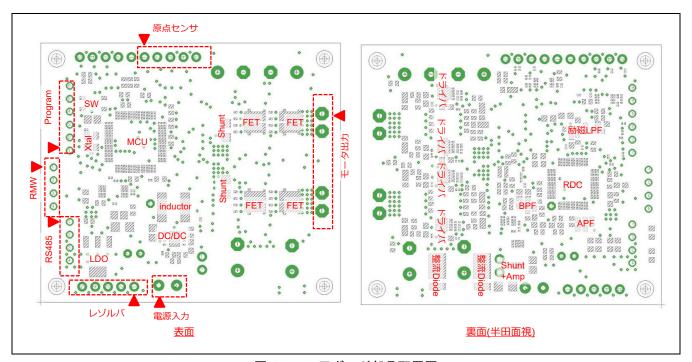


図 1-9 85ロボード部品配置図

表 1-5 I/F コネクタ仕様 (85ロボード)

項目	機能	端子(1pin から順に記載)	コネクタ形状
電源	電源入力	GND, V+	3.5mm pitch, 2pin
モータ	モータ出力	A-, A+, B+, B-	φ1mm×4
通信	Program (E1/E2lite)	GND, RX, TX, +5V, MD/FINED, RES#	2.54mm pitch, 6pin
	RMW	GND, RX, TX, +5V	2.54mm pitch, 4pin
	RS485	GND, B/Z, A/Y, +5V	2.54mm pitch, 4pin
センサ	レゾルバ	XBN, XBP, XAP, XAN, EXC	2.54mm pitch, 5pin
	原点センサ	GND, +5V, RLS, FLS, DOG	2.54mm pitch, 5pin

(8) 85ロボードの MCU ピン割り当て

表 1-6 に 85ロボードの MCU ピン割り当てを示します。

表 1-6 MCU ピン割り当て (85ロボード)

端子 番号	端子名	方向	接続信号機能	接続先
1	MTIOC9D	0	RDC I/F(CARRIER 信号)	RDC
5	IRQ4	1	MCU_FLS	センサ
12	SSLA1	0	RDC I/F (CS#信号)	RDC
13	TMO1	0	RDC I/F(CLK 信号)	RDC
14	PD5	0	RDC I/F(RESET#信号)	RDC
15	PD4	0	UART I/F(RE#信号)	RS485
16	TMO0	0	RDC I/F(PWMINA 信号)	RDC
17	RXD5	I	UART I/F(RX 信号)	RMW
18	TXD5	0	UART I/F(TX 信号)	RMW
19	IRQ3	1	RDC I/F(ALARM#信号)	RDC
20	RSPCKA	0	RDC I/F(SCLK 信号)	RDC
21	TXD6	0	UART I/F(RS485 トランシーバーの DI 信号)	RS485
22	RXD6	I	UART I/F(RS485 トランシーバーの RO 信号)	RS485
24	POE4#	I	OverCurrent 信号	過電流検知
26	_	_	_	_
27	MTIOC7A	1	RDC I/F(COUT 信号)	RDC
28	P93	0	UART I/F(DE 信号)	RS485
29	P92	0	LED	LED
30	MTIOC7C	0	RDC I/F(CC 信号)	RDC
31	_	_	_	_
33	MTIOC4C	0	モータゲート駆動 PWM B+L	ゲートドライバ
34	MTIOC3D	0	モータゲート駆動 PWM A+L	ゲートドライバ
35	_	_	_	_
36	MTIOC4A	0	モータゲート駆動 PWM B+H	ゲートドライバ
37	MTIOC3B	0	モータゲート駆動 PWM A+H	ゲートドライバ
38	IRQ5	I	MCU_CLR	上位機器
40	MTCLKC	I	MCU_PULSE	上位機器
42	MTCLKD	I	MCU_DIR	上位機器
43	TMO6	0	RDC I/F(PWMINB 信号)	RDC
44	MOSIA	0	RDC I/F(SDI 信号)	RDC
45	MISOA	I	RDC I/F(SDO 信号)	RDC
46	MTIOC9A	0	RDC I/F(CARRIER 信号)	RDC
49	_		_	
50	IRQ1	I	MCU_RLS	上位機器
51	IRQ0	I	MCU_DOG	センサ
52	AN207	I	電源電圧検出	電圧検出回路
53	AN206	I	MNTOUT_DC	RDC
54	AN102	I	MNTOUT_AC	RDC
55	AN101	I	モータ電流検出 B	RDC
56	AN100	I	モータ電流検出 A	RDC

1.2.2 ソフトウェア仕様

図 1-10 にデモ機の 42ロボードおよび 85ロボードの MCU へ書き込む、アームロボット駆動用レゾルバ付き 2 相ステッピングモータのベクトル制御の機能ブロック図を示します。レゾルバフィードバック信号と NC制御ボードからの位置指令に基づき、モータの位置制御を実行します。

モータ制御アルゴリズムおよびソフトウェアの構成などの詳細についてはアプリケーションノート「R01AN5662JJ0100」を参照ください。

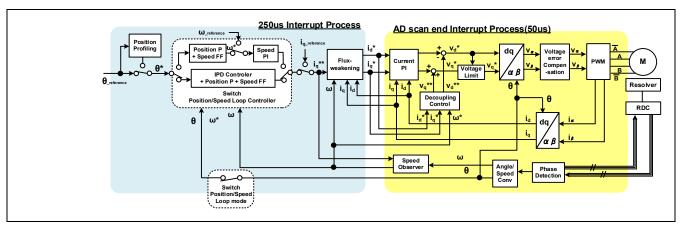


図 1-10 レゾルバ付き 2 相ステッピングモータのベクトル制御

1.3 NC 制御ボード

図 1-11 に NC 制御ボードの外観図を示します。本デモ機の NC ボードは、Renesas Starter Kit + for RX72M【型名:RTK5572MNDS10000BE】を使用しており、MCU は RX72M です。PC と NC ボードを USB で接続し、PC 上で動作する GUI からの動作指令を受けて CP 制御を行い、RS485 を介して接続される 42ロボード、85ロボードへモータの位置指令を送ります。また、レーザモジュールを PMOD2 と接続し、 DC3V 電源を供給します。なお、NC ボードの電源は DC5V が必要となります。

ハードウェア仕様およびソフトウェア書き込み方法などの詳細については、Renesas Starter Kit + for RX72M ユーザーズマニュアルを参照ください。

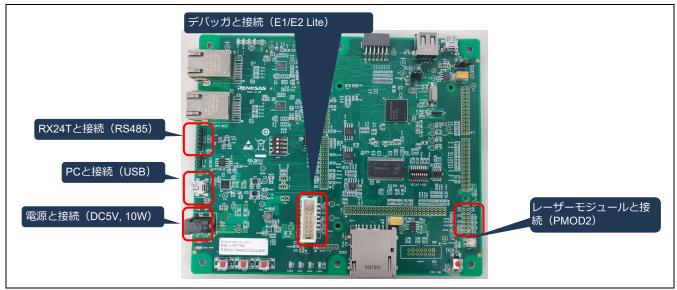


図 1-11 NC 制御ボード外観

1.4 ステッピングモータ

図 1-12 に 42□モータを、図 1-13 に 85□モータの外観図を示します。モータの反軸側には制御ボードが取り付けられる構成となっており、42□モータには 42□ボードを、85□モータには 85□ボードを取り付けて使用しています。各モータとボードは、モータ動力線およびレゾルバ線を接続します。配線図は 1.7 節に記載します。

表 1-7 にモータの主な仕様を示します。

なお、本モータはいずれもミネベアミツミ様よりご提供頂いたレゾルバ付き2相ステッピングモータであり、詳細仕様についてはミネベアミツミ様へお問合せ下さい。

図 1-12 42口モータ

図 1-13 85口モータ

表 1-7 モータの主な仕様

項目	42□モータ	85□モータ
定格電圧[V]	24	24
定格電流[A]	2	3
ホールディングトルク[Nm]	0.5@2A	4.4@1A
相抵抗[Ω]	1.3	1.7
相インダクタンス[mH]	2.6	16.6
誘起電圧[V]	12.1@750r/min	29.7@150r/min
イナーシャ[kgm2]	7.5 × 10-6	370×10-6

1.5 メカ部品

表 1-8 にデモ機の構成部品リストを示します。機械加工品については、「アームロボット構造図面 (R12TU0118)」に図面を掲載しています。

表 1-8 デモ機の構成部品リスト (1)

番号	型式(図番)	品名	メーカ	必要 数量	説明
1	RE00MT	BASE	機械加工品 (図面を元に作成)	1	土台
2	RE00MV	COVER_rev1	機械加工品(図面を元に作成)	1	円筒筐体
3	85□ MOTOR ASS'Y	85口 機電一体モータ	ミネベアミツミ	1	85□モータに 85□ボー ドを取付た一体構造
4	RE00MU	BASE_PLATE	機械加工品(図面を元に作成)	1	円筒筐体の蓋
5	RE00MR	LOAD_SHAFT	機械加工品(図面を元に作成)	1	85ロモータとアーム1の 取り付け部品
6	RE00MQ	ARM_1	機械加工品(図面を元に作成)	1	アーム 1
7	42□ MOTOR ASS'Y	42□ 機電一体モータ	ミネベアミツミ	1	42□モータに 42□ボー ドを取付た一体構造
8	RE00MP	LOAD_SHAFT	機械加工品(図面を元に作成)	1	42ロモータとアーム2の 取り付け部品
9	RE00MK	ARM_2_Rev0	機械加工品(図面を元に作成)	1	アーム2
10	RE00NQ	BLOCK	機械加工品(図面を元に作成)	1	レーザモジュール 固定部品
11	FU650AD5-C6	赤色ドットレーザ モジュール	秋月電子	1	赤色ドットレーザ モジュール、1mW、3V 駆動
12	RE00LH	STOPPER_1	機械加工品(図面を元に作成)	2	アーム回転防止用 ストッパの固定部品
13	SETGRS10-30- SC5	円形支柱-片端おねじ片 端めねじ	ミスミ	4	アーム回転防止用 ストッパ
14	RE00NE	DOG_1	機械加工品(図面を元に作成)	1	アーム 1 用の原点センサ 検知部品
15	RE00LM	DOG_2	機械加工品(図面を元に作成)	1	アーム2用の原点センサ 検知部品
16	EE_SX772A	フォトマイクロセンサ	オムロン	1	アーム 1 用の原点センサ
17	EE_SX672R	フォトマイクロセンサ	オムロン	1	アーム2用の原点センサ
18	HFC5_3060_B	アルミフレーム用 フレームキャップ	ミスミ	2	アーム 1 用のフレーム キャップ
19	HFC5_2040_B	アルミフレーム用 フレームキャップ	ミスミ	2	アーム 2 用のフレーム キャップ
20	SCB6-20	六角穴付きボルト- ステンレス	ミスミ	4	M6 × 20mm

番号	型式(図番)	品名	メーカ	必要 数量	説明
21	SCB5-16	六角穴付きボルト- ステンレス	ミスミ	16	M5 × 16mm
22	SHNTP6-4	30・60 角アルミ フレーム用後入れ バネナット	ミスミ	4	アーム回転防止用 ストッパの固定部品
23	SCB4-20	六角穴付きボルト- ステンレス	ミスミ	4	M4 × 20mm
24	SCB3-25	六角穴付きボルト- ステンレス	ミスミ	8	M3 × 25mm
25	SCB3-20	六角穴付きボルト- ステンレス	ミスミ	4	M3 × 20mm
26	SCB3-10	六角穴付きボルト- ステンレス	ミスミ	3	M3 × 10mm
27	SCB3-8	六角穴付きボルト- ステンレス	ミスミ	3	M3 × 8mm
28	SCB3-6	六角穴付きボルト- ステンレス	ミスミ	6	M3 × 6mm
29	SCB3-5	六角穴付きボルト- ステンレス	ミスミ	4	M3 × 5mm
30	MSSF3-3	六角穴付き止めねじ平 先	ミスミ	1	M3×3mm 止めねじ
31	SHNTU5-3	20・25・40 角アルミフ レーム用先入れバネ ナット	ミスミ	2	レーザモジュール固定部 品

表 1-9 に本デモ機の機械仕様を示します。アーム 1 と 2 の組み合わせで±90°の可動範囲としています。アーム旋回速度は、アームとモータがギアレスのダイレクトドライブとなっているため、モータの回転速度と 1:1 の関係となります。モータ制御ソフトウェア側で最大旋回速度を調整することができ、さらに速度をあげることも可能ですが、安全を考慮して制限を掛けております。

42□ボード、85□ボードに書き込むモータ制御ソフトウェアにて、表 1-9 に記載のイナーシャ値をそれぞれ設定する必要があります。

表 1-9 デモ機の機械仕様

項目	値
サイズ(幅×奥行×高さ)	約 150mm×153mm×300mm
※アーム最大可動範囲	
重量	10kg
アーム最大旋回速度	アーム 1:10.5 [rad/s]
	アーム 2:31.4 [rad/s]
アーム最大可動範囲	±90°
85□モータから見たイナーシャ	12 × 10-3 [kgm ²]
42□モータから見たイナーシャ	0.735 × 10-3 [kgm ²]

1.6 GUI

本デモ機用の GUI「Demo_Ver1.1.exe」は PC 上で動作する GUI で、インストール不要で動作します。必要とする PC の動作条件は以下です。

- 対応 OS : Windows 7(32bit/64bit)、Windows 8.1(32bit/64bit)、Windows 10(32bit/64bit)
- 必要ファイル:.NET Framework 4.7.2 以降

GUI のファイルを PC の任意のフォルダに格納し、GUI のアイコン(図 1-14 参照)をダブルクリックして GUI を起動します(図 1-15 参照)。

図 1-14 GUI のアイコン

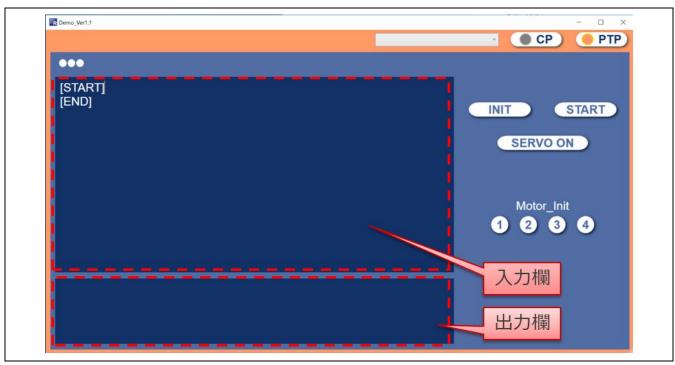


図 1-15 GUI 起動後の画面

1.7 組立と配線

「アームロボット構造図面(R12TU0118)」の図番 RE00NR の組立図にしたがって、メカ部品を組み立てます。42ロモータと 85ロモータについては、組み立て前に 3 章に記載の試運転動作を行う必要があります。

図 1-16 に電気配線全体図、表 1-10~表 1-23 に各コネクタの接続仕様を示します。表 1-10~表 1-23 に従って、配線を行います。デバッガ、RMW は必要に応じて接続します。RMW を接続する場合には、W2002 ICS++(Desk Top Lab 製)などの通信ボードを使用することで、PC と通信ボード間を USB で接続できるため便利です。また、NC 制御ボードへのデバッガ接続および電源の接続については、Renesas Starter Kit + for RX72M ユーザーズマニュアル(R20UT4391)を参照ください。なお、42ロボードはデバッガと RMW の接続ピンを一部共通化しているため、同時に接続はできません。

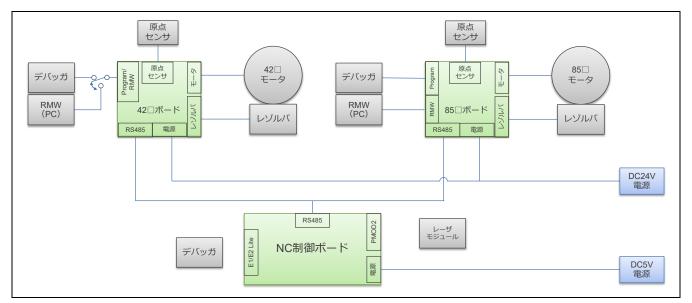


図 1-16 電気配線全体図

表 1-10 42ロボード-42ロモータの接続

42□ボード モータ出力		モータ	
ピン番号	端子名称	名称	意味
1	A-	A-	A 相-
2	A+	A+	A 相+
3	B+	B+	B 相+
4	B-	B-	B 相-

表 1-11 42ロボード-レゾルバの接続

42□ボード レゾルバ		レゾルバ	
ピン番号	端子名称	名称	意味
1	XBN	270°相	Cos-
2	XBP	90°相	Cos+
3	XAP	0°相	Sin+
4	XAN	180°相	Sin-
5	EXC	励磁	励磁

表 1-12 42ロボード-エミュレータおよび PC の接続

	2ロボード ogram/RMW	エミュレータ接続時		PC (RMV	V)接続時
ピン 番号	端子名称	名称	意味	名称	意味
1	GND	GND	GND	GND	GND
2	RX	(未使用)		RX	RMW 送信
3	TX	(未使用)		TX	RMW 受信
4	+5V	5V	エミュレータからの電源供給	5V	5V 電源供給
5	MD/FINED	FINE	エミュレータ FINE	(未使用)	
6	RES#	RESET	エミュレータ RES	(未使用)	

表 1-13 42ロボード-24V 電源の接続

	ボ— ド :源	24V 電源	
ピン番号 端子名称		名称	意味
1	GND	GND	GND 側
2	V+	Vout	十側

表 1-14 42ロボード-NC 制御ボードの接続

42□	ボード	NC 制御ボード	
RS	5485	RS485 Header	
ピン番号 端子名称		名称	意味
1	GND	GND	GND
2	B/Z	В	差分通信ラインB
3	A/Y	A	差分通信ラインA
4	NC	(未使用)	

表 1-15 42ロボード-原点センサの接続

42□ボード 原点センサ		原点センサ	
ピン番号 端子名称		名称	意味
1	GND	GND	GND
2	+5V	Vcc	電源供給
3	RLS	(未使用)	
4	FLS	(未使用)	
5	DOG	OUT	センサ出力

表 1-16 85□ボード-85□モータの接続

85□ モー	ボード タ出力	モータ	
ピン番号	端子名称	名称	意味
1	A-	A-	A 相-
2	A+	A+	A 相+
3	B+	B+	B 相+
4	В-	В-	B 相-

表 1-17 85ロボード-レゾルバの接続

85□ボード レゾルバ		レゾルバ	
ピン番号	端子名称	名称	意味
1	XBN	270°相	Cos-
2	XBP	90°相	Cos+
3	XAP	0°相	Sin+
4	XAN	180°相	Sin-
5	EXC	励磁	励磁

表 1-18 85ロボード-エミュレータの接続

85□ボード Program		エミュレータ	
ピン番号	端子名称	名称	意味
1	GND	GND	GND 側
2	RX	(未使用)	
3	TX	(未使用)	
4	+5V	5V	エミュレータからの電源供 給
5	MD/FINED	FINE	エミュレータ FINE
6	RES#	RESET	エミュレータ RES

表 1-19 85ロボード-PC の接続

85□ボード RMW		PC (RMW)	
ピン番号	端子名称	名称 意味	
1	GND	GND	GND
2	RX	RX	RMW 送信
3	TX	TX	RMW 受信
4	+5V	5V	5V 電源供給

表 1-20 85ロボード-24V 電源の接続

85ロボード 電源		24V 電源		
ピン番号	端子名称	名称 意味		
1	GND	GND	GND 側	
2	V+	Vout	十側	

表 1-21 85ロボード-NC 制御ボードの接続

85□ボード		NC 制御ボード		
RS485		RS485 Header		
ピン番号	端子名称	名称	意味	
1	GND GND GND		GND	
2 B/Z		B 差分通信ライン B		
3	A/Y	A	差分通信ライン A	
4	NC	(未使用)		

表 1-22 85ロボード-原点センサの接続

85□ボード 原点センサ			原点センサ	
ピン番号 端子名称		名称	意味	
1	GND	GND	GND	
2	+5V	Vcc	電源供給	
3	RLS	(未使用)		
4	FLS	(未使用)		
5	DOG	OUT	センサ出力	

表 1-23 レーザモジュール-NC 制御ボードの接続

レーザモジュール		NC 制御ボード PMOD2		
名称	意味	ピン番号 名称		
マイナス	-	5 GROUND		
プラス	+	6 Board_3V3		

2. NC 制御ソフトウェア仕様

2.1 概要

本章では、RX72M ベースのアームロボット軌跡制御ソフトウェア(以下、NC 制御ソフトウェアと呼称)の使用ガイドとアルゴリズムについて記載します。

NC 制御ソフトウェアは RTK5572MNDS10000BE ボード専用のモトローラ形式 (.mot) で提供します。

2.1.1 適用条件及び機能

NC 制御ソフトウェアの適用条件を以下に示します。

- 2自由度(2軸)であること
- アーム関節の角度はセンサで分かること
- アームの特異点(アームが1直線になる形状)は通過しないこと

NC 制御ソフトウェアで実現する機能を以下に示します。

- 軌跡制御
 - 補間演算(直線補間、円弧補間)
 - -- 加減速演算(移動平均フィルタ)
 - -- 関節角度演算(逐次ヤコビ演算)
 - 単軸移動(補間なし、角度指定)
- 連続動作機能(直線移動と円弧移動の組合せ動作)

2.2 制御座標系の定義

本書で使用する用語と回転方向の正負定義を以下に示します。

表 2-1 制御座標系の定義

名称	説明	
モータ原点	アームのセンサの位置、エンコーダの角度が 0 の座標とする。	
	ワーク原点の時の関節角度から座標を計算する。	
ワーク原点	軌道計算で用いる座標系。	
	本開発では(120, 120)とする。	
関節の回転方向	時計回りを正とする。	

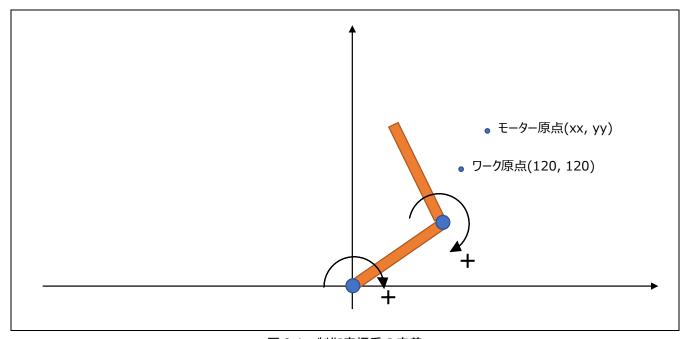


図 2-1 制御座標系の定義

2.3 基本操作

本章で定義する API の角度は、2.4.3 の図で示した Y 軸から時計回りに見た角度とします。また、アームの長さ L1、L2 も 2.4.3 の図で示したものとします。

2.3.1 動作手順

システムの電源 ON からオフセットの設定をし、CP 制御までの流れを以下に示します。

表 2-2 動作手順

手順	内容	操作、コマンド	座標とオフセットの 有効/無効	
1	システムの電源 ON	_	無効	
2	サーボ ON	GUI のボタン	無効	
3	モータ原点移動	setup_motorzero	無効	
4	サーボ OFF	GUI のボタン	無効	
5	手でワーク原点にアームを動かす (120, 120)	_	無効	
6	関節角度(エンコーダの値)を読み取る	output_state	無効	
7	オフセットを設定する (キャリブレーション) RX72M は設定されたオフセットから 軌道計算で使用する座標系を計算する	setup_workzeroangle	有効	
8	サーボ ON	GUI のボタン	有効	
9	CP モードへ設定	GUI のボタン	有効	
10	CP 制御コマンドを入力	setup_workzero, move_line, move_circle	有効	
11	入力した動作が完了 or 停止コマンドで アーム停止	interrupt_stop	有効	
12	モータ原点復帰 interrupt_stop 後は必ず行う。	setup_motorzero	有効	

2.3.2 コマンド、API 一覧

本システムのコマンドと API の一覧を以下に示します。

表 2-3 API 一覧 (1)

項目	コマンド	省略 文字	動作	応答
設定	setup_motorspeed	SMS	接線速度[mm/s]を設定する。	正常:SMS OK
(RX72M)	接線速度			異常:SMS NG
	setup_workzeroangle 関節	SWA	ワーク原点時(座標が(120,	正常:SWA OK
	角 1 関節角 2		120)の時)の関節角度	異常:SWA NG
			[°(度)]を入力する。	
設定	setup_cp	PCP	CP モードに設定する。	正常:PCP OK
(RX24T)				異常: PCP NG
	setup_ptp	PTP	PTP モードに設定する。	正常:PTP OK
				異常: PTP NG
	setup_on	SON	動力を ON する。	正常:SON OK
				異常: SON NG
	setup_off	SOF	動力を OFF する。	正常:SOF OK
				異常: SOF NG
動作命令	setup_motorzero	SMZ	モータ原点復帰を行う。	正常:SMZ OK
	関節 1 関節 2		引数の関節 1 (0 or 1) と関節 2 (0	異常:SMZ NG
			or 1) は 1 なら原点復帰を行う。	
			関節1と関節2は同時に指定しない。	
		SWZ	ワーク原点復帰行う。	正常:SWZ OK
	setup_workzero	SVVZ	グーグ原点復帰1〕)。	異常:SWZ OR 異常:SWZ NG
	move line 終了フラグ	MLI	│ │ 直線補間を行う。	正常: MLI OK
	Move_iiile 終了フラフ 終点 x 終点 y	IVILI	│ ๒ӎฑฅӀをコラ。 │ 終了フラグが「0」以外の場合、減	異常:MLI NG
	TEMEN TEME		速し終点で止まる。	共市 . WLING
	move circle 終了フラグ	MCI	円弧補間を行う。	正常:MCI OK
	終点 x 終点 y 中点 x		終了フラグが「0」以外の場合、減	異常: MCI NG
	中点 y		速し終点で止まる。	
	move_angle	MAN	指定した角度にモータを動かす。	正常:MAN OK
	関節角 1 関節角 2			異常: MAN NG
	move_wait 待ち時間	MWA	指定した待ち時間[ms]アームを停	正常:MWA OK
			止させる。	異常: MWA NG
状態出力	output_state	OST	現在の関節の角度[°(度)]、先端	正常: 2.3.3 参照
			座標[mm]を出力する。	異常: OST NG

表 2-3 API 一覧(2)

項目	コマンド	省略 文字	動作	応答
ループ	loop_start ループ回数	MST	連続動作の開始。	正常: MST OK (LST
動作		(LST)	引数のループ回数で loop_start から	OK)
			loop_end の範囲に入力したコマンド	異常:MST NG (LST
			を何回動作させるかを決める。	NG)
	loop_end	MEN	連続動作の終わり。	正常:MEN OK
		(LEN)		(LEN OK)
				異常: MEN NG
				(LEN OK)
割り込み	interrupt_stop	IST	アームの動作を停止する。	正常:IST OK
動作			(入力されている命令を破棄する)	異常:IST NG

2.3.3 output_state の出力フォーマット

output_state を実行した際に GUI の出力欄に表示されるパラメータのフォーマットを以下に示します。 Pm はモータのエンコーダの角度、P は軌道計算で用いる座標系での角度とします。

Pm1 = xx.xx Pm2 = xx.xx P1 = xx.xx P2 = xx.xx(x y) =

XXX.XX XX.XX

図 2-2 output_state の出力フォーマット (GUI の出力欄に表示)

2.3.4 パラメータ一覧

NC 制御ソフトウェアで管理するパラメータを表 2-4 に示します。

表 2-4 管理パラメータ一覧

中項目	小項目	単位	パラメータ名	範囲	初期値	GUI から の R/W
CP モード	接線速度(*1)	mm/s	Trajectory_POINTSPEED	0~5,000	100	R/W
軌跡計算	加速時間(*1)	ms	Trajectory_ACCELTIME_ms	0~255	50	R/W
	アームの長さ (L1, L2)(*1)	mm	Trajectory_ARMLENGTH_L1 Trajectory_ARMLENGTH_L2	1~255	L1: 120 L2: 120	R/W
	モータの回転方向 (01,02) (*2)	_	Trajectory_MOTORROLL_1 Trajectory_MOTORROLL_2	-1 or 1	θ1: 1 θ2: 1	R/W
	刻み時間(*1)	ms	Trajectory_STEPTIME	0.5~5 (0.5 の倍数)	1	R/W
	許容誤差(*1)	mm	Trajectory_ERRORRANGE	0.001~5	0.01	R/W
	最大誤差補正回数 (* ²)	回	Trajectory_MAX_ERROR_ CORRECTION	0~255	2	R/W
	オフセット (θ1, θ2) (*1)	。 (度)	Trajectory_OFFSET_1 Trajectory_OFFSET_2	-180~180	θ1: 0 θ2: 0	不可
PTP	最大速度	RPM	Api_PTP_MAXSPEED	0~65,535	100	R/W
モード (*2)	加速時間	ms	Api_PTP_ACCERATIONTIME	0~65,535	50	R/W
通信(*2)	同期コマンドの間隔	μs	CtrlMotor_CP_SYNC_INTERVAL	500~5,000 (500 の倍数)	2,000	不可
	CP モード時の タイムアウト時間	μs	TIMEOUT_CP_us	0~1,000	100	不可
	CP モード以外の タイムアウト時	μs	TIMEOUT_OUT_us	0~5,000	1,000	不可
	リトライ回数	回	NUM_RETRY	0~255	1	不可
	GUI からの 受信バッファ数	バイト数	CommPC_BUFSIZE_RCV	0~5,000	2,048	不可
	GUI からの コマンドバッファ 数	コマンド 数	COMMAND_SIZE	0~1,000	100	不可
	GUI への 送信バッファ数	バイト数	CommPC_BUFSIZE_SEND	0~1,000	4,096	不可
	RX24T との 通信ボーレート	bps	RX24T_BAUDRATE	10M/5M/4M/2M/ 1Mbps を想定	2,000,000	不可
	PC との 通信ボーレート	bps	_	115.2kbps のみ	115,200	不可

【注】 1. 小数入力可

2. 整数のみ入力可

2.3.5 エラー処理

NC 制御ソフトウェアでは RX24T からのレスポンスに対し、エラー判定とエラー時の処理を行います。エラー判定フローとその詳細な内容、処理を以下に示します。

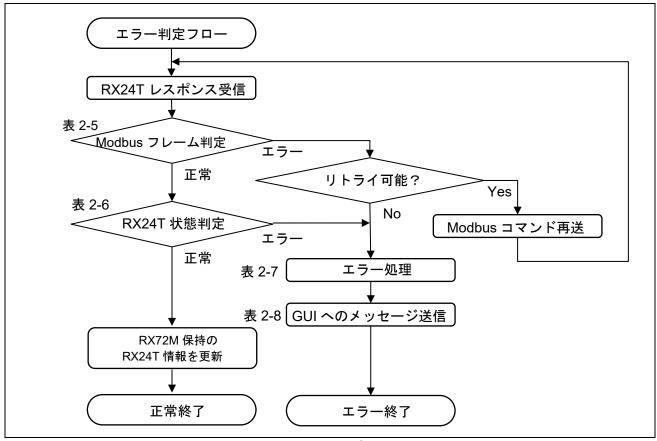


図 2-3 エラー判定フロー

表 2-5 Modbus フレーム判定

No	エラー条件
A-1	ブロードキャスト時にレスポンスを受信
A-2	レスポンスを受信できずタイムアウト
A-3	受信したレスポンスで CRC 不一致
A-4	受信したレスポンスでファンクションコードが例外コード
A-5	受信したレスポンスでファンクションコードが不一致
A-6	受信したレスポンスでスレーブアドレスが不一致

表 2-6 RX24T 状態判定

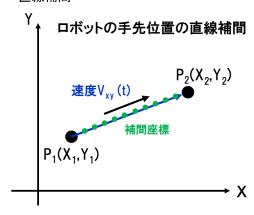
No	エラー条件
B-1	RDY 信号が 0
B-2	CP 制御時に 1bit 接点データの ERR0-3 が 0 以外
B-3	原点復帰中に 1bit 接点データの ERR0-3 が 0 以外
B-4	CP 制御時に同一スレーブから同期コマンド受信エラーを連続して N 回受信 (N:リトライ回数+1)
B-5	CP 制御前の RX24T の状態確認時に 1bit 接点データの位置決め完了が 0
B-6	CP 制御前の RX24T の状態確認時に 1bit 接点データの原点復帰中が 1
B-7	モータ原点復帰時に 1bit 接点データの位置決め完了が 0
B-8	PTP 制御時に 1bit 接点データの原点復帰中が 1
B-9	アームの状態出力時に 1bit 接点データの原点復帰開始が 0
B-10	アームの状態出力時に 1bit 接点データの原点復帰中が 1
B-11	CP 制御時に同期コマンドが周期漏れ

表 2-7 エラー処理

No	エラー処理	
C-1	スレーブをブロードキャストで PTP 制御モードに移行後、サーボ OFF 指示	

表 2-8 GUI へのメッセージ送信

対応 No	メッセージ		
A-1	[Error] Received response in Broadcast command		
A-2	[Error] Time out		
A-3	[Error] CRC error		
A-4, B-4	 [Error] Exception Response: FNC = 0x (n1), CODE = (n2) n1: ファンクションコード (8bit の最上位 bit=1 とした値) n2: 例外コード (8bit の最上位 bit=1 とした値) ● CP 制御モードでない場合に CP 制御位置指令値を送信 (例外コード=1) ● PTP 制御モードでない場合に PTP 制御位置指令値を送信 (例外コード=1) ● 存在しないアドレスを指定 (例外コード=2) ● 設定データ範囲が不正 (例外コード=3) ● CP 位置指令直後の同期信号クエリーを RX24T が未受信 (例外コード=4) 		
A-5	[Error] Mismatch FNC-No		
A-6	[Error] Mismatch Slave-address		
B-1	[Error] RDY = 0		
B-2, B-3	[Error] ERR0-3: 0x(n) n: 1bit 接点データアドレス 15-12 の 4bit(エラー情報)		
B-5 B-6 B-7 B-8 B-9 B-10	[Error] Arm moving		
B-11	[Error] Frequency of CP		


2.4 実現方式

実現する機能に用いる計算を 2.4.1 から 2.4.3 に示します。

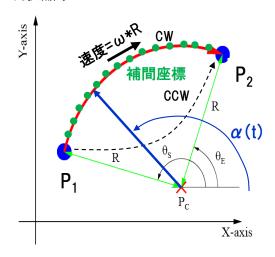
2.4.1 補間演算

移動する2点間の座標を補間する座標を生成します。

• 直線補間

速度を V_X 、 V_Y 、軌道速度を V_xy (t)とすると X 軸移動量と Y 軸移動量により速度を分配します。

$$V_X = V_{xy}(t) \times \frac{X_2 - X_1}{\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}}$$


$$V_Y = V_{xy}(t) \times \frac{Y_2 - Y_1}{\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}}$$

 V_X , V_Y から補間座標を計算します。

$$X(t) = X_1 + V_X \times t$$

$$Y(t) = Y_1 + V_Y \times t$$

• 円弧補間

円の方程式から円弧の中心の座標を Pc = (xc, yc)とすると、

$$(x_1 - xc)^2 + (y_1 - yc)^2 = R^2$$

 $(x_2 - xc)^2 + (y_2 - yc)^2 = R^2$

より、円弧の中心の座標を Pc = (xc, yc)を求めることができます。

連立2次方程式なので、解は2つ存在します。(CW 軌跡と CCW 軌跡)

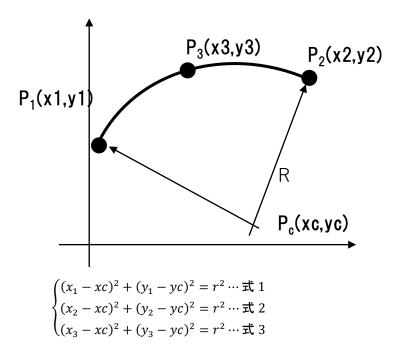
CW 軌跡の場合、α (t)を円軌跡上の角度とすれば、位置と速度は、

*CW:時計回り、CCW:反時計回り

$$\alpha(t) = \alpha_s + \omega \times t$$

$$X(t) = R \times \cos \alpha(t) + X_C$$

$$Y(t) = R \times \sin \alpha (t) + Y_C$$


時間で微分し、単位時間当たりのXとYを計算します。

$$\frac{dX}{dt} = -R \times \frac{d\alpha}{dt} \times \sin\alpha \quad (t)$$

$$\frac{dY}{dt} = R \times \frac{d\alpha}{dt} \times \cos\alpha \quad (t)$$

• 円弧の中心座標

3点を通る円の中心座標を計算し、求めた中心座標から半径を計算します。

式1=式2を計算します。

$$(x_1 - xc)^2 + (y_1 - yc)^2 = (x_2 - xc)^2 + (y_2 - yc)^2$$
$$(x_1 + y_1 - 2xc)(x_1 - x_2) + (y_1 + y_2 - 2xy)(y_1 - y_2) = 0$$

式2=式3も同様に計算します。

$$\begin{cases} (x_1 - x_2)xc + (y_1 - y_2)yc = \frac{1}{2}\{(x_1^2 - x_2^2) + (y_1^2 - y_2^2)\} \\ (x_2 - x_3)xc + (y_2 - y_3)yc = \frac{1}{2}\{(x_2^2 - x_3^2) + (y_2^2 - y_3^2)\} \end{cases}$$

 $X_i = x_i^2 + y_i^2$ として置き換え、行列式にします。

$$\begin{pmatrix} x_1 - x_2 & y_1 - y_2 \\ x_2 - x_3 & y_2 - y_3 \end{pmatrix} \begin{pmatrix} xc \\ yc \end{pmatrix} = \frac{1}{2} \begin{pmatrix} X_1 - X_2 \\ X_2 - X_3 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} x_1 - x_2 & y_1 - y_2 \\ x_2 - x_3 & y_2 - y_3 \end{pmatrix} として、逆行列を計算します。$$

$$\begin{pmatrix} xc \\ yc \end{pmatrix} = \frac{1}{2} \times \frac{1}{ad - bc} \times \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \times \begin{pmatrix} X_1 - X_2 \\ X_2 - X_3 \end{pmatrix}$$

2.4.2 加減速演算

移動平均フィルタを用いてアームの速度を計算します。

• 移動平均フィルタの演算

離散値系に変換すると、積分特性= $dT \div (1 - Z^{-1})$ より

$$G_f(z) = \{(1 - Z^{-M}) \times (dT \div \tau)\} \div (1 - Z^{-1})$$

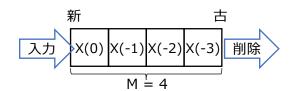
 $\tau = M \times dT$ dT=サンプリング時間 M=サンプリング数

$$G_f(z) = \{(1 - Z^{-M}) \div M\} \div (1 - Z^{-1})$$

入力をX、出力をYとすると

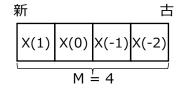
$$\begin{split} \mathbf{Y} &= G_f(z) \times X \\ (1-Z^{-1})Y &= (1-Z^{-M}) \div M \times X \\ \mathbf{Y}(n) &= Y(n-1) + \frac{1}{M} \times \{X(n) - X(n-M)\} \end{split}$$

初期値

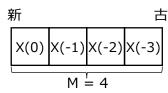

$$Y(0) = \frac{1}{M} \times \{X(0) + X(-1) + X(-2) \cdots X(-M+1)\}$$

初期値は、モータ原点復帰位置もしくは PTP 制御後の位置の XY 座標値とします。

移動平均フィルタの一般的な動作例を以下に示します。


なお、動作例のフィルタは過去4つのデータを移動平均するものとします。

t = 0:初期値


t=1:1サンプリング経過

新たに X(1) のデータを取得し、フィルタのデータをシフトさせる

● 例 M=4 で差分方程式に展開する場合

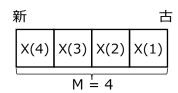
$$Y(0) = \frac{1}{4} \times \{X(0) + X(-1) + X(-2) + X(-3)\}$$

$$\rightarrow$$
 t = 1

$$Y(1) = Y(0) + \frac{1}{4} \times \{X(1) - X(-3)\} = \frac{1}{4} \times \{X(1) + X(0) + X(-1) + X(-2)\}$$

$$\uparrow \uparrow \downarrow$$

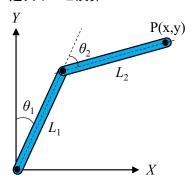
$$X(1) X(0) X(-1) X(-2)$$


$$\rightarrow$$
 t = 2

$$\rightarrow$$
 t = 3

Y(3) = Y(2) +
$$\frac{1}{4}$$
 × {X(3) - X(-1)} = $\frac{1}{4}$ × {X(3) + X(2) + X(1) + X(0)}
 \Rightarrow

X(3) | X(2) | X(1) | X(0) | M = 4


$$Y(4) = Y(3) + \frac{1}{4} \times \{X(4) - X(0)\} = \frac{1}{4} \times \{X(4) + X(3) + X(2) + X(1)\}$$

n-M = 4 回前(過去)のデータを使う(バッファ内で一番古いデータ)

2.4.3 関節角度演算

逐次ヤコビ演算を用いてアームの先端座標から各関節角度を計算します。

● 逐次ヤコビ演算

 $\theta_1 \ge \theta_2$ から先端座標(x, y)を求めます。

$$x = L_1 \sin \theta_1 + L_2 \sin (\theta_1 + \theta_2)$$

$$y = L_1 \cos \theta_1 + L_2 \cos (\theta_1 + \theta_2)$$

時間で微分します。

$$\dot{x} = \{ L_1 \cos \theta_1 + L_2 \cos (\theta_1 + \theta_2) \} \dot{\theta}_1 + L_2 \cos (\theta_1 + \theta_2) \dot{\theta}_2
\dot{y} = \{ L_1 \sin \theta_1 + L_2 \sin (\theta_1 + \theta_2) \} \dot{\theta}_1 + L_2 \sin (\theta_1 + \theta_2) \dot{\theta}_2$$

行列にします。

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) & L_2 \cos(\theta_1 + \theta_2) \\ -L_1 \sin \theta_1 - L_2 \sin(\theta_1 + \theta_2) & -L_2 \sin(\theta_1 + \theta_2) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

 θ_1 と θ_2 を求める形に整え、両辺を時間微分します。

一つ前の周期の関節角に角度の差分を足し今の関節角とします。

$$\begin{bmatrix} \theta_{1i} \\ \theta_{2i} \end{bmatrix} = \begin{bmatrix} \theta_{1i-1} \\ \theta_{2i-1} \end{bmatrix} + \begin{bmatrix} L_1 \cos \theta_{1i-1} + L_2 \cos(\theta_{1i-1} + \theta_{2i-1}) & L_2 \cos(\theta_{1i-1} + \theta_{2i-1}) \\ -L_1 \sin \theta_{1i-1} - L_2 \sin(\theta_{1i-1} + \theta_{2i-1}) & -L_2 \sin(\theta_{1i-1} + \theta_{2i-1}) \end{bmatrix}^{-1} \begin{bmatrix} \frac{dX_i}{dt} \\ \frac{dY_i}{dt} \end{bmatrix}$$

逆ヤコビ行列を求めます。

$$\begin{bmatrix} L_1 \cos \theta_{1i-1} + L_2 \cos(\theta_{1i-1} + \theta_{2i-1}) & L_2 \cos(\theta_{1i-1} + \theta_{2i-1}) \\ -L_1 \sin \theta_{1i-1} - L_2 \sin(\theta_{1i-1} + \theta_{2i-1}) & -L_2 \sin(\theta_{1i-1} + \theta_{2i-1}) \end{bmatrix}^{-1}$$

逆ヤコビ行列を下記の内容で式を置き換えます。

$$\begin{split} \cos\theta_{1i-1} &= \cos1,\\ \cos(\theta_{1i-1} + \theta_{2i-1}) &= \cos1p2,\\ \sin\theta_{1i-1} &= \sin1,\\ \sin\theta_{2i-1} &= \sin2,\\ \sin(\theta_{1i-1} + \theta_{2i-1}) &= \sin1p2\\ \begin{bmatrix} L_1\cos1 + L_2\cos1p2 & L_2\cos1p2\\ -L_1\sin1 - L_2\sin1p2 & -L_2\sin1p2 \end{bmatrix}^{-1}\\ &= \frac{1}{(L_1\cos1 + L_2\cos1p2) \times (-L_2\sin1p2) - (L_2\cos1p2) \times (-L_1\sin1 - L_2\sin1p2)} \begin{bmatrix} -L_2\sin1p2 & -L_2\cos1p2\\ -(-L_1\sin1 - L_2\sin1p2) & L_1\cos1 + L_2\cos1p2 \end{bmatrix}\\ &= \frac{1}{(-L_1L_2\cos1\sin1p2) + (-L_2^2\cos1p2\sin1p2) + (L_2L_1\sin1\cos1p2) + (L_2^2\cos1p2\sin1p2)} \begin{bmatrix} -L_2\sin1p2 & -L_2\cos1p2\\ -(-L_1\sin1 - L_2\sin1p2) & L_1\cos1 + L_2\sin1p2 \end{bmatrix}\\ &= \frac{1}{(-L_1L_2\cos1\sin1p2) + (L_2L_1\sin1\cos1p2)} \begin{bmatrix} -L_2\sin1p2 & -L_2\cos1p2\\ L_1\sin1 + L_2\sin1p2 & L_1\cos1 + L_2\cos1p2 \end{bmatrix}\\ &= \frac{1}{L_1L_2(\sin1\cos1p2 - \cos1\sin1p2)} \begin{bmatrix} -L_2\sin1p2 & -L_2\cos1p2\\ L_1\sin1 + L_2\sin1p2 & L_1\cos1 + L_2\cos1p2 \end{bmatrix}\\ &= \frac{1}{L_1L_2(\sin1\cos1p2 - \cos1\sin1p2)} \begin{bmatrix} -L_2\sin1p2 & -L_2\cos1p2\\ L_1\sin1 + L_2\sin1p2 & L_1\cos1 + L_2\cos1p2 \end{bmatrix} \end{split}$$

三角関数の加法定理より

$$= \frac{1}{-L_1 L_2 \sin 2} \begin{bmatrix} -L_2 \sin 1p2 & -L_2 \cos 1p2 \\ L_1 \sin 1 + L_2 \sin 1p2 & L_1 \cos 1 + L_2 \cos 1p2 \end{bmatrix}$$

今の関節角を求める式を置き換えます。

$$\begin{bmatrix} \theta_{1i} \\ \theta_{2i} \end{bmatrix} = \begin{bmatrix} \theta_{1i-1} \\ \theta_{2i-1} \end{bmatrix} + \frac{1}{-L_1 L_2 \sin \theta_{2i-1}} \begin{bmatrix} -L_2 \sin(\theta_{1i-1} + \theta_{2i-1}) & -L_2 \cos(\theta_{1i-1} + \theta_{2i-1}) \\ L_1 \sin \theta_{1i-1} + L_2 \sin(\theta_{1i-1} + \theta_{2i-1}) & L_1 \cos \theta_{1i-1} + L_2 \cos(\theta_{1i-1} + \theta_{2i-1}) \end{bmatrix} \begin{bmatrix} \frac{dX_i}{dt} \\ \frac{dY_i}{dt} \end{bmatrix}$$

行列式を解きます。下記の式が実際にプログラムに記載されている式です。

$$\begin{split} \theta_{1i} &= \theta_{1i-1} + \frac{1}{-L_1 L_2 \sin \theta_{2i-1}} \left\{ -L_2 \sin(\theta_{1i} + \theta_{2i}) \times \frac{dX_i}{dt} - L_2 \cos(\theta_{1i} + \theta_{2i}) \times \frac{dY_i}{dt} \right\} \\ \theta_{2i} &= \theta_{2i-1} + \frac{1}{-L_1 L_2 \sin \theta_{2i-1}} \left[\left\{ L_1 \sin \theta_{1i-1} + L_2 \sin(\theta_{1i-1} + \theta_{2i-1}) \right\} \times \frac{dX_i}{dt} + \left\{ L_1 \cos \theta_{1i-1} + L_2 \cos(\theta_{1i-1} + \theta_{2i-1}) \right\} \times \frac{dY_i}{dt} \right] \end{split}$$

2.4.4 誤差補正

逐次ヤコビ演算の誤差補正の計算を以下に示します。

逐次ヤコビ演算結果の関節角度から座標(X,Y)を計算します。

$$X = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$$

$$Y = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$$

補間座標(期待値)との誤差を計算します。

$$\Delta X = X_{hokan} - X$$

$$\Delta Y = Y_{hokan} - Y$$

ヤコビ行列Jを用いて座標の誤差から角度の誤差を計算します。

$$\begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix} = J^{-1} \begin{bmatrix} \Delta X \\ \Delta Y \end{bmatrix}$$

 $\theta_{1,2}$ + $\Delta\theta_{1,2}$ したものを $\theta_{1,2}$ とする。

 $\Delta X \geq \Delta Y$ が許容誤差 ϵ より小さくなるまで行う。

2.5 タイムチャート

CP 制御時の Typ./Max.タイムチャートを以下に示します。

軌跡計算の処理時間はシミュレータで計測したもので、コマンド解析と通信は机上見込みの時間で記載します。

通信の応答待ちのタイムアウトは $100\,\mu$ s です。応答待ち時間内に応答がなかった場合のリトライは最大 1 回までで、2 回連続でタイムアウトとなる場合には、通信エラーと判断し通信動作を停止およびサーボ OFF となります。したがって、最大時間を要する状態は、図 2-5 に示すように、スレーブ 1、2 ともに 1 回目の通信 (78 コマンド) において $100\,\mu$ s 以内に応答がなかったためタイムアウトとなりリトライが発生し、2 回目の応答はタイムアウト直前で応答($99\,\mu$ s)した場合となります。

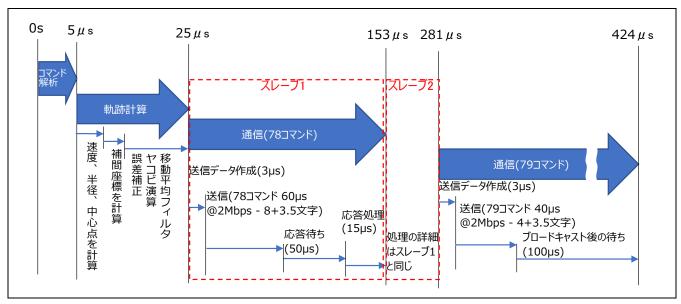


図 2-4 タイムチャート (Typ.)

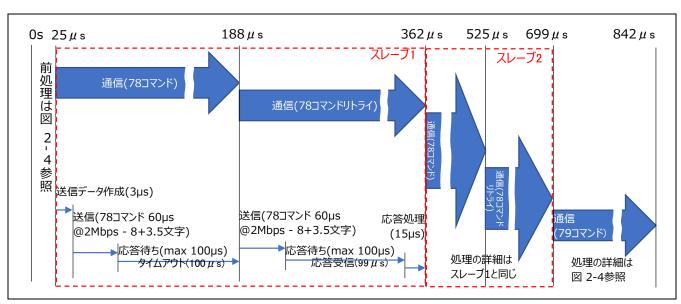


図 2-5 タイムチャート (Max.)

2.6 使用する周辺機能と端子一覧

NC 制御ソフトウェアで使用する周辺機能一覧を表 2-9 に、使用端子一覧を表 2-10 に示します。

表 2-9 使用周辺機能一覧

周辺機能	用途		
SCI6	PC~RX72M 間通信		
SCI10	RX72M~RX24T 間通信		
CRC	CRC 演算		
CMT0	CP 制御時の同期コマンド周期		
CMT1	Modbus 通信 2 文字分の間隔		
CMT2	Modbus 通信 1.5 文字分の間隔		
CMT3 タイムアウト全般			
	1. CP 制御 100us		
	2. CP 制御以外 1000us		
TMR0_TMR1 (16bit)	汎用ウエイト		
ポート PL0	RS-485 送信イネーブル端子		

表 2-10 使用端子一覧

ピン番号	端子名	入出力	用途
E3	P00	出力	PC 接続用 TX 端子(SCI6)
D5	P01	入力	PC 接続用 RX 端子(SCI6)
N9	PC7	出力	RS-485 用 TX 端子(SCI10)
N3	P86	入力	RS-485 用 RX 端子(SCI10)
H11	PL0	出力	RS-485 送信イネーブル端子
J1	XTAL	入力	24MHz 水晶発振子
H1	EXTAL	入力	24MHz 水晶発振子
K1	PH7	出力	ET-XICLK(25MHz 出力)

2.6.1 SCI6 · SCI10

PC-GUI~RX72M 間、および RX72M~RX24T 間の通信にそれぞれ SCI6、および SCI10 を調歩同期モードで使用します。SCI6 の設定を表 2-11 に、SCI10 の設定を表 2-12 に示します。

表 2-11 SCI6 設定

項目	設定
シリアル通信方式	調歩同期式
スタートビットの検出	RXD6 端子の Low レベル
データ・ビット長	8 ビット
パリティ設定	禁止
ストップビット設定	1 ビット
データ転送方向設定	LSB ファースト
転送速度設定	● 転送クロック:内部クロック
	• ビットレート: 115200bps
	● ビットレートモジュレーション機能:無効
	● SCK6 端子機能:SCK6 を使用しない
ノイズフィルタ設定	使用
ハードウェアフロー制御設定	禁止
データー致検出機能	無効
データ処理設定	送信データ処理:割り込みサービスルーチンで処理する
	受信データ処理:割り込みサービスルーチンで処理する
割り込み設定	TXI6 優先順位:6
	RXI6 優先順位:6
	受信エラー割り込み:許可
	TEI6、ERI6 優先順位(グループ BL0):6
コールバック機能設定	送信完了
	受信完了
	受信エラー
入出力端子	• 出力: TXD6 (P00)
	• 入力: RXD6 (P01)

表 2-12 SCI10 設定

項目	設定
シリアル通信方式	調歩同期式
FIFO モード選択	非 FIFO モード
スタートビットの検出	RXD10 端子の Low レベル
データ・ビット長	8 ビット
パリティ設定	禁止
ストップビット設定	1 ビット
データ転送方向設定	LSB ファースト
転送速度設定	● 転送クロック:内部クロック
	• ビットレート : 2Mbps
	ビットレートモジュレーション機能:有効
	● SCK10 端子機能: SCK10 を使用しない
ノイズフィルタ設定	使用
ハードウェアフロー制御設定	禁止
データー致検出機能	無効
データ処理設定	送信データ処理:割り込みサービスルーチンで処理する
	受信データ処理:割り込みサービスルーチンで処理する
割り込み設定	TXI10 優先順位:10
	RXI10 優先順位:10
	受信エラー割り込み:許可
	TEI10、ERI10 優先順位(グループ AL0): 10
コールバック機能設定	送信完了
	受信完了
	受信エラー
入出力端子	• 出力: TXD10 (PC7)
	• 入力:RXD10 (P86)

2.6.2 CRC

通信内容の確認に CRC 演算器を使用する。設定を表 2-13 に示す。

表 2-13 CRC 設定

項目	設定
生成多項式	CRC_16
ビット順	LSB
初期値	0xFFFF
演算結果の反転	なし

2.7 プロジェクト構成

2.7.1 動作条件

プロジェクトの動作条件を以下に示します。

表 2-14 動作条件

項目	説明		
マイコン	RX72M R5F572MNDDBD		
	電源電圧(VCC) 3.3V		
	動作周波数		
	ICLK 240MHz		
	PCLKA 120MHz (SCI10)		
	PCLKB 60MHz (SCI6, CMT0-3, TMR0_TMR1)		
ボード	RTK5572MNDC00000BJ		
IDE	e ² studio V7.7.0		
コンパイラ	CC-RX V3.02.00		
エミュレータ	E1 エミュレータ		

2.7.2 構成イメージ

プロジェクトにおいて、機能毎に分類した構成イメージを以下に示します。

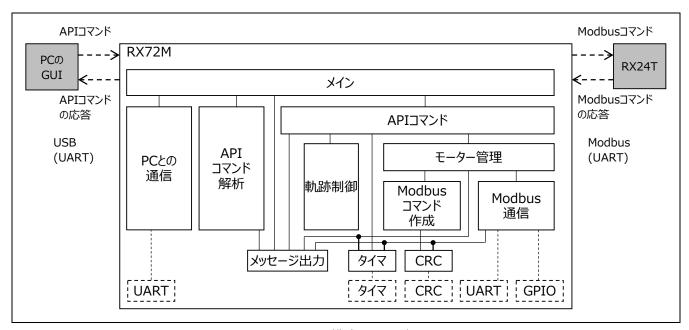


図 2-6 構成イメージ

3. デモ機の動作方法

本章ではデモ機の動作方法について説明します。はじめにモータおよびデモ機のチューニングを実施したのち、GUIによるデモ動作のティーチングを行い、デモ機アームに所望の動作をさせます。

3.1 チューニング

3.1.1 オフセット調整

レゾルバ付きモータを駆動するには、モータの磁極位置をソフトウェア上で正しく設定する必要があります。また、併せて電流検出値のオフセット量を調整し、電流のゼロ調整を行う必要があります。この操作をオフセット調整と呼称し、以下の手順で実施します。ここで、モータに負荷が取り付けられている状態では一部の調整が正常実施できないため、各モータが無負荷な状態で実施します。なお、オフセット調整結果はマイコン内のフラッシュに書き込むため、本操作は一度だけ実施すればよく、電源を OFF にしたあとでも再度のオフセット調整の必要はありません。ただし、モータまたは制御ボードを変更した場合には必ず実施する必要があります。

- 42□または85□ボードにエミュレータ(E1 または E2 Lite)を接続し、「モータ駆動用サンプルソフトウェア(42□ボード用はRX24T_ROBOT42_STM_RSLV_FOC、85□ボード用はRX24T_ROBOT42_STM_RSLV_FOC)を書き込みます。
- 2. エミュレータを外したのち、RMW 通信ボードを介して RMW がインストールされた PC と接続します。
- 3. RMW を起動し、Control Window にて「com_u1_sw_userif」に 0 を書き込み、RMW 操作モードに切り替えます。
- 4. 「com_u1_system_mode」に7を書き込み、オフセット調整を実施します。
- 「com_u1_system_mode」を読みとり、値が0になったことを確認した後、「com_u1_system_mode」に8を書き込み、フラッシュ書き込みを実施します。
- 6. 「com_u1_system_mode」を読みとり、値が 0 となっていればフラッシュ書き込みが完了し、オフセット調整が終了です。

以上の操作を、42口モータ、85口モータの両方に対して実施します。

上記手順を完了後、試運転として、90°位置、-90°位置へ指令を与えて、所望の位置に移動するかの確認を以下の手順で実施します。動作しなかった場合、オフセット調整のやり直しを試します。

- 1. com_u1_system_mode に 1 を書き込み、位置制御を開始します。
- 2. com_f4_pos_ref_deg に 90 を書き込みます。
- 3. com u1 enable write に 1 を書き込み、モータが時計回り方向に 90 度回転することを確認します。
- 4. com f4 pos ref deg に-90 を書き込みます。
- 5. com_u1_enable_write に 0 を書き込み、モータが逆時計周り方向に 90 度回転することを確認します。
- 6. com_u1_system_mode に 0 を書き込み、位置制御を終了します。

本デモ機はアームとモータがギアレスの直結構造となっているため、機械共振が発生しやすく、共振抑制フィルタのチューニングが必要となります。42ロモータ、85ロモータとアームを接続した状態で、42ロボード、85ロボードそれぞれについて、以下の手順でそれぞれ共振抑制フィルタを調整します。

- 1. RMW から任意の位置指令を与えてモータを駆動し、そのときの速度指令と実際速度の間の周波数特性を FFT アナライザで測定して、共振周波数を特定します(図 3-1 参照)。共振ピークと反共振ピークが ある場合は、それぞれの共振周波数を記録します。また、複数の共振点が見受けられる場合にも、同様 に共振周波数を記録します。なお、FFT アナライザがない場合には、適当な位置指令値を与えたとき に、マイコンでの位置信号フィードバック値を D/A を使用してモニタリング、または振動センサなどの 外部センサをとりつけてモニタリングし、共振波形から共振周波数を推定します(図 3-2 参照)。
- 2. モータ駆動用サンプルソフトウェアのプロジェクト内にある、r_app_main.c 内の init_torq_filter 関数内で呼び出される R_MTR_SRFOC_SetTorqFilterParam の引数を、共振周波数に併せてソフトウェア変更し、リビルドを実行します。
- 3. エミュレータを各ボードへ接続し、リビルド後のソフトウェアを書き込みます。
- 4. 再度、RMW を接続して任意の位置指令を与え、共振特性が改善されていることを確認します。改善されていない場合、手順1に戻り、フィルタの修正を行います。

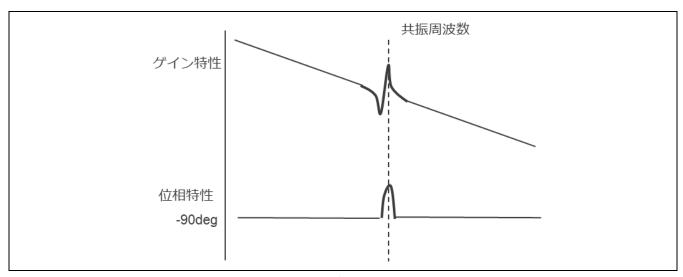


図 3-1 FFT アナライザによる共振周波数の確認

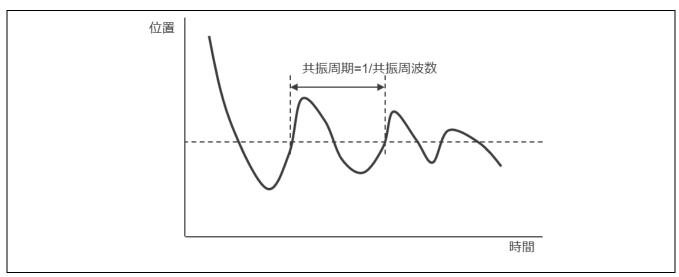


図 3-2 速度信号のモニタリングによる共振周波数の確認

• 関数名: R MTR SRFOC SetTorgFilterParam

• 入力:

q2

(uint8_t) id /モータ ID

(uint8 t) no /フィルタ番号

(uint8_t) type /フィルタタイプ(0:フィルタなし、1:一次遅れフィルタ、2:ノッチフィルタ)

(float) freq /周波数[Hz]

(float) q1 / Q1 値

(float) q2 / Q2 值

共振抑制フィルタは5段階構成であり、パラメータは指定されてフィルタ番号のフィルタに反映されます。表 3-1 に示す各パラメータの設定目安を参考に、フィルタのパラメータを決定します。

設定項目(引数)共振周波数 500Hz 未満の場合共振周波数 500Hz 以上の場合idMTR_ID_Ano1 から順番に指定してくださいtype2 (ノッチフィルタ)1 (一次遅れフィルタ)freq共振周波数[Hz]400q110

表 3-1 共振抑制フィルタの設定の目安

複数の共振が存在する場合、引数 no でフィルタ番号を指定し、多段階の共振抑制フィルタを構築します。

0

例として、共振周波数 100Hz、300Hz、900Hz の複数共振があった場合、ソフトウェア上で下記のコードを記述することで、100Hz と 300Hz のノッチフィルタ及び 400Hz の一次遅れフィルタによる共振抑制フィルタを構成し、機械共振を抑制します。

R_MTR_SRFOC_SetTorqFilterParam(MTR_ID_A, 1, 2, 100, 1, 10);

10

R_MTR_SRFOC_SetTorqFilterParam(MTR_ID_A, 2, 2, 300, 1, 10);

R_MTR_SRFOC_SetTorqFilterParam(MTR_ID_A, 3, 1, 400, 0, 0);

3.2 GUI によるデモ動作

デモ機のチューニング完了後、GUI を用いて、デモ機のティーチングおよびデモ動作を実行します。図 3-3 にデモ動作までのおおまかな流れを示します。

図 3-3 デモ動作までのおおまかな流れ

3.2.1 準備

以下の手順で、動作準備を行います。なお、NC 制御ボードへの接続仕様は 1.3 節に記載しています。

- ① NC 制御ボードとエミュレータを接続し、NC 制御ボードへ NC 制御用ソフトウェア (RobotArm rx72m.mot)を書き込みます。
- ② ソフトウェア書き込み完了後、エミュレータを NC 制御ボードから外し、NC 制御ボードと PC を USB で接続します。
- ③ PC 上で、GUI を起動します。(1.6 節参照)

3.2.2 ワーク原点登録

ティーチングの前に、基準となる座標(=ワーク原点)を設定します。図 3-4 に示す手順で、ワーク原点 登録を行います。ワーク原点登録は、電源投入時に必ず設定が必要ですが、setup_workzeroangle のコマンド 内容をテキスト保存しておき、電源投入時にコマンド内容が記述されたテキスト読み込ませることで操作を 省くこともできます。

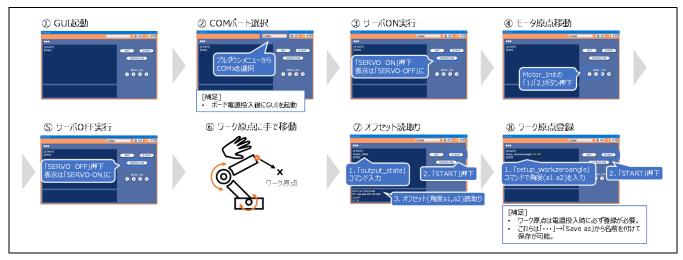


図 3-4 ワーク原点登録手順

3.2.3 ティーチング

図 3-5 に示す手順で、ティーチングを行います。任意の点にアームを手で移動させ、GUI 上でコマンドを実行して座標を読み取り、読み取った座標を元に動かしたい動作を記述します。

また、入力したコマンドをテキスト保存することで、次回以降はテキストの読み込みにより再ティーチングの手間を省くことができます。なお、使用可能なコマンドについては別紙アプリケーションノート「R01AN5662JJ0100」を参照ください。

参考として、図 3-6 に 8 の字軌跡、図 3-7 に M の字軌跡のティーチング例を記載します。

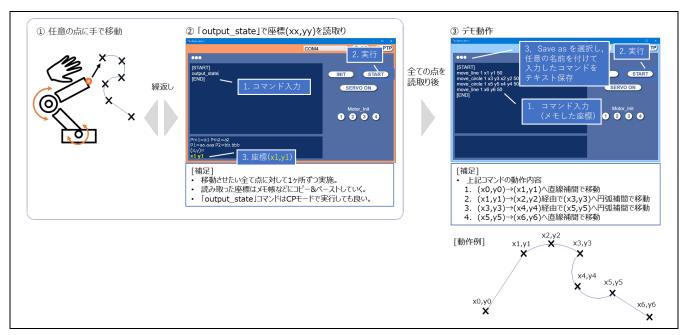


図 3-5 ティーチング動作手順

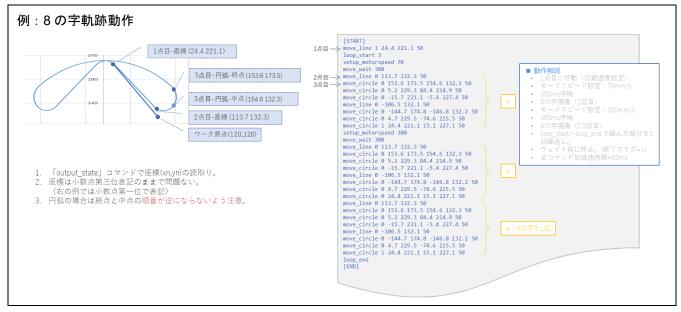


図 3-6 8 の字軌跡のティーチング

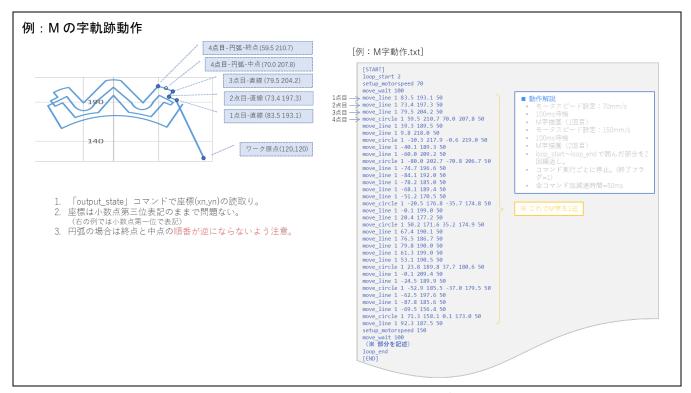


図 3-7 Mの字軌跡のティーチング

3.2.4 デモ動作

図 3-8 に示す方法で、ティーチングした動作をデモ機に行わせます。ティーチング内容をあらかじめ記述したテキストファイルを読み込ませて動作させることもできます(図 3-9)。

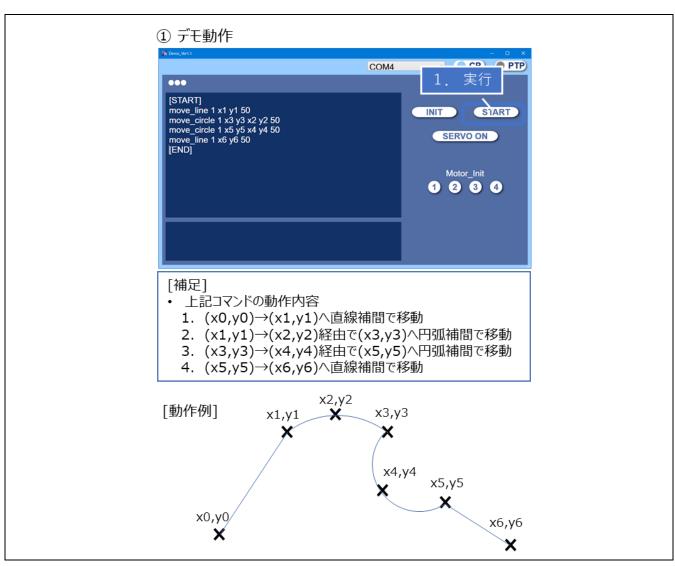


図 3-8 デモ動作方法

図 3-9 テキストファイルの読み込み方法

3.3 取り扱い注意事項

- GUI や NC 制御用ソフトウェアには事故・故障防止やフェイルセーフのための機能は実装されていないため、必要に応じてユーザー側で安全のための機能を実装してください。
- NC 制御用ソフトウェアでは異常動作や意図しない停止状態になった場合の原因を突き止められるようになっていません。このような場合にはリセットを行ってください。
- move_xxx コマンドで停止する場合、終了フラグ=0に設定すると加速度=∞でモータが動作することになり、振動が発生します。また、停止時は指定座標からずれます。したがって、停止時は終了フラグ=1としてください。
- move_xxx コマンドを組み合わせて進行方向を変化させる場合、終了フラグ=0 に設定すると加速度=∞でモータが動作することになり、振動が発生します。したがって、終了フラグ=0 で動作を繋ぐ場合(例えば直線⇔円弧、円弧⇔円弧といった連続動作を行う場合)は、滑らかに向きが変化するようにしてください。

改訂記録	レゾルバ付き 2 相ステッピングモータを使用した 2 軸アーム ロボットのリファレンスガイド RX24T、RX72M、 RAA3064002GFP/RAA3064003GF
	ユーザーズマニュアル

		改訂内容	
Rev.	発行日	ページ	ポイント
1.00	2025年8月19日	_	初版発行

レゾルバ付き2相ステッピングモータを使用した2軸アームロボットのリファレンスガイド RX24T、RX72M、RAA3064002GFP/RAA3064003GF

