
 Application Note

R01AN6289EJ0100 Rev.1.00 Page 1 of 46

Mar. 04, 2022

RX23W Group

Guide for Concurrent Use of Bluetooth Low Energy and USB

Summary

This document describes the things to keep in mind when you implement applications that uses Bluetooth
Low Energy and USB 2.0 communications concurrently in the RX23W MCU. Also, this introduces the sample
program that uses Bluetooth Low Energy and USB 2.0 communications concurrently.

The following contexts are described as the things to keep in mind.

- The implementation of Application and the settings of Bluetooth Low Energy operation to maintain the
performance of Bluetooth LE and USB

- The overview and the priorities of tasks to control Bluetooth Low Energy and USB

- How to check the conditions for transitions to the low power consumption state of MCU and BLE module

- How to use API to use a clock output from CLKOUT_RF pin as a USB clock

Tested Device

Renesas Solution Starter Kit for RX23W (RTK5523W8AC00001BJ)

Table of Contents

1. Example of Assumed System Configuration .. 4

2. Things To Keep in Mind ... 5

2.1 Controlling Bluetooth LE and USB Communications .. 5

2.1.1 Operation Overview of BLE Protocol Stack and USB Driver .. 5

2.1.2 Influence of Long Processing Time of Application Running in Main Loop .. 5

2.1.3 Cases Where the Processing Time of R_BLE_Execute() Becomes Longer 6

2.1.4 Influence of the Connection Interval of Bluetooth LE .. 7

2.1.5 Necessity of Flow Control of USB Communication ... 8

2.1.6 Necessity of Data Retransmission of Bluetooth LE Communication and USB Communication 9

2.2 FreeRTOS Task Setting .. 10

2.2.1 FreeRTOS Tasks for BLE Control and USB Control... 10

2.3 Reduction of Power Consumption ... 11

2.3.1 Low Power Consumption mode of the MCU ... 11

2.3.2 Transition to MCU Low Power Consumption Mode When Using FreeRTOS 11

2.3.3 Condition of BLE for Transition to MCU Low Power Consumption ... 11

2.3.4 Condition for Transition to RF Sleep Mode of BLE Module .. 11

2.3.5 Condition of USB for Transition to MCU Low Power Consumption .. 12

2.4 Clock Setting ... 13

2.4.1 Setting for Using the CLKOUT_RF pin Output Clock as USB Clock .. 13

3. Sample Program .. 14

3.1 Overview .. 14

3.2 Projects .. 15

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 2 of 46

Mar. 04, 2022

3.3 Operation Check Conditions ... 18

3.4 Configuration and Operation ... 19

3.5 Usage .. 22

3.5.1 Importing Projects to e2 studio and Building.. 22

3.5.2 Writing Program Files to the Evaluation Boards ... 24

3.5.3 Evaluating Bluetooth LE and USB communications ... 25

3.6 R_BLECTRL Interface ... 29

3.6.1 R_BLECTRL_Open ... 29

3.6.2 R_BLECTRL_Close .. 29

3.6.3 R_BLECTRL_RegisterCb .. 29

3.6.4 R_BLECTRL_RegisterTxBuffer... 30

3.6.5 R_BLECTRL_StartPeripheral .. 30

3.6.6 R_BLECTRL_StartCentral .. 31

3.6.7 R_BLECTRL_Disconnect .. 31

3.6.8 R_BLECTRL_GetTxBufferSpace .. 31

3.6.9 R_BLECTRL_TransmitData .. 32

3.6.10 blectrl_main ... 32

3.6.1 blectrl_evt_cb_t ... 32

3.6.2 e_blectrl_status_t .. 33

3.6.3 e_blectrl_evt_t ... 33

3.6.4 st_blectrl_evt_param_t .. 34

3.7 R_USBCTRL Interface .. 35

3.7.1 R_USBCTRL_Open .. 35

3.7.2 R_USBCTRL_Close .. 35

3.7.3 R_USBCTRL_RegisterCb ... 35

3.7.4 R_USBCTRL_RegisterTxBuffer .. 36

3.7.5 R_USBCTRL_SuspendRx .. 36

3.7.6 R_USBCTRL_ResumeRx ... 36

3.7.7 R_USBCTRL_GetTxBufferSpace ... 36

3.7.8 R_USBCTRL_TransmitData ... 37

3.7.9 R_USBCTRL_GetAllowedLpcMode .. 37

3.7.10 usbctrl_main .. 37

3.7.11 usbctrl_evt_cb_t .. 38

3.7.12 e_usbctrl_status_t ... 38

3.7.13 e_usbctrl_evt_t .. 38

3.7.14 st_usbctrl_evt_param_t ... 39

3.7.15 State Transition of BLE Control Processing .. 40

3.7.16 State Transition of USB Control Transition ... 41

3.8 How to Customize and Notes for Final Products .. 42

3.8.1 Changing the Service Configuration of the BLE Control Application .. 42

3.8.2 Operation Setting for enhancing Throughput of the BLE Control Application 43

3.8.3 Security features of BLE Control Application .. 43

3.8.4 Permission of Software Standby Mode of BLE Control Application .. 43

3.8.5 Bluetooth SIG Qualification ... 43

3.8.6 Compliance with the Radio Laws and Acquisition of Certification .. 43

3.8.7 DTC Transfer of DMA Transfer of USB Driver .. 44

3.8.8 Getting a USB Vendor ID .. 45

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 3 of 46

Mar. 04, 2022

Revision History .. 46

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 4 of 46

Mar. 04, 2022

1. Example of Assumed System Configuration

This document describes the things to keep in mind when you use Central or Peripheral operation of
Bluetooth Low Energy (LE) and Peripheral operation of USB 2.0 communications concurrently in the RX23W
MCU.

Figure 1-1 shows an example of the configuration of the system assumed by this document. The BLE FIT
Module and the GATT Service code generated by QE for BLE are used for Bluetooth LE communication.
The USB Basic Mini FIT Module and the USB Class FIT Modules such as PCDC (Peripheral Communication
Device Class) are used for USB communication.

Figure 1-1 Example of Assumed System Configuration

For more information on the RX23W MCU, BLE FIT Module, QE for BLE, USB Basic FIT Module, and each
USB Class PCDC FIT module, refer to the documents published in the following websites.

RX23W
https://www.renesas.com/rx23w

- RX23W Group User's Manual: Hardware (R01UH0823)

Bluetooth® Low Energy Protocol Stack for RX family
https://www.renesas.com/software-tool/bluetooth-low-energy-protocol-stack-rx-family

- RX23W Group BLE Module Firmware Integration Technology (R01AN4860)
- RX23W Group Bluetooth Low Energy Application Developer's Guide (R01AN5504)
- RX23W Group Bluetooth Low Energy Profile Developer's Guide (R01AN4553)

QE for BLE: Development Assistance Tool for Bluetooth® Low Energy
https://www.renesas.com/qe-ble

USB Drivers
https://www.renesas.com/software-tool/usb-drivers

- RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) using Firmware
Integration Technology (R01AN2166)

code generated by QE for BLE

BLE FIT Module

each USB Class FIT Module

(PCDC)

(PHID)

(PMSC)

USB Basic Mini FIT Module

(FreeRTOS)

RX23W MCU

User Application that uses Bluetooth LE and USB concurrently

BLE Protocol Stack
USB Peripheral

Control Driver

Profile Framework

Service API

BLE module USB module

https://www.renesas.com/rx23w
https://www.renesas.com/software-tool/bluetooth-low-energy-protocol-stack-rx-family
https://www.renesas.com/qe-ble
https://www.renesas.com/software-tool/usb-drivers

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 5 of 46

Mar. 04, 2022

2. Things To Keep in Mind

2.1 Controlling Bluetooth LE and USB Communications

BLE Protocol Stack and USB Driver cannot complete the control of the peripheral modules with interrupt
handlers only and needs additional control processing in a main loop or on an OS task. To maintain
performance of Bluetooth LE and USB communications, application must be implemented not to delay the
execution of these additional processing.

2.1.1 Operation Overview of BLE Protocol Stack and USB Driver

The BLE Protocol Stack manages the processing (tasks) that control the BLE module of the RX23W with a
queue. When an application calls the BLE API or an interrupt is generated from the BLE module, a task is
added to the queue. Tasks added to the queue are executed by the R_BLE_Execute() which is called by a

main loop in an OS-less environment or which is called by a loop on the FreeRTOS task in a FreeRTOS
environment.

Similarly, the USB Peripheral Control Driver manages the processing (tasks) that control the USB module of
the RX23W with a queue. When an application calls the USB API or an interrupt is generated from the USB
module, a task is added to the queue. Tasks added to the queue are executed by the R_USB_GetEvent()

which is called by a main loop in an OS-less environment, or executed by the USB peripheral control driver
task usb_pstd_pcd_task() in a FreeRTOS environment.

Table 2-1 Task Processing Function

Figure 2-1 shows an example of the operation of the BLE Protocol Stack and the USB Peripheral Control
Driver. When an interrupt (BLEIRQ) is generated from the BLE module, an interrupt handler:
r_ble_bleirq_interrupt_func() adds a task to the BLE control queue. The added task is executed by

R_BLE_Execute(). When an interrupt (USBI) is generated from the USB module, an interrupt handler:

usb_cpu_usb_interrupt() adds a task to the USB control queue. The added task is executed by

R_USB_GetEvent().

Figure 2-1 Example of the Operation of BLE Protocol Stack and USB Peripheral Control Driver

2.1.2 Influence of Long Processing Time of Application Running in Main Loop

RX23W performs BLE control, USB control, and other processing such as applications with single CPU. If an
application running in the main loop occupies the CPU for a long time, it affects BLE control and USB control.
Especially, Bluetooth LE communicates with adjusting the timing of transmission and reception, so a
connection may be terminated if BLE control processing is not performed in time. To reduce execution delay
for BLE control and USB control, when implementing applications and other processing, shorten the
processing time of interrupt handler and the interrupt disabled period as much as possible. When OS is not
used, shorten the processing time of applications in a main loop as much as possible.

BLE task USB task BLE task

r_ble_bleirq_

interrupt_func

R_BLE_Executeusb_cpu_usb_

interrupt

r_ble_bleirq_

interrupt_func

R_BLE_Execute R_USB_GetEvent

[USBI][BLEIRQ] [BLEIRQ]

Peripheral Module
Task Processing Function

OS-less FreeRTOS

BLE module R_BLE_Execute()

USB module R_USB_GetEvent() usb_pstd_pcd_task()

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 6 of 46

Mar. 04, 2022

Figure 2-2 shows an example of the operation of application and BLE control processing. When application
processing: app_func() in a main loop consumes a long processing time, as shown in [A] in the figure, the

delay time from the r_ble_breirq_interrupt_func() to the execution of R_BLE_Execute() is increased.

Divide the application processing in the main loop into app_func_a() and app_func_b(), as shown in [B]

and [C] in the figure, to shorten the execution delay to the execution of R_BLE_Execute(). Especially, it is

recommended that the delay time is within a few milliseconds during a connection of Bluetooth LE. If the
execution time of applications, consider using the FreeRTOS.

Figure 2-2 Example of the Operation of Application and BLE Control Processing

2.1.3 Cases Where the Processing Time of R_BLE_Execute() Becomes Longer

The R_BLE_Execute() in the BLE Protocol Stack executes the tasks in the BLE control queue sequentially.

This function does not return control until all tasks in the BLE control queue have been executed and the
queue is empty. Depending on the situation of tasks in the BLE control queue, the CPU may be occupied by
R_BLE_Execute() for a long time, and subsequent processing such as USB control executed in the main

loop may be delayed.

When data is received continuously from peer device and interrupts are generated, as shown in [A], [B], and
[C] in Figure 2-3, tasks are added continuously to the BLE control queue and R_BLE_Execute() may occupy

the CPU for a long time. To reduce long CPU occupancy by R_BLE_Execute(), adjust Scan Interval and

Scan Window, Connection Interval and Maximum Connection Event Length (Max_CE_Length) respectively
to reduce the frequency of Scan and Connection Events.

For example, in the case of Scan Interval = 60ms and Scan Window = 60ms, the duty cycle of Scan Event is
100%. By changing the Scan Window to 30ms, the duty cycle of Scan Event becomes 50%, and the
frequency of interrupt by receiving Advertising packet and CPU occupancy by R_BLE_Execute() will be

reduced.

Similarly, in the case of Connection Interval = 50ms and Maximum Connection Event Length = 50ms, the
maximum duty cycle of Connection Event is 100%. By changing the Maximum Connection Event Length to
25ms, the duty cycle of Connection Event becomes 50%, and the frequency of interrupt by receiving data
packet and CPU occupancy by R_BLE_Execute() will be reduced.

Figure 2-3 Bluetooth LE Communication Events with High Frequency

app_func_a app_func_bapp_func_a
r_ble_bleirq_

interrupt_func
app_func_a R_BLE_Execute app_func_b

app_func
r_ble_bleirq_

interrupt_func
app_func R_BLE_Execute app_func

[BLEIRQ]
Execution Delay to the R_BLE_Execute()

Execution Delay to the R_BLE_Execute()
[BLEIRQ]

[A] [A]

[B] [B] [C]

BLE task[1] BLE task[2] BLE task[3]

r_ble_bleirq_

interrupt_func

R_BLE_Execute r_ble_bleirq_

interrupt_func

R_BLE_Execute r_ble_bleirq_

interrupt_func

R_BLE_Execute

[BLEIRQ] [BLEIRQ] [BLEIRQ][A] [B] [C]

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 7 of 46

Mar. 04, 2022

A callback function registered in BLE Protocol Stack is also executed by a task of R_BLE_Execute(). When

the processing time of the callback function is long, as shown in [A] in Figure 2-4, subsequent tasks in the
BLE control queue may be delayed and the performance of Bluetooth LE communication may be degraded.
Shorten the processing time of the callback function as much as possible.

For example, in the case that 244 bytes of GATT Service data is received continuously during connection
with 1M-PHY, transmission and reception operation is performed at intervals of 2.5ms. In this condition,
callback function is called at intervals of 2.5ms, so it is recommended that the execution time of callback
function is within 2.5ms.

Figure 2-4 Bluetooth LE Event Callback Function with Long Processing Time

R_BLE_SetEvent() of BLE Protocol Stack allows any user function to be added to the BLE control queue as

a task. The added user function is executed by R_BLE_Execute(). However, if the processing time of the

added user function is long, as shown in [A] in Figure 2-5, subsequent tasks in the BLE control queue may
be delayed and the performance of Bluetooth LE communication may be degraded. If the processing time of
the user function is long, divide it into two or more functions and add them to the BLE control queue again
using R_BLE_SetEvent(), as shown in [B] and [C] in the figure.

Figure 2-5 Operation of User Functions Added to BLE Control Queue

2.1.4 Influence of the Connection Interval of Bluetooth LE

Figure 2-6 shows an example of the transmission and reception operation of connected Bluetooth LE
devices. After a connection of Bluetooth LE is established, Central device and Peripheral device perform
transmission and reception operation alternately at each connection interval and can transmit data
alternately at one connection event. Data which application requests to transmit at [A] or [B] in the figure is
sent at the next connection event [C] in the figure.

The longer the Connection Interval (up to 4 sec), the less frequent the transmission and reception operations
and the less CPU occupancy and power consumption, but the longer the delay between the data
transmission request of the application to BLE Protocol Stack and the actual transmission.

The shorter the Connection Interval (a minimum of 7.5 msec), the shorter the transmission delay, but the
higher the power consumption of the MCU and BLE module because it performs transmission and reception
operation even when there is no data to transmit. Also, because BLE module control processing of the BLE
Protocol Stack runs more frequently, the CPU time available for application is reduced.

Determine the Connection Interval suitable for each system requirements while keeping in mind the above.
Also, the Connection Interval can be changed dynamically during a connection.

callback_func

R_BLE_Execute

BLE task[1]
BLE task[2]

r_ble_bleirq_

interrupt_func

[BLEIRQ]

[A]

callback_func

callback_func user_func_a

BLE task[4]

user_func
BLE task[3]

user_func_b

BLE task[2]
r_ble_bleirq_

interrupt_func

R_BLE_Execute

BLE task[1]

r_ble_bleirq_

interrupt_func

R_BLE_Execute

BLE task[1] BLE task[2]
BLE task[3]

[BLEIRQ]

[BLEIRQ]

[A]

[B] [C]

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 8 of 46

Mar. 04, 2022

Figure 2-6 Example of Transmission and Reception of Connected Bluetooth LE Devices

In addition, Figure 2-7 shows an example of the transmission and reception operation of connected
Bluetooth LE devices when Peripheral Latency is 2. The Peripheral Latency is a reduced number of
Connection Events that is performed by Peripheral device. By setting the Peripheral Latency to the value
other than zero, Peripheral device does not perform the number of connection events specified by the
Peripheral Latency and is able to reduce power consumption. Also, Central device always performs
connection events, so Peripheral device can perform connection events to transmit and/or receive data
irrespective of the Peripheral Latency.

The [A] in the figure shows a data transmission request by an application of Central device. When Peripheral
device does not perform a connection event according to the Peripheral Latency, data transmitted from
Central device cannot be received by Peripheral device. Central device retransmit the data in each
connection event until Peripheral device receives the data. Due to this reason, when the Peripheral Latency
is set, the delay until Peripheral device completes to receive the data of Central device.

Determine the Peripheral Latency suitable for each system requirements while keeping in mind the above.
Also, the Peripheral Latency can be changed dynamically during a connection.

Figure 2-7 Example of Transmission and Reception of Connected Bluetooth LE Devices
(Peripheral Latency = 2)

2.1.5 Necessity of Flow Control of USB Communication

Figure 2-8 shows an example of the transmission and reception operation of connected USB devices. The
[A] to [D] in the figure shows data transmission requests by the application. USB communication (USB 2.0) is
half-duplex and USB Host device controls reception or transmission. If the Host device continues to transmit
data, as shown in [C] in the figure, the Peripheral device cannot transmit data. If necessary, implement flow
control to the application of Host device side to prevent the Host device from being unable to receive data for
a long time.

RX TX RX TX RX TX RX TX

TX RX TX RX TX RX TX RX

Peripheral

Device

Central

Device

Data(A)Data(A)

Data(B)

Connection Interval Connection Interval

Connection Event Connection Event Connection Event[C][A]

Empty

Empty

Empty

Empty

Empt[B]

RX TX RX TX RX TX

TX RX TX RX TX RX TX RX TX RX TX RX TX RX

Peripheral

Device

Central

Device

Connection Interval

Empty

Empty

Peripheral Latency = 2

[A] Data(A) Data(A)

Empty

Empty Empty Empty

Empty

Empty

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 9 of 46

Mar. 04, 2022

Figure 2-8 Example of Transmission and Reception of Connected USB Devices

2.1.6 Necessity of Data Retransmission of Bluetooth LE Communication and USB Communication

BLE Protocol Stack and USB Driver may miss the received data due to a failure of dynamic resource
allocation. If necessary, it is recommended that the application verifies the integrity of the received data and
implement a mechanism to request data retransmission if missing a received data is detected.

Write Read Write Read

Read Write Read Write

Host

Device

Peripheral

Device

Data(A)

[A]

[B]
Data(B) Data(C)

[C]

[D]

Data(C) Data(D)Data(C)

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 10 of 46

Mar. 04, 2022

2.2 FreeRTOS Task Setting

Applications must be implemented to shorten the delay of performing BLE Protocol Stack or USB Driver.
When the execution time of application will be long or multiple applications will be implemented, using
FreeRTOS is recommended.

2.2.1 FreeRTOS Tasks for BLE Control and USB Control

In the case that BLE Protocol Stack is used on FreeRTOS, a task for controlling BLE module by repeatedly
calling R_BLE_Execute().

Because the callback function registered in the BLE Protocol Stack is executed by R_BLE_Execute(), if the

processing time of application that uses the BLE event as a trigger is long, create a new task for the
application.

When USB Peripheral Control Driver is used on FreeRTOS, the USB Peripheral Control Driver task
(usb_pstd_pcd_task) for controlling USB module is generated automatically.

Table 2-2 Required Tasks on FreeRTOS

Task Priority Overview

BLE Task

(app_main)

12

(recommended

for concurrent

use with USB)

Task for controlling the BLE module by calling

R_BLE_Execute() repeatedly

The callback functions that notify BLE events are

executed in this context

The BLE task is included in the code generated by QE for

BLE

BLE GATT Application Tasks

(Any task name)

0 to 7 Tasks for data transmission and reception with GATT

services

User implements.

USB Peripheral Control Driver Task

(usb_pstd_pcd_task)

11

(default)

Task for controlling USB module

A callback function that notifies USB events is executed in

this context

Task generated by the USB Peripheral Control Driver

automatically

USB Application Task

(Any task name)

0 to 7 Tasks for data transmission and reception with USB

User implements.

The BLE task for BLE Protocol Stack must control BLE module according to timing parameters, such as
Connection Interval. Therefore, the BLE task must have a higher priority than the BLE GATT application
task.

The USB Peripheral Control Driver task requires high-speed control of reading and writing from/to the FIFO
buffer to ensure transmission and reception capabilities of the USB module. Therefore, the USB Peripheral
Control Driver task must have a higher priority than the USB Application task.

It is recommended to give a higher priority than the USB Peripheral Control Driver task to the BLE task to
ensure the Bluetooth LE connection performance. Also, it is necessary to evaluate each application task
priority in each use case.

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 11 of 46

Mar. 04, 2022

2.3 Reduction of Power Consumption

When the state of MCU is changed to the low power consumption state, CPU and peripheral modules stop.
To change the state of MCU to the low power consumption mode without losing functionality, it is necessary
to check that all used peripheral modules meet the condition for the transition to the low power consumption
mode. When also using Bluetooth LE and USB, application must check the BLE Protocol Stack and the USB
Driver meet the condition for the transition.

2.3.1 Low Power Consumption mode of the MCU

Power consumption can be reduced by changing the state of RX23W MCU from the normal operation mode,
which is the program operation state, to any one of the sleep mode, deep sleep mode, or software standby
mode, which are low power consumption states. Operating conditions in each mode differ depending on
peripheral modules. Before changing the state of MCU to any one of low power consumption modes,
application must check that the BLE Protocol Stack and USB Peripheral Control Driver are in a condition that
can be changed to the low power consumption modes.

Return from the sleep mode and deep sleep mode can be done by using non-maskable interrupts and all
interrupts as a trigger, while return from software standby mode can be done by using only non-maskable
interrupts and a part of interrupts as a trigger. BLEIRQ of the BLE module and USBR of the USB module are
interrupts that can be used as a trigger to return from the software standby mode.

2.3.2 Transition to MCU Low Power Consumption Mode When Using FreeRTOS

FreeRTOS with default settings uses CMT module of RX23W uses for the system timer. CMT module and
other peripheral modules stops their operations in the Software standby mode. To change the state of MCU
to the Software standby mode in a FreeRTOS environment, it is necessary to verify stopping the system
timer does not affect operations of software work on FreeRTOS.

2.3.3 Condition of BLE for Transition to MCU Low Power Consumption

In the case of using BLE Protocol Stack, when BLE control queue in the BLE Protocol Stack is empty, the
state of MCU can be changed to the low power consumption mode. Whether the BLE control queue is empty
can be checked with R_BLE_IsTaskFree(). R_BLE_LPC_EnterLowPowerMode() is also provided for

stopping and restarting other peripheral modules and managing the low power consumption mode of the
MCU. To prevent access to the stopped peripheral modules, disable the context switching during execution
of R_BLE_LPC_EnterLowPowerMode() in a FreeRTOS environment.

After the transition to the low power consumption mode, the BLE Protocol Stack restores the state of MCU to
normal operating mode by the interrupt generated by the BLE module.

2.3.4 Condition for Transition to RF Sleep Mode of BLE Module

The state of BLE module is independent of the mode of MCU, so BLE module continue the operation even if
MCU is in the low power state. BLE protocol stack reduces power consumption by changing the state of BLE
module to RF Sleep mode automatically. To change the state of BLE module to RF Sleep mode, sufficient
RF suspended period is needed between the Bluetooth LE events.

Figure 2-9 shows the RF suspended period between the Bluetooth LE events. In each Bluetooth LE
operation, it is necessary to adjust the Advertising Interval, Scan Interval, Scan Window, and Connection
Interval so that RF suspended period becomes 80ms or longer. If the execution period of the connection
event is extended, as shown in [A] in the figure, and the subsequent RF suspended period is less than 80
ms, as shown in [B] in the figure, the BLE module does not enter RF Sleep mode during this RF suspended
period. Similarly, the BLE module does not enter RF sleep mode if the RF suspended period is shortened by
establishing connections with multiple Bluetooth LE devices.

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 12 of 46

Mar. 04, 2022

Figure 2-9 RF Suspended Period between the Bluetooth LE Events

2.3.5 Condition of USB for Transition to MCU Low Power Consumption

In the case of using USB Driver, the state of MCU can be changed to the low power consumption mode
depending on the condition of USB module. Table 2-3 shows the MCU mode transition condition of which the
sample program published in the following website.

USB Drivers
https://www.renesas.com/software-tool/usb-drivers

- RX Family USB Peripheral Communications Device Class Driver (PCDC) Firmware Integration
Technology (R01AN2296)

The status of VBUS can be checked with the VBSTS bit of the Interrupt Status Register (INTSTS0). The
USB Device State can be checked with the DVSQ[2:0] bit of the Interrupt Status Register (INTSTS0). The
USB Device State can be also checked with the value of info.status returned by R_USB_GetInformation().

Table 2-3 USB Condition for MCU Mode Transition

SCAN

CONNECT CONNECT CONNECT CONNECT

ADV ADV ADV

SCAN SCAN SCAN

Advertising IntervalAdvertising Interval

Scan Interval Scan Interval

Scan Window Scan Window

RF Suspended Period RF Suspended Period

RF Suspended Period RF Suspended PeriodRF Suspended Period

Connection Interval

RF Suspended Period
RF Suspended Period

RF Suspended Period

Connection Interval Connection Interval

[B]

[A]

MCU Mode
Transition Condition

VBUS USB Device State (info.status)

Software standby mode OFF Powered (USB_STS_DETACH)

Sleep mode ON Suspend (USB_STS_SUSPEND)

Normal operating mode ON Other than Suspend (Other than USB_STS_SUSPEND)

https://www.renesas.com/software-tool/usb-drivers

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 13 of 46

Mar. 04, 2022

2.4 Clock Setting

4MHz clock output from CLKOUT_RF pin can be used as a base clock for generating USB Clock (UCLK)
that is required by USB module operation. In this configuration, an external resonator for Main clock
oscillation is not needed, and that is why the BOM cost of your product will be reduced.

2.4.1 Setting for Using the CLKOUT_RF pin Output Clock as USB Clock

RX23W can output a clock of any of the frequencies of 1, 2, or 4 MHz based on the Bluetooth dedicated 32
MHz clock from the CLKOUT_RF pin. The output clock of the CLKOUT_RF pin can be input from the EXTAL
pin and used as a Main clock. By using 4MHz clock output to CLKOUT_RF pin as the Main clock and
multiplying it by 12 with USB dedicated PLL circuit, it can also be used as a 48 MHz USB clock. For an
example of configuration of Smart Configurator, refer to Figure 3-2.

To permit clock output to the CLKOUT_RF pin, change the BLE_CFG_RF_CLKOUT_EN macro of the BLE FIT

module. The clock output to the CLKOUT_RF pin starts by the execution of R_BLE_Open().

When the output clock of the CLKOUT_RF pin is used as the main clock, set the BSP_CFG_CLKOUT_RF_MAIN

macro of the BSP FIT module to 1. After the R_BLE_Open() is executed, the oscillation of the High-speed

On-Chip Oscillator (HOCO) can be stopped.

The clock output to the CLKOUT_RF pin stops when R_BLE_Close() is executed. When the output clock to

the CLKOUT_RF pin is used as the main clock, do not execute R_BLE_Close() after the HOCO oscillation

stops. When the output clock of the CLKOUT_RF pin is also used as an USB clock, do not execute
R_BLE_Close() while the USB module is in use.

Figure 2-10 Example of using the CLKOUT_RF Pin Output Clock

RX23W

Frequency

divider

Bluetooth-dedicated

clock oscillator

P47/CLKOUT_RF pin

XTAL2_RF pin

XTAL1_RF pin

P36/EXTAL pin

Bluetooth-dedicated clock (BLECLK)

Main clock

oscillator

Main clock

USB-dedicated
PLL

1/8
1/16
1/32

1/1
1/2
1/4

x4
x6
x8

x12

USB clock (UCLK)

Frequency

divider

1/1
1/2
1/4
1/8

1/16
1/32
1/64

System clock (ICLK)

Peripheral module clock (PCLKA,PCLKB,PCLKD)

FlashIF clock (FCLK)

External Connection on board
(resonator for Main clock is

not needed)

Bluetooth-dedicated
crystal resonator

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 14 of 46

Mar. 04, 2022

3. Sample Program

3.1 Overview

This chapter describes an overview of the sample program of this application note. Table 3-1 shows the
peripheral modules used by the sample program.

Table 3-1 Peripheral Modules used by the Sample Program

Peripheral Module Use

Bluetooth Low Energy (BLE) Bluetooth LE wireless communication with peer evaluation board

USB2.0 Host/Function Module (USB0) USB communication with USB Host device (PC)

Serial Communication Interface (SCI8) log output to the console on the PC by UART operation

I/O Ports (P41 to P44) LED control on the evaluation board

Figure 3-1 shows the demo configuration of the sample program. Two evaluation boards are used in the
demonstration. Two or even one PC can be used. PC and evaluation boards are connected by a USB cable
for USB communication and a USB cable for UART-USB communication. Connections for USB
communication and for UART-USB communication are recognized as different COM ports. In addition, the
two evaluation boards establish a Bluetooth LE connection automatically.

A console for USB communication and a console for UART-USB communication are used on each PC. The
console for UART-USB displays operation logs indicating the connection, disconnection, data transmission
and reception of both the Bluetooth LE communication and USB communication.

When a character string is input to the console for USB communication, the character string data is
transmitted from PC to the evaluation board. The evaluation board which received the data transmits the
data to peer evaluation board by Bluetooth LE. Also, the evaluation board which received the data by
Bluetooth LE transmits the data by USB and the character string is displayed on the console for USB
communication.

Figure 3-1 Demo Configuration of the Sample Program

Renesas Solution Starter Kit for RX23W

⊕
⊕

Renesas Solution Starter Kit for RX23W

Bluetooth LE
USB

USB(UART-USB)

(UART-USB)

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 15 of 46

Mar. 04, 2022

3.2 Projects

Table 3-2 shows the project configuration of the sample program. The presence or absence of RTOS and
Bluetooth LE operation differs for each project. There is no difference in USB operation for each project.

Table 3-2 Project Configuration of the Sample Program

Demo Project RTOS Bluetooth LE Operation USB Operation

rsskrx23w_osless_gattclient_pcdc

OS-less

GAP Central

Data I/O Service Client

USB Peripheral

Communication Device

Class (CDC)
rsskrx23w_osless_gattserver_pcdc

GAP Peripheral

Data I/O Service Server

rsskrx23w_freertos_gattclient_pcdc

FreeRTOS

GAP Central

Data I/O Service Client

rsskrx23w_freertos_gattserver_pcdc
GAP Peripheral

Data I/O Service Server

Table 3-3 shows the program size of the sample program.

Table 3-3 Program Size of the Sample Program

Demo Project
Section Size

ROMDATA+PROGRAM RAMDATA

rsskrx23w_osless_gattclient_pcdc 212,962byte 44,978byte

rsskrx23w_osless_gattserver_pcdc 212,773byte 45,152byte

rsskrx23w_freertos_gattclient_pcdc 226,796byte 60,761byte

rsskrx23w_freertos_gattserver_pcdc 226,612byte 60,937byte

Table 3-4 shows the FIT Modules used by the sample program and their versions.

Table 3-4 FIT Module Configuration of the Sample Program

FIT Module Version

RX23W Group BLE FIT Module (r_ble_rx23w) 2.30

RX Family Board Support Package Module (r_bsp) 6.21

RX Family BYTEQ Module (r_byteq) 1.90

RX Family CMT Module (r_cmt_rx) 5.00

RX Family LPC Module (r_lpc_rx) 2.03

RX Family Renesas FreeRTOS (FreeRTOS_Kernel) 1.0.102

RX Family Renesas FreeRTOS (FreeRTOS_Object) 1.0.104

RX Family GPIO Module (r_gpio_rx) 4.20

RX Family IRQ Module (r_irq_rx) 3.90

RX Family SCI Module (r_sci_rx) 4.00

RX Family USB Basic Mini Module (r_usb_basic_mini) 1.20

RX Family USB Peripheral Communication Device Class Driver (r_usb_pcdc_mini) 1.20

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 16 of 46

Mar. 04, 2022

Table 3-5, Table 3-6, Table 3-7, and Table 3-8 shows the main settings of the BSP FIT Module, BLE FIT
Module, USB Basic Mini FIT Module, and USB PCDC FIT Modules used by the sample program.

Table 3-5 BSP FIT Module Settings for the Sample Program (r_bsp_config.h)

Item Value Setting

BSP_CFG_CLOCK_SOURCE 1 System Clock Source: HOCO

BSP_CFG_USB_CLOCK_SOURCE 1 USB Clock Source: USB-dedicated PLL

BSP_CFG_MAIN_CLOCK_SOURCE 1 Main Clock Oscillator: External oscillator input

BSP_CFG_XTAL_HZ 4000000 Clock Frequency of External oscillator input: 4MHz

BSP_CFG_UPLL_DIV
BSP_CFG_UPLL_MUL

1

12

Frequency Multiplication Factor: x12

BSP_CFG_HOCO_FREQUENCY 0 Frequency of HOCO: 32MHz

BSP_CFG_CLKOUT_RF_MAIN 1 Clock input source for EXTAL pin: CLKOUT_RF pin

BSP_CFG_MCU_VCC_MV 3300 VCC voltage: 3.3V

Table 3-6 BLE FIT Module Settings for the Sample Program (r_ble_rx23w_config.h)

Item Value Setting

BLE_CFG_LIB_TYPE 1 Type of the BLE Protocol Stack: Balance

BLE_CFG_RF_CONN_MAX 1 Maximum number of simultaneous connections: 1

BLE_CFG_RF_CONN_DATA_MAX 251 Maximum packet data length: 251byte

BLE_CFG_RF_ADV_DATA_MAX 31 Maximum Advertising Data length: 31byte

BLE_CFG_RF_DDC_EN 0 RF transceiver power-supply: linear regulator (DC-to-DC

converter is disabled)

BLE_CFG_RF_EXT32K_EN 0 Bluetooth-dedicated low speed clock: Bluetooth-dedicated low

speed on-chip oscillator

BLE_CFG_RF_SCA 250 Sleep Clock Accuracy(SCA)：250ppm

BLE_CFG_RF_MAX_TX_POW 1 Maximum transmission power: +4dBm

BLE_CFG_RF_DEF_TX_POW 0 Default transmission power: +4dBm

BLE_CFG_RF_CLKOUT_EN 5 Clock output to CLKOUT_RF pin: 4MHz

BLE_CFG_RF_DEEP_SLEEP_EN 1 Transition to RF Sleep Mode: Enabled

BLE_CFG_GATT_MTU_SIZE 247 ATT_MTU size notified during Exchange MTU: 247byte

BLE_CFG_CMD_LINE_EN 1 Command Line function: Enabled

BLE_CFG_CMD_LINE_CH 8 SCI channel used for the Command Line function: 8

BLE_CFG_BOARD_LED_SW_EN 1 Board LED & Switch Control function: Enabled

BLE_CFG_BOARD_TYPE 2 Evaluation Board Type: RSSK for RX23W

BLE_CFG_ABS_API_EN 1 Abstraction API: Enabled

BLE_CFG_SOFT_TIMER_EN 1 Software Timer: Enabled

BLE_CFG_MCU_LPC_EN 1 MCU Low Power Consumption Control function: Enabled

Table 3-7 USB Basic Mini FIT Module Settings for the Sample Program (r_usb_basic_config.h)

Item Value Setting

USB_CFG_MODE USB_CFG_PERI USB Operating Mode: USB Peripheral Mode

USB_CFG_DEVICE_CLASS USB_CFG_PCDC_USE Device Class: Peripheral Communication Device Class

USB_CFG_DTC USB_CFG_DISABLE DTC: Not used

USB_CFG_DMA USB_CFG_DISABLE DMA: Not used

USB_CFG_BC USB_CFG_DISABLE Battery Charging function: Not used

USB_CFG_REGULATOR USB_CFG_DISABLE USB regulator: Not used

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 17 of 46

Mar. 04, 2022

Table 3-8 USB PCDC FIT Module Settings for the Sample Program (r_usb_pcdc_mini_config.h)

Item Value Setting

USB_CFG_PCDC_BULK_IN USB_PIPE1 1st VCOM CDC Data class Bulk In Pipe: PIPE1

USB_CFG_PCDC_BULK_OUT USB_PIPE2 1st VCOM CDC Data class Bulk Out Pipe: PIPE2

USB_CFG_PCDC_INT_IN USB_PIPE6 1st VCOM CDC Data class Interrupt In Pipe: PIPE6

Figure 3-2 shows the clock configuration in the Smart Configurator. The sample program uses 4MHz clock
output to CLKOUT_RF pin as a Main clock and uses 48MHz clock as an USB clock by multiplying the Main
clock by 12 with the USB-dedicated PLL.

Figure 3-2 Clock Settings of the Sample Program

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 18 of 46

Mar. 04, 2022

3.3 Operation Check Conditions

The sample program has been checked according to the operation check conditions shown in Table 3-9.

Table 3-9 Operation Check Conditions

Item Condition

MCU RX23W (F523W8ADBL)

ROM size: 512Kbytes, RAM size: 64Kbytes, Number of Pins: 85

Operating Frequency HOCO clock: Enable HOCO oscillation after reset

Main clock: Use 4MHz clock output to CLKOUT_RF pin and input from EXTAL pin

System clock (ICLK): 32MHz

Peripheral module clock (PCLKA、PCLKB、PCLKD): 32MHz

USB clock (UCLK): 48MHz

FlashIF clock (FCLK): 32MHz

Bluetooth-dedicated clock (BLECLK): 32MHz

Bluetooth-dedicated low-speed clock (BLELOCO): 32.768kHz

Evaluation Board Renesas Solution Starter Kit for RX23W (RTK5523W8AC00001BJ)

Jumper Setting: Power Supply → USBCN0(FT234_5V)

J3：1-2 Short

J4：1-2 Short

J5：1-2 Short

J10：Short

J13：Short

Jumper Setting: P26 → USB0-VBUSEN

J7：1-2 Short

Emulator E2 Emulator Lite (RTE0T0002LKCE00000R)

IDE e2 studio 64-bit 2021-10

Compiler C/C++ Compiler for RX Family (CC-RX) V2.08.01

Flash Programming Tool Renesas Flash Programmer V3.09.00

Development Assistance Tool

for Bluetooth Low Energy NOTE1

QE for BLE[RA,RE,RX] V1.4.0 (1.4.0.v20220120-803)

QE for BLE[RA,RE,RX] Utility (1.4.0.v20220118-1104)

Endian Little Endian

FreeRTOS Renesas FreeRTOS (kernel only) 10.4.3-rx-1.0.1

Terminal Emulator Tera Term Version 4.106

Serial Port Setting Baud rate: 115,200 bps

Data: 8 bits

Parity: none

Stop: 1 bit

Flow Control: none

NOTE1:

For how to install the Development Assistance Tool for Bluetooth Low Energy QE for BLE[RA,RE,RX], refer
to the following website.

QE: Tools for Particular Applications Information for Users
https://www.renesas.com/software-tool/qe-support

For how to update the QE for BLE[RA,RE,RX] Utility which is the plugin for QE for BLE[RA,RE,RX], refer to
the following website.

QE for BLE: Development Assistance Tool for Bluetooth® Low Energy Information for Users
https://www.renesas.com/software-tool/qe-ble-development-assistance-tool-bluetooth-low-energy-
information-users

https://www.renesas.com/software-tool/qe-support
https://www.renesas.com/software-tool/qe-ble-development-assistance-tool-bluetooth-low-energy-information-users
https://www.renesas.com/software-tool/qe-ble-development-assistance-tool-bluetooth-low-energy-information-users

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 19 of 46

Mar. 04, 2022

3.4 Configuration and Operation

Figure 3-3 shows the software configuration of the sample program. The sample program includes BLE
control application, USB control application, and demo application in addition to the FIT Modules and QE for
BLE generation codes required to control the BLE modules and USB module of RX23W.

The BLE control application provides the R_BLECTRL interface for higher-layer applications to execute
Bluetooth LE communication easily. The BLE control application uses the profile framework generated by QE
for BLE. For details on the R_BLECTRL interface, refer to Section 3.6.

The USB control application provides the R_USBCTRL interface for higher-layer applications to execute
USB communication easily. For details on the R_USBCTRL interface, refer to Section 3.7.

The demo application uses the R_BLECTRL interface and the R_USBCTRL interface to control Bluetooth LE
communication and USB communication as well as low power consumption mode of MCU.

Figure 3-3 Software Configuration of the Sample Program

The sample program defines the following proprietary service. Two evaluation boards transmit and receive
any data by using this service in Bluetooth LE communication. When working as a Central device, Data is
transmitted to the Data In characteristic with the Write Without Response. When working as a Peripheral
device, Data is transmitted from the Data Out characteristic with the Notify.

Table 3-10 Data I/O Service

Item UUID
Properties

Attribute Permission

Data I/O Service 7dbe3201-f5ab-498a-a012-676fef22f735 -

 Data In Characteristic 7dbe3202-f5ab-498a-a012-676fef22f735
Write Without Response (max.244byte)

No Authentication, No Authorization

 Data Out Characteristic 7dbe3203-f5ab-498a-a012-676fef22f735 Notify (max.244byte)

Client Characteristic

Configuration Descriptor
0x2902

Read, Write

No Authentication, No Authorization

Code generated by QE for BLE

BLE FIT Module

(r_ble_rx23w)

PCDC FIT Module

(r_usb_pcdc_mini)

USB Basic Mini FIT Module

(r_usb_basic_mini)

(FreeRTOS)

RX23W MCU

Demo Application that uses Bluetooth LE and USB concurrently

BLE Control Application
USB Control Application

BLE Protocol Stack
USB Peripheral

Control Driver

USB Peripheral

Communication

Device Driver

Profile Framework

Data I/O Service API

R_BLECTRL Interface R_USBCTRL Interface

BLE module USB module

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 20 of 46

Mar. 04, 2022

Figure 3-4 shows the LEDs mounted on the RSSK for RX23W, and Table 3-11 shows the LED Control of the
sample program. When the power is supplied to the evaluation board on which the sample program is
written, the BLE control application starts Bluetooth LE connection operation automatically. The LED0 is
turned on when Bluetooth LE connection with peer evaluation board is established and data communication
by Data I/O Service is enabled. The LED0 is turned off when the Bluetooth LE connection is terminated.

When the evaluation board is connected to PC with USB cable, the USB control application performs the
processing to transition to the Configured state automatically. Then, when a terminal emulator on the PC
opens COM port and CDC data communication is enabled, the LED1 is turned on. The LED1 is turned off
when the USB connection to the PC is terminated.

The order of Bluetooth LE and USB connection is not restricted. You can either connect a USB cable after
establishing a Bluetooth LE connection or establish a Bluetooth LE connection after connecting a USB cable.

Table 3-12 shows the control of the MCU low power consumption modes of the Sample program. LED2 is
turned on when the RX23W MCU transitions to any one of the MCU low power consumption modes.

Figure 3-4 LEDs mounted on RSSK for RX23W

Table 3-11 LED Control of the Sample Program

User LED Control Timing Description

LED0 (green)

ON: BLECTRL_EVT_SERVICE_ENABLED

OFF: BLECTRL_EVT_DISCONNECTED

It Indicates data communication using

Data I/O Service of Bluetooth LE is

possible.

LED1 (orange)
ON: USBCTRL_EVT_CDC_ENABLED

OFF: USBCTRL_EVT_DETACH

It indicates data communication using

CDC of USB is possible

LED2 (red)
ON: Just before R_BLE_LPC_EnterLowPowerMode()

OFF: Just after R_BLE_LPC_EnterLowPowerMode()

It indicates RX23W MCU is in any one

of low power consumption mode.

LED3 (red) - It is not used.

Table 3-12 Control of the MCU Low Power Consumption Mode of the Sample Program

BLE state USB state Control of the MCU Low Power Consumption Mode

Disconnected /

Connected

Detach OS-less: Transition to Software standby mode

FreeRTOS: Transition to Deep sleep mode

Suspend Transition to Sleep mode

other than the above Normal Operation (Not transition to MCU low power consumption

mode)

⊕

User LED

Power LED

3V3 PWR
5V PWR

LED3
LED2
LED1
LED0

Renesas Solution Starter Kit for RX23W

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 21 of 46

Mar. 04, 2022

Table 3-13 shows the processing of data transmission and reception of the demo application, and Figure 3-5
shows the operation of data transmission and reception of the demo application. When both the BLE state
and the USB state are disconnected, the demo application does not perform data transmission and
reception. When the BLE or/and USB state is connected, the log is output to the console when the data is
transmitted and received. If both the BLE and USB states are connected, the data received by USB is
transmitted by the Bluetooth LE and the data received by Bluetooth LE is transmitted by the USB.

Table 3-13 Data Transmission and Reception Processing of the Demo Application

BLE state USB state Demo operation

Disconnected Disconnected Do nothing

Connected Output log to console when data is received by Bluetooth LE

Disconnected Connected Output log to console when data is received by USB

Connected

Output log when data is transmitted and received by USB

Output log when data is transmitted and received by Bluetooth LE

Transmit the USB received data by Bluetooth LE

Transmit the Bluetooth LE received data by USB

Figure 3-5 Data Reception and Transmission of the Sample Program
(Left: USB→Bluetooth LE, Right: Bluetooth LE→USB)

code generated by QE for BLE

BLE FIT Module

(r_ble_rx23w)

PCDC FIT Module

(r_usb_pcdc_mini)

USB Basic Mini FIT Module

(r_usb_basic_mini)

(FreeRTOS)

R_BLECTRL Interface R_USBCTRL Interface

Demo Application that uses Bluetooth LE and USB concurrently

BLE Control Application

Profile Framework

USB Control Application

USB Peripheral

Communication

Device Driver

USB Peripheral

Control Driver
BLE Protocol Stack

Data I/O Service API

code generated by QE for BLE

BLE FIT Module

(r_ble_rx23w)

PCDC FIT Module

(r_usb_pcdc_mini)

USB Basic Mini FIT Module

(r_usb_basic_mini)

(FreeRTOS)

R_BLECTRL Interface R_USBCTRL Interface

RX23W MCU

Demo Application that uses Bluetooth LE and USB concurrently

BLE module

BLE Control Application

Profile Framework

USB Control Application

USB Peripheral

Communication

Device Driver

USB Peripheral

Control Driver
BLE Protocol Stack

Data I/O Service API

RX23W MCUBLE module USB module USB module

Bluetooth LE receives dataBluetooth LE transmits data USB receives data USB transmits data

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 22 of 46

Mar. 04, 2022

3.5 Usage

3.5.1 Importing Projects to e2 studio and Building

1. Launch the e2 studio and select any folder as a workspace.

Figure 3-6 Selecting a Workspace

2. Select [File]→[Import…] in menu to display Import Dialog.

Figure 3-7 [File]→[Import…]

3. Select [General]→[Existing Projects into Workspace] and click [Next] button.

Figure 3-8 [General]→[Existing Projects into Workspace]

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 23 of 46

Mar. 04, 2022

4. Select any project file (.zip) of the sample program in [Select archive file] and click [Finish] button.

Figure 3-9 Selecting archive file

5. Repeat the steps 1 to 4 to import each project of the sample program.

Figure 3-10 Completion of importing the projects of the sample program

6. After completion of the step 5, select [Project]→[Build All] in menu. "Build complete" is displayed after
building the projects is completed. The program files (.mot) that was built are stored in Hardware
Debug folder in each project folder.

Figure 3-11 [Project]→[Build All]

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 24 of 46

Mar. 04, 2022

NOTE: When the error indicating "No toolchain set or toolchain not integrated." occurs and building fails,
open the project properties dialog and move to [C/C++ Build]→[Settings]→[Toolchain] tag, then set
the toolchain.

Figure 3-12 Selecting a Toolchain

3.5.2 Writing Program Files to the Evaluation Boards

1. Connect an emulator to the evaluation board and connect the emulator to PC. Then, connect
USBCN0 on the evaluation board to PC with a cable. Power to the evaluation board is supplied from
the USBCN0.

Figure 3-13 Connections of the Evaluation Board for Writing a Program File

2. Launch the Renesas Flash Programmer and select [File]→[New Project…] in menu. In the Create
New Project dialog, enter any project name, select the Tool, set the Interface to FINE, and click
[Connect]. Confirm that "Operation completed" is displayed.

Figure 3-14 Creating New Project

⊕

E2 Emulator Lite

Renesas Solution Starter Kit for RX23W

Connecting to PC

Connecting to PC

USBCN0

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 25 of 46

Mar. 04, 2022

3. Specify the program file (.mot) that was built by e2 studio and click [Start]. If "Operation completed" is
displayed, writing the program file is completed.

Figure 3-15 Writing a Program File

4. Repeat the steps 1 and 3 to write any of the program file combination shown in the Table 3-14 to the

two evaluation boards.

Table 3-14 Combinations of the Program Files to be Written

Combination Evaluation Board for Central Evaluation Board for Peripheral

(1) rsskrx23w_osless_gattclient_pcdc.mot rsskrx23w_osless_gattserver_pcdc.mot

(2) rsskrx23w_freertos_gattclient_pcdc.mot rsskrx23w_freertos_gattserver_pcdc.mot

(3) rsskrx23w_osless_gattclient_pcdc.mot rsskrx23w_freertos_gattserver_pcdc.mot

(4) rsskrx23w_freertos_gattclient_pcdc.mot rsskrx23w_osless_gattserver_pcdc.mot

3.5.3 Evaluating Bluetooth LE and USB communications

1. Connect USBCN0 on the evaluation board to PC with a cable and connect USB0_2 to the PC. Power
to the evaluation board is supplied from the USBCN0.

Figure 3-16 Connections of the Evaluation Board for Evaluating the Communications

⊕

Renesas Solution Starter Kit for RX23W

Connecting to PC (UART-USB)

Connecting to PC (USB)

USBCN0

USB0_2

Reset

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 26 of 46

Mar. 04, 2022

2. When the two evaluation boards are connected to PC with a USB cable, each USB connection is
recognized as a COM port. Launch the terminal emulators and open the COM ports. For serial port
settings of the terminal emulator, refer to Table 3-9.

Figure 3-17 is an example of the display of terminal emulators that open each COM port after
connecting the two evaluation boards to PC.

Upper left: rsskrx23w_osless_gattserver_pcdc, Operation log over UART-USB communication

Lower left: rsskrx23w_osless_gattserver_pcdc, Received data over USB communication

Upper right: rsskrx23w_osless_gattclient_pcdc, Operation log over UART-USB communication

Lower right: rsskrx23w_osless_gattclient_pcdc, Received data over USB communication

Figure 3-17 Example of the Display of Terminal Emulators

3. Pressing the reset button on the evaluation board restarts the program operation and then operation
log is output to the console for UART-USB communication. For an example of the operation log, refer
to Figure 3-18 that will be shown later.

4. Check that BLECTRL_EVT_SERVICE_ENABLED and USBCTRL_EVT_CDC_ENABLED are displayed in the

operation logs. When a character string is entered in the terminal emulator for the USB on the
evaluation board, the character string is displayed in the terminal emulator for the USB on the other
evaluation board.

In the example of the display of the terminal emulators shown in Figure 3-17, "left" is displayed in the
terminal of the lower right by entering the "left" to the terminal of the lower left. "right" is displayed in
the terminal of the lower left by entering the "right" to the terminal of the lower right.

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 27 of 46

Mar. 04, 2022

Figure 3-18 is an example of the operation log from the evaluation board on which
rsskrx23w_osless_gattserver_pcdc is written.

1 rsskrx23w_osless_gattserver_pcdc

2 UIDR: 0x160712013C170014070019FF574B1D00

3 BLECTRL_EVT_OPENED

4 USBCTRL_EVT_SUSPEND

5 USBCTRL_EVT_RESUME

6 USBCTRL_EVT_DEFAULT

7 USBCTRL_EVT_DEFAULT

8 USBCTRL_EVT_CONFIGURED

9 USBCTRL_EVT_CDC_ENABLED

10 BLECTRL_EVT_CONNECTED role:Peripheral

11 BLE_GAP_EVENT_DATA_LEN_CHG tx_octets:251 rx_octets:251

12 BLE_GAP_EVENT_PHY_UPD tx_phy:2M rx_phy:2M

13 BLECTRL_EVT_SERVICE_ENABLED

14 USBCTRL_EVT_RECEIVED size:1

15 BLECTRL_EVT_TRANSMITTED size:1 space:7999

16 USBCTRL_EVT_RECEIVED size:1

17 BLECTRL_EVT_TRANSMITTED size:1 space:7999

18 BLECTRL_EVT_RECEIVED size:1

19 USBCTRL_EVT_TRANSMITTED size:1 space:7999

20 BLECTRL_EVT_RECEIVED size:1

21 USBCTRL_EVT_TRANSMITTED size:1 space:7999

Figure 3-18 Example of the Operation Log of the Sample Program

L1. Program File Name

L2. UIDR: 16-byte Unique ID to identify RX23W, used as iSerialNumber of USB

Device instance path, which includes Device ID, Product ID, and iSerialNumber, can be found in
[Ports (COM & LPT)]→[USB Serial Bus (COM **)] in the Device Manager of Windows OS

Figure 3-19 Display Example of the Device Instance Path

L8. USBCTRL_EVT_CONFIGURED: Completion of transition to Configured state of USB

L9. USBCTRL_EVT_CDC_ENABLED: Completion of opening COM port, data communication enabled

L10. BLECTRL_EVT_CONNECTED: Completion of Bluetooth LE connection establishment

L13. BLECTRL_EVT_SERVICE_ENABLED: Completion of enabling Data I/O Service, data communication

enabled

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 28 of 46

Mar. 04, 2022

L14. USBCTRL_EVT_RECEIVED: Completion of data reception by USB

L15. BLECTRL_EVT_TRANSMITTED: Completion of data transmission by Bluetooth LE

L18. BLECTRL_EVT_RECEIVED: Completion of data transmission by Bluetooth LE

L19. USBCTRL_EVT_TRANSMITTED: Completion of data reception by USB

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 29 of 46

Mar. 04, 2022

3.6 R_BLECTRL Interface

This section describes the specification of R_BLECTRL Interface provided by the BLE Control Application.

3.6.1 R_BLECTRL_Open

R_BLECTRL_Open

Initialize BLE Control processing

Header r_blectrl_if.h

Definition e_blectrl_status_t R_BLECTRL_Open(void);

Parameter None

Return Value BLECTRL_SUCCESS Success

BLECTRL_ERR_STATE Failure: Initialized State

BLECTRL_ERR_API Failure: BLE Protocol Stack Initialization Failed

Supplement The completion of initialization of the BLE Control processing is notified by the

BLECTRL_EVT_OPENED event.

When the CLKOUT_RF pin clock output is enabled, the clock output starts when this

function is executed.

When the CLKOUT_RF pin output clock is used as a reference clock of the USB clock

(UCLK), this function shall be executed before the start of operation of the USB

Module.

3.6.2 R_BLECTRL_Close

R_BLECTRL_Close

Finalize BLE Control projeccing

Header r_blectrl_if.h

Definition e_blectrl_status_t R_BLECTRL_Close(void);

Parameter None

Return Value BLECTRL_SUCCESS Success

BLECTRL_ERR_STATE Failure: Uninitialized State or Closed State

BLECTRL_ERR_API Failure: BLE Protocol Stack Finalization Failed

Supplement When this function is executed, the CLKOUT_RF pin clock output stops.

When the clock output from the CLKOUT_RF pin is used as a Main clock, this

function must not be executed because the operation of the USB module is stopped.

3.6.3 R_BLECTRL_RegisterCb

R_BLECTRL_RegisterCb

Register BLE Control Event callback function

Header r_blectrl_if.h

Definition e_blectrl_status_t R_BLECTRL_RegisterCb(blectrl_evt_cb_t cb);

Parameter (IN) cb BLE Control Event callback function

Return Value BLECTRL_SUCCESS Success

BLECTRL_ERR_ARG Failure: argument cb is NULL

BLECTRL_ERR_STATE Failure: Uninitialized state or Communication operation state

Supplement This function must be executed after the execution of R_BLECTRL_Open() and before

the execution of R_BLECTRL_StartPeripheral() and R_BLECTRL_StartCentral()

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 30 of 46

Mar. 04, 2022

3.6.4 R_BLECTRL_RegisterTxBuffer

R_BLECTRL_RegisterTxBuffer

Register BLE Transmission Buffer

Header r_blectrl_if.h

Definition e_blectrl_status_t R_BLECTRL_RegisterTxBuffer(uint8_t *buffer,
uint16_t size);

Parameter (IN) buffer Transmission Buffer

(IN) size Transmission Buffer Size

Return Value BLECTRL_SUCCESS Success

BLECTRL_ERR_ARG Failure: argument buffer is NULL or buffer is 0

BLECTRL_ERR_STATE Failure: Uninitialized state or Communication operation state

Supplement This function must be executed after the execution of R_BLECTRL_Open() and before

the execution of R_BLECTRL_StartPeripheral() and R_BLECTRL_StartCentral()

3.6.5 R_BLECTRL_StartPeripheral

R_BLECTRL_StartPeripheral

Start a Connection as a Peripheral Device

Header r_blectrl_if.h

Definition e_blectrl_status_t R_BLECTRL_StartPeripheral(void);

Parameter None

Return Value BLECTRL_SUCCESS Success

BLECTRL_ERR_UNSUPPORT Failure: Peripheral operation is not supported

BLECTRL_ERR_STATE Failure: Uninitialized state

BLECTRL_ERR_API Failure: Advertising start failed

Return Value The completion of connection to a Central device is notified by the

BLECTRL_EVT_CONNECTED event.

After connecting, the completion of enabling GATT Service is notified by the

BLECTRL_EVT_SERVICE_ENABLED event

After the completion of enabling GATT Service is enabled, data reception is notified

by the BLECTRL_EVT_RECEIVED event.

The termination of the connection with the central device is notified by the

BLECTRL_EVT_DISCONNECTED event

Limitation 1. Only one Central device can be connected to simultaneously.

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 31 of 46

Mar. 04, 2022

3.6.6 R_BLECTRL_StartCentral

R_BLECTRL_StartCentral

Start a Connection as a Central Device

Header r_blectrl_if.h

Definition e_blectrl_status_t R_BLECTRL_StartCentral(void);

Parameter None

Return Value BLECTRL_SUCCESS Success

BLECTRL_ERR_UNSUPPORT Failure: Central operation is not supported

BLECTRL_ERR_STATE Failure: Uninitialized state

BLECTRL_ERR_API Failure: Scan start failed

Supplement The completion of connection to a Peripheral device is notified by the

BLECTRL_EVT_CONNECTED event.

After connecting, the completion of enabling GATT Service is notified by the

BLECTRL_EVT_SERVICE_ENABLED event.

After the completion of enabling GATT Service is enabled, data reception is notified

by the BLECTRL_EVT_RECEIVED event.

The termination of the connection with the central device is notified by the

BLECTRL_EVT_DISCONNECTED event.

Limitation 1. Only one Peripheral device can be connected simultaneously.

3.6.7 R_BLECTRL_Disconnect

R_BLECTRL_Disconnect

Disconnect from the peer device

Header r_blectrl_if.h

Definition e_blectrl_status_t R_BLECTRL_Disconnect(uint16_t conn_hdl);

Parameter (IN) conn_hdl Connection Handle

Return Value BLECTRL_SUCCESS Success

BLECTRL_ERR_STATE Failure: Unconnected to peer device

BLECTRL_ERR_API Failure: Disconnect request failed

Supplement The completion of disconnection is notified by the BLECTRL_EVT_DISCONNECTED

event.

3.6.8 R_BLECTRL_GetTxBufferSpace

R_BLECTRL_GetTxBufferSpace

Get the empty size of BLE Transmission Buffer

Header r_blectrl_if.h

Definition uint16_t R_BLECTRL_GetTxBufferSpace(uint16_t conn_hdl);

Parameter (IN) conn_hdl Connection Handle

Return Value Empty Size of Transmission Buffer [byte]

Supplement None

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 32 of 46

Mar. 04, 2022

3.6.9 R_BLECTRL_TransmitData

R_BLECTRL_TransmitData

Transmit data to the connected peer device

Header r_blectrl_if.h

Definition uint16_t R_BLECTRL_TransmitData(uint16_t conn_hdl, const uint8_t
*data, uint16_t size);

Parameter (IN) conn_hdl Connection Handle

(IN) data Data to be Transmitted

(IN) size Size of Data to be Transmitted [byte]

Return Value Size of Data stored in Transmission Buffer [byte]

Supplement This function must be executed after the notification of the

BLECTRL_EVT_SERVICE_ENABLED event.

When working as a Central device, Data is transmitted to the Data In characteristic of

the Data I/O service with the Write Without Response.

When working as a Peripheral device, Data is transmitted from the Data Out

characteristic of the Data I/O service with the Notify.

Data Transmission is notified by the BLECTRL_EVT_TRANSMITTED event.

Limitation When using FreeRTOS

1. Do not call this function from an interrupt handler because this function uses

xTaskNotifyGive().

2. Do no call this function from multiple tasks because the transmission buffer

operation in this function is not guarded as a critical section.

3.6.10 blectrl_main

blectrl_main

Main Context of the BLE Control Application

Header r_blectrl_if.h

Definition void blectrl_main(void);

Parameter None

Return Value None

Supplement When OS is not used, call this function in the main loop.

When FreeRTOS is used, create a task for executing this function and call this

function in a loop of the task.

3.6.1 blectrl_evt_cb_t

blectrl_evt_cb_t

BLE Control Event Callback Function

Header r_blectrl_if.h

Definition typedef void (*blectrl_evt_cb_t)(e_blectrl_evt_t type,
st_blectrl_evt_param_t *param);

Parameter (OUT) type BLE Control Event

(OUT) param BLE Control Event Parameter

Return Value None

Supplement Implement a BLE Control Event Callback Function in a upper application and register

with R_BLECTRL_RegisterCb().

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 33 of 46

Mar. 04, 2022

3.6.2 e_blectrl_status_t

e_blectrl_status_t

Execution Result of R_BLECTRL Interface Function

Header r_blectrl_if.h

Definition typedef enum e_blectrl_status
{
 BLECTRL_SUCCESS = 0,
 BLECTRL_ERR_UNSUPPORT, /* Unsupported API */
 BLECTRL_ERR_ARG, /* Invalid Argument */
 BLECTRL_ERR_STATE, /* Invalid State */
 BLECTRL_ERR_API, /* RBLE API Error */
} e_blectrl_status_t;

3.6.3 e_blectrl_evt_t

e_blectrl_evt_t

BLE Control Events

Header r_blectrl_if.h

Definition typedef enum e_blectrl_evt
{
 BLECTRL_EVT_NONE = 0,
 BLECTRL_EVT_OPENED,
 BLECTRL_EVT_CONNECTED,
 BLECTRL_EVT_DISCONNECTED,
 BLECTRL_EVT_SERVICE_ENABLED,
 BLECTRL_EVT_TRANSMITTED,
 BLECTRL_EVT_RECEIVED
} e_blectrl_evt_t;

Supplement BLE Control Events are notified by the Callback Function registered with

R_BLECTRL_RegisterCb().

For the notification timing of BLE Control Events, refer to Subsection 0.

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 34 of 46

Mar. 04, 2022

3.6.4 st_blectrl_evt_param_t

st_blectrl_evt_param_t

BLE Control Event Parameters

Header r_blectrl_if.h

Definition typedef struct st_blectrl_evt_conn
{

/* role - 0x00: Central, 0x01: Peripheral */
 uint8_t role;

/* device address type - 0x00: Public, 0x01: Random */
 uint8_t remote_addr_type;

/* device address */
 uint8_t remote_addr[6];
} st_blectrl_evt_conn_t;

typedef struct st_blectrl_evt_disconn
{

/* reason for disconnection */
 uint8_t reason;
} st_blectrl_evt_disconn_t;

typedef struct st_blectrl_evt_tx
{

/* bytes of the data size transmitted */
 uint16_t size;
} st_blectrl_evt_tx_t;

typedef struct st_blectrl_evt_rx
{
 /* pointer to the data received */
 uint8_t *data;

/* bytes of the data size received */
 uint16_t size;
} st_blectrl_evt_rx_t;

/* Event Parameter */
typedef struct st_blectrl_evt_param
{
 uint16_t conn_hdl; /* Connection Handle */
 union
 {
 /* BLECTRL_EVT_CONNECTED event parameter */
 st_blectrl_evt_conn_t conn;
 /* BLECTRL_EVT_DISCONNECTED event parameter */
 st_blectrl_evt_disconn_t disconn;
 /* BLECTRL_EVT_TRANSMITTED event parameter */
 st_blectrl_evt_tx_t tx;
 /* BLECTRL_EVT_RECEIVED event parameter */
 st_blectrl_evt_rx_t rx;
 } evt;
} st_blectrl_evt_param_t;

Supplement BLE Control Event Parameters are notified by the Callback Function registered with

R_BLECTRL_RegisterCb().

evt.conn must be referred when BLECTRL_EVT_CONNECTED event is notified.

evt.disconn must be referred when BLECTRL_EVT_DISCONNECTED event is notified.

evt.tx must be referred when BLECTRL_EVT_TRANSMITTED event is notified.

evt.rx must be referred when BLECTRL_EVT_RECEIVED event is notified.

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 35 of 46

Mar. 04, 2022

3.7 R_USBCTRL Interface

This section describes the specification of R_USBCTRL Interface provided by the USB Control Application.

3.7.1 R_USBCTRL_Open

R_USBCTRL_Open

Initialize USB Control processing

Header r_usbctrl_if.h

Definition e_usbctrl_status_t R_USBCTRL_Open(void);

Parameter None

Return Value USBCTRL_SUCCESS Success

USBCTRL_ERR_API Failure: USB Driver Initialization Failed

Supplement After the insertion of USB, the transition to Configured state is notified by the

USBCTRL_EVT_CDC_ENABLED event.

The enabling of Communication Device Class is notified by the

USBCTRL_EVT_CDC_ENABLED event.

After the removal of USB, the transition to Powered state is notified by the

USBCTRL_EVT_DETACH event.

When the CLKOUT_RF pin output clock is used as a reference clock of the USB clock

(UCLK), R_BLECTRL_Open() shall be executed before the execution of this function.

3.7.2 R_USBCTRL_Close

R_USBCTRL_Close

Finalize USB Control processing

Header r_usbctrl_if.h

Definition e_usbctrl_status_t R_USBCTRL_Close(void);

Parameter None

Return Value USBCTRL_SUCCESS Success

 USBCTRL_ERR_API Failure: USB Driver Finalization Failed

Supplement None

3.7.3 R_USBCTRL_RegisterCb

R_USBCTRL_RegisterCb

Register USB Control Event Callback Function

Header r_usbctrl_if.h

Definition e_usbctrl_status_t R_USBCTRL_RegisterCb(usbctrl_evt_cb_t cb);

Parameter (IN) cb USB Control Event Callback Function

Return Value USBCTRL_SUCCESS Success

 USBCTRL_ERR_ARG Failure: argument cb is NULL

Supplement None

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 36 of 46

Mar. 04, 2022

3.7.4 R_USBCTRL_RegisterTxBuffer

R_USBCTRL_RegisterTxBuffer

Register USB Transmission Buffer

Header r_usbctrl_if.h

Definition e_usbctrl_status_t R_USBCTRL_RegisterTxBuffer(uint8_t *buffer,
uint16_t size);

Parameter (IN) buffer Transmission Buffer

(IN) size Transmission Buffer Size

Return Value USBCTRL_SUCCESS Success

USBCTRL_ERR_ARG Failure: argument buffer is NULL or buffer is 0

USBCTRL_ERR_STATE Failure: Uninitialized state or Communication operation state

Supplement None

3.7.5 R_USBCTRL_SuspendRx

R_USBCTRL_SuspendRx

Resume USB Reception

Header r_usbctrl_if.h

Definition e_usbctrl_status_t R_USBCTRL_SuspendRx(void);

Parameter None

Return Value USBCTRL_SUCCESS Success

USBCTRL_ERR_STATE Failure: CDC Disabled state

Supplement This function must be executed after the notification of the

USBCTRL_EVT_CDC_ENABLED event.

USB Reception is resumed by executing R_USBCTRL_ResumeRx().

USB Reception state is canceled by the removal of USB.

3.7.6 R_USBCTRL_ResumeRx

R_USBCTRL_ResumeRx

Resume USB Reception

Header r_usbctrl_if.h

Definition e_usbctrl_status_t R_USBCTRL_ResumeRx(void);

Parameter None

Return Value USBCTRL_SUCCESS Success

USBCTRL_ERR_STATE Failure: Communication Device Class(CDC) is disabled

Supplement None

3.7.7 R_USBCTRL_GetTxBufferSpace

R_USBCTRL_GetTxBufferSpace

Get the empty size of USB Transmission Buffer

Header r_usbctrl_if.h

Definition uint16_t R_USBCTRL_GetTxBufferSpace(void);

Parameter None

Return Value Empty Size of Transmission Buffer [byte]

Supplement None

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 37 of 46

Mar. 04, 2022

3.7.8 R_USBCTRL_TransmitData

R_USBCTRL_TransmitData

Transmit data to the Host device

Header r_usbctrl_if.h

Definition uint16_t R_USBCTRL_TransmitData(const uint8_t *data, uint16_t size);

Parameter (IN) data Data to be Transmitted

(IN) size Size of Data to be Transmitted [byte]

Return Value Size of Data stored in Transmission Buffer [byte]

Supplement This function must be executed after the notification of the

USBCTRL_EVT_CDC_ENABLED event.

Data Transmission is notified by the USBCTRL_EVT_TRANSMITTED event.

Limitation When using FreeRTOS

1. Do not call this function from an interrupt handler because this function uses

xTaskNotifyGive().

2. Do no call this function from multiple tasks because the transmission buffer

operation in this function is not guarded as a critical section.

3.7.9 R_USBCTRL_GetAllowedLpcMode

R_USBCTRL_GetAllowedLpcMode

Get the Low Power Consumption mode that can be switched

Header r_usbctrl_if.h

Definition lpc_low_power_mode_t R_USBCTRL_GetAllowedLpcMode(void);

Parameter None

Return Value Low Power Consumption mode that can be switched

Return Value
Low Power Consumption Mode

SLEEP DEEP_SLEEP SW_STANDBY

LPC_LP_INVALID_MODE × × ×

LPC_LP_SLEEP 〇 × ×

LPC_LP_DEEP_SLEEP Not Returned by this function

LPC_LP_SW_STANDBY 〇 〇 〇

Supplement None

3.7.10 usbctrl_main

usbctrl_main

Main Context of the USB Control Application

Header r_usbctrl_if.h

Definition void usbctrl_main(void);

Parameter None

Return Value None

Supplement When OS is not used, call this function in the main loop.

When FreeRTOS is used, create a task for executing this function and call this

function in a loop of the task.

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 38 of 46

Mar. 04, 2022

3.7.11 usbctrl_evt_cb_t

usbctrl_evt_cb_t

USB Control Event Callback Function

Header r_usbctrl_if.h

Definition typedef void (*usbctrl_evt_cb_t)(e_usbctrl_evt_t type,
st_usbctrl_evt_param_t *param);

Parameter (OUT) type USB Control Event

 (OUT) param USB Control Event Parameter

Return Value None

Supplement Implement a USB Control Event Callback Function in a upper application and register

with R_USBCTRL_RegisterCb().

3.7.12 e_usbctrl_status_t

e_usbctrl_status_t

Execution Result of R_USBCTRL Interface Function

Header r_usbctrl_if.h

Definition typedef enum e_usbctrl_status
{
 USBCTRL_SUCCESS = 0,
 USBCTRL_ERR_UNSUPPORT, /* Unsupported API */
 USBCTRL_ERR_ARG, /* Invalid Argument */
 USBCTRL_ERR_STATE, /* Invalid State */
 USBCTRL_ERR_API, /* USB API Error */
} e_usbctrl_status_t;

3.7.13 e_usbctrl_evt_t

e_usbctrl_evt_t

BLE Control Events

Header r_usbctrl_if.h

Definition typedef enum e_usbctrl_evt
{
 USBCTRL_EVT_NONE = 0,
 USBCTRL_EVT_SUSPEND,
 USBCTRL_EVT_RESUME,
 USBCTRL_EVT_DETACH,
 USBCTRL_EVT_DEFAULT,
 USBCTRL_EVT_CONFIGURED,
 USBCTRL_EVT_CDC_ENABLED,
 USBCTRL_EVT_TRANSMITTED,
 USBCTRL_EVT_RECEIVED
} e_usbctrl_evt_t;

Supplement BLE Control Events are notified by the Callback Function registered with

R_USBCTRL_RegisterCb().

For the notification timing of USB Control Events, refer to Subsection 3.7.16.

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 39 of 46

Mar. 04, 2022

3.7.14 st_usbctrl_evt_param_t

st_usbctrl_evt_param_t

USB Control Event Parameters

Header r_usbctrl_if.h

Definition typedef struct st_usbctrl_evt_cdc
{
 /* dte(data terminal equipment) rate in bps */
 uint32_t rate;
 /* data bits */
 uint8_t bits;
} st_usbctrl_evt_cdc_t;

typedef struct st_usbctrl_evt_tx
{
 /* transmitted data size in bytes */
 uint16_t size;
} st_usbctrl_evt_tx_t;

typedef struct st_usbctrl_evt_rx
{
 /* pointer to the data received */
 uint8_t *data;
 /* bytes of the data size received */
 uint16_t size;
} st_usbctrl_evt_rx_t;

typedef struct st_usbctrl_evt_param
{
 union
 {
 /* USBCTRL_EVT_CDC_ENABLED event parameter */
 st_usbctrl_evt_cdc_t cdc;
 /* USBCTRL_EVT_TRANSMITTED event parameter */
 st_usbctrl_evt_tx_t tx;
 /* USBCTRL_EVT_RECEIVED event parameter */
 st_usbctrl_evt_rx_t rx;
 } evt;
} st_usbctrl_evt_param_t;

Supplement USB Control Event Parameters are notified by the Callback Function registered with

R_USBCTRL_RegisterCb().

evt.cdc must be referred when USBCTRL_EVT_CDC_ENABLED event is notified.

evt.tx must be referred when USBCTRL_EVT_TRANSMITTED event is notified.

evt.rx must be referred when USBCTRL_EVT_RECEIVED event is notified.

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 40 of 46

Mar. 04, 2022

3.7.15 State Transition of BLE Control Processing

Figure 3-20 State Transition of BLE Control Processing

Uninitialized

Initialized

Disconnected

GATT Service

Reception

GATT Service

Transmission

Connected

GATT Service

Enabled

BLECTRL_EVT_OPENED

BLECTRL_EVT_CONNECTED

BLECTRL_EVT_DISCONNECTED

R_BLECTRL_Disconnect() or DisconnectionBLECTRL_EVT_SERVICE_ENABLED

R_BLECTRL_TransmitData()

BLECTRL_EVT_TRANSMITTED BLECTRL_EVT_RECEIVED

R_BLECTRL_Open()

R_BLECTRL_Close()

R_BLECTRL_StartPeripheral()/R_BLECTRL_StartCentral()

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 41 of 46

Mar. 04, 2022

3.7.16 State Transition of USB Control Transition

Figure 3-21 State Transition of USB Control Processing

Uninitialized

Uninitialized

Detach

CDC

Reception

CDC

Transmission

Configured

CDC Enabled

USBCTRL_EVT_CONFIGURED

USBCTRL_EVT_SUSPEND

USBCTRL_EVT_CDC_ENABLED

R_USBCTRL_TransmitData()

USBCTRL_EVT_TRANSMITTED USBCTRL_EVT_RECEIVED

R_USBCTRL_Open()

R_USBCTRL_Close()

Default

USBCTRL_EVT_RESUME

USBCTRL_EVT_DEFAULT

Suspend

USBCTRL_EVT_SUSPEND

USBCTRL_EVT_DETACHUSB Insertion to Host device

CDC

RX SuspendedR_USBCTRL_TransmitData()

USB Removal from Host device

R_USBCTRL_ResumeRx()

R_USBCTRL_SuspendRx()

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 42 of 46

Mar. 04, 2022

3.8 How to Customize and Notes for Final Products

3.8.1 Changing the Service Configuration of the BLE Control Application

The sample program generated the Data I/O Service by using QE for BLE[RA, RE, RX]. For the default
configuration of the Data I/O Service, refer to Table 3-10. By using the QE for BLE to generate source code,
you can extend the functionality of the Data I/O Service and define new services. For more information on
the QE for BLE, refer to the following website.

QE for BLE: Development Assistance Tool for Bluetooth® Low Energy
https://www.renesas.com/qe-ble

The procedure to start QE for BLE[RA, RE, RX] and update profile configuration is shown below.

1. To start QE for BLE[RA, RE, RX], select [Renesas Views]→[Renesas QE]→[R_BLE Custom Profile
RA, RE, RX (QE)] in the menu of e2 studio.

Figure 3-22 [Renesas Views]→[Renesas QE]→[R_BLE Custom Profile RA,RE,RX (QE)]

2. Select the project in [R_BLE Custom Profile RA, RE, RX (QE)].

3. The current profile configuration is displayed in [R_BLE Custom Profile RA, RE, RX (QE)].

Figure 3-23 R_BLE Custom Profile RA,RE,RX (QE)

4. Refer to the following document to design the profile configuration and implement your program to the
source code generated by QE for BLE.

RX23W Group Bluetooth Low Energy Profile Developer's Guide (R01AN4553)
https://www.renesas.com/document/apn/rx23w-group-bluetooth-low-energy-profile-developers-guide-
rev110

https://www.renesas.com/qe-ble
https://www.renesas.com/document/apn/rx23w-group-bluetooth-low-energy-profile-developers-guide-rev110
https://www.renesas.com/document/apn/rx23w-group-bluetooth-low-energy-profile-developers-guide-rev110

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 43 of 46

Mar. 04, 2022

3.8.2 Operation Setting for enhancing Throughput of the BLE Control Application

The sample program adds the following processing to the app_main.c generated by QE for BLE to enhance
throughput during a Bluetooth LE connection.

－ When operating as a Central device, R_BLE_GAP_SetPhy() is called to change to 2M PHY

－ When operating as a Central device, R_BLE_GATTC_ReqExMtu() to expand ATT MTU size from

23byts to 247bytes.

3.8.3 Security features of BLE Control Application

The sample program does not perform pairing, encryption, encryption, or privacy of Bluetooth LE. To use
these security features, refer to the following document.

RX23W Group Bluetooth Low Energy Application Developer's Guide (R01AN5504)
https://www.renesas.com/document/apn/rx23w-group-bluetooth-low-energy-application-developers-
guide-rev110

→Chapter 9 "Security"

3.8.4 Permission of Software Standby Mode of BLE Control Application

The sample program allows MCU to enter to Software standby mode of Low Power Consumption state by
calling R_BLE_LPC_SetInhibitSoftwareStandby(false) of the BLE FIT module. In the Software standby

mode, SCI is stopped. The sample program uses the SCI8 to send an operation log to the console only.
However, if the SCI8 is also used to receive a string from the console, the transition to the Software standby
mode must be prohibited.

3.8.5 Bluetooth SIG Qualification

Final products using Bluetooth technology must be qualified by Bluetooth SIG. For information on how to
acquire Bluetooth qualification for the final products using the Bluetooth LE MCU or module manufactured by
Renesas, refer to the following document.

Bluetooth LE microcomputer / module Bluetooth qualification acquisition (R01AN3177)
https://www.renesas.com/document/apn/bluetooth-le-microcomputer-module-bluetooth-qualification-
acquisition-application-note-rev140

3.8.6 Compliance with the Radio Laws and Acquisition of Certification

Final products using wireless technology must comply with the radio laws of the countries where they are
sold. For certification, refer to the documents issued by each country's certification organization or
certification agency.

The RX23W module (R5F523W8CDLN/ R5F523W8DDLN) has acquired Radio Law (Japan), FCC/ISED
(North America), and CE (Europe) certifications.

https://www.renesas.com/document/apn/rx23w-group-bluetooth-low-energy-application-developers-guide-rev110
https://www.renesas.com/document/apn/rx23w-group-bluetooth-low-energy-application-developers-guide-rev110
https://www.renesas.com/document/apn/bluetooth-le-microcomputer-module-bluetooth-qualification-acquisition-application-note-rev140
https://www.renesas.com/document/apn/bluetooth-le-microcomputer-module-bluetooth-qualification-acquisition-application-note-rev140

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 44 of 46

Mar. 04, 2022

3.8.7 DTC Transfer of DMA Transfer of USB Driver

The USB Basic Mini FIT Module can use DTC transfer or DMA transfer. The procedure for using DTC
transfer or DMA transfer is shown below.

1. Double-click the smart configurator configuration file (.scfg) in [Project Explorer] of e2 studio to open
the smart configurator.

2. Click [Add component] button (green + icon) in [Software component configuration] to add the DTC
FTT Module (r_dtc_rx) or the DMA FIT Module (r_dmaca_rx) in New Component dialog.

Figure 3-24 Software Component Configuration of the Smart Configurator

3. Select the USB Basic Mini FIT Module (r_usb_basic_mini) in the Software component configuration.
When using DTC transfer, set [DTC use setting] (USB_CFG_DTC) to "Using DTC". When using DMA
transfer, set [DMA use setting] (USB_CFG_DMA) to "Using DMA".

Figure 3-25 Configuration of USB Basic Mini FIT Module (r_usb_basic_mini)

4. Click [Generate Code] button of [Software component configuration] to generate the source code of
the software components. When using DMA transfer, no further steps are needed.

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 45 of 46

Mar. 04, 2022

5. When using DTC transfer, the heap area must be expanded to allow the DTC FIT Module to allocate
the DTC vector table area dynamically. For the heap size required by the DTC FIT Module, refer to
the DTC_VECTOR_TABLE_SIZE_BYTES macro in the following code file generated by the Smart

Configurator. The following is the macro definition for the DTC FIT Module V3.80.

{Project Folder}¥src¥smc_gen¥r_dtc_rx¥src¥targets¥rx23w¥r_dtc_rx_target.h

/* Size of DTC Vector table (in byte units) */

#define DTC_VECTOR_TABLE_SIZE_BYTES (0x3E8 + 0x400)

Select the Board Support Package Module (r_bsp) in the Software component configuration. Add the
size specified by the DTC_VECTOR_TABLE_SIZE_BYTES to the heap size required by the application or

system and set to [Heap size] (BSP_CFG_HEAP_BYTES).

Figure 3-26 Configuration of Board Support Package Module (r_usb_basic_mini)

6. Click [Generate Code] button of [Software component configuration] to generate the source code of
the software components.

3.8.8 Getting a USB Vendor ID

Vendor ID for USB products must be acquired by the customer (vendor) who sells them as the final product.
For information on acquiring Vendor IDs, refer to the USB Implementers Forum (USB-IF) website.

Getting a Vendor ID - USB Implementers Forum, Inc.
https://www.usb.org/developers/vendor/

Set the acquired Vendor ID as well as the Product ID, Release Number, etc. that can be assigned by the
vendor in the following code file.

{Project Folder}¥src¥usbctrl¥r_usb_pcdc_descriptor.c

/* Vendor ID */

#define USB_VENDORID (0x0000u)

/* Product ID */

#define USB_PRODUCTID (0x0002u)

/* Release Number */

#define USB_RELEASE (0x0200u)

Figure 3-27 Macro Definitions of Vendor ID, Product ID, and Release Number

https://www.usb.org/developers/vendor/

RX23W Group Guide for Concurrent Use of Bluetooth Low Energy and USB

R01AN6289EJ0100 Rev.1.00 Page 46 of 46

Mar. 04, 2022

Revision History

Rev. Date

Description

Page Summary

1.00 Mar. 04, 2022 - First Issue

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license.

FreeRTOSTM is a trademark of Amazon Web Services, Inc. https://freertos.org/copyright.html

All trademarks and registered trademarks are the property of their respective owners.

https://freertos.org/copyright.html

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of

your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas

Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.

Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products

outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you

are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Example of Assumed System Configuration
	2. Things To Keep in Mind
	2.1 Controlling Bluetooth LE and USB Communications
	2.1.1 Operation Overview of BLE Protocol Stack and USB Driver
	2.1.2 Influence of Long Processing Time of Application Running in Main Loop
	2.1.3 Cases Where the Processing Time of R_BLE_Execute() Becomes Longer
	2.1.4 Influence of the Connection Interval of Bluetooth LE
	2.1.5 Necessity of Flow Control of USB Communication
	2.1.6 Necessity of Data Retransmission of Bluetooth LE Communication and USB Communication

	2.2 FreeRTOS Task Setting
	2.2.1 FreeRTOS Tasks for BLE Control and USB Control

	2.3 Reduction of Power Consumption
	2.3.1 Low Power Consumption mode of the MCU
	2.3.2 Transition to MCU Low Power Consumption Mode When Using FreeRTOS
	2.3.3 Condition of BLE for Transition to MCU Low Power Consumption
	2.3.4 Condition for Transition to RF Sleep Mode of BLE Module
	2.3.5 Condition of USB for Transition to MCU Low Power Consumption

	2.4 Clock Setting
	2.4.1 Setting for Using the CLKOUT_RF pin Output Clock as USB Clock

	3. Sample Program
	3.1 Overview
	3.2 Projects
	3.3 Operation Check Conditions
	3.4 Configuration and Operation
	3.5 Usage
	3.5.1 Importing Projects to e2 studio and Building
	3.5.2 Writing Program Files to the Evaluation Boards
	3.5.3 Evaluating Bluetooth LE and USB communications

	3.6 R_BLECTRL Interface
	3.6.1 R_BLECTRL_Open
	3.6.2 R_BLECTRL_Close
	3.6.3 R_BLECTRL_RegisterCb
	3.6.4 R_BLECTRL_RegisterTxBuffer
	3.6.5 R_BLECTRL_StartPeripheral
	3.6.6 R_BLECTRL_StartCentral
	3.6.7 R_BLECTRL_Disconnect
	3.6.8 R_BLECTRL_GetTxBufferSpace
	3.6.9 R_BLECTRL_TransmitData
	3.6.10 blectrl_main
	3.6.1 blectrl_evt_cb_t
	3.6.2 e_blectrl_status_t
	3.6.3 e_blectrl_evt_t
	3.6.4 st_blectrl_evt_param_t

	3.7 R_USBCTRL Interface
	3.7.1 R_USBCTRL_Open
	3.7.2 R_USBCTRL_Close
	3.7.3 R_USBCTRL_RegisterCb
	3.7.4 R_USBCTRL_RegisterTxBuffer
	3.7.5 R_USBCTRL_SuspendRx
	3.7.6 R_USBCTRL_ResumeRx
	3.7.7 R_USBCTRL_GetTxBufferSpace
	3.7.8 R_USBCTRL_TransmitData
	3.7.9 R_USBCTRL_GetAllowedLpcMode
	3.7.10 usbctrl_main
	3.7.11 usbctrl_evt_cb_t
	3.7.12 e_usbctrl_status_t
	3.7.13 e_usbctrl_evt_t
	3.7.14 st_usbctrl_evt_param_t
	3.7.15 State Transition of BLE Control Processing
	3.7.16 State Transition of USB Control Transition

	3.8 How to Customize and Notes for Final Products
	3.8.1 Changing the Service Configuration of the BLE Control Application
	3.8.2 Operation Setting for enhancing Throughput of the BLE Control Application
	3.8.3 Security features of BLE Control Application
	3.8.4 Permission of Software Standby Mode of BLE Control Application
	3.8.5 Bluetooth SIG Qualification
	3.8.6 Compliance with the Radio Laws and Acquisition of Certification
	3.8.7 DTC Transfer of DMA Transfer of USB Driver
	3.8.8 Getting a USB Vendor ID

	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

