
 APPLICATION NOTE

R01AN1869EU0110 Rev 1.10 Page 1 of 21
Nov 25, 2014

RX111
CDC Flashloader - A Complete Solution for Programming a Device over USB

Introduction
The USB CDC Flashloader solution lets a user easily reimage the firmware of a device in-field, using a PC and a USB
connection.

The solution consists of three parts. 1) A USB host downloader GUI for downloading the image file from a PC, 2)
PCDC Flashloader, an on-chip program that receives and writes an image to user memory, and 3) the user application
program UserApp, the target board application that is to be downloaded using 1 and 2.

Choosing a USB class for Flashloader
One may easily be led to believe that CDC can pack much more data per USB frame since it uses Bulk transfers. With
12 Mbit/s for Full Speed USB this means a theoretical speed of 12 Mbit/s (~1 MB/s) if all bandwidth is available for
Bulk transfers. When studied closer however, these numbers are for total Bulk throughput for all endpoints. For just one
endpoint the data is limited to 64 bytes per frame and per endpoint. (A PC driver will most likely not pack multiple
packets into one frame for the same endpoint.) This means that for a typical application using one endpoint to channel
data the speed is only max 64000 bits/sec. One way to bypass this is obviously to add multiple endpoints and spread the
download image among them to achieve a speed of nr endpoints x packet size. This is not done in this implementation.
The PC GUI downloader CDC_USB_Downloader_Renesas.exe sends one MOT-line at a time, approximately 20 bytes,
and CDC_USB_Downloader_Renesas_double_line.exe sends two lines at a time if possible.

Here are reasons for using the CDC USB class, in particular in comparison with the commonly used HID class.

• HID reports are more complex compared with “straightforward” streamed data.

• Most host PC programming platforms include an API for USB CDC class, but not for HID.

• Using http://www.signal11.us/oss/hidapi may be an option for an alternative HID-based design.

Target Device
RX100 based MCUs, RSK111 in particular is used in this demo with respect to LEDs and board switches. The code
should be very easy to port to any RX100 USB device by downloading the latest r_bsp FIT package from the
www.renesas.com SW Library.

Content

R01AN1869EU0110
Rev 1.10

Nov 25, 2014

http://www.signal11.us/oss/hidapi
http://www.renesas.com/

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 2 of 21
Nov 25, 2014

1. e2 studio ... 3

2. Description and Usage .. 3
2.1 PCDC Flashloader .. 3
2.2 PC Host Flashloader GUI .. 4
2.3 UserApp .. 5

3. Memory Layout .. 6
3.1 RAM... 6
3.2 ROM (Flash) .. 6
3.3 Moving the Boundary Flashloader / UserApp ... 7

4. Fixed Vector Table .. 8

5. Reset (Boot) Procedure... 8

6. UserApp .. 9
6.1 Entering PCDC Flashloader from UserApp .. 9
6.2 The UserApp Header .. 9
6.3 Moving the UserApp header ... 9
6.4 UserApp’s Fixed Vector Area .. 10
6.5 Debugging UserApp Standalone ... 10

7. PC Host Code & Qt ... 11

8. PCDC Flashloader .. 12
8.1 VID & PID .. 12
8.2 Entering UserApp from PCDC Flashloader .. 12
8.3 Reprogramming ... 12
8.4 S-record Processing .. 12
8.5 Changes Made to Original PCDC ... 12

9. Using the Renesas Debug Console .. 12
9.1 Adding traces to code.. 13
9.2 UserApp .. 13
9.3 PCDC Flashloader .. 13

10. Error Messages ... 14

11. Communication Protocol ... 15
11.1 Download Sequence ... 15
11.2 Transfer Records ... 16

12. Block Numbers and Addresses of RX100 ... 19

Website and Support ... 21

Revision History ..A-1

General Precautions in the Handling of MPU/MCU Products ..A-2

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 3 of 21
Nov 25, 2014

1. e2 studio
The source code is available at the Renesas SW Library download site. It is on the same search result line as the
application note, under the C source link.

Here is how to import the accompanying project source code to e2 studio. Add the archive to e2 studio by following
New or Existing Workspace below.

New workspace
• Create an empty folder, where you want the workspace.

• Start e2 studio, and point to above folder when e2 studio asks what workspace to open.

• Click Workbench icon (bottom right in blue intro-screen).

• Continue with “Existing workspace” below.

Existing workspace
• Select Import.

• Select General => Existing Projects into workspace. ("Create new projects from an archive file or directory.")

o Alt 1. Select the root directory of the project, that is, the folder containing the “.project” file.

Make sure checkbox "Copy project to workspace" is checked.

o Alt. 2

Select the archive zip-file.

• You have now imported this project into the workspace. You can go ahead and import other projects into the
same workspace... Follow below for importing to existing workspace.

Run the code
• Build with Cntrl+B.

• Create a debug session, download and run the code.

2. Description and Usage
The CDC Flashloader solution contains three different parts which are described separately.

1. PCDC Flashloader. The MCU firmware that communicates with the PC host and rewrites the RX111 with the
new user application UserApp.

2. USB Host PC downloader. A QT based host download GUI for Windows.

3. UserApp. The to-be-downloaded program for the RX111. This is by default a sample application that blinks the
LEDs and reads the three board switches to alter the blink pattern. It can also boot into PCDC Flashloader as
discussed in 2.3.

2.1 PCDC Flashloader
The PCDC Flashloader project for the RX111 is the on-chip program that receives and writes the image to user memory.
CDC Flashloader will flash UserApp area when the host GUI downloads the image. After flashing, PCDC Flashloader
will reboot into itself.

CDC Flashloader itself resides in the highest address section of memory.

Downloading PCDC Flashloader
1. To enable USB Function mode on the RSK111, Jumper J12 must be set to the rightmost position, towards the USB

mini B connector.

2. In e2 studio, select Debug Configuration from the menu bar to download the PCDC Flashloader binary to the target
board.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 4 of 21
Nov 25, 2014

Please consult the RSK Quick Start Guide or equivalent that comes with the board for how to connect and
download a program.

• There may be debug configurations ready to use. Note that any existing Debug Configurations assume that 5V
is supplied to the board separately.

• If there are none, or you are not using an E1 or E20, create a configuration according to the guide for your
board. The frequency for the RSK111 must be set to 16 MHz.

3. With PCDC Flashloader running on the board, plug a USB A-Mini B cable into the PC, and the board’s lower right
USB port (there are two USB ports on the board).

4. Windows will now try to enumerate the board, but will be unable to do so the very first time the board is plugged in.
An INF file for PCDC Flashloader is needed for Windows to access the new USB COM port that PCDC
Flashloader makes available. The INF file is archived and named PCDC_FlashLoader file cdc_inf and comes with
the source code. Windows’ Found New HW Wizard should pop up when PCDC Flashloader is connected and
running. If not, open Windows’ Device Manager and locate the new USB device. You may have to right-click on an
‘Unknown Device’ to help Windows couple the device with the correct Windows driver (typically USBSER.SYS).
Select “Update Driver Software”, then browse manually to the supplied INF-file.

5. After a correct installation with Windows’ Found New HW Wizard, the device can be seen as shown in Figure 1.
The COM port’s description string is “Renesas CDC USB Flashloader”.

Figure 1. PCDC Flashloader is available for use by Windows after the
user directs Window’s Found New HW Wizard to the supplied INF-file*.
If the device does not appear after PCDC Flashloader has been
downloaded and is running, press the Reset button on the target board.

*Note that the VID of PCDC Flashloader must later be changed by the product designer.

2.2 PC Host Flashloader GUI
1. To run the host PC code, open

..\PCDC_FlashLoader_PC_build-Qt_5_1_1_MinGW_32b\release\CDC_USB_Downloader_Renesas.exe.

The GUI should start. See Figure 2.

2. Select MCU R5F51115.

3. With the target running PCDC Flashloader (check Windows Device Mgr.), press Search.

4. Select the COM port that produces the text Renesas CDC USB Flashloader in the output text field.

5. Select a UserApp MOT-file to download to the board. (It must first be built with e2 studio).
Press Select in the GUI. And browse to e.g. ../CDC_Flashloader/UserApp/HardwareDebug/UserApp.mot.

6. Press Program to flash.

7. If the GUI output window says “send_image()=OK.” Flashing was successful.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 5 of 21
Nov 25, 2014

Figure 2. When the UserApp image is flashed successfully,
“send_image() = OK” is printed in the GUI text output.

8. At the conclusion of programming, PCDC Flashloader reboots and will jump to the new UserApp image if the
UserApp header’s security code matches the expected value.

9. To verify that UserApp is running properly, the LEDs should be blinking and pressing SW1-3 should alter the blink
pattern.

2.3 UserApp
UserApp is the user program that is to be downloaded to the RX111. Downloading is accomplished by using the other
two parts of the solution – the PC host downloader while PCDC Flashloader is executing.

The default UserApp blinks LEDs in a pattern. The pattern is altered by pressing the switches on the RSK.

Executing UserApp
If the UserApp header contains the expected security code, PCDC Flashloader will start execution at UserAppStart
which resides at the lowest address of flash memory. For a 128 kB device this is at 0xFFFE0000. See 6.2 for how
UserApp is validated by PCDC Flashloader and entered into.

Debugging UserApp Standalone
UserApp can be executed on its own on the target, without PCDC Flashloader resident in memory. See 6.5.

Switching Execution from UserApp to PCDC Flashloader
• If the default UserApp is NOT downloaded, just press the Reset button on the RSK to execute PCDC Flashloader.

(Flashloader must first be downloaded. See 2.1).

• If the default UserApp is downloaded and is executing, pressing SW1+3 makes PCDC Flashloader run without
booting to UserApp.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 6 of 21
Nov 25, 2014

3. Memory Layout
PCDC Flashloader fits within 16 kB of flash with optimization for size level 2 using the RXC compiler. The exact
memory sizes for PCDC Flashloader and UserApp are found in the MAP-file in the project build directories. Here we
will discuss memory architectural usage aspects.

3.1 RAM
All RAM is available for both PCDC Flashloader and UserApp. RAM is always re-initialized and never shared between
the two projects. They execute at different times and never simultaneously. Execution is always restarted when going
from one to the other, and memory always reinitialized.

3.2 ROM (Flash)
UserApp will occupy the lowest memory region and PCDC Flashloader the highest.

Figure 3. Flash memory (ROM) disposition. UserApp is in green, at lower
memory. Flashloader is shown in blue, and resides at the highest memory
addresses. Block numbers and corresponding addresses can be seen in section 12.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 7 of 21
Nov 25, 2014

UserApp’s starting execution point UserAppStart() is at 0xFFFE0000, which is also the lowest possible address for an
RX100 device. UserApp occupies all memory up to PCDC Flashloader. The UserAppStart address is currently fixed. It
will not move even if the UserApp project’s code is changed and recompiled.

PCDC Flashloader’s start execution point, and also its lowest address, is set at 0xFFFFC000. It occupies all higher
memory (blue in Figure 3). This is with RXC compiler optimization level 2 for size.

3.3 Moving the Boundary Flashloader / UserApp
The boundary address between PCDC Flashloader vs. UserApp can be changed but is unlikely to be necessary, nor is it
encouraged. Should this be warranted use these guidelines. One reason to move the boundary could be that one wishes
to remove compiler optimization of PCDC Flashloader to be able to single step through the code. But to follow the
code’s actions, there already exists a means to view the action of PCDC Flashloader; namely by using the Debug
Console. See 9.

Moving UserApp
• In the Linker -> Section settings of the e2 studio project, change the address of the UserAppStartSect section.

This is where UserApp starts executing, and is also the lowest memory address available.

• The block numbers for UserApp need to be changed also in PCDC Flashloader. See below.

Moving PCDC Flashloader
• In the Linker -> Section settings of the e2 studio project, change the address of the P_Reset section. This is

where PCDC Flashloader starts.

• The block numbers for UserApp are needed by PCDC Flashloader to erase the memory that will later be
written with UserApp. They are defined in file r_usb_pcdc_apl_flashloader.c. Change them as shown below to
be able to use the DebugConsole.

#define BOUNDARY_ADDRESS_FLASHLOADER 0xFFFF6000UL

#define LOW_BLOCK_USERAPP 40

Flashloader will not allow anything above BOUNDARY_ADDRESS_FLASHLOADER to be flashed. If the
UserApp image contains such addresses an error will be seen in the GUI, though any existing UserApp Fixed
Vector area in the download image is simply ignored.

Observe: The MOT file may not start on an address boundary smaller than MIN_APP_FLASH_SZ. There will
be a flashing error otherwise. This is because the code assumes an even boundary start address of the
application.

Block numbers and corresponding addresses for the RX100 are shown in section 12.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 8 of 21
Nov 25, 2014

4. Fixed Vector Table
The Fixed Vector Table resides in the PCDC Flashloader area. It is logical to have the fixed vectors owned by PCDC
Flashloader since it manages reset and boot.

Figure 4. The fixed vectors are located at the very highest memory.

The Fixed Vector Table cannot be moved in memory, thereof the name Fixed.. The table therefore belongs toped
Flashoader, which is always resident in memory to service these interrupts. The fixed vectors should therefore always
vector to within Flashloader.

If for some reason this needs to change, here are a few ways this could be approached. Method 1below is likely the
most straightforward solution.

For both cases below, the Reset vector must always point to PCDC Flashoader’s reset function. Flashloader’s reset must
therefore be place at a known address so the user can enter this into the UserApp reset vector position. Also, when
UserApp is flashed (after the UserApp area is erased) there will be no code in place to service the fixed interrupts. This
could be remedied by before erasing UserApp, flashing temporary handlers pointing to functions within Flashloader.

1. Change PCDC Flashloader so that it programs the fixed vector area fr.om UserApp. See
BOUNDARY_ADDRESS_FLASHLOADER in r_usb_pcdc_apl_flashloader.c.

2. The user could add an additional UserApp header field containing an address to a fixed vector array to flash into
the fixed vector area. PCDC Flashloader would at the very end of flashing UserApp read this field and overwrite
the existing fixed vector pointer array (pointing to handlers in the Flashloader area).

5. Reset (Boot) Procedure
After an image has been reflashed, here is how execution proceed starting at the time of running UserApp. Execution
while in PCDC Flashloader is shown in yellow, and while in UserApp is shown in green

UserApp
• Execute from UserAppStart; setup clock, HW-setup etc.

• User presses SW3

• Device resets

Reset vector is in PCDC Flashloader

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 9 of 21
Nov 25, 2014

PCDC Flashloader
• Reset vector is in PCDC Flashloader

• Boot; setup clock, HW-setup etc.

• Detect if SW1 pressed. If so, stay in PCDC Flashloader.

• SW1 not pressed:

• Is there a valid UserApp header?

Yes:

Jump to UserApp (execute UserAppStart)

No:

Stay in CDC bootloader

6. UserApp
A sample UserApp is provided so that the user code developer will have some key items already set up, such as the
entry function UserAppStart(). In this chapter we will study what is needed for UserApp to work together with PCDC
Flashloader.

The sample UserApp user application toggles the RSK LEDs. The toggle pattern changes when the user presses the
board switches.

6.1 Entering PCDC Flashloader from UserApp
By default, if the user presses SW3, a software reset is issued. Since the fixed vector (and thus Reset) belongs to PCDC
Flashloader, the flashloader will start from reset. This can easily be changed to suit the specific needs of the product.

6.2 The UserApp Header
There is a UserApp “header” located at a predefined location in memory. This header contains the only information that
PCDC Flashloader can know about UserApp. This is to avoid problems with the linker moving code around for
UserApp. The header location remains fixed by a specific section setting for UserAppStartSect, so that Flashloader can
always find the start address etc header information provided for UserApp. If the header were moved, PCDC
Flashloader must be made aware of the new location. In the first versions of PCDC Flashloader, instead of reading the
header, there is just a call to jump_to_userapp, located in r_usb_pcdc_apl_flashloader.c.

The UserApp header should be located at the end of UserApp flash as shown with the dark green field in Figure 3.
There is a prototype for the header in resetprog.c.

The UserApp header should contain at a minimum items 1-3 below:

1. UserApp start address (“soft” reset)
2. A security code, e.g. 55AA55AAh.
3. Version id

..more items can be added.

6.3 Moving the UserApp header
The UserApp header element userapp_entry_addr is automatically updated by the linker if the function UserAppStart is
moved. So moving the header is not necessary. (This is part of the reason for having the header!) To move the UserApp
header in memory should this be warranted for some reason, follow these steps.

1. Make a note, for your own future reference, where the code is mapped in the text file:
..\CDC_Flashloader\Doc\RX111_blocks_flashloader_userapp.txt.

2. In the Linker Section settings, change the address for UserApp_Head_Sect to where you want UserApp to
reside. It is recommended to have the header at the highest address in the UserApp Area since it is flashed last.
If flashing fails or is interrupted, the header will most likely not be correct.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 10 of 21
Nov 25, 2014

Figure 5. Linker Section settings. The UserApp header section is here at 0xFFFF5F80, towards
the high end of UserApp’s memory area.

3. In the function jump_to_userapp() in r_usb_pcdc_apl_flashloader.c, set this same address as:
 MOV.L #0XXXXXXXXh, R9 ;This hex value is the start address of the UserAppStart function.

4. In r_usb_pcdc_apl_flashloader.c

1. Set LOW_BLOCK_USERAPP and HIGH_BLOCK_USERAPP according to how you mapped it out in 1.

2. Change USERAPP_HEADER_ADDR to same value as in 1 and 3 above.

6.4 UserApp’s Fixed Vector Area
Under normal usage, with PCDC Flashloader resident, the fixed vector will not be flashed, even if the CDC downloader
GUI sends it to the target. However the sample UserApp does have a fixed vector so that it can be developed and
debugged on its own. See 6.5.

6.5 Debugging UserApp Standalone
When UserApp is being developed, it is not necessary to have PCDC Flashloader resident to take care of reset.
Therefore to make debugging simpler, set DEBUG_USERAPP=1in e2 studio’s compiler settings. (Project Properties =>
C//C++ build settings.).

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 11 of 21
Nov 25, 2014

7. PC Host Code & Qt
The host GUI used to select and download the target UserApp was created using the Qt IDE and libraries. You do not
need Qt to run the executable, as explained in 2.2.

Should you wish to modify the host code, download the IDE for QT from http://qt-project.org. Follow these steps.

1. Click on the download link. Download and run Qt Online Installer for Windows.

2. When selecting toolkits, note that the supplied executable was built with the 2012 MinGW 32-bit version.

Installing the 2012 MSVC 64-bit is also an option, but the compiled executable will not run on a 32-bit OS PC in
case backwards compatibility with older systems is desired.

3. After the IDE is installed, run the host source code by double-clicking on the file Qt_CDC_USB_Downloader.pro
in folder ..\USBFW_mini\PCDC_FlashLoader_PC_host.

4. Qt Creator should start.

5. When opening the project for the first time you may have to specify build output folders. Note that these may not
be subfolders of the source code or you will later run into errors. Pick a place parallel to the source code or above it.

6. Run Qmake from the menu bar.

7. Build and debug with F5.

Tip: The Help button opens up a window with lots of valuable and searchable information. Here you can reference Qt
classes and widgets, and in particular for this project the QtSerialPort class information.

Figure 6. Qt Creator is the tool to edit and compile code.
Qt Help marked in green is an effective aid in learning about Qt classes and widgets.

http://qt-project.org/

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 12 of 21
Nov 25, 2014

8. PCDC Flashloader

8.1 VID & PID
The Vendor ID must be changed by the user before releasing any product to market. Vendor and Product ID are found
in r_usb_phid_usrcfg.h and in multiple places in the INF-file. The numbers must match exactly or enumeration with the
PC host will not happen.

8.2 Entering UserApp from PCDC Flashloader
After a device reset, PCDC Flashloader checks whether the UserApp header is present in flash memory and contains the
expected security code. If so, UserApp is executed.

8.3 Reprogramming
If SW1is held down at reset, UserApp will not be entered, and the device can be reflashed.

8.4 S-record Processing
The incoming S-records are already processed by the host to be in hex format, and not ASCII characters.

All data records are deemed to arrive from the host in increasing address order. If this is not the case, the host code must
be changed to send the data records in order.

There is a minimum flash size MIN_FLASH_SZ. For the RX this is four bytes. Data records must be processed to start
at an even multiple of the MIN_FLASH_SZ boundary and have a size being a multiple of MIN_FLASH_SZ. To “sew”
together a flash buffer that satisfies this, two srec_flash_data buffers exist and are referred to with indexes prev and new.
Besides rec_flash_data[], these buffer structures also contain the structure elements address, nr_flashdata_bytes, and
checksum. The use of these buffers is toggled. Before prev is flashed, it is padded with any bytes from new that are
within the same minimum boundary. Also, each new data record’s start address is adjusted to a MIN_FLASH_SZ
boundary.

Or, more precisely:

• For each incoming data record (new) that does not intrude in the previous (prev), the start address must only be
adjusted to the next lower MIN_FLASH_SZ boundary address, and the data within new “right shifted” to
compensate. The new start bytes at the beginning of new must be set to FFh. The data count is unaffected.

• A data record may have a start address that intrudes into the end of the previous data record’s MIN_FLASH_SZ
area (end of prev). The previous data record can therefore not be flashed until the new data record has been
processed so intruding bytes are moved to the correct space within prev. (new's count and start address must also be
adjusted.

• Before flashing prev, its end may need to be padded with FFh. If new intruded in prev as per above, this should
already have been taken care of.

8.5 Changes Made to Original PCDC
The core additions made to the original PCDC package to create PCDC Flashloader are in file
r_usb_pcdc_apl_flashloader.c, in particular in function usb_psmpl_MainTask(). The following subroutine functions
have been added to the file.

r_fcl_status_t analyze_new_dr_move_intruding_bytes_and_flash(prev, last_record);

r_fcl_status_t flash_prev_and_check(prev);

void prepare_and_send_response_record(response_type, response_field);

9. Using the Renesas Debug Console
To enable trace strings and data via the E1/E20 to e2 studio, use the Renesas Debug Console. This means you have the
ability to use printf() statements in C to send trace strings to the standard output. Standard output will in this case be the
E1/E20 debug register.

To use this set BSP_CFG_IO_LIB_ENABLE to 1 in ../r_config/r_bsp_config.h.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 13 of 21
Nov 25, 2014

This macro will enable the following in order to use the Debug Console.

1. INIT_IOLIB() must be called. This is sometimes commented out in resetprog.c to save object code space.

2. The code in lowlvl_debug.c contains the putchar and getchar functions so that the E1/E20 debug registers are used
for Debug Console I/O processing.

3. Include <stdio.h> in any files where you wish to use printf-statements.

4. In e2 studio, add the Debug Console window by switching on both icons

“1/0” and

“Pin Console” as shown below.

Both must be on so that the print buffer in E1/E20 can be emptied, and not block.

Figure 7. Buttons to control the Debug Console.
Press the I/O button for the console in e2 studio
again if the console seems unresponsive.

5. If nothing is printed, press the Clear icon a few times. (The icon partially concealed by the red border of Figure 7.)

9.1 Adding traces to code
To any file where printf() is called, add

#if BSP_CFG_IO_LIB_ENABLE

 #include <stdio.h>

#endif

9.2 UserApp
Set DEBUG_USERAPP = 1 in e2 studio as explained in 6.5.

9.3 PCDC Flashloader
In PCDC Flashloader you can follow how the image is flashed. Since by default the space for PCDC Flashloader is
constrained in order to maximize space for UserApp, PCDC Flashloader’s Debug Console code is turned off (and
compiler optimization is turned on for size). Follow section 6.3 to move PCDC Flashloader to make space for the stdio
code.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 14 of 21
Nov 25, 2014

10. Error Messages
Here are error messages displayed in the host GUI’s text output when the RX target does not respond with a regular
ACK.

(1) Target sent RR_ERR_NAK_RESEND

"Response Type error code: RR_ERR_NAK_RESEND."

"Target requested resend of the record..."

(2) Target sent RR_ERR_NAK_END sent from target

"Response Type error code: RR_ERR_NAK_END." plus, if there is an error code in the Response Field, you will get

a "Response Field error:" plus one of the Flash API errors (flash_err_t):

- “FLASH_ERR_BUSY” 1 Peripheral Busy

- “FLASH_ERR_ACCESSW 2 Access window error

- “FLASH_ERR_FAILURE 3 Operation failure, Programming or erasing error due to something other
 than lock bit

- “FLASH_ERR_CMD_LOCKED 4 RX64M - Peripheral in command locked state

- “FLASH_ERR_LOCKBIT_SET 5 RX64M - Pgm/Erase error due to lock bit.

- “FLASH_ERR_FREQUENCY 6 RX64M - Illegal Frequency value attempted (4-60Mhz)

- “FLASH_ERR_ALIGNED 7 RX600/RX200 - The address that was supplied was not on aligned
 correctly for ROM or DF

- “FLASH_ERR_BOUNDARY 8 RX600/RX200 - Writes cannot cross the 1MB boundary on some parts

- “FLASH_ERR_OVERFLOW 9 RX600/RX200 - Address + number of bytes' for this operation went past
 the end of this memory area.

- “FLASH_ERR_BYTES 10 Invalid number of bytes passed

- “FLASH_ERR_ADDRESS 11 Invalid address or address not on a programming boundary

- “FLASH_ERR_BLOCKS 12 The "number of blocks" argument is invalid

- “FLASH_ERR_PARAM 13 Illegal parameter

- “FLASH_ERR_NULL_PTR 14 Received null ptr; missing required argument

- “FLASH_ERR_TIMEOUT 15 Timeout

You will also get

"ERROR in send_image(). END."

(3) The target’s Ack-field is neither ACK nor NACK

"Response Type error code: Unknown."

You will also get

"ERROR in send_image(). END."

(4) Other Faults

- "Record Type error. Expected a Response Record. Got something else."

- "Response Length error."

- "Response Checksum err. It does not match the host's calculation."

- "Response Type error code: Unknown."

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 15 of 21
Nov 25, 2014

11. Communication Protocol

11.1 Download Sequence
The USB host and USB target (RX100) are shown in Figure 8. The host PC and PCDC Flashloader communicate with
each other using “records”.

Figure 8. Communication sequence between the USB PC host GUI to the left, and the RX100
target to the right.

The record formats of data sent over USB by the host PC, and the responses from the CDC Flashloader target are shown
in detail below in 11.2.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 16 of 21
Nov 25, 2014

11.2 Transfer Records

Start Record
The host will start the download of the new user image with a ‘Start Record’.

Figure 9. Start Record. This is sent from the USB host to start the download.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 17 of 21
Nov 25, 2014

Data Record
If the target determines that the Start Record and checksum contain valid data, the target will make itself available to
receive flash data, and to start flashing the user area. The data arrives in the form of Data Records.

Figure 10. Data Record.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 18 of 21
Nov 25, 2014

Response Record

Figure 11. Response Record

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 19 of 21
Nov 25, 2014

End Record

Figure 12. End Record

12. Block Numbers and Addresses of RX100
#define BLOCK_0 0 /* 1KB: 0xFFFFFC00 - 0xFFFFFFFF */

#define BLOCK_1 1 /* 1KB: 0xFFFFF800 - 0xFFFFFBFF */

#define BLOCK_2 2 /* 1KB: 0xFFFFF400 - 0xFFFFF7FF */

#define BLOCK_3 3 /* 1KB: 0xFFFFF000 - 0xFFFFF3FF */

#define BLOCK_4 4 /* 1KB: 0xFFFFEC00 - 0xFFFFEFFF */

#define BLOCK_5 5 /* 1KB: 0xFFFFE800 - 0xFFFFEBFF */

#define BLOCK_6 6 /* 1KB: 0xFFFFE400 - 0xFFFFE7FF */

#define BLOCK_7 7 /* 1KB: 0xFFFFE000 - 0xFFFFE3FF */

#define BLOCK_8 8 /* 1KB: 0xFFFFDC00 - 0xFFFFDFFF */

#define BLOCK_9 9 /* 1KB: 0xFFFFD800 - 0xFFFFDBFF */

#define BLOCK_10 10 /* 1KB: 0xFFFFD400 - 0xFFFFD7FF */

#define BLOCK_11 11 /* 1KB: 0xFFFFD000 - 0xFFFFD3FF */

#define BLOCK_12 12 /* 1KB: 0xFFFFCC00 - 0xFFFFCFFF */

#define BLOCK_13 13 /* 1KB: 0xFFFFC800 - 0xFFFFCBFF */

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 20 of 21
Nov 25, 2014

#define BLOCK_14 14 /* 1KB: 0xFFFFC400 - 0xFFFFC7FF */

#define BLOCK_15 15 /* 1KB: 0xFFFFC000 - 0xFFFFC3FF */

/* Flashloader above here. Move this line if change. ********/

/* UserApp below here. Move this line if UserApp is moved. **/

#define BLOCK_16 16 /* 1KB: 0xFFFFBC00 - 0xFFFFBFFF */

#define BLOCK_17 17 /* 1KB: 0xFFFFB800 - 0xFFFFBBFF */

#define BLOCK_18 18 /* 1KB: 0xFFFFB400 - 0xFFFFB7FF */

#define BLOCK_19 19 /* 1KB: 0xFFFFB000 - 0xFFFFB3FF */

#define BLOCK_20 20 /* 1KB: 0xFFFFAC00 - 0xFFFFAFFF */

#define BLOCK_21 21 /* 1KB: 0xFFFFA800 - 0xFFFFABFF */

#define BLOCK_22 22 /* 1KB: 0xFFFFA400 - 0xFFFFA7FF */

#define BLOCK_23 23 /* 1KB: 0xFFFFA000 - 0xFFFFA3FF */

#define BLOCK_24 24 /* 1KB: 0xFFFF9C00 - 0xFFFF9FFF */

#define BLOCK_25 25 /* 1KB: 0xFFFF9800 - 0xFFFF9BFF */

#define BLOCK_26 26 /* 1KB: 0xFFFF9400 - 0xFFFF97FF */

#define BLOCK_27 27 /* 1KB: 0xFFFF9000 - 0xFFFF93FF */

#define BLOCK_28 28 /* 1KB: 0xFFFF8C00 - 0xFFFF8FFF */

#define BLOCK_29 29 /* 1KB: 0xFFFF8800 - 0xFFFF8BFF */

#define BLOCK_30 30 /* 1KB: 0xFFFF8400 - 0xFFFF87FF */

#define BLOCK_31 31 /* 1KB: 0xFFFF8000 - 0xFFFF83FF */

#define BLOCK_32 32 /* 1KB: 0xFFFF7C00 - 0xFFFF7FFF */

#define BLOCK_33 33 /* 1KB: 0xFFFF7800 - 0xFFFF7BFF */

#define BLOCK_34 34 /* 1KB: 0xFFFF7400 - 0xFFFF77FF */

#define BLOCK_35 35 /* 1KB: 0xFFFF7000 - 0xFFFF73FF */

#define BLOCK_36 36 /* 1KB: 0xFFFF6C00 - 0xFFFF6FFF */

#define BLOCK_37 37 /* 1KB: 0xFFFF6800 - 0xFFFF6BFF */

#define BLOCK_38 38 /* 1KB: 0xFFFF6400 - 0xFFFF67FF */

#define BLOCK_39 39 /* 1KB: 0xFFFF6000 - 0xFFFF63FF */

#define BLOCK_40 40 /* 1KB: 0xFFFF5C00 - 0xFFFF5FFF */
…

See file
..Doc\RX111_blocks_flashloader_userapp.txt
for full list of block numbers and addresses.

RX111 CDC Flashloader - A Complete Solution for Programming a Device over USB

R01AN1869EU0110 Rev 1.10 Page 21 of 21
Nov 25, 2014

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

Rev. Date
Description
Page Summary

1.00 Jan 2, 2014 First version.
1.10 Nov 15, 2014 None

(code only)
- Changed to newer RX Flash API r01an2184eu0105_rx.
- Macro MIN_FLASH_APP_SZ added. Can be changed to
a multiple of MIN_FLASH_SZ to increase buffering of data
from USB before flashing.
- Added RPB111 for flashloader.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	Choosing a USB class for Flashloader
	1. e2 studio
	New workspace
	Existing workspace
	Run the code

	2. Description and Usage
	2.1 PCDC Flashloader
	Downloading PCDC Flashloader

	2.2 PC Host Flashloader GUI
	2.3 UserApp
	Executing UserApp
	Debugging UserApp Standalone
	Switching Execution from UserApp to PCDC Flashloader

	3. Memory Layout
	3.1 RAM
	3.2 ROM (Flash)
	3.3 Moving the Boundary Flashloader / UserApp
	Moving UserApp
	Moving PCDC Flashloader

	4. Fixed Vector Table
	5. Reset (Boot) Procedure
	UserApp
	PCDC Flashloader

	6. UserApp
	6.1 Entering PCDC Flashloader from UserApp
	6.2 The UserApp Header
	6.3 Moving the UserApp header
	6.4 UserApp’s Fixed Vector Area
	6.5 Debugging UserApp Standalone

	7. PC Host Code & Qt
	8. PCDC Flashloader
	8.1 VID & PID
	8.2 Entering UserApp from PCDC Flashloader
	8.3 Reprogramming
	8.4 S-record Processing
	8.5 Changes Made to Original PCDC

	9. Using the Renesas Debug Console
	9.1 Adding traces to code
	9.2 UserApp
	9.3 PCDC Flashloader

	10. Error Messages
	(1) Target sent RR_ERR_NAK_RESEND
	(2) Target sent RR_ERR_NAK_END sent from target
	(3) The target’s Ack-field is neither ACK nor NACK
	(4) Other Faults

	11. Communication Protocol
	11.1 Download Sequence
	11.2 Transfer Records
	Start Record
	Data Record
	Response Record
	End Record

	12. Block Numbers and Addresses of RX100
	Website and Support
	Revision History
	General Precautions in the Handling of MPU/MCU Products

