RE NESAS Application Note

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration
Technology

Introduction

This application note describes the usage of the US159-DA16XXXMEVZ Wi-Fi control module, which
conforms to the Firmware Integration Technology (FIT) standard.

In the following pages, the US159-DA16XXXMEVZ Wi-Fi control module software is referred to collectively as
“the DA16XXX Wi-Fi FIT module” or “the FIT module.”

The FIT module supports the following Wi-Fi Pmod modules:

e DA16200MOD (US159-DA16200MEVZ)
e DA16600MOD (US159-DA16600EVZ)

In the following pages, the DA16XXXMOD is referred to as “the Wi-Fi module”. The DA16200 and DA16600
products will collectively be referred to as “DA16XXX".

Target Device

e RX140 Group
e RX261 Group
e RX65N Group
e RX66N Group
e RX671 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers

e Renesas Electronics C/C++ Compiler Package for RX Family
e GCC for Renesas RX
For details of the confirmed operation contents of each compiler, refer to 6.1 Confirmed Operation Environment.

Related Documents

[11 RX Family Board Support Package Module Using Firmware Integration Technology (RO1AN1685)
[2] RX Smart Configurator User’s Guide: e? studio (R20AN0451)

[3] RX Family SCI Module Using Firmware Integration Technology (RO1AN1815)

[4] RX Family BYTEQ Module Using Firmware Integration Technology (RO1AN1683)
[56] FPB-RX140 v1 — User’s Manual (R20UT5376)

[6] FPB-RX261 v1 — User's Manual (R20UT5363)

[7] EK-RX261 v1 — User's Manual (R20UT5351)

[8] CK-RX65N v1 — User's Manual (R20UT5100)

[9] CK-RX65N v2 — User's Manual (R20UT5366)

[10] RX66N Target Board — User's Manual (R20UT4895)

[11] EK-RX671 — User's Manual (R20UT5234)

[12] RX671 Target Board — User's Manual (R20UT4894)

R0O1AN7173EU0140 Rev.1.40 Page 1 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Content

LIPS © 1YY /1 5
1.1, DATBXXX FIT MOUIE ...ttt ettt ettt e ettt e e e sttt e e e st e e e e sbte e e e eanteeeeeanteeeesanteeeeanns 5
1.2. Overview of the DATBXXX Wi-Fi FIT MOGUIEoooiiiiiie ettt et e e 5
1.2.1. Connection with the DATEXXX Wi-Fi MOAUIE ... 6
1.2.2. Hardware Configuration ...ttt e e st e e s abbe e e e s anbeeeeeans 7
1.2.3. Software CONfIQUIAION..........coiiiiii e e e e e e e e e e e et a e e e e e e s e s eanrreneeeaeeas 8
L T N o O AT T PR URPTPRR 9
L TSy = (0 LT I =T 1 o) o SRR 11
1.4.1. Status Transitions of TCP ClENt..... .o e e e e e e eeeeeees 11
1.4.2. Status Transitions of TLS ON-Chip CHENt ... e 12
1.4.3. Status Transitions of MQTT ON-Chip CleNt..........ooiiiiiiiiii e 13
1.4.4. Status Transitions of HTTP On-Chip ClENtccoiiiiiiiiiie e 14
1.4.5. Status Transitions of OTA ON-Chip SEIVICE.........ccciiiiiiiiiiie e 15
D N o I 1) o] 4 4= 11T o R 16
2.1, Hardware REQUIFEMENTSuuiiiiii e 16
2.2, SOftWare REQUINEIMENTS ...ttt e e e e e e e et e e e e e et r e e e e e e e e e e saabaeaeeeaeeesannnsreneeaaeeas 16
ARG TS TW] o) o ToTg (Yo I WoTo] (o] 0 F= 11 o SR T RSP PPRR 16
D 101 (=14 (U o] Y £=Ted (o PRI 16
D2 TR o == T =Y 1SS 16
DG T 101 (=T =Y o 1Y/ o 1= PRSP 16
D G O o401 o 11 TSI ST~ 1] e [U 17
D T O o o [T . RS RPRR 23
2.9, REIUIM VAIUEBS ...ttt ettt e e oo ettt et e e e e e e aabe et e e e e e e e e e nnbeeeeeaeeeeaannbeeeeaaaaean 29
D L o= 1 =T 0T (= SRR 30
2.11. Adding the FIT Module t0 YOUTr ProJECE.........ooiiiiiiie et 34
2.12. “for”, “while” and “do While” StatemMENTScooeereeee e e 34
D2 B T I 1911 =1 {0 T PRSP PRRR 35
2.13.1 Wi-Fi Security Type LIMItatioNS.......coo it e et ee e e e 35
2.13.2 Wi-Fi SDK LIMIATIONS ...ecveiiieiiiiie ettt ettt ste e ettt e e e sttt e e s sttt e e e stteaeesnteaeesnnteeeeanneeeaeanns 35
2.13.3 The Daylight Savings Time Setting LimitationSccoiiiiiiiiiiii e 35
2.13.4 Wi-Fi Network Connection Limitationscoiiiiiiiiiiiiie et e e e sanrae e e e e e 35
2.13.5 Wi-Fi Access Point Scanning LimMitationSc..ooiiiiiiiiiiiie e 35
D2 S =T 14 o7 11 T USSR 35
B T N o I ¥ Tox i) o =SSR 36
3.1, ROWIFI _DATBXXX OPEON() e iitiieeeitiie e e ettt e e et e e ettt e e e et e e e et e e e e e ba e e e e eba e e e e eabaeaeasabaeaesanbbeeesansaeeeeansees 36
3.2, R_WIFI_DATBXXX _ISOPENEA() .eeeeeiutieeeiitiieeeiiiieeeeteeeeesteeaeesteeaessteeaessnseeeessnsaeaessnseeaesanseeesssnseeeessnsens 37
3.3, R_WIFI_DATBXXX _CIOSE() «eeeiuvvreeeitreeeeiitiieeeiiteeeessstteeeastaeeessstaeaessssaeesssseeeessssssaesansenassansseeessnsseeessnsens 38
3.4, R _WIFI_DATBXXX _PING() +trreeietereeeiitiieeeiititeeeeittee e s eteeeesstaeeeesstaeaessstseeesssaeaeaansaeaeaansseaesansseeessnsseeessnsens 39
RO1AN7173EU0140 Rev.1.40 Page 2 of 124

Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.5, ROWIFI_DATBXXX USCAN() +eeetutteeeiiuttiee ettt e ettt ettt et e et e e e sa bt e e e rabe e e e e aa b et e e e aab e e e e e aabbeeesaabeeeeeannes 40
3.6. R_WIFI_DATBXXX _CONNECL() -rteeeiurteeeiitiie e iteee ettt ettt ettt e et e e e st e e e s e e e e s abre e e e annes 41
3.7. R_WIFI_DATBXXX_DISCONMNECH() .. eveeureeitiieiitee ettt e sttt ettt ettt nbe et ssn e e ane e s 42
3.8. R_WIFI_DATBXXX_ISCONNECIEA() ..veeureeiriieiirieeiie ettt ettt ettt ne e 43
3.9, R_WIFI_DATBEXXX_DNSQUETY() -+eteureeiureeititeiitee et estte e sttt site et e st st e sse e sseeesbe e ssneesnneesneeesnneeennes 44
3.10. R_WIFI_DA16XXX_SntpServerlpAddreSSSEt() e e e ie e e e e ee e e e e e s e e e e e e e e e 45
3.11. R_WIFI_DA1BGXXX_SNIPENGDIESEI() ..oco e 46
3.12. R_WIFI_DA1BXXX_SNtPTIMEZONESEL() ...eeeeiiurieeeiiiiiie ittt 47
3.13. R_WIFI_DA1BXXX_LOCAITIMEGEL() .. uveeireieiitie ittt ettt 48
3.14. R_WIFI_DA16XXX _SetDNSSErverAddreSS().....cccuuuriiieeiiiiiieeieeee e e seeitirte e e e e e e eeirree e e e e e e e e sanreaeeeaeeeeeeanns 49
3.15. R_WIFI_DA1B6XXX_GEetMACATArESS(). ... eevereiureeiieeeniiieiiet sttt stee sttt sse et sin e sne e 50
3.16. R_WIFI_DATBXXX_GEIPAAUArESS() -vveeeeiurireeeiiiieeeitiee ettt ettt ettt e e e sbe e e s snbe e e e e snbee e e ennnes 51
3.17. R_WIFI_DA1BXXX_Hardwar€RESEI()uueeeiiiiiie ittt 52
3.18. R_WIFI_DATBXXX _GEEVEISION(). e uveeeeiiitiieeeitiie ettt ettt ettt et e ettt e e et e e e s e e e e snbe e e e e ennes 53
3.19. R_WIFI_DA16XXX_GetAvailableSOCKET()cuuiiieieiiieiiii e 54
3.20. R_WIFI_DA16XXX_GetSOCKEISIAtUS() .. eivereiureeiiiieiiiie ittt 55
3.21. R_WIFI_DATBXXX_Create@SOCKE () cueeiteie ittt 56
3.22. R_WIFI_DATBXXX_TCPCONNECH() .. uteeeeeiutieeeeitiiee e rttee ettt ettt e ettt e e st e e e st e e e s anbe e e e s snbee e e e nnnes 57
3.23. R_WIFI_DATBXXX_SENASOCKEL()veeeeeiutieieeiiiiee ittt ettt et e e e e e 58
3.24. R_WIFI_DA1TBXXX_RECEIVESOCKET() .eoeeuveeieiiiiiee ittt ettt et et e 59
3.25. R_WIFI_DATBXXX_CIOSESOCKET() ..veeruveeiuteeeiutitiiiie ettt e sttt sit et sttt ettt rne e st ssn e s e b e s 60
3.26. R_WIFI_DA1BXXX_TCPRECONNECH() ...uveeeieieeiieiiiiiie ettt e et e e e e e e e e e e e e e e nnes 61
3.27. R_WIFI_DA16XXX_GetAvailableTISSOCKEL() ... cciruuieieieiiiieriiee et 62
3.28. R_WIFI_DA1B6XXX_GetTISSOCKEISIAtUS(). e i iuveeee it 63
3.29. R_WIFI_DA1BXXX_CreateTISSOCKE()uteeiiiiiee ittt ettt 64
3.30. R_WIFI_DATBXXX_TISCONNECL()uveeeeeitieee ettt ettt ettt e e et e e s anbe e e e e enbe e e e e ennes 65
3.31. R_WIFI_DA1BXXX_SeNATISSOCKEL()veeetereiureeiiieeiiiie ittt ettt 66
3.32. R_WIFI_DA1B6XXX_RECEIVETISSOCKEL(). .. veeeiureeiiiieitiie ittt sttt 67
3.33. R_WIFI_DA1BXXX_CIOSETISSOCKEL() ...veeiuteeeiutieiiieeitiie ettt 68
3.34. R_WIFI_DA1TBXXX_TISRECONNEC() -..eeeiiutiieeiiiiiee ittt ettt ettt ettt et e e st e e e e e e e e 69
3.35. R_WIFI_DA1BXXX_CoNfIgTISSOCKE() ... uveeeeeiuteieeiitiiee ittt ettt e 70
3.36. R_WIFI_DA16XXX_RegistServerCertificate()coooeiiiiie et 72
3.37. R_WIFI_DA16XXX_ReqUESITISSOCKE() ..eereeeiiiiiiiiiiiie ettt a e e e 73
3.38. R_WIFI_DA16XXX_GetServerCertifiCcate()....... oo i e e e 74
3.39. R_WIFI_DA1B6XXX_WriteCertifiCate() ueeiteeiiei ettt 75
3.40. R_WIFI_DA1BXXX_DeleteCertifiCate() ueu ittt e 76
3.41. R_WIFI_DATBXXX_MQEOPEN() ..eeeiiutrieeiitiiee ettt ettt ettt e et e e e st e e e e snbee e e e snnneeeennnes 77
3.42. R_WIFI_DA1BXXX_MQttDISCONNECH() ... e iuveeeeeiuiiieeeitiieeeittee e et e e ettt stee e e ettt e e et e e e st e e e e snreee e ennnes 78
3.43. R_WIFI_DATBEXXX_MQHCONNECE() ..eeeiueieitieeiiee ettt ettt e et e s e e e e e e 79
3.44. R_WIFI_DA1EXXX_MQHPUBIISN()eeeieeeeiiiie it 80
3.45. R_WIFI_DA1TBEXXX_MQHRECEIVE() -..eeeiueieitiie ittt ettt et s e s ae e smneeenees 81
RO1AN7173EU0140 Rev.1.40 Page 3 of 124

Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.46. R_WIFI_DA16XXX_MQtSUDSCIIDE() .eueeriieieiiieeiie ettt 82
3.47. R_WIFI_DA16XXX_MgttUNSUDSCIDE() -.eeeeeeieiieeieeeee ettt 83
3.48. R_WIFI_DATBXXX_MQHCIOSE() -vvrevveeiurieiiiie ittt ettt sttt sttt n e e 84
3.49. R_WIFI_DATBXXX_HIPOPEN() 1-reteuteeiitieitiee ittt ettt ettt sttt ettt e n e 85
3.50. R_WIFI_DATBXXX _HIPCIOSE() .. reteuveeiurieitiie ittt et s ettt ettt ettt esn e e 86
3.51. R_WIFI_DATBXXX _HPSENA()- - eeeueeeieieeitieeitie ettt ettt et e st e e e e e ene e e eeeeesneeeemseeeneeeamneeennes 87
3.52. R_WIFI_DATBXXX_OtaOPEN() - -teeeiueeeaueeeaateeeateeaaseeaaueeeaateeeaueeeseeeaaseeesnseeaaseeeanseeaaseeesnseesnseesassesansesanses 88
3.53. R_WIFI_DATBXXX_OtACIOSE() -veeetuueeaureraaueeeateeaateeaaieeeaateeeaseeeseeaaaseaesnteeaaseeaanseeasseeesnseesnseesassessnsesases 89
3.54. R_WIFI_DATBXXX_OtASTANT() ...uveeervreerureeitiee ittt ettt s ettt ettt st ssn et e e e s s e s e 90
3.55. R_WIFI_DA16XXX_OtaEraseFirmMWare()cccccuuriiieeiiiiiiieiee e e e ettt e e e e st e e e e e e e sarnee e e e e e e e eanes 91
3.56. R_WIFI_DATBXXX _OtaGetPIrOGrESS() ..vvveeieeeieiiiiiieiiieeeiiciiteee e e e e e seetataeeeeaeeesssaarseeeeaeesessnnsrsseeeeeeaannnnes 92
3.57. R_WIFI_DA16XXX_OtaReadFirmwarebyBIOCK()cciceriiiieiieisiie e 93
3.58. R_WIFI_DA1TBXXX_OtaGetAAArESS() .. veeeverermrereaeeeaieeeiaieeeaieeaeeeasteeeateeaaseeesseeeanseeesnseesnseesnseessnsesanses 94
3.59. R_WIFI_DA16XXX_OtaFirmMWar€SIiZE().......ueeioueeeaeeeaueieiieeeaieeeeaesteeesteeeseeeesneeeeeeeesneeesnseeenneeesnseeennes 95
3.60. R_WIFI_DATBXXX_OtaGetState() ... ccocueeireie ittt 96
3.61. R_WIFI_DA1BXXX_OtaGetFirmMWAare().......cceeiiueeeeiiiieeeiiieee e eiiee e stiee e site e e e sitae e e e sntee e e s snnaeaeesnraeaeennnes 97
v N O 1| o 7= To: Q=¥ o i o] o [98
2 3 I VAU o= 1 oY= Tod Q8 {1 Loz o) o RO 98
737 Y/ (@ o= o T Yo Q0 0 o7 1T o 1 SRR 100
T B 1= o ¢ (o B o (o)1= £ PP 101
5.1 Wi-Fi DA16600 Multiple Protocols Demo Project. ... 101
o Tt 0 B o =Y = o [171 L= PP PPPPPPPPPPPR 101
51.2 Import the DEmMO PrOJECL ...t e e e et e e e e e e e e e eeeeaaa e s 101
5.1.3 HArAWEAre SELUDceeiiiiiieiie ettt ettt e e e bt e e e ettt e e e abb e e e e abbe e e e ebbe e e e eanreeeeaae 101
5.1.4 HOW t0 RUN ThE DEIMOeeiiiiiiiiie ettt ettt e e bt e e e e bt e e e e abbeeeeeaneeeeeeans 102
5.1.5 Porting the Demo Project t0 ANOthEr DEVICEouuiiiiiiiiii e 111
5.2 Wi-Fi DA16600 OTA on-chip Demo Project..........uueiiiiiiiiiiee e 112
5.3 Adding @ Demo t0 @ WOIKSPACEcoiiiiiiiiiiee et e e e e e e eeaeeeeas 112
5.4 Downloading DEMO PrOJECEScoiiiiiiiiiiiiiiie ettt e e e e et e e e e e e e reeeaeeeeas 112
T Y o] o T= o [T =SSP 113
6.1 Confirmed Operation ENVIFONMENT..........oooiiiiiiieeeeeeeeeeeee ettt eeeeeeeseeasesesesesesssssssssssssennnnnes 113
6.2 Support LOGging FUNCHON ...ttt e e e e e et e e e e e e e e e nneneeeaaaeeas 116
6.2.2 Debug with Serial POrt LOGGINGcciueeieiiiiiiee ittt e ettt e e e st e e e sbbe e e e sbeeeeessneeeeeeans 116
6.2.3 Debug with Renesas Debug Virtual CONSOIEccuuiiiiiiiiiiii e 119
6.3 TrOUDIESNOOTINGo e e e e e e e e e e 120
G I 1o 1 ¢= LT 1= RSP 121
7 Reference DOCUMENISooviiiiii it e e e e et e e e e e e e e eeenaa s 122
REVISION HISTOMY ... 123
RO1AN7173EU0140 Rev.1.40 Page 4 of 124

Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1. Overview

1.1. DA16XXX FIT Module

The FIT module is designed to be added to user projects as an API. For instruction on adding the FIT module,
refer to 2.11 Adding the FIT Module to Your Project.

1.2. Overview of the DA16 XXX Wi-Fi FIT Module

DA16XXX is a low-power Wi-Fi networking SoC that delivers a dramatic breakthrough in battery life even for
devices that are continuously connected to the Wi-Fi network. The module comes readily equipped with radio
certification for Japan, North America, and Europe.

The Wi-Fi FIT module supplies these features:

e Supports connect/disconnect to a b/g/n (2.4GHz) Wi-Fi Access Point using Open, WPA, and WPA2 security.
Encryption types can be either TKIP, or CCMP(AES).

e Supports retrieval of the module device MAC address.
e Supports retrieval of the module device IP address once connected to an Access Point.
e Supports a Wi-Fi network scan capability to get a list of local Access Points.
e Supports a Ping function to test network connectivity.
o Supports a DNS Query call to retrieve the IPv4 address of a supplied URL.
e Supports a SNTP Client to synchronize the local time with a server that provides time services.
e Supports TCP client sockets.
e Supports TLS on-chip client for secure sockets.
e Supports MQTT on-chip client.
o Supports connect/disconnect to an MQTT broker via hostname, port, and user credentials.
o Supports unsecure and secure connection via TLS encryption.
o Supports the MQTT subscribe/publish model for multiple topics.

o Supports other optional configurations such as MQTT v3.1.1, Quality-of-service (QoS) level, TLS cipher
suites, and ALPNs.

e Supports HTTP on-chip client.

o Supports sending a request header (GET, PUT, and POST) to an HTTP server and receiving a response
header.

o Supports unsecure and secure connection via TLS encryption.

o Supports parsing of the response header and returning to the user.

o Supports other optional configurations such as Server Name Indication (SNI) and ALPNs.
o Supports DA16XXX on-chip OTA service for MCU firmware update.
e Supports 1 UART channel for interfacing with the DA16XXX module.
e Supports FreeRTOS-based user applications.

e Supports Bare metal-based user applications.

R0O1AN7173EU0140 Rev.1.40 Page 5 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1.2.1. Connection with the DA16XXX Wi-Fi Module

Examples of connection to the DA16XXX Wi-Fi module are shown below.

MCU DA16XXX
PMOD_1: CTS PMOD_1: CTS
PMOD_2: TXD PMOD_2: RXD
PMOD_3: RXD PMOD_3: TXD
PMOD_4: RTS PMOD 4: RTS
PMOD_5: GND PMOD_5: GND
PMOD_6: VCC PMOD_6: VDD

PMOD_8: RESET PMOD_8: RESET*

* Note: Active low level

Figure 1.1 Example Connection to the DA16XXX Wi-Fi Module

R0O1AN7173EU0140 Rev.1.40 Page 6 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1.2.2. Hardware Configuration
The hardware configuration for MCU host and the Wi-Fi Pmod module is shown below.

Table 1.1 MCU Host Hardware Configuration

Item Content Description
Target board for CK-RX65N .
CK-RX65N v2 Cloud Kit | V2 Please see detail at:
Part number: https://www.renesas.com/rx/ck-rx65n
RTK5CK65N0S08001BE
EK-RX671 Evaluation Target board for EK-RX671 Please see detalil at:
Kit Part number: https://www.renesas.com/rx/ek-rx671
RTK5EK6710S00001BE
“ :
RX671 Target Board Part number: https://www.renesas.com/rtk5rx6710c00000bj
RTK5RX6710C00000BJ
*1 -
RX66N Target Board Part number: https://www.renesas.com/rtk5rx66n0c00000bj
RTK5RX66N0C00000BJ
. Target board for RX140 Fast]
RX140 Fast Prototyping Prototyping Board Please see detail at:
Board Part number: https://www.renesas.com/rx/fpb-rx140
RTK5FP1400S00001BE
EK-RX261 Evaluation Target board for EK-RX261 Please see detail at;
Kit "2 Part number: https://www.renesas.com/rx/ek-rx261
RTK5EK2610S00001BE
. Target board for RX261 Fast)
RX261 Fast Prototyping Prototyping Board Please see detail at:
Board "2 Part number: https://www.renesas.com/rx/fpb-rx261
RTK5FP2610S00001BE

Note 1: The PMOD on the RX66N and RX671 target boards is configured to Type 6A by default from the
factory, which is not compatible with Wi-Fi module initialization. Therefore, changing the PMOD type to 2A or
3A is required. Please refer to 6.4 Limitations for the instructions.

Note 2: The EK-RX261 Evaluation Kit and RX261 Fast Prototyping Board only support PMOD1 for the Wi-Fi
Pmod module.

Table 1.2 Pmod Module Hardware Configuration

Item Content Description
This Pmod is used with MCU host for Wi-Fi

DA16200 Wi-Fi Pmod connection.

module Wi-Fi connection Please see detail at:
https://www.renesas.com/us159-
da16200mevz
This Pmod is used with MCU host for Wi-Fi

— connection.

3@;3%00 Wi-FiPmod | \wi_Fi connection Please see detail at: US159-DA16600EVZ -
Ultra-Low-Power Wi-Fi + Bluetooth Low
Energy Combo Pmod Board

RO1AN7173EU0140 Rev.1.40 Page 7 of 124

Oct.15.25 RENESAS

https://www.renesas.com/rx/ck-rx65n
https://www.renesas.com/rx/ek-rx671
https://www.renesas.com/rtk5rx6710c00000bj
https://www.renesas.com/rtk5rx66n0c00000bj
https://www.renesas.com/rx/fpb-rx140
https://www.renesas.com/rx/ek-rx261
https://www.renesas.com/rx/fpb-rx261
https://www.renesas.com/us159-da16200mevz
https://www.renesas.com/us159-da16200mevz
https://www.renesas.com/en/products/wireless-connectivity/wi-fi/low-power-wi-fi/us159-da16600evz-ultra-low-power-wi-fi-bluetooth-low-energy-combo-pmod-board
https://www.renesas.com/en/products/wireless-connectivity/wi-fi/low-power-wi-fi/us159-da16600evz-ultra-low-power-wi-fi-bluetooth-low-energy-combo-pmod-board
https://www.renesas.com/en/products/wireless-connectivity/wi-fi/low-power-wi-fi/us159-da16600evz-ultra-low-power-wi-fi-bluetooth-low-energy-combo-pmod-board

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1.2.3. Software Configuration

Figure 1.2 shows the software configuration.

Application

DA16XXX Wi-Fi FIT Module Wi-Fi driver layer

SCI FIT Module
Device driver layer
(SCI hardware control)

BYTEQ FIT Module

BSP FIT Module Hardware

ltems provided in Wi-Fi FIT module

- RTOS and Bare metal

Sample programs that can be obtained separately

Figure 1.2 Software Configuration Diagram

1. DA16XXX Wi-Fi FIT module
The FIT module. This software is used to control the Wi-Fi module.
2. SCI FIT module
Implements communication between the Wi-Fi module and the MCU. A sample program is
available.
Refer to “Related Documents” on page 1 and obtain the software.
3. BYTEQ FIT module
Implements circular buffers used by the SCI FIT module. A sample program is available.
Refer to “Related Documents” on page 1 and obtain the software.
4. BSP FIT module
The Board Support Package module. A sample program is available.
Refer to “Related Documents” on page 1 and obtain the software.
5. RTOS
The RTOS manages the system overall. Operation of the FIT module has been verified
using FreeRTOS or Bare metal.

R0O1AN7173EU0140 Rev.1.40 Page 8 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1.3. API Overview

Table 1.3 lists the API functions included in the FIT module. The required memory sizes are lists in 2.8 Code
Size.

Table 1.3 API Functions

R_WIFI_DA16XXX_Open() Initialize the Wi-Fi module
R_WIFI_DA16XXX_IsOpened() Check Wi-Fi is opened
R_WIFI_DA16XXX_Close() Close the Wi-Fi module
R_WIFI_DA16XXX_Ping() Pings a specified IP address
R_WIFI_DA16XXX_Scan() Scan Access points
R_WIFI_DA16XXX_Connect() Connects to an access point
R_WIFI_DA16XXX_Disconnect() Disconnects from an access point
R_WIFI_DA16XXX_lsConnected() Check connected access point
R_WIFI_DA16XXX_DnsQuery() Execute DNS query
R_WIFI_DA16XXX_SntpServerlpAddressSet() Set SNTP server IP address
R_WIFI_DA16XXX_SntpEnableSet() Enable or disable SNTP client service
R_WIFI_DA16XXX_SntpTimeZoneSet() Set SNTP time zone
R_WIFI_DA16XXX_LocalTimeGet() Get the local time based on current time zone
R_WIFI_DA16XXX_SetDnsServerAddress() Set DNS Server Address
R_WIFI_DA16XXX_GetMacAddress() Get MAC Address
R_WIFI_DA16XXX_GetlpAddress() Get IP Address
R_WIFI_DA16XXX_HardwareReset() Reset the Wi-Fi module
R_WIFI_DA16XXX_GetVersion() Returns version information for the module
R_WIFI_DA16XXX_GetAvailableSocket() Get the next available socket ID
R_WIFI_DA16XXX_GetSocketStatus() Get the socket status
R_WIFI_DA16XXX_CreateSocket() Create a new socket instance
R_WIFI_DA16XXX_TcpConnect() Connect to a specific IP and Port using socket
R_WIFI_DA16XXX_SendSocket() Send data on connecting socket
R_WIFI_DA16XXX_ReceiveSocket() Receive data on connecting socket
R_WIFI_DA16XXX_CloseSocket() Disconnect a specific socket connection
R_WIFI_DA16XXX_TcpReconnect() Reconnect TCP socket
R_WIFI_DA16XXX_GetAvailableTIsSocket() Get the next available socket ID
R_WIFI_DA16XXX_GetTIsSocketStatus() Get the socket status
R_WIFI_DA16XXX_CreateTIsSocket() Create a new socket instance
R_WIFI_DA16XXX_TIsConnect() Connect to a specific IP and Port using socket
R_WIFI_DA16XXX_SendTIsSocket() Send data on connecting socket
R_WIFI_DA16XXX_ReceiveTlsSocket() Receive data on connecting socket
R_WIFI_DA16XXX_CloseTlsSocket() Disconnect a specific socket connection
RO1AN7173EU0140 Rev.1.40 Page 9 of 124

Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R_WIFI_DA16XXX_TIsReconnect() Reconnect TLS socket
R_WIFI_DA16XXX_ConfigTlsSocket() Configure SSL Connection on Wi-Fi module
R_WIFI_DA16XXX_RegistServerCertificate() Register server certificate on Wi-Fi module
R_WIFI_DA16XXX_RequestTIsSocket() Request TLS socket communication
R_WIFI_DA16XXX_GetServerCertificate() Get stored server certificate on Wi-Fi module
R_WIFI_DA16XXX_WriteCertificate() Write certificate on Wi-Fi module
R_WIFI_DA16XXX_DeleteCertificate() Delete certificate on Wi-Fi module
R_WIFI_DA16XXX_MqttOpen() Initialize MQTT on-chip Client service
R_WIFI_DA16XXX_MaqttDisconnect() Disconnect from MQTT on-chip Client service
R_WIFI_DA16XXX_MqttConnect() g:rr\mll;lfeure and connect the MQTT on-chip Client
R_WIFI_DA16XXX_MgqttPublish() Publish a message for a given MQTT topic
R_WIFI_DA16XXX_MqttSubscribe() Subscribe to MQTT topics
R_WIFI_DA16XXX_MqttUnSubscribe() Unsubscribe from MQTT topics
R_WIFI_DA16XXX_MqttReceive() Receive data subscribed from MQTT Client service
R_WIFI_DA16XXX_MqttClose() Close the MQTT on-chip Client service

Wi-Fi HTTP On-Chip Client API
R_WIFI_DA16XXX_HttpOpen() Initialize the HTTP on-chip Client service
R_WIFI_DA16XXX_HttpClose() Close the HTTP Client service
R_WIFI_DA16XXX_HttpSend() Send the HTTP request with the configured buffers

Wi-Fi OTA On-chip Service API
R_WIFI_DA16XXX_0OtaOpen() Initialize the DA16XXX on-chip OTA service
R_WIFI_DA16XXX_OtaClose() Close the DA16XXX OTA service
R_WIFI_DA16XXX_OtaStart() Start downloading firmware from an OTA server
R_WIFI_DA16XXX_OtaGetProgress() Get progress status of firmware download.
R_WIFI_DA16XXX_OtaGetAddress() e B e Images is stored in
R_WIFI_DA16XXX_OtaFirmwareSize() Get a size in the header of the MCU firmware

Read the MCU firmware as much as the size from
the fw_addr and transmit it.

Erase the MCU firmware stored in a serial flash of
the DA16200/DA16600
R_WIFI_DA16XXX_OtaGetState() Get state of OTA transfer

Get the data returned from the API
OtaReadFirmwarbyBlock()

R_WIFI_DA16XXX_OtaReadFirmwarebyBlock()

R_WIFI_DA16XXX_OtaEraseFirmware()

R_WIFI_DA16XXX_OtaGetFirmware()

R0O1AN7173EU0140 Rev.1.40 Page 10 of 124
Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1.4. Status Transitions

1.4.1. Status Transitions of TCP Client
Figure 1.3 shows the status transitions of the FIT module up to co

mmunication status using TCP sockets.

Disconnected from

module status

Wi-Fi

R_WIFI_DA16XXX_Close()

R_WIFI_DA16XXX_Open()

Established

R_WIFI_DA16XXX_Close() Wb oo

R_WIFI_DA16XXX_Disconnect()

R_WIFI_DA16XXX_Connect()

Connected to
access point

R_WIFI_DA16XXX_CloseSocket()

R_WIFI_DA16XXX_CreateSocket()

Created socke

t

R_WIFI_DA16XXX_TcpConnect()

Connected to
Wi-Fi socket

R_WIFI_DA16XXX_ReceiveSocket()

Receive status

R_WIFI_DA16XXX_SendSocket()

Figure 1.3 Status Transitions When Using TCP Socket

RO1AN7173EU0140 Rev.1.40

Oct.15.25 RENESAS

Page 11 of 124

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1.4.2. Status Transitions of TLS On-Chip Client

Figure 1.4 shows the status transitions of the FIT module up to communication status using TLS sockets.

R_WIFI_DA16XXX_Close()

R_WIFI_DA16XXX_Close()

R_WIFI_DA16XXX_Disconnect()

R_WIFI_DA16XXX_CloseTlsSocket()

R_WIFI_DA16XXX_ReceiveTlsSocket()

Receive status

Disconnected from Wi-Fi
module status

R_WIFI_DA16XXX_Open()

Established
Wi-Fi module

R_WIFI_DA16XXX_Connect()

Connected to
access point

R_WIFI_DA16XXX_CreateTIsSocket()

Created socket

R_WIFI_DA16XXX_RequestTIsSocket()

R_WIFI_DA16XXX_GetServerCertificate()

R_WIFI_DA16XXX_RegistServerCertificate()

R_WIFI_DA16XXX_TIsConnect()

Connected to
Wi-Fi socket

R_WIFI_DA16XXX_SendTlsSocket()

Figure 1.4 Status Transitions When Using TLS Socket

RO1AN7173EU0140 Rev.1.40

Oct.15.25 RENESAS

Page 12 of 124

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1.4.3. Status Transitions of MQTT On-Chip Client
Figure 1.5 shows the status transitions of the FIT module up to communication status using the MQTT on-

chip client.

Disconnected from Wi-Fi
module status

R_WIFI_DA16XXX_Close()

R_WIFI_DA16XXX_Open()

R_WIFI_DA16XXX_Close()

Established
Wi-Fi module

R_WIFI_DA16XXX_Disconnect() R_WIFI_DA16XXX_Connect()

Connected to
access point

R_WIFI_DA16XXX_MgttClose() R_WIFI_DA16XXX_MqttOpen()

Initialized the MQTT
client

R_WIFI_DA16XXX_MagttDisconnect() R_WIFI_DA16XXX_MgttSubscribe()

\

R_WIFI_DA16XXX_MgttUnSubscribe() R_WIFI_DA16XXX_MgqttConnect()

Connected to
the MQTT broker

R_WIFI_DA16XXX_MqttReceive()

R_WIFI_DA16XXX_MgqttPublish()

Receive data from the
MQTT broker

Publish a message to the
topic

Figure 1.5 Status Transitions When Using the MQTT On-Chip Client

RO1AN7173EU0140 Rev.1.40 Page 13 of 124

Oct.15.25

RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1.4.4. Status Transitions of HTTP On-Chip Client
Figure 1.6 shows the status transitions of the FIT module up to communication status using the HTTP on-

chip client.

Disconnected from Wi-Fi
module status

R_WIFI_DA16XXX_Open()

R_WIFI_DA16XXX_Close()

Established
Wi-Fi module

R_WIFI_DA16XXX_Close()

R_WIFI_DA16XXX_Connect()

R_WIFI_DA16XXX_Disconnect()

Connected to
access point

R_WIFI_DA16XXX_HttpOpen()

R_WIFI_DA16XXX_HittpClose()

Initialized the HTTP client
Send a request to

Receive data from HTTP server

HTTP server

R_WIFI_DA16XXX_HttpSend()

Figure 1.6 Status Transitions When Using the HTTP On-Chip Client

RO1AN7173EU0140 Rev.1.40 Page 14 of 124

Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1.4.5. Status Transitions of OTA On-Chip Service
Figure 1.6 shows the status transitions of the FIT module up to communication status using the OTA on-chip
service.

Disconnected from Wi-Fi
module status

R_WIFI_DA16XXX_Close() R_WIFI_DA16XXX_Open()

R_WIFI_DA16XXX_Close() Established

Wi-Fi module

R_WIFI_DA16XXX_Disconnect() R_WIFI_DA16XXX_Connect()

Connected to
access point

R_WIFI_DA16XXX_OtaClose() R_WIFI_DA16XXX_OtaOpen()

Initialized the OTA
service
WIFI_OTA_IDLE

R_WIFI_DA16XXX_OtaEraseFirmwars() R_WIFI_DA16XXX_OtaEraseFirmware()

WIFI_OTA_FAIL WIFI_OTA_DOWNLOAD_FINISH

R_WIFI_DA16XXX_OtaGetState() R_WIFI_DA16XXX_OtaGetState()
Download fail Download success

WIFI_OTA_DOWNLOAD_INPROGRESS

Figure 1.7 Status Transitions When Using the OTA On-Chip Service

R0O1AN7173EU0140 Rev.1.40 Page 15 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

2. API Information

The FIT module has been confirmed to operate under the following conditions.

21. Hardware Requirements

The MCU used must support the following functions:

e Serial communication
e /O ports

2.2. Software Requirements

The driver is dependent upon the following FIT modules:

e r_bsp

® I _SCi_rx

e r_byteq rx
e FreeRTOS

2.3. Supported Toolchain

The FIT module has been confirmed to work with the toolchain listed in 6.1 Confirmed Operation
Environment.

2.4. Interrupt Vector

None

2.5. Header Files

All API calls and their supporting interface definitions are located in r_wifi_da16xxx_if.h.

2.6. Integer Types

This project uses ANSI C99. These types are defined in stdint.h.

RO1AN7173EU0140 Rev.1.40 Page 16 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

2.7. Compile Settings

The configuration option settings of the FIT module are contained in r_wifi_da16xxx_config.h.
The names of the options and their setting values are listed in the table below.

Table 2.1 Configuration Options (r_wifi_da16xxx_config.h)

Configuration Options in r_wifi_da16xxx_config.h
Wi-Fi Common Configuration

WIFI_CFG_DA16600_SUPPORT Use DA16600 module.
Default: “0” 1 = enabled, 0 = disabled.
WIFI_CFG_SCI_CHANNEL SCI Channel for AT command communication.
Default: “6” Set this option to match the SCI port to be controlled.
Interrupt priority of the serial module used for
WIFI_CFG_SCI_INTERRUPT_LEVEL communication with the Wi-Fi module.
Default: “4” Set this option to a value of 1 to 15 to match the system
priority.
WIFI_CFG_SCI_PCLK_HZ .
Default: “60000000” Peripheral clock speed for WIFI_CFG_SCI_CHANNEL
Communication baud rate for WIFI_CFG_SCI_CHANNEL.
WIFI_CIiG_SCI_”BAUDRATE Set this option to a value of 115200, 230400, 460800 or
Default: “115200
921600.
Configures the UART flow control mode.
WIFI CEG CTS SW CTRL 0: CTS hardware flow control is enabled, RTS flow control
Defaalt: “1,,_ -~ is performed by the FIT module using GPIO.
1: RTS hardware flow control is enabled, CTS flow control
is performed by the FIT module using GPIO.
Configures the port direction register (PDR) setting for the
WIFI CEG CTS PORT general port that controls the CTS pin of the Wi-Fi module.
Defaalt' “J,,_ - Set this option to match the port to be controlled.
) This option takes effect when WIFI_CFG_CTS_SW_CTRL
is setto 1.
Configures the port output data register (PODR) setting for
the general port that controls the CTS pin of the Wi-Fi
WIFI_CFG_CTS_PIN module.
Default: “3” Set this option to match the port to be controlled.
This option takes effect when WIFI_CFG_CTS_SW_CTRL
is set to 1.
WIFI_CFG_RTS_PORT Configures the port direction registe!' (PDR) seFtin_g for the
Default: “J” genergl por_t that controls the RTS pin of the Wi-Fi module.
Set this option to match the port to be controlled.
Configures the port output data register (PODR) setting for
WIFI_CFG_RTS_PIN the general port that controls the RTS pin of the Wi-Fi
Default: “3” module.
Set this option to match the port to be controlled.
Specifies the pin function control register (PFS) setting
value to select the peripheral function of the MCU pin used
WIFI_CFG_PFS_SET_VALUE to control the RTS pin of the Wi-Fi module.
Default: “Ox0AU” Set this option to match the pin to be used.
This option takes effect when WIFI_CFG_CTS_SW_CTRL
is set to 1.
Configures the port direction register (PDR) setting for the
WIFI_CFG_RESET_PORT general port that controls the RESET pin of the Wi-Fi
Default: “5” module.
Set this option to match the port to be controlled.
Configures the port output data register (PODR) setting for
WIFI_CFG_RESET_PIN the general port that controls the RESET pin of the Wi-Fi
Default: “5” module.
Set this option to match the port to be controlled.
WIFI_CFG_AT_CMD_TX_BUFFER_SIZE AT command transfer buffer size.
Default: “512” Set this value in range from 1 to 8192.
WIFI_CFG_AT_CMD_RX_BUFFER_SIZE AT command receive buffer size.
Default: “3000” Set this value in range from 1 to 8192.
R0O1AN7173EU0140 Rev.1.40 Page 17 of 124

Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

WIFI_CFG_USE_CALLBACK_FUNCTION
Default: “0”

Enables or disables the user Wi-Fi callback function.
0 = Unused, 1 = Used.

WIFI_CFG_CALLBACK_FUNCTION_NAME
Default: “NULL”

Specifies function name of the Wi-Fi callback function
called when an error occurs.

This option takes effect when
WIFI_CFG_USE_CALLBACK_FUNCTION is set to 1.

WIFI_CFG_MAX_SSID_LEN

Configures max SSID Length

Default: “32”

WIFI_CFG_MAX_BSSID_LEN i

Default: “6” Configures max BSSID Length
WIFI_CFG_SNTP_ENABLE Enables or disables the SNTP client service.
Default: “0” 1 = enabled, 0 = disabled

WIFI_CFG_SNTP_SERVER_IP
Default: “0.0.0.0”

Configures SNTP server IP address string.
This option takes effect when WIFI_CFG_SNTP_ENABLE
is setto 1.

WIFI_CFG_SNTP_UTC_OFFSET
Default: “7”

Configures time zone offset in hours (-12 ~ 12).

WIFI_CFG_COUNTRY_CODE
Default:

Configures a country code.
The country code defined in ISO3166-1 alpha-2 standard.
E.g. “VN’, “JP", “US".

WIFI_CFG_LOGGING_OPTION
Default: “0”

Configures logging option.
0 = None, 1 = FreeRTOS logging, 2 = Serial port logging,
3 = Virtual console logging.

WIFI_CFG_LOG_TERM_CHANNEL
Default: “5”

SCI Channel for DA16XXX logging function.

Set this option to match the SCI port to be controlled.
This option takes effect when
WIFI_CFG_LOGGING_OPTION is set to 2.

WIFI_CFG_SCI_UART_TERMINAL_BAUDRATE
Default: “115200”

Communication baud rate for serial port logging.
This option takes effect when
WIFI_CFG_LOGGING_OPTION is set to 2.

WIFI_CFG_SCI_UART_INTERRUPT_PRIORITY
Default: “1”

Interrupt priority of serial port logging.

Set this option to a value of 1 to 15 to match the system
priority.

This option takes effect when
WIFI_CFG_LOGGING_OPTION is set to 2.

WIFI_CFG_DEBUG_LOG
Default: “0”

Configures the output setting for log information. The log
information output setting of 1 to 4 can be used with
FreeRTOS logging task or Serial port logging.

Set this option to a value of 0 to 4, as required.

0: Off.

1: Error log output.

2: Output of warnings in addition.

3: Output of status notifications in addition.

4: Output of module communication information in addition.
This option takes effect when WIFI_CFG_LOGGING_OPTION
is set to value other than 0.

RO1AN7173EU0140 Rev.1.40
Oct.15.25

Page 18 of 124

RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Wi-Fi TCP On-Chip Client Configuration

WIFI_CFG_TCP_SUPPORT Enables or disables TCP protocol.
Default: “1” 1 = enabled, 0 = disabled.
WIFI_CFG_TCP_CREATABLE_SOCKETS Configures the number of TCP client socket.
Default: “1” Set this value in range from 1 to 4.
WIFI_CFG_TCP_SOCKET_RECEIVE_BUFFER_SIZE Configures the receive buffer size for the socket.
Default: “4096” Set this value in range from 1 to 8192.
WIFI_CFG_MQTT_SUPPORT Enables or disables MQTT on-chip protocol.
Default: “0” 1 = enabled, 0 = disabled.
MQTT_CFG_MQTT_CERTS Flag to use MQTT Certificates.
Default: “0” 1 = Used, 0 = Unused.
WIFI_CFG_MQTT_CERTS_HEADER Name of header file that will contain certificates (macros).
Default: “NULL” User must create header file.

Example: "cert_storage.h"
WIFI_CFG_MQTT_ROOT_CA Links to user-defined macro of the same name for Root CA
Default: “NULL” which user must define in application header.
WIFI_CFG_MQTT_CLIENT_CERT Links to user-defined macro of the same name for client
Default: “NULL” certificate which user must define in application header.
WIFI_CFG_MQTT_PRIVATE_KEY Links to user-defined macro of the same name for private
Default: “NULL” key which user must define in application header.
WIFI_CFG_MQTT_CMD_TX_BUF_SIZE Configures the MQTT buffer used for sending commands
Default: “512” and publishing data. Maximum publishing length is 2063

bytes.

Set this value in range from 200 to 2064 and must be less
than or equal to WIFI_CFG_AT_CMD_TX_BUFFER_SIZE.
WIFI_CFG_MQTT_CMD_RX_BUF_SIZE Configures MQTT buffer used for receiving subscribed
Default: “512” data.

Set this value in range from 1 to 3000 and must be less
than or equal to WIFI_CFG_AT_CMD_TX BUFFER_SIZE.

WIFI_CFG_MQTT_USE_MQTT_V311 Flag to use MQTT version 3.1.1.

Default: “1” 1 = Used, 0 = Unused.
WIFI_CFG_MQTT_RX_TIMEOUT Timeout for the MQTT Receive function to check the buffer
Default: “1000” for incoming MQTT messages in milliseconds
WIFI_CFG_MQTT_TX_TIMEOUT Timeout for publishing MQTT messages in milliseconds.
Default: “1000”

WIFI_CFG_MQTT_CLEAN_SESSION Flag to use MQTT clean session.

Default: “1” 1 = Used, 0 = Unused.

WIFI_CFG_MQTT_ALPN1 Select 15t Application Layer Protocol Negotiation (ALPN).
Default: “NULL”

WIFI_CFG_MQTT_ALPN2 Select 2" ALPN.

Default: “NULL”

WIFI_CFG_MQTT_ALPN3 Select 3" ALPN.

Default: “NULL”

WIFI_CFG_MQTT_KEEP_ALIVE MQTT ping period to check if connection is still active.
Default: “60”

WIFI_CFG_MQTT_CLIENT_IDENTIFIER Configures client identifier.

Default: “NULL”

WIFI_CFG_MQTT_HOST_NAME Configures MQTT Host Name (or IP address).

Default: “NULL”

WIFI_CFG_MQTT_PORT Configures MQTT Port for communication.

Default: “1883”

WIFI_CFG_MQTT_USER_NAME Configures MQTT Username.

Default: “NULL”

WIFI_CFG_MQTT_PASSWORD Configures MQTT Password.

Default: “NULL”

R0O1AN7173EU0140 Rev.1.40 Page 19 of 124
Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

WIFI_CFG_MQTT_WILL_TOPIC
Default: “NULL”

Configures Topic for MQTT Last Will message.

WIFI_CFG_MQTT_WILL_MESSAGE
Default: “NULL”

Configures Payload for MQTT Last Will message.

WIFI_CFG_MQTT_SNI_NAME
Default: “NULL”

Configures Server Name Indication (SNI).

WIFI_CFG_MQTT_WILL_QOS
Default: “0”

Configures Quality-of-Service.
0: At most once (QoS 0).
1: At least once (QoS 1).
2: Exactly once (QoS 2).

WIFI_CFG_MQTT_TLS_CIPHER_SUITES
Default: “0”

Flag to use TLS Cipher Suites.
1 = Used, 0 = Unused.

WIFI_CFG_MQTT_TLS_ECDHE_RSA_WITH_AES_128 _
CBC_SHA
Default: “0”

Select TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA Cipher.
Unused: 0.
Used: WIFI_TLS_ECDHE_RSA WITH_AES_128 CBC_SHA

WIFI_CFG_MQTT_TLS _ECDHE_RSA_WITH_AES 256
CBC_SHA
Default: “0”

Select TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA Cipher.
Unused: 0.
Used: WIFI_TLS_ECDHE_RSA WITH_AES 256 CBC_SHA

WIFI_CFG_MQTT_TLS _ECDHE_RSA_WITH_AES 128
CBC_SHA256
Default: “0”

Select TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 Cipher.
Unused: 0.
Used: WIFI_TLS_ECDHE_RSA WITH_AES_128 CBC_SHA256

WIFI_CFG_MQTT_TLS_ECDHE_RSA_WITH_AES_256_
CBC_SHA384

Select TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 Cipher.
Unused: 0.

Default: “0” Used: WIFI_TLS_ECDHE_RSA WITH_AES_ 256 _CBC_SHA384
WIFI_CFG_MQTT_TLS_ECDHE_RSA_WITH_AES_128_ | Select TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 Cipher.
GCM_SHA256 Unused: 0.

Default: “0” Used: WIFI_TLS_ECDHE_RSA_WITH_AES_128 _GCM_SHA256

WIFI_CFG_MQTT_TLS_ECDHE_RSA_WITH_AES_256
GCM_SHA384
Default: “0”

Select TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 Cipher.
Unused: 0.
Used: WIFI_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

WIFI_CFG_MQTT_TLS_ECDHE_ECDSA_WITH_AES_12
8 CBC_SHA
Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA Cipher.
Unused: 0.
Used: WIFI_TLS _ECDHE_ECDSA_WITH_AES_128 CBC_SHA

WIFI_CFG_MQTT_TLS_ECDHE_ECDSA_WITH_AES_25
6 _CBC_SHA
Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA Cipher.
Unused: 0.
Used: WIFI_TLS _ECDHE_ECDSA_WITH_AES_256_CBC_SHA

WIFI_CFG_MQTT_TLS ECDHE_ECDSA WITH_AES 12
8_CBC_SHA256
Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 Cipher.
Unused: 0.
Used: WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

WIFI_CFG_MQTT_TLS ECDHE_ECDSA WITH_AES 25
6_CBC_SHA384
Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 Cipher.
Unused: 0.
Used: WIFI_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

WIFI_CFG_MQTT_TLS ECDHE_ECDSA WITH_AES 12
8 GCM_SHA256
Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 Cipher.
Unused: 0.
Used: WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

WIFI_CFG_MQTT_TLS_ECDHE_ECDSA_WITH_AES_25
6_GCM_SHA384

Select TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 Cipher.
Unused: 0.

Default: “0” Used: WIFI_TLS_ECDHE_ECDSA_WITH_AES 256 _GCM_SHA384
WIFI_CFG_MQTT_P_CALLBACK Enables or disables the user MQTT callback function.
Default: “1” 0 = Unused, 1 = Used.

WIFI_CFG_MQTT_P_CALLBACK_FUNCTION_NAME
Default: “mqtt_userCallback”

Specifies function name of the MQTT callback function
called when receive data subscribed.

RO1AN7173EU0140 Rev.1.40
Oct.15.25

Page 20 of 124

RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Wi-Fi TLS On-Chip Client Configuration

WIFI_CFG_TLS_SUPPORT
Default: “0”

Enables or disables TLS on-chip protocol.
1 = enabled, 0 = disabled.

Default: “1”

WIFI_CFG_TLS_CREATABLE_SOCKETS

Configures the number of TLS client socket.
Set this value in range from 1 to 2.

Default: “4096”

WIFI_CFG_TLS_SOCKET_RECEIVE_BUFFER_SIZE

Configures the receive buffer size for the socket.
Set this value in range from 1 to 8192.

WIFI_CFG_TLS_USE_CA_CERT
Default: “1”

Flag to use CA certificates.
0 = Unused, 1 = Used.

WIFI_CFG_TLS_CERT_MAX_NAME
Default: “32”

Configures length for certificate’s name.

WIFI_CFG_TLS_CERT_CA_NAME
Default: “NULL”

Configures CA certificate name.

WIFI_CFG_TLS_CERT_CLIENT_NAME
Default: “NULL”

Configures Client certificate name.

Default: “NULL”

WIFI_CFG_HTTP_SUPPORT
Default: “0”

WIFI_CFG_TLS_CERT_PRIVATE_NAME

Wi-Fi HTTP On-C

Configures Private certificate name.

ip Configuration

Enables or disables HTTP on-chip protocol.
1 = enabled, 0 = disabled.

WIFI_CFG_HTTP_SNI_NAME
Default: “NULL”

Configures Server Name Indication (SNI).

WIFI_CFG_HTTP_ALPN1
Default: “NULL”

Select 15t Application Layer Protocol Negotiation (ALPN).

Default: “NULL”

WIFI_CFG_HTTP_ALPN2 Select 2" ALPN.
Default: “NULL”
WIFI_CFG_HTTP_ALPN3 Select 3 ALPN.

WIFI_CFG_HTTP_TLS_AUTH
Default: “0”

Configures HTTP TLS Authentication levels.

0: None - No authentication required; accept connections
without any form of authentication.

1: Optional - Allow both authenticated and unauthenticated
connections.

2: Require - Demand authentication for connections.

WIFI_CFG_HTTP_CERTS_HEADER
Default: “NULL”

Name of header file that will contain certificates (macros).
Users must create a header file.
Example: "cert_storage.h"

WIFI_CFG_HTTP_ROOT_CA
Default: “NULL”

Links to user-defined macro of the same name for Root CA
which user must define in application header.

WIFI_CFG_HTTP_CLIENT_CERT
Default: “NULL”

Links to user-defined macro of the same name for client
certificate which user must define in application header.

WIFI_CFG_HTTP_PRIVATE_KEY
Default: “NULL”

WIFI_CFG_OTA_SUPPORT

Wi-Fi OTA On-Chip Configuration

Links to user-defined macro of the same name for private
key which user must define in application header.

Enables or disables OTA on-chip services.

Default: “0” 1 = enabled, 0 = disabled.
WIFI_CFG_OTA_BLK_SIZE Defines the size (in bytes) of each data block written to
Default: “128” flash memory during the OTA (Over-the-Air) update

process.
Set this value in range from 128 to 1024

WIFI_CFG_OTA TLS_AUTH
Default: “0”

Configures OTA TLS Authentication levels

0: None - No authentication required; accept connections
without any form of authentication.

1: Optional - Allow both authenticated and unauthenticated
connections.

2: Require - Demand authentication for connections.

WIFI_CFG_OTA_CERTS_HEADER

Name of header file that will contain certificates (macros).

RO1AN7173EU0140 Rev.1.40
Oct.15.25

Page 21 of 124

RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Default: “NULL”

Users must create a header file.
Example: "cert_storage.h"

WIFI_CFG_OTA_ROOT_CA
Default: “NULL”

Links to user-defined macro of the same name for Root CA
which user must define in application header.

Table 2.2 Configuration Options (r_sci_rx_config.h)

Configuration Options in r_ sci_rx_config.h

#define SCI_CFG_CHx_INCLUDED
Notes: 1. CHx = CHO to CH12

2. The default values are as follows: CHO
CH2 to CH12: 0, CH1: 1

Each channel has resources such as transmit and
receive buffers, counters, interrupts, other programs,
and RAM. Setting this option to 1 assigns related
resources to the specified channel.

#define SCI_CFG_CHx_TX BUFSIZ
Notes: 1. CHx = CHO to CH12

2. The default value is 80 for all channels.

Specifies the transmit buffer size of an individual
channel. The buffer size of the channel specified by
WIFI_CFG_SCI_CHANNEL should be set to 2180.

#define SCI_CFG_CHx_RX_BUFSIZ
Notes: 1. CHx = CHO to CH12

2. The default value is 80 for all channels.

Specifies the receive buffer size of an individual
channel. The buffer size of the channel specified by
WIFI_CFG_SCI_CHANNEL should be set to 8192.

#define SCI_CFG_TEI_INCLUDED Note: The
default is 0.

Enables the transmit end interrupt for serial
transmissions. This option should be set to 1.

Table 2.3 Configuration Options (r_bsp_config.h)

Configuration Options in r_ bsp_config.h

#define BSP_CFG_RTOS_USED
Note: The default is 0.

Specifies the type of real-time OS.
When using this FIT module, set the following.
FreeRTOS:1

Bare metal:0

RO1AN7173EU0140 Rev.1.40
Oct.15.25

Page 22 of 124

RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

2.8. Code Size

Typical code sizes associated with this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7 Compile Settings. The table lists reference values when the C compiler's compile
options are set to their default values, as described in 2.3 Supported Toolchain. The compile option default
values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The code size
varies depending on the C compiler version and compile options.

The values in the table below are confirmed under the following conditions.

Module Revision: r_wifi_da16xxx rev1.40.

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
(The option of “-lang=c99” is added to the default settings of the integrated development
environment.)
GCC for Renesas RX 14.2.0.202505
(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

Configuration Options: Default settings.

R0O1AN7173EU0140 Rev.1.40 Page 23 of 124
Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Table 2.4 Memory Sizes for RX65N

Device

Protocol

Memory usage

GCC

Renesas
Compiler

ROM 21796 bytes 46724 bytes

FreeRTOS
TCP only RAM 11294 bytes 14768 bytes
(Default settings) ROM 21591 bytes | 46216 bytes

Bare metal
RAM 11290 bytes 14768 bytes
ROM 23294 bytes 48628 bytes

FreeRTOS
RAM 11292 bytes 14768 bytes

TLS on-chip only

ROM 23089 bytes 48120 bytes

Bare metal
RAM 11288 bytes 14768 bytes
ROM 23973 bytes 48100 bytes

FreeRTOS
MQTT on-chip RAM 8872 bytes 12332 bytes
only ROM 23772 bytes | 47608 bytes

Bare metal
RAM 8868 bytes 12332 bytes

RX65N

ROM 21250 bytes 45428 bytes

FreeRTOS
HTTP on-chip RAM 7177 bytes 10668 bytes
only ROM 21050 bytes | 44936 bytes

Bare metal
RAM 7173 bytes 10540 bytes
ROM 30047 bytes 57932 bytes

FreeRTOS
RAM 17230 bytes 20656 bytes

All protocols

ROM 29836 bytes 57400 bytes

Bare metal
RAM 17226 bytes 20656 bytes
ROM 22994 bytes 48600 bytes

FreeRTOS
OTA on chip RAM 11462 bytes 14896 bytes
only ROM 22789 bytes | 48076 bytes

Bare metal
RAM 11458 bytes 14896 bytes

RO1AN7173EU0140 Rev.1.40 Page 24 of 124
Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Table 2.5 Memory Sizes for RX66N

Device

Protocol

Memory usage

GCC

Renesas
Compiler

ROM 24586 bytes 46588 bytes

FreeRTOS
TCP only RAM 11414 bytes 12928 bytes
(Default settings) ROM 24381 bytes | 46064 bytes

Bare metal
RAM 11410 bytes 12928 bytes
ROM 26083 bytes 48492 bytes

FreeRTOS
RAM 11412 bytes 12928 bytes

TLS on-chip only

ROM 25878 bytes 47968 bytes

Bare metal
RAM 11408 bytes 12928 bytes
ROM 26762 bytes 47956 bytes

FreeRTOS
MQTT on-chip RAM 8992 bytes 10496 bytes
only ROM 26561 bytes | 47464 bytes

Bare metal
RAM 8988 bytes 10496 bytes

RX66N

ROM 24039 bytes 45292 bytes

FreeRTOS
HTTP on-chip RAM 7297 bytes 8832 bytes
only ROM 23830 bytes | 44784 bytes

Bare metal
RAM 7293 bytes 8832 bytes
ROM 32837 bytes 57788 bytes

FreeRTOS
RAM 17350 bytes 18944 bytes

All protocols

ROM 32626 bytes 57256 bytes

Bare metal
RAM 17346 bytes 18944 bytes
ROM 25784 bytes 48464 bytes

FreeRTOS
OTA on chip RAM 11582 bytes 13184 bytes
only ROM 25579 bytes | 47924 bytes

Bare metal
RAM 11578 bytes 13184 bytes

RO1AN7173EU0140 Rev.1.40 Page 25 of 124
Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Table 2.6 Memory Sizes for RX671

Device

Protocol

Memory usage

GCC

Renesas
Compiler

ROM 24586 bytes 46580 bytes

FreeRTOS
TCP only RAM 11414 bytes 13056 bytes
(Default settings) ROM 24381 bytes | 46064 bytes

Bare metal
RAM 11410 bytes 13056 bytes
ROM 26083 bytes 48484 bytes

FreeRTOS
RAM 11412 bytes 13056 bytes

TLS on-chip only

ROM 25878 bytes 47968 bytes

Bare metal
RAM 11408 bytes 13056 bytes
ROM 26762 bytes 47948 bytes

FreeRTOS
MQTT on-chip RAM 8992 bytes 10624 bytes
only ROM 26561 bytes | 47464 bytes

Bare metal
RAM 8988 bytes 10624 bytes

RX671

ROM 24039 bytes 45284 bytes

FreeRTOS
HTTP on-chip RAM 7297 bytes 8960 bytes
only ROM 23830 bytes | 44784 bytes

Bare metal
RAM 7293 bytes 8960 bytes
ROM 32837 bytes 57780 bytes

FreeRTOS
RAM 17350 bytes 18944 bytes

All protocols

ROM 32626 bytes 57256 bytes

Bare metal
RAM 17346 bytes 18944 bytes
ROM 25784 bytes 48456 bytes

FreeRTOS
OTA on chip RAM 11582 bytes 13184 bytes
only ROM 25579 bytes | 47924 bytes

Bare metal
RAM 11578 bytes 13184 bytes

RO1AN7173EU0140 Rev.1.40 Page 26 of 124
Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Table 2.7 Memory Sizes for RX261

Device Protocol Kernel Category

Memory usage

Renesas
Compiler

GCC

ROM 21772 bytes 46692 bytes

FreeRTOS
TCP only RAM 11294 bytes 13056 bytes
(Default settings) ROM 21567 bytes | 46184 bytes

Bare metal
RAM 11290 bytes 13056 bytes
ROM 23270 bytes 48596 bytes

FreeRTOS
RAM 11292 bytes 13056 bytes

TLS on-chip only

ROM 23065 bytes 48088 bytes

Bare metal
RAM 11288 bytes 13056 bytes
ROM 23949 bytes 48068 bytes

FreeRTOS
MQTT on-chip RAM 8872 bytes 10624 bytes
only ROM 23748 bytes | 47576 bytes

Bare metal
RAM 8868 bytes 10624 bytes

RX261

ROM 21226 bytes 45396 bytes

FreeRTOS
HTTP on-chip RAM 7177 bytes 8960 bytes
only ROM 21026 bytes | 44904 bytes

Bare metal
RAM 7173 bytes 8832 bytes
ROM 30023 bytes 57900 bytes

FreeRTOS
RAM 17230 bytes 18944 bytes

All protocols

ROM 29812 bytes 57368 bytes

Bare metal
RAM 17226 bytes 18944 bytes
ROM 22970 bytes 48568 bytes

FreeRTOS
OTA on chip RAM 11462 bytes 13184 bytes
only ROM 22765 bytes | 48044 bytes

Bare metal
RAM 11458 bytes 13184 bytes

RO1AN7173EU0140 Rev.1.40 Page 27 of 124
Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Table 2.8 Memory Sizes for RX140

Device Protocol Kernel Category

Memory usage

Renesas
Compiler

GCC

ROM 21772 bytes 46716 bytes

FreeRTOS
TCP only RAM 11294 bytes 12928 bytes
(Default settings) ROM 21567 bytes | 46200 bytes

Bare metal
RAM 11290 bytes 13056 bytes
ROM 23270 bytes 48620 bytes

FreeRTOS
RAM 11292 bytes 12928 bytes

TLS on-chip only

ROM 23065 bytes 48104 bytes

Bare metal
RAM 11288 bytes 13056 bytes
ROM 23949 bytes 48092 bytes

FreeRTOS
MQTT on-chip RAM 8872 bytes 10496 bytes
only ROM 23748 bytes | 47600 bytes

Bare metal
RAM 8868 bytes 10624 bytes

RX140

ROM 21226 bytes 45420 bytes

FreeRTOS
HTTP on-chip RAM 7177 bytes 8832 bytes
only ROM 21026 bytes | 44920 bytes

Bare metal
RAM 7173 bytes 8960 bytes
ROM 30023 bytes 57924 bytes

FreeRTOS
RAM 17230 bytes 18944 bytes

All protocols

ROM 29812 bytes 57392 bytes

Bare metal
RAM 17226 bytes 19072 bytes
ROM 22970 bytes 48592 bytes

FreeRTOS
OTA on chip RAM 11462 bytes 13184 bytes
only ROM 22765 bytes | 48060 bytes

Bare metal
RAM 11458 bytes 13184 bytes

RO1AN7173EU0140 Rev.1.40 Page 28 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

2.9. Return Values

The error codes returned by the API functions are listed below. The enumerated types of the return values
and API function declarations are contained in r_wifi_da16xxx_if.h.

Table 2.9 API Error Codes (wifi_err_t)

Value Error code Description

0 WIFI_SUCCESS OK, no error

-1 WIFI_ERR_PARAMETER Invalid parameter

-2 WIFI_ERR_ALREADY_OPEN Wi-Fi module already opens

-3 WIFI_ERR_NOT_OPEN Wi-Fi module has not been opened

-4 WIFI_ERR_SERIAL_OPEN Failed to open serial port

-5 WIFI_ERR_MODULE_COM Failed communicating with Wi-Fi module
-6 WIFI_ERR_MODULE_TIMEOUT Timed out communicating with Wi-Fi module
-7 WIFI_ERR_NOT_CONNECT Not connected to AP

-8 WIFI_ERR_SOCKET_NUM There are no available TCP/TLS sockets
-9 WIFI_ERR_SOCKET_CREATE Failed creating TCP/TLS socket

-10 WIFI_ERR_CHANGE_SOCKET Failed to change TCP/TLS socket number
-11 WIFI_ERR_SOCKET_CONNECT Failed connecting a TCP/TLS socket

-12 WIFI_ERR_BYTEQ_OPEN Failed to open BYTEQ module

-13 WIFI_ERR_SOCKET_TIMEOUT TCP/TLS socket timeout

-14 WIFI_ERR_TAKE_MUTEX Failed to take mutex

-15 WIFI_ERR_MQTT_ALREADY_OPEN MQTT module already opens

-16 WIFI_ERR_MQTT_NOT_OPEN MQTT module has not been opened

-17 WIFI_ERR_MQTT_NOT_CONNECT Not connected to a MQTT broker

-18 WIFI_ERR_MQTT_CONNECTED MQTT module is already connected

-19 WIFI_ERR_MQTT_INVALID_DATA Invalid send/receive MQTT data

-20 WIFI_ERR_MQTT_OUT_OF_MEMORY Out of memory for MQTT communication
-21 WIFI_ERR_HTTP_ALREADY_OPEN HTTP module is already opened

-22 WIFI_ERR_HTTP_NOT_OPEN HTTP module has not been opened

-23 WIFI_ERR_HTTP_INVALID_DATA Invalid send/receive HTTP data

-24 WIFI_ERR_OTA_FAIL OTA common error

-25 WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

-26 WIFI_ERR_OTA_ALREADY_OPEN Already WIFI OTA opened

-27 WIFI_ERR_OTA_NOT_IDLE OTA service state is not IDLE

Table 2.10 Error Event for User Callback (wifi_err_event_enum_t)

0 WIFI_EVENT_WIFI_REBOOT Reboot Wi-Fi module

1 WIFI_EVENT_WIFI_DISCONNECT Disconnected to Wi-Fi module

2 WIFI_EVENT_SERIAL_OVF_ERR Serial overflow error

3 WIFI_EVENT_SERIAL_FLM_ERR Serial flaming error

4 WIFI_EVENT_SERIAL_RXQ_OVF_ERR Serial receive queue overflow

5 WIFI_EVENT_RCV_TASK_RXB_OVF_ERR Received buffer overflow

6 WIFI_EVENT_SOCKET_CLOSED Socket is closed

7 WIFI_EVENT_SOCKET_RXQ_OVF_ERR Socket receive queue overflow
RO1AN7173EU0140 Rev.1.40 Page 29 of 124

Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

2.10. Parameters

This section describes the parameter structures used by the API functions in this module. The structures are
defined in r_wifi_da16xxx_if.h.

Table 2.11 Definition of Security Type (wifi_security_t)

Value Type Description
0 WIFI_SECURITY_OPEN Open — No security

1 WIFI_SECURITY_WEP WEP security

2 WIFI_SECURITY_WPA WPA security

3 WIFI_SECURITY_WPA2 WPA2 security

4 WIFI_SECURITY_WPA2 ENT WPAZ2 enterprise security

5 WIFI_SECURITY_WPAS3 WPAZ3 security

6 WIFI_SECURITY_UNDEFINED Unknown security

Table 2.7 Definition of Encryption Type (wifi_encryption_t)

Value Type Description
0 WIFI_ENCRYPTION_TKIP TKIP encryption

1 WIFI_ENCRYPTION_AES AES encryption

2 WIFI_ENCRYPTION_TKIP_AES TKIP+AES encryption

3 WIFI_ENCRYPTION_UNDEFINED Unknown encryption

Table 2.8 Definition of Socket Type (wifi_socket_type_t)

Value Type Description
0 WIFI_SOCKET_TYPE_TCP_SERVER TCP server

1 WIFI_SOCKET_TYPE_TCP_CLIENT TCP client

2 WIFI_SOCKET_TYPE_UDP UDP

3 WIFI_SOCKET_TYPE_TLS TLS client

Table 2.9 Definition of Certificate Type (wifi_tls_key_type_t)

0 WIFI_TLS TYPE_CA_CERT CA Certificate

1 WIFI_TLS_TYPE_CLIENT_CERT Client Certificate

2 WIFI_TLS_TYPE_CLIENT_PRIVATE_KEY Client Private Key

3 WIFI_TLS_TYPE_UNDEFINED Unknown Encryption

Table 2.10 Definition of Socket Status (wifi_socket_status_t)

0 WIFI_SOCKET_STATUS_CLOSED Socket is closed
1 WIFI_SOCKET_STATUS_SOCKET Socket is created
2 WIFI_SOCKET_STATUS_BOUND Bounding
3 WIFI_SOCKET_STATUS_LISTEN Listening socket
4 WIFI_SOCKET_STATUS_CONNECTED Socket is connected
RO1AN7173EU0140 Rev.1.40 Page 30 of 124

Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Table 2.11 MQTT Quality-of-Service (QoS) Levels (wifi_mqtt_qos_t)

Value Type Description
0 WIFI_MQTT_QOS 0 Delivery at most once
1 WIFI_MQTT_QOS _1 Delivery at least once
2 WIFI_MQTT_QOS_2 Delivery exactly once

Table 2.12 Cipher Suites Support for MQTT TLS (wifi_tls_cipher_suites_t)

0xCO11 | WIFI_TLS_ECDHE_RSA WITH_AES_128 CBC_SHA TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA
0xC014 | WIFI_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
0xC027 | WIFI_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
0xC028 | WIFI_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
0xCO2F | WIFI_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 | TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
0xC030 | WIFI_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 | TLS_ECDHE_RSA WITH_AES_256_GCM_SHA384
0xC009 | WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
0xCOOA | WIFI_TLS_ECDHE_ECDSA WITH_AES_256_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
0xC023 | WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 | TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
0xC024 | WIFI_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 | TLS_ECDHE_ECDSA_WITH_AES 256 _CBC_SHA384
0xCO02B | WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
0xC02C | WIFI_TLS_ECDHE_ECDSA WITH_AES_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

Table 2.13 SNTP Options (wifi_sntp_enable_t)

0 WIFI_SNTP_DISABLE Disable SNTP
1 WIFI_SNTP_ENABLE Enable SNTP

Table 2.14 Member in Structure for Obtaining the Result of AP Scan (wifi_scan_result_t)

uint8_t ssid[WIFI_CFG_MAX_SSID_LEN] SSID

uint8_t bssid[WIFI_CFG_MAX_BSSID_LEN] BSSID
wifi_security t security Security type
wifi_encryption_t | encryption Encryption type
int8_t rssi RSSI

uint8_t hidden Hidden channel

Table 2.15 Member in Structure for IP Configurations (wifi_ip_configuration_t)

Type Name Description
uint32_t ipaddress[4] IP address
uint32_t subnetmask[4] Subnet mask
uint32_t gateway[4] Gateway
RO1AN7173EU0140 Rev.1.40 Page 31 of 124

Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Table 2.20 Member in Structure for MQTT Subscription (wifi_mqtt_sub_info_t)

Type
wifi_mqgtt_qos_t | qos

Name

Description
Quality of Service for subscription

const char * p_topic_filter

Topic filter to subscribe to

uint16_t topic_filter_length

Length of subscription topic filter

Table 2.16 Member in Structure for MQTT Publish (wifi_mqtt_pub_info_t)

wifi_mqtt_qos t | qos

Description
Quality of Service for subscription

const char * p_topic_name

Topic name on which the message is
published

uint16_t topic_name_length Length of topic name
const char * p_payload Message payload
uint32_t payload_length Message payload length

Table 2.17 Member in Structure to be Passed to MQTT User Callback (wifi_mqtt_call_args_t)

uint8_t* p_data Payload received from subscribed MQTT topic

const char * p_topic Topic to which the message payload belongs
to

uint32_t data_length Length of the MQTT payload

void const * p_context Placeholder for user data

Table 2.18 Member in Structure for TLS Client on Chip Certificate Information (wifi_tls_cert_info_t)

Type Name Description
uint8_t cert_ca[WIFI_CFG_TLS_CERT_MAX_NAME] CA certificate name
uint8_t cert_name[WIFI_CFG_TLS_CERT_MAX_NAME] | Client certificate name

Table 2.19 Definition of HTTP Methods (wifi_http_method_t)

Value Type Description

0 WIFI_HTTP_GET GET method

1 WIFI_HTTP_POST POST method

2 WIFI_HTTP_PUT PUT method
RO1AN7173EU0140 Rev.1.40 Page 32 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Table 2.20 Definition of HTTP TLS Authentication (wifi_http_tls_auth_t)

Value Type Description

0 WIFI_HTTP_TLS_VERIFY_NONE No needed verify client certification

1 WIFI_HTTP_TLS_VERIFY_OPTIONAL Request client certification but not mandatory
2 WIFI_HTTP_TLS_VERIFY_REQUIRED Require client certification

Table 2.21 Member in Structure for HTTP request (wifi_http_request_t)

const char * http_endpoint HTTP endpoint
wifi_http_method_t | method HTTP request method
const char * request_body HTTP request header
uint32_t length HTTP request length

Table 2.22 Member in Structure for HTTP response (wifi_http_buffer_t)

Type | Name ‘ Description
const char * response_buffer HTTP response buffer
uint32_t resp_length HTTP response length

Table 2.23 Member in Structure for OTA state (wifi_ota_state_t)

Type | Name ‘ Description
0 WIFI_OTA_IDLE OTA idle state
1 WIFI_OTA_DOWNLOAD_INPROGRESS | OTA download in progress state
2 WIFI_OTA_DOWNLOAD_FINISH OTA download image finish state
3 WIFI_OTA_FAIL OTA fail state
RO1AN7173EU0140 Rev.1.40 Page 33 of 124

Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

2.11. Adding the FIT Module to Your Project

The FIT module must be added to each project in which it is used. Renesas recommends the method using
the Smart Configurator described in (1) or (3) or (5) below. However, the Smart Configurator only supports
some RX devices. Please use the methods of (2) or (4) for RX devices that are not supported by the Smart
Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e? studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in 2 studio
By using the FIT Configurator in e? studio, the FIT module is automatically added to your project.
Refer to “RX Family Adding Firmware Integration Technology Modules to Projects (RO1AN1723)”
for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’'s Guide: CS+ (R20AN0470)” for details.

(4) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (RO1AN1826)” for details.

(5) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’'s Guide: IAREW (R20AN0535)” for details.

2.12. “for”, “while” and “do while” Statements

In FIT module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

This FIT module does not have any WAIT_LOOP. But others might have. Please take care for this
WAIT_LOOP.

R0O1AN7173EU0140 Rev.1.40 Page 34 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

2.13. Limitations

2.13.1 Wi-Fi Security Type Limitations

Wi-Fi AP connections do not currently support WEP security.
2.13.2 Wi-Fi SDK Limitations

The default UART baud rate supported by v3.2.1 Wi-Fi SDK is 115200 and v3.2.4 Wi-Fi SDK is 230400. User
needs to explicitly configure the default UART baud settings in the UART driver configurator properties based
on the version of Wi-Fi SDK used in their testing.

2.13.3 The Daylight Savings Time Setting Limitations

In v3.2.1 Wi-Fi SDK, the daylight savings time setting is disabled by default. The user needs to mandatorily
set the following parameters such as minutes = 0, daylight savings to disable when calling
R_WIFI_DA16XXX_SntpTimeZoneSet() API.

2.13.4 Wi-Fi Network Connection Limitations

Network connection parameters SSID and Passphrase for the Access Point cannot contain any commas. This
is a current limitation of the da16xxx module firmware. The R_WIFI_DA16XXX_Connect() function will return
an error if a comma is detected.

2.13.5 Wi-Fi Access Point Scanning Limitations

Wi-Fi AP Scanning is currently limited to max of 10 Access Points.

2.14. Restriction

The FIT module is subject to the following restrictions.
If WIFI_ERR_SERIAL_OPEN occurs, use R_WIFI_DA16XXX_Close() to close the Wi-Fi FIT module.

R0O1AN7173EU0140 Rev.1.40 Page 35 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology
3. API Functions
3.1. R_WIFI_DA16XXX_Open()

This function initializes the FIT module and Wi-Fi module.

Format
wifi err t R WIFI DAl16XXX Open (

void

Parameters

None

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_ALREADY_OPEN Already open
WIFI_ERR_SERIAL_OPEN Failed to initialize serial
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_BYTEQ_OPEN BYTEQ allocation failure
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function initializes the FIT module and Wi-Fi module.

Reentrant
No

Example
R WIFI DA16XXX Open();

Special Notes:
If WIFI_ERR_SERIAL_OPEN occurs, execute R_WIFI_DA16XXX_Closeg().

R0O1AN7173EU0140 Rev.1.40 Page 36 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.2. R_WIFI_DA16XXX_IsOpened()

This function checks Wi-Fi is opened.

Format
int32 t R WIFI DAl6XXX IsOpened(

void

Parameters

None

Return values

0 Wi-Fi is opened
-1 Wi-Fi is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function checks Wi-Fi is opened.

Reentrant
No

Example

if (0 != R WIFI DA16XXX_ IsOpened())

{
return WIFI SUCCESS;

}

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 37 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.3. R_WIFI_DA16XXX_Close()

This function initializes the FIT module and Wi-Fi module.

Format
wifi err t R WIFI DAl6XXX Close (

void

Parameters

None

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function closes the Wi-Fi module.

If this function is executed while the access point is connected, the access point will be disconnected, and
the Wi-Fi module will be closed.

Reentrant
No

Example

R WIFI DA16XXX Open();
R WIFI DA16XXX Close();

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 38 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.4. R_WIFI_DA16XXX_Ping()

This function pings the specified IP address.

Format
wifi err t R WIFI DA16XXX Ping(
uint32 t * ip address,

uintl6é_t count

Parameters
ip_address IP address
count Number of ping transmissions

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function pings the IP address specified by ip_address.
The parameter (count) specifies the number of transmissions.
Reentrant

No

Example

uint32 t ip addr([4] = {192, 168, 5, 13};
R WIFI DA16XXX Ping(ip addr, 4);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 39 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.5. R_WIFI_DA16XXX_Scan()

This function scans for access points.

Format
wifi err t R WIFI DA16XXX_ Scan (
wifi scan result t * ap results,

uint8 t max networks

Parameters
ap_results Pointer to the structure that stores the scan results
max_networks Maximum number of access points to store in ap_results

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function scans for access points in the periphery of the Wi-Fi module.

The results of the scan are stored in the area specified by the ap_results argument, up to the maximum
number of values specified by the max_networks argument.

Example

wifi scan result t scan rslt[5];

uint8 t max networks = 5;

R WIFI DAl16XXX Scan(scan rslt, max networks);
for (int i = 0; 1 < 5; i++4)

{

PEARAEE (N ==mcmmmmomomemem===s \n”) ;
printf (Y ssid : %$s\n”, scan rslt[i].ssid);
printf (™ rssi : %d\n”, scan rslt[i].rssi);
printf (Y security : %d\n”, scan rslt[i].security);
printf (Y encryption : %d\n”, scan rslt[i].encryption);
}

Special Notes:

None

RO1AN7173EU0140 Rev.1.40 Page 40 of 124

Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.6. R_WIFI_DA16XXX_Connect()

This function connects to the specified access point.

Format

wifi err t R WIFI DAl16XXX Connect (
const uint8 t * ssid,
const uint8 t * pass,
wifi security t security,

wifi encryption t enc type

Parameters

ssid Pointer to SSID of access point
pass Pointer to password of access point
security Security type information

enc_type Encryption type information

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

Connects to the access point specified by “ssid”.

Reentrant

No

Example
uint8 t ssid[] = “ssid”;
uint8 t pass[] = “passwd”;

wifi security t security = WIFI SECURITY WPA2;
wifi encryption t encryption = WIFI ENCRYPTION AES;

R_WIFI DA16XXX Open () ;
R WIFI DA16XXX Connect (ssid, passwd, security, encryption);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 41 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.7. R_WIFI_DA16XXX_Disconnect()

This function disconnects the connecting access point.

Format
wifi err t R WIFI DAl16XXX Disconnect (

void

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function disconnects the connecting access point.

Reentrant

No

Example
uint8 t ssid[] = “ssid”;
uint8 t pass[] = “passwd”;

wifi security t security = WIFI SECURITY WPA2;
wifi encryption t encryption = WIFI ENCRYPTION AES;

R_WIFI DA16XXX Open () ;
R WIFI DA16XXX Connect (ssid, passwd, security, encryption);
R WIFI DAl16XXX Disconnect();

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 42 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.8. R=WIFI=DA16XXX=IsConnected()

This function obtains the connection status of the Wi-Fi module and access point.

Format
wifi err t R WIFI DAl16XXX IsConnected(

void

Parameters

None

Return values

0 Connecting to the access point
-1 Not connected to access point
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

Returns the connection status of the Wi-Fi module and access point.

Reentrant
No

Example

if (0 == R WIFI DAl16XXX IsConnected())
{

printf (“connected \n”);

}

else

{

printf (“not connect \n”);

}

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 43 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.9. R_WIFI_DA16XXX_DnsQuery()
This function performs a DNS query.

Format
wifi err t R WIFI DAI16XXX DnsQuery (
uint8 t * domain name,

uint32 t * ip address

Parameters
domain_name Domain name
ip_address IP address storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module or domain does not exist
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function performs a DNS query to obtain the IP address of the specified domain.

Reentrant
No

Example

uint32 t ipaddr([4];
R WIFI DA16XXX DnsQuery(“hostname”, ipaddr);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 44 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.10. R=WIFI=DA1 6XXX=SntpServerIpAddressSet()

This function sets SNTP server IP address.

Format
wifi err t R WIFI DAl6XXX SntpServerIpAddressSet (

uint32 t * ip address

Parameters

ip_address IP address storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sets SNTP server IP address.

Reentrant
No

Example

uint32 t ip address sntp server[4] = {0, 0, 0, O0};
R WIFI DAl6XXX SntpServerIpAddressSet (ip address sntp server);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 45 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.11. R_WIFI_DA16XXX_SntpEnableSet()

This function enables or disables SNTP client service.

Format
wifi err t R WIFI DAl6XXX SntpEnableSet (

wifi sntp enable t enable

Parameters
enable Enable/disable for SNTP

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function enables or disables SNTP client service.

Reentrant
No

Example

uint8 t ip address sntp server[4] = {0, O, 0, O0};
R WIFI DAl16XXX SntpServerIpAddressSet (ip address sntp server);
R WIFI DA16XXX SntpEnableSet (WIFI SNTP ENABLE) ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 46 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.12. R_WIFI_DA16XXX_SntpTimeZoneSet()

This function sets SNTP time zone.

Format
wifi err t R WIFI DAl6XXX SntpTimeZoneSet (

int8 t utc offset in hour

Parameters

utc_offset_in_hour Time zone in UTC offset in hours

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sets SNTP time zone.

Reentrant
No

Example

uint8 t ip address sntp server[4] = {0, O, 0, O0};

R WIFI DA16XXX SntpServerIpAddressSet (ip address sntp server;
R WIFI DAl6XXX SntpEnableSet (WIFI_ SNTP ENABLE) ;

R WIFI DA16XXX SntpTimeZoneSet (25200); /* UTC+07:00 */

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 47 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.13. R_WIFI_DA16XXX_LocalTimeGet()

This function gets the current local time based on current time zone in a string.

Format
wifi err t R WIFI DAI16XXX LocalTimeGet (
uint8 t * local time,

uint8 t size string

Parameters
local_time Pointer to local time in string format
size_string size of string. The size of this string needs to be at least 25 bytes

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function gets the current local time based on the current time zone in a string.
Example: YYYY-MM-DD,HOUR:MIN:SECS.

Reentrant
No

Example

uint8 t time[25];
R WIFI DA16XXX LocalTimeGet (time, 25);
printf ("It is %$s\n”, time);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 48 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.14. R=WIFI=DA1 6XXX=SetDnsServerAdd ress()

This function sets DNS Server Address.

Format
wifi err t R WIFI DAl6XXX SetDnsServerAddress (

uint8 t * dns_address

Parameters

dns_address Pointed to DNS address storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sets DNS Server Address.

Reentrant
No

Example

uint8_ t dns[4] = {0, 0, O, 0};
R WIFI DA16XXX SetDnsServerAddress (dns) ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 49 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.15. R=WIFI=DA1 6XXX=GetMacAddress()

This function obtains the MAC address value of the Wi-Fi module.

Format
wifi err t R WIFI DAl6XXX GetMacAddress (

uint32 t * mac_address

Parameters

mac_address Pointer to storage area for MAC address

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

Obtains the MAC address value of the Wi-Fi module. The MAC address is stored as binary data in
mac_address.

Reentrant
No

Example

uint32 t mac[6];

R_WIFI DA16XXX Open () ;

R WIFI DAl16XXX GetMacAddress (mac) ;

printf (“— MAC addr : $1x:%1x:%1x:%1x:%1x:%1x\r\n”,
mac[0], mac[l], mac[2], mac([3], mac[4], mac[5]);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 50 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.16. R=WIFI=DA1 6XXX=GetIpAddress()

This function obtains the IP address assigned to the Wi-Fi module.

Format
wifi err t R WIFI DAl6XXX GetIpAddress (

wifi ip configuration t * ip config

Parameters

ip_config Pointer to IP address storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function obtains the IP address, subnet mask and gateway assigned to the Wi-Fi module and stores
them in ip_config.

Reentrant
No

Example

wifi ip configuration t ip cfg;
R WIFI DAl6XXX GetIpAddress (&ip cfgq);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 51 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.17. R=WIFI=DA1 6XXX=HardwareReset()

This function resets the Wi-Fi module.

Format
wifi err t R WIFI DAl6XXX HardwareReset (

void

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_SERIAL_OPEN Failed to initialize serial
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_BYTEQ_OPEN BYTEQ allocation failure
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex
WIFI_ERR_SOCKET_CREATE Failed to create socket

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function resets the Wi-Fi module with the RESET pin.

Reentrant
No

Example
R WIFI DAl6XXX HardwareReset () ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 52 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.18. R_WIFI_DA16XXX_GetVersion()

This function obtains version information for the FIT module.

Format
uint32 t R WIFI DAl16XXX GetVersion (

void

Parameters

None

Return values

Upper 2 bytes: Maijor version (decimal notation)
Lower 2 bytes: Minor version (decimal notation)
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function returns the version number of the FIT module.

The upper 2 bytes indicate the major version and the lower 2 bytes indicate the minor version.

Reentrant
No

Example

uint32 t ver;
ver = R WIFI DAl6XXX GetVersion();
printf (“Wersion V%d.%2d\n”, ((ver >> 16) & O0x0000FFFF), (ver & OxO0000FFFF)) ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 53 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.19. R_WIFI_DA16XXX_GetAvailableSocket()

This function gets the next available socket ID.

Format
wifi err t R WIFI DAl6XXX GetAvailableSocket (

uint8 t * socket id

Parameters

socket_id Pointer to socket id storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_NUM No socket available for connection socket
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets the next available socket ID.

Reentrant
No

Example

uint8 t socket no;
R WIFI DAl6XXX GetAvailableSocket (&socket no);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 54 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.20. R_WIFI_DA16XXX_GetSocketStatus()

This function gets the socket status.

Format
wifi err t R WIFI DAl6XXX GetSocketStatus(
uint8 t socket number,

wifi socket status t * socket status

Parameters
socket_number Socket number
socket_status Pointer to socket status storage area

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_SOCKET_NUM Socket number is invalid
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets socket status.

Reentrant
No

Example

if (WIFI SOCKET STATUS CLOSED == R WIFI DAl6XXX GetSocketStatus (socket no,
&socket status))

{

printf (“Socket is available \n”);

}

else

{

printf (“Socket is not available \n”);

}

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 55 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.21. R=WIFI=DA1 6XXX=CreateSocket()

This function creates a socket by specifying the socket type and IP type.

Format

wifi err t R WIFI DAl16XXX CreateSocket (
uint8 t socket number,
wifi socket type t type,

uint8 t ip version

Parameters

socket_number Socket number
type Socket type
ip_version IP version

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_CREATE Failed to create socket
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function creates a TCP socket by specifying the socket type (WIFI_SOCKET_TYPE_TCP_CLIENT) and
IP type.

Reentrant
No

Example

uint8 t socket no;

wifi socket type t type = WIFI_ SOCKET TYPE TCP CLIENT;

R WIFI DAl16XXX GetAvailableSocket (&socket no);

Sock tcp = R WIFI DAl6XXX CreateSocket (socket no, type, 4);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 56 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.22. R_WIFI_DA16XXX_TcpConnect()

This function connects to a specific IP and Port using socket.

Format

wifi err t R WIFI DAI16XXX TcpConnect (
uint8 t socket number,
uint32 t * ip address,

uintlé t port

Parameters

socket_number Socket number

ip_address Pointer to IP address of TCP server in byte array format
port Port of TCP server

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_NUM Socket numbet is invalid
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.
Description

This function connects to a specific IP and Port using socket.

Reentrant
No

Example

uint8 t socket no;

uint32 t ip addr[4] = {192, 168, 1, 10};

uintlé t port = 1234;

dal6xxx_socket type t type = DAL6XXX SOCKET TYPE TCP CLIENT;
R WIFI DAl6XXX GetAvailableSocket (&socket no);

Sock tcp = R WIFI DAl6XXX CreateSocket (socket no, type, 4);
R WIFI DAl16XXX TcpConnect (socket no, ip addr, port);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 57 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.23. R_WIFI_DA16XXX_SendSocket()

This function transmits data using the specified socket.

Format

wifi err t R WIFI DAI16XXX SendSocket (
uint8 t socket number,
uint8 t * data,
uintlé_t length,

uint32 t timeout ms

Parameters

socket_number Socket number

data Pointer to transmit data in byte array format
length Number of bytes of data to be transmitted
timeout_ms Transmission timeout duration (millisecond)

Return values

Number of sent data Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_MODULE_TIMEOUT Communicate with module timed out
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_NUM Socket number is invalid
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sends the data stored in the data from the specified socket the number of bytes specified by
length.

Reentrant
No
Example
int32 t recv_num;
uint8 t buffer[50];
recv_num = R WIFI DAl6XXX SendSocket (sock, buffer, sizeof (buffer), 1000);
Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 58 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.24. R_WIFI_DA16XXX_ReceiveSocket()

This function receives data from the specified socket.

Format

wifi err t R WIFI DAl6XXX ReceiveSocket (
uint8 t socket number,
uint8 t * data,
uintlé_t length,

uint32 t timeout ms

Parameters

socket_number Socket number

data Pointer to receive data storage area

length Number of bytes of data to be received
timeout_ms Transmission timeout duration (millisecond)

Return values

Number of received data Normal end
WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_NUM Socket number is invalid
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sends the data stored in the data from the specified socket the number of bytes specified by
length.

Reentrant
No

Example

int32 t recv_num;
uint8 t buffer[50];
recv_num = R WIFI DAl16XXX ReceiveSocket (sock, buffer, sizeof (buffer), 1000);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 59 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.25. R_WIFI_DA16XXX_CloseSocket()

This function disconnects communication with the specified socket and deletes the socket.

Format
wifi err t R WIFI DAl16XXX CloseSocket (

uint8 t socket number

Parameters

socket_number Socket number

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_MODULE_TIMEOUT Communicate with module timed out
WIFI_ERR_SOCKET_NUM Socket number is invalid

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function disconnects communication with the specified socket and deletes the socket.

Reentrant
No

Example

R WIFI DAl16XXX TcpConnect (sock, ipaddr, port);
R WIFI DA16XXX CloseSocket (sock) ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 60 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.26. R=WIFI=DA1 6XXX=Tcheconnect()

This function reconnects to the existing socket.

Format
wifi err t R WIFI DAl16XXX TcpReconnect (

uint8 t socket number

Parameters

socket_number Socket number

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_NUM Socket number is invalid
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function reconnects to the existing socket.

If sock_number is UINT8_MAX, this function will reconnect all disconnected sockets.

Reentrant
No

Example
R WIFI DAl6XXX TcpReconnect (socket no);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 61 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.27. R=WIFI=DA1 6XXX=GetAvaiIabIeTIsSocket()

This function gets the next available TLS socket ID.

Format
wifi err t R WIFI DAl6XXX GetAvailableTlsSocket (

uint32 t * socket id

Parameters

socket_id Pointer to socket id storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_NUM No socket available for connection socket
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets the next available TLS socket ID.

Reentrant
No

Example

uint32 t socket no;
R WIFI DAl6XXX GetAvailableTlsSocket (&socket no);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 62 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.28. R=WIFI=DA1 6XXX=GetTIsSocketStatus()

This function gets the TLS socket status.

Format
wifi err t R WIFI DAl6XXX GetTlsSocketStatus (
uint32 t socket number,

wifi socket status t * socket status

Parameters
socket_number Socket number
socket_status Pointer to socket status storage area

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_SOCKET_NUM Socket number is invalid
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets TLS Client socket status.

Reentrant
No

Example

if (WIFI SOCKET STATUS CLOSED == R WIFI DAl6XXX GetTlsSocketStatus (socket no,
&socket status))

{

printf (“Socket is available \n”);

}

else

{

printf (“Socket is not available \n”);

}

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 63 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.29. R_WIFI_DA16XXX_CreateTIsSocket()
This function creates a TLS socket by specifying the socket type and IP type.

Format

wifi err t R WIFI DAl16XXX CreateTlsSocket (
uint32 t socket number,
wifi socket type t type,

uint8 t ip version

Parameters

socket_number Socket number
type Socket type
ip_version IP version

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_CREATE Failed to create socket
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function creates a TLS socket by specifying the socket type (WIFI_SOCKET_TYPE_TLS) and IP type.

Reentrant
No

Example

uint32 t socket no;

wifi socket type t type = WIFI SOCKET TYPE TLS;

R WIFI DAl6XXX GetAvailableTlsSocket (&socket no);

Sock tcp = R WIFI DAl6XXX CreateTlsSocket (socket no, type, 4);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 64 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.30. R_WIFI_DA16XXX_TlsConnect()

This function connects to a specific IP and Port using TLS socket.

Format

wifi err t R WIFI DAl16XXX TlsConnect (
uint32 t socket number,
uint32 t * ip address,

uintlé t port

Parameters

socket_number Socket number

ip_address IP address of TLS server in byte array format
port Port of TLS server

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_NUM Socket number is invalid
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.
Description

This function connects to a specific IP and Port using TLS socket.

Reentrant
No

Example

uint32 t socket no;

uint32 t ip addr[4] = {192, 168, 1, 10};

uintlé t port = 1234;

dalé6xxx socket type t type = DAl16XXX SOCKET TYPE TLS;

R WIFI DAl6XXX GetAvailableTlsSocket (&socket no);

Sock tcp = R WIFI DAl6XXX CreateTlsSocket (socket no, type, 4);
R WIFI DA16XXX TlsConnect (socket no, ip addr, port);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 65 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.31. R_WIFI_DA16XXX_SendTIsSocket()

This function transmits data using the specified socket.

Format

wifi err t R WIFI DAl16XXX SendTlsSocket (
uint32 t socket number,
uint8 t * data,
uintlé_t length,

uint32 t timeout ms

Parameters

socket_number Socket number

data Pointer to transmit data in byte array format
length Number of bytes of data to be transmitted
timeout_ms Transmission timeout duration (millisecond)

Return values

Number of sent data Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_MODULE_TIMEOUT Communicate with module timed out
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_NUM Socket number is invalid or disconnected
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sends the data stored in the data from the specified socket the number of bytes specified by
length.

Reentrant
No
Example
int32 t recv_num;
uint8 t buffer[50];
recv_num = R WIFI DAl16XXX SendTlsSocket (sock, buffer, sizeof (buffer), 1000);
Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 66 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.32. R_WIFI_DA16XXX_ReceiveTlsSocket()

This function receives data from the specified socket.

Format

wifi err t R WIFI DAl16XXX ReceiveTlsSocket (
uint32 t socket number,
uint8 t * data,
uintlé_t length,

uint32 t timeout ms

Parameters

socket_number Socket number

data Pointer to receive data storage area

length Number of bytes of data to be received
timeout_ms Transmission timeout duration (millisecond)

Return values

Number of received data Normal end
WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_NUM Socket number is invalid
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sends the data stored in the data from the specified socket the number of bytes specified by
length.

Reentrant
No

Example

int32 t recv_num;

uint8 t buffer[50];

recv_num = R WIFI DAl16XXX ReceiveTlsSocket (sock, buffer, sizeof (buffer),
1000) ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 67 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.33. R_WIFI_DA16XXX_CloseTlsSocket()

This function disconnects communication with the specified TLS socket and deletes the socket.

Format
wifi err t R WIFI DAl16XXX CloseTlsSocket (

uint32 t socket number

Parameters

socket_number Socket number

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_MODULE_TIMEOUT Communicate with module timed out
WIFI_ERR_SOCKET_NUM Socket number is invalid

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function disconnects communication with the specified socket and deletes the socket.

Reentrant
No

Example

R WIFI DAl16XXX TlsConnect (sock, ipaddr, port);
R WIFI DA16XXX CloseTlsSocket (sock);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 68 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.34. R_WIFI_DA16XXX_TIsReconnect()

This function reconnects to the existing socket.

Format
wifi err t R WIFI DAl16XXX TlsReconnect (

uint32 t socket number

Parameters

socket_number Socket number

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_NUM Socket number is invalid
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function reconnects to the existing socket.

If sock_number is UINT8_MAX, this function will reconnect all disconnected sockets.

Reentrant
No

Example
R WIFI DAl16XXX TlsReconnect (socket no);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 69 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.35. R_WIFI_DA16XXX_ConfigTIsSocket()

This function configures SSL connection on Wi-Fi module.

Format

wifi err t R WIFI DAl16XXX ConfigTlsSocket (

)

uint32 t * socket num,

wifi tls cert info t * cert info,
uint8 t WIFI FAR * sni name,
uint8 t ser valid,

uintlé_t trans buf size,

uintl6é_t recv buf size,

uint32 t timeout

Parameters

socket_num Socket number

cert_info Pointer to certificate information storage area
sni_name Server Name Indication (SNI)

ser_valid server validation

trans_buf_size Incoming buffer length for TLS socket
recv_buf_size Outgoing buffer length for TLS socket
timeout SSL connection timeout

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function configures SSL connection for specifies socket number with below list of configurations:

Set SSL CA Certificate.

Set SSL Certificate.

Set the SNI (supported only for TLS client).
Enable server validation.

Set the Incoming buffer length.

Set the Outgoing buffer length.

Set the DA TLS connection timeout (ms).

This function must be called before calling this function: R_WIFI_DA16XXX_TIsConnect().

R0O1AN7173EU0140 Rev.1.40 Page 70 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Reentrant
No

Example

char|[] HostName = “awubos-ats.iot.ap-northeast-1.amazonaws.com";
R WIFI DA16XXX ConfigTlsSocket (&socketId, &cert info, (uint8 t *)pHostName, 1,

8192, 8192, 1000);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 71 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.36. R=WIFI=DA1 6XXX=RegistServerCertificate()

This function registers server certificates on the Wi-Fi module (Deprecated, using
R_WIFI_DA16XXX_ConfigTIisSocket() instead).

Format
wifi err t R WIFI DAl16XXX RegistServerCertificate(
uint32 t socket num,
wifi tls cert info t * cert info,
uint8 t WIFI FAR * sni name,
uint8 t ser valid,
uint32 t trans buf size,

uint32 t recv buf size

Parameters

socket_num Socket number

cert_info Pointer to certificate information storage area
trans_buf_size Incoming buffer length for TLS socket
recv_buf_size Outgoing buffer length for TLS socket

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.
Description
This function configures SSL connection for specifies socket number with below list of configurations:
e Set SSL CA Certificate.
e Set SSL Certificate.
e Set the Incoming buffer length.
e Set the Outgoing buffer length.

This function must be called before calling this function: R_WIFI_DA16XXX_TIsConnect().
Reentrant

No
Example

R WIFI DAl16XXX RegistServerCertificate (socketId, &cert info, 8192, 8192);
Special Notes:
None

R0O1AN7173EU0140 Rev.1.40 Page 72 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.37. R_WIFI_DA16XXX_RequestTIsSocket()

This function allocates the created TLS socket for SSL connection.

Format
wifi err t R WIFI DAl16XXX RequestTlsSocket (

uint32 t socket number

Parameters

socket_number Socket number

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_NOT_CONNECT Not connected to access point
WIFI_ERR_SOCKET_CREATE Failed to create socket
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function allocates the created TLS socket for SSL connection:
R_WIFI_DA16XXX_CreateTIsSocket() must be called before calling this function.

Reentrant
No
Example

R WIFI DA16XXX RequestTlsSocket (socketId);
Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 73 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.38. R_WIFI_DA16XXX_GetServerCertificate()

This function gets stored server certificates on the Wi-Fi module.

Format
wifi err t R WIFI DAl6XXX GetServerCertificate (

wifi tls cert info t * cert info

Parameters

cert_info Pointer to certificate information storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function obtains certificate information stored in the Wi-Fi module and returns the certificate information
in cert_info.

Reentrant
No
Example
R WIFI DAl6XXX GetServerCertificate (&cert info);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 74 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.39. R_WIFI_DA16XXX_WriteCertificate()

This function stores certificates on the Wi-Fi module.

Format

wifi err t R WIFI DAl6XXX WriteCertificate (
const uint8 t * name,
wifi tls key type t type key,
const uint8 t * p data,

uintlé t len

Parameters

name Name of the certificate

type_key Certificate type

p_data Pointer to certificate data stored area
len Certificate data size

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function writes a certificate or secret key in the sflash memory of the Wi-Fi module.

For the certificate type, see da16xxx_tls_key type tin 2.10 Parameter.

Reentrant
No
Example

R_WIFI DA16XXX WriteCertificate (WIFI_CFG_TLS_CERT CA NAME,
WIFI_TLS_TYPE CA CERT,
DEVICE CERTIFICATE AUTHORITY PEM,
strlen (DEVICE CERTIFICATE AUTHORITY PEM));

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 75 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.40. R_WIFI_DA16XXX_DeleteCertificate()

This function deletes certificates on the Wi-Fi module.

Format
wifi err t R WIFI DAl16XXX DeleteCertificate(
wifi tls key type t type key,

wifi tls cert info t * cert info

Parameters
type_key Certificate type
cert_info Pointer to certificate information storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function removes a certificate or secret key in the sflash memory of the Wi-Fi module.

For the certificate type, see wifi_tls_key type tin 2.10 Parameter.

Reentrant
No

Example
R WIFI DA16XXX DeleteCertificate (WIFI TLS TYPE CA CERT, &cert info);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 76 of 124
Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.41. R_WIFI_DA16XXX_MgqttOpen()

This function initializes DA16XXX MQTT Client module.

Format

wifi err t R_WIFI DA16XXX MgttOpen (

void

Parameters

None

Return values

WIFI_SUCCESS
WIFI_ERR_PARAMETER
WIFI_ERR_NOT_CONNECT
WIFI_ERR_MODULE_COM
WIFI_ERR_MQTT_ALREADY_OPEN
WIFI_ERR_MQTT_INVALID_DATA
WIFI_ERR_MQTT_OUT_OF_MEMORY

Properties

Normal end

Invalid parameter

Not connect to access point

Failed to communicate with Wi-Fi module
Already WIFI MQTT opened

Invalid data to send/receive

Out of memory for MQTT communication

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

Initialize the DA16XXX on-chip MQTT Client service.

Reentrant
No

Example
R WIFI DA16XXX MgttOpen();

Special Notes:

None

RO1AN7173EU0140 Rev.1.40
Oct.15.25

RENESAS

Page 77 of 124

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.42. R_WIFI_DA16XXX_MqttDisconnect()
This function disconnects from the DA16 XXX MQTT Client service.

Format
wifi err t R WIFI DAl6XXX MgttDisconnect (

void

Parameters

None

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_MQTT_NOT_OPEN Wi-Fi MQTT module is not opened

WIFI_ERR_MQTT_NOT_CONNECT Not connect to MQTT channel

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function disconnects from the DA16 XXX MQTT Client service.

Reentrant
No

Example
uint32 t timeout;
R WIFI DA16XXX MgttOpen () ;

R WIFI DAl16XXX MgttConnect (timeout) ;
R WIFI DAl16XXX MgttDisconnect () ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 78 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.43. R_WIFI_DA16XXX_MqttConnect()
This function configures and connects to the DA16XXX MQTT Client service.

Format
wifi err t R WIFI DAI6XXX MgttConnect (

uint32 t timeout ms

Parameters

timeout_ms Time out (ms)

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_MQTT_NOT_OPEN Wi-Fi MQTT module is not opened
WIFI_ERR_MQTT_CONNECTED Not connect to access point

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function configures and connects to the DA16XXX MQTT Client service.

Reentrant
No

Example

uint32 t timeout;

R WIFI DA16XXX MgttOpen () ;
R WIFI DAl16XXX MgttConnect (timeout) ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 79 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.44. R_WIFI_DA16XXX_MqttPublish()

This function publishes a message for a given MQTT topic.

Format
wifi err t R WIFI DAl6XXX MgttPublish (

wifi mgtt pub info t * const p pub info

Parameters

p_pub_info MQTT publish package parameters

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_MQTT_NOT_CONNECT Not connect to MQTT channel
WIFI_ERR_MQTT_INVALID_DATA Invalid data to send/receive

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function publishes a message for a given MQTT topic.

For the MQTT publish package, see da16xxx_mqtt_pub_info_t in 2.10 Parameter.

Reentrant
No

Example

wifi mgtt pub info t * const p pub info;

R_WIFI DA16XXX MgttPublish(p pub_info);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 80 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.45. R_WIFI_DA16XXX_MqttReceive()

This function receives data subscribed to DA16XXX MQTT Client service.

Format

wifi err t R WIFI DAI16XXX MgttReceive (

void

Parameters

None

Return values

WIFI_SUCCESS
WIFI_ERR_MQTT_INVALID_DATA
WIFI_ERR_MQTT_NOT_CONNECT

Properties

Normal end
Invalid data to send/receive

Not connect to MQTT channel

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function receives data subscribed to DA16 XXX MQTT Client service.

Reentrant
No

Example

R_WIFI_DA16XXX MgttReceive () ;

Special Notes:

None

RO1AN7173EU0140 Rev.1.40
Oct.15.25

Page 81 of 124
RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.46. R=WIFI=DA1 6XXX=MqttSubscribe()
This function subscribes to DA16XXX MQTT topics.

Format
wifi err t R WIFI DAl6XXX MgttSubscribe (

wifi mgtt sub info t * const p_sub info,

size t subscription count
)
Parameters
p_sub_info MQTT subscribe package parameters
subscription_count Number of subscribe topic.

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_MQTT_NOT_OPEN Wi-Fi MQTT module is not opened
WIFI_ERR_MQTT_INVALID_DATA Invalid data to send/receive

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function subscribes to DA16XXX MQTT topics.

For the MQTT subscribe package, see da16xxx_mqtt_sub_info_t in 2.10 Parameter.

Reentrant
No

Example

wifi mgtt sub info t * const p sub info;
size t subscription count;

R WIFI DAl16XXX MgttSubscribe (p _sub info, subscription count);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 82 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.47. R_WIFI_DA16XXX_MgqttUnSubscribe()
This function unsubscribes from DA16 XXX MQTT topics.

Format
wifi err t R WIFI DAl16XXX MgttUnSubscribe (

wifi mgtt sub info t * const ©p_ sub info

Parameters

p_sub_info MQTT subscribe package parameters

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_MQTT_NOT_CONNECT Not connect to MQTT channel
WIFI_ERR_MQTT_INVALID_DATA Invalid data to send/receive

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function unsubscribes from DA16 XXX MQTT topics.

For the MQTT subscribe package, see da16xxx_mqtt_sub_info_tin 2.10 Parameter.

Reentrant
No

Example

wifi mgtt sub info t * const p sub info;

R WIFI DAl6XXX MgttUnSubscribe (p_sub info);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 83 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.48. R_WIFI_DA16XXX_MqttClose()
This function closes the DA16XXX MQTT Client service.

Format
wifi err t R WIFI DAl6XXX MgttClose (

void

Parameters

None

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_MODULE_COM Cannot communicate WIFI module
WIFI_ERR_MQTT_NOT_OPEN WIFI MQTT module is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function closes the DA16XXX MQTT Client service.

Reentrant
No

Example

R WIFI DA16XXX MgttOpen () ;
R WIFI DA16XXX MqgttClose ();

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 84 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.49. R_WIFI_DA16XXX_HttpOpen()
This function initializes DA16XXX HTTP Client module.

Format
wifi err t R WIFI DAl6XXX HttpOpen (

void

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connect to access point
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

WIFI_ERR_HTTP_ALREADY_OPEN Already WIFI HTTP opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
Initialize the DA16XXX on-chip HTTP Client service.

Reentrant
No

Example
R WIFI DA16XXX HttpOpen();

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 85 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.50. R=WIFI=DA1 6XXX=HttpCIose()
This function closes the DA16XXX HTTP Client service.

Format
wifi err t R WIFI DAl6XXX HttpClose (

void

Parameters

None

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_MODULE_COM Cannot communicate WIFI module
WIFI_ERR_HTTP_NOT_OPEN WIFI HTTP module is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function closes the DA16XXX HTTP Client service.

Reentrant
No

Example

R WIFI DA16XXX HttpOpen () ;
R WIFI DA16XXX HttpClose ();

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 86 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.51. R_WIFI_DA16XXX_HttpSend()

This function sends the HTTP request with the configured buffers.

Format

wifi err t R WIFI DA16XXX HttpSend (
wifi http request t request,
wifi http buffer t *buffer

Parameters
request Pointer to HTTP request control structure
buffer Pointer to HTTP user buffer struct for request and response

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connect to access point
WIFI_ERR_TAKE_MUTEX Failed to obtain mutex
WIFI_ERR_HTTP_NOT_OPEN WIFI HTTP module is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function sends the HTTP request with the configured buffers.

For the HTTP request and HTTP user buffer, see wifi_http_request_t and wifi_http_buffer tin 2.10
Parameter.

Reentrant
No

Example
R WIFI DAl6XXX HttpSend(http post req, &resp buffer);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 87 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.52. R_WIFI_DA16XXX_OtaOpen()
This function initializes DA16XXX OTA service.

Format
wifi err t R WIFI DAI6XXX OtaOpen (

void

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_OTA_ALREADY_OPEN Already WIFI OTA opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
Initialize the DA16XXX on-chip OTA service.

Reentrant
No

Example
R WIFI DA16XXX OtaOpen () ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 88 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.53. R_WIFI_DA16XXX_OtaClose()
This function closes the DA16XXX OTA service.

Format
wifi err t R WIFI DAl6XXX OtaClose (

void

Parameters

None

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_MODULE_COM Cannot communicate WIFI module
WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened
WIFI_ERR_OTA_FAIL WIFI OTA common error
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function closes the DA16XXX OTA service.

Reentrant
No

Example

R WIFI DA16XXX OtaOpen () ;
R WIFI DA16XXX OtaClose();

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 89 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.54. R_WIFI_DA16XXX_OtaStart()

Start downloading firmware from an OTA server.

Format
wifi err t R WIFI DAl6XXX OtaStart (

const uint8 t * fw url

Parameters

fw_url Server URL where firmware exists

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module
WIFI_ERR_NOT_CONNECT Not connect to access point
WIFI_ERR_OTA NOT_OPEN WIFI OTA service is not opened
WIFI_ERR_OTA_NOT_IDLE WIFI OTA state is not IDLE

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function starts downloading firmware from an OTA server with firmware URL.

Reentrant
No

Example
R WIFI DAl6XXX OtaStart (“firmware url”);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 90 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.55. R_WIFI_DA16XXX_OtaEraseFirmware()
Erase the MCU firmware stored in a serial flash of the DA16200/DA16600.

Format
wifi err t R WIFI DAl6XXX OtaEraseFirmware (

void

Parameters

fw_url Server URL where firmware exists

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_NOT_CONNECT Not connect to access point
WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function erases firmware stored in a serial flash of DA16200/DA16600.

Reentrant
No

Example
R WIFI DAl6XXX OtaEraseFirmware () ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 91 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.56. R=WIFI=DA1 6XXX=OtaGetProgress()

Get progress status of firmware download.

Format
wifi err t R WIFI DAl6XXX OtaGetProgress (

uint8 t * progress

Parameters

progress Pointer to a variable where the OTA update progress (in percentage) will be stored

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_NOT_CONNECT Not connect to access point
WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets progress status of firmware download.

Reentrant
No

Example

uint8 t progress;
R WIFI DA16XXX OtaGetProgress (&progress);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 92 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.57. R_WIFI_DA16XXX_OtaReadFirmwarebyBlock()

Read the MCU firmware as much as the size from the fw_addr and transmit it.

Format
wifi err t R WIFI DAl16XXX OtaReadFirmwarebyBlock (
uint32 t fw_addr,

uint32 t size

Parameters
fw_addr Starting address from which the firmware block will be read.
size Size (in bytes) of the firmware block to read.

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_NOT_CONNECT Not connect to access point
WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function reads the MCU firmware as much as the size from the fw_addr and transmit it.

Reentrant
No

Example

uint32 t fw_addr = 0x3AD00O0;
uint32 t size = 1024;
R WIFI DAl6XXX OtaReadFirmwarebyBlock (fw_addr, size);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 93 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.58. R=WIFI=DA1 6XXX=OtaGetAddress()
Get the address where images is stored in DA16600/DA16200.

Format
wifi err t R WIFI DAl6XXX OtaGetAddress (
uint32 t * fw_addr

Parameters

fw_addr Pointer to a variable that will store the firmware address in the DA device.

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_NOT_CONNECT Not connect to access point
WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description
This function gets the address where images is stored in DA16600/DA16200.

Reentrant
No

Example

uint32 t fw addr = 0;
R WIFI DA16XXX OtaGetAddress (&fw addr) ;

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 94 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.59. R_WIFI_DA16XXX_OtaFirmwareSize()

Get a size in the header of the MCU firmware.

Format
wifi err t R WIFI DAl6XXX OtaFirmwareSize (

uint32 t * fw size

Parameters

fw_size Pointer to a variable that will store the size of the image in the DA device.

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_NOT_OPEN Wi-Fi module not initialized
WIFI_ERR_NOT_CONNECT Not connect to access point
WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets size of image in the header of the MCU firmware.

Reentrant
No

Example

uint32 t size = 0;
R WIFI DAl6XXX OtaFirmwareSize (&fw size);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 95 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.60. R=WIFI=DA1 6XXX=OtaGetState()
Get state of OTA transfer.

Format
wifi err t R WIFI DAl6XXX OtaGetState (

wifi ota state t * state

Parameters

state Pointer to a variable that will store the current state of OTA download

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets state of OTA transfer.

Reentrant
No

Example

wifi ota state t status;
R WIFI DA16XXX OtaGetState (&status);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 96 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

3.61. R_WIFI_DA16XXX_OtaGetFirmware()
Get the data returned from the API OtaReadFirmwarbyBlock().

Format

wifi err t R WIFI DAl6XXX OtaGetFirmware (
uint8 t * buffer,
uintlé t offset,

uintlé t size

Parameters

buffer Pointer to the buffer will receive the data from the API
offset Offset (in bytes) from the start.

size Size of the data to retrieve.

Return values

WIFI_SUCCESS Normal end
WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened
Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets the data returned from the API OtaReadFirmwarbyBlock.

Reentrant

No

Example
uint8 t user buf[1024] = {0};
uintlée t offset = 0;
uintlé t size = 0;

R WIFI DA16XXX OtaGetFirmware (user buf, offset, size);

Special Notes:

None

R0O1AN7173EU0140 Rev.1.40 Page 97 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology
4. Callback Function
4.1. Wi-Fi callback function

This function notifies the user application of a Wi-Fi module the errors related to communication.

Format
void * callback/(

void * pevent

)

Parameters
pevent Pointer to error information area

Return Values
None

Properties
This function is implemented by the user.

Description
Enable this API with the following configuration. The function name does not have to be “callback”.
#define WIFI CFG_USE CALLBACK FUNCTION (1)

#1f WIFI_CFG_USE_CALLBACK FUNCTION ==
#define WIFI CFG_CALLBACK FUNCTION NAME (wifi callback)
#endif

Since the event is notified as a void pointer type, cast it to wifi_err_event_t type before referencing it.

void wifi callback(void * p args)
{
wifi err event t *pevent;
pevent = (wifi err event t *)p args;

switch (pevent->event)
{
case WIFI EVENT SERIAL OVF ERR:
break;

}

Reentrant
No

The notification events are as follows.

* WIFI_EVENT_SERIAL_OVF_ERR

Reports that the SCI module has detected a receive overflow error.

* WIFI_EVENT_SERIAL_FLM_ERR

Reports that the SCI module has detected a receive framing error.

* WIFI_EVENT_SERIAL_RXQ_OVF_ERR

Reports that the SCI module has detected a receive queue (BYTEQ) overflow.

* WIFI_EVENT_RCV_TASK_RXB_OVF_ERR

Reports that the FIT module has detected the overflow of the AT command receive buffer.
* WIFI_EVENT_SOCKET_RXQ_OVF_ERR

Reports that the socket has detected a receive queue (BYTEQ) overflow.

R0O1AN7173EU0140 Rev.1.40 Page 98 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Example

[r wifi dalé6xxx config.h]

#define WIFI CFG_USE_CALLBACK_FUNCTION (1)

#define WIFI CFG CALLBACK FUNCTION NAME (wifi callback)

[xxx.cC]
void wifi callback(void *p args)
{
wifi err event t *pevent;
pevent = (wifi err event t *)p args;

switch (pevent->event)
{
case WIFI EVENT SERIAL OVF ERR:
break;
case WIFI EVENT SERIAL FLM ERR:
break;
case WIFI EVENT SERIAL RXQ OVF ERR:
break;
case WIFI EVENT RCV_TASK OVF ERR:
break;
case WIFI EVENT SOCKET RXQ OVF ERR:
switch (pevent->socket number)
{
case 0:
break;
case 1:
break;
case 2:
break;
case 3:
break;
}
break;
default:
break;

Special Notes:

Do not call any of the functions listed in section 3. APl Functions from the callback function.

R0O1AN7173EU0140 Rev.1.40 Page 99 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

4.2. MQTT callback function

This function notifies the user application of a Wi-Fi module the errors related to communication.

Format
void (* p mgtt callback) (
void * pevent

)

Parameters
pevent Pointer to callback information to handle

Return Values
None

Properties
This function is implemented by the user.

Description
Enable this API with the following configuration. The function name does not have to be “callback”.
#define WIFI CFG MQTT P CALLBACK (1)

#1f WIFI_CFG_MQTT P CALLBACK ==
#define WIFI CFG MQOTT P CALLBACK FUNCTION NAME /* Call back function name */
#endif

Reentrant
No

Example

[r wifi dal6xxx config.h]

#define WIFI CFG_MQTT P CALLBACK (1)

#define WIFI CFG MQTT P CALLBACK FUNCTION NAME (mgtt userCallback)

[xxx.c]
void mgtt userCallback (void * pevent)
{
wifi mgtt callback args t * p args;
p_args = (wifi mgtt callback args t *)pevent;

/* Code to handle incoming data */
char * ptr = strstr(p args->p topic, "test/MQTT/senddata");
if (ptr != NULL)
{
if (0 == strcmp((const char *)p args->p data, "closeMQTT"))
{
cb flag = 1;
}

Special Notes:
The R_WIFI_DA16XXX_MqttReceive() API should be called to use this callback function.

R0O1AN7173EU0140 Rev.1.40 Page 100 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

5. Demo Projects

Demo projects include function main() that utilizes the FIT module and its dependent modules (e.g. r_bsp).
This FIT module includes the following demo project.

5.1 Wi-Fi DA16600 Multiple Protocols Demo Project

5.1.1 Prerequisites

. Hardware requirements:
o CK-RX65N: Renesas CK-RX65N Cloud Kit v2 (Product no.: RTKSCK65N0S08001BE).
o DA16600: US159-DA16600MEVZ as Wi-Fi module (included in CK-RX65N kit)
o PC running Windows® 11.
o Micro-USB cables for Power supply and the Wi-Fi module logging output (included as part of
the kit. See CK-RX65N v2 — User's Manual at “Related Documents” on page 1).

e Software requirements for Windows 10 PC:
o IDE: e? studio 2025-07 or later.
Compiler: Renesas Electronics C/C++ Compiler for RX Family V3.07.00.
Tera Term v4.99 or later.
Socket Test (for TCP Client demo): http://sockettest.sourceforge.net/.
Java Virtual Machine (JVM)1.3 or above (for Socket Test): http://www.java.com/.

o O O O

5.1.2 Import the Demo Project

Users can import the demo project by adding the demo to their 2 studio workspace (see section 5.1.5) or by
downloading the demo project (see section 5.4).

o Import “ck_rx65n_wifi_da16xxx_baremetal _multiple_protocol” for Bare metal application.

e Import “ck_rx65n_wifi_da16xxx_freertos_multiple_protocol” for FreeRTOS application.

5.1.3 Hardware Setup

Connect the Wi-Fi DA16600 Pmod module to the CK-RX65N v2 PMOD1 connector.

Connect the micro-USB cable from PC to CK-RX65N micro-USB connector (J14) for Power supply.
Connect the USB-Type C cable from PC to CK-RX65N micro-USB connector (J10) for logging output.
Set the jumper of J16 (short 1-2) to “Debug”.

J16 1-2 short
(Debug side)

Type C to Type C cable Ji4

MAC ADDRESS

j 7490 50 08 A8 64

Figure 5.1 Hardware Setup

R0O1AN7173EU0140 Rev.1.40 Page 101 of 124
Oct.15.25 RENESAS

http://sockettest.sourceforge.net/
http://www.java.com/

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

5.1.4 How to Run the Demo

a) Country Code Setting
Use the Smart Configurator to configure the country code.
Open the Smart Configurator as shown in the image below and set the Country code parameter.

15 Project Explorer X 2 G 7 & = O |[{ "ck_m65n_wifi_dalxxx_freertos_multiple_protocol.scfg X =8
v 155 ch_m5n_wifi_da’Gioo_freertos_multiple_protocel . % =
= o - -mupe- Software component configuration 5| =
[l Includes Generate Code [|Generate Report
~ (3 src
= demo_cenfig Components (x5 173 |% |- [+ 3 ~ Configure @
(= FreeRTOS -
(= frtos_config W Property Value ~
(= frtos_skeleton [typefitter text | # AT command receive buffer size 3000
frtos_starty
gmﬁp & Startup ~ # Max SSID Length 2
= # Max BSSID Length 6
) (= Generic
€] ck_neBn_wifi_dalGxoe_freertos_multiple_protocol.c & roep # Use SNTP client service 7] Disable
e i e e iple pisiacal i
- . v (= Drivers #
455 ck_mxB5n_wifi_daloce_freertos_multiple_protocol.scfg P
v (= /0 Ports
eI - 3 9 r_gpio.rx # Country code VN I
5 ;UmTwIE_cimmSndSJsoﬂ v & Communications TP TR logging
eveloper Assistance B rscim # 5C Channel number for serial logging 5
= Middieware / # Communication baud rate for serial logging 115200
& Generic # Interrupt priority for serial logging 1 v
6 | puien Macro definition: WIF_CFG_COUNTRY_CODE
P Rr— Please input the country code. Country code defined in 1S03166-1 alpha-2 standard.
v (=T
DINC 1 &
< > || Overview | Board | Clocks | System | Components | Pins | Interrupts

Figure 5.2 Country Code Setting

= "WIFI_CFG_COUNTRY_CODE": Country code defined in ISO 3166-1 alpha-2 standard. Such as
KR, US, JP, and CH.
b) Wi-Fi Network Settings
Configure Wi-Fi network settings for the Wi-Fi module. Configure the following macro in
“src/demo_config/demo_config.h”.
Note: Ensure that the PC running Socket Test app and the Wi-Fi module are connected to the same
Wi-Fi network.

* [@brief Wi-Fi network to join.
* @todo IT you are using Wi-Fi, set this to your network name.

#define AP_WIFI_SSID "ssid”

rief Password needed to jodin Wi-Fi network.
odg If you are using WPA, set this to your network password.

#define AP_WIFI_PASSWORD "password”
fgbrief Wi-Fi network security type.
* [fsee WIFISecurity_t.

* [@note Possible values are WIFI_SECURITY_OPEN, WIFI_SECURITY_WPA,
* WIFI_SECURITY WPA2 (depending on the support of your device Wi-Fi radio).

#défine AP_WIFI_SECURITY WIFI_SECURITY_WPAZ2
Figure 5.3 Wi-Fi Network Settings

= AP_WIFI_SSID: Set the access point name of the Wi-Fi network.

= AP_WIFI_PASSWORD: Set the Wi-Fi network password.

= AP_WIFI_SECURITY: Set the Wi-Fi network security type (WIFI_SECURITY_OPEN,
WIFI_SECURITY_WPA, WIFI_SECURITY_WPA2).

R0O1AN7173EU0140 Rev.1.40 Page 102 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

c) TCP Server Demo Settings
Follow the steps below to obtain the IP address in Windows OS.
e Select Start > Settings > Network & internet > Wi-Fi and then select the Wi-Fi network
you're connected to.
e Under Properties, look for your IP address listed next to IPv4 address.

Or running “ipconfig” command in CMD or PowerShell to get the IP address.
= ipconfig

indows IP Configuration

Ethernet adapter Ethernet 3:

Connection-specific DNS Suffix
Link-local IPvé Address
IPv4 Address
Subnet Mask :
Default Gateway

ireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix

Link-local IPv6 Address : |

IPvy Address. :192.168.1.2
Subnet Mask ! lbd..2b5.255.0
Default Gateway : 192.168.1.1

Figure 5.4 Get Server IP Address

Run Socket Master: “SocketTest-master\dist\SocketTest.jar” on PC.

Input the IP address in the designated text box, the port number is user-defined. In this demo, we
use 1883.

% SocketTest v 3.0.1

» Clien e lUdp e About
Listen On
IP Address | 192.168.1.2 e
Port | 1383 Por Start Listening

SocketTestv 3.0

Connected Client : < NONE >
Conversation with Client

Send

Message Send Disconnect

Figure 5.5 Start TCP Server

RO1AN7173EU0140 Rev.1.40

Page 103 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

d) TCP Client Demo Settings
Use the Smart Configurator to configure TCP protocol support.
Open the Smart Configurator as shown in the image below and set parameters.

155 Project Explorer

=] <§,> ? E = O 16,,‘}ck_n(ﬁfm_wifi_da1&(xx_freartos_muItipIe_protocoI.scfg X

= 0
w 25 ck_nB5n_wifi_dal6xxx_freertos_multiple_protacol . o= =
= b - -muitipe-p Software component configuration) =
3, Binaries Generate Code | Generate Report
[n) Includes
[sre Compone... (23 g = Configure @
(= demo_config -
(= FreeRTOS L Property Value L
(= frtos_config ‘ type filter text | #
(= frtos_skeleton #
(== frtos_startup v (= Startup . = #
& sme_gen w = Generic = : ‘
- > ¢ bsp ~ elect WiFiprotoco
[€] ck_meB5n_wifi_dal6xxx_freertos_multiple_protocol.c e Dn%ers ~ # TCP protecol support Enable
(= HardwareDebug v = 1/0 Ports ~ & Wi-Fi TCP protocol setting
- "
~ . # Creatable TCP Sockets number 1
= - . r_gpio_n
qar ck_reBSn_wifi_dalfoo_freertos_multiple_protocel.scfg . @%Commum:ations # TCP Socket Receive buffer size
Q.. ~ # MOIT protocel support
compile_cammandsjson i « & Wi-Fi MQTT protacol settin
@ Devel Assist & (= Middleware P 9
eveloper Assistance o G Generic # Use MOTT Certificates ["] Disable v
O L baen g >
.{' r_wifi_dal8xxx Macro definition: WIFI_CFG_TCP_SUPPORT
v Enable: Use TCP protocol.
« (= RTOS Kernel v Disable: Mot use TCP protecol.
< >

< > || Overview Board | Clocks | System | Components| Pins| Interrupts

Figure 5.6 TCP Client Settings

= TCP protocol support: tick “Enable” to use the TCP demo or “Disable” to not use it.
= Creatable TCP Sockets number: This demo project only uses 1 socket number.
= Configures the TCP Receive buffer size: default is 4096.

Configure TCP server settings from c) TCP Server Demo Settings to the following macro in
“src/demo_config/demo_config.h”.

* [@brief TCP server host name.

" [@note Set this to your TCP host name server.
.y

#define TCP_SERVER_HOSTNAME

rES

"192.165.1.2"
* [@brief TCP server port.

* [@note Set this to your TCP port server.
w

#define TCP_SERVER_PORT
Figure 5.7 TCP Server Settings

= TCP_SERVER_HOSTNAME: TCP server hostname of IP.
= TCP_SERVER_PORT: TCP server port.

1883

RO1AN7173EU0140 Rev.1.40
Oct.15.25

Page 104 of 124
RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

e) MQTT On-Chip Client Demo Settings
Use the Smart Configurator to configure the MQTT protocol.
Open the Smart Configurator as shown in the image below and set the parameter.

£ Project Explorer X

(25 ck_mB5n_wifi_dalxxx_freertos_muttiple_pratocol
B

2% T = O [*ckm5n_wifi_dal6ox _freertos multiple_protecolscfg 3

[8 *demo_cenfig.h

Software component configuration

l

Generate Code

= B8

(=]
Generate Report

¥ Binaries
) Includes
v B sre Components [y 7 =] % - Configure @
v (= demo_config
[# demo_config.h o Property Value @
(& FreeRTOS [type filter text ~ & Select Wi-Fi protocol
(= frios_config & Serop - v # TCP protocol support Enable
(2= frtos_skeleton v Generic ~ & Wi-Fi TCP protocol setting
g frios_startup o b # Crestable TCP Sockets number 1
smc_gen - H Do LoD Lot 4
€] ck_m6n_wifi_dal6wee_freertos_multiple_protocol.c M %’g'ﬁspu " « # WQTT protocol support Fﬁgnab\e |
@i—(arfwaraDehug & 1 gpio.n - il Protocal setting
I 55 ck_niSn_wifi_da’6xxx_freertos_multiple_protocol.scfg I v & Communications : e M Eetcetes b D
B ek - & e / ’
compile_commandsjsan \ v & Middleware # id
(2) Developer Assistance . BGV.E”E‘ ca Macro definition: WIF|_CFG_MQTT_SUPPORT
Dresle Not use MO prtocol.
v (=R m B =

Overview | Board | Clocks | System | Components | Pins | Interrupts

Figure 5.8 MQTT On-Chip Client Settings

= MQTT protocol support: tick “Enable” to use the MQTT on-chip client demo or “Disable” to not use
it.

Configure the MQTT Publish/Subscribe topics. Configure the following macro in
“src/demo_config/demql__config.h”

@brief MQTT subscribe topic.

* [@note Set subscribe topic for MQTT.
* g
#define MQTT_SUBSCRIBE_TOPIC "test/MQTT/senddata”

/

* [@brief MQTT publish topic.

* [@note Set publish topic for MQTT.

% ¢

#define MQTT_PUBLISH_TOPIC "test/MQTT/testdata”
Figure 5.9 MQTT Topics Settings

MQTT_SUBSCRIBE_TOPIC: MQTT subscribe topic.
MQTT_PUBLISH_TOPIC: MQTT publish topic.

f) MQTT Broker Settings
Open URL: https://testclient-cloud.matt.cool/ and select a Broker below.

Connection

Select a Broke

tep://broker.hivemg.com: 1883 Vln

Figure 5.10 Start MQTT Broker

Enter the subscribe topic that was configured in demo_config.h.

Connection

Subscriptions

test/MQTT/testdata QoS0 v

Subscribed topics

Figure 5.11 Subscribe Topic

RO1AN7173EU0140 Rev.1.40 Page 105 of 124

Oct.15.25 RENESAS

https://testclient-cloud.mqtt.cool/

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

g) HTTP On-Chip Client Demo Settings
Use the Smart Configurator to configure the HTTP protocol.
Open the Smart Configurator as shown in the image below and set the parameter.

{1 Project Explorer X 2% Y 8 = O i *ck G5n wifi_dalbxc freertosmultiple_protocol.scfg X . [8] *demo_config.h =5
v (25 ck_r@5n_wifi_dal6uos_freertos_multiple_pretocel . =
= Pl - -MUpeR Software component configuration il
¥ Binaries Generate Code [fGenerate Report
&l Includes
w ([sre Components gy =] 2% - Configure @
~ (= deme_config -
[5 demo_config.h W Property Value ~
(2= FreeRTOS [type filter text | #
(= frtos_config #
= frtos_skeleton v (& Startup ~ #
(= fros_startup v (& Generic #
S E .
. v (= Drivers
[ck_m65n_wifi_dalxee_freertos_multiple_protocel.c o Vopors A e Enable
(= HardwareDebug e = = SretocoTselng
— o # Server Name Indication (SNI)
erver Name Indication
I 5% ck_m65n_wifi_dalGxx_freertos_multiple_protocol.scfg I "B‘;'_D’”’"””“a““’“ # ALBNJALPN 1
ehual r_sci_m
T compie commandegon |] | v e & AN .
@ o - v (& Generic # ALPNIALPN 3
eveloper Assistance 8- | butea Macro definition: WIFI_CFG_HTTP_SUPPORT
— Enable: Enable HTTP support.
| L wifi_dalGo Disable: Not enable HTTP support.
M B oo . L s

Overview | Board | Clocks | System | Components| Pins| Interrupts

Figure 5.12 HTTP On-Chip Client Settings

HTTP protocol support: tick “Enable” to use the HTTP on-chip client demo or “Disable” to not use
it.

Configure HTTP server settings. Configure the following macro in “src/demo_config/demo_config.h”

* (ibrief HTTP server gndpoint.

* [@note Set this to your HTTP endpoint.
#define HTTP_SERVER ENDPOINT "http://httpbin.org/get”
* fbrief HTTP server method.

* [fnote Set this to your HTTP method (WIFI_HTTP_GET, WIFI_HTTP_POST, WIFI_HTTP_PUT).

#define HTTP_SERVER_METHOD WIFI_HTTP_GET
Figure 5.13 HTTP Server Settings

HTTP_SERVER_ENDPOINT: Defines the URL to send HTTP requests to.
= HTTP_SERVER_METHOD: Request method to be used.

The HTTP demo only checks the data in the debug log on Tera Term. Please refer to 6.2.2 Debug
with Serial Port Logging for instructions on using the logging function.

RO1AN7173EU0140 Rev.1.40

Page 106 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

h) Building the Demo Project
Build the project and confirm no build errors occur.
CDT Build Console [ck_rx85n_wifi_dalfxxx_freertos_multiple_protocol]

RETESUDS UPLLIIILLLHH Linner” L,IJlIIPJ.t’.Lt’.LI
Library Generator Completed

Invoking: Linker

Renesas Dgtimizing Linker Completed
Finished building:

Loading input file ck_rxB65n_wifi_dal6xxx_freertos_multiple protocol.abs
Parsing the ELF input file.....

42 segments required LMA fixes

Converting the DWARF information....

Constructing the output ELF image....

Saving the ELF output file ck_rx65n_wifi_dal6wxx_freertos_multiple_protocol.x
Invoking: Converter

Building target:
Renesas Dgtimizing Linker Completed
Finished building target:

Build complete.

|15-.52-.32 Build Finished. @ errors, @ warnings. (took 1m:3Bs.B8B4ms) I

Figure 5.14 Confirm the Demo Project Build

In the Project Explorer panel of e2 studio, right click on the project and select Debug As -->
Renesas GDB Hardware Debugging.

I Project Explorer X =% %Y § = 8
15 Ch_rXFS i A B frmrbe molbindes meebncol e roTigby
5 Bin New
[mY Inc Ge Inte
w (8 sic
v Open in New Window
[Show In Alt+Shift+W >
g & Copy Ctrl+C
= Paste Ctrl+V
&1 ¥ Delete Delete
& Source >
o] Move...
= Ha
& tras Rename... F2
=k py Impert..
& ok 1 Export..
ck, 9.1

X

@ Den Build Project

Clean Project

Refresh F3
Close Project

Close Unrelated Project

Build Targets >
Index >
Build Cenfigurations >
Source >
@ FRunAs >
45 DebugAs > [1GDB OpenOCD Hardware Debugging (DSF)
Team > [2 GDB Simulator Debugging (RHA30)
Compare With > [2] 3Local C/C++ Application
Restore from Local History..,] 4 Renesas GDB Hardware Debugging
MISRA-C > & 5 Renesas Simulator Debugging (RX, RL7)
s
W% C/C++ Project Settings Crl+Alt+P e E T
Renesas C/C++ Project Settings >

6 ck_ncB5n_wifi_dal6xoc_freertos_multiple_protocol HardwareDebug (Renesas GDB Hardware Debugging)

#7 Run C/C++ Code Analysis
System Explorer

k4
1=

Figure 5.15 Flashing Demo Project

If the window below appears, press "Switch".

RO1AN7173EU0140 Rev.1.40 Page 107 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

ﬁ Confirm Perspective Switch

X

This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective supports application debugging by providing views for displaying the
debug stack, variables and breakpoints.

Switch to this perspective?

[] Remember my decision

T -

Figure 5.16 Confirm Perspective Switch
Press the following button to start debugging.

e e2_workspace - ck_rx65n_wifi_dal6oxx_freertos_multiple_protocol/src/sme_gen/
File Edt Source Refactor e Search Project RenesasViews Run Renesas Al Window Help

LR g ° B2 B R[H-Qrib-w-IE RS
VDebu_g X = % iv § = O | [2 resetprgc X

| v =1 ck_n(65n_w:h_dalﬁx:x_fremos_muhlple _protocol HardwareDebug [Ru1 ‘—?ﬁ- } ffeceees - R_BSP_POR_FUNCTION(R_BSP_STARTUP_FUNCTION)
v B ck_n65n_wifi_dal6uoo_freertos_multiple_protocol.x [1] [cores: 0]

‘meu/all/resetprg.c - ¢ studio

{
v ® Thread 21 1 (single core) [core: 0] (Suspended : Signal : SIGTRAP: | fj209 Stack pointers are setup prior to calling thi
= PowerON_Reset PC{) at resetprg.c:207 Oxffe00000 i S fou can use auto variables is function b
wi rx-elf-gdb -rx-force-v2 (7.8.2) * will be unavailable afte e the stac
w Renesas GDB server (Host)

e bss sections have not been cleared and th

Figure 5.17 Start bebuggir-\g
i) Starting the TCP Demo

Wait for the SocketTest to display "New Client:..." to confirm that the Wi-Fi module is ready to run
the TCP protocol.

After that, send a message and check if the sent data matches the received data in the message
box.

4 SocketTest v 3.0.1

@ Client ®Server e Udp = About

Listen On

IP Address |192.168.1.2 .
Port | 1883 Port Stop Listening

SocketTest v 3.0
Connected Client : < 192,168.1.3 [192.168.1.3] >
Conversation with Client

> Server Started on Port: 1833

> New Client: 19%2.168.1.3
5: Hello
Hello

Send Foiz
Message Disconnect

Clear

Figure 5.18 Demo with TCP Client

RO1AN7173EU0140 Rev.1.40

Page 108 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

j) Starting the MQTT On-Chip Client Demo
Wait for the Wi-Fi module sends a topic to a subcribe topic that was configured in demo_config.h. It
will display in Messages box.

Messages
2024-5-27 14:23:14.640 [Qos 0
testMQT Tdata

Figure 5.19 MQTT Message From the Wi-Fi Module

Send a data from topic “test/MQTT/senddata”, and check if the sent data matches the received data
in the Messages box.

Connection

tcp://broker.hivemg.com:1883 ® n

Subscriptions Messages
e ic i Subscrib
The topic filter Qoso v 2024-5-27 14:28:25.50 [Qos 0]
Hello
Subscribed topics

test/MQTT/testdata @ Q

205-27 14:23:14.640 (AT <D
tgEtMQT Tdata
Publish
test/MQTT/senddata QoS 0 » U Retain
Hello
P

Figure 5.20 Demo with MQTT On-Chip Client

R0O1AN7173EU0140 Rev.1.40 Page 109 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

k) Starting the HTTP On-Chip Client Demo
Confirm debug log on Tera Term.

[DEBUG] at_send: AT+NWHTCH=http://httpbhin.org-/get_ get
[DEBUG] at_exec:

[DEBUG]1 AT +NWHTCH=http://httphin.org/get _ get

[DEBUG] OK

[INFO1 HITP response buffer: HITP-/1.1 208 OK
: Tue,. 82 Jul 2824 B88:49:21 GMT

ontent-Type: application/json

ontent—Length: 296

onnection: close

Server: gunicorns/19.9.08
iccess—Control-Allow—Origin: =
iccess—Control-Allow—Credentials: true

[DEBUG] at_exec: AT+NWHTCSNIDEL
[DEBUG] +NWHTCDATA:225.+NWHTCDATA:=296.
[DEBUG] +NWHTCSTATUS:8
[DEBUG] AT+NWHTCSNIDEL

[DEBUG]1 OK
Figure 5.21 HTTP On-Chip Client Debug Log

Note: The log output setting in this demo is enabled as follows:
e WIFI_CFG_LOGGING_OPTION: “Serial port” to print debug log on Tera Term via USB interface
(J20).
e WIFI_CFG_DEBUG_LOG: debug log level 4 to display all log information of the Wi-Fi module.

Please refer to 6.2.2 Debug with Serial Port Logging for instructions on how to debug with serial
port.

R0O1AN7173EU0140 Rev.1.40 Page 110 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

5.1.5 Porting the Demo Project to Another Device
How to create the demo project on the other MCUs other than RX65N.

Create demo project specifying CK-RX65N as Target Board.
Double-click .scfg in Project Explorer, and then click Board tab.
Change Target Board or Target Device.
Click Next -> Finish
Confirm that the board or device are changed as you specified in previous step and click Generate
Code button.
Change the following settings as needed.
e Wi-Fi DA16XXX Module FIT: .scfg -> Components tab -> r_wifi_da16xxx(”

e Communications Setting : .scfg -> Components tab -> r_sci_rx(**)

a0~

o

(*)(**): Configure these macros appropriately for each target board or device by following the board-dependent
settings specified in r_wifi_da16xxx_config.h. See table below for the list of supported board series for porting.

Table 5.1 Verified Boards Supporting Porting
Verified Supported Boards (Portable) PMOD Supported

RX65N Cloud Kit PMOD

RX65N Envision Kit PMOD

RX65N RSK (2MB) PMOD1 and PMOD2
Cloud Kit for RX65N v1 PMOD1 and PMOD2
Cloud Kit for RX65N v2 PMOD1 and PMOD2
RX671 Target Board PMOD

RX66N Target Board PMOD

FPB-RX261 Only PMOD1
EK-RX261 Only PMOD1
EK-RX671 PMOD1 and PMOD2
FPB-RX140 PMOD1 and PMOD2

Note: Refer to section 1.2.2 Hardware Configuration for comprehensive details.

R0O1AN7173EU0140 Rev.1.40 Page 111 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

5.2 Wi-Fi DA16600 OTA on-chip Demo Project

The demo project can be accessed through the link below. This demonstration offers a comprehensive
overview of the implemented features and functionalities. Please refer to the provided link for a detailed
exploration of the project.

[Link] https://www.renesas.com/document/apn/rx-family-aws-cloud-connectivity-mcu-firmware-update-over-
air-ck-rx65n-v2-wi-fi-da16600

5.3 Adding a Demo to a Workspace

Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add
a demo project to a workspace, select File >> Import >> General >> Existing Projects into Workspace, then
click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

54 Downloading Demo Projects

Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module needs
to be downloaded. To download the FIT module, right click on this application note and select “Sample Code
(download)” from the context menu in the Smart Brower >> Application Notes tab.

R0O1AN7173EU0140 Rev.1.40 Page 112 of 124
Oct.15.25 RENESAS

https://www.renesas.com/document/apn/rx-family-aws-cloud-connectivity-mcu-firmware-update-over-air-ck-rx65n-v2-wi-fi-da16600
https://www.renesas.com/document/apn/rx-family-aws-cloud-connectivity-mcu-firmware-update-over-air-ck-rx65n-v2-wi-fi-da16600

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

6. Appendices

6.1 Confirmed Operation Environment

This section describes the confirmed operation environment for the FIT module.

Table 6.1 Confirmed Operation Environment (Ver. 1.00)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio 2022.04

C compiler

Renesas Electronics C/C++ Compiler for RX Family V3.04.00

Compiler option: The following option is added to the default settings of
the integrated development environment.

-lang = c99

Endian order

Big endian / little endian

Revision of the module

Rev.1.00

Board used

Renesas CK-RX65N Cloud Kit (Product no.: RTKSCK65N0S04000BE)

Table 6.2 Confirmed Operation Environment (Ver. 1.10)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio 2023.04

C compiler

Renesas Electronics C/C++ Compiler for RX Family V3.05.00

Compiler option: The following option is added to the default settings of
the integrated development environment.

-lang = c99

Endian order

Big endian / little endian

Revision of the module

Rev.1.10

Board used

Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

Table 6.3 Confirmed Operation Environment (Ver. 1.20)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio 2024.01

C compiler

Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202311
Compiler option: The following option is added to the default settings of
the integrated development environment.

-std = gnu99
Endian order Big endian / little endian
Revision of the module Rev.1.20

Board used

Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

RO1AN7173EU0140 Rev.1.40
Oct.15.25

Page 113 of 124
RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Table 6.4 Confirmed Operation Environment (Ver. 1.30)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio 2024.04

C compiler

Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202311
Compiler option: The following option is added to the default settings of
the integrated development environment.

-std = gnu99
Endian order Big endian / little endian
Revision of the module Rev.1.30

Board used

Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

Table 6.5 Confirmed Operation Environment (Ver. 1.31)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio 2024.10

C compiler

Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202311
Compiler option: The following option is added to the default settings of
the integrated development environment.

-std = gnu99
Endian order Big endian / little endian
Revision of the module Rev.1.31

Board used

Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

Table 6.6 Confirmed Operation Environment (Ver. 1.32)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio 2025.01

C compiler

Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202311
Compiler option: The following option is added to the default settings of
the integrated development environment.

-std = gnu99
Endian order Big endian / little endian
Revision of the module Rev.1.32

Board used

Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

RO1AN7173EU0140 Rev.1.40
Oct.15.25

Page 114 of 124
RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Table 6.7 Confirmed Operation Environment (Ver. 1.33)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio 2025.01

C compiler

Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202405

Compiler option: The following option is added to the default settings of
the integrated development environment.

-std = gnu99

Endian order

Big endian / little endian

Revision of the module

Rev.1.33

Board used

Renesas CK-RX65N v1 Cloud Kit (Product no.:
RTK5CK65N0S04000BE)

Renesas CK-RX65N v2 Cloud Kit (Product no.:
RTK5CK65N0S08001BE)

Renesas EK-RX671 Evaluation Kit (Product no.:
RTK5EK6710S00001BE)

Renesas RX66N Target Board (Product no.: RTK5RX66N0C00000BJ)

Renesas RX671 Target Board (Product no.: RTK5RX6710C00000BJ)

Renesas RX140 Fast Prototyping Board (Product no.:
RTK5FP1400S00001BE)

Renesas EK-RX261 Evaluation Kit (Product no.:
RTK5EK2610S00001BE)

Renesas RX261 Fast Prototyping Board (Product no.:
RTK5FP2610S00001BE)

Table 6.8 Confirmed Operation Environment (Ver. 1.40)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio 2025.07

C compiler

Renesas Electronics C/C++ Compiler for RX Family V3.07.00
Compiler option: The following option is added to the default settings of
the integrated development environment.

-lang = c99

GCC for Renesas RX 14.2.0.202505
Compiler option: The following option is added to the default settings of
the integrated development environment.

-std = gnu99
Endian order Big endian / little endian
Revision of the module Rev.1.40
Board used Renesas CK-RX65N v2 Cloud Kit (Product no.:
RTK5CK65N0S08001BE)
Renesas RX140 Fast Prototyping Board (Product no.:
RTK5FP1400S00001BE)
RO1AN7173EU0140 Rev.1.40 Page 115 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

6.2 Support Logging Function
6.2.2 Debug with Serial Port Logging

Configures the logging function for Wi-Fi module to print the debug log via SCI channel have been
selected.

For the CK-RX65N Cloud Kit v2 (RTK5CK65N0S08001BE), the log will be output to the USB
interface (J10) as follows:

[Project Explorer X 5 G W 8 = O |{5 *ck_m65n_wifi_dalfuo_freertos_multiple_protocol.scfg =g
155 che_peBSn_wifi_dalGoocfreert Itiple_protocal i % 2
i e pean i Ga oo freertos mulipieprotoca Software component configuration + =
) Includes Generate Code |Generate Report
v (8 s
(= demo_config Components jxy 17y O [2%~ Configure @
(= FreeRTOS -
(&= frtos_config e Property Value ~
(= frios_skeleton [vpe filter text | # Use SNTP client service Ensble
i fitos_startup & 0 Pors - # The SNTP server IP address string “0.00.0"
(= smc_gen ‘-’r "+ apio. e # Timezone offset in hours (-12 ~ 12) 7
[€] ck_mB5n_wifi_daloac_freertos_multiple_protocal.c -gpio # o o v
= b oofSe ouifi dadfy freert moultinle mrots | e e B Communications .
- & @ rscin # Use logging function for Wi-Fi DA16XXX Serial port
{54 ck_neBSn_wifi_dal6ooc_freertos_muttiple_protocol.scfg o Middoa # 501 Channel number for logging output 5
TR CR PR o A = v & Generic # Communication baud rate for serial logging 115200
compile_commands json a- st # Interrupt prierity for serial logging 1
(B Developer Assistance & rwifi_daloo # Debug log output level 4 +DEBUG
v (= 0 ETeCt WI-T1 protocol
< & RTOS Kernel v # TCP protocol support Enable v
& FresRIOS Kemel Macro definition: WIF_CFG_LOGGING_OPTION) - ~
© G RTOS Object Logging option to output erors, warings, status, and other information of Wi-Fi DATBXXX.
- 0= Disable logging output.
@& FreeR10S_Object v 1 = Using FreeRTOS logging stack for logging output. v
< > || Overview [Board | Clocks | System | Companents | Pins | Interrupts

Figure 6.1 Logging Output Settings for Serial Port Logging

e WIFI_CFG_LOGGING_OPTION: Choose “Serial port”.

e WIFI_CFG_LOG _TERM_CHANNEL: SCI channel for logging function.

e WIFI_CFG_SCI_UART_TERMINAL_BAUDRATE: Baud rate for serial logging (unit in bps).
e WIFI_CFG_SCI_UART_INTERRUPT_PRIORITY: Interrupt priority (default is 1).

WIFI_CFG_DEBUG_LOG: Debug log level.

RO1AN7173EU0140 Rev.1.40 Page 116 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Configures Tera Term terminal, please select Setup -> Terminal...

Tera Term: Terminal setup X
Terminal size New-line oK
|EE X |24 Receive: AUTO -
M Term size = win size Transmit: CR+LF - Cancel
Auto window resize
Help
Terminal ID: VT100 v [JLocal echo
Answerback: [J Auto switch (VT<->TEK)
Coding (receive) Coding (transmit)
UTFE
locale: |american CodePage: 65001

Figure 6.2 Tera Term Settings

Configures Port debug, please select Setup -> Port...

Check in Device Manager

Figure 6.3 Tera Term Serial Port Settings

RO1AN7173EU0140 Rev.1.40 Page 117 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

With this setting, the log will be output to the serial port. The user can debug the project and see the
result on Tera Term as follows.

[INFO]1 R_WIFI_DA16XXK_CreateSocket: Creating socket B*?
[DEBUG] at_exec: AT+TRIC=172.28.10.5,1234.09

[DEBUG] AT+TRIC=172.20.18.5,.1234.0

[DEBUG]1 +TRTC:1

[DEBUG]1 OK

[INFO1 R_WIFI_DA16XXX_TcpConnect: connected socket @ to TCP server.

[WARN] R_UWIFI_DA16XXX_ReceiveSocket: timeout!?

[INFO1 R_WIFI_DAl6XXX_ReceiveSocket: socket B recv_cnt=8 <58088).

[WARN] R_WIFI_DA16XXKX_ReceiveSocket: timeout?
_WIFI_DA16XXX_ReceiveSocket: socket B recv_cnt=6 (58088).
SendSocket: 16.172.20.10.5,1234,».
+TRDTC:1,172.20.10.5,1234.,6.
16,.172.20.10.5,1234 .1

OK

[INFO1 R_WIFI_DA16XX¥_SendSocket: socket B ret=6 (19).

[WARN] R_WIFI_DA16XKX_ReceiveSocket: timeout?

[INFO1 R_WIFI_DA16XEE_ReceiveSocket: socket B recv_cnt=6 (58088).
SendSocket: 16.172.20.10.5,1234.,».

+TRDTC:1.172.20.10.5,1234.6.
16,172.20.18.5.1234,.r.4
OK

[LINFO1 R_WIFI_DA16XXX_SendSocket: socket B ret=6 (19).
[WARN] R_UIFI_DﬂiGHHH_ReceiueSOCket: timeout?

Figure 6.4 Wi-F Logging on Tera Term

R0O1AN7173EU0140 Rev.1.40 Page 118 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

6.2.3 Debug with Renesas Debug Virtual Console

Configures the logging function for Wi-Fi module to print the debug log using Renesas Debug Virtual
Console as follows:

[Project Explorer = %5 W & = 8 |[{ *ck m65n wifi_dalxxx freertos multiple protacol.scfg X =g
v = ck_mE5n_wifi_da’Gxxx_freertos_multiple_protocel . %3 =
= - -mupe-p Software component configuration S| =
[l Includes Generate Code [|Generate Report
~ (2 sic
= demo_cenfig Components (x5 173 |% |- [+ 3 ~ Configure @
(= FreeRTOS _
(&= frtos_config WS Property Value ~
(& frios_skeleton |q.-pemtatext | # Use SNTP client service Enable
& frios_startup - & /0 Ports ~ # The SNTP server IP address string "0.0.00"
(& smc_gen % r.gpio.n # Timezone offset in hours (12 ~ 12) 7
(&) ck_neBSn_wifi_daloor_freertos_multiple_protocol.c -gpie R v
) P = Communications
= - & rscin # Use logging function for Wi-Fi DA16XXX Renesas Debug Virtual Console
48t ch_mB5n_wifi_dalGooe_freertos_multiple_protocol.scfg e #
v (= Middleware
LR BN a = #
compile_commands json = Generic et A
(2) Developer Assistance " wif_ daloee # Debug log output level 4 +DEBUG
~ = o ~ v
< & RIOS Kernel ~ # TCP protocol suppert Encble v
& FreeRTOS_Kemel Macro definition: WIF_CFG_LOGGING_OPTION ~
« (= RTOS Object Logging option to output errors, wamings, status, and other information of Wi-Fi DATEIO.
.) 0 = Disable logging output.
&' FreeRTOS_Object - 1 = Using FreeRTOS logging stack for logging output. v
< > || Overview | Board | Clocks | System | Components | Pins | Interrupts

Figure 6.5 Logging Output Settings for Virtual Console Logging

e WIFI_CFG_LOGGING_OPTION: Choose “Renesas Debug Virtual Console”.
e WIFI_CFG_DEBUG _LOG: Debug log level.

Open Renesas Debug Virtual Console.
iction - ck_ne65n_logging/ck_r<85n_logging.scfg - & studio
«t Renesas Views Run Renesas Al Window Help

] C/Ce e >

Code Generator > ' - s © A 2 ¢ wifi dat

Debug > 4 Fault Status

Other > * Renesas Coverage are

Partner OS , B3 Renesas Debug Virtual Console

Pin Configurator , @® Eventpoints inent

Renesas Al » A 10 Registers

Renesas QE > [MMU

Smart Configurator > |- Performance Analysis ' :

Solution Toofkit > “:‘ Profile } Star!

Trading , . Real-time Chart & C

R&‘f\!"ﬂ;ﬁ Software Installer 8o Trace 9
) Visual Expression } Driv
B2 Live Trace Console >l

|
Figure 6.6 Choose Renesas Debug Virtual Console

When the setup is prepared completely, the user can debug the project and see the result on
Renesas Debug Virtual Console as follows.

2 console Registers [£] Problems @ Smart Browser | @ Debugger Console & Renesas Debug Virtual Console X 4 Search | [Memory |
[INFO] R_WIFI_DA16XXX_Open: Test with baud rate 1152ee!

[DEBUG] at_exec: ATZ

[DEBUG)

[DEBUG] +INIT:DONE,@

[DEBUG]

[DEBUG] Display result on

[DEBUG] Echo off

[DEBUG] OK

[INFO] R_WIFI_DA16XXX_Open: baud rate:115200
[DEBUG] at_exec: AT+VER

[DEBUG)
[DEBUG] +VER:FRTOS-GEN@1-@1-98e58a5d3-006374

[DEBUG] OK

Figure 6.7 Wi-Fi Logging on Renesas Debug Virtual Console

R0O1AN7173EU0140 Rev.1.40 Page 119 of 124
Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

6.3 Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then | got the error: Could not open source file
“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

e Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(RO1AN1826)"

¢ Using e? studio:
Application note “Adding Firmware Integration Technology Modules to Projects (RO1AN1723)”

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (RO1AN1685)".

(2) Q: | have added the FIT module to the project and built it. Then | got an error for when the configuration
setting is wrong.

A: The setting in the file “r_wifi_da16xxx_config.h” may be wrong. Check the file "r_wifi_da16xxx_config.h".
If there is a wrong setting, set the correct value for that. Refer to 2.7 Compile Settings for details.

R0O1AN7173EU0140 Rev.1.40 Page 120 of 124
Oct.15.25 RENESAS

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

6.4 Limitations

The PMOD on the RX66N and RX671 target boards is configured to Type 6A by default from the factory, which
is not compatible with Wi-Fi module initialization. Therefore, changing the PMOD type to 2A or 3A is required.
Please refer to the instructions below:

- Remove §S13, SS714 and short circuit SC1, SC2.

PC3_SMOSI5_TXD5_SSDAs [}

PC2_SMISO5_RXD5_SSCL5 [}—

200
PC1_SCK5 S¢2

PCO_CTS5_RTS5_IRQ14 [}

PMOD_VCC PMOD_VCC

2
-3

10k

R30

w

:

R31
DNF

pcs [}

PMOD

PMOD_VCC

TGVCC

5515

5V

8C3

PMOD_VCC

RS0
10k
Al

S513 ~, CN1
T
SG1 CN_SMH-106-02-T-D
R32) 7 R38
R33,’ V200 B) R37,’ Y200
20, "ReA E 9 700 Y VRa8
R35,°, " 200 4 10 R3g," " 200
5

S514 —~,
o

:

GND =

200

PBO_IRQ12
PB1
PB7_TXD9
PBE_RXD8

Figure 6.8 Circuit Schematic for the PMOD Connector of RX66N and RX671 Target boards

RO1AN7173EU0140 Rev.1.40

Oct.15.25

RENESAS

Page 121 of 124

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

7 Reference Documents

User’'s Manual: Hardware
(The latest versions can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News
(The latest information can be downloaded from the Renesas Electronics website.)

User's Manual: Development Tools
RX Family CC-RX Compiler User’'s Manual (R20UT3248)
(The latest versions can be downloaded from the Renesas Electronics website.)

RO1AN7173EU0140 Rev.1.40 Page 122 of 124

Oct.15.25 RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

Revision History

Revision History
Rev. Date Page | Summary
1.00 Mar. 10, 2023 | - First edition issued
- Rename DA16200 to DA16XXX
Updated table 2-1 to add these configuration options below:
e WIFI_CFG_CTS_SW_CTRL
e WIFI_CFG_CTS_PORT
e WIFI_CFG_CTS_PIN
1.10 Dec. 04,2023 | 9 o WIFI_CFG_RTS_PORT
e WIFI_CFG_RTS_PIN
e WIFI_CFG_PFS_SET _VALUE
o WIFI_CFG_USE_FREERTOS_LOGGING
e WIFI_CFG_DEBUG _LOG
40 Added table 5-2 Confirmed Operation Environment (Ver. 1.10)
1 Added GCC for Renesas RX in Target Compilers
5 Added Wi-Fi module features in section 1.2
6 Updated Figure 1-1
7-8 Added new APIs for TLS, MQTT on-chip, HTTP on-chip in Table 1-1
10-12 | Added Status transitions of TLS Client, MQTT on-chip, HTTP on-chip
14-18 | Added configuration option for TLS, MQTT, HTTP in table 2-1
19 Updated Code Size for r_wifi_ da16xxx rev.1.20
21 Updated Return values
22-24 | Updated Parameters
26 Added section 2.12. “for”, “while” and “do while” statements
1.20 Mar. 22, 2024 28 Added new API: R_WIFI_DA16XXX_IsOpened()
43 Added new APIl: R WIFI DA16XXX HardwareReset()
44 Added new APIl: R WIFI DA16XXX_ GetVersion()
52 Added new APIl: R WIFI DA16XXX_ TcpReconnect()
52-65 | Added new APIs for TLS socket
66-73 | Added new APIs for MQTT on-chip
74-76 | Added new APIs for HTTP on-chip
79 Added callback function for MQTT on-chip
80-88 | Added Section 5. Demo Projects
89 Added Table 6-3 Confirmed Operation Environment (Ver. 1.20)
5 Updated section 1.2 to add Bare metal feature
6 Updated Figure 1.2 to add Bare metal
14 Updated Table 2.1 to add Logging output function
18 Updated Table 2.3 to add Bare metal option
20 Updated Table 2.4 with memory sizes for r_wifi_da16xxx rev 1.30
21 Updated Section 2.9 with API error code tables
1:30 July. 16, 2024 22-24 | Updated Section 2.10 with Parameter structure tables
27 Removed Section 2.13 RTOS Usage Requirement and added section
2.13 Limitations
82-90 | Updated Section 5.1.4 How to Run the Demo
93 Added Table 6.4 Confirmed Operation Environment (Ver. 1.30)
94-97 | Added Section 6.2 Support Logging Function
8 Updated section 1.3 API Overview to add
R _WIFI_DA16XXX_ConfigTlsSocket()
1.31 Jan. 13, 2025 | 20-21 Updated Code Size for r_wifi_da16xxx rev.1.31
62-63 | Added new API: R WIFI DA16XXX ConfigTlsSocket()
95 Added Table 6-5 Confirmed Operation Environment (Ver. 1.31)
20-21 Updated Code Size for r_wifi_da16xxx rev.1.32
1.32 Mar. 18, 2025 95 Added Table 6-6 Confirmed Operation Environment (Ver. 1.32)

RO1AN7173EU0140 Rev.1.40
Oct.15.25

Page 123 of 124
RENESAS

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

1 Updated Top page

6 Added section 1.2.2. Hardware Configuration

21-25 | Updated Code Size for r wifi_ da16xxx rev.1.33

29 Updated struct wifi_ip_configuration t

37 Section 3: Updated format and example
3.4. R_WIFI_DA16XXX Ping()

492 Section 3: Updated format and example
3.9. R_WIFI_DA16XXX DnsQuery()

Section 3: Updated format and example

3.27.R_WIFI_DA16XXX_GetAvailableTIsSocket()
133 Mar. 27, 2025 3.28.R_WIF|_DA16XXX_GetTlsSocketStatus()

3.29.R_WIFI_DA16XXX_CreateTIsSocket()

69-68 3.30.R_WIFI_DA16XXX_TIsConnect()
3.31.R_WIFI_DA16XXX_SendTlsSocket()
3.32.R_WIFI_DA16XXX_ReceiveTlsSocket()
3.33.R_WIFI_DA16XXX_CloseTIsSocket()
3.34.R_WIFI_DA16XXX_TIsReconnect()
3.35.R_WIFI _DA16XXX ConfigTlsSocket()

102 Added Table 6-7 Confirmed Operation Environment (Ver. 1.33)

108 Added Section 6.4 Limitations

- Update format layout
10 Section 1.3 API Overview
- Add new API for OTA On-Chip
15 Section 1.4.5 Status Transitions
- Add new Transitions of OTA On-Chip
21 .29 Section 2.7 Compile Settings_ _ _ _ _
- Add new table for Wi-Fi OTA On-Chip Configuration
Section 2.8 Code Size
23-24 - Modfiy codesize for Multiple boards
L Oct. 15, 2025 - Addiné new code size tal?le: OTA On-Chip only
Section 2.9 Return Values
29, 33 - Add new API Error Codes for OTA On-Chip
- Add new Member in Structure for OTA state (wifi_ota_state t)
88 -97 Section 3 API Functions _ . .
- Add new API functions for OTA On-Chip services

111 Added new Section 5.1.5 Porting the Demo Project to Another Device

112 Section 5.2 Adding path link to OTA demo project

115 Section 6.1 Add new table for Wi-Fi v1.40

RO1AN7173EU0140 Rev.1.40 Page 124 of 124

Oct.15.25 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

1.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1. DA16XXX FIT Module
	1.2. Overview of the DA16XXX Wi-Fi FIT Module
	1.2.1. Connection with the DA16XXX Wi-Fi Module
	1.2.2. Hardware Configuration
	1.2.3. Software Configuration

	1.3. API Overview
	1.4. Status Transitions
	1.4.1. Status Transitions of TCP Client
	1.4.2. Status Transitions of TLS On-Chip Client
	1.4.3. Status Transitions of MQTT On-Chip Client
	1.4.4. Status Transitions of HTTP On-Chip Client
	1.4.5. Status Transitions of OTA On-Chip Service

	2. API Information
	2.1. Hardware Requirements
	2.2. Software Requirements
	2.3. Supported Toolchain
	2.4. Interrupt Vector
	2.5. Header Files
	2.6. Integer Types
	2.7. Compile Settings
	2.8. Code Size
	2.9. Return Values
	2.10. Parameters
	2.11. Adding the FIT Module to Your Project
	2.12. “for”, “while” and “do while” Statements
	2.13. Limitations
	2.13.1 Wi-Fi Security Type Limitations
	2.13.2 Wi-Fi SDK Limitations
	2.13.3 The Daylight Savings Time Setting Limitations
	2.13.4 Wi-Fi Network Connection Limitations
	2.13.5 Wi-Fi Access Point Scanning Limitations

	2.14. Restriction

	3. API Functions
	3.1. R_WIFI_DA16XXX_Open()
	3.2. R_WIFI_DA16XXX_IsOpened()
	3.3. R_WIFI_DA16XXX_Close()
	3.4. R_WIFI_DA16XXX_Ping()
	3.5. R_WIFI_DA16XXX_Scan()
	3.6. R_WIFI_DA16XXX_Connect()
	3.7. R_WIFI_DA16XXX_Disconnect()
	3.8. R_WIFI_DA16XXX_IsConnected()
	3.9. R_WIFI_DA16XXX_DnsQuery()
	3.10. R_WIFI_DA16XXX_SntpServerIpAddressSet()
	3.11. R_WIFI_DA16XXX_SntpEnableSet()
	3.12. R_WIFI_DA16XXX_SntpTimeZoneSet()
	3.13. R_WIFI_DA16XXX_LocalTimeGet()
	3.14. R_WIFI_DA16XXX_SetDnsServerAddress()
	3.15. R_WIFI_DA16XXX_GetMacAddress()
	3.16. R_WIFI_DA16XXX_GetIpAddress()
	3.17. R_WIFI_DA16XXX_HardwareReset()
	3.18. R_WIFI_DA16XXX_GetVersion()
	3.19. R_WIFI_DA16XXX_GetAvailableSocket()
	3.20. R_WIFI_DA16XXX_GetSocketStatus()
	3.21. R_WIFI_DA16XXX_CreateSocket()
	3.22. R_WIFI_DA16XXX_TcpConnect()
	3.23. R_WIFI_DA16XXX_SendSocket()
	3.24. R_WIFI_DA16XXX_ReceiveSocket()
	3.25. R_WIFI_DA16XXX_CloseSocket()
	3.26. R_WIFI_DA16XXX_TcpReconnect()
	3.27. R_WIFI_DA16XXX_GetAvailableTlsSocket()
	3.28. R_WIFI_DA16XXX_GetTlsSocketStatus()
	3.29. R_WIFI_DA16XXX_CreateTlsSocket()
	3.30. R_WIFI_DA16XXX_TlsConnect()
	3.31. R_WIFI_DA16XXX_SendTlsSocket()
	3.32. R_WIFI_DA16XXX_ReceiveTlsSocket()
	3.33. R_WIFI_DA16XXX_CloseTlsSocket()
	3.34. R_WIFI_DA16XXX_TlsReconnect()
	3.35. R_WIFI_DA16XXX_ConfigTlsSocket()
	3.36. R_WIFI_DA16XXX_RegistServerCertificate()
	3.37. R_WIFI_DA16XXX_RequestTlsSocket()
	3.38. R_WIFI_DA16XXX_GetServerCertificate()
	3.39. R_WIFI_DA16XXX_WriteCertificate()
	3.40. R_WIFI_DA16XXX_DeleteCertificate()
	3.41. R_WIFI_DA16XXX_MqttOpen()
	3.42. R_WIFI_DA16XXX_MqttDisconnect()
	3.43. R_WIFI_DA16XXX_MqttConnect()
	3.44. R_WIFI_DA16XXX_MqttPublish()
	3.45. R_WIFI_DA16XXX_MqttReceive()
	3.46. R_WIFI_DA16XXX_MqttSubscribe()
	3.47. R_WIFI_DA16XXX_MqttUnSubscribe()
	3.48. R_WIFI_DA16XXX_MqttClose()
	3.49. R_WIFI_DA16XXX_HttpOpen()
	3.50. R_WIFI_DA16XXX_HttpClose()
	3.51. R_WIFI_DA16XXX_HttpSend()
	3.52. R_WIFI_DA16XXX_OtaOpen()
	3.53. R_WIFI_DA16XXX_OtaClose()
	3.54. R_WIFI_DA16XXX_OtaStart()
	3.55. R_WIFI_DA16XXX_OtaEraseFirmware()
	3.56. R_WIFI_DA16XXX_OtaGetProgress()
	3.57. R_WIFI_DA16XXX_OtaReadFirmwarebyBlock()
	3.58. R_WIFI_DA16XXX_OtaGetAddress()
	3.59. R_WIFI_DA16XXX_OtaFirmwareSize()
	3.60. R_WIFI_DA16XXX_OtaGetState()
	3.61. R_WIFI_DA16XXX_OtaGetFirmware()

	4. Callback Function
	4.1. Wi-Fi callback function
	4.2. MQTT callback function

	5. Demo Projects
	5.1 Wi-Fi DA16600 Multiple Protocols Demo Project
	5.1.1 Prerequisites
	5.1.2 Import the Demo Project
	5.1.3 Hardware Setup
	5.1.4 How to Run the Demo
	5.1.5 Porting the Demo Project to Another Device

	5.2 Wi-Fi DA16600 OTA on-chip Demo Project
	5.3 Adding a Demo to a Workspace
	5.4 Downloading Demo Projects

	6. Appendices
	6.1 Confirmed Operation Environment
	6.2 Support Logging Function
	6.2.2 Debug with Serial Port Logging
	6.2.3 Debug with Renesas Debug Virtual Console
	6.3 Troubleshooting
	6.4 Limitations

	7 Reference Documents
	Revision History

