
 Application Note

R01AN7173EU0140 Rev.1.40 Page 1 of 124

Oct.15.25

RX Family

US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration
Technology

Introduction

This application note describes the usage of the US159-DA16XXXMEVZ Wi-Fi control module, which
conforms to the Firmware Integration Technology (FIT) standard.

In the following pages, the US159-DA16XXXMEVZ Wi-Fi control module software is referred to collectively as
“the DA16XXX Wi-Fi FIT module” or “the FIT module.”

The FIT module supports the following Wi-Fi Pmod modules:

• DA16200MOD (US159-DA16200MEVZ)

• DA16600MOD (US159-DA16600EVZ)

In the following pages, the DA16XXXMOD is referred to as “the Wi-Fi module”. The DA16200 and DA16600
products will collectively be referred to as “DA16XXX”.

Target Device

• RX140 Group

• RX261 Group

• RX65N Group

• RX66N Group

• RX671 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers

• Renesas Electronics C/C++ Compiler Package for RX Family

• GCC for Renesas RX

For details of the confirmed operation contents of each compiler, refer to 6.1 Confirmed Operation Environment.

Related Documents

[1] RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)

[2] RX Smart Configurator User’s Guide: e² studio (R20AN0451)

[3] RX Family SCI Module Using Firmware Integration Technology (R01AN1815)

[4] RX Family BYTEQ Module Using Firmware Integration Technology (R01AN1683)

[5] FPB-RX140 v1 – User’s Manual (R20UT5376)

[6] FPB-RX261 v1 – User's Manual (R20UT5363)

[7] EK-RX261 v1 – User's Manual (R20UT5351)

[8] CK-RX65N v1 – User's Manual (R20UT5100)

[9] CK-RX65N v2 – User's Manual (R20UT5366)

[10] RX66N Target Board – User's Manual (R20UT4895)

[11] EK-RX671 – User's Manual (R20UT5234)

[12] RX671 Target Board – User's Manual (R20UT4894)

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 2 of 124

Oct.15.25

Content

1. Overview ... 5

1.1. DA16XXX FIT Module ... 5

1.2. Overview of the DA16XXX Wi-Fi FIT Module ... 5

1.2.1. Connection with the DA16XXX Wi-Fi Module ... 6

1.2.2. Hardware Configuration .. 7

1.2.3. Software Configuration .. 8

1.3. API Overview ... 9

1.4. Status Transitions .. 11

1.4.1. Status Transitions of TCP Client ... 11

1.4.2. Status Transitions of TLS On-Chip Client ... 12

1.4.3. Status Transitions of MQTT On-Chip Client.. 13

1.4.4. Status Transitions of HTTP On-Chip Client .. 14

1.4.5. Status Transitions of OTA On-Chip Service .. 15

2. API Information .. 16

2.1. Hardware Requirements ... 16

2.2. Software Requirements ... 16

2.3. Supported Toolchain ... 16

2.4. Interrupt Vector .. 16

2.5. Header Files .. 16

2.6. Integer Types .. 16

2.7. Compile Settings ... 17

2.8. Code Size .. 23

2.9. Return Values .. 29

2.10. Parameters .. 30

2.11. Adding the FIT Module to Your Project ... 34

2.12. “for”, “while” and “do while” Statements .. 34

2.13. Limitations ... 35

2.13.1 Wi-Fi Security Type Limitations ... 35

2.13.2 Wi-Fi SDK Limitations ... 35

2.13.3 The Daylight Savings Time Setting Limitations ... 35

2.13.4 Wi-Fi Network Connection Limitations .. 35

2.13.5 Wi-Fi Access Point Scanning Limitations .. 35

2.14. Restriction.. 35

3. API Functions .. 36

3.1. R_WIFI_DA16XXX_Open() ... 36

3.2. R_WIFI_DA16XXX_IsOpened() .. 37

3.3. R_WIFI_DA16XXX_Close() .. 38

3.4. R_WIFI_DA16XXX_Ping() .. 39

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 3 of 124

Oct.15.25

3.5. R_WIFI_DA16XXX_Scan() ... 40

3.6. R_WIFI_DA16XXX_Connect() .. 41

3.7. R_WIFI_DA16XXX_Disconnect() .. 42

3.8. R_WIFI_DA16XXX_IsConnected() ... 43

3.9. R_WIFI_DA16XXX_DnsQuery() ... 44

3.10. R_WIFI_DA16XXX_SntpServerIpAddressSet() .. 45

3.11. R_WIFI_DA16XXX_SntpEnableSet() ... 46

3.12. R_WIFI_DA16XXX_SntpTimeZoneSet() .. 47

3.13. R_WIFI_DA16XXX_LocalTimeGet() ... 48

3.14. R_WIFI_DA16XXX_SetDnsServerAddress() .. 49

3.15. R_WIFI_DA16XXX_GetMacAddress() .. 50

3.16. R_WIFI_DA16XXX_GetIpAddress() ... 51

3.17. R_WIFI_DA16XXX_HardwareReset() .. 52

3.18. R_WIFI_DA16XXX_GetVersion().. 53

3.19. R_WIFI_DA16XXX_GetAvailableSocket() .. 54

3.20. R_WIFI_DA16XXX_GetSocketStatus() .. 55

3.21. R_WIFI_DA16XXX_CreateSocket() .. 56

3.22. R_WIFI_DA16XXX_TcpConnect() .. 57

3.23. R_WIFI_DA16XXX_SendSocket() .. 58

3.24. R_WIFI_DA16XXX_ReceiveSocket() ... 59

3.25. R_WIFI_DA16XXX_CloseSocket() ... 60

3.26. R_WIFI_DA16XXX_TcpReconnect() .. 61

3.27. R_WIFI_DA16XXX_GetAvailableTlsSocket() ... 62

3.28. R_WIFI_DA16XXX_GetTlsSocketStatus() .. 63

3.29. R_WIFI_DA16XXX_CreateTlsSocket() ... 64

3.30. R_WIFI_DA16XXX_TlsConnect() ... 65

3.31. R_WIFI_DA16XXX_SendTlsSocket() ... 66

3.32. R_WIFI_DA16XXX_ReceiveTlsSocket() ... 67

3.33. R_WIFI_DA16XXX_CloseTlsSocket() .. 68

3.34. R_WIFI_DA16XXX_TlsReconnect() ... 69

3.35. R_WIFI_DA16XXX_ConfigTlsSocket() ... 70

3.36. R_WIFI_DA16XXX_RegistServerCertificate() .. 72

3.37. R_WIFI_DA16XXX_RequestTlsSocket() .. 73

3.38. R_WIFI_DA16XXX_GetServerCertificate() ... 74

3.39. R_WIFI_DA16XXX_WriteCertificate() ... 75

3.40. R_WIFI_DA16XXX_DeleteCertificate() ... 76

3.41. R_WIFI_DA16XXX_MqttOpen() .. 77

3.42. R_WIFI_DA16XXX_MqttDisconnect() ... 78

3.43. R_WIFI_DA16XXX_MqttConnect() ... 79

3.44. R_WIFI_DA16XXX_MqttPublish() ... 80

3.45. R_WIFI_DA16XXX_MqttReceive() ... 81

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 4 of 124

Oct.15.25

3.46. R_WIFI_DA16XXX_MqttSubscribe() .. 82

3.47. R_WIFI_DA16XXX_MqttUnSubscribe() .. 83

3.48. R_WIFI_DA16XXX_MqttClose() ... 84

3.49. R_WIFI_DA16XXX_HttpOpen() .. 85

3.50. R_WIFI_DA16XXX_HttpClose() .. 86

3.51. R_WIFI_DA16XXX_HttpSend()... 87

3.52. R_WIFI_DA16XXX_OtaOpen() ... 88

3.53. R_WIFI_DA16XXX_OtaClose() .. 89

3.54. R_WIFI_DA16XXX_OtaStart() .. 90

3.55. R_WIFI_DA16XXX_OtaEraseFirmware() ... 91

3.56. R_WIFI_DA16XXX_OtaGetProgress() ... 92

3.57. R_WIFI_DA16XXX_OtaReadFirmwarebyBlock() ... 93

3.58. R_WIFI_DA16XXX_OtaGetAddress() ... 94

3.59. R_WIFI_DA16XXX_OtaFirmwareSize() .. 95

3.60. R_WIFI_DA16XXX_OtaGetState() ... 96

3.61. R_WIFI_DA16XXX_OtaGetFirmware() ... 97

4. Callback Function .. 98

4.1. Wi-Fi callback function .. 98

4.2. MQTT callback function ... 100

5. Demo Projects ... 101

5.1 Wi-Fi DA16600 Multiple Protocols Demo Project.. 101

5.1.1 Prerequisites ... 101

5.1.2 Import the Demo Project ... 101

5.1.3 Hardware Setup .. 101

5.1.4 How to Run the Demo ... 102

5.1.5 Porting the Demo Project to Another Device .. 111

5.2 Wi-Fi DA16600 OTA on-chip Demo Project .. 112

5.3 Adding a Demo to a Workspace ... 112

5.4 Downloading Demo Projects ... 112

6. Appendices .. 113

6.1 Confirmed Operation Environment .. 113

6.2 Support Logging Function ... 116

6.2.2 Debug with Serial Port Logging ... 116

6.2.3 Debug with Renesas Debug Virtual Console .. 119

6.3 Troubleshooting ... 120

6.4 Limitations ... 121

7 Reference Documents ... 122

Revision History .. 123

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 5 of 124

Oct.15.25

1. Overview

1.1. DA16XXX FIT Module

The FIT module is designed to be added to user projects as an API. For instruction on adding the FIT module,
refer to 2.11 Adding the FIT Module to Your Project.

1.2. Overview of the DA16XXX Wi-Fi FIT Module

DA16XXX is a low-power Wi-Fi networking SoC that delivers a dramatic breakthrough in battery life even for
devices that are continuously connected to the Wi-Fi network. The module comes readily equipped with radio
certification for Japan, North America, and Europe.

The Wi-Fi FIT module supplies these features:

• Supports connect/disconnect to a b/g/n (2.4GHz) Wi-Fi Access Point using Open, WPA, and WPA2 security.
Encryption types can be either TKIP, or CCMP(AES).

• Supports retrieval of the module device MAC address.

• Supports retrieval of the module device IP address once connected to an Access Point.

• Supports a Wi-Fi network scan capability to get a list of local Access Points.

• Supports a Ping function to test network connectivity.

• Supports a DNS Query call to retrieve the IPv4 address of a supplied URL.

• Supports a SNTP Client to synchronize the local time with a server that provides time services.

• Supports TCP client sockets.

• Supports TLS on-chip client for secure sockets.

• Supports MQTT on-chip client.

o Supports connect/disconnect to an MQTT broker via hostname, port, and user credentials.

o Supports unsecure and secure connection via TLS encryption.

o Supports the MQTT subscribe/publish model for multiple topics.

o Supports other optional configurations such as MQTT v3.1.1, Quality-of-service (QoS) level, TLS cipher
suites, and ALPNs.

• Supports HTTP on-chip client.

o Supports sending a request header (GET, PUT, and POST) to an HTTP server and receiving a response
header.

o Supports unsecure and secure connection via TLS encryption.

o Supports parsing of the response header and returning to the user.

o Supports other optional configurations such as Server Name Indication (SNI) and ALPNs.

• Supports DA16XXX on-chip OTA service for MCU firmware update.

• Supports 1 UART channel for interfacing with the DA16XXX module.

• Supports FreeRTOS-based user applications.

• Supports Bare metal-based user applications.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 6 of 124

Oct.15.25

1.2.1. Connection with the DA16XXX Wi-Fi Module

Examples of connection to the DA16XXX Wi-Fi module are shown below.

Figure 1.1 Example Connection to the DA16XXX Wi-Fi Module

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 7 of 124

Oct.15.25

1.2.2. Hardware Configuration
The hardware configuration for MCU host and the Wi-Fi Pmod module is shown below.

Table 1.1 MCU Host Hardware Configuration

Item Content Description

CK-RX65N v2 Cloud Kit

Target board for CK-RX65N
v2
Part number:
RTK5CK65N0S08001BE

Please see detail at:
https://www.renesas.com/rx/ck-rx65n

EK-RX671 Evaluation
Kit

Target board for EK-RX671
Part number:
RTK5EK6710S00001BE

Please see detail at:
https://www.renesas.com/rx/ek-rx671

RX671 Target Board *1
Target board for RX671
Part number:
RTK5RX6710C00000BJ

Please see detail at:
https://www.renesas.com/rtk5rx6710c00000bj

RX66N Target Board *1
Target board for RX66N
Part number:
RTK5RX66N0C00000BJ

Please see detail at:
https://www.renesas.com/rtk5rx66n0c00000bj

RX140 Fast Prototyping
Board

Target board for RX140 Fast
Prototyping Board
Part number:
RTK5FP1400S00001BE

Please see detail at:
https://www.renesas.com/rx/fpb-rx140

EK-RX261 Evaluation
Kit *2

Target board for EK-RX261
Part number:
RTK5EK2610S00001BE

Please see detail at:
https://www.renesas.com/rx/ek-rx261

RX261 Fast Prototyping
Board *2

Target board for RX261 Fast
Prototyping Board
Part number:
RTK5FP2610S00001BE

Please see detail at:
https://www.renesas.com/rx/fpb-rx261

Note 1: The PMOD on the RX66N and RX671 target boards is configured to Type 6A by default from the
factory, which is not compatible with Wi-Fi module initialization. Therefore, changing the PMOD type to 2A or
3A is required. Please refer to 6.4 Limitations for the instructions.

Note 2: The EK-RX261 Evaluation Kit and RX261 Fast Prototyping Board only support PMOD1 for the Wi-Fi
Pmod module.

Table 1.2 Pmod Module Hardware Configuration

Item Content Description

DA16200 Wi-Fi Pmod
module Wi-Fi connection

This Pmod is used with MCU host for Wi-Fi
connection.
Please see detail at:
https://www.renesas.com/us159-
da16200mevz

DA16600 Wi-Fi Pmod
module

Wi-Fi connection

This Pmod is used with MCU host for Wi-Fi
connection.
Please see detail at: US159-DA16600EVZ -
Ultra-Low-Power Wi-Fi + Bluetooth Low
Energy Combo Pmod Board

https://www.renesas.com/rx/ck-rx65n
https://www.renesas.com/rx/ek-rx671
https://www.renesas.com/rtk5rx6710c00000bj
https://www.renesas.com/rtk5rx66n0c00000bj
https://www.renesas.com/rx/fpb-rx140
https://www.renesas.com/rx/ek-rx261
https://www.renesas.com/rx/fpb-rx261
https://www.renesas.com/us159-da16200mevz
https://www.renesas.com/us159-da16200mevz
https://www.renesas.com/en/products/wireless-connectivity/wi-fi/low-power-wi-fi/us159-da16600evz-ultra-low-power-wi-fi-bluetooth-low-energy-combo-pmod-board
https://www.renesas.com/en/products/wireless-connectivity/wi-fi/low-power-wi-fi/us159-da16600evz-ultra-low-power-wi-fi-bluetooth-low-energy-combo-pmod-board
https://www.renesas.com/en/products/wireless-connectivity/wi-fi/low-power-wi-fi/us159-da16600evz-ultra-low-power-wi-fi-bluetooth-low-energy-combo-pmod-board

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 8 of 124

Oct.15.25

1.2.3. Software Configuration

Figure 1.2 shows the software configuration.

Figure 1.2 Software Configuration Diagram

1. DA16XXX Wi-Fi FIT module
The FIT module. This software is used to control the Wi-Fi module.

2. SCI FIT module
Implements communication between the Wi-Fi module and the MCU. A sample program is
available.
Refer to “Related Documents” on page 1 and obtain the software.

3. BYTEQ FIT module
Implements circular buffers used by the SCI FIT module. A sample program is available.
Refer to “Related Documents” on page 1 and obtain the software.

4. BSP FIT module
The Board Support Package module. A sample program is available.
Refer to “Related Documents” on page 1 and obtain the software.

5. RTOS
The RTOS manages the system overall. Operation of the FIT module has been verified
using FreeRTOS or Bare metal.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 9 of 124

Oct.15.25

1.3. API Overview

Table 1.3 lists the API functions included in the FIT module. The required memory sizes are lists in 2.8 Code
Size.

Table 1.3 API Functions

Function Function Description

Wi-Fi Common API

R_WIFI_DA16XXX_Open() Initialize the Wi-Fi module

R_WIFI_DA16XXX_IsOpened() Check Wi-Fi is opened

R_WIFI_DA16XXX_Close() Close the Wi-Fi module

R_WIFI_DA16XXX_Ping() Pings a specified IP address

R_WIFI_DA16XXX_Scan() Scan Access points

R_WIFI_DA16XXX_Connect() Connects to an access point

R_WIFI_DA16XXX_Disconnect() Disconnects from an access point

R_WIFI_DA16XXX_IsConnected() Check connected access point

R_WIFI_DA16XXX_DnsQuery() Execute DNS query

R_WIFI_DA16XXX_SntpServerIpAddressSet() Set SNTP server IP address

R_WIFI_DA16XXX_SntpEnableSet() Enable or disable SNTP client service

R_WIFI_DA16XXX_SntpTimeZoneSet() Set SNTP time zone

R_WIFI_DA16XXX_LocalTimeGet() Get the local time based on current time zone

R_WIFI_DA16XXX_SetDnsServerAddress() Set DNS Server Address

R_WIFI_DA16XXX_GetMacAddress() Get MAC Address

R_WIFI_DA16XXX_GetIpAddress() Get IP Address

R_WIFI_DA16XXX_HardwareReset() Reset the Wi-Fi module

R_WIFI_DA16XXX_GetVersion() Returns version information for the module

Wi-Fi TCP Client API

R_WIFI_DA16XXX_GetAvailableSocket() Get the next available socket ID

R_WIFI_DA16XXX_GetSocketStatus() Get the socket status

R_WIFI_DA16XXX_CreateSocket() Create a new socket instance

R_WIFI_DA16XXX_TcpConnect() Connect to a specific IP and Port using socket

R_WIFI_DA16XXX_SendSocket() Send data on connecting socket

R_WIFI_DA16XXX_ReceiveSocket() Receive data on connecting socket

R_WIFI_DA16XXX_CloseSocket() Disconnect a specific socket connection

R_WIFI_DA16XXX_TcpReconnect() Reconnect TCP socket

Wi-Fi TLS On-Chip Client API

R_WIFI_DA16XXX_GetAvailableTlsSocket() Get the next available socket ID

R_WIFI_DA16XXX_GetTlsSocketStatus() Get the socket status

R_WIFI_DA16XXX_CreateTlsSocket() Create a new socket instance

R_WIFI_DA16XXX_TlsConnect() Connect to a specific IP and Port using socket

R_WIFI_DA16XXX_SendTlsSocket() Send data on connecting socket

R_WIFI_DA16XXX_ReceiveTlsSocket() Receive data on connecting socket

R_WIFI_DA16XXX_CloseTlsSocket() Disconnect a specific socket connection

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 10 of 124

Oct.15.25

R_WIFI_DA16XXX_TlsReconnect() Reconnect TLS socket

R_WIFI_DA16XXX_ConfigTlsSocket() Configure SSL Connection on Wi-Fi module

R_WIFI_DA16XXX_RegistServerCertificate() Register server certificate on Wi-Fi module

R_WIFI_DA16XXX_RequestTlsSocket() Request TLS socket communication

R_WIFI_DA16XXX_GetServerCertificate() Get stored server certificate on Wi-Fi module

R_WIFI_DA16XXX_WriteCertificate() Write certificate on Wi-Fi module

R_WIFI_DA16XXX_DeleteCertificate() Delete certificate on Wi-Fi module

Wi-Fi MQTT On-Chip Client API

R_WIFI_DA16XXX_MqttOpen() Initialize MQTT on-chip Client service

R_WIFI_DA16XXX_MqttDisconnect() Disconnect from MQTT on-chip Client service

R_WIFI_DA16XXX_MqttConnect()
Configure and connect the MQTT on-chip Client
service

R_WIFI_DA16XXX_MqttPublish() Publish a message for a given MQTT topic

R_WIFI_DA16XXX_MqttSubscribe() Subscribe to MQTT topics

R_WIFI_DA16XXX_MqttUnSubscribe() Unsubscribe from MQTT topics

R_WIFI_DA16XXX_MqttReceive() Receive data subscribed from MQTT Client service

R_WIFI_DA16XXX_MqttClose() Close the MQTT on-chip Client service

Wi-Fi HTTP On-Chip Client API

R_WIFI_DA16XXX_HttpOpen() Initialize the HTTP on-chip Client service

R_WIFI_DA16XXX_HttpClose() Close the HTTP Client service

R_WIFI_DA16XXX_HttpSend() Send the HTTP request with the configured buffers

Wi-Fi OTA On-chip Service API

R_WIFI_DA16XXX_OtaOpen() Initialize the DA16XXX on-chip OTA service

R_WIFI_DA16XXX_OtaClose() Close the DA16XXX OTA service

R_WIFI_DA16XXX_OtaStart() Start downloading firmware from an OTA server

R_WIFI_DA16XXX_OtaGetProgress() Get progress status of firmware download.

R_WIFI_DA16XXX_OtaGetAddress()
Get the address where images is stored in
DA16600/DA16200

R_WIFI_DA16XXX_OtaFirmwareSize() Get a size in the header of the MCU firmware

R_WIFI_DA16XXX_OtaReadFirmwarebyBlock()
Read the MCU firmware as much as the size from
the fw_addr and transmit it.

R_WIFI_DA16XXX_OtaEraseFirmware()
Erase the MCU firmware stored in a serial flash of
the DA16200/DA16600

R_WIFI_DA16XXX_OtaGetState() Get state of OTA transfer

R_WIFI_DA16XXX_OtaGetFirmware()
Get the data returned from the API
OtaReadFirmwarbyBlock()

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 11 of 124

Oct.15.25

1.4. Status Transitions

1.4.1. Status Transitions of TCP Client

Figure 1.3 shows the status transitions of the FIT module up to communication status using TCP sockets.

Figure 1.3 Status Transitions When Using TCP Socket

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 12 of 124

Oct.15.25

1.4.2. Status Transitions of TLS On-Chip Client

Figure 1.4 shows the status transitions of the FIT module up to communication status using TLS sockets.

Figure 1.4 Status Transitions When Using TLS Socket

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 13 of 124

Oct.15.25

1.4.3. Status Transitions of MQTT On-Chip Client

Figure 1.5 shows the status transitions of the FIT module up to communication status using the MQTT on-
chip client.

Figure 1.5 Status Transitions When Using the MQTT On-Chip Client

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 14 of 124

Oct.15.25

1.4.4. Status Transitions of HTTP On-Chip Client

Figure 1.6 shows the status transitions of the FIT module up to communication status using the HTTP on-
chip client.

Figure 1.6 Status Transitions When Using the HTTP On-Chip Client

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 15 of 124

Oct.15.25

1.4.5. Status Transitions of OTA On-Chip Service

Figure 1.6 shows the status transitions of the FIT module up to communication status using the OTA on-chip
service.

Figure 1.7 Status Transitions When Using the OTA On-Chip Service

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 16 of 124

Oct.15.25

2. API Information

The FIT module has been confirmed to operate under the following conditions.

2.1. Hardware Requirements

The MCU used must support the following functions:

• Serial communication

• I/O ports

2.2. Software Requirements

The driver is dependent upon the following FIT modules:

• r_bsp

• r_sci_rx

• r_byteq_rx

• FreeRTOS

2.3. Supported Toolchain

The FIT module has been confirmed to work with the toolchain listed in 6.1 Confirmed Operation
Environment.

2.4. Interrupt Vector

None

2.5. Header Files

All API calls and their supporting interface definitions are located in r_wifi_da16xxx_if.h.

2.6. Integer Types

This project uses ANSI C99. These types are defined in stdint.h.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 17 of 124

Oct.15.25

2.7. Compile Settings

The configuration option settings of the FIT module are contained in r_wifi_da16xxx_config.h.
The names of the options and their setting values are listed in the table below.

Table 2.1 Configuration Options (r_wifi_da16xxx_config.h)

Configuration Options in r_wifi_da16xxx_config.h

Wi-Fi Common Configuration

WIFI_CFG_DA16600_SUPPORT

Default: “0”

Use DA16600 module.

1 = enabled, 0 = disabled.

WIFI_CFG_SCI_CHANNEL

Default: “6”

SCI Channel for AT command communication.

Set this option to match the SCI port to be controlled.

WIFI_CFG_SCI_INTERRUPT_LEVEL

Default: “4”

Interrupt priority of the serial module used for
communication with the Wi-Fi module.
Set this option to a value of 1 to 15 to match the system
priority.

WIFI_CFG_SCI_PCLK_HZ

Default: “60000000”
Peripheral clock speed for WIFI_CFG_SCI_CHANNEL

WIFI_CFG_SCI_BAUDRATE

Default: “115200”

Communication baud rate for WIFI_CFG_SCI_CHANNEL.

Set this option to a value of 115200, 230400, 460800 or

921600.

WIFI_CFG_CTS_SW_CTRL

Default: “1”

Configures the UART flow control mode.

0: CTS hardware flow control is enabled, RTS flow control
is performed by the FIT module using GPIO.
1: RTS hardware flow control is enabled, CTS flow control
is performed by the FIT module using GPIO.

WIFI_CFG_CTS_PORT

Default: “J”

Configures the port direction register (PDR) setting for the
general port that controls the CTS pin of the Wi-Fi module.
Set this option to match the port to be controlled.
This option takes effect when WIFI_CFG_CTS_SW_CTRL
is set to 1.

WIFI_CFG_CTS_PIN

Default: “3”

Configures the port output data register (PODR) setting for
the general port that controls the CTS pin of the Wi-Fi
module.
Set this option to match the port to be controlled.
This option takes effect when WIFI_CFG_CTS_SW_CTRL
is set to 1.

WIFI_CFG_RTS_PORT

Default: “J”

Configures the port direction register (PDR) setting for the
general port that controls the RTS pin of the Wi-Fi module.
Set this option to match the port to be controlled.

WIFI_CFG_RTS_PIN

Default: “3”

Configures the port output data register (PODR) setting for
the general port that controls the RTS pin of the Wi-Fi
module.
Set this option to match the port to be controlled.

WIFI_CFG_PFS_SET_VALUE

Default: “0x0AU”

Specifies the pin function control register (PFS) setting
value to select the peripheral function of the MCU pin used
to control the RTS pin of the Wi-Fi module.
Set this option to match the pin to be used.
This option takes effect when WIFI_CFG_CTS_SW_CTRL
is set to 1.

WIFI_CFG_RESET_PORT

Default: “5”

Configures the port direction register (PDR) setting for the
general port that controls the RESET pin of the Wi-Fi
module.
Set this option to match the port to be controlled.

WIFI_CFG_RESET_PIN

Default: “5”

Configures the port output data register (PODR) setting for
the general port that controls the RESET pin of the Wi-Fi
module.
Set this option to match the port to be controlled.

WIFI_CFG_AT_CMD_TX_BUFFER_SIZE

Default: “512”

AT command transfer buffer size.

Set this value in range from 1 to 8192.

WIFI_CFG_AT_CMD_RX_BUFFER_SIZE

Default: “3000”

AT command receive buffer size.

Set this value in range from 1 to 8192.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 18 of 124

Oct.15.25

WIFI_CFG_USE_CALLBACK_FUNCTION

Default: “0”

Enables or disables the user Wi-Fi callback function.

0 = Unused, 1 = Used.

WIFI_CFG_CALLBACK_FUNCTION_NAME

Default: “NULL”

Specifies function name of the Wi-Fi callback function

called when an error occurs.

This option takes effect when

WIFI_CFG_USE_CALLBACK_FUNCTION is set to 1.

WIFI_CFG_MAX_SSID_LEN

Default: “32”
Configures max SSID Length

WIFI_CFG_MAX_BSSID_LEN

Default: “6”
Configures max BSSID Length

WIFI_CFG_SNTP_ENABLE

Default: “0”

Enables or disables the SNTP client service.

1 = enabled, 0 = disabled

WIFI_CFG_SNTP_SERVER_IP

Default: “0.0.0.0”

Configures SNTP server IP address string.

This option takes effect when WIFI_CFG_SNTP_ENABLE

is set to 1.

WIFI_CFG_SNTP_UTC_OFFSET

Default: “7”
Configures time zone offset in hours (-12 ~ 12).

WIFI_CFG_COUNTRY_CODE

Default: “”

Configures a country code.

The country code defined in ISO3166-1 alpha-2 standard.

E.g. “VN”, “JP”, “US”.

WIFI_CFG_LOGGING_OPTION

Default: “0”

Configures logging option.

0 = None, 1 = FreeRTOS logging, 2 = Serial port logging,

3 = Virtual console logging.

WIFI_CFG_LOG_TERM_CHANNEL

Default: “5”

SCI Channel for DA16XXX logging function.

Set this option to match the SCI port to be controlled.

This option takes effect when

WIFI_CFG_LOGGING_OPTION is set to 2.

WIFI_CFG_SCI_UART_TERMINAL_BAUDRATE

Default: “115200”

Communication baud rate for serial port logging.

This option takes effect when

WIFI_CFG_LOGGING_OPTION is set to 2.

WIFI_CFG_SCI_UART_INTERRUPT_PRIORITY

Default: “1”

Interrupt priority of serial port logging.
Set this option to a value of 1 to 15 to match the system

priority.

This option takes effect when

WIFI_CFG_LOGGING_OPTION is set to 2.

WIFI_CFG_DEBUG_LOG

Default: “0”

Configures the output setting for log information. The log

information output setting of 1 to 4 can be used with

FreeRTOS logging task or Serial port logging.

Set this option to a value of 0 to 4, as required.

0: Off.
1: Error log output.
2: Output of warnings in addition.
3: Output of status notifications in addition.
4: Output of module communication information in addition.
This option takes effect when WIFI_CFG_LOGGING_OPTION
is set to value other than 0.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 19 of 124

Oct.15.25

Wi-Fi TCP On-Chip Client Configuration

WIFI_CFG_TCP_SUPPORT

Default: “1”

Enables or disables TCP protocol.

1 = enabled, 0 = disabled.

WIFI_CFG_TCP_CREATABLE_SOCKETS

Default: “1”

Configures the number of TCP client socket.

Set this value in range from 1 to 4.

WIFI_CFG_TCP_SOCKET_RECEIVE_BUFFER_SIZE

Default: “4096”

Configures the receive buffer size for the socket.

Set this value in range from 1 to 8192.

Wi-Fi MQTT On-Chip Configuration

WIFI_CFG_MQTT_SUPPORT

Default: “0”

Enables or disables MQTT on-chip protocol.

1 = enabled, 0 = disabled.

MQTT_CFG_MQTT_CERTS

Default: “0”

Flag to use MQTT Certificates.

1 = Used, 0 = Unused.

WIFI_CFG_MQTT_CERTS_HEADER

Default: “NULL”

Name of header file that will contain certificates (macros).

User must create header file.

Example: "cert_storage.h"

WIFI_CFG_MQTT_ROOT_CA

Default: “NULL”

Links to user-defined macro of the same name for Root CA

which user must define in application header.

WIFI_CFG_MQTT_CLIENT_CERT

Default: “NULL”

Links to user-defined macro of the same name for client

certificate which user must define in application header.

WIFI_CFG_MQTT_PRIVATE_KEY

Default: “NULL”

Links to user-defined macro of the same name for private

key which user must define in application header.

WIFI_CFG_MQTT_CMD_TX_BUF_SIZE

Default: “512”

Configures the MQTT buffer used for sending commands

and publishing data. Maximum publishing length is 2063

bytes.

Set this value in range from 200 to 2064 and must be less

than or equal to WIFI_CFG_AT_CMD_TX_BUFFER_SIZE.

WIFI_CFG_MQTT_CMD_RX_BUF_SIZE

Default: “512”

Configures MQTT buffer used for receiving subscribed

data.

Set this value in range from 1 to 3000 and must be less

than or equal to WIFI_CFG_AT_CMD_TX_BUFFER_SIZE.

WIFI_CFG_MQTT_USE_MQTT_V311

Default: “1”

Flag to use MQTT version 3.1.1.

1 = Used, 0 = Unused.

WIFI_CFG_MQTT_RX_TIMEOUT

Default: “1000”

Timeout for the MQTT Receive function to check the buffer

for incoming MQTT messages in milliseconds

WIFI_CFG_MQTT_TX_TIMEOUT

Default: “1000”

Timeout for publishing MQTT messages in milliseconds.

WIFI_CFG_MQTT_CLEAN_SESSION

Default: “1”

Flag to use MQTT clean session.

1 = Used, 0 = Unused.

WIFI_CFG_MQTT_ALPN1

Default: “NULL”

Select 1st Application Layer Protocol Negotiation (ALPN).

WIFI_CFG_MQTT_ALPN2

Default: “NULL”

Select 2nd ALPN.

WIFI_CFG_MQTT_ALPN3

Default: “NULL”

Select 3rd ALPN.

WIFI_CFG_MQTT_KEEP_ALIVE

Default: “60”

MQTT ping period to check if connection is still active.

WIFI_CFG_MQTT_CLIENT_IDENTIFIER

Default: “NULL”

Configures client identifier.

WIFI_CFG_MQTT_HOST_NAME

Default: “NULL”

Configures MQTT Host Name (or IP address).

WIFI_CFG_MQTT_PORT

Default: “1883”

Configures MQTT Port for communication.

WIFI_CFG_MQTT_USER_NAME

Default: “NULL”

Configures MQTT Username.

WIFI_CFG_MQTT_PASSWORD

Default: “NULL”

Configures MQTT Password.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 20 of 124

Oct.15.25

WIFI_CFG_MQTT_WILL_TOPIC

Default: “NULL”

Configures Topic for MQTT Last Will message.

WIFI_CFG_MQTT_WILL_MESSAGE

Default: “NULL”

Configures Payload for MQTT Last Will message.

WIFI_CFG_MQTT_SNI_NAME

Default: “NULL”

Configures Server Name Indication (SNI).

WIFI_CFG_MQTT_WILL_QOS

Default: “0”

Configures Quality-of-Service.

0: At most once (QoS 0).

1: At least once (QoS 1).

2: Exactly once (QoS 2).

WIFI_CFG_MQTT_TLS_CIPHER_SUITES

Default: “0”

Flag to use TLS Cipher Suites.

1 = Used, 0 = Unused.

WIFI_CFG_MQTT_TLS_ECDHE_RSA_WITH_AES_128_

CBC_SHA

Default: “0”

Select TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

WIFI_CFG_MQTT_TLS_ECDHE_RSA_WITH_AES_256_

CBC_SHA

Default: “0”

Select TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

WIFI_CFG_MQTT_TLS_ECDHE_RSA_WITH_AES_128_

CBC_SHA256

Default: “0”

Select TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

WIFI_CFG_MQTT_TLS_ECDHE_RSA_WITH_AES_256_

CBC_SHA384

Default: “0”

Select TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

WIFI_CFG_MQTT_TLS_ECDHE_RSA_WITH_AES_128_

GCM_SHA256

Default: “0”

Select TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

WIFI_CFG_MQTT_TLS_ECDHE_RSA_WITH_AES_256_

GCM_SHA384

Default: “0”

Select TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

WIFI_CFG_MQTT_TLS_ECDHE_ECDSA_WITH_AES_12

8_CBC_SHA

Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

WIFI_CFG_MQTT_TLS_ECDHE_ECDSA_WITH_AES_25

6_CBC_SHA

Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

WIFI_CFG_MQTT_TLS_ECDHE_ECDSA_WITH_AES_12

8_CBC_SHA256

Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

WIFI_CFG_MQTT_TLS_ECDHE_ECDSA_WITH_AES_25

6_CBC_SHA384

Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

WIFI_CFG_MQTT_TLS_ECDHE_ECDSA_WITH_AES_12

8_GCM_SHA256

Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

WIFI_CFG_MQTT_TLS_ECDHE_ECDSA_WITH_AES_25

6_GCM_SHA384

Default: “0”

Select TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 Cipher.

Unused: 0.

Used: WIFI_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

WIFI_CFG_MQTT_P_CALLBACK

Default: “1”

Enables or disables the user MQTT callback function.

0 = Unused, 1 = Used.

WIFI_CFG_MQTT_P_CALLBACK_FUNCTION_NAME

Default: “mqtt_userCallback”

Specifies function name of the MQTT callback function

called when receive data subscribed.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 21 of 124

Oct.15.25

Wi-Fi TLS On-Chip Client Configuration

WIFI_CFG_TLS_SUPPORT

Default: “0”

Enables or disables TLS on-chip protocol.

1 = enabled, 0 = disabled.

WIFI_CFG_TLS_CREATABLE_SOCKETS

Default: “1”

Configures the number of TLS client socket.

Set this value in range from 1 to 2.

WIFI_CFG_TLS_SOCKET_RECEIVE_BUFFER_SIZE

Default: “4096”

Configures the receive buffer size for the socket.

Set this value in range from 1 to 8192.

WIFI_CFG_TLS_USE_CA_CERT

Default: “1”

Flag to use CA certificates.

0 = Unused, 1 = Used.

WIFI_CFG_TLS_CERT_MAX_NAME

Default: “32”

Configures length for certificate’s name.

WIFI_CFG_TLS_CERT_CA_NAME

Default: “NULL”

Configures CA certificate name.

WIFI_CFG_TLS_CERT_CLIENT_NAME

Default: “NULL”

Configures Client certificate name.

WIFI_CFG_TLS_CERT_PRIVATE_NAME

Default: “NULL”

Configures Private certificate name.

Wi-Fi HTTP On-Chip Configuration

WIFI_CFG_HTTP_SUPPORT

Default: “0”

Enables or disables HTTP on-chip protocol.

1 = enabled, 0 = disabled.

WIFI_CFG_HTTP_SNI_NAME

Default: “NULL”

Configures Server Name Indication (SNI).

WIFI_CFG_HTTP_ALPN1

Default: “NULL”

Select 1st Application Layer Protocol Negotiation (ALPN).

WIFI_CFG_HTTP_ALPN2

Default: “NULL”

Select 2nd ALPN.

WIFI_CFG_HTTP_ALPN3

Default: “NULL”

Select 3rd ALPN.

WIFI_CFG_HTTP_TLS_AUTH

Default: “0”

Configures HTTP TLS Authentication levels.

0: None - No authentication required; accept connections

without any form of authentication.

1: Optional - Allow both authenticated and unauthenticated

connections.

2: Require - Demand authentication for connections.

WIFI_CFG_HTTP_CERTS_HEADER

Default: “NULL”

Name of header file that will contain certificates (macros).

Users must create a header file.

Example: "cert_storage.h"

WIFI_CFG_HTTP_ROOT_CA

Default: “NULL”

Links to user-defined macro of the same name for Root CA

which user must define in application header.

WIFI_CFG_HTTP_CLIENT_CERT

Default: “NULL”

Links to user-defined macro of the same name for client

certificate which user must define in application header.

WIFI_CFG_HTTP_PRIVATE_KEY

Default: “NULL”

Links to user-defined macro of the same name for private

key which user must define in application header.

Wi-Fi OTA On-Chip Configuration

WIFI_CFG_OTA_SUPPORT

Default: “0”

Enables or disables OTA on-chip services.

1 = enabled, 0 = disabled.

WIFI_CFG_OTA_BLK_SIZE

Default: “128”

Defines the size (in bytes) of each data block written to

flash memory during the OTA (Over-the-Air) update

process.

Set this value in range from 128 to 1024

WIFI_CFG_OTA_TLS_AUTH

Default: “0”

Configures OTA TLS Authentication levels

0: None - No authentication required; accept connections

without any form of authentication.

1: Optional - Allow both authenticated and unauthenticated

connections.

2: Require - Demand authentication for connections.

WIFI_CFG_OTA_CERTS_HEADER Name of header file that will contain certificates (macros).

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 22 of 124

Oct.15.25

Default: “NULL” Users must create a header file.

Example: "cert_storage.h"

WIFI_CFG_OTA_ROOT_CA

Default: “NULL”

Links to user-defined macro of the same name for Root CA

which user must define in application header.

Table 2.2 Configuration Options (r_sci_rx_config.h)

Configuration Options in r_ sci_rx_config.h

#define SCI_CFG_CHx_INCLUDED

Notes: 1. CHx = CH0 to CH12

 2. The default values are as follows: CH0
CH2 to CH12: 0, CH1: 1

Each channel has resources such as transmit and
receive buffers, counters, interrupts, other programs,
and RAM. Setting this option to 1 assigns related
resources to the specified channel.

#define SCI_CFG_CHx_TX_BUFSIZ

Notes: 1. CHx = CH0 to CH12

 2. The default value is 80 for all channels.

Specifies the transmit buffer size of an individual
channel. The buffer size of the channel specified by
WIFI_CFG_SCI_CHANNEL should be set to 2180.

#define SCI_CFG_CHx_RX_BUFSIZ

Notes: 1. CHx = CH0 to CH12

 2. The default value is 80 for all channels.

Specifies the receive buffer size of an individual
channel. The buffer size of the channel specified by
WIFI_CFG_SCI_CHANNEL should be set to 8192.

#define SCI_CFG_TEI_INCLUDED Note: The
default is 0.

Enables the transmit end interrupt for serial
transmissions. This option should be set to 1.

Table 2.3 Configuration Options (r_bsp_config.h)

Configuration Options in r_ bsp_config.h

#define BSP_CFG_RTOS_USED

Note: The default is 0.

Specifies the type of real-time OS.

When using this FIT module, set the following.

FreeRTOS:1

Bare metal:0

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 23 of 124

Oct.15.25

2.8. Code Size

Typical code sizes associated with this module are listed below.
The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7 Compile Settings. The table lists reference values when the C compiler’s compile
options are set to their default values, as described in 2.3 Supported Toolchain. The compile option default
values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The code size
varies depending on the C compiler version and compile options.

The values in the table below are confirmed under the following conditions.

Module Revision: r_wifi_da16xxx rev1.40.
Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00

(The option of “-lang=c99” is added to the default settings of the integrated development
environment.)
GCC for Renesas RX 14.2.0.202505
(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

Configuration Options: Default settings.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 24 of 124

Oct.15.25

Table 2.4 Memory Sizes for RX65N

Device Protocol Kernel Category

Memory usage

Renesas

Compiler
GCC

RX65N

TCP only

(Default settings)

FreeRTOS
ROM 21796 bytes 46724 bytes

RAM 11294 bytes 14768 bytes

Bare metal
ROM 21591 bytes 46216 bytes

RAM 11290 bytes 14768 bytes

TLS on-chip only

FreeRTOS
ROM 23294 bytes 48628 bytes

RAM 11292 bytes 14768 bytes

Bare metal
ROM 23089 bytes 48120 bytes

RAM 11288 bytes 14768 bytes

MQTT on-chip

only

FreeRTOS
ROM 23973 bytes 48100 bytes

RAM 8872 bytes 12332 bytes

Bare metal
ROM 23772 bytes 47608 bytes

RAM 8868 bytes 12332 bytes

HTTP on-chip

only

FreeRTOS
ROM 21250 bytes 45428 bytes

RAM 7177 bytes 10668 bytes

Bare metal
ROM 21050 bytes 44936 bytes

RAM 7173 bytes 10540 bytes

All protocols

FreeRTOS
ROM 30047 bytes 57932 bytes

RAM 17230 bytes 20656 bytes

Bare metal
ROM 29836 bytes 57400 bytes

RAM 17226 bytes 20656 bytes

OTA on chip

only

FreeRTOS
ROM 22994 bytes 48600 bytes

RAM 11462 bytes 14896 bytes

Bare metal
ROM 22789 bytes 48076 bytes

RAM 11458 bytes 14896 bytes

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 25 of 124

Oct.15.25

Table 2.5 Memory Sizes for RX66N

Device Protocol Kernel Category

Memory usage

Renesas

Compiler
GCC

RX66N

TCP only

(Default settings)

FreeRTOS
ROM 24586 bytes 46588 bytes

RAM 11414 bytes 12928 bytes

Bare metal
ROM 24381 bytes 46064 bytes

RAM 11410 bytes 12928 bytes

TLS on-chip only

FreeRTOS
ROM 26083 bytes 48492 bytes

RAM 11412 bytes 12928 bytes

Bare metal
ROM 25878 bytes 47968 bytes

RAM 11408 bytes 12928 bytes

MQTT on-chip

only

FreeRTOS
ROM 26762 bytes 47956 bytes

RAM 8992 bytes 10496 bytes

Bare metal
ROM 26561 bytes 47464 bytes

RAM 8988 bytes 10496 bytes

HTTP on-chip

only

FreeRTOS
ROM 24039 bytes 45292 bytes

RAM 7297 bytes 8832 bytes

Bare metal
ROM 23839 bytes 44784 bytes

RAM 7293 bytes 8832 bytes

All protocols

FreeRTOS
ROM 32837 bytes 57788 bytes

RAM 17350 bytes 18944 bytes

Bare metal
ROM 32626 bytes 57256 bytes

RAM 17346 bytes 18944 bytes

OTA on chip

only

FreeRTOS
ROM 25784 bytes 48464 bytes

RAM 11582 bytes 13184 bytes

Bare metal
ROM 25579 bytes 47924 bytes

RAM 11578 bytes 13184 bytes

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 26 of 124

Oct.15.25

Table 2.6 Memory Sizes for RX671

Device Protocol Kernel Category

Memory usage

Renesas

Compiler
GCC

RX671

TCP only

(Default settings)

FreeRTOS
ROM 24586 bytes 46580 bytes

RAM 11414 bytes 13056 bytes

Bare metal
ROM 24381 bytes 46064 bytes

RAM 11410 bytes 13056 bytes

TLS on-chip only

FreeRTOS
ROM 26083 bytes 48484 bytes

RAM 11412 bytes 13056 bytes

Bare metal
ROM 25878 bytes 47968 bytes

RAM 11408 bytes 13056 bytes

MQTT on-chip

only

FreeRTOS
ROM 26762 bytes 47948 bytes

RAM 8992 bytes 10624 bytes

Bare metal
ROM 26561 bytes 47464 bytes

RAM 8988 bytes 10624 bytes

HTTP on-chip

only

FreeRTOS
ROM 24039 bytes 45284 bytes

RAM 7297 bytes 8960 bytes

Bare metal
ROM 23839 bytes 44784 bytes

RAM 7293 bytes 8960 bytes

All protocols

FreeRTOS
ROM 32837 bytes 57780 bytes

RAM 17350 bytes 18944 bytes

Bare metal
ROM 32626 bytes 57256 bytes

RAM 17346 bytes 18944 bytes

OTA on chip

only

FreeRTOS
ROM 25784 bytes 48456 bytes

RAM 11582 bytes 13184 bytes

Bare metal
ROM 25579 bytes 47924 bytes

RAM 11578 bytes 13184 bytes

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 27 of 124

Oct.15.25

Table 2.7 Memory Sizes for RX261

Device Protocol Kernel Category

Memory usage

Renesas

Compiler
GCC

RX261

TCP only

(Default settings)

FreeRTOS
ROM 21772 bytes 46692 bytes

RAM 11294 bytes 13056 bytes

Bare metal
ROM 21567 bytes 46184 bytes

RAM 11290 bytes 13056 bytes

TLS on-chip only

FreeRTOS
ROM 23270 bytes 48596 bytes

RAM 11292 bytes 13056 bytes

Bare metal
ROM 23065 bytes 48088 bytes

RAM 11288 bytes 13056 bytes

MQTT on-chip

only

FreeRTOS
ROM 23949 bytes 48068 bytes

RAM 8872 bytes 10624 bytes

Bare metal
ROM 23748 bytes 47576 bytes

RAM 8868 bytes 10624 bytes

HTTP on-chip

only

FreeRTOS
ROM 21226 bytes 45396 bytes

RAM 7177 bytes 8960 bytes

Bare metal
ROM 21026 bytes 44904 bytes

RAM 7173 bytes 8832 bytes

All protocols

FreeRTOS
ROM 30023 bytes 57900 bytes

RAM 17230 bytes 18944 bytes

Bare metal
ROM 29812 bytes 57368 bytes

RAM 17226 bytes 18944 bytes

OTA on chip

only

FreeRTOS
ROM 22970 bytes 48568 bytes

RAM 11462 bytes 13184 bytes

Bare metal
ROM 22765 bytes 48044 bytes

RAM 11458 bytes 13184 bytes

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 28 of 124

Oct.15.25

Table 2.8 Memory Sizes for RX140

Device Protocol Kernel Category

Memory usage

Renesas

Compiler
GCC

RX140

TCP only

(Default settings)

FreeRTOS
ROM 21772 bytes 46716 bytes

RAM 11294 bytes 12928 bytes

Bare metal
ROM 21567 bytes 46200 bytes

RAM 11290 bytes 13056 bytes

TLS on-chip only

FreeRTOS
ROM 23270 bytes 48620 bytes

RAM 11292 bytes 12928 bytes

Bare metal
ROM 23065 bytes 48104 bytes

RAM 11288 bytes 13056 bytes

MQTT on-chip

only

FreeRTOS
ROM 23949 bytes 48092 bytes

RAM 8872 bytes 10496 bytes

Bare metal
ROM 23748 bytes 47600 bytes

RAM 8868 bytes 10624 bytes

HTTP on-chip

only

FreeRTOS
ROM 21226 bytes 45420 bytes

RAM 7177 bytes 8832 bytes

Bare metal
ROM 21026 bytes 44920 bytes

RAM 7173 bytes 8960 bytes

All protocols

FreeRTOS
ROM 30023 bytes 57924 bytes

RAM 17230 bytes 18944 bytes

Bare metal
ROM 29812 bytes 57392 bytes

RAM 17226 bytes 19072 bytes

OTA on chip

only

FreeRTOS
ROM 22970 bytes 48592 bytes

RAM 11462 bytes 13184 bytes

Bare metal
ROM 22765 bytes 48060 bytes

RAM 11458 bytes 13184 bytes

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 29 of 124

Oct.15.25

2.9. Return Values

The error codes returned by the API functions are listed below. The enumerated types of the return values
and API function declarations are contained in r_wifi_da16xxx_if.h.

Table 2.9 API Error Codes (wifi_err_t)

Value Error code Description

0 WIFI_SUCCESS OK, no error

-1 WIFI_ERR_PARAMETER Invalid parameter

-2 WIFI_ERR_ALREADY_OPEN Wi-Fi module already opens

-3 WIFI_ERR_NOT_OPEN Wi-Fi module has not been opened

-4 WIFI_ERR_SERIAL_OPEN Failed to open serial port

-5 WIFI_ERR_MODULE_COM Failed communicating with Wi-Fi module

-6 WIFI_ERR_MODULE_TIMEOUT Timed out communicating with Wi-Fi module

-7 WIFI_ERR_NOT_CONNECT Not connected to AP

-8 WIFI_ERR_SOCKET_NUM There are no available TCP/TLS sockets

-9 WIFI_ERR_SOCKET_CREATE Failed creating TCP/TLS socket

-10 WIFI_ERR_CHANGE_SOCKET Failed to change TCP/TLS socket number

-11 WIFI_ERR_SOCKET_CONNECT Failed connecting a TCP/TLS socket

-12 WIFI_ERR_BYTEQ_OPEN Failed to open BYTEQ module

-13 WIFI_ERR_SOCKET_TIMEOUT TCP/TLS socket timeout

-14 WIFI_ERR_TAKE_MUTEX Failed to take mutex

-15 WIFI_ERR_MQTT_ALREADY_OPEN MQTT module already opens

-16 WIFI_ERR_MQTT_NOT_OPEN MQTT module has not been opened

-17 WIFI_ERR_MQTT_NOT_CONNECT Not connected to a MQTT broker

-18 WIFI_ERR_MQTT_CONNECTED MQTT module is already connected

-19 WIFI_ERR_MQTT_INVALID_DATA Invalid send/receive MQTT data

-20 WIFI_ERR_MQTT_OUT_OF_MEMORY Out of memory for MQTT communication

-21 WIFI_ERR_HTTP_ALREADY_OPEN HTTP module is already opened

-22 WIFI_ERR_HTTP_NOT_OPEN HTTP module has not been opened

-23 WIFI_ERR_HTTP_INVALID_DATA Invalid send/receive HTTP data

-24 WIFI_ERR_OTA_FAIL OTA common error

-25 WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

-26 WIFI_ERR_OTA_ALREADY_OPEN Already WIFI OTA opened

-27 WIFI_ERR_OTA_NOT_IDLE OTA service state is not IDLE

Table 2.10 Error Event for User Callback (wifi_err_event_enum_t)

Value Error code Description

0 WIFI_EVENT_WIFI_REBOOT Reboot Wi-Fi module

1 WIFI_EVENT_WIFI_DISCONNECT Disconnected to Wi-Fi module

2 WIFI_EVENT_SERIAL_OVF_ERR Serial overflow error

3 WIFI_EVENT_SERIAL_FLM_ERR Serial flaming error

4 WIFI_EVENT_SERIAL_RXQ_OVF_ERR Serial receive queue overflow

5 WIFI_EVENT_RCV_TASK_RXB_OVF_ERR Received buffer overflow

6 WIFI_EVENT_SOCKET_CLOSED Socket is closed

7 WIFI_EVENT_SOCKET_RXQ_OVF_ERR Socket receive queue overflow

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 30 of 124

Oct.15.25

2.10. Parameters

This section describes the parameter structures used by the API functions in this module. The structures are
defined in r_wifi_da16xxx_if.h.

Table 2.11 Definition of Security Type (wifi_security_t)

Value Type Description

0 WIFI_SECURITY_OPEN Open – No security

1 WIFI_SECURITY_WEP WEP security

2 WIFI_SECURITY_WPA WPA security

3 WIFI_SECURITY_WPA2 WPA2 security

4 WIFI_SECURITY_WPA2_ENT WPA2 enterprise security

5 WIFI_SECURITY_WPA3 WPA3 security

6 WIFI_SECURITY_UNDEFINED Unknown security

Table 2.7 Definition of Encryption Type (wifi_encryption_t)

Value Type Description

0 WIFI_ENCRYPTION_TKIP TKIP encryption

1 WIFI_ENCRYPTION_AES AES encryption

2 WIFI_ENCRYPTION_TKIP_AES TKIP+AES encryption

3 WIFI_ENCRYPTION_UNDEFINED Unknown encryption

Table 2.8 Definition of Socket Type (wifi_socket_type_t)

Value Type Description

0 WIFI_SOCKET_TYPE_TCP_SERVER TCP server

1 WIFI_SOCKET_TYPE_TCP_CLIENT TCP client

2 WIFI_SOCKET_TYPE_UDP UDP

3 WIFI_SOCKET_TYPE_TLS TLS client

Table 2.9 Definition of Certificate Type (wifi_tls_key_type_t)

Value Type Description

0 WIFI_TLS_TYPE_CA_CERT CA Certificate

1 WIFI_TLS_TYPE_CLIENT_CERT Client Certificate

2 WIFI_TLS_TYPE_CLIENT_PRIVATE_KEY Client Private Key

3 WIFI_TLS_TYPE_UNDEFINED Unknown Encryption

Table 2.10 Definition of Socket Status (wifi_socket_status_t)

Value Type Description

0 WIFI_SOCKET_STATUS_CLOSED Socket is closed

1 WIFI_SOCKET_STATUS_SOCKET Socket is created

2 WIFI_SOCKET_STATUS_BOUND Bounding

3 WIFI_SOCKET_STATUS_LISTEN Listening socket

4 WIFI_SOCKET_STATUS_CONNECTED Socket is connected

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 31 of 124

Oct.15.25

Table 2.11 MQTT Quality-of-Service (QoS) Levels (wifi_mqtt_qos_t)

Value Type Description

0 WIFI_MQTT_QOS_0 Delivery at most once

1 WIFI_MQTT_QOS_1 Delivery at least once

2 WIFI_MQTT_QOS_2 Delivery exactly once

Table 2.12 Cipher Suites Support for MQTT TLS (wifi_tls_cipher_suites_t)

Value Type Description

0xC011 WIFI_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

0xC014 WIFI_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

0xC027 WIFI_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

0xC028 WIFI_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

0xC02F WIFI_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

0xC030 WIFI_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

0xC009 WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

0xC00A WIFI_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

0xC023 WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

0xC024 WIFI_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

0xC02B WIFI_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

0xC02C WIFI_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

Table 2.13 SNTP Options (wifi_sntp_enable_t)

Value Type Description

0 WIFI_SNTP_DISABLE Disable SNTP

1 WIFI_SNTP_ENABLE Enable SNTP

Table 2.14 Member in Structure for Obtaining the Result of AP Scan (wifi_scan_result_t)

Type Name Description

uint8_t ssid[WIFI_CFG_MAX_SSID_LEN] SSID

uint8_t bssid[WIFI_CFG_MAX_BSSID_LEN] BSSID

wifi_security_t security Security type

wifi_encryption_t encryption Encryption type

int8_t rssi RSSI

uint8_t hidden Hidden channel

Table 2.15 Member in Structure for IP Configurations (wifi_ip_configuration_t)

Type Name Description

uint32_t ipaddress[4] IP address

uint32_t subnetmask[4] Subnet mask

uint32_t gateway[4] Gateway

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 32 of 124

Oct.15.25

Table 2.20 Member in Structure for MQTT Subscription (wifi_mqtt_sub_info_t)

Type Name Description

wifi_mqtt_qos_t qos Quality of Service for subscription

const char * p_topic_filter Topic filter to subscribe to

uint16_t topic_filter_length Length of subscription topic filter

Table 2.16 Member in Structure for MQTT Publish (wifi_mqtt_pub_info_t)

Type Name Description

wifi_mqtt_qos_t qos Quality of Service for subscription

const char * p_topic_name Topic name on which the message is

published

uint16_t topic_name_length Length of topic name

const char * p_payload Message payload

uint32_t payload_length Message payload length

Table 2.17 Member in Structure to be Passed to MQTT User Callback (wifi_mqtt_call_args_t)

Type Name Description

uint8_t * p_data Payload received from subscribed MQTT topic

const char * p_topic Topic to which the message payload belongs

to

uint32_t data_length Length of the MQTT payload

void const * p_context Placeholder for user data

Table 2.18 Member in Structure for TLS Client on Chip Certificate Information (wifi_tls_cert_info_t)

Type Name Description

uint8_t cert_ca[WIFI_CFG_TLS_CERT_MAX_NAME] CA certificate name

uint8_t cert_name[WIFI_CFG_TLS_CERT_MAX_NAME] Client certificate name

Table 2.19 Definition of HTTP Methods (wifi_http_method_t)

Value Type Description

0 WIFI_HTTP_GET GET method

1 WIFI_HTTP_POST POST method

2 WIFI_HTTP_PUT PUT method

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 33 of 124

Oct.15.25

Table 2.20 Definition of HTTP TLS Authentication (wifi_http_tls_auth_t)

Value Type Description

0 WIFI_HTTP_TLS_VERIFY_NONE No needed verify client certification

1 WIFI_HTTP_TLS_VERIFY_OPTIONAL Request client certification but not mandatory

2 WIFI_HTTP_TLS_VERIFY_REQUIRED Require client certification

Table 2.21 Member in Structure for HTTP request (wifi_http_request_t)

Type Name Description

const char * http_endpoint HTTP endpoint

wifi_http_method_t method HTTP request method

const char * request_body HTTP request header

uint32_t length HTTP request length

Table 2.22 Member in Structure for HTTP response (wifi_http_buffer_t)

Type Name Description

const char * response_buffer HTTP response buffer

uint32_t resp_length HTTP response length

Table 2.23 Member in Structure for OTA state (wifi_ota_state_t)

Type Name Description

0 WIFI_OTA_IDLE OTA idle state

1 WIFI_OTA_DOWNLOAD_INPROGRESS OTA download in progress state

2 WIFI_OTA_DOWNLOAD_FINISH OTA download image finish state

3 WIFI_OTA_FAIL OTA fail state

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 34 of 124

Oct.15.25

2.11. Adding the FIT Module to Your Project

The FIT module must be added to each project in which it is used. Renesas recommends the method using
the Smart Configurator described in (1) or (3) or (5) below. However, the Smart Configurator only supports
some RX devices. Please use the methods of (2) or (4) for RX devices that are not supported by the Smart
Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio
By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)”
for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’s Guide: CS+ (R20AN0470)” for details.

(4) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (R01AN1826)” for details.

(5) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

2.12. “for”, “while” and “do while” Statements

In FIT module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for

register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword

are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the

corresponding processing with “WAIT_LOOP”.

This FIT module does not have any WAIT_LOOP. But others might have. Please take care for this

WAIT_LOOP.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 35 of 124

Oct.15.25

2.13. Limitations

2.13.1 Wi-Fi Security Type Limitations

Wi-Fi AP connections do not currently support WEP security.

2.13.2 Wi-Fi SDK Limitations

The default UART baud rate supported by v3.2.1 Wi-Fi SDK is 115200 and v3.2.4 Wi-Fi SDK is 230400. User
needs to explicitly configure the default UART baud settings in the UART driver configurator properties based
on the version of Wi-Fi SDK used in their testing.

2.13.3 The Daylight Savings Time Setting Limitations

In v3.2.1 Wi-Fi SDK, the daylight savings time setting is disabled by default. The user needs to mandatorily
set the following parameters such as minutes = 0, daylight savings to disable when calling
R_WIFI_DA16XXX_SntpTimeZoneSet() API.

2.13.4 Wi-Fi Network Connection Limitations

Network connection parameters SSID and Passphrase for the Access Point cannot contain any commas. This
is a current limitation of the da16xxx module firmware. The R_WIFI_DA16XXX_Connect() function will return
an error if a comma is detected.

2.13.5 Wi-Fi Access Point Scanning Limitations

Wi-Fi AP Scanning is currently limited to max of 10 Access Points.

2.14. Restriction

The FIT module is subject to the following restrictions.
If WIFI_ERR_SERIAL_OPEN occurs, use R_WIFI_DA16XXX_Close() to close the Wi-Fi FIT module.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 36 of 124

Oct.15.25

3. API Functions

3.1. R_WIFI_DA16XXX_Open()

This function initializes the FIT module and Wi-Fi module.

Format

wifi_err_t R_WIFI_DA16XXX_Open(

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_ALREADY_OPEN Already open

WIFI_ERR_SERIAL_OPEN Failed to initialize serial

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_BYTEQ_OPEN BYTEQ allocation failure

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function initializes the FIT module and Wi-Fi module.

Reentrant

No

Example

R_WIFI_DA16XXX_Open();

Special Notes:

If WIFI_ERR_SERIAL_OPEN occurs, execute R_WIFI_DA16XXX_Close().

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 37 of 124

Oct.15.25

3.2. R_WIFI_DA16XXX_IsOpened()

This function checks Wi-Fi is opened.

Format

int32_t R_WIFI_DA16XXX_IsOpened(

void

)

Parameters

None

Return values

0 Wi-Fi is opened

-1 Wi-Fi is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function checks Wi-Fi is opened.

Reentrant

No

Example

if (0 != R_WIFI_DA16XXX_IsOpened())

{

 return WIFI_SUCCESS;

}

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 38 of 124

Oct.15.25

3.3. R_WIFI_DA16XXX_Close()

This function initializes the FIT module and Wi-Fi module.

Format

wifi_err_t R_WIFI_DA16XXX_Close(

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function closes the Wi-Fi module.

If this function is executed while the access point is connected, the access point will be disconnected, and
the Wi-Fi module will be closed.

Reentrant

No

Example

R_WIFI_DA16XXX_Open();

R_WIFI_DA16XXX_Close();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 39 of 124

Oct.15.25

3.4. R_WIFI_DA16XXX_Ping()

This function pings the specified IP address.

Format

wifi_err_t R_WIFI_DA16XXX_Ping(

uint32_t * ip_address,

uint16_t count

)

Parameters

ip_address IP address

count Number of ping transmissions

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function pings the IP address specified by ip_address.

The parameter (count) specifies the number of transmissions.

Reentrant

No

Example

uint32_t ip_addr[4] = {192, 168, 5, 13};

R_WIFI_DA16XXX_Ping(ip_addr, 4);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 40 of 124

Oct.15.25

3.5. R_WIFI_DA16XXX_Scan()

This function scans for access points.

Format

wifi_err_t R_WIFI_DA16XXX_Scan(

wifi_scan_result_t * ap_results,

uint8_t max_networks

)

Parameters

ap_results Pointer to the structure that stores the scan results

max_networks Maximum number of access points to store in ap_results

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function scans for access points in the periphery of the Wi-Fi module.

The results of the scan are stored in the area specified by the ap_results argument, up to the maximum
number of values specified by the max_networks argument.

Example

wifi_scan_result_t scan_rslt[5];

uint8_t max_networks = 5;

R_WIFI_DA16XXX_Scan(scan_rslt, max_networks);

for (int i = 0; i < 5; i++)

{

 printf(“ --------------------\n”);

 printf(“ ssid : %s\n”, scan_rslt[i].ssid);

 printf(“ rssi : %d\n”, scan_rslt[i].rssi);

 printf(“ security : %d\n”, scan_rslt[i].security);

 printf(“ encryption : %d\n”, scan_rslt[i].encryption);

}

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 41 of 124

Oct.15.25

3.6. R_WIFI_DA16XXX_Connect()

This function connects to the specified access point.

Format

wifi_err_t R_WIFI_DA16XXX_Connect(

const uint8_t * ssid,

const uint8_t * pass,

wifi_security_t security,

wifi_encryption_t enc_type

)

Parameters

ssid Pointer to SSID of access point

pass Pointer to password of access point

security Security type information

enc_type Encryption type information

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

Connects to the access point specified by “ssid”.

Reentrant

No

Example

uint8_t ssid[] = “ssid”;

uint8_t pass[] = “passwd”;

wifi_security_t security = WIFI_SECURITY_WPA2;

wifi_encryption_t encryption = WIFI_ENCRYPTION_AES;

R_WIFI_DA16XXX_Open();

R_WIFI_DA16XXX_Connect(ssid, passwd, security, encryption);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 42 of 124

Oct.15.25

3.7. R_WIFI_DA16XXX_Disconnect()

This function disconnects the connecting access point.

Format

wifi_err_t R_WIFI_DA16XXX_Disconnect(

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function disconnects the connecting access point.

Reentrant

No

Example

uint8_t ssid[] = “ssid”;

uint8_t pass[] = “passwd”;

wifi_security_t security = WIFI_SECURITY_WPA2;

wifi_encryption_t encryption = WIFI_ENCRYPTION_AES;

R_WIFI_DA16XXX_Open();

R_WIFI_DA16XXX_Connect(ssid, passwd, security, encryption);

R_WIFI_DA16XXX_Disconnect();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 43 of 124

Oct.15.25

3.8. R_WIFI_DA16XXX_IsConnected()

This function obtains the connection status of the Wi-Fi module and access point.

Format

wifi_err_t R_WIFI_DA16XXX_IsConnected(

void

)

Parameters

None

Return values

0 Connecting to the access point

-1 Not connected to access point

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

Returns the connection status of the Wi-Fi module and access point.

Reentrant

No

Example

if (0 == R_WIFI_DA16XXX_IsConnected())

{

 printf(“connected \n”);

}

else

{

 printf(“not connect \n”);

}

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 44 of 124

Oct.15.25

3.9. R_WIFI_DA16XXX_DnsQuery()

This function performs a DNS query.

Format

wifi_err_t R_WIFI_DA16XXX_DnsQuery(

uint8_t * domain_name,

uint32_t * ip_address

)

Parameters

domain_name Domain name

ip_address IP address storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module or domain does not exist

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function performs a DNS query to obtain the IP address of the specified domain.

Reentrant

No

Example

uint32_t ipaddr[4];

R_WIFI_DA16XXX_DnsQuery(“hostname”, ipaddr);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 45 of 124

Oct.15.25

3.10. R_WIFI_DA16XXX_SntpServerIpAddressSet()

This function sets SNTP server IP address.

Format

wifi_err_t R_WIFI_DA16XXX_SntpServerIpAddressSet(

uint32_t * ip_address

)

Parameters

ip_address IP address storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sets SNTP server IP address.

Reentrant

No

Example

uint32_t ip_address_sntp_server[4] = {0, 0, 0, 0};

R_WIFI_DA16XXX_SntpServerIpAddressSet(ip_address_sntp_server);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 46 of 124

Oct.15.25

3.11. R_WIFI_DA16XXX_SntpEnableSet()

This function enables or disables SNTP client service.

Format

wifi_err_t R_WIFI_DA16XXX_SntpEnableSet(

wifi_sntp_enable_t enable

)

Parameters

enable Enable/disable for SNTP

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function enables or disables SNTP client service.

Reentrant

No

Example

uint8_t ip_address_sntp_server[4] = {0, 0, 0, 0};

R_WIFI_DA16XXX_SntpServerIpAddressSet(ip_address_sntp_server);

R_WIFI_DA16XXX_SntpEnableSet(WIFI_SNTP_ENABLE);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 47 of 124

Oct.15.25

3.12. R_WIFI_DA16XXX_SntpTimeZoneSet()

This function sets SNTP time zone.

Format

wifi_err_t R_WIFI_DA16XXX_SntpTimeZoneSet(

int8_t utc_offset_in_hour

)

Parameters

utc_offset_in_hour Time zone in UTC offset in hours

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sets SNTP time zone.

Reentrant

No

Example

uint8_t ip_address_sntp_server[4] = {0, 0, 0, 0};

R_WIFI_DA16XXX_SntpServerIpAddressSet(ip_address_sntp_server;

R_WIFI_DA16XXX_SntpEnableSet(WIFI_SNTP_ENABLE);

R_WIFI_DA16XXX_SntpTimeZoneSet(25200); /* UTC+07:00 */

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 48 of 124

Oct.15.25

3.13. R_WIFI_DA16XXX_LocalTimeGet()

This function gets the current local time based on current time zone in a string.

Format

wifi_err_t R_WIFI_DA16XXX_LocalTimeGet(

uint8_t * local_time,

uint8_t size_string

)

Parameters

local_time Pointer to local time in string format

size_string size of string. The size of this string needs to be at least 25 bytes

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets the current local time based on the current time zone in a string.

Example: YYYY-MM-DD,HOUR:MIN:SECS.

Reentrant

No

Example

uint8_t time[25];

R_WIFI_DA16XXX_LocalTimeGet(time, 25);

printf(“It is %s\n”, time);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 49 of 124

Oct.15.25

3.14. R_WIFI_DA16XXX_SetDnsServerAddress()

This function sets DNS Server Address.

Format

wifi_err_t R_WIFI_DA16XXX_SetDnsServerAddress(

uint8_t * dns_address

)

Parameters

dns_address Pointed to DNS address storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sets DNS Server Address.

Reentrant

No

Example

uint8_t dns[4] = {0, 0, 0, 0};

R_WIFI_DA16XXX_SetDnsServerAddress(dns);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 50 of 124

Oct.15.25

3.15. R_WIFI_DA16XXX_GetMacAddress()

This function obtains the MAC address value of the Wi-Fi module.

Format

wifi_err_t R_WIFI_DA16XXX_GetMacAddress(

uint32_t * mac_address

)

Parameters

mac_address Pointer to storage area for MAC address

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

Obtains the MAC address value of the Wi-Fi module. The MAC address is stored as binary data in
mac_address.

Reentrant

No

Example

uint32_t mac[6];

R_WIFI_DA16XXX_Open();

R_WIFI_DA16XXX_GetMacAddress(mac);

printf(“— MAC addr : %lx:%lx:%lx:%lx:%lx:%lx\r\n”,

mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 51 of 124

Oct.15.25

3.16. R_WIFI_DA16XXX_GetIpAddress()

This function obtains the IP address assigned to the Wi-Fi module.

Format

wifi_err_t R_WIFI_DA16XXX_GetIpAddress(

wifi_ip_configuration_t * ip_config

)

Parameters

ip_config Pointer to IP address storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function obtains the IP address, subnet mask and gateway assigned to the Wi-Fi module and stores
them in ip_config.

Reentrant

No

Example

wifi_ip_configuration_t ip_cfg;

R_WIFI_DA16XXX_GetIpAddress(&ip_cfg);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 52 of 124

Oct.15.25

3.17. R_WIFI_DA16XXX_HardwareReset()

This function resets the Wi-Fi module.

Format

wifi_err_t R_WIFI_DA16XXX_HardwareReset (

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_SERIAL_OPEN Failed to initialize serial

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_BYTEQ_OPEN BYTEQ allocation failure

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

WIFI_ERR_SOCKET_CREATE Failed to create socket

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function resets the Wi-Fi module with the RESET pin.

Reentrant

No

Example

R_WIFI_DA16XXX_HardwareReset();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 53 of 124

Oct.15.25

3.18. R_WIFI_DA16XXX_GetVersion()

This function obtains version information for the FIT module.

Format

uint32_t R_WIFI_DA16XXX_GetVersion (

void

)

Parameters

None

Return values

Upper 2 bytes: Major version (decimal notation)

Lower 2 bytes: Minor version (decimal notation)

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function returns the version number of the FIT module.

The upper 2 bytes indicate the major version and the lower 2 bytes indicate the minor version.

Reentrant

No

Example

uint32_t ver;

ver = R_WIFI_DA16XXX_GetVersion();

printf(“Version V%d.%2d\n”, ((ver >> 16) & 0x0000FFFF), (ver & 0x0000FFFF));

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 54 of 124

Oct.15.25

3.19. R_WIFI_DA16XXX_GetAvailableSocket()

This function gets the next available socket ID.

Format

wifi_err_t R_WIFI_DA16XXX_GetAvailableSocket(

uint8_t * socket_id

)

Parameters

socket_id Pointer to socket id storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_NUM No socket available for connection socket

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets the next available socket ID.

Reentrant

No

Example

uint8_t socket_no;

R_WIFI_DA16XXX_GetAvailableSocket(&socket_no);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 55 of 124

Oct.15.25

3.20. R_WIFI_DA16XXX_GetSocketStatus()

This function gets the socket status.

Format

wifi_err_t R_WIFI_DA16XXX_GetSocketStatus(

uint8_t socket_number,

wifi_socket_status_t * socket_status

)

Parameters

socket_number Socket number

socket_status Pointer to socket status storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_SOCKET_NUM Socket number is invalid

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets socket status.

Reentrant

No

Example

if (WIFI_SOCKET_STATUS_CLOSED == R_WIFI_DA16XXX_GetSocketStatus(socket_no,

&socket_status))

{

 printf(“Socket is available \n”);

}

else

{

 printf(“Socket is not available \n”);

}

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 56 of 124

Oct.15.25

3.21. R_WIFI_DA16XXX_CreateSocket()

This function creates a socket by specifying the socket type and IP type.

Format

wifi_err_t R_WIFI_DA16XXX_CreateSocket(

uint8_t socket_number,

wifi_socket_type_t type,

uint8_t ip_version

)

Parameters

socket_number Socket number

type Socket type

ip_version IP version

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_CREATE Failed to create socket

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function creates a TCP socket by specifying the socket type (WIFI_SOCKET_TYPE_TCP_CLIENT) and
IP type.

Reentrant

No

Example

uint8_t socket_no;

wifi_socket_type_t type = WIFI_SOCKET_TYPE_TCP_CLIENT;

R_WIFI_DA16XXX_GetAvailableSocket(&socket_no);

Sock_tcp = R_WIFI_DA16XXX_CreateSocket(socket_no, type, 4);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 57 of 124

Oct.15.25

3.22. R_WIFI_DA16XXX_TcpConnect()

This function connects to a specific IP and Port using socket.

Format

wifi_err_t R_WIFI_DA16XXX_TcpConnect(

uint8_t socket_number,

uint32_t * ip_address,

uint16_t port

)

Parameters

socket_number Socket number

ip_address Pointer to IP address of TCP server in byte array format

port Port of TCP server

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_NUM Socket numbet is invalid

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function connects to a specific IP and Port using socket.

Reentrant

No

Example

uint8_t socket_no;

uint32_t ip_addr[4] = {192, 168, 1, 10};

uint16_t port = 1234;

da16xxx_socket_type_t type = DA16XXX_SOCKET_TYPE_TCP_CLIENT;

R_WIFI_DA16XXX_GetAvailableSocket(&socket_no);

Sock_tcp = R_WIFI_DA16XXX_CreateSocket(socket_no, type, 4);

R_WIFI_DA16XXX_TcpConnect(socket_no, ip_addr, port);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 58 of 124

Oct.15.25

3.23. R_WIFI_DA16XXX_SendSocket()

This function transmits data using the specified socket.

Format

wifi_err_t R_WIFI_DA16XXX_SendSocket(

uint8_t socket_number,

uint8_t * data,

uint16_t length,

uint32_t timeout_ms

)

Parameters

socket_number Socket number

data Pointer to transmit data in byte array format

length Number of bytes of data to be transmitted

timeout_ms Transmission timeout duration (millisecond)

Return values

Number of sent data Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_MODULE_TIMEOUT Communicate with module timed out

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_NUM Socket number is invalid

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sends the data stored in the data from the specified socket the number of bytes specified by
length.

Reentrant

No

Example

int32_t recv_num;

uint8_t buffer[50];

recv_num = R_WIFI_DA16XXX_SendSocket(sock, buffer, sizeof(buffer), 1000);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 59 of 124

Oct.15.25

3.24. R_WIFI_DA16XXX_ReceiveSocket()

This function receives data from the specified socket.

Format

wifi_err_t R_WIFI_DA16XXX_ReceiveSocket(

uint8_t socket_number,

uint8_t * data,

uint16_t length,

uint32_t timeout_ms

)

Parameters

socket_number Socket number

data Pointer to receive data storage area

length Number of bytes of data to be received

timeout_ms Transmission timeout duration (millisecond)

Return values

Number of received data Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_NUM Socket number is invalid

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sends the data stored in the data from the specified socket the number of bytes specified by
length.

Reentrant

No

Example

int32_t recv_num;

uint8_t buffer[50];

recv_num = R_WIFI_DA16XXX_ReceiveSocket(sock, buffer, sizeof(buffer), 1000);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 60 of 124

Oct.15.25

3.25. R_WIFI_DA16XXX_CloseSocket()

This function disconnects communication with the specified socket and deletes the socket.

Format

wifi_err_t R_WIFI_DA16XXX_CloseSocket(

uint8_t socket_number

)

Parameters

socket_number Socket number

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_MODULE_TIMEOUT Communicate with module timed out

WIFI_ERR_SOCKET_NUM Socket number is invalid

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function disconnects communication with the specified socket and deletes the socket.

Reentrant

No

Example

R_WIFI_DA16XXX_TcpConnect(sock, ipaddr, port);

R_WIFI_DA16XXX_CloseSocket(sock);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 61 of 124

Oct.15.25

3.26. R_WIFI_DA16XXX_TcpReconnect()

This function reconnects to the existing socket.

Format

wifi_err_t R_WIFI_DA16XXX_TcpReconnect(

uint8_t socket_number

)

Parameters

socket_number Socket number

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_NUM Socket number is invalid

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function reconnects to the existing socket.

If sock_number is UINT8_MAX, this function will reconnect all disconnected sockets.

Reentrant

No

Example

R_WIFI_DA16XXX_TcpReconnect(socket_no);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 62 of 124

Oct.15.25

3.27. R_WIFI_DA16XXX_GetAvailableTlsSocket()

This function gets the next available TLS socket ID.

Format

wifi_err_t R_WIFI_DA16XXX_GetAvailableTlsSocket(

uint32_t * socket_id

)

Parameters

socket_id Pointer to socket id storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_NUM No socket available for connection socket

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets the next available TLS socket ID.

Reentrant

No

Example

uint32_t socket_no;

R_WIFI_DA16XXX_GetAvailableTlsSocket(&socket_no);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 63 of 124

Oct.15.25

3.28. R_WIFI_DA16XXX_GetTlsSocketStatus()

This function gets the TLS socket status.

Format

wifi_err_t R_WIFI_DA16XXX_GetTlsSocketStatus(

uint32_t socket_number,

wifi_socket_status_t * socket_status

)

Parameters

socket_number Socket number

socket_status Pointer to socket status storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_SOCKET_NUM Socket number is invalid

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets TLS Client socket status.

Reentrant

No

Example

if(WIFI_SOCKET_STATUS_CLOSED == R_WIFI_DA16XXX_GetTlsSocketStatus(socket_no,

&socket_status))

{

 printf(“Socket is available \n”);

}

else

{

 printf(“Socket is not available \n”);

}

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 64 of 124

Oct.15.25

3.29. R_WIFI_DA16XXX_CreateTlsSocket()

This function creates a TLS socket by specifying the socket type and IP type.

Format

wifi_err_t R_WIFI_DA16XXX_CreateTlsSocket(

uint32_t socket_number,

wifi_socket_type_t type,

uint8_t ip_version

)

Parameters

socket_number Socket number

type Socket type

ip_version IP version

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_CREATE Failed to create socket

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function creates a TLS socket by specifying the socket type (WIFI_SOCKET_TYPE_TLS) and IP type.

Reentrant

No

Example

uint32_t socket_no;

wifi_socket_type_t type = WIFI_SOCKET_TYPE_TLS;

R_WIFI_DA16XXX_GetAvailableTlsSocket(&socket_no);

Sock_tcp = R_WIFI_DA16XXX_CreateTlsSocket(socket_no, type, 4);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 65 of 124

Oct.15.25

3.30. R_WIFI_DA16XXX_TlsConnect()

This function connects to a specific IP and Port using TLS socket.

Format

wifi_err_t R_WIFI_DA16XXX_TlsConnect(

uint32_t socket_number,

uint32_t * ip_address,

uint16_t port

)

Parameters

socket_number Socket number

ip_address IP address of TLS server in byte array format

port Port of TLS server

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_NUM Socket number is invalid

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function connects to a specific IP and Port using TLS socket.

Reentrant

No

Example

uint32_t socket_no;

uint32_t ip_addr[4] = {192, 168, 1, 10};

uint16_t port = 1234;

da16xxx_socket_type_t type = DA16XXX_SOCKET_TYPE_TLS;

R_WIFI_DA16XXX_GetAvailableTlsSocket(&socket_no);

Sock_tcp = R_WIFI_DA16XXX_CreateTlsSocket(socket_no, type, 4);

R_WIFI_DA16XXX_TlsConnect(socket_no, ip_addr, port);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 66 of 124

Oct.15.25

3.31. R_WIFI_DA16XXX_SendTlsSocket()

This function transmits data using the specified socket.

Format

wifi_err_t R_WIFI_DA16XXX_SendTlsSocket(

uint32_t socket_number,

uint8_t * data,

uint16_t length,

uint32_t timeout_ms

)

Parameters

socket_number Socket number

data Pointer to transmit data in byte array format

length Number of bytes of data to be transmitted

timeout_ms Transmission timeout duration (millisecond)

Return values

Number of sent data Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_MODULE_TIMEOUT Communicate with module timed out

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_NUM Socket number is invalid or disconnected

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sends the data stored in the data from the specified socket the number of bytes specified by
length.

Reentrant

No

Example

int32_t recv_num;

uint8_t buffer[50];

recv_num = R_WIFI_DA16XXX_SendTlsSocket(sock, buffer, sizeof(buffer), 1000);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 67 of 124

Oct.15.25

3.32. R_WIFI_DA16XXX_ReceiveTlsSocket()

This function receives data from the specified socket.

Format

wifi_err_t R_WIFI_DA16XXX_ReceiveTlsSocket(

uint32_t socket_number,

uint8_t * data,

uint16_t length,

uint32_t timeout_ms

)

Parameters

socket_number Socket number

data Pointer to receive data storage area

length Number of bytes of data to be received

timeout_ms Transmission timeout duration (millisecond)

Return values

Number of received data Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_NUM Socket number is invalid

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sends the data stored in the data from the specified socket the number of bytes specified by
length.

Reentrant

No

Example

int32_t recv_num;

uint8_t buffer[50];

recv_num = R_WIFI_DA16XXX_ReceiveTlsSocket(sock, buffer, sizeof(buffer),

1000);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 68 of 124

Oct.15.25

3.33. R_WIFI_DA16XXX_CloseTlsSocket()

This function disconnects communication with the specified TLS socket and deletes the socket.

Format

wifi_err_t R_WIFI_DA16XXX_CloseTlsSocket(

uint32_t socket_number

)

Parameters

socket_number Socket number

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_MODULE_TIMEOUT Communicate with module timed out

WIFI_ERR_SOCKET_NUM Socket number is invalid

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function disconnects communication with the specified socket and deletes the socket.

Reentrant

No

Example

R_WIFI_DA16XXX_TlsConnect(sock, ipaddr, port);

R_WIFI_DA16XXX_CloseTlsSocket(sock);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 69 of 124

Oct.15.25

3.34. R_WIFI_DA16XXX_TlsReconnect()

This function reconnects to the existing socket.

Format

wifi_err_t R_WIFI_DA16XXX_ TlsReconnect(

uint32_t socket_number

)

Parameters

socket_number Socket number

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_NUM Socket number is invalid

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function reconnects to the existing socket.

If sock_number is UINT8_MAX, this function will reconnect all disconnected sockets.

Reentrant

No

Example

R_WIFI_DA16XXX_TlsReconnect(socket_no);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 70 of 124

Oct.15.25

3.35. R_WIFI_DA16XXX_ConfigTlsSocket()

This function configures SSL connection on Wi-Fi module.

Format

wifi_err_t R_WIFI_DA16XXX_ConfigTlsSocket(

uint32_t * socket_num,

wifi_tls_cert_info_t * cert_info,

uint8_t WIFI_FAR * sni_name,

uint8_t ser_valid,

uint16_t trans_buf_size,

uint16_t recv_buf_size,

uint32_t timeout

)

Parameters

socket_num Socket number

cert_info Pointer to certificate information storage area

sni_name Server Name Indication (SNI)

ser_valid server validation

trans_buf_size Incoming buffer length for TLS socket

recv_buf_size Outgoing buffer length for TLS socket

timeout SSL connection timeout

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function configures SSL connection for specifies socket number with below list of configurations:

• Set SSL CA Certificate.

• Set SSL Certificate.

• Set the SNI (supported only for TLS client).

• Enable server validation.

• Set the Incoming buffer length.

• Set the Outgoing buffer length.

• Set the DA TLS connection timeout (ms).

This function must be called before calling this function: R_WIFI_DA16XXX_TlsConnect().

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 71 of 124

Oct.15.25

Reentrant

No

Example

char[] HostName = “awu6os-ats.iot.ap-northeast-1.amazonaws.com“;

R_WIFI_DA16XXX_ConfigTlsSocket(&socketId, &cert_info, (uint8_t *)pHostName, 1,

8192, 8192, 1000);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 72 of 124

Oct.15.25

3.36. R_WIFI_DA16XXX_RegistServerCertificate()

This function registers server certificates on the Wi-Fi module (Deprecated, using
R_WIFI_DA16XXX_ConfigTlsSocket() instead).

Format

wifi_err_t R_WIFI_DA16XXX_RegistServerCertificate(

uint32_t socket_num,

wifi_tls_cert_info_t * cert_info,

uint8_t WIFI_FAR * sni_name,

uint8_t ser_valid,

uint32_t trans_buf_size,

uint32_t recv_buf_size

)

Parameters

socket_num Socket number

cert_info Pointer to certificate information storage area

trans_buf_size Incoming buffer length for TLS socket

recv_buf_size Outgoing buffer length for TLS socket

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function configures SSL connection for specifies socket number with below list of configurations:

• Set SSL CA Certificate.

• Set SSL Certificate.

• Set the Incoming buffer length.

• Set the Outgoing buffer length.

This function must be called before calling this function: R_WIFI_DA16XXX_TlsConnect().
Reentrant

No

Example

R_WIFI_DA16XXX_RegistServerCertificate(socketId, &cert_info, 8192, 8192);

Special Notes:
None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 73 of 124

Oct.15.25

3.37. R_WIFI_DA16XXX_RequestTlsSocket()

This function allocates the created TLS socket for SSL connection.

Format

wifi_err_t R_WIFI_DA16XXX_RequestTlsSocket (

uint32_t socket_number

)

Parameters

socket_number Socket number

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_CONNECT Not connected to access point

WIFI_ERR_SOCKET_CREATE Failed to create socket

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function allocates the created TLS socket for SSL connection:

R_WIFI_DA16XXX_CreateTlsSocket() must be called before calling this function.

Reentrant

No

Example

R_WIFI_DA16XXX_RequestTlsSocket(socketId);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 74 of 124

Oct.15.25

3.38. R_WIFI_DA16XXX_GetServerCertificate()

This function gets stored server certificates on the Wi-Fi module.

Format

wifi_err_t R_WIFI_DA16XXX_GetServerCertificate(

wifi_tls_cert_info_t * cert_info

)

Parameters

cert_info Pointer to certificate information storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function obtains certificate information stored in the Wi-Fi module and returns the certificate information
in cert_info.

Reentrant

No

Example

R_WIFI_DA16XXX_GetServerCertificate(&cert_info);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 75 of 124

Oct.15.25

3.39. R_WIFI_DA16XXX_WriteCertificate()

This function stores certificates on the Wi-Fi module.

Format

wifi_err_t R_WIFI_DA16XXX_WriteCertificate(

const uint8_t * name,

wifi_tls_key_type_t type_key,

const uint8_t * p_data,

uint16_t len

)

Parameters

name Name of the certificate

type_key Certificate type

p_data Pointer to certificate data stored area

len Certificate data size

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function writes a certificate or secret key in the sflash memory of the Wi-Fi module.

For the certificate type, see da16xxx_tls_key_type_t in 2.10 Parameter.

Reentrant

No

Example

R_WIFI_DA16XXX_WriteCertificate(WIFI_CFG_TLS_CERT_CA_NAME,

 WIFI_TLS_TYPE_CA_CERT,

 DEVICE_CERTIFICATE_AUTHORITY_PEM,

 strlen(DEVICE_CERTIFICATE_AUTHORITY_PEM));

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 76 of 124

Oct.15.25

3.40. R_WIFI_DA16XXX_DeleteCertificate()

This function deletes certificates on the Wi-Fi module.

Format

wifi_err_t R_WIFI_DA16XXX_DeleteCertificate(

wifi_tls_key_type_t type_key,

wifi_tls_cert_info_t * cert_info

)

Parameters

type_key Certificate type

cert_info Pointer to certificate information storage area

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid argument

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function removes a certificate or secret key in the sflash memory of the Wi-Fi module.

For the certificate type, see wifi_tls_key_type_t in 2.10 Parameter.

Reentrant

No

Example

R_WIFI_DA16XXX_DeleteCertificate(WIFI_TLS_TYPE_CA_CERT, &cert_info);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 77 of 124

Oct.15.25

3.41. R_WIFI_DA16XXX_MqttOpen()

This function initializes DA16XXX MQTT Client module.

Format

wifi_err_t R_WIFI_DA16XXX_MqttOpen (

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter

WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_MQTT_ALREADY_OPEN Already WIFI MQTT opened

WIFI_ERR_MQTT_INVALID_DATA Invalid data to send/receive

WIFI_ERR_MQTT_OUT_OF_MEMORY Out of memory for MQTT communication

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

Initialize the DA16XXX on-chip MQTT Client service.

Reentrant

No

Example

R_WIFI_DA16XXX_MqttOpen();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 78 of 124

Oct.15.25

3.42. R_WIFI_DA16XXX_MqttDisconnect()

This function disconnects from the DA16XXX MQTT Client service.

Format

wifi_err_t R_WIFI_DA16XXX_MqttDisconnect (

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_MQTT_NOT_OPEN Wi-Fi MQTT module is not opened

WIFI_ERR_MQTT_NOT_CONNECT Not connect to MQTT channel

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function disconnects from the DA16XXX MQTT Client service.

Reentrant

No

Example

uint32_t timeout;

R_WIFI_DA16XXX_MqttOpen();

R_WIFI_DA16XXX_MqttConnect(timeout);

R_WIFI_DA16XXX_MqttDisconnect();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 79 of 124

Oct.15.25

3.43. R_WIFI_DA16XXX_MqttConnect()

This function configures and connects to the DA16XXX MQTT Client service.

Format

wifi_err_t R_WIFI_DA16XXX_MqttConnect (

uint32_t timeout_ms

)

Parameters

timeout_ms Time out (ms)

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_MQTT_NOT_OPEN Wi-Fi MQTT module is not opened

WIFI_ERR_MQTT_CONNECTED Not connect to access point

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function configures and connects to the DA16XXX MQTT Client service.

Reentrant

No

Example

uint32_t timeout;

R_WIFI_DA16XXX_MqttOpen();

R_WIFI_DA16XXX_MqttConnect(timeout);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 80 of 124

Oct.15.25

3.44. R_WIFI_DA16XXX_MqttPublish()

This function publishes a message for a given MQTT topic.

Format

wifi_err_t R_WIFI_DA16XXX_MqttPublish (

wifi_mqtt_pub_info_t * const p_pub_info

)

Parameters

p_pub_info MQTT publish package parameters

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_MQTT_NOT_CONNECT Not connect to MQTT channel

WIFI_ERR_MQTT_INVALID_DATA Invalid data to send/receive

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function publishes a message for a given MQTT topic.

For the MQTT publish package, see da16xxx_mqtt_pub_info_t in 2.10 Parameter.

Reentrant

No

Example

wifi_mqtt_pub_info_t * const p_pub_info;

R_WIFI_DA16XXX_MqttPublish(p_pub_info);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 81 of 124

Oct.15.25

3.45. R_WIFI_DA16XXX_MqttReceive()

This function receives data subscribed to DA16XXX MQTT Client service.

Format

wifi_err_t R_WIFI_DA16XXX_MqttReceive (

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_MQTT_INVALID_DATA Invalid data to send/receive

WIFI_ERR_MQTT_NOT_CONNECT Not connect to MQTT channel

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function receives data subscribed to DA16XXX MQTT Client service.

Reentrant

No

Example

R_WIFI_DA16XXX_MqttReceive();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 82 of 124

Oct.15.25

3.46. R_WIFI_DA16XXX_MqttSubscribe()

This function subscribes to DA16XXX MQTT topics.

Format

wifi_err_t R_WIFI_DA16XXX_MqttSubscribe (

wifi_mqtt_sub_info_t * const p_sub_info,

size_t subscription_count

)

Parameters

p_sub_info MQTT subscribe package parameters

subscription_count Number of subscribe topic.

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_MQTT_NOT_OPEN Wi-Fi MQTT module is not opened

WIFI_ERR_MQTT_INVALID_DATA Invalid data to send/receive

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function subscribes to DA16XXX MQTT topics.

For the MQTT subscribe package, see da16xxx_mqtt_sub_info_t in 2.10 Parameter.

Reentrant

No

Example

wifi_mqtt_sub_info_t * const p_sub_info;

size_t subscription_count;

 R_WIFI_DA16XXX_MqttSubscribe(p_sub_info, subscription_count);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 83 of 124

Oct.15.25

3.47. R_WIFI_DA16XXX_MqttUnSubscribe()

This function unsubscribes from DA16XXX MQTT topics.

Format

wifi_err_t R_WIFI_DA16XXX_MqttUnSubscribe (

wifi_mqtt_sub_info_t * const p_sub_info

)

Parameters

p_sub_info MQTT subscribe package parameters

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_MQTT_NOT_CONNECT Not connect to MQTT channel

WIFI_ERR_MQTT_INVALID_DATA Invalid data to send/receive

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function unsubscribes from DA16XXX MQTT topics.

For the MQTT subscribe package, see da16xxx_mqtt_sub_info_t in 2.10 Parameter.

Reentrant

No

Example

wifi_mqtt_sub_info_t * const p_sub_info;

R_WIFI_DA16XXX_MqttUnSubscribe(p_sub_info);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 84 of 124

Oct.15.25

3.48. R_WIFI_DA16XXX_MqttClose()

This function closes the DA16XXX MQTT Client service.

Format

wifi_err_t R_WIFI_DA16XXX_MqttClose (

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_MODULE_COM Cannot communicate WIFI module

WIFI_ERR_MQTT_NOT_OPEN WIFI MQTT module is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function closes the DA16XXX MQTT Client service.

Reentrant

No

Example

R_WIFI_DA16XXX_MqttOpen();

R_WIFI_DA16XXX_MqttClose();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 85 of 124

Oct.15.25

3.49. R_WIFI_DA16XXX_HttpOpen()

This function initializes DA16XXX HTTP Client module.

Format

wifi_err_t R_WIFI_DA16XXX_HttpOpen (

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

WIFI_ERR_HTTP_ALREADY_OPEN Already WIFI HTTP opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

Initialize the DA16XXX on-chip HTTP Client service.

Reentrant

No

Example

R_WIFI_DA16XXX_HttpOpen();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 86 of 124

Oct.15.25

3.50. R_WIFI_DA16XXX_HttpClose()

This function closes the DA16XXX HTTP Client service.

Format

wifi_err_t R_WIFI_DA16XXX_HttpClose (

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_MODULE_COM Cannot communicate WIFI module

WIFI_ERR_HTTP_NOT_OPEN WIFI HTTP module is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function closes the DA16XXX HTTP Client service.

Reentrant

No

Example

R_WIFI_DA16XXX_HttpOpen();

R_WIFI_DA16XXX_HttpClose();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 87 of 124

Oct.15.25

3.51. R_WIFI_DA16XXX_HttpSend()

This function sends the HTTP request with the configured buffers.

Format

wifi_err_t R_WIFI_DA16XXX_HttpSend (

wifi_http_request_t request,

wifi_http_buffer_t *buffer

)

Parameters

request Pointer to HTTP request control structure

buffer Pointer to HTTP user buffer struct for request and response

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_TAKE_MUTEX Failed to obtain mutex

WIFI_ERR_HTTP_NOT_OPEN WIFI HTTP module is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function sends the HTTP request with the configured buffers.

For the HTTP request and HTTP user buffer, see wifi_http_request_t and wifi_http_buffer_t in 2.10
Parameter.

Reentrant

No

Example

R_WIFI_DA16XXX_HttpSend(http_post_req, &resp_buffer);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 88 of 124

Oct.15.25

3.52. R_WIFI_DA16XXX_OtaOpen()

This function initializes DA16XXX OTA service.

Format

wifi_err_t R_WIFI_DA16XXX_OtaOpen (

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_OTA_ALREADY_OPEN Already WIFI OTA opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

Initialize the DA16XXX on-chip OTA service.

Reentrant

No

Example

R_WIFI_DA16XXX_OtaOpen();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 89 of 124

Oct.15.25

3.53. R_WIFI_DA16XXX_OtaClose()

This function closes the DA16XXX OTA service.

Format

wifi_err_t R_WIFI_DA16XXX_OtaClose (

void

)

Parameters

None

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_MODULE_COM Cannot communicate WIFI module

WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

WIFI_ERR_OTA_FAIL WIFI OTA common error

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function closes the DA16XXX OTA service.

Reentrant

No

Example

R_WIFI_DA16XXX_OtaOpen();

R_WIFI_DA16XXX_OtaClose();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 90 of 124

Oct.15.25

3.54. R_WIFI_DA16XXX_OtaStart()

Start downloading firmware from an OTA server.

Format

wifi_err_t R_WIFI_DA16XXX_OtaStart (

const uint8_t * fw_url

)

Parameters

fw_url Server URL where firmware exists

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_PARAMETER Invalid parameter

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_MODULE_COM Failed to communicate with Wi-Fi module

WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

WIFI_ERR_OTA_NOT_IDLE WIFI OTA state is not IDLE

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function starts downloading firmware from an OTA server with firmware URL.

Reentrant

No

Example

R_WIFI_DA16XXX_OtaStart(“firmware_url”);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 91 of 124

Oct.15.25

3.55. R_WIFI_DA16XXX_OtaEraseFirmware()

Erase the MCU firmware stored in a serial flash of the DA16200/DA16600.

Format

wifi_err_t R_WIFI_DA16XXX_OtaEraseFirmware (

void

)

Parameters

fw_url Server URL where firmware exists

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function erases firmware stored in a serial flash of DA16200/DA16600.

Reentrant

No

Example

R_WIFI_DA16XXX_OtaEraseFirmware();

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 92 of 124

Oct.15.25

3.56. R_WIFI_DA16XXX_OtaGetProgress()

Get progress status of firmware download.

Format

wifi_err_t R_WIFI_DA16XXX_OtaGetProgress (

uint8_t * progress

)

Parameters

progress Pointer to a variable where the OTA update progress (in percentage) will be stored

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets progress status of firmware download.

Reentrant

No

Example

uint8_t progress;

R_WIFI_DA16XXX_OtaGetProgress(&progress);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 93 of 124

Oct.15.25

3.57. R_WIFI_DA16XXX_OtaReadFirmwarebyBlock()

Read the MCU firmware as much as the size from the fw_addr and transmit it.

Format

wifi_err_t R_WIFI_DA16XXX_OtaReadFirmwarebyBlock (

uint32_t fw_addr,

uint32_t size

)

Parameters

fw_addr Starting address from which the firmware block will be read.

size Size (in bytes) of the firmware block to read.

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function reads the MCU firmware as much as the size from the fw_addr and transmit it.

Reentrant

No

Example

uint32_t fw_addr = 0x3AD000;

uint32_t size = 1024;

R_WIFI_DA16XXX_OtaReadFirmwarebyBlock(fw_addr, size);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 94 of 124

Oct.15.25

3.58. R_WIFI_DA16XXX_OtaGetAddress()

Get the address where images is stored in DA16600/DA16200.

Format

wifi_err_t R_WIFI_DA16XXX_OtaGetAddress (

uint32_t * fw_addr

)

Parameters

fw_addr Pointer to a variable that will store the firmware address in the DA device.

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets the address where images is stored in DA16600/DA16200.

Reentrant

No

Example

uint32_t fw_addr = 0;

R_WIFI_DA16XXX_OtaGetAddress(&fw_addr);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 95 of 124

Oct.15.25

3.59. R_WIFI_DA16XXX_OtaFirmwareSize()

Get a size in the header of the MCU firmware.

Format

wifi_err_t R_WIFI_DA16XXX_OtaFirmwareSize (

uint32_t * fw_size

)

Parameters

fw_size Pointer to a variable that will store the size of the image in the DA device.

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_NOT_OPEN Wi-Fi module not initialized

WIFI_ERR_NOT_CONNECT Not connect to access point

WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets size of image in the header of the MCU firmware.

Reentrant

No

Example

uint32_t size = 0;

R_WIFI_DA16XXX_OtaFirmwareSize(&fw_size);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 96 of 124

Oct.15.25

3.60. R_WIFI_DA16XXX_OtaGetState()

Get state of OTA transfer.

Format

wifi_err_t R_WIFI_DA16XXX_OtaGetState (

wifi_ota_state_t * state

)

Parameters

state Pointer to a variable that will store the current state of OTA download

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets state of OTA transfer.

Reentrant

No

Example

wifi_ota_state_t status;

R_WIFI_DA16XXX_OtaGetState(&status);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 97 of 124

Oct.15.25

3.61. R_WIFI_DA16XXX_OtaGetFirmware()

Get the data returned from the API OtaReadFirmwarbyBlock().

Format

wifi_err_t R_WIFI_DA16XXX_OtaGetFirmware (

uint8_t * buffer,

uint16_t offset,

uint16_t size

)

Parameters

buffer Pointer to the buffer will receive the data from the API

offset Offset (in bytes) from the start.

size Size of the data to retrieve.

Return values

WIFI_SUCCESS Normal end

WIFI_ERR_OTA_NOT_OPEN WIFI OTA service is not opened

Properties

Prototype declarations are contained in r_wifi_da16xxx_if.h.

Description

This function gets the data returned from the API OtaReadFirmwarbyBlock.

Reentrant

No

Example

uint8_t user_buf[1024] = {0};

uint16_t offset = 0;

uint16_t size = 0;

R_WIFI_DA16XXX_OtaGetFirmware(user_buf, offset, size);

Special Notes:

None

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 98 of 124

Oct.15.25

4. Callback Function

4.1. Wi-Fi callback function

This function notifies the user application of a Wi-Fi module the errors related to communication.

Format
void * callback(
 void * pevent
)

Parameters
pevent Pointer to error information area

Return Values
None

Properties
This function is implemented by the user.

Description
Enable this API with the following configuration. The function name does not have to be “callback”.
#define WIFI_CFG_USE_CALLBACK_FUNCTION (1)

#if WIFI_CFG_USE_CALLBACK_FUNCTION == 1

#define WIFI_CFG_CALLBACK_FUNCTION_NAME (wifi_callback)

#endif

Since the event is notified as a void pointer type, cast it to wifi_err_event_t type before referencing it.

void wifi_callback(void * p_args)

{

 wifi_err_event_t *pevent;

 pevent = (wifi_err_event_t *)p_args;

 switch(pevent->event)

 {

 case WIFI_EVENT_SERIAL_OVF_ERR:

 break;

 …

 }

}

Reentrant
No

The notification events are as follows.

• WIFI_EVENT_SERIAL_OVF_ERR
Reports that the SCI module has detected a receive overflow error.
• WIFI_EVENT_SERIAL_FLM_ERR
Reports that the SCI module has detected a receive framing error.
• WIFI_EVENT_SERIAL_RXQ_OVF_ERR
Reports that the SCI module has detected a receive queue (BYTEQ) overflow.
• WIFI_EVENT_RCV_TASK_RXB_OVF_ERR
Reports that the FIT module has detected the overflow of the AT command receive buffer.
• WIFI_EVENT_SOCKET_RXQ_OVF_ERR
Reports that the socket has detected a receive queue (BYTEQ) overflow.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 99 of 124

Oct.15.25

Example
[r_wifi_da16xxx_config.h]

#define WIFI_CFG_USE_CALLBACK_FUNCTION (1)

#define WIFI_CFG_CALLBACK_FUNCTION_NAME (wifi_callback)

[xxx.c]

void wifi_callback(void *p_args)

{

 wifi_err_event_t *pevent;

 pevent = (wifi_err_event_t *)p_args;

 switch(pevent->event)

 {

 case WIFI_EVENT_SERIAL_OVF_ERR:

 break;

 case WIFI_EVENT_SERIAL_FLM_ERR:

 break;

 case WIFI_EVENT_SERIAL_RXQ_OVF_ERR:

 break;

 case WIFI_EVENT_RCV_TASK_OVF_ERR:

 break;

 case WIFI_EVENT_SOCKET_RXQ_OVF_ERR:

 switch(pevent->socket_number)

 {

 case 0:

 break;

 case 1:

 break;

 case 2:

 break;

 case 3:

 break;

 }

 break;

 default:

 break;

 }

}

Special Notes:

Do not call any of the functions listed in section 3. API Functions from the callback function.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 100 of 124

Oct.15.25

4.2. MQTT callback function

This function notifies the user application of a Wi-Fi module the errors related to communication.

Format
void (* p_mqtt_callback) (
 void * pevent

)

Parameters
pevent Pointer to callback information to handle

Return Values
None

Properties
This function is implemented by the user.

Description
Enable this API with the following configuration. The function name does not have to be “callback”.
#define WIFI_CFG_MQTT_P_CALLBACK (1)

#if WIFI_CFG_MQTT_P_CALLBACK == 1

#define WIFI_CFG_MQTT_P_CALLBACK_FUNCTION_NAME /* Call back function name */

#endif

Reentrant
No

Example
[r_wifi_da16xxx_config.h]

#define WIFI_CFG_MQTT_P_CALLBACK (1)

#define WIFI_CFG_MQTT_P_CALLBACK_FUNCTION_NAME (mqtt_userCallback)

[xxx.c]

void mqtt_userCallback (void * pevent)

{

 wifi_mqtt_callback_args_t * p_args;

 p_args = (wifi_mqtt_callback_args_t *)pevent;

 /* Code to handle incoming data */

 char * ptr = strstr(p_args->p_topic, "test/MQTT/senddata");

 if (ptr != NULL)

 {

 if (0 == strcmp((const char *)p_args->p_data, "closeMQTT"))

 {

 cb_flag = 1;

 }

 }

}

Special Notes:

The R_WIFI_DA16XXX_MqttReceive() API should be called to use this callback function.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 101 of 124

Oct.15.25

5. Demo Projects

Demo projects include function main() that utilizes the FIT module and its dependent modules (e.g. r_bsp).
This FIT module includes the following demo project.

5.1 Wi-Fi DA16600 Multiple Protocols Demo Project

5.1.1 Prerequisites

• Hardware requirements:
o CK-RX65N: Renesas CK-RX65N Cloud Kit v2 (Product no.: RTK5CK65N0S08001BE).
o DA16600: US159-DA16600MEVZ as Wi-Fi module (included in CK-RX65N kit)
o PC running Windows® 11.
o Micro-USB cables for Power supply and the Wi-Fi module logging output (included as part of

the kit. See CK-RX65N v2 – User's Manual at “Related Documents” on page 1).

• Software requirements for Windows 10 PC:
o IDE: e2 studio 2025-07 or later.
o Compiler: Renesas Electronics C/C++ Compiler for RX Family V3.07.00.
o Tera Term v4.99 or later.
o Socket Test (for TCP Client demo): http://sockettest.sourceforge.net/.
o Java Virtual Machine (JVM)1.3 or above (for Socket Test): http://www.java.com/.

5.1.2 Import the Demo Project

Users can import the demo project by adding the demo to their e2 studio workspace (see section 5.1.5) or by
downloading the demo project (see section 5.4).

• Import “ck_rx65n_wifi_da16xxx_baremetal_multiple_protocol” for Bare metal application.

• Import “ck_rx65n_wifi_da16xxx_freertos_multiple_protocol” for FreeRTOS application.

5.1.3 Hardware Setup

• Connect the Wi-Fi DA16600 Pmod module to the CK-RX65N v2 PMOD1 connector.

• Connect the micro-USB cable from PC to CK-RX65N micro-USB connector (J14) for Power supply.

• Connect the USB-Type C cable from PC to CK-RX65N micro-USB connector (J10) for logging output.

• Set the jumper of J16 (short 1-2) to “Debug”.

Figure 5.1 Hardware Setup

http://sockettest.sourceforge.net/
http://www.java.com/

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 102 of 124

Oct.15.25

5.1.4 How to Run the Demo

a) Country Code Setting
Use the Smart Configurator to configure the country code.
Open the Smart Configurator as shown in the image below and set the Country code parameter.

Figure 5.2 Country Code Setting

▪ "WIFI_CFG_COUNTRY_CODE": Country code defined in ISO 3166-1 alpha-2 standard. Such as
KR, US, JP, and CH.

b) Wi-Fi Network Settings
Configure Wi-Fi network settings for the Wi-Fi module. Configure the following macro in

“src/demo_config/demo_config.h”.
Note: Ensure that the PC running Socket Test app and the Wi-Fi module are connected to the same

Wi-Fi network.

Figure 5.3 Wi-Fi Network Settings

▪ AP_WIFI_SSID: Set the access point name of the Wi-Fi network.
▪ AP_WIFI_PASSWORD: Set the Wi-Fi network password.
▪ AP_WIFI_SECURITY: Set the Wi-Fi network security type (WIFI_SECURITY_OPEN,

WIFI_SECURITY_WPA, WIFI_SECURITY_WPA2).

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 103 of 124

Oct.15.25

c) TCP Server Demo Settings
Follow the steps below to obtain the IP address in Windows OS.

• Select Start > Settings > Network & internet > Wi-Fi and then select the Wi-Fi network
you're connected to.

• Under Properties, look for your IP address listed next to IPv4 address.
Or running “ipconfig” command in CMD or PowerShell to get the IP address.

Figure 5.4 Get Server IP Address

Run Socket Master: “SocketTest-master\dist\SocketTest.jar” on PC.
Input the IP address in the designated text box, the port number is user-defined. In this demo, we

use 1883.

Figure 5.5 Start TCP Server

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 104 of 124

Oct.15.25

d) TCP Client Demo Settings
Use the Smart Configurator to configure TCP protocol support.
Open the Smart Configurator as shown in the image below and set parameters.

Figure 5.6 TCP Client Settings

▪ TCP protocol support: tick “Enable” to use the TCP demo or “Disable” to not use it.
▪ Creatable TCP Sockets number: This demo project only uses 1 socket number.
▪ Configures the TCP Receive buffer size: default is 4096.

Configure TCP server settings from c) TCP Server Demo Settings to the following macro in
“src/demo_config/demo_config.h”.

Figure 5.7 TCP Server Settings

▪ TCP_SERVER_HOSTNAME: TCP server hostname of IP.
▪ TCP_SERVER_PORT: TCP server port.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 105 of 124

Oct.15.25

e) MQTT On-Chip Client Demo Settings
Use the Smart Configurator to configure the MQTT protocol.
Open the Smart Configurator as shown in the image below and set the parameter.

Figure 5.8 MQTT On-Chip Client Settings

▪ MQTT protocol support: tick “Enable” to use the MQTT on-chip client demo or “Disable” to not use
it.

Configure the MQTT Publish/Subscribe topics. Configure the following macro in
“src/demo_config/demo_config.h”

Figure 5.9 MQTT Topics Settings

▪ MQTT_SUBSCRIBE_TOPIC: MQTT subscribe topic.
▪ MQTT_PUBLISH_TOPIC: MQTT publish topic.

f) MQTT Broker Settings

Open URL: https://testclient-cloud.mqtt.cool/ and select a Broker below.

Figure 5.10 Start MQTT Broker

Enter the subscribe topic that was configured in demo_config.h.

Figure 5.11 Subscribe Topic

https://testclient-cloud.mqtt.cool/

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 106 of 124

Oct.15.25

g) HTTP On-Chip Client Demo Settings
Use the Smart Configurator to configure the HTTP protocol.
Open the Smart Configurator as shown in the image below and set the parameter.

Figure 5.12 HTTP On-Chip Client Settings

▪ HTTP protocol support: tick “Enable” to use the HTTP on-chip client demo or “Disable” to not use
it.

Configure HTTP server settings. Configure the following macro in “src/demo_config/demo_config.h”

Figure 5.13 HTTP Server Settings

▪ HTTP_SERVER_ENDPOINT: Defines the URL to send HTTP requests to.
▪ HTTP_SERVER_METHOD: Request method to be used.

The HTTP demo only checks the data in the debug log on Tera Term. Please refer to 6.2.2 Debug
with Serial Port Logging for instructions on using the logging function.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 107 of 124

Oct.15.25

h) Building the Demo Project
Build the project and confirm no build errors occur.

Figure 5.14 Confirm the Demo Project Build

In the Project Explorer panel of e2 studio, right click on the project and select Debug As -->
Renesas GDB Hardware Debugging.

Figure 5.15 Flashing Demo Project

If the window below appears, press "Switch".

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 108 of 124

Oct.15.25

Figure 5.16 Confirm Perspective Switch

Press the following button to start debugging.

Figure 5.17 Start Debugging

i) Starting the TCP Demo
Wait for the SocketTest to display "New Client:..." to confirm that the Wi-Fi module is ready to run
the TCP protocol.
After that, send a message and check if the sent data matches the received data in the message
box.

Figure 5.18 Demo with TCP Client

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 109 of 124

Oct.15.25

j) Starting the MQTT On-Chip Client Demo
Wait for the Wi-Fi module sends a topic to a subcribe topic that was configured in demo_config.h. It
will display in Messages box.

Figure 5.19 MQTT Message From the Wi-Fi Module

Send a data from topic “test/MQTT/senddata”, and check if the sent data matches the received data
in the Messages box.

Figure 5.20 Demo with MQTT On-Chip Client

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 110 of 124

Oct.15.25

k) Starting the HTTP On-Chip Client Demo
Confirm debug log on Tera Term.

Figure 5.21 HTTP On-Chip Client Debug Log

Note: The log output setting in this demo is enabled as follows:

• WIFI_CFG_LOGGING_OPTION: “Serial port” to print debug log on Tera Term via USB interface
(J20).

• WIFI_CFG_DEBUG_LOG: debug log level 4 to display all log information of the Wi-Fi module.

Please refer to 6.2.2 Debug with Serial Port Logging for instructions on how to debug with serial
port.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 111 of 124

Oct.15.25

5.1.5 Porting the Demo Project to Another Device

How to create the demo project on the other MCUs other than RX65N.

1. Create demo project specifying CK-RX65N as Target Board.
2. Double-click .scfg in Project Explorer, and then click Board tab.
3. Change Target Board or Target Device.
4. Click Next -> Finish
5. Confirm that the board or device are changed as you specified in previous step and click Generate

Code button.
6. Change the following settings as needed.

• Wi-Fi DA16XXX Module FIT: .scfg -> Components tab -> r_wifi_da16xxx(*)

• Communications Setting：.scfg -> Components tab -> r_sci_rx(**)

(*)(**): Configure these macros appropriately for each target board or device by following the board-dependent
settings specified in r_wifi_da16xxx_config.h. See table below for the list of supported board series for porting.

Table 5.1 Verified Boards Supporting Porting

Verified Supported Boards (Portable) PMOD Supported

RX65N Cloud Kit PMOD

RX65N Envision Kit PMOD

RX65N RSK (2MB) PMOD1 and PMOD2

Cloud Kit for RX65N v1 PMOD1 and PMOD2

Cloud Kit for RX65N v2 PMOD1 and PMOD2

RX671 Target Board PMOD

RX66N Target Board PMOD

FPB-RX261 Only PMOD1

EK-RX261 Only PMOD1

EK-RX671 PMOD1 and PMOD2

FPB-RX140 PMOD1 and PMOD2

Note: Refer to section 1.2.2 Hardware Configuration for comprehensive details.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 112 of 124

Oct.15.25

5.2 Wi-Fi DA16600 OTA on-chip Demo Project

The demo project can be accessed through the link below. This demonstration offers a comprehensive
overview of the implemented features and functionalities. Please refer to the provided link for a detailed
exploration of the project.
[Link] https://www.renesas.com/document/apn/rx-family-aws-cloud-connectivity-mcu-firmware-update-over-
air-ck-rx65n-v2-wi-fi-da16600

5.3 Adding a Demo to a Workspace

Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add
a demo project to a workspace, select File >> Import >> General >> Existing Projects into Workspace, then
click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.4 Downloading Demo Projects

Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module needs
to be downloaded. To download the FIT module, right click on this application note and select “Sample Code
(download)” from the context menu in the Smart Brower >> Application Notes tab.

https://www.renesas.com/document/apn/rx-family-aws-cloud-connectivity-mcu-firmware-update-over-air-ck-rx65n-v2-wi-fi-da16600
https://www.renesas.com/document/apn/rx-family-aws-cloud-connectivity-mcu-firmware-update-over-air-ck-rx65n-v2-wi-fi-da16600

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 113 of 124

Oct.15.25

6. Appendices

6.1 Confirmed Operation Environment

This section describes the confirmed operation environment for the FIT module.

Table 6.1 Confirmed Operation Environment (Ver. 1.00)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2022.04

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.04.00

Compiler option: The following option is added to the default settings of
the integrated development environment.

 -lang = c99

Endian order Big endian / little endian

Revision of the module Rev.1.00

Board used Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

Table 6.2 Confirmed Operation Environment (Ver. 1.10)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2023.04

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.05.00

Compiler option: The following option is added to the default settings of
the integrated development environment.

 -lang = c99

Endian order Big endian / little endian

Revision of the module Rev.1.10

Board used Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

Table 6.3 Confirmed Operation Environment (Ver. 1.20)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2024.01

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -lang = c99

GCC for Renesas RX 8.3.0.202311
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -std = gnu99

Endian order Big endian / little endian

Revision of the module Rev.1.20

Board used Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 114 of 124

Oct.15.25

Table 6.4 Confirmed Operation Environment (Ver. 1.30)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2024.04

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -lang = c99

GCC for Renesas RX 8.3.0.202311
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -std = gnu99

Endian order Big endian / little endian

Revision of the module Rev.1.30

Board used Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

Table 6.5 Confirmed Operation Environment (Ver. 1.31)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2024.10

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -lang = c99

GCC for Renesas RX 8.3.0.202311
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -std = gnu99

Endian order Big endian / little endian

Revision of the module Rev.1.31

Board used Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

Table 6.6 Confirmed Operation Environment (Ver. 1.32)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2025.01

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -lang = c99

GCC for Renesas RX 8.3.0.202311
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -std = gnu99

Endian order Big endian / little endian

Revision of the module Rev.1.32

Board used Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 115 of 124

Oct.15.25

Table 6.7 Confirmed Operation Environment (Ver. 1.33)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2025.01

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -lang = c99

GCC for Renesas RX 8.3.0.202405
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -std = gnu99

Endian order Big endian / little endian

Revision of the module Rev.1.33

Board used Renesas CK-RX65N v1 Cloud Kit (Product no.:
RTK5CK65N0S04000BE)

Renesas CK-RX65N v2 Cloud Kit (Product no.:
RTK5CK65N0S08001BE)

Renesas EK-RX671 Evaluation Kit (Product no.:
RTK5EK6710S00001BE)

Renesas RX66N Target Board (Product no.: RTK5RX66N0C00000BJ)

Renesas RX671 Target Board (Product no.: RTK5RX6710C00000BJ)

Renesas RX140 Fast Prototyping Board (Product no.:
RTK5FP1400S00001BE)

Renesas EK-RX261 Evaluation Kit (Product no.:
RTK5EK2610S00001BE)

Renesas RX261 Fast Prototyping Board (Product no.:
RTK5FP2610S00001BE)

Table 6.8 Confirmed Operation Environment (Ver. 1.40)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2025.07

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.07.00
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -lang = c99

GCC for Renesas RX 14.2.0.202505
Compiler option: The following option is added to the default settings of
the integrated development environment.
 -std = gnu99

Endian order Big endian / little endian

Revision of the module Rev.1.40

Board used Renesas CK-RX65N v2 Cloud Kit (Product no.:
RTK5CK65N0S08001BE)

Renesas RX140 Fast Prototyping Board (Product no.:
RTK5FP1400S00001BE)

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 116 of 124

Oct.15.25

6.2 Support Logging Function

6.2.2 Debug with Serial Port Logging

Configures the logging function for Wi-Fi module to print the debug log via SCI channel have been
selected.

For the CK-RX65N Cloud Kit v2 (RTK5CK65N0S08001BE), the log will be output to the USB
interface (J10) as follows:

Figure 6.1 Logging Output Settings for Serial Port Logging

• WIFI_CFG_LOGGING_OPTION: Choose “Serial port”.

• WIFI_CFG_LOG_TERM_CHANNEL: SCI channel for logging function.

• WIFI_CFG_SCI_UART_TERMINAL_BAUDRATE: Baud rate for serial logging (unit in bps).

• WIFI_CFG_SCI_UART_INTERRUPT_PRIORITY: Interrupt priority (default is 1).

• WIFI_CFG_DEBUG_LOG: Debug log level.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 117 of 124

Oct.15.25

Configures Tera Term terminal, please select Setup -> Terminal…

Figure 6.2 Tera Term Settings

Configures Port debug, please select Setup -> Port…

Figure 6.3 Tera Term Serial Port Settings

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 118 of 124

Oct.15.25

With this setting, the log will be output to the serial port. The user can debug the project and see the
result on Tera Term as follows.

Figure 6.4 Wi-F Logging on Tera Term

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 119 of 124

Oct.15.25

6.2.3 Debug with Renesas Debug Virtual Console

Configures the logging function for Wi-Fi module to print the debug log using Renesas Debug Virtual
Console as follows:

Figure 6.5 Logging Output Settings for Virtual Console Logging

• WIFI_CFG_LOGGING_OPTION: Choose “Renesas Debug Virtual Console”.

• WIFI_CFG_DEBUG_LOG: Debug log level.

Open Renesas Debug Virtual Console.

Figure 6.6 Choose Renesas Debug Virtual Console

When the setup is prepared completely, the user can debug the project and see the result on
Renesas Debug Virtual Console as follows.

Figure 6.7 Wi-Fi Logging on Renesas Debug Virtual Console

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 120 of 124

Oct.15.25

6.3 Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file
“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

• Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

• Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_wifi_da16xxx_config.h” may be wrong. Check the file "r_wifi_da16xxx_config.h".
If there is a wrong setting, set the correct value for that. Refer to 2.7 Compile Settings for details.

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 121 of 124

Oct.15.25

6.4 Limitations

The PMOD on the RX66N and RX671 target boards is configured to Type 6A by default from the factory, which
is not compatible with Wi-Fi module initialization. Therefore, changing the PMOD type to 2A or 3A is required.
Please refer to the instructions below:

- Remove SS13, SS14 and short circuit SC1, SC2.

Figure 6.8 Circuit Schematic for the PMOD Connector of RX66N and RX671 Target boards

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 122 of 124

Oct.15.25

7 Reference Documents

User’s Manual: Hardware
(The latest versions can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

User’s Manual: Development Tools

RX Family CC-RX Compiler User’s Manual (R20UT3248)
(The latest versions can be downloaded from the Renesas Electronics website.)

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 123 of 124

Oct.15.25

Revision History

Rev.

Date

Revision History

Page Summary

1.00 Mar. 10, 2023 - First edition issued

1.10 Dec. 04, 2023

- Rename DA16200 to DA16XXX

9

Updated table 2-1 to add these configuration options below:

• WIFI_CFG_CTS_SW_CTRL

• WIFI_CFG_CTS_PORT

• WIFI_CFG_CTS_PIN

• WIFI_CFG_RTS_PORT

• WIFI_CFG_RTS_PIN

• WIFI_CFG_PFS_SET_VALUE

• WIFI_CFG_USE_FREERTOS_LOGGING

• WIFI_CFG_DEBUG_LOG

40 Added table 5-2 Confirmed Operation Environment (Ver. 1.10)

1.20 Mar. 22, 2024

1 Added GCC for Renesas RX in Target Compilers

5 Added Wi-Fi module features in section 1.2

6 Updated Figure 1-1

7-8 Added new APIs for TLS, MQTT on-chip, HTTP on-chip in Table 1-1

10-12 Added Status transitions of TLS Client, MQTT on-chip, HTTP on-chip

14-18 Added configuration option for TLS, MQTT, HTTP in table 2-1

19 Updated Code Size for r_wifi_da16xxx rev.1.20

21 Updated Return values

22-24 Updated Parameters

26 Added section 2.12. “for”, “while” and “do while” statements

28 Added new API: R_WIFI_DA16XXX_IsOpened()

43 Added new API: R_WIFI_DA16XXX_HardwareReset()

44 Added new API: R_WIFI_DA16XXX_GetVersion()

52 Added new API: R_WIFI_DA16XXX_TcpReconnect()

52-65 Added new APIs for TLS socket

66-73 Added new APIs for MQTT on-chip

74-76 Added new APIs for HTTP on-chip

79 Added callback function for MQTT on-chip

80-88 Added Section 5. Demo Projects

89 Added Table 6-3 Confirmed Operation Environment (Ver. 1.20)

1.30 July. 16, 2024

5 Updated section 1.2 to add Bare metal feature

6 Updated Figure 1.2 to add Bare metal

14 Updated Table 2.1 to add Logging output function

18 Updated Table 2.3 to add Bare metal option

20 Updated Table 2.4 with memory sizes for r_wifi_da16xxx rev 1.30

21 Updated Section 2.9 with API error code tables

22-24 Updated Section 2.10 with Parameter structure tables

27
Removed Section 2.13 RTOS Usage Requirement and added section
2.13 Limitations

82-90 Updated Section 5.1.4 How to Run the Demo

93 Added Table 6.4 Confirmed Operation Environment (Ver. 1.30)

94-97 Added Section 6.2 Support Logging Function

1.31 Jan. 13, 2025

8
Updated section 1.3 API Overview to add
R_WIFI_DA16XXX_ConfigTlsSocket()

20-21 Updated Code Size for r_wifi_da16xxx rev.1.31

62-63 Added new API: R_WIFI_DA16XXX_ConfigTlsSocket()

95 Added Table 6-5 Confirmed Operation Environment (Ver. 1.31)

1.32 Mar. 18, 2025
20-21 Updated Code Size for r_wifi_da16xxx rev.1.32

95 Added Table 6-6 Confirmed Operation Environment (Ver. 1.32)

RX Family US159-DA16XXXMEVZ Wi-Fi Control Module Using Firmware Integration Technology

R01AN7173EU0140 Rev.1.40 Page 124 of 124

Oct.15.25

1.33 Mar. 27, 2025

1 Updated Top page

6 Added section 1.2.2. Hardware Configuration

21-25 Updated Code Size for r_wifi_da16xxx rev.1.33

29 Updated struct wifi_ip_configuration_t

37
Section 3: Updated format and example
3.4. R_WIFI_DA16XXX_Ping()

42
Section 3: Updated format and example
3.9. R_WIFI_DA16XXX_DnsQuery()

69-68

Section 3: Updated format and example
3.27.R_WIFI_DA16XXX_GetAvailableTlsSocket()
3.28.R_WIFI_DA16XXX_GetTlsSocketStatus()
3.29.R_WIFI_DA16XXX_CreateTlsSocket()
3.30.R_WIFI_DA16XXX_TlsConnect()
3.31.R_WIFI_DA16XXX_SendTlsSocket()
3.32.R_WIFI_DA16XXX_ReceiveTlsSocket()
3.33.R_WIFI_DA16XXX_CloseTlsSocket()
3.34.R_WIFI_DA16XXX_TlsReconnect()
3.35.R_WIFI_DA16XXX_ConfigTlsSocket()

102 Added Table 6-7 Confirmed Operation Environment (Ver. 1.33)

108 Added Section 6.4 Limitations

1.40 Oct. 15, 2025

- Update format layout

10
Section 1.3 API Overview

- Add new API for OTA On-Chip

15
Section 1.4.5 Status Transitions

- Add new Transitions of OTA On-Chip

21 - 22
Section 2.7 Compile Settings

- Add new table for Wi-Fi OTA On-Chip Configuration

23 - 24
Section 2.8 Code Size

- Modfiy codesize for Multiple boards
- Adding new code size table: OTA On-Chip only

29, 33
Section 2.9 Return Values

- Add new API Error Codes for OTA On-Chip
- Add new Member in Structure for OTA state (wifi_ota_state_t)

88 - 97
Section 3 API Functions

- Add new API functions for OTA On-Chip services

111 Added new Section 5.1.5 Porting the Demo Project to Another Device

112 Section 5.2 Adding path link to OTA demo project

115 Section 6.1 Add new table for Wi-Fi v1.40

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1. DA16XXX FIT Module
	1.2. Overview of the DA16XXX Wi-Fi FIT Module
	1.2.1. Connection with the DA16XXX Wi-Fi Module
	1.2.2. Hardware Configuration
	1.2.3. Software Configuration

	1.3. API Overview
	1.4. Status Transitions
	1.4.1. Status Transitions of TCP Client
	1.4.2. Status Transitions of TLS On-Chip Client
	1.4.3. Status Transitions of MQTT On-Chip Client
	1.4.4. Status Transitions of HTTP On-Chip Client
	1.4.5. Status Transitions of OTA On-Chip Service

	2. API Information
	2.1. Hardware Requirements
	2.2. Software Requirements
	2.3. Supported Toolchain
	2.4. Interrupt Vector
	2.5. Header Files
	2.6. Integer Types
	2.7. Compile Settings
	2.8. Code Size
	2.9. Return Values
	2.10. Parameters
	2.11. Adding the FIT Module to Your Project
	2.12. “for”, “while” and “do while” Statements
	2.13. Limitations
	2.13.1 Wi-Fi Security Type Limitations
	2.13.2 Wi-Fi SDK Limitations
	2.13.3 The Daylight Savings Time Setting Limitations
	2.13.4 Wi-Fi Network Connection Limitations
	2.13.5 Wi-Fi Access Point Scanning Limitations

	2.14. Restriction

	3. API Functions
	3.1. R_WIFI_DA16XXX_Open()
	3.2. R_WIFI_DA16XXX_IsOpened()
	3.3. R_WIFI_DA16XXX_Close()
	3.4. R_WIFI_DA16XXX_Ping()
	3.5. R_WIFI_DA16XXX_Scan()
	3.6. R_WIFI_DA16XXX_Connect()
	3.7. R_WIFI_DA16XXX_Disconnect()
	3.8. R_WIFI_DA16XXX_IsConnected()
	3.9. R_WIFI_DA16XXX_DnsQuery()
	3.10. R_WIFI_DA16XXX_SntpServerIpAddressSet()
	3.11. R_WIFI_DA16XXX_SntpEnableSet()
	3.12. R_WIFI_DA16XXX_SntpTimeZoneSet()
	3.13. R_WIFI_DA16XXX_LocalTimeGet()
	3.14. R_WIFI_DA16XXX_SetDnsServerAddress()
	3.15. R_WIFI_DA16XXX_GetMacAddress()
	3.16. R_WIFI_DA16XXX_GetIpAddress()
	3.17. R_WIFI_DA16XXX_HardwareReset()
	3.18. R_WIFI_DA16XXX_GetVersion()
	3.19. R_WIFI_DA16XXX_GetAvailableSocket()
	3.20. R_WIFI_DA16XXX_GetSocketStatus()
	3.21. R_WIFI_DA16XXX_CreateSocket()
	3.22. R_WIFI_DA16XXX_TcpConnect()
	3.23. R_WIFI_DA16XXX_SendSocket()
	3.24. R_WIFI_DA16XXX_ReceiveSocket()
	3.25. R_WIFI_DA16XXX_CloseSocket()
	3.26. R_WIFI_DA16XXX_TcpReconnect()
	3.27. R_WIFI_DA16XXX_GetAvailableTlsSocket()
	3.28. R_WIFI_DA16XXX_GetTlsSocketStatus()
	3.29. R_WIFI_DA16XXX_CreateTlsSocket()
	3.30. R_WIFI_DA16XXX_TlsConnect()
	3.31. R_WIFI_DA16XXX_SendTlsSocket()
	3.32. R_WIFI_DA16XXX_ReceiveTlsSocket()
	3.33. R_WIFI_DA16XXX_CloseTlsSocket()
	3.34. R_WIFI_DA16XXX_TlsReconnect()
	3.35. R_WIFI_DA16XXX_ConfigTlsSocket()
	3.36. R_WIFI_DA16XXX_RegistServerCertificate()
	3.37. R_WIFI_DA16XXX_RequestTlsSocket()
	3.38. R_WIFI_DA16XXX_GetServerCertificate()
	3.39. R_WIFI_DA16XXX_WriteCertificate()
	3.40. R_WIFI_DA16XXX_DeleteCertificate()
	3.41. R_WIFI_DA16XXX_MqttOpen()
	3.42. R_WIFI_DA16XXX_MqttDisconnect()
	3.43. R_WIFI_DA16XXX_MqttConnect()
	3.44. R_WIFI_DA16XXX_MqttPublish()
	3.45. R_WIFI_DA16XXX_MqttReceive()
	3.46. R_WIFI_DA16XXX_MqttSubscribe()
	3.47. R_WIFI_DA16XXX_MqttUnSubscribe()
	3.48. R_WIFI_DA16XXX_MqttClose()
	3.49. R_WIFI_DA16XXX_HttpOpen()
	3.50. R_WIFI_DA16XXX_HttpClose()
	3.51. R_WIFI_DA16XXX_HttpSend()
	3.52. R_WIFI_DA16XXX_OtaOpen()
	3.53. R_WIFI_DA16XXX_OtaClose()
	3.54. R_WIFI_DA16XXX_OtaStart()
	3.55. R_WIFI_DA16XXX_OtaEraseFirmware()
	3.56. R_WIFI_DA16XXX_OtaGetProgress()
	3.57. R_WIFI_DA16XXX_OtaReadFirmwarebyBlock()
	3.58. R_WIFI_DA16XXX_OtaGetAddress()
	3.59. R_WIFI_DA16XXX_OtaFirmwareSize()
	3.60. R_WIFI_DA16XXX_OtaGetState()
	3.61. R_WIFI_DA16XXX_OtaGetFirmware()

	4. Callback Function
	4.1. Wi-Fi callback function
	4.2. MQTT callback function

	5. Demo Projects
	5.1 Wi-Fi DA16600 Multiple Protocols Demo Project
	5.1.1 Prerequisites
	5.1.2 Import the Demo Project
	5.1.3 Hardware Setup
	5.1.4 How to Run the Demo
	5.1.5 Porting the Demo Project to Another Device

	5.2 Wi-Fi DA16600 OTA on-chip Demo Project
	5.3 Adding a Demo to a Workspace
	5.4 Downloading Demo Projects

	6. Appendices
	6.1 Confirmed Operation Environment
	6.2 Support Logging Function
	6.2.2 Debug with Serial Port Logging
	6.2.3 Debug with Renesas Debug Virtual Console
	6.3 Troubleshooting
	6.4 Limitations

	7 Reference Documents
	Revision History

