
 Application Note

R01AN3852EJ0220 Rev.2.20 Page 1 of 67
Nov.28.25

RX Family
SDHI Module Using Firmware Integration Technology
Summary
This application note describes an SDHI module using Firmware Integration Technology (FIT). This module
is a device driver that controls the on-chip SD host interface (SDHI) of RX Family microcontrollers from
Renesas Electronics. The module is referred to below as the SDHI FIT module.

Target Devices
RX231 Group, RX23W Group

RX64M Group, RX65N Group, RX651 Group, RX66N Group and RX671 Group

RX71M Group, RX72M Group and RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.1 Operation Confirmation
Environment".

Related Documents
RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)

RX Family SD Mode SD Memory Card Driver Firmware Integration Technology(R01AN4233)

RX Family DMA Controller DMACA Control Module Firmware Integration Technology (R01AN2063)

RX Family DTC Module Using Firmware Integration Technology (R01AN1819)

RX Family CMT Module Using Firmware Integration Technology (R01AN1856)

RX Family LONGQ Module Using Firmware Integration Technology (R01AN1889)

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 2 of 67
Nov.28.25

Contents

1. Overview ... 4
1.1 SDHI FIT Module .. 4
1.2 Overview of SDHI FIT Module .. 4

1.2.1 Overview of Functions ... 4
1.3 API Overview ... 5
1.4 Processing Example ... 6

1.4.1 Application Structure ... 6

2. API Information ... 8
2.1 Hardware Requirements ... 8
2.2 Software Requirements .. 8
2.3 Supported Tool Chain ... 8
2.4 Interrupt Vectors ... 8
2.5 Header Files ... 8
2.6 Integer Types ... 8
2.7 Compile Time Settings ... 9
2.8 Code Sizes ... 11
2.9 Arguments ... 12
2.10 Return Values .. 12
2.11 Callback Functions ... 12
2.12 Adding the FIT Module to Your Project .. 13
2.13 “for”, “while” and “do while” statements ... 14

3. API Functions ... 15
R_SDHI_Open() ... 15
R_SDHI_Close() .. 16
R_SDHI_IntHandler0() .. 17
R_SDHI_IntCallback() ... 18
R_SDHI_IntSDBuffCallback() .. 19
R_SDHI_IntSdioCallback() ... 20
R_SDHI_EnableIcuInt() .. 21
R_SDHI_DisableIcuInt() ... 22
R_SDHI_SetIntMask() ... 23
R_SDHI_ClearIntMask() ... 25
R_SDHI_ClearSdstsReg() .. 26
R_SDHI_SetSdioIntMask() ... 28
R_SDHI_ClearSdioIntMask() .. 29
R_SDHI_ClearSdiostsReg() ... 30
R_SDHI_SetClock() .. 31
R_SDHI_SetBus() ... 32

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 3 of 67
Nov.28.25

R_SDHI_GetResp() ... 33
R_SDHI_OutReg() ... 34
R_SDHI_InReg() .. 36
R_SDHI_CDLayout() ... 37
R_SDHI_WPLayout() .. 38
R_SDHI_GetWP() .. 39
R_SDHI_GetSpeedType() ... 40
R_SDHI_GetBuffRegAddress() ... 41
R_SDHI_GetVersion() ... 42
R_SDHI_SetLogHdlAddress() ... 43
R_SDHI_Log() ... 44

4. Pin Settings .. 45
4.1 SD Card Insertion and Power-On Timing ... 46
4.2 SD Card Removal and Power-Off Timing ... 48

5. Demo Projects .. 50
5.1 Overview .. 50
5.2 State Transition Diagram .. 50
5.3 Configuration Overview .. 51
5.4 API Functions .. 52
5.5 Replacing Wait Time Processing with Operating System Processing 55
5.6 sdhi_demo_rskrx64m, sdhi_demo_rskrx65n_2m, sdhi_demo_rskrx72n,

sdhi_demo_rskrx64m_gcc, sdhi_demo_rskrx65n_2m_gcc, sdhi_demo_rskrx72n_gcc ... 55
5.7 Adding a Demo to a Workspace .. 56
5.8 Downloading Demo Projects ... 56

6. Appendices ... 57
6.1 Operation Confirmation Environment ... 57
6.2 Troubleshooting .. 62
6.3 Using the SD Card Socket of the RSK for SD Card Evaluation .. 63

6.3.1 Hardware Settings .. 63

7. Reference Documents .. 65

Technical Updates ... 65

Revision History .. 66

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 4 of 67
Nov.28.25

1. Overview
1.1 SDHI FIT Module
The SDHI FIT module can be added to projects as an API. Refer to 2.12, Adding the FIT Module to Your
Project, for instructions for adding the SDHI FIT module to your project.

1.2 Overview of SDHI FIT Module
By using the API functions provided by the SDHI FIT module in combination with your own software, you can
control an SD memory card or SDIO in SD mode.

Note that SD memory card and SDIO drivers designed to work in combination with the SDHI FIT module are
available separately. To obtain these, visit the following webpage:

SD card drivers for RX Family microcontrollers: https://www.renesas.com/driver/rtm0rx0000dsdd

1.2.1 Overview of Functions
The functions of the SDHI FIT module are listed below.

Table 1.1 List of Functions

Item Function
Clock supply Supports SDHI clock supply/halt setting.
SD bus Supports SD mode (1-bit/4-bit) setting.
Interrupt control Supports settings to enable/disable interrupts used by the SDHI.

Supports clearing of interrupt flags used by the SDHI.
Callback functions Supports calling a designated callback function when one of the

following interrupts occurs:
• Card access interrupt (CACI)
• SDIO access interrupt (SDACI)
• Card detect interrupt (CDETI)
• SD buffer access interrupt (SBFAI)

SDHI register set/get contents Supports SDHI register set/get contents.
Endianness Supports operation in little-endian or big-endian mode.
Other functions Supports Firmware Integration Technology (FIT).

https://www.renesas.com/driver/rtm0rx0000dsdd

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 5 of 67
Nov.28.25

1.3 API Overview
Table 1.2 lists the API functions provided by the SDHI FIT module.

Table 1.2 API Functions

Function Function Description
R_SDHI_Open Module open processing
R_SDHI_Close Module close processing
R_SDHI_IntHandler0 Interrupt handler
R_SDHI_IntCallback Callback function registration processing for card access interrupt

(CACI) and card detect interrupt (CDETI)
R_SDHI_IntSDBuffCallBack Callback function registration processing for SD buffer access

interrupt (SBFAI)
R_SDHI_IntSdioCallback Callback function registration processing for SDIO access

interrupt (SDACI)
R_SDHI_EnableIcuInt ICU controller interrupt enable processing for SDHI
R_SDHI_DisableIcuInt ICU controller interrupt disable processing for SDHI
R_SDHI_SetIntMask SD interrupt enable processing
R_SDHI_ClearIntMask SD interrupt disable processing
R_SDHI_ClearSdstsReg SD status register clear processing
R_SDHI_SetSdioIntMask SDIO interrupt mask register setting processing
R_SDHI_ClearSdioIntMask SDIO interrupt mask register clear processing
R_SDHI_ClearSdiostsReg SDIO status register clear processing
R_SDHI_SetClock SD clock supply/halt processing
R_SDHI_SetBus SD bus setting processing
R_SDHI_GetResp Command response acquisition processing
R_SDHI_OutReg SDHI register setting processing
R_SDHI_InReg SDHI register get contents processing
R_SDHI_CDLayout SDHI_CD pin in use/not in use confirmation processing
R_SDHI_WPLayout SDHI_WP pin in use/not in use confirmation processing
R_SDHI_GetWP SDHI_WP pin state acquisition processing
R_SDHI_GetSpeedType Speed mode acquisition processing
R_SDHI_GetBuffRegAddress SD buffer register address acquisition processing
R_SDHI_GetVersion Module version information acquisition processing
R_SDHI_SetLogHdlAddress LONGQ module handler address setting processing*1
R_SDHI_Log Error log acquisition processing*1
Note 1. Separate LONGQ FIT module required.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 6 of 67
Nov.28.25

1.4 Processing Example
1.4.1 Application Structure
Figure 1.1 shows the application structure when a FAT file system is constructed using this SD memory card
driver.

Figure 1.1 Application Structure

SDHI FIT module

SD memory card driver
(SD Specifications Part 1 Physical Layer Specification)

FAT file system
(SD Specifications Part 2 File System Specification)

FAT file system layer

Driver interface function Driver interface function

Media

Device driver layer
(SD memory protocol

control)

Hardware layer Microcontroller hardware

Pin control
module

Port control
MPC control

SD card

Items provided with this SDHI FIT module

 Sample programs that can be provided separately

Peripheral
function
control
module

Timers
CMT control

DMAC control
DTC control

Application

 Device driver layer
(SDHI hardware control)

Target microcontroller settings
(Target microcontroller interface functions)

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 7 of 67
Nov.28.25

1.4.1.1 FAT File System
This is the software used for SD memory file management. A FAT file system must be provided separately.
Please obtain it from the following as necessary.

Open Source FAT File System M3S-TFAT-Tiny:
https://www.renesas.com/software-tool/fat-file-system-m3s-tfat-tiny-rx-family

1.4.1.2 Driver Interface Functions
This is the software that implements the layer that connects the Renesas Electronics FAT file system API
with the SD memory card driver API. If necessary, please obtain it from the M3S-TFAT-Tiny webpage above.

RX Family M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

1.4.1.3 SD Memory Card Driver
This software implements the SD Specifications Part 1 Physical Layer Specification SD memory protocol
control and SDHI low-level access control.

1.4.1.4 SDHI FIT Module
The module described in this application note. It also includes target microcontroller interface functions and
interrupt setting files compatible with specific microcontroller products.

1.4.1.5 Peripheral Function Control Module (Sample Program)
This software implements timer control, DMAC control, and DTC control. It can be acquired as a sample
program. See Refer to “Related Documents” on the first page of this application note, and obtain the relevant
items.

1.4.1.6 Pin Control Module (Sample Program)
This is the pin control software used for SDHI control. The microcontroller resources used consist of the port
control (SDHI function control and SD card power supply port control) and MPC control (SDHI function
control).

Regarding pin allocation, we recommend allocating system pins at the same time so that the pins used do
not conflict.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 8 of 67
Nov.28.25

2. API Information
The operation of the SDHI FIT module has been confirmed under the conditions outlined below.

2.1 Hardware Requirements
The microcontroller used must support the following function.

• SDHI

2.2 Software Requirements
The SDHI FIT module is dependent on the following FIT module:

• Board support package (r_bsp) Rev.5.20 or higher

2.3 Supported Tool Chain
The SDHI FIT module has been confirmed to operate with the toolchain listed in 6.1, Operation Confirmation
Environment.

2.4 Interrupt Vectors
If the macro definition SDHI_CFG_MODE_INT is set to SDHI_MODE_HWINT, SDHI interrupts are enabled.
Table 2.1 lists the interrupt vectors used by the SDHI FIT module.

Table 2.1 Interrupt Vectors

Device Interrupt Vectors
RX64M
RX65N
RX66N
RX671
RX71M
RX72M
RX72N

SD buffer access interrupt (SBFAI) (vector number: 44)
GROUPBL1 interrupt (vector number: 111)
• Card detect interrupt (CDETI) (group interrupt source number: 3)
• Card access interrupt (CACI) (group interrupt source number: 4)
• SDIO access interrupt (SDACI) (group interrupt source number: 5)

RX231
RX23W

SD buffer access interrupt (SBFAI) (vector number: 40)
• Card detect interrupt (CDETI) (vector number: 41)
• Card access interrupt (CACI) (vector number: 42)
• SDIO access interrupt (SDACI) (vector number: 43)

2.5 Header Files
The API calls and interface definitions used are defined in r_sdhi_rx_if.h.

2.6 Integer Types
The SDHI FIT module is coded in ANSI C99. These types are defined in stdint.h.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 9 of 67
Nov.28.25

2.7 Compile Time Settings
The configuration option settings of the SDHI FIT module are contained in r_sdhi_rx_config.h.

The following table lists the names of the options and descriptions of their setting values.

Configuration options in r_sdhi_rx_config.h
#define SDHI_CFG_CHx_INCLUDED (1)
Note: Channel 0 default value: “1 (Enabled)”

Note: “x”: Channel number

Select whether the corresponding channel will be used.
If “disabled” is selected, the code for processing the
corresponding channel is omitted.
If “enabled” is selected, the code for processing the
corresponding channel is included.
If the microcontroller supports multiple channels, it is
necessary to add definitions for several channels.

#define SDHI_CFG_CHx_CD_ACTIVE (1)
Note: Default value: “1 (Enabled)”

Note: “x”: Channel number

If it is not necessary to assign an SDHI_CD pin, it can be
removed individually from control by the SDHI FIT module.
To assign a pin to the SDHI function so that it can be
controlled, set this option to (1).
To remove it from the control of the SDHI FIT module, set this
option to (0).
When a pin is removed from the control of the SDHI FIT
module it can be used for a different purpose (as a general I/O
port, for example). When functional control by the SDHI FIT
module is removed, the functionality for specifying the pin to be
used is also disabled. Therefore, to use a pin for a different
purpose, it is also necessary to specify the pin to be used
separately. Settings are required for each channel used.

#define SDHI_CFG_CHx_WP_ACTIVE (1)
Note: Default value: “1 (Enabled)”

Note: “x”: Channel number

If it is not necessary to assign an SDHI_WP pin, it can be
removed individually from control by the SDHI FIT module.
To assign a pin to the SDHI function so that it can be
controlled, set this option to (1).
To remove it from the control of the SDHI FIT module, set this
option to (0).
When a pin is removed from the control of the SDHI FIT
module it can be used for a different purpose (as a general I/O
port, for example). When functional control by the SDHI FIT
module is removed, the functionality for specifying the pin to be
used is also disabled. Therefore, to use a pin for a different
purpose, it is also necessary to specify the pin to be used
separately. Settings are required for each channel used.

#define SDHI_CFG_CHx_INT_LEVEL (10)
/* SDHI channel x interrupt level */
Note: Default value: “(10)”

Specify the level of the card detect interrupt (CDETI), card
access interrupt (CACI), and SDIO access interrupt (SDACI).

#define SDHI_CFG_CHx_INT_LEVEL_DMADTC (10) /*
SDHI channel x DMA/DTC interrupt level */
Note: Default value: “(10)”

Specify the level of the SD buffer access interrupt (SBFAI).
This interrupt level is relevant when writing data to the SD
buffer, or when reading data from the SDHI buffer, using the
DMAC or DTC.

#define SDHI_CFG_DIV_HIGH_SPEED SDHI_DIV_2
Note: Default value: “SDHI_DIV_2” (×1/2)*1

The clock frequency definition for high-speed mode. Specify
the PCLKB division ratio by setting the SDHI clock frequency
select bits (CLKSEL[7:0]). Refer to the hardware manual of the
microcontroller regarding setting values, and specify a value of
SDHI_DIV_1 to SDHI_DIV_512 (×1 to ×1/512).
For example, for PCLKB = 60 MHz, high-speed mode clock
frequency = 30 MHz, the setting value would be SDHI_DIV_2
(×1/2).

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 10 of 67
Nov.28.25

#define SDHI_CFG_DIV_DEFAULT_SPEED
SDHI_DIV_4
Note: Default value: “SDHI_DIV_4” (×1/4)*1

The clock frequency definition for default-speed mode. The
setting method is the same as that for high-speed mode,
above.
For example, for PCLKB = 60 MHz, default-speed mode clock
frequency = 15 MHz, the setting value would be SDHI_DIV_4
(×1/4).

#define SDHI_CFG_DIV_INIT_SPEED SDHI_DIV_1024
Note: Default value: “SDHI_DIV_256” (×1/256)*1

The clock frequency definition for card-recognition mode. The
setting method is the same as that for high-speed mode,
above.
For example, for PCLKB = 60 MHz, card-recognition mode
clock frequency = 234 kHz, the setting value would be
SDHI_DIV_256 (×1/256).

#define SDHI_CFG_SDOPT_CTOP (0x000eul)
/* CD time out count */
Note: Default value: “0x000eul”

The timeout card detect timeout setting.
Set the timeout value in the card detect timeout counter
(CTOP) bits (3 to 0) in the card access option register
(SDOPT).

#define SDHI_CFG_SDOPT_TOP (0x00e0ul)
/* response time out count */
Note: Default value: “0x00e0ul”

The command response timeout setting.
Set the SRBSYTO[3:0] timeout value in the timeout counter
(TOP) bits (7 to 4) in the card access option register (SDOPT).

#define SDHI_CFG_PARAM_CHECKING_ENABLE
(1)
Note: Default value: “1 (Enabled)”

Set argument check to enable or disable.
(0): Disable
(1): Enable

/* #define SDHI_CFG_LONGQ_ENABLE */
Note: Default value: “Disabled”

Set this definition if the error log acquisition function using the
LONGQ FIT module will be used.
To use this function, it is necessary to use the debugging
module (a dedicated module with this definition enabled) and to
add the LONGQ FIT module.

#define SDHI_CFG_CH0_EN_NESTED_INT (0)
/* SDHI CH0 nested interrupts */
Note: Default value: “0 (Disabled)”

Specify whether to include code for the SDHI CH0 nested
interrupt, which includes the card detect interrupt (CDETI), card
access interrupt (CACI), and SDIO access interrupt (SDACI).
0: Disable nested interrupt.
1: Enable nested interrupt.

#define SDHI_CFG_CH0_EN_SBFAI_NESTED_INT (0)
/* SDHI CH0 SBFAI nested interrupt */
Note: Default value: “0 (Disabled)”

Specify whether to include code for the SDHI CH0 SBFAI
nested interrupt.
This interrupt is relevant when writing data to the SD buffer, or
when reading data from the SDHI buffer, using the DMAC or
DTC.
0: Disable nested interrupt.
1: Enable nested interrupt.

Note 1. SDHI_DIV_n (n represents an integer-value division ratio) indicates the PCLK division ratio of the
SDHI. Depending on the electrical characteristics of the microcontroller, it may not be possible to
use the maximum transfer frequency defined in SD Specifications, Part 1, Physical Layer
Specification. Refer to the hardware manual of the microcontroller to determine the maximum
allowable transfer frequency setting.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 11 of 67
Nov.28.25

2.8 Code Sizes
The table below lists code sizes of the SDHI FIT module. As representative examples, one device each is
listed from the RX200 Series, RX600 Series, and RX700 Series.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7, Compile Time Settings.

The values in the table below are confirmed under the following conditions.

Module Revision: r_sdhi_rx rev2.07

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00

(The option of “-lang = c99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 8.03.00.202002

(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 4.14.1

(The default settings of the integrated development environment.)

Configuration Options: Default settings

Table 2.2 Code Sizes

ROM, RAM and Stack Code Sizes (note 1, 2)

Device Category Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX231 ROM 1,793 bytes 1,508 bytes 4,036 bytes 3,388 bytes 3,048 bytes 2,620 bytes

RAM 28 bytes 28 bytes 32 bytes

Max. size of user stack 68 bytes - 60 bytes

Max. size of interrupt
stack

48 bytes - 64 bytes

RX65N ROM 1,867 bytes 1,582 bytes 4,132 bytes 3,468 bytes 3,096 bytes 2,695 bytes

RAM 28 bytes 28 bytes 32 bytes

Max. size of user stack 88 bytes - 68 bytes

Max. size of interrupt
stack

36 bytes - 68 bytes

RX71M ROM 1,864 bytes 1,579 bytes 4,132 bytes 3,468 bytes 3,104 bytes 2,680 bytes

RAM 28 bytes 28 bytes 32 bytes

Max. size of user stack 88 bytes - 68 bytes

Max. size of interrupt
stack

36 bytes - 68 bytes

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 12 of 67
Nov.28.25

Note 1. The necessary memory size differs depending on factors such as the version and compile options
of the C compiler.

Note 2. The values shown apply to little-endian bit order. Depending on the endianness, the above
memory sizes may differ.

2.9 Arguments
This section presents the structures used as arguments to the API functions. These structures are included
in the file r_sdhi_rx_if.h along with the API function prototype declarations.

2.10 Return Values
This section presents the return values from the API functions. This enumeration type is defined in the file
r_sdhi_rx_if.h along with the API function prototype declarations.

2.11 Callback Functions
The SDHI FIT module calls the callback function specified by the user when the Card detect interrupt
(CDETI), Card access interrupt (CACI), or SDIO access interrupt (SDACI) occurs.

For the method of registering callback functions, refer to R_SDHI_IntCallback(),
R_SDHI_IntSDBuffCallback(), and R_SDHI_IntSdioCallback().

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 13 of 67
Nov.28.25

2.12 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) or (4) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’s Guide: CS+ (R20AN0470)” for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (R01AN1826)” for details.

(4) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 14 of 67
Nov.28.25

2.13 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :

/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{

 /* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example :

/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{

 g_protect_counters[i] = 0;

}

do while statement example :

/* Reset completion waiting */

do

{

 reg = phy_read(ether_channel, PHY_REG_CONTROL);

 count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 15 of 67
Nov.28.25

3. API Functions

R_SDHI_Open()
This function is run first when utilizing the API functions provided by the SDHI FIT module.

Format
sdhi_status_t R_SDHI_Open(
 uint32_t channel,
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Obtains the SDHI channel resource specified by the argument channel, and initializes the SDHI FIT module
and SDHI channel. Also, takes exclusive possession of the SDHI channel resource.

Example
/* ==== Please add the processing to set the pins. ==== */

if (R_SDHI_Open(SDHI_CH0) != SDHI_SUCCESS)
{
 /* Error */
}

Special Notes
The value after initialization of the swap control register (SDSWAP) depends on the endian setting.

Little endian: 0x00000000 (Swap write/read: Disable)
Big endian: 0x000000c0 (Swap write/read: Enable)

Pin settings must be entered before running this function. Refer to 4, Pin Settings.

If this function does not complete successfully, library functions other than R_SDHI_GetVersion(),
R_SDHI_Log(), and R_SDHI_SetLogHdlAddress() cannot be used.

The pin states remain unchanged before and after this function is run.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 16 of 67
Nov.28.25

R_SDHI_Close()
This function releases the resource currently in use by the SDHI FIT module.

Format
sdhi_status_t R_SDHI_Close(
 uint32_t channel
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Ends all processing by the SDHI FIT module, and releases the SDHI channel resource specified by the
argument channel.

The SDHI channel is then set to the module stop state.

Insertion-extraction interrupts are disabled after this function runs.

Example
/* ==== Please add the processing to set the pins. ==== */

if (R_SDHI_Close(SDHI_CH0) != SDHI_SUCCESS)
{
 /* Error */
}

Special Notes
Pin settings must be entered before running this function. Refer to 4, Pin Settings. Before running this
function, initialization processing by the R_SDHI_Open() function is required.

The pin states remain unchanged before and after this function is run.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 17 of 67
Nov.28.25

R_SDHI_IntHandler0()
This function is the interrupt handler.

Format
void R_SDHI_IntHandler0(
 void *vect
)

Parameters
*vect

vector table

Return Values
None

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
This is the interrupt handler of the SDHI FIT module.

It is incorporated into the system as a processing routine for interrupt sources supported by the SDHI.

When a callback function for the card access interrupt (CACI) and card detect interrupt (CDETI), and a
callback function for the SDIO access interrupt (SDACI) have been registered, the appropriate callback
function is called by this function.

Example
No settings are required because the function is incorporated into the system.

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 18 of 67
Nov.28.25

R_SDHI_IntCallback()
This function registers the callback function for the card access interrupt (CACI) and card detect interrupt
(CDETI).

Format
sdhi_status_t R_SDHI_IntCallback(
 uint32_t channel,
 sdhi_status_t (*callback)(uint32_t, uint32_t)
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
(*callback)(uint32_t, uint32_t): Callback function to be registered

If set to a null pointer, no callback function is registered.
The first argument (uint32_t) contains the value of SD status register 1 (SDSTS1).
The second argument (uint32_t) contains the value of SD status register 2 (SDSTS2).

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Registers the callback function for the card access interrupt (CACI) and card detect interrupt (CDETI). The
callback function registered by this function is called as a subroutine of the interrupt handler when an
interrupt is generated by a change in the SD protocol status.

Example
/* Callback function */
sdhi_status_t r_sdhi_callback(uint32_t sdsts1, uint32_t sdsts2)
{
 /* Do nothing */

 return SDHI_SUCCESS;
}

if (R_SDHI_IntCallback(SDHI_CH0, r_sdhi_callback) != SDHI_SUCCESS)
{
 /* Error */
}

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

The callback function registered by this function is different from the callback functions of the SD buffer
access interrupt (SBFAI) and SDIO access interrupt (SDACI). Therefore, this callback function is not called
when the above-mentioned interrupts occur.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 19 of 67
Nov.28.25

R_SDHI_IntSDBuffCallback()
This function registers the callback function for the SD buffer access interrupt (SBFAI).

Format
sdhi_status_t R_SDHI_IntSDBuffCallback(
 uint32_t channel,
 sdhi_status_t (*callback)(void *)
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
(*callback)(void *): Callback function to be registered

If set to a null pointer, no callback function is registered.
The value of (void *) is always 0.

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Registers the callback function for the SD buffer access interrupt (SBFAI). The callback function registered
by this function is called as a subroutine of the DTC’s data transfer end interrupt handler when an interrupt is
generated at DTC transfer end.

Example
/* Callback function */
sdhi_status_t r_sdhi_sdbuff_callback(void * vect)
{
 /* Do nothing */

 return SDHI_SUCCESS;
}

if (R_SDHI_IntSDBuffCallback(SDHI_CH0, r_sdhi_sdbuff_callback) !=
SDHI_SUCCESS)
{
 /* Error */
}

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

The callback function registered by this function is different from the callback function of the card access
interrupt (CACI) and card detect interrupt (CDETI), and from the callback function of the SDIO access
interrupt (SDACI). Therefore, this callback function is not called when the above-mentioned interrupts occur.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 20 of 67
Nov.28.25

R_SDHI_IntSdioCallback()
This function registers the callback function for the SDIO access interrupt (SDACI).

Format
sdhi_status_t R_SDHI_IntSdioCallback(
 uint32_t channel,
 sdhi_status_t (*callback)(uint32_t)
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
(*callback)(uint32_t): Callback function to be registered

If set to a null pointer, no callback function is registered.
The first argument (uint32_t) contains the value of the SDIO status register (SDIOSTS).

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Registers the callback function for the SDIO access interrupt (SDACI).

The callback function registered by this function is called as a subroutine of the interrupt handler when an
SDHI SDIO interrupt is generated.

Example
/* Callback function */
sdhi_status_t r_sdhi_sdio_callback(int32_t sdiosts)
{
 /* Do nothing */

 return SDHI_SUCCESS;
}

if (R_SDHI_IntSdioCallback(SDHI_CH0, r_sdhi_sdio_callback) != SDHI_SUCCESS)
{
 /* Error */
}

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

The callback function registered by this function is different from the callback function of the card access
interrupt (CACI) and card detect interrupt (CDETI), and from the callback function of the SD buffer access
interrupt (SBFAI). Therefore, this callback function is not called when the above-mentioned interrupts occur.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 21 of 67
Nov.28.25

R_SDHI_EnableIcuInt()
Enables ICU controller interrupts*1 for the SDHI.

Note 1. The following interrupt is enabled. [SD buffer access interrupt (SBFAI), Card detect interrupt
(CDETI), Card access interrupt (CACI), SDIO access interrupt (SDACI)]

Format
sdhi_status_t R_SDHI_EnableIcuInt(
 uint32_t channel,
 uint32_t select
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
select

Specify interrupt arguments using values for the macro definitions shown in the table below or OR
operations.

Macro Definition Value (Bit) Processing
SDHI_HWINT_ACCESS_CD 0x0001 Card detect interrupt (CDETI) setting

Card access interrupt (CACI) setting
SDIO access interrupt (SDACI) setting

SDHI_HWINT_BUFFER 0x0010 SD buffer access interrupt (SBFAI) setting

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Makes settings to the ICU controller registers.

Makes settings to the SDHI’s interrupt source property register (IPR). The setting values are defined by
#define SDHI_CHx_INT_LEVRL and #define SDHI_CFG_CHx_INT_LEVEL_DMADTC.

Sets the SDHI interrupt request enable register (IEN) to enable interrupts.

Example
/* Enable all SDHI ICU interrupt */
R_SDHI_EnableIcuInt(SDHI_CH0, SDHI_HWINT_ACCESS_CD | SDHI_HWINT_BUFFER);

/* Enable only SD buffer access ICU interrupt */
R_SDHI_EnableIcuInt(SDHI_CH0, SDHI_HWINT_BUFFER);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 22 of 67
Nov.28.25

R_SDHI_DisableIcuInt()
Disables ICU controller interrupts*1 for the SDHI.

Note 1. The following interrupt is disabled. [SD buffer access interrupt (SBFAI), Card detect interrupt
(CDETI), Card access interrupt (CACI), SDIO access interrupt (SDACI)]

Format
sdhi_status_t R_SDHI_DisableIcuInt(
 uint32_t channel,
 uint32_t select
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
select

Specify interrupt arguments using values for the macro definitions shown in the table below or OR
operations.

Macro Definition Value (Bit) Processing
SDHI_HWINT_ACCESS_CD 0x00000001 Card detect interrupt (CDETI) setting

Card access interrupt (CACI) setting
SDIO access interrupt (SDACI) setting

SDHI_HWINT_BUFFER 0x00000010 SD buffer access interrupt (SBFAI) setting

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Makes settings to the ICU controller registers.

Clears the SDHI interrupt source priority register (IPR) to 0.

Sets the SDHI interrupt request enable register (IEN) to disable interrupts.

Example
/* Disable all SDHI ICU interrupt */
R_SDHI_DisableIcuInt(SDHI_CH0, SDHI_HWINT_ACCESS_CD | SDHI_HWINT_BUFFER);

/* Disable only SD buffer access ICU interrupt */
R_SDHI_DisableIcuInt(SDHI_CH0, SDHI_HWINT_BUFFER);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 23 of 67
Nov.28.25

R_SDHI_SetIntMask()
This function controls the SD interrupt mask registers to enable SD interrupts.

Format
sdhi_status_t R_SDHI_SetIntMask(
 uint32_t channel,
 uint32_t mask1,
 uint32_t mask2
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
mask1

SD interrupt mask register 1 (SDIMSK1) control
To enable an interrupt, set the target bit to 1.
To not change the interrupt setting, clear the target bit to 0.
However, setting to the Read Only bit is invalid.

Bit Symbol Bit Name R/W
b0 RSPENDM Response End Interrupt Request Mask R/W
b1 - Reserved R
b2 ACENDM Access End Interrupt Request Mask R/W
b3 SDCDRMM SDHI_CD Removal Interrupt Request Mask R/W
b4 SDCDRMM SDHI_CD Insertion Interrupt Request Mask R/W
b7-b5 - Reserved R
b8 SDD3RMM SDHI_D3 Removal Interrupt Request Mask R/W
b9 SDD3INM SDHI_D3 Insertion Interrupt Request Mask R/W
b31-b10 - Reserved R

mask2

SD interrupt mask register 2 (SDIMSK2) control
To enable an interrupt, set the target bit to 1.
To not change the interrupt setting, clear the target bit to 0.
However, setting to the Read Only bit is invalid.

Bit Symbol Bit Name R/W
b0 CMDEM Command Error Interrupt Request Mask R/W
b1 CRCEM CRC Error Interrupt Request Mask R/W
b2 ENDEM End Bit Error Interrupt Request Mask R/W
b3 DTTOM Data Timeout Interrupt Request Mask R/W
b4 ILWM SDBUFR Register Illegal Write Interrupt Request Mask R/W
b5 ILRM SDBUFR Register Illegal Read Interrupt Request Mask R/W
b6 RSPTOM Response Timeout Interrupt Request Mask R/W
b7 - Reserved R
b8 BREM BRE Interrupt Request Mask R/W
b9 BWEM BWE Interrupt Request Mask R/W
b14-b10 - Reserved R
b15 ILAM Illegal Access Error Interrupt Request Mask R/W
b31-b16 - Reserved R

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 24 of 67
Nov.28.25

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Controls SD interrupt mask register 1 (SDIMSK1) and SD interrupt mask register 2 (SDIMSK2) to enable SD
interrupts.

Example
#define SDHI_SDIMSK1_DATA_TRNS (0x0004u) /* Command sequence end */
#define SDHI_SDIMSK2_BWE (0x8a7fu) /* Write enable and All errors*/

R_SDHI_SetIntMask(SDHI_CH0, SDHI_SDIMSK1_DATA_TRNS, SDHI_SDIMSK2_BWE);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

After calling this function, call the R_SDHI_EnableIcuInt() function to enable SDHI ICU controller interrupts. If
not enabled, no SD interrupts will be generated.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 25 of 67
Nov.28.25

R_SDHI_ClearIntMask()
This function controls the SD interrupt mask registers to disable SD interrupts.

Format
sdhi_status_t R_SDHI_ClearIntMask(
 uint32_t channel,
 uint32_t mask1,
 uint32_t mask2
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
mask1

SD interrupt mask register 1 (SDIMSK1) control
To disable an interrupt, set the target bit to 1.
To not change the interrupt setting, clear the target bit to 0.
However, setting to the Read Only bit is invalid.
For details of the SDIMSK1 register, refer to " R_SDHI_SetIntMask()".

mask2
SD interrupt mask register 2 (SDIMSK2) control

To disable an interrupt, set the target bit to 1.
To not change the interrupt setting, clear the target bit to 0.
However, setting to the Read Only bit is invalid.
For details of the SDIMSK2 register, refer to "R_SDHI_SetIntMask()".

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Controls SD interrupt mask register 1 (SDIMSK1) and SD interrupt mask register 2 (SDIMSK2) to disable SD
interrupts.

Example
#define SDHI_SDIMSK1_DATA_TRNS (0x0004u) /* Command sequence end */
#define SDHI_SDIMSK2_BWE (0x8a7fu) /* Write enable and All errors*/

R_SDHI_ClearIntMask(SDHI_CH0, SDHI_SDIMSK1_DATA_TRNS, SDHI_SDIMSK2_BWE);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

Before calling this function, call the R_SDHI_DisableIcuInt() function to disable SDHI ICU controller interrupts.
If not disabled, SD interrupts may be generated at unintended times.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 26 of 67
Nov.28.25

R_SDHI_ClearSdstsReg()
This function controls the SD status registers to clear interrupt flags.

Format
sdhi_status_t R_SDHI_ClearSdstsReg(
 uint32_t channel,
 uint32_t clear_sdsts1,
 uint32_t clear_sdsts2
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
clear_sdsts1

SD status register 1 (SDSTS1) control
To 0 clear an interrupt flag, set the target bit to 1.
To not change the interrupt flag, clear the target bit to 0.
However, setting to the Read Only bit is invalid.

Bit Symbol Bit Name R/W
b0 RSPEND Response End Detection Flag R/W
b1 - Reserved R
b2 ACEND Access End Detection Flag R/W
b3 SDCDRM SDHI_CD Removal Flag R/W
b4 SDCDIN SDHI_CD Insertion Flag R/W
b5 SDCDMON SDHI_CD Pin Monitor Flag R
b6 - Reserved R
b7 SDWPMON SDHI_WP Pin Monitor Flag R
b8 SDD3RM SDHI_D3 Removal Flag R/W
b9 SDD3IN SDHI_D3 Insertion Flag R/W
b10 SDD3MON SDHI_D3 Pin Monitor Flag R
b31-b11 - Reserved R

clear_sdsts2

SD status register 2 (SDSTS2) control
To 0 clear an interrupt flag, set the target bit to 1.
To not change the interrupt flag, clear the target bit to 0.
However, setting to the Read Only bit and b12 (Reserved bit) is invalid.

Bit Symbol Bit Name R/W
b0 CMDE Command Error Detection Flag R/W
b1 CRCE CRC Error Detection Flag R/W
b2 ENDE End Bit Error Detection Flag R/W
b3 DTO Data Timeout Detection Flag R/W
b4 ILW SDBUFR Illegal Write Access Detection Flag R/W
b5 ILR SDBUFR Illegal Read Access Detection Flag R/W
b6 RSPTO Response Timeout Detection Flag R/W
b7 SDD0MON SDHI_D0 Pin Status Flag R
b8 BRE SDBUFR Read Enable Flag R/W
b9 BWE SDBUFR Write Enable Flag R/W
b10 - Reserved R
b11 - Reserved (*1) R

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 27 of 67
Nov.28.25

b12 - Reserved R
b13 SDCLKCREN SDCLKCR Write Enable Flag R
b14 CBSY Command Sequence Status Flag R
b15 ILA Illegal Access Error Detection Flag R/W
b31-b16 - Reserved R

Note1 Writes "1" to the target bit irrespective of the setting value.

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Clears interrupt flags in SD status register 1 (SDSTS1) and SD status register 2 (SDSTS2).

Example
#define SDHI_SDIMSK1_TRNS_RESP (0x0005u)
 /* Command sequence end and Response end */
#define SDHI_SDIMSK2_CLEAR (0x837fu)
 /* All initialization clear */

R_SDHI_ClearSdstsReg(SDHI_CH0, SDHI_SDIMSK1_TRNS_RESP, SDHI_SDIMSK2_CLEAR);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

Before calling this function, call the R_SDHI_DisableIcuInt() function to disable SDHI ICU controller interrupts.
If not disabled, SD interrupts may be generated at unintended times.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 28 of 67
Nov.28.25

R_SDHI_SetSdioIntMask()
This function controls the SDIO interrupt mask registers to enable SDIO interrupts.

Format
sdhi_status_t R_SDHI_SetSdioIntMask(
 uint32_t channel,
 uint32_t mask
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
mask

SDIO interrupt mask register (SDIOIMSK) control
To enable an interrupt, set the target bit to 1.
To not change the interrupt setting, clear the target bit to 0.
However, setting to the Read Only bit and b2-b1 (Reserved bit) is invalid.

Bit Symbol Bit Name R/W
b0 IOIRQM IOIRQ Interrupt Mask Control R/W
b2-b1 - Reserved (*1) R/W
b13-b3 - Reserved R
b14 EXPUB52M EXPUB52 Interrupt Request Mask Control R/W
b15 EXWTM EXWT Interrupt Request Mask Control R/W
b31-b16 - Reserved R

Note1 Writes "1" to the target bit irrespective of the setting value.

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Controls the SDIO interrupt mask register (SDIOIMSK) to enable interrupts.

Example
#define SDHI_SDIOIMSK_IOIRQ (0x0001u) /* Interrupt from IO Card */

R_SDHI_SetSdioIntMask(SDHI_CH0, SDHI_SDIOIMSK_IOIRQ);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

After calling this function, call the R_SDHI_EnableIcuInt() function to enable SDHI ICU controller interrupts. If
not enabled, no SDIO interrupts will be generated.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 29 of 67
Nov.28.25

R_SDHI_ClearSdioIntMask()
This function controls the SDIO interrupt mask registers to disable SDIO interrupts.

Format
sdhi_status_t R_SDHI_ClearSdioIntMask(
 uint32_t channel,
 uint32_t mask
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
mask

SDIO interrupt mask register (SDIOIMSK) control
To disable an interrupt, set the target bit to 1.
To not change the interrupt setting, clear the target bit to 0.
However, setting to the Read Only bit and b2-b1 (Reserved bit) is invalid.
For details of the SDIOIMSK register, refer to "R_SDHI_SetSdioIntMask()".

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Controls the SDIO interrupt mask register (SDIOIMSK) to disable interrupts.

Example
#define SDHI_SDIOIMSK_IOIRQ (0x0001u) /* Interrupt from IO Card */

R_SDHI_ClearSdioIntMask(SDHI_CH0, SDHI_SDIOIMSK_IOIRQ);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

Before calling this function, call the R_SDHI_DisableIcuInt() function to disable SDHI ICU controller interrupts.
If not disabled, SD interrupts may be generated at unintended times.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 30 of 67
Nov.28.25

R_SDHI_ClearSdiostsReg()
This function controls the SDIO status registers to clear interrupt flags.

Format
sdhi_status_t R_SDHI_ClearSdiostsReg(
 uint32_t channel,
 uint32_t clear
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
clear

SDIO status register (SDIOSTS) control
To clear an interrupt flag, set the target bit to 1.
To not change the interrupt flag, clear the target bit to 0.
However, setting to the Read Only bit and b2-b1 (Reserved bit) is invalid.

Bit Symbol Bit Name R/W
b0 IOIRQ SDIO Interrupt Status Flag R/W
b2-b1 - Reserved (*1) R/W
b13-b3 - Reserved R
b14 EXPUB52 EXPUB52 Status Flag R/W
b15 EXWT EXWT Status Flag R/W
b31-b16 - Reserved R

Note1 Writes "1" to the target bit irrespective of the setting value.

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Clears interrupt flags in the SDIO status register (SDIOSTS).

Example
#define SDHI_SDIOIMSK_IOIRQ (0x0001u) /* Interrupt from IO Card */

R_SDHI_ClearSdiostsReg(SDHI_CH0, SDHI_SDIOIMSK_IOIRQ);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

Before calling this function, call the R_SDHI_DisableIcuInt() function to disable SDHI ICU controller interrupts.
If not disabled, SD interrupts may be generated at unintended times.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 31 of 67
Nov.28.25

R_SDHI_SetClock()
This function turns the SD clock on and off.

Format
sdhi_status_t R_SDHI_SetClock(
 uint32_t channel,
 uint32_t div,
 int32_t enable
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
div

Use the following setting values:
High-speed mode: SDHI_CFG_DIV_HIGH_SPEED
Default-speed mode: SDHI_CFG_DIV_DEFAULT_SPEED
Card-recognition mode: SDHI_CFG_DIV_INIT_SPEED

Refer to 2.7, Compile Time Settings, regarding the definitions of the above.
enable

Use the following setting values:
Clock stopped: SDHI_CLOCK_DISABLE
Clock supplied: SDHI_CLOCK_ENABLE

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Turns the SD clock on and off.

Example
/* Supply the clock */
if (R_SDHI_SetClock(SDHI_CH0, SDHI_CFG_DIV_INIT_SPEED, SDHI_CLOCK_ENABLE) !=
SDHI_SUCCESS)
{
 /* Error */
}

/* Stop the clock */
if (R_SDHI_SetClock(SDHI_CH0, 0, SDHI_CLOCK_DISABLE) != SDHI_SUCCESS)
{
 /* Error */
}

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 32 of 67
Nov.28.25

R_SDHI_SetBus()
This function makes SD bus settings.

Format
sdhi_status_t R_SDHI_SetBus(
 uint32_t channel,
 uint32_t width
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
width

Use the following setting values:
1-bit bus: SDHI_PORT_1BIT
4-bit bus: SDHI_PORT_4BIT

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Controls the SD bus width select bit (SDOPT.WIDTH) to set the SD bus to 1-bit or 4-bit operation.

Example
R_SDHI_SetBus(SDHI_CD0, SDHI_PORT_1BIT);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

Do not call this function while a command sequence is running (SDSTS2.CBSY = 1).

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 33 of 67
Nov.28.25

R_SDHI_GetResp()
This function gets the response from the SD card.

Format
sdhi_status_t R_SDHI_GetResp(
 uint32_t channel,
 sdhi_get_resp_t * p_resp_reg
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
*p_resp_reg

Response register information structure
sdrsp10: Variable stored in response register 10
sdrsp32: Variable stored in response register 32
sdrsp54: Variable stored in response register 54
sdrsp76: Variable stored in response register 76

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Stores the values contained in the response registers (SDRSP10, SDRSP32, SDRSP54, and SDRSP76) in
the response register information structure. Divides and stores the contents of the response among register
sdrsp10, sdrsp32, sdrsp54, and sdrsp76, according to the response type. Table 3.1 shows the
correspondence between the response register information structure and response storage destinations.

Table 3.1 Response Register Information Structure and Response Storage Destinations

Response Type sdrsp76 sdrsp54 sdrsp32 sdrsp10
R1  [39:8]*1  [39:8]
R1b  [39:8]*1  [39:8]
R2 [127:104] [103:72] [71:40] [39:8]
R3    [39:8]
R4    [39:8]
R5    [39:8]
R6    [39:8]
R7    [39:8]
Note 1. Responses to CMD18 or CMD25 are stored in both the SDRSP10 and SDRSP54 registers.

Therefore, it is possible to check responses to CMD18 or CMD25 by referencing the value stored
in the SDRSP54 register, even if an automatically sent response to CMD12 overwrites the
contents of the SDRSP10 register.

Example
sdhi_get_resp_t resp_reg;

R_SDHI_GetResp(channel, &resp_reg);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 34 of 67
Nov.28.25

R_SDHI_OutReg()
This function sets the SDHI registers.

Format
sdhi_status_t R_SDHI_OutReg(
 uint32_t channel,
 uint32_t reg,
 uint32_t data
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
reg

SDHI base register offset value. Refer to the table below when setting macro definitions.

Register Name Offset Macro Definition
Command register (SDCMD) 0x00u SDHI_SDCMD
Argument register (SDARG) 0x08u SDHI_SDARG
Data stop register (SDSTOP) 0x10u SDHI_SDSTOP
Block count register (SDBLKCNT) 0x14u SDHI_SDBLKCNT
Response register 10 (SDRESP10) 0x18u SDHI_SDRESP10
Response register 32 (SDRESP32) 0x20u SDHI_SDRESP32
Response register 54 (SDRESP54) 0x28u SDHI_SDRESP54
Response register 76 (SDRESP76) 0x30u SDHI_SDRESP76
SD status register 1 (SDSTS1) 0x38u SDHI_SDSTS1
SD status register 2 (SDSTS2) 0x3cu SDHI_SDSTS2
SD interrupt mask register 1 (SDIMSK1) 0x40u SDHI_SDIMSK1
SD interrupt mask register 2 (SDIMSK2) 0x44u SDHI_SDIMSK2
SDHI clock control register (SDCLKCR) 0x48u SDHI_SDCLKCR
Transfer data size register (SDSIZE) 0x4cu SDHI_SDSIZE
Card access option register (SDOPT) 0x50u SDHI_SDOPT
SD error status register 1 (SDERSTS1) 0x58u SDHI_SDERSTS1
SD error status register 2 (SDERSTS2) 0x5cu SDHI_SDERSTS2
SD buffer register (SDBUFR) 0x60u SDHI_SDBUFR
SDIO mode control register (SDIOMD) 0x68u SDHI_SDIOMD
SDIO status register (SDIOSTS) 0x6cu SDHI_SDIOSTS
SDIO interrupt mask register (SDIOIMSK) 0x70u SDHI_SDIOIMSK
DMA transfer enable register (SDDMAEN) 0x1b0u SDHI_SDDMAEN
SDHI software reset register (SDRST) 0x1c0u SDHI_SDRST
Version register (SDVER) 0x1c4u SDHI_SDVER
Swap control register (SDSW AP) 0x1e0u SDHI_SDSWAP

data

Register setting value

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Sets SDHI registers.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 35 of 67
Nov.28.25

Example
R_SDHI_OutReg(SDHI_CD0, SDHI_SDCMD, cmd);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 36 of 67
Nov.28.25

R_SDHI_InReg()
This function gets the value of an SDHI register.

Format
sdhi_status_t R_SDHI_InReg(
 uint32_t channel,
 uint32_t reg,
 uint32_t * p_data
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
reg

SDHI base register offset value. Refer to the table in R_SDHI_OutReg(), when setting macro definitions.
* p_data

Pointer to storage destination of acquired register value

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Sets SDHI registers.

Example
R_SDHI_InReg(SDHI_CD0, SDHI_SDSTS1, &sdstas1);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 37 of 67
Nov.28.25

R_SDHI_CDLayout()
This function checks whether the SDHI_CD (SD card detection) pin is used.

Format
sdhi_status_t R_SDHI_CDLayout(
 uint32_t channel
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)

Return Values
SDHI_SUCCESS CD pin used.
SDHI_ERR CD pin not used.

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Checks whether the CD pin is used.

Example
if (R_SDHI_CDLayout(SDHI_CD0) == SDHI_SUCCESS)
{
 /* User setting */
}

Special Notes
None

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 38 of 67
Nov.28.25

R_SDHI_WPLayout()
This function checks whether the SDHI_WP (SD write protect) pin is used.

Format
sdhi_status_t R_SDHI_WPLayout(
 uint32_t channel
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)

Return Values
SDHI_SUCCESS WP pin used.
SDHI_ERR WP pin not used.

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Checks whether the WP pin is used.

Example
if (R_SDHI_WPLayout(SDHI_CD0) == SDHI_SUCCESS)
{
 /* User setting */
}

Special Notes
None

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 39 of 67
Nov.28.25

R_SDHI_GetWP()
This function gets the state of the SDHI_WP (SD write protect) pin.

Format
sdhi_status_t R_SDHI_GetWP(
 uint32_t channel,
 uint32_t * p_wp
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
* p_wp

Pointer to storage destination of SDHI_WP pin state
0: SDHI_WP pin level is high.
1: SDHI_WP pin level is low.

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Gets the SDHI_WP pin state.

Example
R_SDHI_GetWP(SDHI_CH0, &wp);

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

To execute this function, the terminal setting processing of the SDHI_WP terminal is necessary. For details,
refer to "4 Pin Settings".

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 40 of 67
Nov.28.25

R_SDHI_GetSpeedType()
This function gets information on the speed modes supported by the target microcontroller.

Format
sdhi_status_t R_SDHI_GetSpeedType(
 uint32_t channel
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)

Return Values
SDHI_SUCCESS Compatible with default-speed and high-speed modes
SDHI_ERR Compatible with default-speed mode

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Gets information on the speed modes supported by the target microcontroller.

Example
if (R_SDHI_GetSpeedType(SDHI_CH0) == SDHI_SUCCESS)
{
 /* User setting */
}

Special Notes
None

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 41 of 67
Nov.28.25

R_SDHI_GetBuffRegAddress()
This function gets the address of the SD buffer register.

Format
sdhi_status_t R_SDHI_GetBuffRegAddress(
 uint32_t channel,
 uint32_t *p_reg_buff
)

Parameters
channel

Channel number SDHI channel number to be used (starting from 0)
*p_reg_buff

Pointer to SD buffer register address

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Gets the SD buffer register address and stores it in the buffer.

Used for example when setting data register addresses to be used for DMAC or DTC transfers.

Example
uint32_t reg_buff = 0;

if (R_SDHI_Get_BuffRegAddress(SDHI_CH0, ®_buff) != SDHI_SUCCESS)
{
 /* Error */
}

Special Notes
Before running this function, initialization processing by the R_SDHI_Open() function is required.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 42 of 67
Nov.28.25

R_SDHI_GetVersion()
This function gets the driver version information.

Format
uint32_t R_SDHI_GetVersion(
 void
)

Parameters
None

Return Values
Upper 2 bytes Major version (decimal notation)
Lower 2 bytes Minor version (decimal notation)

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Returns the driver version information.

Example
uint32_t version;
version = R_SDHI_GetVersion();

Special Notes
None

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 43 of 67
Nov.28.25

R_SDHI_SetLogHdlAddress()
This function gets the handler address of the LONGQ FIT module.

Format
sdhi_status_t R_SDHI_SetLogHdlAddress(
 uint32_t user_long_que
)

Parameters
user_long_que

LONGQ FIT module handler address

Return Values
SDHI_SUCCESS Successful operation

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Sets the handler address of the LONGQ FIT module to point to the SDHI FIT module.

Example
#define ERR_LOG_SIZE (16)
#define SDHI_USER_LONGQ_IGN_OVERFLOW (1)

sdhi_status_t ret = SDHI_SUCCESS;
uint32_t MtlLogTbl[ERR_LOG_SIZE];
longq_err_t err;
longq_hdl_t p_sdhi_user_long_que;
uint32_t long_que_hndl_address;

/* Open LONGQ module. */
err = R_LONGQ_Open(&MtlLogTbl[0],
 ERR_LOG_SIZE,
 SDHI_USER_LONGQ_IGN_OVERFLOW,
 &p_sdhi_user_long_que
);

long_que_hndl_address = (uint32_t)p_sdhi_user_long_que;
ret = R_SDHI_SetLogHdlAddress(long_que_hndl_address);

Special Notes
Preparatory processing is performed to obtain error logs using the LONGQ FIT module. Perform this
processing before calling the R_SDHI_Open() function.

Add the separately available LONGQ FIT module to your project.

If the SDHI_CFG_LONGQ_ENABLE disable and this function is called, this function does nothing.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 44 of 67
Nov.28.25

R_SDHI_Log()
This function gets the error log.

Format
uint32_t R_SDHI_Log(
 uint32_t flg,
 uint32_t fid,
 uint32_t line
)

Parameters
flg

0x00000001 (fixed value)
fid

0x0000003f (fixed value)
line

0x00001fff (fixed value)

Return Values
0 Successful operation

Properties
Prototype declaration contained in r_sdhi_rx_if.h.

Description
Gets the error log.

To end getting the error log, call the function.

Example
#define USER_DRIVER_ID (1)
#define USER_LOG_MAX (63)
#define USER_LOG_ADR_MAX (0x00001fff)

if (R_SDHI_Open(SDHI_CH0) != SDHI_SUCCESS)
{
 /* Error */
 R_SDHI_Log(USER_DRIVER_ID, USER_LOG_MAX, USER_LOG_ADR_MAX);
}

Special Notes
Use the debugging module.

Add the separately available LONGQ FIT module to your project.

If the SDHI_CFG_LONGQ_ENABLE disable and this function is called, this function does nothing.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 45 of 67
Nov.28.25

4. Pin Settings
To use the SDHI FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC).

When performing the pin setting in the e2 studio, the Pin Setting feature of the Smart Configurator can be
used. When using the Pin Setting feature, a source file is generated according to the option selected in the
Pin Setting window in the Smart Configurator. Then pins are configured by calling the function defined in the
source file. Refer to Table 4.1 for details.

The pin assignment is referred to as the “Pin Setting” in this document. Also, GPIO control is required. Refer
to 4.1,
SD Card Insertion and Power-On Timing, and 4.2, SD Card Removal and Power-Off Timing, and create
appropriate program code to provide this processing.

Table 4.1 Function Output by the Smart Configurator

Function to be Output Function
R_SDHI_PinSetInit() Performs initialization of the SDHI pins.

After execution, only SDHI_CD and SDHI_WP pins are valid.
R_SDHI_PinSetTransfer() Sets SDHI pins to SD command issuance possible state.

After execution, all SDHI pins are valid.
R_SDHI_PinSetDetection() Sets SDHI pins to SD command issuance impossible state.

After execution, only SDHI_CD and SDHI_WP pins are valid.
R_SDHI_PinSetEnd() Sets SDHI pins to SDHI control disabled state.

After execution, all SDHI pins are invalid.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 46 of 67
Nov.28.25

4.1 SD Card Insertion and Power-On Timing
Figure 4.1 and Table 4.2 show the control procedure. Perform the SD card insertion procedure after
successful operation of the R_SDHI_Open() function and when the supply of power voltage to the SD card is
in the halted state and the SDHI output pin is in the L output state.

Figure 4.1 SD Card Insertion and Power-On Timing

Driver uninitialized state

R_SDHI_Open()

Card detection
processing

Card undetected

Card detected

After power-on reset

Driver idle state

Pin control 1
Add the following functions to

the user program
R_SDHI_PinSetInit()*1

Supply of power voltage to SD card halted state
Power supply voltage control pin: GPIO L/H output
(Values when supply of power voltage is in halted state)

Pin control 3
Please create

Pin control 4
Add the following functions to

the user program
R_SDHI_PinSetTransfer()*1

Card initialization processing

Power voltage being supplied to SD card state
Power supply voltage control pin: GPIO L/H output
(Values when power voltage is being supplied)
After starting power supply voltage supply,
provide a sufficient waiting time until it
reaches operating voltage*4.

SD command issuance possible state
SDHI input pin*2: SDHI input
SDHI output pin*3: SDHI output

Notes: 1. This function is generated by setting
the pins with Smart Configurator.

 2. SDHI_CD pin and SDHI_WP pin
 3. SDHI_CLK pin, SDHI_CMD pin, and
 SDHI_Dn pin
 4. The waiting time is determined by
 the configuration of the SD card
 power supply circuit.

A Card reinsertion

Pin control 2
Please create

SD card pin initialization state
SDHI input pin*2: SDHI input
SDHI output pin*3: GPIO L output

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 47 of 67
Nov.28.25

Table 4.2 User Setting Method at SD Card Insertion

Processing Target Pin Pin Settings Subsequent Pin State
Pin control 1 SDHI input pin*1 PMR setting: General I/O port

PCR setting: Input pull-up resistor disabled*3
PDR setting: Input
MPC setting: SDHI
PMR setting: Peripheral module

SDHI input
(SD card detection
possible state)

SDHI output pin*2 PMR setting: General I/O port
DSCR setting: High-drive output
PCR setting: Input pull-up resistor disabled*3
PODR setting: L output
PDR setting: Output
MPC setting: Hi-z

GPIO L output

Pin control 2 Power supply
voltage control pin

PMR setting: General I/O
PCR setting: Input pull-up resistor disabled*4
PODR setting: L output/H output
(output of value based on power voltage
supplied/halted state)
PDR setting: Output

GPIO L/H output
(supply of power voltage
halted state)

Pin control 3 Power supply
voltage control pin

PODR setting: L output/H output
(output of value based on power voltage
supply state)

GPIO L/H output
(supply of power voltage
halted state)

Pin control 4 SDHI input pin*1 MPC setting: SDHI
PMR setting: Peripheral module

SDHI input

SDHI output pin*2 MPC setting: SDHI
PMR setting: Peripheral module

SDHI output
(SD command issuance
possible state)

Note 1. SDHI_CD pin and SDHI_WP pin
Note 2. SDHI_CLK pin, SDHI_CMD pin, and SDHI_Dn pin
Note 3. It is assumed that the pin will be pulled-up external to the microcontroller, so the microcontroller’s

integrated pull-up resistor is disabled.
Note 4. Review the setting to match the details of the system.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 48 of 67
Nov.28.25

4.2 SD Card Removal and Power-Off Timing
Figure 4.2 and Table 4.3 show the control procedure. Perform the SD card removal procedure after
successful operation of the R_SDHI_End() function in the driver idle state and when the supply of power
voltage to the SD card is in the halted state. An equivalent procedure should be used to halt supply of the
power voltage in cases where the SD card is removed unexpectedly.

Figure 4.2 SD Card Removal and Power-Off Timing

Driver idle state

Card detection
processing

Card detected

Card undetected(Processing exit)

Pin control 6
Please create

Supply of power voltage to SD card halted state
Power supply voltage control pin: GPIO L/H output
(Values when supply of power voltage is in halted
state)
After stopping the supply voltage supply,
provide a sufficient waiting time until it
reaches the removable voltage of the SD
card*4.

R_SDHI_Close()

Pin control 7
Add the following functions to

the user program
R_SDHI_PinSetEnd()*1

SDHI control disabled state
SDHI input pin*2: GPIO input
SDHI output pin*3: GPIO L output

Notes: 1. This function is generated by setting
the pins with Smart Configurator.

 2. SDHI_CD pin and SDHI_WP pin
 3. SDHI_CLK pin, SDHI_CMD pin, and
 SDHI_Dn pin
 4. The waiting time is determined by
 the configuration of the SD card
 power supply circuit.

Driver uninitialized state

Pin control 5
Add the following functions to

the user program
R_SDHI_PinSetTransfer()*1

SD command issuance impossible state
SDHI input pin*2: SDHI input
SDHI output pin*3: GPIO L output

A

Card undetected (Card reinsertion)

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 49 of 67
Nov.28.25

Table 4.3 User Setting Method at SD Card Removal

Processing Target Pin Pin Settings Subsequent Pin State
Pin control 5 SDHI input pin*1 MPC setting: SDHI

PMR setting: Peripheral module
SDHI input

SDHI output pin*2 PMR setting: General I/O port
MPC setting: Hi-z

GPIO L output

Pin control 6 Power supply
voltage control pin

PODR setting: L output/H output
(output of value based on power voltage
supplied/halted state)

GPIO L/H output
(supply of power voltage
halted state)

Pin control 7 SDHI input pin*1 PMR setting: General I/O port
MPC setting: Hi-z

GPIO input

SDHI output pin*2 PMR setting: General I/O port
MPC setting: Hi-z

GPIO L output

Note 1. SDHI_CD pin and SDHI_WP pin
Note 2. SDHI_CLK pin, SDHI_CMD pin, and SDHI_Dn pin

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 50 of 67
Nov.28.25

5. Demo Projects

5.1 Overview
The sample program is included and can be found in the FITDemos directory. This sample program performs
the processing described in section 4.1, SD Card Insertion and Power-On Timing and 4.2, SD Card Removal
and Power-Off Timing, as well as SD Card read and write processing.

5.2 State Transition Diagram
Figure 5.1 shows the state transition diagram for this driver.

Figure 5.1 State Transition Diagram

Pins unstable state

Pins initialized state, power halted state [SD Card insertable/removable state]
(SDHI_CD, SDHI_WP: SDHI function)

(SDHI_Dn, SDHI_CMD, SDHI_CLK: GPIO L output)
(Power supply voltage control pin: GPIO inactive value output)

r_sdhi_demo_power_on() r_sdhi_demo_power_off()

All pins:
GPIO L output

r_sdhi_demo_power_init()

[SD Card driver executable state]
(SD bus setting state)

Pins initialized state, power supplied state [SD Card driver
unexecutable state]

(SDHI_CD, SDHI_WP: SDHI function)
(SDHI_Dn, SDHI_CMD, SDHI_CLK: GPIO L output)

(Power supply voltage control pin: GPIO active value output)

R_SDC_SD_Close()

R_SDC_SD_Initialize() R_SDC_SD_End()

SD Memory card driver

Pins initialized state, power halted state [inactive state]
(SDHI_CD, SDHI_WP: SDHI function)

(SDHI_Dn, SDHI_CMD, SDHI_CLK: GPIO L output)
(Power supply voltage control pin: GPIO inactive value output)

R_SDC_SD_Open()

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 51 of 67
Nov.28.25

5.3 Configuration Overview
The sample program configuration options are set in the file r_sdhi_rx_demo_pin_config.h.

The table below lists the option names and set values when the RX64M RSK, RX65N-2M RSK or RX72N
RSK is used.

Configuration options in r_sdhi_rx_demo_pin_config.h

#define SDHI_CFG_POWER_PORT_NONE
Note: The default value is "disabled".

This definition is used when an SD Card is used.
If SD Card power supply control is not required, enable this definition.
If SD Card power supply control is required, disable this definition.

#define SDHI_CFG_POWER_HIGH_ACTIVE (1)
Note: The default value is "1 (high level supplied)".

This definition is used when an SD Card is used and furthermore SD
Card power supply control is required.
When set to 1, a high level is supplied to the port that controls the SD
Card power supply circuit to enable the SD Card power supply circuit.
When set to 0, a low level is supplied to the port that controls the SD
Card power supply circuit to enable the SD Card power supply circuit.

#define SDHI_CFG_POWER_ON_WAIT (100)
Note: The default value is "100 (100 ms wait)".

This definition is used when an SD Card is used.
Set this definition to the wait time after power supply is started to the
SD Card power supply circuit until the operating voltage is reached. A
wait of 1 ms is provided for each count of the counter.
Set this definition to a value appropriate for the system used.

#define SDHI_CFG_POWER_OFF_WAIT (100)
Note: The default value is "100 (100 ms wait)".

This definition is used when an SD Card is used.
Set this definition to the wait time after power supply to the SD Card
power supply circuit is stopped until the voltage at which SD Card
removal is possible is reached. A wait of 1 ms is provided for each
count of the counter.
Set this definition to a value appropriate for the system used.

#define R_SDHI_CFG_POWER_CARDx_PORT
Note: "x" in CARDx indicates an SD Card number (x = 0)

Set these definitions to the port number for the power supply voltage
control pin allocated for SD Card number x.
Surround each setting value with single quotation marks ' '.

#define R_SDHI_CFG_POWER_CARDx_BIT
Note: "x" in CARDx indicates an SD Card number (x = 0)

Set these definitions to the bit number for the power supply voltage
control pin allocated for SD Card number x.
Surround each setting value with single quotation marks ' '.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 52 of 67
Nov.28.25

5.4 API Functions
The power supply voltage control pin control functions in the sample program are shown below.

Add or modify functions as necessary.

Table 5.1 Pin Control API Functions

Function Function Outline
r_sdhi_demo_power_init() Initializes the power supply voltage control pin settings
r_sdhi_demo_power_on() Starts supply of power supply voltage
r_sdhi_demo_power_off() Stops supply of power supply voltage
r_sdhi_demo_softwaredelay() Performs delay

5.4.1 r_sdhi_demo_power_init()
This function initializes the SDHI pin settings used by the SD Memory Card driver. It also initializes the
setting of the power voltage control pin of the SD Card.

Format
sdhi_status_t r_sdhi_demo_power_init(
uint32_t card_no
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

Return Values
SDHI_SUCCESS Successful operation

Description
Initializes the setting of the power voltage control pin of the SD Card.

Special Notes:
The power supply voltage control pins are set as follows.

• The port mode register (PMR) is set to the general-purpose I/O port.
• Set the pull-up control register (PCR) to input pull-up resistance disabled.
• Pin output is set to the inactive state.

5.4.2 r_sdhi_demo_power_on()
This function controls the power supply voltage control pin of the SD Card and starts power supply.

Format
sdhi_status_t r_sdhi_demo_power_on(
uint32_t card_no
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Description
Controls the power supply voltage control pins of the SD Card, and starts the supply of power from the power
supply.

Then, after the time specified by SDHI_CFG_POWER_ON_WAIT in r_sdhi_rx_demo_pin_config.h has
elapsed, returns the result.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 53 of 67
Nov.28.25

Special Notes:
Modify as necessary.

After starting the supply of power supply voltage, executes the r_sdhi_demo_softwaredelay() function in
order to wait until the operating voltage is reached. Set the wait time using SDHI_CFG_POWER_ON_WAIT
in section 5.3, Compile Time Settings.

Initialization using the r_sdhi_demo_power_init() function must be performed before executing this function.

5.4.3 r_sdhi_demo_power_off()
This function controls the power supply voltage control pins of the SD Card, and stops the supply of power
from the power supply.

Format
sdhi_status_t r_sdhi_demo_power_off(
uint32_t card_no
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

Return Values
SDHI_SUCCESS Successful operation
SDHI_ERR General error

Description
Controls the power supply voltage control pins of the SD Card, and stops the supply of power from the power
supply.

Then, after the time specified by SDHI_CFG_POWER_OFF_WAIT in r_sdhi_rx_demo_pin_config.h has
elapsed, returns the result.

Special Notes
After stopping the supply of power supply voltage, executes the r_sdhi_demo_softwaredelay() function in
order to wait until the removable voltage is reached. Set the wait time using
SDHI_CFG_POWER_OFF_WAIT in section 5.3, Compile Time Settings.

Initialization using the r_sdhi_demo_power_init() function must be performed before executing this function.

5.4.4 r_sdhi_demo_softwaredelay()
This function is used when waiting for a particular time.

Format
bool r_sdhi_demo_softwaredelay(
 uint32_t delay,
 sdhi_delay_units_t units
)

Parameters
delay

Timeout time (Units: set with the units)
units

Microseconds: SDHI_DELAY_MICROSECS
Milliseconds: SDHI_DELAY_MILLISECS
Seconds: SDHI_DELAY_SECS

Return Values
true Successful operation
false Parameter error

Description
This function performs wait time processing.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 54 of 67
Nov.28.25

True is returned when the timeout time specified in the argument delay has elapsed.

Special Notes
The wait time processing is listed in Table 5.2. Since this function only waits for the set time, it can be
replaced with the operating system activating task delay processing (example: the µITRON dly_tsk()
function).

Table 5.2 Wait Time Processing

Type Description
SD Card power on power supply
voltage stabilization time

The wait time until the operating voltage is reached after power supply is
started to the SD Card power supply circuit <100 ms>
Note: The wait time can be modified with

SDHI_CFG_POWER_ON_WAIT.
SD Card power off voltage turn-off
time

The wait time until the SD Card removable voltage is reached after
supply is stopped to the SD Card power supply circuit <100 ms>
Note: The wait time can be modified with

SDHI_CFG_POWER_OFF_WAIT.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 55 of 67
Nov.28.25

5.5 Replacing Wait Time Processing with Operating System Processing
The r_sdhi_demo_softwaredelay() function, which processes the delays that arise in the sample program,
can be replaced by the task delay processing of the OS itself (for example, dly_tsk() in μITRON).

Figure 5.2 Wait Example Using Operating System Task Delay Processing

5.6 sdhi_demo_rskrx64m, sdhi_demo_rskrx65n_2m, sdhi_demo_rskrx72n,
sdhi_demo_rskrx64m_gcc, sdhi_demo_rskrx65n_2m_gcc,
sdhi_demo_rskrx72n_gcc

Once the code is compiled and downloaded to the target board and is running, LED0 will turn ON after
initialization. After the SDHI module is successfully opened, LED1 will turn ON. After data has been
successfully written to the SD card, LED2 will turn ON. After data has been successfully read from the SD
card, LED3 will turn ON. After the SDHI module is successfully closed, all LEDs will turn OFF.

Setup and Execution
1. Ensure driver support for channel 0 is enabled in r_sdhi_rx_config.h:

#define SDHI_CFG_CH0_INCLUDED (1)

2. Selection of data transfer module:
When the DMAC transfer mode is used, set Data transfer type in Smart
Configurator/Components/r_sdc_sdmem_rx to DMAC transfers.

When the DTC transfer mode is used, set Data transfer type in Smart
Configurator/Components/r_sdc_sdmem_rx to DTC transfers.

By default, the transmit mode is Software Transfers.

3. Connect the RSK board to the PC (using Renesas E1 Emulator). The DC 5V 3A power adapter needs
be plugged into the power jack (PWR) on the RSK board for external power supply. Build this sample
application, download it to the board.

4. In Renesas e2 studio IDE, click the Renesas Views tab -> Move mouse over the Debug item, and select
the Renesas Debug Virtual Console to show it.

5. By checking the log and LEDs, confirm that the application writes and reads data of 3 sectors (512-
byte/sector) to the SD card.

Boards Supported
RSKRX64M, RSKRX65N-2M, RSKRX72N

r_sdhi_pin_softwaredelay()

SDHI_SUCCESS

Task delay processing
(Example: μITRON dly_tsk())

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 56 of 67
Nov.28.25

5.7 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add
a demo project to a workspace, select File >> Import >> General >> Existing Projects into Workspace, then
click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.8 Downloading Demo Projects
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
“Sample Code (download)” from the context menu in the Smart Browser >> Application Notes tab.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 57 of 67
Nov.28.25

6. Appendices
6.1 Operation Confirmation Environment
This section describes operation confirmation environment for the FIT module.

Table 6.1 Operation Confirmation Environment (Ver. 2.02)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.1.0

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.00.00
 Compiler option: The following option is added to the default settings of the

integrated development environment.
-lang = C99

Endianness Little endian
Version of the module Ver.2.02
Board used Renesas Starter Kit for RX65N (product No.: RTK500565NSxxxxxxx)

Table 6.2 Operation Confirmation Environment (Ver. 2.03)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.01.00
 Compiler option: The following option is added to the default settings of the

integrated development environment.
-lang = C99

Endianness Little endian
Version of the module Ver.2.03

Table 6.3 Operation Confirmation Environment (Ver. 2.04)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V7.3.0
IAR Embedded Workbench for Renesas RX 4.10.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = C99
GCC for Renesas RX 4.08.04.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.10.01
Compiler option: The default settings of the integrated development
environment.

Endianness Big endian/Little endian
Version of the module Ver.2.04
Board used Renesas Starter Kit+ for RX65N (product No.: RTK500565Nxxxxxx)

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 58 of 67
Nov.28.25

Table 6.4 Operation Confirmation Environment (Ver. 2.05)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V7.4.0
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = C99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endianness Big endian/Little endian
Version of the module Ver.2.05
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 6.5 Operation Confirmation Environment (Ver. 2.06)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V7.4.0
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = C99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endianness Big endian/Little endian
Version of the module Ver.2.06
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 59 of 67
Nov.28.25

Table 6.6 Operation Confirmation Environment (Ver. 2.07)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2021-01 (21.1.0)
IAR Embedded Workbench for Renesas RX 4.14.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = C99
GCC for Renesas RX 8.03.00.202002
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.01
Compiler option: The default settings of the integrated development
environment.

Endianness Big endian/Little endian
Version of the module Ver.2.07
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

Table 6.7 Operation Confirmation Environment (Ver. 2.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202202

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize
size (-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endianness Big endian/little endian
Version of the module Rev.2.10
Board used Renesas Starter Kit+ for RX64M (product No.: R0K50564Mxxxxxx)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2Cxxxxxxx)
Renesas Starter Kit+ for RX72N (product No.: RTK5572NNDCxxxxxx)

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 60 of 67
Nov.28.25

Table 6.8 Operation Confirmation Environment (Ver. 2.11)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202305

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize
size (-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endianness Big endian/little endian
Version of the module Rev.2.11
Board used Renesas Starter Kit+ for RX64M (product No.: R0K50564Mxxxxxx)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2Cxxxxxxx)
Renesas Starter Kit+ for RX72N (product No.: RTK5572NNDCxxxxxx)

Table 6.9 Operation Confirmation Environment (Ver. 2.12)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202411

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize
size (-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endianness Big endian/little endian
Version of the module Rev.2.12
Board used -

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 61 of 67
Nov.28.25

Table 6.10 Operation Confirmation Environment (Ver. 2.13)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-07
IAR Embedded Workbench for Renesas RX 5.20.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas 14.02.00.202505

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize
size (-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 5.20.1
Compiler option: The default settings of the integrated development
environment.

Endianness Big endian/little endian
Version of the module Rev.2.13
Board used -

Table 6.11 Operation Confirmation Environment (Ver. 2.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-10
IAR Embedded Workbench for Renesas RX 5.20.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas 14.02.00.202505

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize
size (-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 5.20.1
Compiler option: The default settings of the integrated development
environment.

Endianness Big endian/little endian
Version of the module Rev.2.20
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2Cxxxxxxx)

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 62 of 67
Nov.28.25

6.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.
 A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules

is correct with the following documents:
• When using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)”
• When using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added
to the project. For this, refer to the application note “Board Support Package Module Using Firmware
Integration Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported

by the current r_sdhi_rx module.
 A: The FIT module you added may not support the target device chosen in the user project. Check if the

FIT module supports the target device for the project used.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 63 of 67
Nov.28.25

6.3 Using the SD Card Socket of the RSK for SD Card Evaluation
The procedure for performing read and write access to an SD card using a Renesas Starter Kit (RSK) is
described below.

6.3.1 Hardware Settings
Settings must be made on the RSK for each target microcontroller.

In the case of the RSK for RX231, the PMOD SD card conversion board must be obtained separately.

6.3.1.1 RSK for RX64M or RX71M
Make the settings described below to enable the SD card socket.

SW9 SW8
Pin Number Setting Pin Number Setting
Pin 1 OFF Pin 1 OFF
Pin 2 ON Pin 2 ON
Pin 3 OFF Pin 3 OFF
Pin 4 ON Pin 4 ON
Pin 5 OFF Pin 5 OFF
Pin 6 OFF Pin 6 ON
Pin 7 OFF Pin 7 OFF
Pin 8 ON Pin 8 ON
Pin 9 OFF Pin 9 OFF
Pin 10 OFF Pin 10 ON

6.3.1.2 RSK for RX65N
Make the settings described below to enable the SD card socket.

SW7 SW8
Pin Number Setting Pin Number Setting
Pin 1 OFF Pin 1 OFF
Pin 2 ON Pin 2 ON
Pin 3 OFF Pin 3 OFF
Pin 4 ON Pin 4 ON
Pin 5 OFF Pin 5 OFF
Pin 6 ON Pin 6 ON
Pin 7 OFF Pin 7 OFF
Pin 8 ON Pin 8 ON
Pin 9 OFF Pin 9 OFF
Pin 10 ON Pin 10 OFF

6.3.1.3 RSK for RX65N-2MB
No settings are necessary.

6.3.1.4 RSK for RX231
Install the PMOD SD card conversion board in PMOD2 on the RSK for RX231 board.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 64 of 67
Nov.28.25

6.3.1.5 RSK for RX72M
No settings are necessary.

6.3.1.6 RSK for RX72N
No settings are necessary.

6.3.1.7 RSK for RX671
No settings are necessary.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 65 of 67
Nov.28.25

7. Reference Documents
User’s Manual: Hardware

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family CC-RX Compiler User’s Manual (R20UT3248)
The latest version can be downloaded from the Renesas Electronics website.

Technical Updates
This module reflects the content of the following technical updates.

• TN-RX*-A195A/E
• TN-RX*-A196A/E
• TN-RX*-A197A/E

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 66 of 67
Nov.28.25

Revision History

Rev. Date
Description
Page Summary

2.00 Jul. 31, 2017 - First edition issued
2.01 Dec. 31, 2017 44-45 For Figure 4.1 and Table 4.1 of 4.1 SD Card Insertion and

Power-On Timing, updated the contents.
 46 For Figure 4.2 and Table 4.2 of 4.2 SD Card Removal and

Power-Off Timing, updated the contents.
 48 For Table 5.1 of 5.1 Operation Confirmation Environment,

updated the following contents.
- Version of Integrated development environment
- Version of the module

2.02 Nov. 30, 2018 - Version upgrade for xml file update.
Updated 7 Technical Updates.

2.03 Feb. 01, 2019 49 Added Table 5.2 Operation Confirmation Environment (Ver.
2.03)

 - Changes associated with functions:
Added support setting function of configuration option Using
GUI on Smart Configurator.
[Description]
Added a setting file to support configuration option setting
function by GUI.

2.04 May. 20, 2019 - Update the following compilers
GCC for Renesas RX
IAR C/C++ Compiler for Renesas RX

 1 Related Documents:
Deleted R01AN1723 and R01AN1826.
Added RX Family SD Mode SD Memory Card Driver Firmware
Integration Technology(R01AN4233).

 1 Added Target Compilers.
 8 Added revision of dependent r_bsp module in 2.2 Software

Requirements.
 11 2.8 Code Size, amended.
 50 Added Table 5.3 Operation Confirmation Environment (Ver.

2.04).
2.05 Jul. 30, 2019 - Changes associated with RX23W and RX72M.
 1 Changes Related Documents.
 8 Added RX23W and RX72M interrupt vector informations in 2.4

Interrupt Vectors.
 11 2.8 Code Size, amended.
 14 Added Section 2.13 “for”, “while” and “do while” statements.
 15-45 Delete “Reentrant” item on the API description page.
 52 Added Table 5.4 Operation Confirmation Environment (Ver.

2.05).
 54 Added RX72M Hardware Settings.

RX Family SDHI Module Using Firmware Integration Technology

R01AN3852EJ0220 Rev.2.20 Page 67 of 67
Nov.28.25

Rev. Date
Description
Page Summary

2.06 Nov. 22, 2019 - Changes associated with RX66N and RX72N.
 1 Added Target Compilers.
 8 Added RX66N and RX72N interrupt vector informations in 2.4

Interrupt Vectors.
 11 2.8 Code Size, amended.
 44-45 Changed “Special Notes” in 3.26 R_SDHI_SetLogHdlAddress

and 3.27 R_SDHI_Log.
 52 Added Table 5.5 Operation Confirmation Environment (Ver.

2.06).
 55 Added RX72N Hardware Settings.
2.07 Jun. 30, 2021 - Changes associated with RX671.
 1 Added Target Compilers.
 8 Added RX671 interrupt vector informations in 2.4 Interrupt

Vectors.
 11 2.8 Code Size, amended.
 13 Changed Section 2.12 Adding the FIT Module to Your Project.
 52 Added Table 5.6 Operation Confirmation Environment (Ver.

2.07).
 54 Added RX671 Hardware Settings.
2.10 Dec. 27, 2022 50 Added “5. Demo Projects”.
 55 Added RSKRX64M, RSKRX65N-2M, RSKRX72N to “5. Demo

Projects”.
 59 6.1 Confirmed Operation Environment:

Added Table for Rev. 2.10.
 Program Added new demo projects.

Updated slash format of included header file paths for Linux
compatibility.

2.11 Jul. 20, 2023 60 6.1 Confirmed Operation Environment:
Added Table for Rev. 2.11.

Program Updated demo projects.
2.12 Mar. 15, 2025 60 6.1 Confirmed Operation Environment:

Added Table for Rev. 2.12.
Program Updated FIT Disclaimer and Copyright.

2.13 Oct. 30, 2025 13 Deleted the description of FIT configurator from "2.12 Adding
the FIT Module to Your Project".

 61 6.1 Confirmed Operation Environment:
Added Table for Rev. 2.13.

 Program Removed doc folder and updated .rcpc file in FITDemos.
Modified comment of API function to Doxygen style.

2.20 Nov. 28, 2025 10 2.7 Compile Time Settings
Added new macros:
SDHI_CFG_CH0_EN_NESTED_INT,
SDHI_CFG_CH0_EN_SBFAI_NESTED_INT to support nested
interrupt.

 61 6.1 Confirmed Operation Environment:
Added Table for Rev. 2.20.

 Program Added support for Nested interrupt.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 SDHI FIT Module
	1.2 Overview of SDHI FIT Module
	1.2.1 Overview of Functions

	1.3 API Overview
	1.4 Processing Example
	1.4.1 Application Structure

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Tool Chain
	2.4 Interrupt Vectors
	2.5 Header Files
	2.6 Integer Types
	2.7 Compile Time Settings
	2.8 Code Sizes
	2.9 Arguments
	2.10 Return Values
	2.11 Callback Functions
	2.12 Adding the FIT Module to Your Project
	2.13 “for”, “while” and “do while” statements

	3. API Functions
	R_SDHI_Open()
	R_SDHI_Close()
	R_SDHI_IntHandler0()
	R_SDHI_IntCallback()
	R_SDHI_IntSDBuffCallback()
	R_SDHI_IntSdioCallback()
	R_SDHI_EnableIcuInt()
	R_SDHI_DisableIcuInt()
	R_SDHI_SetIntMask()
	R_SDHI_ClearIntMask()
	R_SDHI_ClearSdstsReg()
	R_SDHI_SetSdioIntMask()
	R_SDHI_ClearSdioIntMask()
	R_SDHI_ClearSdiostsReg()
	R_SDHI_SetClock()
	R_SDHI_SetBus()
	R_SDHI_GetResp()
	R_SDHI_OutReg()
	R_SDHI_InReg()
	R_SDHI_CDLayout()
	R_SDHI_WPLayout()
	R_SDHI_GetWP()
	R_SDHI_GetSpeedType()
	R_SDHI_GetBuffRegAddress()
	R_SDHI_GetVersion()
	R_SDHI_SetLogHdlAddress()
	R_SDHI_Log()

	4. Pin Settings
	4.1 SD Card Insertion and Power-On Timing
	4.2 SD Card Removal and Power-Off Timing

	5. Demo Projects
	5.1 Overview
	5.2 State Transition Diagram
	5.3 Configuration Overview
	5.4 API Functions
	5.4.1 r_sdhi_demo_power_init()
	5.4.2 r_sdhi_demo_power_on()
	5.4.3 r_sdhi_demo_power_off()
	5.4.4 r_sdhi_demo_softwaredelay()

	5.5 Replacing Wait Time Processing with Operating System Processing
	5.6 sdhi_demo_rskrx64m, sdhi_demo_rskrx65n_2m, sdhi_demo_rskrx72n, sdhi_demo_rskrx64m_gcc, sdhi_demo_rskrx65n_2m_gcc, sdhi_demo_rskrx72n_gcc
	5.7 Adding a Demo to a Workspace
	5.8 Downloading Demo Projects

	6. Appendices
	6.1 Operation Confirmation Environment
	6.2 Troubleshooting
	6.3 Using the SD Card Socket of the RSK for SD Card Evaluation
	6.3.1 Hardware Settings

	7. Reference Documents
	Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

