
 Application Note

R01AN1817EJ0301 Rev.3.01 Page 1 of 43
Mar.15.25

RX Family
RTC Module Using Firmware Integration Technology
Introduction
This Realtime Clock (RTC) driver supports 24-hr and calendar count operation. Functions include setting of
date/time, alarms, periodic interrupts, and clock output, and start/stop setting of counters. For the RX230,
RX231, RX23W, RX260, RX261, RX64M, RX65N, RX660, RX66N, RX671, RX71M, RX72M, and RX72N the
time capture function is supported as well. Recovery from low power consumption states can be performed
by an alarm interrupt or periodic interrupt.

Target Device
The following is a list of devices that are currently supported by this API:

• RX110, RX111, RX113, RX130, RX140 Groups

• RX230, RX231, RX23W, RX23E-B, RX260, RX261 Groups

• RX64M Group

• RX651, RX65N Group

• RX660 Group

• RX66N Group

• RX671 Group

• RX71M Group

• RX72M Group

• RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.1 Operation Confirmation
Environment".

Related Documents
• Firmware Integration Technology User’s Manual (R01AN1833)
• RX Family Board Support Package Firmware Integration Technology Module (R01AN1685)

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 2 of 43
Mar.15.25

Contents

1. Overview ... 4
1.1 Using the RTC FIT module .. 4
1.1.1 Using RTC FIT module in C++ project .. 4

2. API Information .. 5
2.1 Hardware Requirements ... 5
2.2 Hardware Resource Requirements ... 5
2.2.1 RTC ... 5
2.2.2 I/O Port, MPC .. 5
2.2.3 Sub-Clock Oscillator .. 5
2.3 Software Requirements ... 5
2.4 Supported Toolchains ... 5
2.5 Interrupt Vector .. 5
2.6 Header Files .. 6
2.7 Integer Types .. 6
2.8 Configuration Overview ... 7
2.9 Code Size .. 8
2.10 Arguments ... 9
2.11 Callback Function .. 9
2.12 Adding the FIT Module to Your Project ... 10
2.13 “for”, “while” and “do while” statements ... 10

3. API Functions .. 11
Summary ... 11
Return Values .. 11
R_RTC_Open().. 12
R_RTC_Close() ... 15
R_RTC_Control() ... 16
R_RTC_Read() .. 21
R_RTC_GetVersion() .. 22

4. Pin Setting ... 23

5. Demo Projects ... 24
5.1 rtc_demo_rskrx130 .. 24
5.2 rtc_demo_rskrx231 .. 24
5.3 rtc_demo_rskrx64m ... 24
5.4 rtc_demo_rskrx671 .. 24
5.5 rtc_demo_rskrx72n .. 24
5.6 Adding a Demo to a Workspace ... 25

6. Appendices .. 26

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 3 of 43
Mar.15.25

6.1 Operation Confirmation Environment .. 26
6.2 Troubleshooting ... 36

7. Reference Documents ... 37

Related Technical Updates ... 37

Revision History .. 38

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 4 of 43
Mar.15.25

1. Overview
This Realtime Clock (RTC) driver supports the 24-hour calendar count mode operation on the RX MCUs.
The hardware functionality is detailed in the User’s Manual: Hardware.

This driver supports the common RTC functions such as:

• Setting date/time

• Starting/stopping counting

• Setting alarms

• Periodic interrupts

• Clock output

For the RX230, RX231, RX260, RX261, RX64M, RX65N, RX660, RX66N, RX671, RX71M, RX72M, and
RX72N three-time capture event input pins are supported:

• RTCIC0

• RTCIC1

• RTCIC2

For the RX23W two-time capture event input pins are supported:

• RTCIC0

• RTCIC1

Features not supported by this driver are:

• 12-Hour mode
• Binary count mode
• 30 seconds adjustment function
• Clock error correction function
• Carry interrupt
• Main clock as RTC count source (RX64M, RX65N, RX66N, RX671, RX71M, RX72M, and

RX72N)

1.1 Using the RTC FIT module
1.1.1 Using RTC FIT module in C++ project
For C++ project, add RTC FIT module interface header file within extern “C”{}:

extern “C”
{

#include “r_smc_entry.h”
#include “r_rtc_rx_if.h”

}

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 5 of 43
Mar.15.25

2. API Information
 This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
This driver requires that your MCU support the following features:

• RTCc, RTCd, RTCe, RTCA or RTCBa peripherals

2.2 Hardware Resource Requirements
This section details the hardware peripherals that this driver requires. Unless explicitly stated, these

resources must be reserved for the driver and the user cannot use them.

2.2.1 RTC
This driver makes use of the RTC peripheral.

2.2.2 I/O Port, MPC
Clock output and the time capture function are available with this driver. When using these functions,

corresponding pins need to be configured.

2.2.3 Sub-Clock Oscillator
The RTC peripheral operates on the sub-clock. Before calling this driver’s API functions, start the sub-clock
oscillator and wait for oscillation to stabilize. Refer to the User’s Manual: Hardware for details.

2.3 Software Requirements
This driver is dependent upon the following packages:

• Renesas Board Support Package (r_bsp) Rev.5.20 or higher

2.4 Supported Toolchains
This driver is tested and working with the toolchains listed in 6.1 Operation Confirmation Environment.

2.5 Interrupt Vector
The periodic interrupt and the alarm interrupt are enabled with the value specified in the argument for the

R_RTC_Open function or the R_RTC_Control function.

Table 2.1 lists the Interrupt Vector Used in the RTC FIT Module

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 6 of 43
Mar.15.25

Table 2.1 Interrupt Vector Used in the RTC FIT Module

Device Interrupt Vector
All target devices ALM interrupt (vector no.: 92)

PRD interrupt (vector no.: 93)

2.6 Header Files
All API function declarations and their supporting interface definitions are located in r_rtc_rx_if.h.

2.7 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 7 of 43
Mar.15.25

2.8 Configuration Overview
All configurable options that can be set at build time are located in the file “r_rtc_rx_config.h”. A summary of
these settings are provided in the following table:

Configuration options in r_rtc_rx_config.h

#define RTC_CFG_PARAM_CHECKING_ENABLE
The default value is 1

If this macro is set to 1, parameter checking is
included in the build. If the macro is set to 0, the
parameter checking is omitted from the build.
Setting this macro to
BSP_CFG_PARAM_CHECKING_ENABLE
utilizes the system default setting.

#define RTC_CFG_CALCULATE_YDAY
The default value is 0

If this macro is set to 1, when the R_RTC_Read
function is called, the number of days from
January 1 is calculated and stored in the
“tm_yday” member of the “tm_t” structure
variable, which is specified in the argument. If
this macro is set to 0, calculation of day will be
skipped.

Default enable:
#define RTC_CFG_DRIVE_CAPACITY_STD

Different definition:
//#define RTC_CFG_DRIVE_CAPACITY_LO
//#define RTC_CFG_DRIVE_CAPACITY_MD
//#define RTC_CFG_DRIVE_CAPACITY_HI

This macro specifies the sub-clock oscillator
drive capacity. The setting specified when
starting the sub-clock oscillator must be set here.

MCU
Drive Capacity

Low
(LO)

Middle
(MD)

High
(HI)

Standard
(STD)

RX11x X X X X
RX130
RX230
RX231
RX23W
RX23E-B
RX64M
RX71M
RX72M
RX72N
RX65N
RX66N
RX671

X - - X

 X: Available, -: Not available

This setting is disabled for the following devices.
Set the oscillation and drive capability of the sub-
clock with the board support package FIT module
(BSP module).

Target device
RX140, RX660, RX260, RX261

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 8 of 43
Mar.15.25

2.9 Code Size
Typical code sizes associated with this module are listed below. Information is listed for a single

representative device of the RX100 Series, RX200 Series, and RX600 Series, respectively.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration

options described in 2.8, Configuration Overview. The table lists reference values when compile options of

the C compiler (described in 2.4, Supported Toolchains) are set to their default values. The compile option

default values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The

code size varies depending on the C compiler version and compile options.

The values in the table below are confirmed under the following conditions.

Module Revision: r_rtc_rx rev3.00

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00

(The option of “-lang = c99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 8.3.0.202405

(The option of “-std = gnu99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 5.10.1

(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Code Sizes

Device Category Memory Used
Renesas Compiler GCC IAR Compiler

With Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX130 ROM 2215 bytes 1881 bytes 2860 bytes 2380 bytes 3152 bytes 2621 bytes

RAM 8 bytes 8 bytes 8 bytes

STACK*1 60 bytes - 92 bytes

RX231 ROM 2648 bytes 2273 bytes 3444 bytes 2884 bytes 3825 bytes 3221 bytes

RAM 16 bytes 16 bytes 16 bytes

STACK*1 60 bytes - 92 bytes

RX65N ROM 2651 bytes 2276 bytes 3452 bytes 2892 bytes 3826 bytes 3226 bytes

RAM 16 bytes 16 bytes 16 bytes

STACK*1 60 bytes - 104 bytes

Note1. The sizes of maximum usage stack of Interrupts functions is included.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 9 of 43
Mar.15.25

2.10 Arguments
The API data structures are located in the file “r_rtc_rx_if.h” and discussed in 3, API Functions.

2.11 Callback Function
In this module, the callback function specified by the user is called in the periodic interrupt handler or the
alarm interrupt handler.

The callback function is specified by storing the address of the user function in the “p_callback” structure
member (see 2.10, Arguments). When the callback function is called, the variable which stores the constant
listed in Table 2.2 is passed as the argument.

The argument is passed as void type. Thus the argument of the callback function is cast to a void pointer.
See examples below as reference.

When using a value in the callback function, type cast the value.
Set FIT_NO_FUNC to “p_callback” when not using the callback function.

Table 2.2 Arguments of the Callback Function (enum rtc_cb_evt_t)

Constant Description

RTC_EVT_ALARM Callback function called from the alarm interrupt handler.

RTC_EVT_PERIODIC Callback function called from the periodic interrupt handler.

/* Callback function usage example */
 :
rtc_init.p_callback = rtc_callback; //Set the callback function name.
err = R_RTC_Open(&rtc_init, &init_time); //RTC initialization

void rtc_callback(void *p_args)
{
 rtc_cb_evt_t event;

event = *(rtc_cb_evt_t *)p_args;
if (event == RTC_EVT_PERIODIC) //Periodic interrupt
{

do_something_prd();
}
else if (event == RTC_EVT_ALARM) //Alarm interrupt
{
 do_something_alm();
}

}

/* When not using the callback function. */
 :
rtc_init.p_callback = FIT_NO_FUNC; //Set ‘FIT_NO_FUNC’.
err = R_RTC_Open(&rtc_init, &init_time); //RTC initialization

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 10 of 43
Mar.15.25

2.12 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) or (4) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’s Guide: CS+ (R20AN0470)” for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (R01AN1826)” for details.

(4) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

2.13 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{

 /* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example :
/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{

 g_protect_counters[i] = 0;

}

do while statement example :
/* Reset completion waiting */

do

{

 reg = phy_read(ether_channel, PHY_REG_CONTROL);

 count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 11 of 43
Mar.15.25

3. API Functions

Summary
The following functions are included in this design:

Function Description

R_RTC_Open() This function initializes the RTC, sets the current date/time, and configures the
periodic interrupt and clock output, and starts counting.

R_RTC_Close() This function stops counting, and disables the periodic interrupt and the alarm
interrupt.

R_RTC_Control() This function updates the current date/time and the alarm date/time, and
configures the time capture function (only when available in the MCU) and other
settings.

R_RTC_Read() This function returns the current date/time and the alarm date/time

R_RTC_GetVersion () This function returns the driver version number.

Return Values
The following enumeration lists the possible error codes that can be returned by the API functions:

typedef enum // RTC API return codes
{
 RTC_SUCCESS,
 RTC_ERR_ALREADY_OPEN, // R_RTC_Open has already been called.
 RTC_ERR_NOT_OPENED, // R_RTC_Open is not called.
 RTC_ERR_BAD_PARAM, // Missing or invalid parameter specified
 RTC_ERR_MISSING_CALLBACK, // Callback function has not been specified.
 RTC_ERR_TIME_FORMAT, // Improper time format (field out of range)
 RTC_ERR_NO_CAPTURE // Time capture event is not detected.
} rtc_err_t;

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 12 of 43
Mar.15.25

R_RTC_Open()
This function initializes the RTC, sets the current date/time, configures the relevant interrupt, and starts
counting.
The function initializes the RTC FIT module. This function must be called before calling any other API
functions.

Format
rtc_err_t R_RTC_Open (rtc_init_t *p_init,
 tm_t *p_current_time);

Parameters
p_init

Pointer to initialization structure (see below).

p_current_time
Pointer to date/time structure (see below) to set current time.

Initialization structure used for p_init:

typedef struct
{
 rtc_cb_func_t p_callback; // Specifies the pointer to the callback
 // function.
 rtc_output_t output_freq; // Specifies frequency of clock output.
 // (The setting value is invalid when

// set_time = false.)
 rtc_periodic_t periodic_freq; // Specifies the period of the periodic
 // interrupt.
 uint8_t periodic_priority; // Specifies the periodic interrupt
 // priority level.
 // INT priority; 0 to 15 (0=disable)
 bool set_time; // Executes/skips the RTC initialization and
 // date/time setting.
 // (true: Execute, false: Skip)
} rtc_init_t;

typedef void (*rtc_cb_func_t)(void *p_args);

typedef enum e_rtc_output
{
 RTC_OUTPUT_OFF,
 RTC_OUTPUT_1_HZ,
 RTC_OUTPUT_64_HZ,
} rtc_output_t;

typedef enum e_rtc_periodic
{
 RTC_PERIODIC_OFF = 0,
 RTC_PERIODIC_256_HZ = 6,
 RTC_PERIODIC_128_HZ = 7,
 RTC_PERIODIC_64_HZ = 8,
 RTC_PERIODIC_32_HZ = 9,
 RTC_PERIODIC_16_HZ = 10,
 RTC_PERIODIC_8_HZ = 11,
 RTC_PERIODIC_4_HZ = 12,
 RTC_PERIODIC_2_HZ = 13,
 RTC_PERIODIC_1_HZ = 14,
 RTC_PERIODIC_2_SEC = 15,
} rtc_periodic_t;

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 13 of 43
Mar.15.25

Structure used for p_current_time:
Typedef struct
{
 int tm_sec; // Seconds (0-59)
 int tm_min; // Minutes (0-59)
 int tm_hour; // Hour (0-23)
 int tm_mday; // Day of the month (1-31)
 int tm_mon; // Month (0-11, 0=January)
 int tm_year; // Year (100-199, 100=Year 2000)
 int tm_wday; // Day of the week (0-6, 0=Sunday)
 int tm_yday; // Day of the year (0-365); Setting invalid
 // (This used when RTC_CFG_CALCULATE_YDAY is 1.)
 int tm_isdst; // Daylight Savings Time; unused here
 // (“-1” is set.)
} tm_t;

Return Values
RTC_SUCCESS
RTC_ERR_ALREADY_OPEN R_RTC_Open has already been called.
RTC_ERR_BAD_PARAM Missing or invalid parameter specified
RTC_ERR_MISSING_CALLBACK Callback function has not been set.
RTC_ERR_TIME_FORMAT Improper time format (field out of range)

Properties
Prototyped in file “r_rtc_rx_if.h”.

Description
This function initializes the RTC and starts the RTC counter. The function returns RTC_SUCCESS after the
RTC has been initialized and started counting successfully.

When the “set_time” member of the “rtc_init_t” structure is set to ‘true’, the RTC is initialized and date/time is
specified with the “p_current_time” argument. When the “set_time” member is false, the “p_current_time”
argument is ignored. Normally, “true” is set at cold start and “false” at warm start (such as reset).

The “tm_t” structure which is used for “p_current_time” is defined in the C standard library. If the compiler
does not support it, the “tm_t” structure defined in the “r_rtc_rx_if.h” file is used.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 14 of 43
Mar.15.25

Example
 rtc_err_t err;
 rtc_init_t rtc_init;

 /* Set the current date & time to be Aug 31, 2015 (Monday) 11:59:20pm */
 tm_t init_time =
 {
 20, //Seconds (0-59)
 59, //Minutes (0-59)
 23, //Hour (0-23)
 31, //Day of the month (1-31)
 7, //Month (0-11, 0=January)
 115, //Year (100-199, 100=Year 2000)
 1, //Day of the week (0-6, 0=Sunday)
 0, //Day of the year (0-365); disabled
 0, //Daylight savings; disabled
 };

 rtc_init.output_freq = RTC_OUTPUT_1_HZ; // Generate 1 Hz output clock
 rtc_init.periodic_freq = RTC_PERIODIC_2_HZ; // Gen periodic int every .5sec
 rtc_init.periodic_priority = 7; // Set the periodic interrupt
 // priority level to 7.
 rtc_init.set_time = true; // Perform RTC initialization
 // and date/time setting.
 rtc_init.p_callback = rtc_callback; // Set the callback function.

 err = R_RTC_Open(&rtc_init, &init_time);

Special Notes:
Before calling this function, start the sub-clock oscillator and wait for oscillation to stabilize. For details on
oscillating the sub-clock and specifying the oscillation stabilization wait time, refer to the User’s Manual:
Hardware for the MCU used.
This function must be called regardless of cold start or warm start.
And keep following notes when using clock output.

 Configure the RTCOUT pin with the application software after initializing clock output with the
R_RTC_Open function or R_RTC_Control function. Refer to 4. Pin Setting for details.

 In warm start mode (rtc_init_t->set_time = false), configuration of clock output by
R_RTC_Open function are invalid. To use clock output at warm start, configure clock output
with the R_RTC_Control function after calling the R_RTC_Open function.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 15 of 43
Mar.15.25

R_RTC_Close()
This function stops counting, resets the RTC, and disables all RTC interrupts.

Format
void R_RTC_Close (void);

Parameters
None.

Return Values
None.

Properties
Prototyped in file “r_rtc_rx_if.h”.

Description
This function stops counting, resets the RTC, and disables all RTC interrupts.

Example
rtc_err_t err;
rtc_init_t rtc_init;
tm_t init_time;

 :
 err = R_RTC_Open(&rtc_init, &init_time);
 :
 R_RTC_Close();

Special Notes:
None.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 16 of 43
Mar.15.25

R_RTC_Control()
This function updates the current date/time and the alarm date/time, and configures the time capture function
(only when available in the MCU) and other settings.

Format
rtc_err_t R_RTC_Control(rtc_cmd_t cmd,
 void *p_args);

Parameters
cmd

Command to process (see enum below)

p_args
Pointer to optional argument structure (refer to the Description for each command setting.)

Commands available:

typedef enum
{
 /* All MCUs */
 RTC_CMD_SET_OUTPUT,
 RTC_CMD_SET_PERIODIC,
 RTC_CMD_SET_CURRENT_TIME,
 RTC_CMD_SET_ALARM_TIME,
 RTC_CMD_ENABLE_ALARM,
 RTC_CMD_STOP_COUNTERS,
 RTC_CMD_START_COUNTERS,
 RTC_CMD_PARTIAL_RESET,

 /* RX230, RX231, RX23W, RX260, RX261, RX64M, RX65N, RX660, RX66N, RX671,
RX71M, RX72M, RX72N only */
 RTC_CMD_CONFIG_CAPTURE,
 RTC_CMD_CHECK_PIN0_CAPTURE,
 RTC_CMD_CHECK_PIN1_CAPTURE,
 RTC_CMD_CHECK_PIN2_CAPTURE,
 RTC_CMD_DISABLE_CAPTURE
} rtc_cmd_t;

Return Values
RTC_SUCCESS
RTC_ERR_NOT_OPENED R_RTC_Open is not called.
RTC_ERR_BAD_PARAM Missing or invalid parameter specified
RTC_ERR_MISSING_CALLBACK Callback function has not been specified.
RTC_ERR_TIME_FORMAT Improper time format (field out of range)
RTC_ERR_NO_CAPTURE Time capture event is not detected.

Properties
Prototyped in file “r_rtc_rx_if.h”.

Description
This function updates the current date/time and the alarm date/time, and configures the time capture function

(only when available in the MCU) and other settings. A brief summary for each command follows.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 17 of 43
Mar.15.25

RTC_CMD_SET_OUTPUT:

This command is to change the setting for clock output using the “rtc_output_t” structure. And it stops

counting while the setting. The following shows a sample call:

 rtc_output_t out_freq=RTC_OUTPUT_OFF;

 err = R_RTC_Control(RTC_CMD_SET_OUTPUT, &out_freq);

RTC_CMD_SET_PERIODIC:

This command is to change the periodic interrupt generation interval using the “rtc_periodic_cfg_t” structure.

The following shows a sample call:

 rtc_periodic_cfg_t periodic;

 periodic.frequency = RTC_PERIODIC_2_HZ; // Get INT every 1/2 second
 periodic.int_priority = 9;
 err = R_RTC_Control(RTC_CMD_SET_PERIODIC, &periodic);

RTC_CMD_SET_CURRENT_TIME:

This command is to change the current date/time setting using the “tm_t” structure. And it stops counting

while the setting. The following shows a sample call:

 tm_t time;
 :
 err = R_RTC_Control(RTC_CMD_SET_CURRENT_TIME, &time);

RTC_CMD_SET_ALARM_TIME:
This command is to set the alarm date/time using the “tm_t” structure. When setting the alarm date/time,
disable the alarm function with RTC_CMD_ENABLE_ALARM certainly before the setting. The following
shows a sample call:

 tm_t time;
 :
 err = R_RTC_Control(RTC_CMD_SET_ALARM_TIME, &time);

RTC_CMD_ENABLE_ALARM:
This command is to specify fields (year, month, day of the month/week, etc.) to compare the current
date/time with the alarm date/time, and enable the alarm interrupt. The following shows a sample call:

 tm_t time;
 rtc_alarm_ctrl_t alarm;

 /* CREATE ALARM FOR 9:00AM ON THE 1st OF EVERY MONTH */
 time.tm_sec = 0; // Seconds (0-59)
 time.tm_min = 0; // Minutes (0-59)
 time.tm_hour = 9; // Hour (0-23)

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 18 of 43
Mar.15.25

 time.tm_mday = 1; // Day of the month (1-31)
 time.tm_mon = 0; // Month (0-11, 0=January)
 time.tm_year = 100; // Year (100-199, 100=Year 2000)
 time.tm_wday = 0; // Day of the week (0-6, 0=Sunday)
 err = R_RTC_Control(RTC_CMD_SET_ALARM_TIME, &time);

 alarm.int_priority = 4; // Set the alarm interrupt priority level to 4.
 alarm.sec = false; // Seconds
 alarm.min = false; // Minutes
 alarm.hour = true; // Hour (true = compare with current time)
 alarm.mday = true; // Day of the month (true = compare with current date)
 alarm.mon = false; // Month
 alarm.year = false; // Year
 alarm.wday = false; // Day of the week
 err = R_RTC_Control(RTC_CMD_ENABLE_ALARM, &alarm);
RTC_CMD_STOP_COUNTERS:
This command is to stop counting. Set the second argument to NULL or FIT_NO_PTR.
The following shows a sample call:

 R_RTC_Control(RTC_CMD_STOP_COUNTERS, NULL);

RTC_CMD_START_COUNTERS:
This command is to resume counting after it is halted by RTC_CMD_STOP_COUNTERS. Set the second
argument to NULL or FIT_NO_PTR. The following shows a sample call:

 R_RTC_Control(RTC_CMD_START_COUNTERS, NULL);

RTC_CMD_PARTIAL_RESET:
This command is to reset registers for clock output, alarm, and time capture (see the RCR2.RESET register
bit description in the User’s Manual: Hardware for a complete list of affected registers). Set the second
argument to NULL or FIT_NO_PTR. The following shows a sample call:

 R_RTC_Control(RTC_CMD_PARTIAL_RESET, NULL);

RTC_CMD_CONFIG_CAPTURE:
This command is to specify the event detection condition for RTCIC0, RTCIC1, or RTCIC2 pin using the
“rtc_capture_cfg_t” structure. When using the tamper detection function of the battery backup function
(VBATT) on the RX671, please set the noise filter setting (capture.filter) to OFF (RTC_FILTER_OFF). The
following shows a sample call:

 rtc_capture_cfg_t capture;

 capture.pin = RTC_PIN_0;
 capture.edge = RTC_EDGE_RISING;
 capture.filter = RTC_FILTER_OFF;
 err = R_RTC_Control(RTC_CMD_CONFIG_CAPTURE, &capture);

RTC_CMD_CHECK_PIN0_CAPTURE:
RTC_CMD_CHECK_PIN1_CAPTURE:
RTC_CMD_CHECK_PIN2_CAPTURE:
After the capture pin is configured, it must be polled to determine if an event has occurred. When a capture
was made, the captured date and time are stored in the argument specified as the second parameter and
RTC_SUCCESS is returned. When a capture was not made, RTC_ERR_NO_CAPTURE is returned. The
following shows a sample call:

 tm_t time;
 rtc_err_t err;
 rtc_capture_cfg_t capture;

 :
 err = R_RTC_Control(RTC_CMD_CONFIG_CAPTURE, &capture);

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 19 of 43
Mar.15.25

 while(1)
 {
 /* main processing */
 :
 /* check if an event was detected on the RTCIC0 pin. */
 if (R_RTC_Control(RTC_CMD_CHECK_PIN0_CAPTURE, &time) == RTC_SUCCESS)
 {
 /* If event was detected outside of 9-5 business hours */
 if ((time.tm_hour < 9) || (time.tm_hour > 17))
 {
 RED_LED = ON;
 write_flash(log_addr, sizeof(tm_t), &time);
 log_addr += sizeof(tm_t);
 }
 }
 }

RTC_CMD_DISABLE_CAPTURE:

This command is to disable the capture pin setting. Use RTC_CMD_CONFIG_CAPTURE to enable again.

The following shows a sample call:

 rtc_pin_t pin=RTC_PIN_0;

 err = R_RTC_Control(RTC_CMD_DISABLE_CAPTURE, &pin)

Example

/* CREATE ALARM INTERRUPT TO OCCUR EVERY 30 SECONDS */
rtc_err_t err;
rtc_init_t rtc_init;
tm_t g_init_time={0, 0, 0, 1, 0, 100, 0, 0, 0};
rtc_alarm_ctrl_t alarm={4, false, false, false, false, false, false, false};
tm_t alm_time;

rtc_init.output_freq = RTC_OUTPUT_OFF; // Clock is not output.
rtc_init.periodic_freq = RTC_PERIODIC_OFF;// Disables the periodic interrupt.
rtc_init.periodic_priority = 0; // Sets the periodic interrupt
 // priority level to 0.
rtc_init.set_time = true; // Performs RTC initialization and

// date/time setting.
rtc_init.p_callback = rtc_callback; // Specifies the callback function.

err = R_RTC_Open(&rtc_init, &g_init_time);

/* Issues the alarm interrupt request when the value of second becomes 30. */
alm_time = g_init_time;
alm_time.tm_sec = 30;
alm_time.int_priority = 7; // Sets the alarm interrupt priority
 // level to 7.
err = R_RTC_Control(RTC_CMD_SET_ALARM_TIME, &alm_time);

/* Enables the second field for alarm. */
alarm.sec = true;
err = R_RTC_Control(RTC_CMD_ENABLE_ALARM, &alarm);

:
/* Callback function */
void rtc_callback(void *p_args)
{

rtc_err_t err;

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 20 of 43
Mar.15.25

// Resets the current time to 0. When the value of second becomes 30,
// the alarm interrupt again occurs.
err = R_RTC_Control(RTC_CMD_SET_CURRENT_TIME, &g_init_time);

// Processing to be executed here.

}

Special Notes:
When using time capture function, the pins to be used must be configured by the application software before
executing the RTC_CMD_CONFIG_CAPTURE command in the R_RTC_Control function after calling the
R_RTC_Open function. Refer to 4. Pin Setting for details.
And executing the RTC_CMD_SET_OUTPUT command or the RTC_CMD_SET_CURRENT_TIME
command stops RTC counting while processing.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 21 of 43
Mar.15.25

R_RTC_Read()
This function returns the current date/time and the alarm date/time set in the RTC.

Format
rtc_err_t R_RTC_Read (tm_t * p_current_time,
 tm_t * p_alarm_time);

Parameters
p_current

Pointer for loading the current date/time from the RTC. Specify NULL or FIT_NO_PTR to skip reading the
current date/time.

p_alarm
Pointer for loading the alarm date/time from the RTC. Specify NULL or FIT_NO_PTR to skip reading the
alarm date/time.

Return Values
RTC_SUCCESS
RTC_ERR_NOT_OPENED R_RTC_Open is not called.

Properties
Prototyped in file “r_rtc_rx_if.h”.

Description
This function reads the current date/time and the alarm date/time.

Example
 tm_t cur_time;
 tm_t alm_time;
 rtc_err_t err;

 err = R_RTC_Read(&cur_time, NULL); // Read current date/time only
 err = R_RTC_Read(NULL, &alm_time); // Read alarm date/time only
 err = R_RTC_Read(&cur_time, &alm_time); // Read both date/times

Special Notes:
To read the current date/time using this function after return from a reset, deep software standby mode,
software standby mode, or the battery backup state, wait for 1/128 second while counting has been started
with the condition of (RCR2.START bit = 1).
When a carry of the RTC counter occurs while reading the current time, this function reads the current time
again. For checking the carry, the function uses carry interrupt status flag (IR bit)
For that, it enables carry interrupt (RCR1.CIE bit = 1). So, do not clear this status flag in the application
software.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 22 of 43
Mar.15.25

R_RTC_GetVersion()
This function returns the driver version number at runtime.

Format
uint32_t R_RTC_GetVersion(void);

Parameters
None.

Return Values
Version number.

Properties
Prototyped in file “r_rtc_rx_if.h”

Description
Returns the version of this module. The top 2 bytes are the major version number, and the bottom 2 bytes

are the minor version number.

Example
uint32_t version;
version = R_RTC_GetVersion();

Special Notes:
None.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 23 of 43
Mar.15.25

4. Pin Setting
To use the RTC FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document.

Set the RTCOUT pin according to the following.

 At cold start mode (rtc_init_t->set_time = true), configure the RTCOUT pin after setting clock output
with the R_RTC_Open function or R_RTC_Control function.

 At warm start mode (rtc_init_t->set_time = false), setting of clock output by R_RTC_Open function is
invalid. After calling the R_RTC_Open function, configure the RTCOUT pin after setting clock output
with the R_RTC_Control function.

Perform the RTCICn (n = 0 to 2) pin setting before executing the RTC_CMD_CONFIG_CAPTURE command
in the R_RTC_Control function after calling the R_RTC_Open function.

When performing the Pin Setting in the e2 studio, the Pin Setting feature of the FIT Configurator or the Smart
Configurator can be used. When using the Pin Setting feature, a source file is generated according to the
option selected in the Pin Setting window in the FIT Configurator or the Smart Configurator. Pins are
configured by calling the function defined in the source file. Refer to Table 4.1 for details.

Table 4.1 Function Output by the FIT Configurator

MCU Used Function to be Output Remarks
All MCUs R_RTC_PinSet() For the RX100 Series, the setting for

RTCICn (n = 0 to 2) is not output.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 24 of 43
Mar.15.25

5. Demo Projects
Demo projects are complete stand-alone programs. They include function main() that utilizes the module
and its dependent modules (e.g.. r_bsp).

5.1 rtc_demo_rskrx130
Description
A simple demo of the RX130 Realtime Clock (RTCc) for the RSKRX130 starter kit (FIT module “r_rtc_rx”).
The demo uses the RTC API from r_rtc_rx_if.h to initialize the realtime clock to an arbitrary date/time and
start a 2 sec periodic interrupt. The interrupt handler reads the current date/time into global variables for
printing to the debug console by main(). LED 0 is also toggled when the periodic timer expires.

Setup and Execution
1. Compile and download the sample code.

2. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

3. Set breakpoints and watch global variables

Boards Supported
RSKRX130

5.2 rtc_demo_rskrx231
Description
A simple demo of the RX231 Realtime Clock (RTCe) for the RSKRX231 starter kit (FIT module “r_rtc_rx”).
This demo is identical to the RX130 demo above.

Boards Supported
RSKRX231

5.3 rtc_demo_rskrx64m
Description
A simple demo of the RX64M Realtime Clock (RTCd) for the RSKRX64M starter kit (FIT module “r_rtc_rx”).
This demo is identical to the RX130 demo above.

Boards Supported
RSKRX64M

5.4 rtc_demo_rskrx671
Description
A simple demo of the RX671 Realtime Clock (RTCd) for the RSKRX671 starter kit (FIT module “r_rtc_rx”).
This demo is identical to the RX130 demo above.

Boards Supported
RSKRX671

5.5 rtc_demo_rskrx72n
Description
A simple demo of the RX72N Realtime Clock (RTCd) for the RSKRX72N starter kit (FIT module “r_rtc_rx”).
This demo is identical to the RX130 demo above.

Boards Supported
RSKRX72N

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 25 of 43
Mar.15.25

5.6 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click
“Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 26 of 43
Mar.15.25

6. Appendices
6.1 Operation Confirmation Environment
This section describes operation confirmation environment for the RTC FIT module.

Table 6.1 Operation Confirmation Environment (Rev. 2.41)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 4.2.0.012

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.04.01
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.41
Board used Renesas Starter Kit for RX130 (product No.: RTK5005130SxxxxxBE)

Table 6.2 Operation Confirmation Environment (Rev. 2.50)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 5.0.1.005

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.50
Board used Renesas Starter Kit+ for RX65N (product No.: RTK500565NSxxxxxBE)

Table 6.3 Operation Confirmation Environment (Rev. 2.70)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 6.0.0.XXX

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.70

Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 27 of 43
Mar.15.25

Table 6.4 Operation Confirmation Environment (Rev. 2.71)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 6.0.0.XXX

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.71

Board used

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)
Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit for RX113 (product No.: R0K505113SxxxBE)

Table 6.5 Operation Confirmation Environment (Rev. 2.72)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 6.1.0.XXX

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.72

Board used
Renesas Starter Kit+ for RX64M (product No.: R0K50564MSxxxBE)
Renesas Starter Kit for RX130 (product No.: RTK5005130SxxxxxBE)
Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)

Table 6.6 Operation Confirmation Environment (Rev. 2.73)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.1.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.73

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 28 of 43
Mar.15.25

Table 6.7 Operation Confirmation Environment (Rev. 2.74)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.3.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.74

Table 6.8 Operation Confirmation Environment (Rev. 2.75)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0
IAR Embedded Workbench for Renesas RX 4.10.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.10.01
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.75
Board used Renesas Starter Kit+ for RX65N (product No.: RTK500565Nxxxxxx)

Table 6.9 Operation Confirmation Environment (Rev. 2.76)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.2.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.76
Board used Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxx)

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 29 of 43
Mar.15.25

Table 6.10 Operation Confirmation Environment (Rev. 2.77)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment

Endian Big endian/little endian
Revision of the module Rev.2.77
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 6.11 Operation Confirmation Environment (Rev. 2.78)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment

Endian Big endian/little endian
Revision of the module Rev.2.78
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 30 of 43
Mar.15.25

Table 6.12 Operation Confirmation Environment (Rev. 2.79)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2020-04
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment

Endian Big endian/little endian
Revision of the module Rev.2.79
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

Table 6.13 Operation Confirmation Environment (Rev. 2.80)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2020-10 (20.10.0)

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/Little endian
Revision of the module Rev.2.80

Board used
Renesas Starter Kit+ for RX64M (product No.: R0K50564MSxxxBE)
Renesas Starter Kit for RX130 (product No.: RTK5005130SxxxxxBE)
Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 31 of 43
Mar.15.25

Table 6.14 Operation Confirmation Environment (Rev. 2.81)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2021-01 (21.1.0)
IAR Embedded Workbench for Renesas RX 4.14.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202002
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.01
Compiler option: The default settings of the integrated development
environment

Endian Big endian/little endian
Revision of the module Rev.2.81
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

Table 6.15 Operation Confirmation Environment (Rev. 2.82)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2021-07 (21.7.0)
IAR Embedded Workbench for Renesas RX 4.20.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202102
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.01
Compiler option: The default settings of the integrated development
environment

Endian Big endian/little endian
Revision of the module Rev.2.82
Board used Target board for RX140 (product No.: RTK5RX140xxxxxxxxx)

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 32 of 43
Mar.15.25

Table 6.16 Operation Confirmation Environment (Rev. 2.83)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202104

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.83
Board used Renesas Starter Kit for RX660 (product No.: RTK556609HCxxxxxBJ)

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 33 of 43
Mar.15.25

Table 6.17 Operation Confirmation Environment (Rev. 2.90)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202204

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.90

Board used

Renesas Starter Kit for RX130 (product No.: RTK5005130SxxxxxBE)
Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)
Renesas Solution Starter Kit for RX23E-B (product No.:
RTK0ES1001C00001BJ)
Renesas Starter Kit+ for RX64M (product No.: R0K50564MSxxxBE)
Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)
Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 34 of 43
Mar.15.25

Table 6.18 Operation Confirmation Environment (Rev. 3.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-07
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202405

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.00
Board used Evaluation Kit for RX261 (product No.: RTK5EK2610S00011BJ)

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 35 of 43
Mar.15.25

Table 6.19 Operation Confirmation Environment (Rev. 3.01)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202411

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.01
Board used -

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 36 of 43
Mar.15.25

6.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 When using CS+:
Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 When using e2 studio:
Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. For this, refer to the application note “Board Support Package Module Using Firmware
Integration Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the following errors:
ERROR - A drive capacity #define must be uncommented in r_rtc_rx_config.h
ERROR - Only one drive capacity #define may be uncommented in r_rtc_rx_config.h
ERROR - RTC_CFG_DRIVE_CAPACITY_MD in r_rtc_rx_config.h is invalid selection for MCU.

A: The setting value in the “r_rtc_rx_config.h” file may be wrong. Check the file “r_rtc_rx_config.h”. If
there is a wrong setting, set the correct value for that. Refer to 2.8, Configuration Overview for details.

(3) Q: A clock is not output from the RTCOUT pin.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 4, Pin Setting for details.

(4) Q: An event is not detected though an edge is input to the RTCICn (n = 0 to 2) pin.

A: The event detection condition or the pin setting may not be configured properly. Check the setting for
the RTC_CMD_CONFIG_CAPTURE command in 3.5, R_RTC_Control (). Also, confirm that the
RTCICn (n = 0 to 2) pin is set to general I/O port.

(5) Q: Even if the R_RTC_Open function is called, an infinite loop is entered within the function and counting

is not started.

A: The sub-clock may not oscillate correctly. Check whether the sub-clock starts oscillating before calling
the R_RTC_Open function. Then, follow the setting procedure in the User's Manual: Hardware.

(6) Q: The counter is always initialized at warm start.

A: When calling the R_RTC_Open function at warm start, check whether ‘false’ is set to “set_time” in the
“rtc_init_t” structure. Also, when processing is branched using the cold/warm start determination flag
(RSTSR1.CWSF), check whether the flag is set to 1 (warm start) in the cold start processing.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 37 of 43
Mar.15.25

7. Reference Documents
User’s Manual: Hardware
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family C/C++ Compiler CC-RX User's Manual (R20UT3248)
The latest version can be downloaded from the Renesas Electronics website.

Related Technical Updates
This module reflects the content of the following technical updates.

None

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 38 of 43
Mar.15.25

Revision History

Rev.

Date

Description
Page Summary

1.00 Nov.22.13 — First edition issued
2.00 Apr.16.14 all Modified for new API.

Added support for RX110, RX210, and RX63N/631
Added support for Capture feature

2.10 Sep.03.14 1,3-4,
6-7,11

Added support for RX64M.

2.20 Dec.03.14 1,3-5 Added support for RX113.
2.30 Jan.26.15 1,3,5,7,11,

18
Added support for RX71M.

2.40 Jul.20.15 1,2,5,18 Added support for RX231, added RX231 demo.
2.41 Mar.1.16 1,3,5,6,8,9

,13

program

Added support for RX130, 230.

Added definition for sub-clock drive capacity.

RTC_CFG_DRIVE_CAPACITY_MD
Added the rtc_enable_ints function in order to enable the
interrupt regardless of the cold start or warm start.
Fixed the issue of initial setting procedure for the time capture.

2.50 Oct.1.16 1,3,5,6,12,
19

6
12

17

20

program

Added support for RX65N.

Changed a description of code size in section 2.9.
Modified a setting example for the RTCOUT pin.
Added a description on how to set up a callback function in
section 3.3.
Deleted a setting example for the RTCOUT pin.
Modified a setting example for the timestamp capture event
input pins.
Added “4. Pin Setting”.

Change the range of values that can be set in the interrupt
priority level. (Can set value of 0)
Change the specification for the registration of a callback
function.
Changed the setting of the carry interrupt enable bit
(RCR1.CIE) specified by the R_RTC_Open function from
“enabled” to “disabled”.
(This FIT module does not support the carry interrupt, therefore
the specification has been improved to disable an unused
interrupt.)

2.60 Mar.31.17 4 2.2 Hardware Resource Requirements:
- 2.2.2 I/O Port, MPC: Modified the description regarding the

MPC.
- 2.2.3 Sub-Clock Oscillator: Modified.
2.4 Supported Toolchains: Now the detailed information of

toolchains is listed in Section 5.1.
2.5 Interrupt Vector: Added.
2.6 Header Files: Deleted unnecessary information.
2.7 Integer Types: Deleted unnecessary information.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 39 of 43
Mar.15.25

Rev.

Date

Description
Page Summary

2.60 Mar.31.17 5
7
8
9

10

11
12

14

17

18

20

2.8 Configuration Overview: Modified some descriptions.
2.11 Callback Function: Added.
2.12 Adding the FIT Module to Your Project: Revised.
3.1 Summary: Modified some descriptions.
3.2 Return Values: Modified some descriptions.
3.3 R_RTC_Open ():
- Parameters: Modified the descriptions for structures.
- Description: Modified.
- Example: Modified.
- Special Notes: Modified the description regarding the sub-

clock and moved the description regarding the callback
function to 2.11, Callback Function.

3.5 R_RTC_Control ():
- Parameters: Modified the description regarding the structure.
- Description: Modified the description for each command.
- Example: Modified.
- Special Notes: Modified the description regarding the capture

pin.
3.6 R_RTC_Read():
- Parameters: Deleted the description regarding the structure.
- Description: Modified.
4. Pin Setting: Modified.

2.70 Jul.31.17 —
—

1

4

6

21
21
23

Added support for RX130-512KB and RX65N-2MB.
Removed RX210, RX631, and RX63N from the target device in
this FIT module since the release of the CGC FIT module has
been canceled for RX210, RX631, and RX63N.
Related Documents: Added the following document:
“Renesas e2 studio Smart Configurator User Guide
(R20AN0451)”
2.1 Hardware Requirements: Deleted RTCa (RX210) and
RTCb (RX631, RX63N).
2.9 Code Size: Revised the description above the table and
updated the ROM sizes in the table.
5. Demo Projects: Deleted.
5. Appendices: Added.
6. Reference Documents: Added.

 Program Removed the definitions for RX210, RX631, and RX63N from
the conditional expression of the preprocessor.

 Fixed the following issues in the rtc_init function:
- The RCR3.RTCEN bit is set to 0 in the beginning of

processing.
- When the R_RTC_Open function is called while the sub-clock

oscillator does not operate, an infinite loop is entered in the
verification processing after setting registers.

 Added the dummy read processing after setting registers in the
rtc_set_current_time function and the rtc_set_alarm_time
function.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 40 of 43
Mar.15.25

Rev.

Date

Description
Page Summary

2.71 Sep.20.17
10

12

15

17

18

20

22

3.1 R_RTC_Open()
- Parameters
 Added descriptions for output_freq member.
- Special Notes
 Added descriptions.
3.5 R_RTC_Control()
- Description
 RTC_CMD_SET_OUTPUT command
 Added descriptions.
 RTC_CMD_SET_CURRENT_TIME command
 Added descriptions.
RTC_CMD_SET_ALARM_TIME command
 Added descriptions.
- Special Notes
 Added descriptions.
3.6 R_RTC_Read()
- Special Notes
 Added descriptions.
4.Pin Setting
 Added descriptions.
5.1 Operation Confirmation Environment
 Added Table 5.4.

 Program Modified the following issues.

 Processing for reading the current time

[Description]
When a carry of the RTC counter occurs while reading the
current time using the R_RTC_Read function, an incorrect time
is read.
(According to the specification, the software reads again the
current time when a carry occurs. But the carry is not detected
and the current time is not read again.)

e.g) A carry occurs after just reading seconds at 0:00:59.
 Although the time should be 0:01:00, the time readout is
0:01:59 (59 seconds difference)

[Conditions]
When a carry of the RTC counter occurs while reading the
RTC counter.

[Workaround]
Use rev. 2.71 or a later version of the RTC FIT module.
The definition is changed as follows.

 rev.2.70) RTC_INT_ENABLE (0x05)
 rev.2.71) RTC_INT_ENABLE (0x07)

By this way, carry interrupt enable bit (RCR1.CIE) becomes
enabled and the process detects a carry during reading of the
current time and reads again.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 41 of 43
Mar.15.25

Rev.

Date

Description
Page Summary

2.71 Sep.20.17 Program Stop counting at warm start

[Description]
If "false" is set to the member "set_time" of the argument

"rtc_init_t" of the R_RTC_Open function, the count is stopped
during the processing of the R_RTC_Open function without
specific operation.(Above is occurred at warm start)

[Conditions]
When "false" is set to the member "set_time" of the argument

"rtc_init_t" of the R_RTC_Open function.

[Workaround]
Use rev. 2.71 or a later version of the RTC FIT module.
In rev. 2.71, the rtc_set_output function called in the

R_RTC_Open function is moved into the routine that
executes only at cold start. This change will prevent the count
from temporarily stopping at warm start.

Added limitation
Clock output setting by the R_RTC_Open function is invalid at

warm start.
2.72 Dec.14.17 4

21

23

2.4 Supported Toolchains
 The following is changed.
 5.1 -> 6.1

5. Demo Projects
 Added descriptions.
6.1 Operation Confirmation Environment

Added Table 6.5
2.73 Dec.03.18 23 6.1 Operation Confirmation Environment:

Added Table 6.6 Confirmed Operation Environment (Rev.
2.73).

 Program Added document number of the application note
accompanying the sample program of the FIT module to xml
file.

2.74 Feb.01.19 24 6.1 Operation Confirmation Environment:
Added Table 6.7 Confirmed Operation Environment (Rev.

2.74).
 Program Changes associated with functions:

Added support setting function of configuration option Using
GUI on Smart Configurator.

[Description]
Added a setting file to support configuration option setting

function by GUI.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 42 of 43
Mar.15.25

Rev.

Date

Description
Page Summary

2.75 May.20.19 - Update the following compilers
GCC for Renesas RX
IAR C/C++ Compiler for Renesas RX

 1 Added Target Compilers.
 1 Deleted R01AN1723, R01AN1826, R20AN0451 from Related

Documents.
 4 Added revision of dependent r_bsp module in 2.3 Software

Requirements.
 6 2.9 Code Size, amended.
 19 3.7 R_RTC_GetVersion function, deleted special notes.
 24 Added Table 6.8 in Operation Confirmation Environment.
2.76

Jun.20.19 1 Added the RX23W group to the Target Device.
Deleted R01AN1833 from Related Documents.

 3 In overview, Added time capture event input pins for RX23W.
 5 Added RX23W to the subclock oscillator drive capability table.
 6 2.9 Code Size, amended.
 8 Added Section 2.13 “for”, “while” and “do while” statements.
 24 Added Table 6.9 Confirmed Operation Environment (Rev.

2.76).
2.77 Jul.30.19 1 Added the RX72M group to the Target Device.
 3 In overview, Added time capture event input pins for RX72M.
 5 2.8 Configuration Overview, Added RX72M to the subclock

oscillator drive capability table.
 6 2.9 Code Size, amended.
 9-19 Deleted the Reentrant for each API in API Functions.
 25 Added Table 6.10 Confirmed Operation Environment (Rev.

2.77).
2.78 Nov.22.19 1 Added the RX66N group and RX72N group to the Target

Device.
 3 In overview, Added time capture event input pins for RX66N

and RX72N.
 5 2.8 Configuration Overview, Added RX66N and RX72N to the

subclock oscillator drive capability table.
 6 2.9 Code Size, amended.
 25 Added Table 6.11 Confirmed Operation Environment (Rev.

2.78).
2.79 Jun.01.20 - Fixed the issue that the fit module cannot be added to the

project by e2 studio due to the wrong folder name of the web
package of RTC Rev.2.78. For details, see Tool News
(R20TS0302).

 8 Changed Section 2.12 Adding the FIT Module to Your Project.
 26 Added Table 6.12 Confirmed Operation Environment (Rev.

2.79).
2.80 Nov.30.20 - Updated the sample code project due to the upgrade of the

development environment.
2.81 Jun.30.21 1 Added the RX671 group to the Target Device.
 3 In overview, Added time capture event input pins for RX671.
 5 2.8 Configuration Overview, Added RX671 to the subclock

oscillator drive capability table.
 6 2.9 Code Size, amended.

RX Family RTC Module Using Firmware Integration Technology

R01AN1817EJ0301 Rev.3.01 Page 43 of 43
Mar.15.25

Rev.

Date

Description
Page Summary

2.81 Jun.30.21 28 Added Table 6.14 Confirmed Operation Environment (Rev.
2.81).

 Program Output of RTCOUT pin when the R_RTC_Open function is
called

[Description]
When an R_RTC_Open function is called, the RTCOUT pin
output 1 Hz even when the RTCOUT pin is set to output 64 Hz.

[Conditions]
When an R_RTC_Open function is called while output_freq
stores RTC_OUTPUT_64_HZ and set_time stores true.
the output_freq and set_time are members of a structure
variable rtc_init_t.

[Workaround]
Use rev. 2.81 or a later version of the RTC FIT module.

2.82 Jul.31.21 1 Added the RX140 group to the Target Device.
6 2.9 Code Size, amended.
28 Added Table 6.15 Confirmed Operation Environment (Rev.

2.82).
2.83 Dec.31.21 1

4

5
6

8
17
32

Added the RX660 group to the Target Device.
In overview, Added time capture event input pins for RX660.
Added 1.1 Using the RTC FIT module.
In 2.1 Hardware Requirements, Added RTCBa peripherals.
2.8 Configuration Overview, Added RX660 to the subclock
oscillator drive capability table.
2.9 Code Size, amended.
In 3.5 R_RTC_Control, Added RX660 to Commands available.
Added Table 6.16 Confirmed Operation Environment (Rev.
2.83).

2.90 May.29.23 1, 7
8
10

24
33

Program

Added support RX23E-B.
2.9 Code Size, amended.
Deleted the description of FIT configurator from "2.12. Adding
the FIT Module to Your Project".
Added RSKRX72N, RSKRX671 to “5. Demo Projects”.
Added Table 6.17 Confirmed Operation Environment (Rev.
2.90).
Added support RX23E-B.
Updated and added new demo projects.

3.00 Jun.28.24 1, 4, 7, 16
8
34

Program

Added support RX260, RX261.
2.9 Code Size, amended.
Added Table 6.18 Confirmed Operation Environment (Rev.
3.00).
Added support RX260, RX261.

3.01 Mar.15.25 35

Program

Added Table 6.19 Confirmed Operation Environment (Rev.
3.01).
Updated FIT Disclaimer and Copyright.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Using the RTC FIT module
	1.1.1 Using RTC FIT module in C++ project

	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.2.1 RTC
	2.2.2 I/O Port, MPC
	2.2.3 Sub-Clock Oscillator

	2.3 Software Requirements
	2.4 Supported Toolchains
	2.5 Interrupt Vector
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Code Size
	2.10 Arguments
	2.11 Callback Function
	2.12 Adding the FIT Module to Your Project
	2.13 “for”, “while” and “do while” statements

	3. API Functions
	Summary
	Return Values
	R_RTC_Open()
	R_RTC_Close()
	R_RTC_Control()
	R_RTC_Read()
	R_RTC_GetVersion()

	4. Pin Setting
	5. Demo Projects
	5.1 rtc_demo_rskrx130
	5.2 rtc_demo_rskrx231
	5.3 rtc_demo_rskrx64m
	5.4 rtc_demo_rskrx671
	5.5 rtc_demo_rskrx72n
	5.6 Adding a Demo to a Workspace

	6. Appendices
	6.1 Operation Confirmation Environment
	6.2 Troubleshooting

	7. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

