
 Application Note

R01AN7445EJ0100 Rev.1.00 Page 1 of 59
Apr.25.25

RX Family
Renesas Secure IP Compatibility Mode Firmware Integration Technology

Introduction
This document describes how to use the software driver for the Renesas Secure IP (RSIP) module on RX
family microcontrollers. This software driver is referred to as the RSIP compatibility mode driver (RSIP CM
driver).

The RSIP CM driver is provided as a firmware integration technology (FIT) module. Refer to the Web page at
the URL below for an overview of the FIT concept.

https://www.renesas.com/en/software-tool/fit

The RSIP CM driver provides API functions for executing the cryptographic functionality summarized in
Table 1.

Target Devices
RX261 Group microcontrollers

https://www.renesas.com/en/software-tool/fit

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 2 of 59
Apr.25.25

Table 1 Cryptographic Algorithms for the RX RSIP CM Driver

Type of Cryptography Algorithms
Asymmetric
key
cryptography

Signature
generation/verification

ECDSA (secp256r1, brainpoolP256r1, secp256k1): RFC 6979

Key generation secp256r1, brainpoolP256r1, secp256k1
Symmetric key
cryptography

AES AES (128-/256-bit) ECB/CBC/CTR: FIPS 197, SP 800-38A

Hashing SHA SHA224, SHA256: FIPS 180-4
Authenticated encryption with
associated data (AEAD)

GCM/CCM: FIPS 197, SP 800-38C, SP 800-38D

Message authentication CMAC (AES): FIPS 197, SP 800-38B
GMAC: RFC 4543
HMAC (SHA): RFC 2104

Pseudo-random bit generation SP 800-90A
Random number generation Tested with SP 800-90B.

Note
RFC 2104: HMAC: Keyed-Hashing for Message Authentication (rfc-editor.org)
RFC 4543: The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH (rfc-editor.org)
RFC 6979 - Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA) (ietf.org)
NIST SP 800-38A, Recommendation for Block Cipher Modes of Operation Methods and Techniques
NIST SP 800-38-B Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication
(nist.gov)
NIST SP 800-38D, Recommendationfor Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC
NIST SP800-56A: Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Lograrithm
Cryptography (nist.gov)
NIST SP800-56C: Recommendation for Key-Derivation Methods in Key-Establishment Schemes (nist.gov)
NIST SP800-90A: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
NIST SP800-90B: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
RFC 3394: Advanced Encryption Standard (AES) Key Wrap Algorithm (rfc-editor.org)
FIPS 180-4: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

https://www.rfc-editor.org/rfc/rfc2104
https://www.rfc-editor.org/rfc/rfc4543
https://datatracker.ietf.org/doc/html/rfc6979.html
https://datatracker.ietf.org/doc/html/rfc6979.html
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://www.rfc-editor.org/rfc/rfc3394
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 3 of 59
Apr.25.25

Contents

1. Overview ... 5
1.1 Terminology ... 5
1.2 Overview .. 6
1.3 Structure of Files in the Product .. 8
1.4 Documents for Reference ... 10
1.5 Development Environment .. 10
1.6 Code Size .. 11
1.7 Performance .. 12
1.7.1 RX261 .. 12

2. API Information .. 16
2.1 Hardware Requirements ... 16
2.2 Software Requirements ... 16
2.3 Supported Toolchains ... 16
2.4 Header File .. 16
2.5 Integer Types ... 16
2.6 Configuration ... 17
2.6.1 Setting of the Platform ... 18
2.6.2 Setting for Generating Random Numbers ... 18
2.6.3 Setting for Generating a Wrapped Key ... 18
2.6.4 Setting of AES ... 18
2.6.5 Setting of ECC ... 19
2.6.6 Setting of SHA224 and SHA256 ... 19
2.7 Structures .. 20
2.8 Return Values .. 20
2.9 Including the FIT Module in Your Project .. 21

3. Using the RSIP CM Driver ... 22
3.1 Initializing the RSIP ... 23
3.2 Memory Usage .. 23
3.3 Restrictions .. 23
3.3.1 Endian for Operation ... 23
3.3.2 Definition of MBEDTLS_PLATFORM_SETBUF_MACRO .. 23
3.4 Single-Part and Multi-Part Operations... 23
3.5 Key Management .. 24
3.5.1 Key Injection .. 25
3.5.1.1 Key Injection by Using Encrypted Keys .. 25
3.5.1.2 Key Injection with the Use of a Plaintext Key .. 27
3.5.2 Key Generation.. 27
3.6 Random Number Generation .. 28
3.7 Symmetric Key Cryptography .. 29
3.8 Asymmetric Key Cryptography .. 29
3.9 Hash Functions .. 29

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 4 of 59
Apr.25.25

4. API Functions .. 30
4.1 List and Details of API Functions .. 30
4.1.1 Version Information ... 34
4.1.1.1 R_RSIP_CM_GetVersion .. 34
4.1.2 Key Injection .. 35
4.1.2.1 R_RSIP_CM_AESxxx_InitialKeyWrap .. 35
4.1.2.2 R_RSIP_CM_ECC_xxx_InitialPrivateKeyWrap .. 37

5. Key Injection .. 39
5.1 Key Injection .. 39
5.2 Using the Security Key Management Tool to Generate an Encrypted Key .. 40
5.2.1 Key Injection Procedure .. 40
5.2.1.1 Procedure for Using the CLI Version .. 40
5.2.1.2 Procedure for Using the GUI Version .. 42

6. Sample Program .. 45
6.1 Key Injection and Cipher Usage .. 45
6.1.1 Setting up the Demo Project ... 45
6.1.2 Overview of the Demo Project ... 47
6.1.2.1 Confirmation of Keys and the Demo Project ... 50
6.1.3 Example of Executing the Demo Project ... 51

7. Appendix ... 53
7.1 Environments for Confirming Operation .. 53
7.2 Troubleshooting ... 54
7.3 User Key Formats .. 55
7.3.1 AES ... 55
7.3.2 ECC ... 55
7.3.3 HMAC .. 56

8. Reference Documents ... 57

Web Site and Support Desk .. 58

Revision History .. 59

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 5 of 59
Apr.25.25

1. Overview

1.1 Terminology
Terms used in this document are defined below.

Table 1-1 Descriptions of Terms

Term Description
Key injection Injecting a wrapped key into the device at the factory
User key An encryption key in plaintext for use by the user. User keys for AES

and HMAC are symmetric keys. User keys for ECC are asymmetric
keys.

Encrypted key Key information generated by using a UFPK to append the MAC value
to a user key and then encrypting the result. The value of the encrypted
key generated from the same user key is common to devices of a given
type that have users in common.

Wrapped key Data generated by using key injection to convert an encrypted key into
the format that allows the use of the given key by the RSIP module.
The wrapped keys have been wrapped with the use of HUKs, so their
values are unique to each device even if they are from the same
encrypted key.

UFPK User factory programming key
A user-set keyring used to generate an encrypted key from a user key
during key injection. The UFPK is not used on the device.

W-UFPK Wrapped UFPK
Key information generated by using an HRK, which is available from
the “Renesas Key Wrap Service” Web site, to wrap a UFPK. This is
decrypted by using the HRK within the RSIP to obtain the UFPK, which
is then used.

Hardware root key (HRK) A common encryption key, which only exists in the RSIP and the
secure rooms in Renesas.

Hardware unique key (HUK) A device-specific encryption key that is derived within the RSIP and
used to protect key data.

Renesas Key Wrap Service Web site for use in generating W-UFPKs from UFPKs
https://dlm.renesas.com/keywrap/toEnglish

https://dlm.renesas.com/keywrap/toEnglish

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 6 of 59
Apr.25.25

1.2 Overview
The RX RSIP CM driver realizes hardware acceleration by using the RSIP in implementing the PSA Certified
Crypto API (hereinafter referred to as PSA Crypto API). The RX RSIP CM driver provides optimized
performance and unlimited secure key storage while enabling easy integration with existing systems and
third-party software and solutions.

The RX RSIP CM driver is combined with the mbedTLS version 3.6.2 library, which is compliant with the
PSA Crypto API 1.0 specifications. For details on the PSA Crypto API specifications, refer to the Arm
documentation on the Web page at the following URL.

https://armmbed.github.io/mbed-crypto/psa/#applicationprogramming-interface

- Hashing

SHA224 calculation

SHA256 calculation

- MAC

HMAC

CMAC

- AES

Key bits: 128, 256

Generation of a plaintext key

Generation of a wrapped key

Encryption and decryption without padding or with PKCS7-type padding

CBC, CTR, CCM, or GCM mode

- ECC

Elliptic curve

secp256r1

secp256k1

brainpoolP256r1

Generation of a wrapped key

Signature and verification

- Generation of random numbers

The following describes the features of the RX RSIP CM driver.

• Plaintext keys are usable.
This ensures compatibility with legacy systems and simplifies software development. It may also be
required for integration with existing software and infrastructure. Many existing programming systems
support the installation of plaintext keys, which are saved securely on chips by using application code.

• Support for wrapped keys
The use of wrapped keys for secure key storage is possible, but not required. The generation of
wrapped keys is also supported.

Also note the following point.

• If a function for protection against simple or differential power analysis is required, consider using the
RX RSIP protected mode driver.

• Using plaintext keys may create a risk of user keys being leaked.
Using plaintext keys creates a risk of externally exposing the keys. Users should fully evaluate this risk
and take appropriate measures.

https://armmbed.github.io/mbed-crypto/psa/%23applicationprogramming-interface

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 7 of 59
Apr.25.25

• Restrictions on updating secure keys
Updating secure keys is restricted due to the potential exposure of keys external to the RSIP.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 8 of 59
Apr.25.25

1.3 Structure of Files in the Product
Table 1-2 below lists the files included in the product.

Table 1-2 Structure of Files in the Product

File or Directory (in Bold Type) Name Description
r01an7445jj0100-rx-rsip-cm-security.pdf RSIP CM driver application note (in Japanese)
r01an7445ej0100-rx-rsip-cm-security.pdf RSIP CM driver application note (in English)
reference_documents Contains documents on topics such as how to use the

FIT module in various integrated development
environments.

 ja Contains documents on topics such as how to use the
FIT module in various integrated development
environments. (In Japanese)

 r01an1826jj0110-rx.pdf Describes how to add firmware integration technology
(FIT) modules to CS+ projects. (In Japanese)

r01an1723ju0121-rx.pdf Describes how to add firmware integration technology
(FIT) modules to e2 studio projects. (In Japanese)

r20an0451js0140-e2studio-sc.pdf Smart configurator user’s guide (in Japanese)
en Contains documents on topics such as how to use the

FIT module in various integrated development
environments. (In English)

 r01an1826ej0110-rx.pdf Describes how to add firmware integration technology
(FIT) modules to CS+ projects. (In English)

r01an1723eu0121-rx.pdf Describes how to add firmware integration technology
(FIT) modules to e2 studio projects. (In English)

r20an0451es0140-e2studio-sc.pdf Smart configurator user’s guide (in English)
FITModules FIT module folder
 r_rsip_cm_rx_v1.00.zip RSIP CM driver FIT module

r_rsip_cm_rx_v1.00.xml XML file for the RSIP CM driver FIT module as an e2
studio FIT plug-in

r_rsip_cm_rx_v1.00_extend.mdf Configuration settings file for the RSIP CM driver FIT
module in use with the smart configurator

FITDemos Demo project folder
 rx261_ek_rsip_cm_sample Demo project for key injection and cryptographic

usage

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 9 of 59
Apr.25.25

Table 1-3 lists the files and folders contained in the folder produced by unzipping r_rsip_cm_rx_v.1.00.zip.
Table 1-3 File Structure

File or Directory (in Bold Type) Name Description
r_config RSIP CM driver config file folder
 r_rsip_cm_rx_config.h RSIP CM driver config file (with default settings)
r_rsip_cm_rx
 src Source code folder

mbedtls Open-source software (OSS) Mbed TLS folder
rm_psa_crypto Hardware acceleration of PSA Crypto API implementation
r_rsip_cm_rx RSIP CM driver FIT module folder

src Source code folder
adaptors PSA crypto adaptor folder

r_sce_adapt.c PSA crypto adaptor source code
primitive Source code folder for use in RSIP access

rx261 Folder containing the MCU type-dependent program code
DomainParams.c DomainParam data information file
r_rsip_rx_finctionxxx.c Source code for use in RSIP access

“xxx” in the file name represents a numeric value.
r_rsip_rx_pxx.c Source code for use in RSIP access

“xx” in the file name represents a numeric value.
s_flash.c Key information file

private/inc Folder containing the program code for the internal functions
of the RSIP CM driver

hw_sce_rx_private.h Internal function header file
r_rsip_rx261_iodefine.h Header file for use in RSIP access

public/inc Folder containing the program for the API functions of the
RSIP CM driver

hw_sce_rx_public.h Header file for external functions
commom Common source code folder

hw_sce_common.h Common header file
hw_sce_private.h Header file for the RSIP CM driver
hw_sce_aes_private.h Header file for the AES API functions of the RSIP CM driver
hw_sce_ecc_private.h Header file for the ECC API functions of the RSIP CM driver
hw_sce_hash_private.h Header file for the hash API functions of the RSIP CM driver
hw_sce_trng_private.h Header file for the random number generation API functions

of the RSIP CM driver
hw_sce_rsa_private.h Header file for the RSA API functions of the RSIP CM driver

r_rsip_cm_key_injection Folder for key injection by the RSIP CM driver
r_rsip_cm_key_injection.h Header file for the key injection API functions
r_rsip_cm_key_injection.c Source code for the key injection API functions

doc Folder containing the documentation
 ja Folder containing the documentation (in Japanese)

 r01an7445jj0100-rx-rsip-
security.pdf

RSIP CM driver application note (in Japanese)

en Folder containing the documentation (in English)
 r01an7445ej0100-rx-rsip-

security.pdf
RSIP CM driver application note (in English)

r_rsip_cm_rx_if.h Header file for the RSIP CM driver
readme.txt A “readme” file

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 10 of 59
Apr.25.25

1.4 Documents for Reference
Table 1-4 lists documents related to this document.

Table 1-4 Documents for Reference

Document Name Link to the Document
Mbed TLS 3.6.2 https://github.com/Mbed-TLS/mbedtls/releases/tag/mbedtls-3.6.2

Mbed TLS documentation hub https://mbed-tls.readthedocs.io/en/latest/

PSA Crypto API 1.0 https://arm-software.github.io/psa-api/crypto/1.0/

Mbed TLS (Renesas) https://github.com/renesas/mbedtls
Note: Mbed TLS 3.6.2 uses the specifications of PSA Crypto API 1.0.

The RX RSIP CM driver uses Mbed TLS (Renesas), which includes modifications to the official Mbed TLS
source code.

1.5 Development Environment
The RSIP CM driver was developed by using the development environment described below. When

developing your own applications, use the versions of software indicated below, or newer versions.

(1) Integrated development environment

Refer to the “Integrated development environments” item in section 7.1, Environments for Confirming
Operation.

(2) C compiler

Refer to the “C compiler” item in section 7.1, Environments for Confirming Operation.
(3) Emulator/debugger

E2 Lite

(4) Evaluation board
Refer to the “Board used” item in section 7.1, Environments for Confirming Operation. Be sure to

confirm the product part number at the time of purchase.

The e2 studio and CC-RX were used in combination for evaluation and to create the demo project.

The project conversion function can be used to convert projects from the e2 studio to CS+. If you

encounter errors such as compiler errors, contact a Renesas sales office or representative.

https://github.com/Mbed-TLS/mbedtls/releases/tag/mbedtls-3.6.2
https://mbed-tls.readthedocs.io/en/latest/
https://arm-software.github.io/psa-api/crypto/1.0/
https://github.com/renesas/mbedtls

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 11 of 59
Apr.25.25

1.6 Code Size
The table below lists the ROM and RAM sizes and the maximum stack usage for this module.

The configuration options listed in section 2.6, Configuration, during the build process determine the actual
ROM (code and constants) and RAM (global data) sizes.

The values listed in the table below have been confirmed under the following conditions.

Module revision: r_rsip_cm_rx rev1.00

Compiler version: Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00

(optimization level 2 with the “-lang = c99” option added to the default setting)

GCC for Renesas RX 8.3.0.202411

(Size-focused optimization with the “-std = gnu99” option added to the default setting)

IAR C/C++ Compiler for Renesas RX version 5.10.01

(optimization level high (or balanced))

Configuration options:

Renesas Electronics C/C++ Compiler Package for RX Family: -isa = rxv3, optimization level 2

GCC for Renesas RX: RXv3, optimization level -Os

IAR C/C++ Compiler for Renesas RX: --core rxv3 -Oh, optimization level high (or balanced)

Code Sizes of ROM, RAM, and Stack

Category
Memory Used

Renesas Compiler GCC IAR Compiler
ROM 156,990 bytes 185,376 bytes 134,280 bytes

RAM 16,731 bytes 19,836 bytes 22,876 bytes

Stack 3,592 bytes 2,108 bytes 3,968 bytes

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 12 of 59
Apr.25.25

1.7 Performance
Performance is measured in cycles of ICLK, the core clock. The RSIP CM operating clock (PCLKB) is set to
a value that ensures the condition ICLK:PCLKB = 2:1. The driver is built by using CC-RX with optimization

level 2. See section 7.1, Environments for Confirming Operation, for the version information. The

configuration options are left at their default settings.

1.7.1 RX261
Table 1-5 Performance of Common API Functions

API Function Performance (Unit: Cycles)
mbedtls_platform_setup 460,000
mbedtls_platform_teardown 600

Table 1-6 Performance of API Functions for Managing Key Data

API Function Key Type Performance (Unit: Cycles)
R_RSIP_CM_AES128_InitialKeyWrap Encrypted 10,000

Plaintext 7,000
R_RSIP_CM_AES256_InitialKeyWrap Encrypted 10,000

Plaintext 7,000
R_RSIP_CM_ECC_secp256r1_InitialPrivateKeyWrap Encrypted 10,000

Plaintext 7,000
R_RSIP_CM_ECC_secp256k1_InitialPrivateKeyWrap Encrypted 10,000

Plaintext 7,000
R_RSIP_CM_ECC_brainpoolP256r1_InitialPrivateKeyWrap Encrypted 10,000

Plaintext 7,000

Table 1-7 Performance of the API Function for Generating Random Numbers

API Function Performance (Unit: Cycles)
psa_generate_random 17,000

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 13 of 59
Apr.25.25

Table 1-8 Performance of AES API Functions

Algorithm API Function
Performance (Unit: Cycles)

48-Byte
Processing

64-Byte
Processing

80-Byte
Processing

ECB mode
encryption

psa_cipher_encrypt_setup 2,600 2,600 2,600
psa_cipher_update 22,000 29,000 36,000
psa_cipher_finish 900 900 900

ECB mode
decryption

psa_cipher_decrypt_setup 2,600 2,600 2,600
psa_cipher_update 22,000 29,000 36,000
psa_cipher_finish 1,300 1,300 1,300

CBC mode
encryption

psa_cipher_encrypt_setup 2,800 2,800 2,800
psa_cipher_update 8,000 8,200 8,300
psa_cipher_finish 1,400 1,400 1,400

CBC mode
decryption

psa_cipher_decrypt_setup 2,800 2,800 2,800
psa_cipher_update 8,100 8,300 8,500
psa_cipher_finish 1,900 1,900 1,900

CTR mode
encryption

psa_cipher_encrypt_setup 2,900 2,900 2,900
psa_cipher_update 8,100 8,200 8,400
psa_cipher_finish 1,400 1,400 1,400

CTR mode
decryption

psa_cipher_decrypt_setup 3,000 3,000 3,000
psa_cipher_update 8,100 8,200 8,400
psa_cipher_finish 1,900 1,900 1,900

Table 1-9 Performance of AES AEAD API Functions

Algorithm API Function
Performance (Unit: Cycles)

48-Byte
Processing

64-Byte
Processing

80-Byte
Processing

GCM mode
encryption

psa_aead_encrypt_setup 15,000 15,000 15,000
psa_aead_update_ad 840 840 840
psa_aead_update 75,000 95,000 100,000
psa_aead_finish 16,000 16,000 16,000

GCM mode
decryption

psa_aead_decrypt_setup 15,000 15,000 15,000
psa_aead_update_ad 840 840 840
psa_aead_update 75,000 95,000 100,000
psa_aead_verify 16,000 16,000 16,000

CCM mode
encryption

psa_aead_encrypt_setup 2,700 2,700 2,700
psa_aead_update_ad 7,600 7,600 7,600
psa_aead_update 44,000 59,000 73,000
psa_aead_finish 9,400 9,400 9,400
psa_aead_decrypt_setup 2,700 2,700 2,700

CCM mode
decryption

psa_aead_update_ad 7,600 7,600 7,600
psa_aead_update 44,000 59,000 73,000
psa_aead_verify 9,300 9,300 9,400
psa_aead_encrypt_setup 15,000 15,000 15,000
psa_aead_update_ad 840 840 840

The GCM performance was measured with parameters fixed as follows: ivec = 128 bits, additional
authentication data = 56 bits, and authentication tag = 128 bits.
The CCM performance was measured with parameters fixed as follows: nonce = 56 bits, additional
authentication data = 56 bits, and authentication tag = 128 bits.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 14 of 59
Apr.25.25

Table 1-10 Performance of AES MAC API Functions

Algorithm API Function
Performance (Unit: Cycles)

48-Byte
Processing

64-Byte
Processing

80-Byte
Processing

CMAC generation
psa_mac_sign_setup 8,000 8,000 8,000
psa_mac_update 1,700 1,800 1,900
psa_mac_sign_finish 2,600 2,600 2,600

CMAC verification
psa_mac_verify_setup 8,000 8,000 8,000
psa_mac_update 1,700 1,800 1,900
psa_mac_verify_finish 2,800 2,800 2,800

Table 1-11 Performance of ECC API Functions

Algorithm API Function
Performance (Unit: Cycles)

48-Byte
Processing

64-Byte
Processing

80-Byte
Processing

NIST secp256r1 psa_sign_hash 4,900,000 4,900,000 4,900,000
psa_verify_hash 9,700,000 9,600,000 9,600,000

Koblitz secp256k1 psa_sign_hash 4,900,000 4,900,000 4,900,000
psa_verify_hash 9,700,000 9,700,000 9,700,000

Brainpool p256r1 psa_sign_hash 4,900,000 4,900,000 4,900,000
psa_verify_hash 9,600,000 9,600,000 9,600,000

Table 1-12 Performance of Hash API Functions

Algorithm API Function
Performance (Unit: Cycles)

48-Byte
Processing

64-Byte
Processing

80-Byte
Processing

SHA224 generation
psa_hash_setup 390 390 390
psa_hash_update 700 2,800 2,900
psa_hash_finish 3,400 3,400 3,400

SHA224 verification
psa_hash_setup 390 390 390
psa_hash_update 700 2,800 2,900
psa_hash_verify 4,300 4,300 4,300

SHA256 generation
psa_hash_setup 380 380 380
psa_hash_update 700 2,800 2,900
psa_hash_finish 3,400 3,400 3,400

SHA256 verification
psa_hash_setup 380 380 380
psa_hash_update 700 2,800 2,900
psa_hash_verify 4,400 4,400 4,400

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 15 of 59
Apr.25.25

Table 1-13 Performance of HMAC API Functions

Algorithm API Function
Performance (Unit: Cycles)

48-Byte
Processing

64-Byte
Processing

80-Byte
Processing

HMAC-SHA224
generation

psa_mac_sign_setup 390 390 390
psa_mac_update 700 2,800 2,900
psa_mac_sign_finish 3,400 3,400 3,400

HMAC-SHA224
verification

psa_mac_verify_setup 390 390 390
psa_mac_update 700 2,800 2,900
psa_mac_verify_finish 4,300 4,300 4,300

HMAC-SHA256
generation

psa_mac_sign_setup 380 380 380
psa_mac_update 700 2,800 2,900
psa_mac_sign_finish 3,400 3,400 3,400

HMAC-SHA256
verification

psa_mac_verify_setup 380 380 380
psa_mac_update 700 2,800 2,900
psa_mac_verify_finish 4,400 4,400 4,400

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 16 of 59
Apr.25.25

2. API Information

2.1 Hardware Requirements
The RX RSIP CM driver can only be used with devices that incorporate an RSIP module. Check the part
number of the device to ensure that the one you intend to use is suitable.

2.2 Software Requirements
The RSIP CM driver is dependent on the following module.

- r_bsp Use v7.52 or a later version. “BSP” stands for “board support package”.

Change the value of the following macro in r_bsp_config.h in the r_config folder to 0xB.

/* Chip version.
 Character(s) = Value for macro =
 A = 0xA = Chip version A
 = Encryption module not included, USB included,
CAN FD included (only CAN 2.0 protocol supported)
 B = 0xB = Chip version B
 = Encryption module and USB included, CAN FD
included
*/
#define BSP_CFG_MCU_PART_VERSION (0xB)

2.3 Supported Toolchains
The operation of the RSIP CM driver has been confirmed with the toolchains indicated in section 7.1,
Environments for Confirming Operation.

2.4 Header File
All API calls and their supported interface definitions are contained in r_rsip_cm_rx_if.h.

2.5 Integer Types
The RCIP CM driver uses ANSI C99 integer types as defined in stdint.h.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 17 of 59
Apr.25.25

2.6 Configuration
The Mbed TLS configuration options are set in mbedtls_config.h. The option names and settings are listed in
Table 2-1, Definitions in mbedtls_config.h, below.

Table 2-1 Definitions in mbedtls_config.h

Option Name Default Value
MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT Defined
MBEDTLS_AES_ALT Defined
MBEDTLS_CCM_ALT Defined
MBEDTLS_GCM_ALT Defined
MBEDTLS_SHA256_ALT Defined
MBEDTLS_SHA256_PROCESS_ALT Defined
MBEDTLS_AES_SETKEY_ENC_ALT Defined
MBEDTLS_AES_SETKEY_DEC_ALT Defined
MBEDTLS_AES_ENCRYPT_ALT Defined
MBEDTLS_AES_DECRYPT_ALT Defined
MBEDTLS_ECDSA_VERIFY_ALT Defined
MBEDTLS_ECDSA_SIGN_ALT Defined
MBEDTLS_ENTROPY_HARDWARE_ALT Defined
MBEDTLS_CIPHER_MODE_CBC Defined
MBEDTLS_CIPHER_MODE_CTR Defined
MBEDTLS_CIPHER_PADDING_PKCS7 Defined
MBEDTLS_CIPHER_PADDING_ONE_AND_ZEROS Defined
MBEDTLS_CIPHER_PADDING_ZEROS_AND_LEN Defined
MBEDTLS_CIPHER_PADDING_ZEROS Defined
MBEDTLS_ECP_DP_SECP256R1_ENABLED Defined
MBEDTLS_ECP_DP_SECP256K1_ENABLED Defined
MBEDTLS_ECP_DP_BP256R1_ENABLED Defined
MBEDTLS_ERROR_STRERROR_DUMMY Defined
MBEDTLS_GENPRIME Defined
MBEDTLS_FS_IO Defined
MBEDTLS_NO_PLATFORM_ENTROPY Defined
MBEDTLS_PKCS1_V15 Defined
MBEDTLS_PKCS1_V21 Defined
MBEDTLS_VERSION_FEATURES Defined
MBEDTLS_AES_C Defined
MBEDTLS_ASN1_PARSE_C Defined
MBEDTLS_ASN1_WRITE_C Defined
MBEDTLS_BASE64_C Defined
MBEDTLS_BIGNUM_C Defined
MBEDTLS_CCM_C Defined
MBEDTLS_CIPHER_C Defined
MBEDTLS_CMAC_C Defined
MBEDTLS_CTR_DRBG_C Defined
MBEDTLS_CTR_DRBG_C_ALT Defined
MBEDTLS_ECDSA_C Defined
MBEDTLS_ECP_C Defined
MBEDTLS_ENTROPY_C Defined
MBEDTLS_ERROR_C Defined
MBEDTLS_GCM_C Defined
MBEDTLS_HKDF_C Defined

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 18 of 59
Apr.25.25

Option Name Default Value
MBEDTLS_LMS_C Defined
MBEDTLS_MD_C Defined
MBEDTLS_MD5_C Defined
MBEDTLS_OID_C Defined
MBEDTLS_PEM_PARSE_C Defined
MBEDTLS_PEM_WRITE_C Defined
MBEDTLS_PKCS5_C Defined
MBEDTLS_PKCS12_C Defined
MBEDTLS_PLATFORM_C Defined
MBEDTLS_PSA_CRYPTO_C Defined
MBEDTLS_PSA_CRYPTO_ACCEL_DRV_C Defined
MBEDTLS_PSA_CRYPTO_STORAGE_C Defined
MBEDTLS_PSA_ITS_FILE_C Defined
MBEDTLS_RSA_C Defined
MBEDTLS_SHA224_C Defined
MBEDTLS_SHA256_C Defined
MBEDTLS_VERSION_C Defined
MBEDTLS_MPI_WINDOW_SIZE 6
MBEDTLS_MPI_MAX_SIZE 1024
MBEDTLS_ECP_WINDOW_SIZE 6
MBEDTLS_ECP_FIXED_POINT_OPTIM 1
MBEDTLS_CHECK_RETURN Enabled

2.6.1 Setting of the Platform
To realize hardware acceleration with the RSIP CM driver, define the
MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT macro in the mbedtls_config.h config file. This enables

the code for initializing the RSIP.

2.6.2 Setting for Generating Random Numbers
The MBEDTLS_ENTROPY_HARDWARE_ALT macro must be defined in the mbedtls_config.h config file.

This allows use of the TRNG as an entropy source for the RSIP. Without this functionality, other encryption
operations will not work, even in software-only mode.

2.6.3 Setting for Generating a Wrapped Key
To use the RSIP to generate a wrapped key, specify PSA_KEY_TYPE_AES_WRAPPED or
PSA_KEY_TYPE_ECC_KEY_PAIR_WRAPPED(curve) as the key type attribute.

2.6.4 Setting of AES
To enable hardware acceleration of AES-128 or AES-256 operations, the
MBEDTLS_AES_SETKEY_ENC_ALT, MBEDTLS_AES_SETKEY_DEC_ALT,

MBEDTLS_AES_ENCRYPT_ALT, and MBEDTLS_AES_DECRYPT_ALT macros must be defined in the

mbedtls_config.h config file. AES is enabled with the default setting.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 19 of 59
Apr.25.25

2.6.5 Setting of ECC
To enable hardware acceleration of ECC-based key generation, the MBEDTLS_ECP_ALT macro must be

defined in the configuration file. For the ECDSA, the MBEDTLS_ECDSA_SIGN_ALT and

MBEDTLS_ECDSA_VERIFY_ALT macros must be defined. ECC and the ECDSA are enabled with the
default settings. To disable ECC, delete the definitions of the MBEDTLS_ECP_C, MBEDTLS_ECDSA_C,

and MBEDTLS_ECDH_C macros in the mbedtls_config.h config file.

2.6.6 Setting of SHA224 and SHA256
To enable hardware acceleration of SHA224 and SHA256 calculations, the MBEDTLS_SHA256_ALT and

MBEDTLS_SHA256_PROCESS_ALT macros must be defined in the configuration file. SHA256 is enabled

with the default setting.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 20 of 59
Apr.25.25

2.7 Structures
The table below describes the definitions of the structures used in key injection by the RSIP CM driver.

Table 2-2 Definitions of the Structures Used in Key Injection by the RSIP CM Driver

Definition Description
rsip_key_injection_type_t Key injection type structure
rsip_aes_wrapped_key_t AES wrapped key structure
rsip_ecc_private_wrapped_key_t ECC private wrapped key structure

2.8 Return Values
The table below describes the return values used by the key injection API functions for use with the RSIP
CM driver. The enumerated type of the return values is defined as fsp_err_t in

/r_bsp/mcu/all/fsp_common_api.h.

Table 2-3 enum fsp_err_t Return Values

Enumerator Value Description
FSP_SUCCESS 0x00000 Successful completion
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT 0x10001 The hardware resource required

for this process is in use by
another process so resource
contention between the
processes prevented the key
injection processing.

FSP_ERR_CRYPTO_SCE_FAIL 0x10002 An input parameter was
incorrect.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 21 of 59
Apr.25.25

2.9 Including the FIT Module in Your Project
This module must be included in each project where it is to be used. Renesas recommends using the Smart
Configurator in the way described in either (1) or (3) below. However, the Smart Configurator only supports

this for some RX devices. If the RX device in use is not supported, use the method described in either (2) or

(4).

(1) Including the FIT module in your project by using the Smart Configurator in the e2 studio
Using the Smart Configurator in the e2 studio allows the automatic inclusion of the FIT module in your
project. Refer to the application note Renesas e2 studio Smart Configurator User's Guide (R20AN0451)
for details.

(2) Including the FIT module in your project by using the FIT Configurator in the e2 studio

Using the FIT Configurator in the e2 studio allows the automatic inclusion of the FIT module in your
project. Refer to the application note RX Family: Adding Firmware Integration Technology Modules to
Projects (R01AN1723) for details.

(3) Including the FIT module in your project by using the Smart Configurator in CS+

Using the standalone version of the Smart Configurator in CS+ allows the automatic inclusion of the FIT
module in your project. Refer to the application note Renesas e2 studio Smart Configurator User's
Guide (R20AN0451) for details.

(4) Including the FIT module in your project in CS+

Manually include the FIT module in your project in CS+. Refer to the application note RX Family: Adding
Firmware Integration Technology Modules to CS+ Projects (R01AN1826) for details.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 22 of 59
Apr.25.25

3. Using the RSIP CM Driver

The RSIP CM driver for the RX family provides the following functions. Detailed descriptions of the API

functions are given in section 4.

- Random number generation
- Secure key management

- Unauthorized access monitoring

- Acceleration of cryptographic operations
The RSIP CM driver implements secure key management by using a hardware unique key (HUK) to wrap

keys. This realizes key confidentiality and the detection of tampering external to the RSIP. See section 3.5.1

for the flow of key injection. Detailed descriptions of how to inject keys are given in section 5.
Unauthorized access monitoring by the RSIP covers all cryptographic processing performed by the driver

and is always enabled during cryptographic operations. If tampering with cryptographic operations is

detected while the driver is in use, the driver stops operating.
The RSIP CM driver uses the open-source PSA Crypto API to proceed with cryptographic operations. The

rm_psa_crypto program and RSIP CM, the primary modules of the RX RSIP CM driver, work with the PSA

Crypto API to handle cipher-related operations. The RSIP key injection module of the RX RSIP CM driver
supports key injection. The configuration of the RSIP CM driver is shown in Figure 3-1, Schematic Diagram

of the RSIP CM Driver.

Figure 3-1 Schematic Diagram of the RSIP CM Driver

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 23 of 59
Apr.25.25

3.1 Initializing the RSIP
In initializing the RSIP, mbedtls_platform_setup() must be called before use of the PSA Crypto API.

No. PSA Crypto API Description
1 mbedtls_platform_setup() Processing for initialization

3.2 Memory Usage
Depending on the PSA Crypto features used, the heap size settings are required. The total amount of heap

memory to be allocated is the sum of heap areas required for the individual algorithms that will be run.
Algorithm Heap Size in Bytes

SHA224 and SHA256 0x500
AES 0x2000
ECC 0x2000

Using the module also requires a stack area of at least 0x2000 bytes.

3.3 Restrictions
3.3.1 Endian for Operation
Only little endian is supported.

3.3.2 Definition of MBEDTLS_PLATFORM_SETBUF_MACRO
In the RX RSIP CM driver, the dummy_setbuf() dummy function is defined in

MBEDTLS_PLATFORM_SETBUF_MACRO to prevent errors during building. Defining a user-defined

function in MBEDTLS_PLATFORM_SETBUF_MACRO, which is defined in the mbedtls_config.h file, allows
replacing the dummy function with the user-defined function.

3.4 Single-Part and Multi-Part Operations
The PSA Crypto API has two types of API functions: those that provide cryptographic operations with a
single API function and those that provide the operations through multiple API functions. In this document,

the former are referred to as single-part operations and the latter as multi-part operations.

APIs for single-part and multi-part operations are provided for symmetric key cryptography and hashes
(message digest generation and HMAC functions), and APIs for single-part operations are provided for other

cryptographic operations.

Multi-part operations are parts of the API in which a single cryptographic operation is split into a sequence of
separate steps (Allocate-Initialize-Setup-Update-Finish). This enables fine control over the configuration of

the cryptographic operation and allows message data to be processed in fragments instead of all at once.

For details on the single-part operations, refer to section 3.3.1, Single-part Functions, in the PSA Crypto API
1.0 documentation. For details on the multi-part operations, refer to section 3.3.2, Multi-part operations, in

the PSA Crypto API 1.0 documentation.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 24 of 59
Apr.25.25

3.5 Key Management
No. PSA Crypto API RSIP CM API Functions Description
1 - R_RSIP_CM_AES128_InitialKeyWrap()

R_RSIP_CM_AES256_InitialKeyWrap()
R_RSIP_CM_ECC_secp256r1_InitialPrivateKeyWrap()
R_RSIP_CM_ECC_secp256k1_InitialPrivateKeyWrap()
R_RSIP_CM_ECC_brainpoolP256r1_InitialPrivateKeyWrap()

Key
injection

2 psa_generate_key() - Key
generation

Figure 3-2 shows how keys are handled during cryptographic operations by the RSIP CM driver.

Wrapped user key

Cryptographic
operation

Unwrapping

User key

Input data

Output data

Hardware unique key (HUK)

Cryptographic operations by the Renesas Secure IP

Figure 3-2 How Keys are Handled during Cryptographic Operations by the RSIP CM Driver

The keys handled in cryptographic operations by the RSIP CM driver (input and output keys) are opaque

keys wrapped by using a device-specific key called an HUK, which is only accessible by the RSIP. In the
case of the RSIP CM driver, this type of opaque key is called a wrapped key. Note that a public key for use in

asymmetric key cryptography is used without change from the plaintext key data.

The RSIP CM driver implements secure key management by using a device-specific key to wrap user keys.
This realizes key confidentiality and the detection of tampering external to the RSIP. A wrapped key can only

be unwrapped by the RSIP, and the unwrapped key only exists during the cryptographic processing within

the RSIP. Since the wrapped key has been wrapped by using a device-specific key, it cannot be unwrapped
by using a different device-specific key, even if the wrapped key is copied from the nonvolatile memory of

one device to another.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 25 of 59
Apr.25.25

3.5.1 Key Injection
The RX RSIP CM driver only handles wrapped keys in key injection. Direct input of a plaintext key to the API

functions for cryptographic operations is not possible. When a plaintext key is to be used, it requires

conversion to a wrapped key through the key injection API function before use. Note that a public key for use
in asymmetric key cryptography can be used directly by the API functions for cryptographic operations

without converting the plaintext key to a wrapped key.

3.5.1.1 Key Injection by Using Encrypted Keys

Key injection provides a mechanism enabling the secure delivery of user keys by converting them into
wrapped keys, which have been wrapped by using the HUK. Figure 3-3 shows the flow of injecting encrypted

keys, including use of the Renesas Key Wrap Service.

Development
secure site

Hardware root key
(HRK)

PGP

User factory programming
key (UFPK)

Wrapping

 Wrapping the user key

Non-secure site
for manufacturing

Renesas
secure site

Key Wrap Service

Wrapped HRK

HUK is embedded in the
RX family MCU.

Wrapping

Hardware unique key (HUK)

Wrapped HRK

Unwrapping

Wrapping

Unwrapping

Unwrapping

R_RSIP_CM_XXX_InitialKeyWrap

Encrypted user key
Wrapped UFPK (W-UFPK)

Wrapped user key

User key

Generated by the user

Figure 3-3 Key Injection by Using Encrypted Keys

Generate a user key and UFPK at your secure site (“Development secure site” in Figure 3-3). Next, generate
an encrypted user key by using the UFPK to wrap the user key, which is to be used for your application. Also

use the Renesas Key Wrap Service to generate a W-UFPK from the UFPK that was used in wrapping. For

key injection, input the encrypted user key to the key injection API function
(R_RSIP_CM_XXX_InitialKeyWrap) to generate a wrapped user key.

Figure 3-4 shows the method of generating an encrypted user key by using a UFPK to wrap a user key.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 26 of 59
Apr.25.25

Encrypt a user key in AES-128 CBC mode with the first 128 bits of a UFPK for use in wrapping as the key,

then use AES-128 CBC-MAC to calculate the MAC of the user key with the trailing 128 bits of the UFPK for

use in wrapping as the key. Concatenate the MAC of the user key to the user key and encrypt the result of
concatenation to generate an encrypted user key.

 Encrypted user key

AES-128 CBC
encryption

AES-128
CBC-MAC

User key

IV

UFPK
(CBC key || CBC-MAC key)

CBC key CBC-MAC key

Encrypted key

MAC

User key wrapping scheme

User key MAC

Figure 3-4 User Key Wrapping Scheme during Key Injection

The specific listing for generating an encrypted user key is given below.

--

uint32_t user_key[len];

uint32_t MAC[4] = 0;

uint32_t iv[4] = IV;

for (i = 0; i < len; i += 4)

{

 MAC = AES_128_ENCRYPT(CBCMACkey[0: 3], xor_16byte(user_key[i: i+3], MAC[0: 3]));

 encrypted_key[i: i+3] = AES_128_ENCRYPT(CBCkey[0: 3], xor_16byte(user_key[i: i+3], iv[0: 3]));

 iv[0: 3] = encrypted_key [i: i+3];

}

encrypted_key[i: i+3] = AES_128_ENCRYPT(CBCkey[0: 3], xor_16byte(MAC[0: 3], iv[0: 3]));

--

The functions used in the listing above handle the following processing.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 27 of 59
Apr.25.25

• AES_128_ENCRYPT(Key, Data): Encryption of data in AES-128 ECB mode with the use of an
encryption key

• xor_16byte(data1, data2): Taking the XOR of 16-byte values data1 and data2

The elements of arrays CBCkey[], CBCMACkey[], MAC[], iv[], user_key[], and encrypted_key[] each have a

capacity of 4 bytes.

For details on the data formats for user keys and encrypted user keys, see section 7.3, User Key Formats.

3.5.1.2 Key Injection with the Use of a Plaintext Key

To inject a plaintext key, the output of a key injection API function is used within a PSA Crypto key setting

API function (psa_xxx_setup). The key injection API function uses an HUK to convert a user key to a

wrapped key. Figure 3-5 shows the flow of injecting a plaintext key.

Development
secure site

Secure site for
manufacturing

Hardware unique key (HUK)
Wrapping

Wrapped key

User key

R_RSIP_CM_XXX_InitialKeyWrap

CBC/ECB/CT: psa_cipher_setup()
GCM/CCM: psa_aed_setup()
CMAC: psa_mac_setup()

Figure 3-5 Key Injection with the Use of a Plaintext Key

3.5.2 Key Generation
In key generation, the key generation functionality of the PSA Crypto API is used to generate random
number keys. When a wrapped key is specified as the key type, the random number generation

functionality generates a new plaintext key and outputs it in the wrapped key format. Figure 3-6 shows the

flow of generating a wrapped key. When a plaintext key is specified as the key type, the random number
generation functionality generates a new plaintext key and outputs it without change. Figure 3-7 shows the

flow of generating a plaintext key. Generating an ECC plaintext key is not supported.

In generating keys, persistent keys with a lifetime specified as a key attribute are not supported. Only
volatile keys are specifiable.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 28 of 59
Apr.25.25

User key

Hardware unique key (HUK)

Wrapping

Generating a key by
random number

generation

Wrapped key

psa_key_generate

Figure 3-6 Flow of Generating a Wrapped Key

Generating a key
by random

number
generation

Plaintext key

psa_key_generate

Figure 3-7 Key Injection with the Use of a Plaintext Key

3.6 Random Number Generation
No. PSA Crypto API Description
1 psa_generate_random Generates random numbers.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 29 of 59
Apr.25.25

3.7 Symmetric Key Cryptography
No. PSA Crypto API Description
1 AES-ECB/CBC/CTR

psa_cipher_encrypt
psa_cipher_decrypt
psa_cipher_encrypt_setup
psa_cipher_decrypt_setup
psa_cipher_update
psa_cipher_finish

AES-ECB/CBC/CTR encryption and decryption

2 AES-CCM/GCM
psa_aead_encrypt
psa_aead_decrypt
psa_aead_encrypt_setup
psa_aead_decrypt_setup
psa_aead_set_nonce
psa_aead_update_ad
psa_aead_update
psa_aead_finish
psa_aead_verify

AES-CCM/GCM encryption and decryption

3 AES-CMAC
psa_mac_compute
psa_mac_verify
psa_mac_sign_setup
psa_mac_verify_setup
psa_mac_update
psa_mac_sign_finish
psa_mac_verify_finish

AES-CMAC signature and verification

3.8 Asymmetric Key Cryptography
No. PSA Crypto API Description
1 psa_sign_message

psa_verify_message
psa_sign_hash
psa_verify_hash
mbedtls_ecp_mul

ECC signature, verification, and scalar multiplication

3.9 Hash Functions
No. PSA Crypto API Description
1 psa_hash_compute

psa_hash_setup
psa_hash_update
psa_hash_finish
psa_hash_verify

Hash calculation and verification

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 30 of 59
Apr.25.25

4. API Functions

4.1 List and Details of API Functions
The tables below and on the following pages list the API functions for use with the RX RSIP CM driver.

The initialization API function uses the platform setting function of the Mbed TLS library to open the RX RSIP
CM driver. For details on the API function, refer to “Mbed TLS documentation hub” at the URL stated in

section 1.4, Documents for Reference.

The key management, random number generation, AES, ECC, and hash API functions support the PSA
Crypto API of the Mbed TLS library. For details on the API functions, refer to “PSA Crypto API 1.0” at the

URL stated in section 1.4, Documents for Reference.

The API functions that are provided for version information and key injection are original to the RX RSIP CM
driver.

Table 4-1 Initialization API Function
API Function Description Details

mbedtls_platform_setup Releases the RSIP module from the module stop
state and opens the RSIP CM driver.

Refer to the
following section at
the “Mbed TLS
documentation
hub”.
Platform setup

Table 4-2 Key Management API Functions
API Function Description Details

psa_key_attributes_init Gets the initial values of the key attribute objects. Refer to the
following section at
the “PSA Crypto
API 1.0”.
9. Key
management
reference

psa_get_key_attributes Gets the key attributes.
psa_reset_key_attributes Initializes the states of the key attribute objects.
psa_set_key_type Sets the key type.
psa_get_key_type Gets the key type.
psa_get_key_bits Gets the key length in bits.
psa_set_key_bits Sets the key length in bits.
psa_set_key_lifetime Sets the lifetime of a persistent key.
psa_get_key_lifetime Gets the key lifetime.
psa_set_key_id Sets the key ID.
psa_get_key_id Gets the key ID.
psa_set_key_algorithm Sets the algorithm for key encryption.
psa_get_key_algorithm Gets the algorithm for key encryption.
psa_set_key_usage_flag Sets the intended use of a key.
psa_get_key_usage_flag Gets the intended use of a key.
psa_import_key Imports a key.
psa_generate_key Generates a key or key pair.
psa_copy_key Copies a key.
psa_destoroy_key Destroys a key.
psa_purge_key Purges unnecessary copies of a key.
psa_export_key Exports a key.
psa_export_public_key Exports a public key or the public key of a key pair.

https://mbed-tls.readthedocs.io/projects/api/en/development/api/file/platform_8h/#_CPPv422mbedtls_platform_setupP24mbedtls_platform_context
https://arm-software.github.io/psa-api/crypto/1.2/api/keys/index.html
https://arm-software.github.io/psa-api/crypto/1.2/api/keys/index.html
https://arm-software.github.io/psa-api/crypto/1.2/api/keys/index.html

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 31 of 59
Apr.25.25

Table 4-3 Random Number Generation API Function

API Function Description Details
psa_generate_random Generates random numbers. Refer to the

following section at
the “PSA Crypto
API 1.0”.
10.10.1. Random
number generation

Table 4-4 AES-ECB/CBC/CTR API Functions

API Function Description Details
psa_cipher_encrypt Executes an AES encryption operation. Refer to the

following section at
the “PSA Crypto
API 1.0”.
10.4.
Unauthenticated
ciphers

psa_cipher_decrypt Executes an AES decryption operation.
psa_cipher_operation_init Prepares for execution of an AES encryption

operation.
psa_cipher_encrypt_setup Sets a key for use in an AES encryption operation.
psa_cipher_decrypt_setup Sets a key for use in an AES decryption operation.
psa_cipher_set_iv Sets an initialization vector (IV) for use in an AES

encryption operation.
psa_cipher_generate_iv Generates an initialization vector (IV) for use in an

AES encryption operation.
psa_cipher_update Executes an AES encryption operation.
psa_cipher_finish Finishes an AES encryption operation.

Table 4-5 AES-CCM/GCM API Functions

API Function Description Details
psa_aead_encrypt Executes an AEAD encryption operation. Refer to the

following section at
the “PSA Crypto
API 1.0”.
10.5.
Authenticated
encryption with
associated data
(AEAD)

psa_aead_decrypt Executes an AEAD decryption operation.
psa_aead_operation_init Returns the initial value of an AEAD operation object.
psa_aead_encrypt_setup Sets a key for use in an AEAD encryption operation.
psa_aead_decrypt_setup Sets a key for use in an AEAD decryption operation.
psa_aead_set_lengths Sets the size of additional authenticated data for an

AEAD operation.
psa_aead_generate_nonce Generates a nonce for use with an AEAD operation.
psa_aead_set_nonce Sets a nonce for use with an AEAD operation.
psa_aead_update_ad Passes additional authenticated data for use with an

AEAD operation.
psa_aead_update Executes an AEAD operation.
psa_aead_finish Finishes an AEAD encryption operation.
psa_aead_verify Handles termination and verification of an AEAD

decryption operation.
psa_aead_abort Aborts an AEAD operation.

https://arm-software.github.io/psa-api/crypto/1.2/api/ops/rng.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/rng.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/ciphers.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/ciphers.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/ciphers.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/aead.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/aead.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/aead.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/aead.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/aead.html

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 32 of 59
Apr.25.25

Table 4-6 AES-CMAC/HMAC-SHA API Functions
API Function Description Details

psa_mac_compute Calculates the MAC of a message. Refer to the
following section
at the “PSA
Crypto API 1.0”.
10.3. Message
authentication
codes (MAC)

psa_mac_verify Calculates the MAC of a message and compares the
result with a reference value.

psa_mac_operation_init Returns the initial value of a MAC calculation object.
psa_mac_sign_setup Sets a key for use in a MAC signature operation.
psa_mac_verify_setup Sets a key for use in a MAC verification operation.
psa_mac_update Executes a MAC calculation.
psa_mac_sign_finish Finishes a MAC signature operation.
psa_mac_verify_finish Finishes a MAC verification operation.
psa_mac_abort Aborts a MAC calculation.

Table 4-7 ECC API Functions

API Function Description Details
psa_sign_message Signs a message with a private key. Refer to the

following section
at the “PSA
Crypto API 1.0”.
10.7. Asymmetric
signature

Refer to the
following section
at the “Mbed TLS
documentation
hub”.
Scalar
multiplication API
function

psa_verify_message Verifies a message with a public key.
psa_sign_hash Signs a hash with a private key.
psa_verify_hash Verifies a hash with a private key.
mbedtls_ecp_mul Executes a scalar multiplication.

Table 4-8 SHA-224/256 API Functions

API Function Description Details
psa_hash_compute Calculates the hash of a message. Refer to the

following section
at the “PSA
Crypto API 1.0”.
10.2. Message
digests (Hashes)

psa_hash_compare Calculates the hash of a message and compares the
result with a reference value.

psa_hash_operation_init Returns the initial value of a hash calculation object.
psa_hash_setup Makes the initial setting for a hash calculation object.
psa_hash_update Executes a hash calculation.
psa_hash_finish Finishes a hash calculation.
psa_hash_verify Handles processing to finish hash verification.
psa_hash_abort Aborts a hash calculation.
psa_hash_clone Clones a hash calculation.

Table 4-9 Version Information API Function
API Function Description

R_RSIP_CM_GetVersion Gets the version information of the RX RSIP CM driver.

https://arm-software.github.io/psa-api/crypto/1.2/api/ops/macs.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/macs.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/macs.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/sign.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/sign.html
https://mbed-tls.readthedocs.io/projects/api/en/development/api/file/ecp_8h/#_CPPv415mbedtls_ecp_mulP17mbedtls_ecp_groupP17mbedtls_ecp_pointPK11mbedtls_mpiPK17mbedtls_ecp_pointPFiPvPh6size_tEPv
https://mbed-tls.readthedocs.io/projects/api/en/development/api/file/ecp_8h/#_CPPv415mbedtls_ecp_mulP17mbedtls_ecp_groupP17mbedtls_ecp_pointPK11mbedtls_mpiPK17mbedtls_ecp_pointPFiPvPh6size_tEPv
https://mbed-tls.readthedocs.io/projects/api/en/development/api/file/ecp_8h/#_CPPv415mbedtls_ecp_mulP17mbedtls_ecp_groupP17mbedtls_ecp_pointPK11mbedtls_mpiPK17mbedtls_ecp_pointPFiPvPh6size_tEPv
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/hashes.html
https://arm-software.github.io/psa-api/crypto/1.2/api/ops/hashes.html

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 33 of 59
Apr.25.25

Table 4-10 Key Injection API Functions

API Function Description
R_RSIP_CM_AES128_InitialKeyWrap Generates a 128-bit AES wrapped key.
R_RSIP_CM_AES256_InitialKeyWrap Generates a 256-bit AES wrapped key.
R_RSIP_CM_ECC_secp256r1_InitialPrivateKeyWrap Generates a wrapped key from an ECC-

secp256r1 private key.
R_RSIP_CM_ECC_secp256k1_InitialPrivateKeyWrap Generates a wrapped key from an ECC-

secp256k1 private key.
R_RSIP_CM_ECC_brainpoolP256r1_InitialPrivateKeyWrap Generates a wrapped key from an ECC-

brainpoolP256r1 private key.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 34 of 59
Apr.25.25

4.1.1 Version Information
4.1.1.1 R_RSIP_CM_GetVersion
Format

 (1) uint32_t R_RSIP_CM_GetVersion (void)

Parameters
 None

Return Values
 Higher-order 2 bytes: Major version (in decimal)

 Lower-order 2 bytes: Minor version (in decimal)

Description
R_RSIP_CM_GetVersion outputs the driver version.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 35 of 59
Apr.25.25

4.1.2 Key Injection
4.1.2.1 R_RSIP_CM_AESxxx_InitialKeyWrap
Format

 (1) fsp_err_t R_RSIP_CM_AES128_InitialKeyWrap(
rsip_key_injection_type_t const key_injection_type,

 uint8_t const * const p_wrapped_user_factory_programming_key,
 uint8_t const * const p_initial_vector,
 uint8_t const * const p_user_key,
 rsip_aes_wrapped_key_t * const p_wrapped_key)

 (2) fsp_err_t R_RSIP_CM_AES256_InitialKeyWrap(
rsip_key_injection_type_t const key_injection_type,

 uint8_t const * const p_wrapped_user_factory_programming_key,
 uint8_t const * const p_initial_vector,
 uint8_t const * const p_user_key,
 rsip_aes_wrapped_key_t * const p_wrapped_key)

Parameters

key_injection_type Input Type of the key to be input to p_user_key
(1) RSIP_KEY_INJECTION_TYPE_ENCRYPTED(0):

Encrypted key
(2) RSIP_KEY_INJECTION_TYPE_PLAIN (1):
 Plaintext key

p_wrapped_user_factory_programming_key Input W-UFPK

This setting is not required when
RSIP_KEY_INJECTION_TYPE_PLAIN is specified
as key_injection_type.

p_initial_vector Input Initialization vector

This setting is not required when
RSIP_KEY_INJECTION_TYPE_PLAIN is specified
as key_injection_type.

p_user_key Input User key
Encrypted user key for input when
RSIP_KEY_INJECTION_TYPE_ENCRYPTED is
specified as key_injection_type
Plaintext user key for input when
RSIP_KEY_INJECTION_TYPE_PLAIN is specified
as key_injection_type

 p_wrapped_key Output AES wrapped key

Return Values: fsp_err_t
 FSP_SUCCESS Successful completion

 FSP_ERR_CRYPTO_SCE_FAIL An input parameter was incorrect.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT The hardware resource required for this
process is in use by another process so
resource contention between the
processes prevented the key injection
processing.

Description
The output of R_RSIP_CM_AES128_InitialKeyWrap API function is a 128-bit AES wrapped key.
The output of R_RSIP_CM_AES256_InitialKeyWrap API function is a 256-bit AES wrapped key.
When RSIP_KEY_INJECTION_TYPE_ENCRYPTED (0) is specified as key_injection_type, specify the W-
UFPK generated from the UFPK that was used to wrap the user key as
p_wrapped_user_factory_programming_key, the initialization vector that was used to wrap the user key as
p_initial_vector, and the encrypted user key as p_user_key.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 36 of 59
Apr.25.25

When RSIP_KEY_INJECTION_TYPE_PLAIN (1) is specified as key_injection_type, the settings for
p_wrapped_user_factory_programming_key and p_initial_vector are not required. Specify the plaintext user
key as p_user_key.
When specifying a user key as p_user_key, input data as shown in section 7.3.1, AES in section 7.3, User
Key Formats.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 37 of 59
Apr.25.25

4.1.2.2 R_RSIP_CM_ECC_xxx_InitialPrivateKeyWrap
Format

 (1) fsp_err_t R_RSIP_CM_ECC_secp256r1_InitialPrivateKeyWrap (
rsip_key_injection_type_t const key_injection_type,

 uint8_t const * const p_wrapped_user_factory_programming_key,
 uint8_t const * const p_initial_vector,
 uint8_t const * const p_user_key,
 rsip_aes_wrapped_key_t * const p_wrapped_key)

 (2) fsp_err_t R_RSIP_CM_ECC_secp256k1_InitialPrivateKeyWrap (
rsip_key_injection_type_t const key_injection_type,

 uint8_t const * const p_wrapped_user_factory_programming_key,
 uint8_t const * const p_initial_vector,
 uint8_t const * const p_user_key,
 rsip_aes_wrapped_key_t * const p_wrapped_key)

 (3) fsp_err_t R_RSIP_CM_ECC_brainpoolP256r1_InitialPrivateKeyWrap (
rsip_key_injection_type_t const key_injection_type,

 uint8_t const * const p_wrapped_user_factory_programming_key,
 uint8_t const * const p_initial_vector,
 uint8_t const * const p_user_key,
 rsip_aes_wrapped_key_t * const p_wrapped_key)

Parameters

key_injection_type Input Type of the key to be input to p_user_key
(1) RSIP_KEY_INJECTION_TYPE_ENCRYPTED(0):

Encrypted key
(2) RSIP_KEY_INJECTION_TYPE_PLAIN (1):
 Plaintext key

p_wrapped_user_factory_programming_key Input W-UFPK

This setting is not required when
RSIP_KEY_INJECTION_TYPE_PLAIN is specified
as key_injection_type.

p_initial_vector Input Initialization vector

This setting is not required when
RSIP_KEY_INJECTION_TYPE_PLAIN is specified
as key_injection_type.

p_user_key Input User key
Encrypted user key for input when
RSIP_KEY_INJECTION_TYPE_ENCRYPTED is
specified as key_injection_type
Plaintext user key for input when
RSIP_KEY_INJECTION_TYPE_PLAIN is specified
as key_injection_type

 p_wrapped_key Output Wrapped key of a 256-bit ECC private key

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 38 of 59
Apr.25.25

Return Values: fsp_err_t
 FSP_SUCCESS Successful completion

 FSP_ERR_CRYPTO_SCE_FAIL An input parameter was incorrect.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT The hardware resource required for this
process is in use by another process so
resource contention between the
processes prevented the key injection
processing.

Description
The output of R_RSIP_CM_ECC_secp256r1_InitialPrivateKeyWrap API function is a wrapped key of a 256-
bit ECC-secp256r1 private key.
The output of R_RSIP_CM_ECC_secp256k1_InitialPrivateKeyWrap API function is a wrapped key of a 256-
bit ECC-secp256k1 private key.
The output of R_RSIP_CM_ECC_brainpoolP256r1_InitialPrivateKeyWrap API function is a wrapped key of a
256-bit ECC-brainpoolP256r1 private key.
When RSIP_KEY_INJECTION_TYPE_ENCRYPTED (0) is specified as key_injection_type, specify the W-
UFPK generated from the UFPK that was used to wrap the user key as
p_wrapped_user_factory_programming_key, the initialization vector that was used to wrap the user key as
p_initial_vector, and the encrypted user key as p_user_key.
When RSIP_KEY_INJECTION_TYPE_PLAIN (1) is specified as key_injection_type, the settings for
p_wrapped_user_factory_programming_key and p_initial_vector are not required.
When specifying a user key as p_user_key, input data as shown in section 7.3.2, ECC in section 7.3, User
Key Formats.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 39 of 59
Apr.25.25

5. Key Injection
This section describes how to program encryption keys handled by the RSIP CM driver in nonvolatile
memory such as flash memory. Wrapped keys are used in key injection by default. The current version of the
RSIP CM driver only supports the use of plaintext keys as ECC public keys.

5.1 Key Injection
The procedure for safely injecting keys into your products as part of the manufacturing process is given
below.

See section 3.5.1, Key Injection for details on the mechanism for key injection by the RSIP CM driver.

The Renesas Key Wrap Service provided by Renesas and a key injection program running on an RX family
MCU are required to inject a user key. Supplementary tools such as the Security Key Management Tool are
also available for use to simplify the process.

The demo project which comes with this application note includes a sample key injection program, which can
be used for reference.

The procedure for implementing user key injection is as follows.

1. Preparing the key data required for injecting a user key

Use a desired tool to prepare a 256-bit UFPK and 128-bit IV. These are to be used in wrapping the
user key to be injected. OpenSSL is used to generate the UFPK and IV in the example below.

> openssl rand 32 > ufpk.bin

> openssl rand 16 > iv.bin

Use the Renesas Key Wrap Service (https://dlm.renesas.com/keywrap/toEnglish) to generate a W-
UFPK by using an HRK to wrap ufpk.bin. For detailed information, refer to the Renesas Key Wrap
Service FAQ.

Follow the procedure for use of the key wrapping algorithms described in section 3.5.1 to generate
an encrypted key by using the UFPK (ufpk.bin) to wrap the user key. For details on the formats of
user keys, see section 7.3.

2. Creating a user key injection program

Input the encrypted key, ufpk.bin, and iv.bin generated in step 1 to the corresponding key injection
API function from among those provided for each type of cryptographic algorithm to generate a
wrapped key from the user key, and create a program to write the result to nonvolatile memory.

For the API function to be used, see Figure 3-4, User Key Wrapping Scheme during Key Injection.

3. Injecting the key

Run the user key injection program on a RX family MCU to inject the user key into the flash memory.
We recommend erasing the data for use with key injection in the user key injection program on
completion of the key injection.

The Secure Key Management Tool is available as a supplementary tool for performing steps 1 and 2. See
section 5.2 for details of this tool.

https://dlm.renesas.com/keywrap/toEnglish

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 40 of 59
Apr.25.25

5.2 Using the Security Key Management Tool to Generate an Encrypted Key
The Security Key Management Tool can be used to generate an encrypted user key.

A command line interface (CLI) version of the Security Key Management Tool is also available. This eases
its use in production processes such as those at a factory.

Security Key Management Tool

https://www.renesas.com/en/software-tool/security-key-management-tool

For details on how to use the Security Key Management Tool, see the user's manual.

5.2.1 Key Injection Procedure
The procedure for generating a key file to be used in key injection is described below.

In the following example, C source code for AES is generated.

5.2.1.1 Procedure for Using the CLI Version

1. Generating a UFPK

Use the terminal software to execute the genufpk command.
> skmt.exe /genufpk

/ufpk "2222222222222222222222222222222211111111111111111111111111111111"
/output "C:¥work¥ufpk.key"

Figure 5-1 Result of Executing the genufpk Command

2. Obtaining a W-UFPK

Send the ufpk.key file generated in step 1 to the Renesas Key Wrap Service
(https://dlm.renesas.com/keywrap/toEnglish) to obtain a W-UFPK.
For detailed information on obtaining the file, refer to the Renesas Key Wrap Service FAQ.

3. Generating an AES-128 key file as a C source file
Use the terminal software to execute the genkey command.

> skmt.exe /genkey /iv "55aa55aa55aa55aa55aa55aa55aa55aa" /ufpk file="C:¥work¥ufpk.key"

/wufpk file="C:¥work¥ufpk.key_enc.key" /mcu "RX-RSIP-E11A" /keytype "AES-128"
/key "11111111222222223333333344444444" /filetype "csource" /keyname
"euk_aes128" /output "C:¥work¥euk_aes128.c"

https://www.renesas.com/en/software-tool/security-key-management-tool
https://dlm.renesas.com/keywrap/toEnglish

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 41 of 59
Apr.25.25

Use the UFPK file generated in step 1 and the W-UFPK file generated in step 2.

Figure 5-2 Example of the Display Produced by Executing the genkey Command

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 42 of 59
Apr.25.25

5.2.1.2 Procedure for Using the GUI Version

1. Selecting the MCU or MPU and an encryption engine
On the [Overview] tabbed page, select the MCU or MPU and an encryption engine.

Figure 5-3 [Overview] Tabbed Page

2. Generating a UFPK

To generate a UFPK file, enter a UFPK value and a file name with the .key filename extension on the
[Generate UFPK] tabbed page. The filename is ufpk.key in this example.

Figure 5-4 Example of UFPK Generation by Specifying Values on the [Generate UFPK] Tabbed Page

Clicking on the [Generate UFPK key file] button generates the UFPK file. The result of execution
shown on the following page is output when the file has been successfully generated.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 43 of 59
Apr.25.25

Figure 5-5 Result of Execution on the [Generate UFPK] Tabbed Page

3. Obtaining a W-UFPK

Send the ufpk.key file generated in step 2 to the Renesas Key Wrap Service
(https://dlm.renesas.com/keywrap/toEnglish) to obtain a W-UFPK.
For detailed information on obtaining the file, refer to the Renesas Key Wrap Service FAQ.

4. Generating an AES-128 key file as a C source file
Generate an AES-128 key file on the [Wrap Key] tabbed page.
Select “AES” and “128 bits” on the [Key Type] tabbed page, and then enter the value of the AES-128
key on the [Key Data] tabbed page.
Next, on the [Key Type] tabbed page, enter the UFPK file generated in step 2 and the W-UFPK file
obtained in step 3 in the [Wrapping Key] section and specify “C Source” as “Format” in the [Output]
section.

Figure 5-6 Example of Settings for Output of an AES-128 Key File as a C Source File on Tabbed Page
[Key Type] within [Wrap Key]

https://dlm.renesas.com/keywrap/toEnglish

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 44 of 59
Apr.25.25

Figure 5-7 Example of Settings for Output of an AES-128 Key File as a C Source File on Tabbed Page
[Key Data] within [Wrap Key]

The result of execution shown below is output on successful completion of these operations.

Figure 5-8 Result of Executing Operations on the [Wrap Key] Tabbed Page

Inject data in the output C source file in the same way as was described in section 5.2.1.1.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 45 of 59
Apr.25.25

6. Sample Program

6.1 Key Injection and Cipher Usage
A demo project shown in Table 6-1 can be used to confirm the usage of API functions provided by the RSIP
driver for cryptographic operations, random number generation, and key injection.

Table 6-1 Demo Project for Key Injection and Cipher Usage

MCU Demo Project
RX261 rx261_ek_rsip_cm_sample

Results of executing the demo project are output through a UART. Connect a PC on which terminal software
has been installed to the board on which the demo project is to run. In descriptions in this section, Tera Term
is used as the terminal software on the PC.

The demo project handles data as little endian.

6.1.1 Setting up the Demo Project
Connections between the board and PC are shown below.

USB

External DC power supply
(TP5 and TP6)

USB DEBUG1
(J26)

USB serial
(J16)

USB full speed
(J20)

USB

Figure 6-1 Connections between the EK-RX261 and PC

Power to the EK-RX261 board can be supplied from the pins of the USB DEBUG1, USB full speed, or USB
serial port, or through those for an external DC power supply. Use one from among these to supply power to
the EK-RX261 board.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 46 of 59
Apr.25.25

The following lists the serial port and terminal settings of Tera Term.

• Bit rate: 115200 bps

• Data length: 8 bits

• Parity bits: None

• Stop bit: 1

• Newline code (for transmission): Carriage return (CR)

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 47 of 59
Apr.25.25

6.1.2 Overview of the Demo Project
Figure 6-2 shows the flow of operation of the demo project.

 *1: HMAC Key does not use Wrapped Key, so this process is not

performed and it is written directly to Flash.
*2: XXXX differs for each algorithm.

Figure 6-2 Flow of Operation of the Demo Project for Key Injection and Cipher Usage

The demo project status and the keys used are managed in the data flash (key_block_data). As a measure
against power outages during key injection or data updates, data is stored in two areas, the main area and
the mirror area, in the data flash for data management.

Table 6-2 Key Data Structures of the Demo Project

Type Name Description
st_key_block_
data_t

(key_block_data structure) The key data structure
stored in data flash

uint32_t key_injection_status Indicates the following
STATE
KEY_INJECTION_START
KEY_INJECTION_FINISH
See the following table for
details

(struct) key_data Key Data Storage Structure
rsip_aes_wrapped_key_t user_aes128_key_index_encrypted Encrypted key of AES 128
rsip_aes_wrapped_key_t user_aes128_key_index_plaintext Plaintext Key of AES 128
rsip_aes_wrapped_key_t user_aes256_key_index_encrypted Encrypted Key of AES 256
rsip_aes_wrapped_key_t user_aes256_key_index_plaintext Plaintext Key of AES 256
uint8_t[] user_sha224hmac_key_index_plaintext Plaintext Key of HMAC

SHA-224
uint8_t[] user_sha256ac_key_index_plaintext Plaintext Key of HMAC

SHA-256
rsip_ecc_private_wrapped_
key_t

user_ecc_secp256r1_private_key_index_enc
rypted

Encrypted Key of ECDSA
secp256r1

rsip_ecc_private_wrapped_
key_t

user_ecc_secp256r1_private_key_index_plai
ntext

Plaintext Key of HMAC
SHA-256 of ECDSA
secp256r1

rsip_ecc_private_wrapped_
key_t

user_ecc_brainpoolp256r1_private_key_inde
x_encrypted

Encrypted Key of ECDSA
Brainpoolp256r1

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 48 of 59
Apr.25.25

Type Name Description
rsip_ecc_private_wrapped_
key_t

user_ecc_brainpoolp256r1_private_key_inde
x_plaintext

Plaintext Key of ECDSA
Brainpoolp256r1

rsip_ecc_private_wrapped_
key_t

user_ecc_secp256k1_private_key_index_en
crypted

Encrypted Key of ECDSA
secp256k1

rsip_ecc_private_wrapped_
key_t

user_ecc_secp256k1_private_key_index_pla
intext

Plaintext Key of ECDSA
secp256k1

The behavior of the demo project is managed with the state transition and the state is managed with the flag
in the data flash.

Table 6-3 State of the Demo Project

State Operation content
KEY_INJECTION_START Inject the wrapped keys to the data flash.

In the demo project, the area to store the keys I the data flash is dvided to
main area and mirror area. The key data can be recovered with the
structure if the power shutoff has occurred while writing the keys.
After injecting the keys, transit the state to KEY_INJECTION_FINISH.
The key injection is executed only in the first time of the start operation.
After the time, the state begins with the state KEY_INJECTION_FINISH.

KEY_INJECTION_FINISH Confirm the key data in the data flash with checking its hash value. When
the validity is confirmed, the project begins accepting the commands.

The demo project incorporates the following commands.

Table 6-4 List of Commands of the Demo Project

Command Operation
display Displays the generated key type in terms of whether the key is wrapped or

plaintext.
encdemo-encrypted [Arg1] Encrypts the value of Arg1 in AES-128 ECB mode (by using an encrypted

key).
encdemo-plaintext [Arg1] Encrypts the value of Arg1 in AES-128 ECB mode (by using a plaintext

key).
function Executes the various types of processing listed below and confirms

operation of the relevant API functions.
• AES-128 or AES-256 ECB, CBC, CTR, CCM, or GCM encryption and

decryption
• AES-128 or AES-256 CMAC generation and verification
• SHA224 or SHA256 HMAC generation and verification
• ECDSA P256 signature generation and verification

random Generates a pseudo-random number.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 49 of 59
Apr.25.25

The default values of keys are as follows and IV is “55aa55aa55aa55aa55aa55aa55aa55aa” in the demo

project.
Table 6-5 List of Commands of the Demo Project

key type value
UFPK 2222222222222222222222222222222211111111111111111111111111111111
AES-128bit 11111111222222223333333344444444
AES-256bit ffffffffeeeeeeeeddddddddccccccccbbbbbbbbaaaaaaaa0000000099999999
HMAC SHA-224 000102030405060708090a0b0c0d0e0f101112131415161718191a1b
HMAC SHA-256 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
ECC secp256r1 private 519b423d715f8b581f4fa8ee59f4771a5b44c8130b4e3eacca54a56dda72b464
ECC secp256r1 public 1ccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46c271bf83

ce4014c68811f9a21a1fdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9
ECC BrainpoolP256 r1
private

01e98cf5a934e4f829f94a3fa4ec18ab421fbaa40e0da1f7a3cad1d7ac38cf4f

ECC BrainpoolP256 r1
public

5c568a2b6d3d9828734f9793507ce15629d37d357586e789faf07aeb69c50207
9a61f3fad6defedcb410a709055ca1a033422a9db29f554548438d6f5138d375

ECC secp256k1
private

ef871c07ce463c95384f1f388ef0107b655998623365eab0debdf9a94a7d2303

ECC secp256k1 public 1f9dfb391adade2c8fcbfef52e3115982e19c79ff0571c988a06aec223fb58a6
13898b7f7123287906f43ba6bfbf920aa49377e0ad400d3b8bd94dbb7245c025

The input values used by the function command are shown below.

Table 6-6 List of Commands of the Demo Project

data type value
AES ECB/CBC/CTR/
CCM plaintext

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
ccccccccccccccccccccccccccccccccdddddddddddddddddddddddddddddddd

AES CBC IV 12345678fedcba0955555555aaaaaaaa
AES CTR Counter 12345678fedcba0955555555aaaaaaaa
AES CCM Nonce 101112131415161718191a1b
AES CCM AAD 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
606162636465666768696a6b

AES GCM plaintext aaaaaaaabbbbbbbbccccccccdddddddd
AES GCM IV b3d8cc017cbb89b39e0f67e2
AES GCM AAD 24825602bd12a984e0092d3e448eda5f
HMAC SHA-224/SHA-
256 plaintext

53616D706C65206D65737361676520666F72206B65796C656E3C626C6F636
B6C656E

SHA-224/ SHA-256
plaintext

6162636462636465636465666465666765666768666768696768696a68696a6b
696a6b6c6a6b6c6d6b6c6d6e6c6d6e6f6d6e6f706e6f7071

ECC secp256r1/Brain
poolP256r1/secp256k1
plaintext

5905238877c77421f73e43ee3da6f2d9e2ccad5fc942dcec0cbd25482935faaf
416983fe165b1a045ee2bcd2e6dca3bdf46c4310a7461f9a37960ca672d3feb5
473e253605fb1ddfd28065b53cb5858a8ad28175bf9bd386a5e471ea7a65c17c
c934a9d791e91491eb3754d03799790fe2d308d16146d5c9b0d0debd97d79ce8

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 50 of 59
Apr.25.25

6.1.2.1 Confirmation of Keys and the Demo Project

The demo project generates a wrapped key from a user key. The wrapped key is generated with the use of
an HUK, so copying a wrapped key generated for a chip and using the result with another chip is not

possible. This means that the use of dead copies of the user key is prevented. You can confirm that

attempting to use a wrapped key generated for another device to run the demo project produces an error in
the RSIP CM driver.

In addition, wrapped keys include their own random numbers, which makes guessing the original user key

from a wrapped key infeasible. Specifically, even if wrapped keys are generated for the same device and
with the use of the same user key, the results will each have different values. You can use the demo project

to confirm this feature of wrapped keys. Every time you download the demo project and execute the display

command, you can confirm the change in the value of the wrapped key.

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 51 of 59
Apr.25.25

6.1.3 Example of Executing the Demo Project
Figure 6-3 shows the display produced when key injection is successfully completed during start-up after the
program has been downloaded to the MCU. After the listing below is displayed, the program is ready to
accept the commands listed in Table 6-4.

Figure 6-3 Display in the Tera Term Window (at the Time of Start-Up)

Figure 6-4 Display in the Tera Term Window (2nd and Subsequent Executions)

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 52 of 59
Apr.25.25

An example of using the encdemo-encrypted and encdemo-plaintext command is given below as an
example of command usage.

The encdemo-encrypted command uses a encrypted wrapped 128-bit AES key that has been injected to
encrypt the value input as the argument of the command in AES ECB mode.

The encdemo-plaintext command uses a plaintext wrapped 128-bit AES key that has been injected to
encrypt the value input as the argument of the command in AES ECB mode.

The key value “11111111222222223333333344444444” has been injected as the 128-bit AES key into the
sample program beforehand.

Figure 6-5 shows an example of executing the encdemo-encrypted command with the argument
“aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa”.

Figure 6-5 Display in the Tera Term Window (at the Time of encdemo-encrypted Command Execution)

Figure 6-6 shows an example of executing the encdemo-plaintext command with the argument
“aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa”.

Figure 6-6 Display in the Tera Term Window (at the Time of encdemo-plaintext Command Execution)

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 53 of 59
Apr.25.25

7. Appendix

7.1 Environments for Confirming Operation
The table below lists the environments used in confirming operation of this driver.

Table 7-1 Environments for Confirming Operation

Item Description
Integrated
development
environments

e2 studio 2025-01 from Renesas Electronics
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler C/C++ Compiler for RX Family (CC-RX) V3.07.00 from Renesas Electronics
Compilation options: The following option was added to the default settings of
the integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202411
Compilation options: The following option was added to the default settings of
the integrated development environment.
-std = gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compilation options: Default settings of the integrated development environment

Endian for operation Little
Module version Ver.1.00
Board used EK-RX261 (Part number: RTK5EK2610SxxxxxBJ)

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 54 of 59
Apr.25.25

7.2 Troubleshooting
(1) Q: I added the FIT module to my project, but when I attempted to build it, an error message, “Could not

open source file ‘platform.h’,” appeared.

A: The FIT module may not have been correctly added to your project. Refer to the appropriate
document of the two listed below to confirm how to add the FIT module to a project.

• When CS+ is in use

Application note RX Family: Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)

• When the e2 studio is in use
Application note RX Family: Adding Firmware Integration Technology Modules to Projects
(R01AN1723)

When the FIT module is to be used, the board support package FIT module (BSP module) must also
be added to the project. For details on how to add the BSP module, refer to the application note RX
Family: Board Support Package Module Using Firmware Integration Technology (R01AN1685).

(2) Q: I want to use CS+ to run the sample project for use with the e2 studio from the FITDemos directory.

A: Refer to the Web page at the URL below.
Porting from the e2 studio to CS+
> Convert an Existing Project to Create a New Project With CS+
https://www.renesas.com/en/software-tool/migration-e2studio-to-csplus

Note: In step 5, the [Q0268002] dialog box may appear if the [Backup the project composition files
after conversion] checkbox is checked. Clicking on the [Yes] button in the [Q0268002] dialog box
requires re-setting the include paths for the compiler.

https://www.renesas.com/en/software-tool/migration-e2studio-to-csplus

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 55 of 59
Apr.25.25

7.3 User Key Formats
This section describes the data formats for user keys (plaintext user keys) and for encrypted user keys.

7.3.1 AES

128-bit AES key

Input (Plaintext User Key) Input (Encrypted User Key)
Bytes 16 Bytes 16

4 4 4 4 4 4 4 4
0 to 15 128-bit AES key 0 to 15 encrypted_user_key (128-bit AES

key)
 16 to

31
MAC

256-bit AES key

Input (Plaintext User Key) Input (Encrypted User Key)
Bytes 16 Bytes 16

4 4 4 4 4 4 4 4
0 to 31 256-bit AES key 0 to 31 encrypted_user_key (256-bit AES

key)
 32 to

47
MAC

7.3.2 ECC

ECC secp256r1/secp256k1/brainpoolP256r1 public key

Input (Plaintext User Key)
Bytes 16

4 4 4 4
0 to 31 ECC 256-bit public key Qx
32 to
63

ECC 256-bit public key Qy

ECC secp256r1/secp256k1/brainpoolP256r1 private key

Input (Plaintext User Key) Input (Encrypted User Key)
Bytes 16 Bytes 16

4 4 4 4 4 4 4 4
0 to 31 ECC 256-bit private key d 0 to 31 encrypted_user_key (ECC P 256-bit

private key d)
 32 to

47
MAC

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 56 of 59
Apr.25.25

7.3.3 HMAC

HMAC-SHA224 key

Input (Plaintext User Key)
Bytes 16

4 4 4 4
0 to 31 HMAC-SHA224 key

 0
padding

HMAC-SHA256 key

Input (Plaintext User Key)
Bytes 16

4 4 4 4
0 to 31 HMAC-SHA256 key

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 57 of 59
Apr.25.25

8. Reference Documents
User’s Manual: Hardware
(The latest version can be downloaded from the Renesas Electronics Web site.)

Technical Updates/Technical News
(The latest information can be downloaded from the Renesas Electronics Web site.)

User’s Manual: Development Environment
RX Family CC-RX Compiler User’s Manual (R20UT3248)
(The latest version can be downloaded from the Renesas Electronics Web site.)

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 58 of 59
Apr.25.25

Web Site and Support Desk
Renesas Electronics Web site

https://www.renesas.com/en

Contact information

https://www.renesas.com/en/contact-us

All trademarks and registered trademarks are the property of their respective owners.

https://www.renesas.com/en
https://www.renesas.com/en/contact-us

RX Family Renesas Secure IP Compatibility Mode Firmware Integration Technology

R01AN7445EJ0100 Rev.1.00 Page 59 of 59
Apr.25.25

Revision History

Rev. Date
Description

Page Summary
1.00 Apr.25, 2025 - First edition issued.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Terminology
	1.2 Overview
	1.3 Structure of Files in the Product
	1.4 Documents for Reference
	1.5 Development Environment
	1.6 Code Size
	1.7 Performance
	1.7.1 RX261

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Header File
	2.5 Integer Types
	2.6 Configuration
	2.6.1 Setting of the Platform
	2.6.2 Setting for Generating Random Numbers
	2.6.3 Setting for Generating a Wrapped Key
	2.6.4 Setting of AES
	2.6.5 Setting of ECC
	2.6.6 Setting of SHA224 and SHA256

	2.7 Structures
	2.8 Return Values
	2.9 Including the FIT Module in Your Project

	3. Using the RSIP CM Driver
	3.1 Initializing the RSIP
	3.2 Memory Usage
	3.3 Restrictions
	3.3.1 Endian for Operation
	3.3.2 Definition of MBEDTLS_PLATFORM_SETBUF_MACRO

	3.4 Single-Part and Multi-Part Operations
	3.5 Key Management
	3.5.1 Key Injection
	3.5.2 Key Generation

	3.6 Random Number Generation
	3.7 Symmetric Key Cryptography
	3.8 Asymmetric Key Cryptography
	3.9 Hash Functions

	4. API Functions
	4.1 List and Details of API Functions
	4.1.1 Version Information
	4.1.2 Key Injection

	5. Key Injection
	5.1 Key Injection
	5.2 Using the Security Key Management Tool to Generate an Encrypted Key
	5.2.1 Key Injection Procedure

	6. Sample Program
	6.1 Key Injection and Cipher Usage
	6.1.1 Setting up the Demo Project
	6.1.2 Overview of the Demo Project
	6.1.3 Example of Executing the Demo Project

	7. Appendix
	7.1 Environments for Confirming Operation
	7.2 Troubleshooting
	7.3 User Key Formats
	7.3.1 AES
	7.3.2 ECC
	7.3.3 HMAC

	8. Reference Documents
	Web Site and Support Desk
	Revision History

