
 APPLICATION NOTE

R01AN1075EJ0103 Rev.1.03 Page 1 of 66

Mar 31, 2016

RX Family, RL78 Family

Renesas R1EX24xxx Series Serial EEPROM Control Software

Introduction

This application note explains the method of controlling R1EV24xxx, R1EX24xxx, and HN58X24xxx series I
2
C serial

EEPROM, manufactured by Renesas Electronics, by using a Renesas Electronics MCU, and also describes the usage of

the supplied sample code.

In the sample code, an upper layer of software controls the slave devices and a lower layer of software implements I
2
C

single master basic protocol control. The protocols provided by the upper and lower layers are used in combination to

control the slave devices.

The sample code comprises the upper layer of software for controlling the serial EEPROM as slave devices.

Lower layer software for implementing I
2
C single master control in the MCU as master device is available separately in

versions for specific MCU models, so please obtain this from the following URL as well. In addition, when a new

microcontroller is added to the clock synchronous single-master control software, update of this application note may

not be in time. Refer to ‘I
2
C Single Master Control Software (Lower-level layer of the software)’ information in the

following URL for the combination information on the latest supported microcontroller and its single-master control

software.

 I
2
C Serial EEPROM Driver

 http://www.renesas.com/driver/i2c_serial_eeprom

Target Device

Serial EEPROM

Renesas Electronics R1EV24xxx, R1EX24xxx, or HN58X24xxx series I
2
C serial EEPROM

MCU on which operation has been verified

RL78/G1x series : RL78/G14, RL78/G1C group (using IICA serial interface)

RL78/L1x series : RL78/L12, RL78/L13, RL78/L1C group (using IICA serial interface)

RX600 series : RX62N, RX63N, RX63T group (using RIIC)

RX200 series : RX210, RX21A group (using RIIC)

When using this application note with other Renesas MCUs, careful evaluation is recommended after making

modifications to comply with the alternate MCU.

R01AN1075EJ0103
Rev.1.03

Mar 31, 2016

http://www.renesas.com/driver/i2c_serial_eeprom

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 2 of 66

Mar 31, 2016

Contents

1. Specifications ... 4

2. Operation Confirmation Conditions .. 6

2.1 RL78 .. 6

2.2 RX ... 12

3. Reference Application Note ... 14

4. Hardware ... 15

4.1 Pins Used ... 15

4.2 Reference Circuit .. 15

4.3 Controlling Multiple Slave Devices ... 16

4.4 Maximum Transfer Speed .. 16

5. Software .. 17

5.1 Operation Configuration ... 17

5.2 Operation Overview .. 17

5.2.1 Address Specification .. 17

5.2.2 Write Operation ... 19

5.2.3 Read Operation ... 23

5.3 Software Operation ... 24

5.4 Software Operation Sequence ... 25

5.5 Block Rewrite Implementation Method ... 26

5.6 Operation Flowcharts ... 27

5.6.1 Write Operation Flowchart ... 27

5.6.2 Read Operation Flowchart ... 29

5.7 Relationship of Data Buffers and Transmit/Receive Data .. 30

5.8 Required Memory Sizes .. 31

5.8.1 RL78 ... 31

5.8.2 RX ... 34

5.9 File Structure ... 35

5.10 Constants ... 36

5.10.1 Definitions .. 36

5.11 Structures and Unions .. 37

5.11.1 EEPROM Communication Information Structure .. 37

5.12 Enumerated Types .. 40

5.13 Variables .. 41

5.14 Functions ... 41

5.15 State Transition Diagram .. 42

5.16 Function Specifications .. 43

5.16.1 Common Function Processing .. 43

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 3 of 66

Mar 31, 2016

5.16.2 EEPROM Initialization Function .. 44

5.16.3 Write Start Function .. 46

5.16.4 Acknowledge Polling Start Function .. 49

5.16.5 Read Start Function .. 52

5.16.6 EEPROM Advance Function .. 54

5.16.7 EEPROM Recovery Function ... 59

6. Application Example .. 62

6.1 r_iic_eepmdl_api.h .. 62

6.2 EEPROM Recovery Function ... 63

7. Usage Notes ... 64

7.1 Notes on Incorporation ... 64

7.2 Page Size Setting .. 64

7.3 Structure Handling when Calling Acknowledge Polling Start Function.............................. 64

7.4 Structure Handling when Calling EEPROM Recovery Function .. 64

7.5 Communication after Calling EEPROM Recovery Function ... 64

7.6 Processing of EEPROM Advance Function within Interrupt Handler and OS Control 64

7.7 Notes on Connection of Multiple Devices to Same Bus ... 65

7.8 Considerations at Compile-time .. 65

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 4 of 66

Mar 31, 2016

1. Specifications

The method of controlling R1EV24xxx, R1EX24xxx, and HN58X24xxx series I
2
C serial EEPROM, manufactured by

Renesas Electronics, by using a Renesas Electronics MCU is described below.

Communication with the I
2
C serial EEPROM can be accomplished by using the software sample code provided with

this application note in combination with lower layer I
2
C single master control software. The software sample code is

for communication control, and the processing of reading and writing data, etc., is handled by the lower layer software.

Table 1.1 lists the peripheral device used and its application, and Figure 1.1 shows a usage example.

The following is an overview of the functionality of the control software.

 The control software is a block device driver for a system in which a Renesas Electronics MCU functions as the

master device and Renesas Electronics R1EV24xxx, R1EX24xxx, or HN58X24xxx series I
2
C serial EEPROM

functions as slave devices.

 I
2
C serial EEPROM write operation, acknowledge polling (EEPROM rewrite state confirmation), and read operation

are supported.

 The I
2
C single master control software’s master transmit mode (pattern 1)*

1
 is used for EEPROM write operation.

The bus is released after transmission completes (after a stop condition occurs). Acknowledge polling is used to

determine EEPROM data rewrite completion.

 The I
2
C single master control software’s master transmit mode (pattern 3)*

1
 is used for acknowledge polling.

Completion of a rewrite to the EEPROM is determined by receiving an ACK or NACK response when the slave

address is transmitted.

 The I
2
C single master control software’s master composite mode (master transmit  master receive)*

1
 is used for

EEPROM read operation.

 Communication is implemented by means of a start function, which starts each control operation, and an advance

function, which monitors the communication and causes protocol processing to proceed. After communication starts

it is necessary to call the advance function to complete the communication.

 Multiple channels are supported.

 Multiple slave devices with different type name can be controlled on a single channel bus.*2 However, while

communication is in progress (the period from when the start condition occurs to when the stop condition occurs),

communication with other devices is not possible.

 The methods of specifying the address that designates the slave device and the EEPROM internal address differ

depending on the capacity of the I
2
C serial EEPROM used. The sample code performs address conversion by setting

the necessary information.

 The write protect (WP = H) state control function is not supported. Communication starts even if the target device is

in the write protect state, but an error is returned as a NACK response from the EEPROM when the data is

transmitted.

 If, when communication is in progress, communication stops for more than a certain amount of time or a bus hang-

up occurs due to noise, etc., the control software can perform EEPROM recovery processing to release the bus.

Notes: 1. The details depend on the specifications of the I

2
C single master control software version used.

 2. The number of serial EEPROM devices that can be connected as slave devices differs depending on the

capacity. Make sure to keep this in mind when connecting multiple slave devices to a single channel. Table

5.2 lists the number of slave devices that can be connected by capacity.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 5 of 66

Mar 31, 2016

Table 1.1 Peripheral Function and Its Application

Peripheral Function Application

On-chip I
2
C bus control function of MCU I

2
C bus communication function

1 channel (required)

Master device:

Renesas Electronics MCU

Channel 0

IIC control

Serial data bus

Serial clock

Channel 1

IIC control

Serial data bus

Serial clock

Slave device:

Renesas Electronics

R1EX24xxx/HN58X24xxx series

Serial EEPROM

Serial
EEPROM

R1EX24002A

Serial

EEPROM

HN58X24128

Serial

EEPROM

R1EX24032A

Serial
EEPROM

HN58X24064

Serial
EEPROM

R1EX24512B

Figure 1.1 Usage Example

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 6 of 66

Mar 31, 2016

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

2.1 RL78

(1) RL78/G14 IICA Integrated Development Environment CS+ for CA,CX (Compiler: CA78K0R)

Table 2.1 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/G14 group (program ROM: 256 KB, RAM: 24 KB)

Operating frequency Main system clock: 32 MHz

Peripheral hardware clock: 32 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CS+ for CA,CX V3.01.00

C compiler Renesas Electronics

RL78,78K0R compiler CA78K0R V1.71

Compiler options:

The default settings (-qx2) for the integrated development environment are

used.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus

Single Master Control Software Using IICA Serial Interface

(R01AN1074EJ), Ver. 1.03

Board used Renesas Starter Kit for RL78/G14

(2) RL78/G14 IICA Integrated Development Environment CS+ for CC (Compiler: CC-RL)

Table 2.2 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/G14 group (program ROM: 256 KB, RAM: 24 KB)

Operating frequency Main system clock: 32 MHz

Peripheral hardware clock: 32 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CS+ for CC V3.03.00

C compiler Renesas Electronics

RL78 compiler CC-RL V1.02.00

Compiler options:

The default settings (Perform the default optimization(None)) for the

integrated development environment are used.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus

Single Master Control Software Using IICA Serial Interface

(R01AN1074EJ), Ver. 1.03

Board used Renesas Starter Kit for RL78/G14

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 7 of 66

Mar 31, 2016

(3) RL78/G14 IICA Integrated Development Environment IAR Embedded Workbench

Table 2.3 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/G14 group (program ROM: 256 KB, RAM: 32 KB)

Operating frequency Main system clock: 32 MHz

Peripheral hardware clock: 32 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

IAR Systems

IAR Embedded Workbench for Renesas RL78 (ver. 1.30.2)

C compiler IAR Systems

IAR Assembler for Renesas RL78 (ver. 1.30.2.50666)

IAR C/C++ Compiler for Renesas RL78 (ver. 1.30.2.50666)

Compiler options:

The default settings ("level: low") for the integrated development

environment are used.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C group I
2
C Bus

Single Master Control Software using IICA Serial Interface

(R01AN1074EJ), ver. 1.02

Board used Renesas Starter Kit for RL78/G14

(4) RL78/G1C IICA Integrated Development Environment CubeSuite+

Table 2.4 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/G14 group (program ROM: 32 KB, RAM: 5.5 KB)

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CubeSuite+ V2.01.00

C compiler Renesas Electronics

CubeSuite+ RL78, RL78K0R compiler CA78K0R, V1.70

Compile option

Default settings (-qx2) of integrated development environment used as

compile options.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C group I
2
C Bus

Single Master Control Software using IICA Serial Interface

(R01AN1074EJ), ver. 1.02

Board used Renesas Electronics RL78/G1C Target Board QB-R5F10JGC-TB

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 8 of 66

Mar 31, 2016

(5) RL78/G1C IICA Integrated Development Environment IAR Embedded Workbench

Table 2.5 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/G14 group (program ROM: 32 KB, RAM: 5.5 KB)

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

IAR Systems

IAR Embedded Workbench for Renesas RL78 (ver. 1.30.5)

C compiler IAR Systems

IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)

IAR C/C++ Compiler for Renesas RL78（Ver.1.30.5.50715）

Compiler options:

The default settings ("level: low") for the integrated development

environment are used.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C group I
2
C Bus

Single Master Control Software using IICA Serial Interface

(R01AN1074EJ), ver. 1.02

Board used Renesas Electronics RL78/G1C Target Board QB-R5F10JGC-TB

(6) RL78/L12 IICA Integrated Development Environment CubeSuite+

Table 2.6 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/L12 group (program ROM: 32 KB, RAM: 1.5 KB)

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CubeSuite+ V2.01.00

C compiler Renesas Electronics

CubeSuite+ RL78, RL78K0R compiler CA78K0R, V1.70

Compile option

Default settings (-qx2) of integrated development environment used as

compile options.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C group I
2
C Bus

Single Master Control Software using IICA Serial Interface

(R01AN1074EJ), ver. 1.02

Board used Renesas Starter Kit for RL78/L12

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 9 of 66

Mar 31, 2016

(7) RL78/L12 IICA Integrated Development Environment IAR Embedded Workbench

Table 2.7 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/G14 group (program ROM: 32 KB, RAM: 1.5 KB)

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

IAR Systems

IAR Embedded Workbench for Renesas RL78 (ver. 1.30.5)

C compiler IAR Systems

IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)

IAR C/C++ Compiler for Renesas RL78（Ver.1.30.5.50715）

Compiler options:

The default settings ("level: low") for the integrated development

environment are used.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C group I
2
C Bus

Single Master Control Software using IICA Serial Interface

(R01AN1074EJ), ver. 1.02

Board used Renesas Starter Kit for RL78/L12

(8) RL78/L13 IICA Integrated Development Environment CubeSuite+

Table 2.8 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/L13 group (program ROM: 128 KB, RAM: 8 KB)

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CubeSuite+ V2.01.00

C compiler Renesas Electronics

CubeSuite+ RL78, RL78K0R compiler CA78K0R, V1.70

Compile option

Default settings (-qx2) of integrated development environment used as

compile options.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C group I
2
C Bus

Single Master Control Software using IICA Serial Interface

(R01AN1074EJ), ver. 1.02

Board used Renesas Starter Kit for RL78/L13

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 10 of 66

Mar 31, 2016

(9) RL78/L13 IICA Integrated Development Environment IAR Embedded Workbench

Table 2.9 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/L13 group (program ROM: 128 KB, RAM: 8 KB)

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

IAR Systems

IAR Embedded Workbench for Renesas RL78 (ver. 1.30.5)

C compiler IAR Systems

IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)

IAR C/C++ Compiler for Renesas RL78（Ver.1.30.5.50715）

Compiler options:

The default settings ("level: low") for the integrated development

environment are used.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C group I
2
C Bus

Single Master Control Software using IICA Serial Interface

(R01AN1074EJ), ver. 1.02

Board used Renesas Starter Kit for RL78/L13

(10) RL78/L1C IICA Integrated Development Environment CubeSuite+

Table 2.10 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/L1C group (program ROM: 256 KB, RAM: 16 KB)

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CubeSuite+ V2.01.00

C compiler Renesas Electronics

CubeSuite+ RL78, RL78K0R compiler CA78K0R, V1.70

Compile option

Default settings (-qx2) of integrated development environment used as

compile options.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C group I
2
C Bus

Single Master Control Software using IICA Serial Interface

(R01AN1074EJ), ver. 1.02

Board used Renesas Starter Kit for RL78/L1C

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 11 of 66

Mar 31, 2016

(11) RL78/L1C IICA Integrated Development Environment IAR Embedded Workbench

Table 2.11 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RL78/L1C group (program ROM: 256 KB, RAM: 16 KB)

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

IAR Systems

IAR Embedded Workbench for Renesas RL78 (ver. 1.30.5)

C compiler IAR Systems

IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)

IAR C/C++ Compiler for Renesas RL78（Ver.1.30.5.50715）

Compiler options:

The default settings ("level: low") for the integrated development

environment are used.

Sample code version Ver. 1.01

Software used RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C group I
2
C Bus

Single Master Control Software using IICA Serial Interface

(R01AN1074EJ), ver. 1.02

Board used Renesas Starter Kit for RL78/L1C

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 12 of 66

Mar 31, 2016

2.2 RX

(1) RX62N RIIC

Table 2.12 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RX62N group (program ROM: 512 KB, RAM: 64 KB)

Operating frequency ICLK: 96 MHz

PCLK: 48 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

High-performance embedded Workshop Version 4.09.01.007

C compiler Renesas Electronics

RX Family C/C++ Compiler Package (Toolchain 1.2.1.0)

Compile option

The integrated development environment default settings*
1
 are used.

Note: 1. Optimization level: 2, optimization method: Size priority

Endian order Big endian / Little endian

Sample code version Ver. 1.00

Software used RX600, RX200 Series I
2
C Bus Single Master Control Software using RIIA

Serial Interface (R01AN1254EJ), ver. 1.13

Board used Renesas Starter Kit for RX62N

(2) RX63N RIIC

Table 2.13 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RX63N group (program ROM: 1 MB, RAM: 128 KB)

Operating frequency ICLK: 96 MHz

PCLK: 48 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

High-performance embedded Workshop Version 4.09.01.007

C compiler Renesas Electronics

RX Family C/C++ Compiler Package (Toolchain 1.2.1.0)

Compile option

The integrated development environment default settings*
1
 are used.

Note: 1. Optimization level: 2, optimization method: Size priority

Endian order Big endian / Little endian

Sample code version Ver. 1.00

Software used RX600, RX200 Series I
2
C Bus Single Master Control Software using RIIC

Serial Interface (R01AN1254EJ), ver. 1.13

Board used Renesas Starter Kit for RX63N

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 13 of 66

Mar 31, 2016

(3) RX63T RIIC

Table 2.14 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RX63T group (program ROM: 512KB, RAM: 48 KB)

Operating frequency ICLK: 96 MHz

PCLK: 48 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CubeSuite+ V2.00.00

C compiler Renesas Electronics

RX Family C/C++ Compiler Package (Toolchain 2.00.000)

Compile option

The integrated development environment default settings*
1
 are used.

Note: 1. Optimization level: 2, optimization method: Size priority

Endian order Big endian / Little endian

Sample code version Ver. 1.00

Software used RX600, RX200 Series I
2
C Bus Single Master Control Software using RIIC

Serial Interface (R01AN1254EJ), ver. 1.13

Board used Renesas Starter Kit for RX63T

(4) RX210 RIIC

Table 2.15 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RX210 group (program ROM: 512KB, RAM: 48KB)

Operating frequency ICLK: 50 MHz

PCLK: 25 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

High-performance embedded Workshop Version 4.09.01.007

C compiler Renesas Electronics

RX Family C/C++ Compiler Package (Toolchain 1.2.1.0)

Compile option

The integrated development environment default settings*
1
 are used.

Note: 1. Optimization level: 2, optimization method: Size priority

Endian order Big endian / Little endian

Sample code version Ver. 1.00

Software used RX600, RX200 Series I
2
C Bus Single Master Control Software using RIIC

Serial Interface (R01AN1254EJ), ver. 1.13

Board used Renesas Starter Kit for RX210

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 14 of 66

Mar 31, 2016

(5) RX21A RIIC

Table 2.16 Operation Confirmation Conditions

Item Contents

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

MCU used for evaluation RX21A group (program ROM: 512KB, RAM: 64KB)

Operating frequency ICLK: 50 MHz

PCLK: 25 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

High-performance embedded Workshop Version 4.09.01.007

C compiler Renesas Electronics

RX Family C/C++ Compiler Package (Toolchain 1.2.1.0)

Compile option

The integrated development environment default settings*
1
 are used.

Note: 1. Optimization level: 2, optimization method: Size priority

Endian order Big endian / Little endian

Sample code version Ver. 1.00

Software used RX600, RX200 Series I
2
C Bus Single Master Control Software using RIIC

Serial Interface (R01AN1254EJ), ver. 1.13

Board used Renesas Starter Kit for RX210

3. Reference Application Note

For additional information associated with this document, refer to the following application note.

 RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group I
2
C Bus Single Master Control Software using

IICA Serial Interface (R01AN1074EJ)

 RX600, RX200 Series I
2
C Bus Single Master Control Software using RIIC Serial Interface (R01AN1254EJ)

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 15 of 66

Mar 31, 2016

4. Hardware

4.1 Pins Used

Table 4.1 lists the Pins Used and Their Functions.

Table 4.1 Pins Used and Their Functions

Pin Name I/O Description

SCL

(SCL in Figure 4.1)

Output Serial clock output

SDA

(SDA in Figure 4.1)

I/O Serial data I/O

4.2 Reference Circuit

Figure 4.1 is a connection diagram. Since the output is N-ch open drain, the serial clock line and serial data bus line

require external pull-up resistors. Select resistors that are appropriate for the system. Also consider adding damping

resistors to the signal lines to ensure matching circuit characteristics.

MCU

SCL

SDA

I
2
C

Serial

EEPROM

Vcc

SCL

SDA

WP

A0

A1

A2

• The pins on the MCU used for serial I/O depend on the MCU model.

• These pins are designated as the SCL pin and SDA pin in this application note to match the notations used in the

sample code.

SCL: Serial clock output pin

SDA: Serial data I/O pin

Add external pull-up

resistors.

Set the address designating the

slave device (the device address)

by driving these pins high or low.

Figure 4.1 MCU and I
2
C Serial EEPROM Connection Example

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 16 of 66

Mar 31, 2016

4.3 Controlling Multiple Slave Devices

The sample code supports use of multiple channels. In addition, multiple slave devices with different type name can be

connected to a single channel bus and controlled. However, communication with other devices is not possible during the

period from when the start condition occurs to when the stop condition occurs.

Example: Devices A and B connected to channel 0 and device C connected to channel 1

Legend: ST: Start condition

SP: Stop condition

Channel 0 bus

Channel 1 bus

Slave device A

Communication in progress

Device A

ST generation successful

Device B

ST generation failed

Slave device B
Communication in progress

Device B

ST generation successful

Device B

SP generation finished

Slave device C

Communication in progress

Slave device C

Communication in progress

Device C

SP generation

finished

Device C

ST generation

successful

Time axis

Device A

SP generation finished

Device A

ST generation failed

Device C

ST generation

successful

Device C

SP generation

finished

Multiple devices on the same

channel cannot communicate

simultaneously.

Communication on channel 1

possible while channel 0

communication in progress.

Figure 4.2 Example of Control of Multiple Slave Devices

4.4 Maximum Transfer Speed

The maximum transfer speed setting is 400 kHz.

However, when both standard mode and fast mode devices are connected to the same channel, the standard mode

maximum setting of 100 kHz must be observed.

The maximum transfer speeds of mixed bus systems are listed below.

Table 4.2 Maximum Transfer Speeds of Mixed Bus Systems

Communication Device Mixed Devices

Fast Mode Standard Mode

Fast mode 0 to 400 kHz 0 to 100 kHz

Standard mode 0 to 100 kHz 0 to 100 kHz

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 17 of 66

Mar 31, 2016

5. Software

5.1 Operation Configuration

The software for controlling the slave devices is the upper layer, and the software that implements I
2
C single master

basic protocol control is the lower layer. The protocols provided by the upper and lower layers are used in combination

to control the slave devices.

The sample code is positioned as the upper layer software for controlling serial EEPROM as slave devices.

Slave device

Slave device control software: API

I
2
C single master driver

Upper

layer

Lower

layer

User application

Sample code

Legend:

API: User interface functions

SUB: Internal functions

Slave device control software: SUB

Figure 5.1 Software Configuration

5.2 Operation Overview

This section describes the method by which the on-chip I
2
C bus control function of the MCU is used as the master of

the single master I
2
C bus to control EEPROM devices as slave devices.

5.2.1 Address Specification

The methods of specifying the address that designates the slave device and the EEPROM internal address differ

depending on the capacity of the I
2
C serial EEPROM used. The address specification methodology is described below.

(1) Address that Designates the Slave Device

After the start condition occurs, eight bits of data (device address word) are sent to the EEPROM. The EEPROM

requires that the upper four bits have a fixed value of 1010. The next three bits (device address code) differ depending

on the device used. See Table 5.2 for details.

Table 5.1 EEPROM Device Address Word

Device Code (Fixed) Device Address Code R/W Code

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 1 0 A2 A1 A0 R/W

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 18 of 66

Mar 31, 2016

(2) Address Specification According to EEPROM Capacity

Table 5.2 lists the specifications of the EEPROM devices covered by this application note. The values preceded by “A”

in the device address code columns indicate addresses that designate the slave device, and values preceded by “a”

indicate EEPROM internal addresses. Devices for which values of a16 or a10 to a8 are indicated in the device address

code column require that the EEPROM internal address be indicated in the device address code.

For example, for the 8 Kb EEPROM device listed, bit 3 (A2) of the device address code indicates the connected

EEPROM device. Bit 2 (a9) and bit 1 (a8) indicate the upper bits of the EEPROM internal address. So if the EEPROM

internal address is “11 1001 0101h”, the value of the top two bits (a9 and a8) is “11” and bits 2 and 1 of the device

address code are set to this value.

Table 5.2 List of EEPROM Address Specifications According to EEPROM Capacity*
1

Type Name Capacity

(Bits)

EEPROM

Internal

Address

Length

Max.

Connect

-able

Slave

Devices

Device Address

Code

EEPROM Internal

Address

Bit 3 Bit 2 Bit 1 1st Byte 2nd Byte

HN58W241000I 1 M 17 bits

(a16 to a0)

4 A2 A1 a16 a15 to a8 a7 to a0

R1EX24512B 512 K 16 bits

(a15 to a0)

8 A2 A1 A0 a15 to a8 a7 to a0

R1EX24512A

HN58X24512

512 K 16 bits

(a15 to a0)

4 0

*
2

A1 A0 a15 to a8 a7 to a0

R1EX24256B

R1EX24256A

HN58X24256

256 K 15 bits

(a14 to a0)

8 A2 A1 A0 a14 to a8 a7 to a0

R1EX24128B

R1EX24128A

HN58X24128

128 K 14 bits

(a13 to a0)

8 A2 A1 A0 a13 to a8 a7 to a0

R1EV24064A

R1EX24064A

HN58X2464

64 K 13 bits

(a12 to a0)

8 A2 A1 A0 a12 to a8 a7 to a0

R1EX24032A

HN58X2432

32 K 12 bits

(a11 to a0)

8 A2 A1 A0 a11 to a8 a7 to a0

R1EX24016A

HN58X2416

16 K 11 bits

(a10 to a0)

1 a10 a9 a8 a7 to a0

R1EX24008A

HN58X2408

8 K 10 bits

(a9 to a0)

2 A2 a9 a8 a7 to a0

R1EV24004A

R1EX24004A

HN58X2404

4 K 9 bits

(a8 to a0)

4 A2 A1 a8 a7 to a0

R1EV24002A

R1EX24002A

HN58X2402

2 K 8 bits

(a7 to a0)

8 A2 A1 A0 a7 to a0

Notes: 1. This list of EEPROM products is current as of revision 1.00 of this document. For newer devices,

refer to the respective datasheets.

 2. Bit value doesn’t matter.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 19 of 66

Mar 31, 2016

5.2.2 Write Operation

This description of the sample code assumes for write operation that transmission of data from the master (MCU) to the

slave (EEPROM) is defined as “writing” and that internal rewriting of the EEPROM with the data written to it is

defined as “rewriting.”

The sample code supports byte write and page write operation.*

Note: Page write performs a batch rewrite of a user-defined byte count, relative to the page size specified for the

EEPROM device used.

(1) Data Write (WP = L)

The I
2
C single master control software’s master transmit mode (pattern 1) is used. First, a start condition (ST) is

generated, next the address of the slave device is transmitted. In this case, the eighth bit is the transfer direction

specification bit, and it has a value of “0” (write) during data transmission. Next, the EEPROM internal address is

transmitted, and then data transmission starts.

The number of data bytes that can be rewritten within the page size are transmitted consecutively, then a stop condition

is generated and the bus is released.

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 1 2 8 9 7

SCLn

SDAn

Start Slave

address

(8th bit: “0”)

EEPROM

internal

address

Transmit

data

Stop

SP

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K

Legend: ST: Start condition generation ACK: Acknowledge “0”

SP: Stop condition generation

EEPROM

internal

address (n)

Transmit

data (n)

Figure 5.2 Data Write Operation

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 20 of 66

Mar 31, 2016

(2) Data Write (WP = H)

It is not possible to perform a data rewrite of the EEPROM if the write protect pin (WP) is in the high state when the

write operation occurs.

The start condition  slave address transmission  EEPROM internal address transmission sequence operates

successfully because an acknowledge “0” value is received every ninth bit. However, an acknowledge “1” value is

received after transmit data, resulting in a NACK error. After the NACK error, a stop condition is generated and the bus

is released.

Slave address

(8th bit: “0”)

EEPROM

internal

address

Transmit

data

Legend: ST: Start condition generation NACK: Acknowledge “1”

SP: Stop condition generation ACK: Acknowledge “0”

EEPROM

internal

address (n)

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 91 2 8 97

SCLn

SDAn

Start

SP

WP

StopA
C
K

A
C
K

A
C
K

N
A
C
K

Acknowledge value is “1” during data

transmission, resulting in NACK error.

Figure 5.3 Write Operation with Write Protect Enabled (WP = H)

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 21 of 66

Mar 31, 2016

(3) Acknowledge Polling

After the data write finishes and the stop condition is received, the EEPROM commences rewrite operation.

Acknowledge polling is a function used to determine whether the EEPROM rewrite has finished.

The sample code uses the I
2
C single master control software’s master transmit mode (pattern 3). First, a start condition

(ST) is generated, next the address of the slave device is transmitted. In this case, the eighth bit is the transfer direction

specification bit, and it has a value of “0” (write). The ninth bit, the acknowledge bit, is used to determine whether the

rewrite has finished. An acknowledge value of “1” (NACK) indicates that the rewrite is in progress, and an

acknowledge value of “0” (ACK) indicates that the rewrite is finished. Finally, a stop condition is generated and the bus

is released.

Legend: ST: Start condition generation

SP: Stop condition generation

NACK: Acknowledge “1”

ACK: Acknowledge “0”

ST 1 2 3 4 5 6 7 8 9

SCLn

SDAn

Start Stop

SP

NACK/

ACK

Slave address

(8th bit: “0”)

Figure 5.4 Acknowledge Polling (Rewrite Finished Determination)

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 22 of 66

Mar 31, 2016

(4) Block Rewrite

If the total number of data bytes to be rewritten is specified, the sample code calculates in software the size of the

rewrite and performs a block rewrite. Block rewrite operation is described below.

The number of bytes that can be rewritten at one time by the EEPROM is one page. When the last address within a page

is reached, the address is “rolled over” to the start address of the page. For this reason, to rewrite a quantity of data that

extends beyond a page boundary (block rewrite), it is necessary to break the data up onto multiple portions that will

each fit within a single page. Table 5.3 lists the page sizes of EEPROM devices of various capacities. The page size

differs depending on the EEPROM specifications. Make settings appropriate to match the EEPROM devices used.

Table 5.3 List of Page Sizes of EEPROM Devices of Various Capacities*

Type Name Page Size

HN58W241000I 256 bytes

R1EX24512B, R1EX24512A, HN58X24512 128 bytes

R1EX24256B, R1EX24128B, R1EX24256A, R1EX24128A, HN58X24256

HN58X24128

64 bytes

R1EV24064A, R1EX24064A, R1EX24032A, HN58X2464, HN58X2432,

HN58X2416, HN58X2408

32 bytes

R1EX24016A, R1EX24008A, R1EV24004A, R1EX24004A, R1EX24002A 16 bytes

R1EV24002A, HN58X2402, HN58X2404 8 bytes

Note: This list of EEPROM products is current as of revision 1.00 of this document. For newer devices, refer

to the respective datasheets.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 23 of 66

Mar 31, 2016

5.2.3 Read Operation

This description of the sample code assumes for read operation that reception of data by the master (MCU) from the

slave (EEPROM) is defined as “reading.”

The sample code supports random read and sequential read operation.

(1) Data Read

The I
2
C single master control software’s master composite mode is used. First, a start condition (ST) is generated, next

the address of the slave device is transmitted. In this case, the eighth bit is the transfer direction specification bit, and it

has a value of “0” (write) during data transmission. Next, the EEPROM internal address is transmitted. Next, a restart

condition (RST) is generated, and the slave address is transmitted. In this case, the eighth bit is the transfer direction

specification bit, and it has a value of “1” (read). Then data reception starts.

In random read operation, the MCU transmits an acknowledge value of “1” to the EEPROM after receiving eight bits of

data from the EEPROM, then a stop condition (SP) is generated and the bus is released.

In sequential read operation, acknowledge values of “0” are transmitted after data reception while consecutive reception

is in progress. This causes the EEPROM internal address to be incremented so the next unit of data can be received.

After the final unit of data is received, the MCU transmits an acknowledge value of “1” to the EEPROM, a stop

condition (SP) is generated, and the bus is released.

Slave

address

(8th bit: “0”)

Receive

data

EEPROM

internal

address (n)

ST 1 2 3 4 5 6 7 8 9 1 2 8 9 7 1 2 8 9 7

SCLn

SDAn

Start Stop

SPRST

1 2 3 4 5 6 7 8 9

Re

start

1 2 3 4 5 6 7 8 9

Legend: ST: Start condition generation NACK: Acknowledge “1”

SP: Stop condition generation ACK: Acknowledge “0”

RST: Restart condition generation

A
C
K

A
C
K

N
A
C
K

Slave

address

(8th bit: “1”)

Receive

data (n)

A
C
K

A
C
K

Figure 5.5 Data Read Operation

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 24 of 66

Mar 31, 2016

5.3 Software Operation

The specifications of the sample code were designed with OS control*
1
 in mind. The supported processing methods are

described below.

(1) Normal Control (No OS)

Communication is started by calling the start function. After this, processing to proceed with I
2
C communication is

performed by means of the EEPROM advance function, which is called by the user. The EEPROM advance function

determines whether or not to proceed with I
2
C communication by whether or not an I

2
C interrupt is generated. The

EEPROM advance function is not called by the interrupt handler. Rather, the software specification supports multiple

calls on I
2
C channels by using the main processing routine to call the EEPROM advance function.

In control not involving the OS, an event flag (g_iic_Event[])*
2
 is set when an interrupt is generated. The EEPROM

advance function recognizes the flag and executes communication.

Whether or not communication is in progress can be checked by means of the return value of the EEPROM advance

function.

(2) Normal Control (OS Present)

The operation of this control mode has not been verified, so careful evaluation should be performed and modifications

applied if necessary.

In control involving the OS, an event is indicated by an OS system call rather than an event flag.

When the EEPROM advance function is called after the start function was called, the system enters the system call

standby state until an event occurs. An OS system call is generated when an interrupt occurs, and the EEPROM advance

function executes the task (processing to proceed with I
2
C communication).

Advance function

Successful
completion or

error?

No

Yes

Interrupt handler

Interrupt

generation

Start function

(1) Communication start

(2) Interrupt handling

No OS: Sets event flag.

OS present: Generates system call.

(4) Finished determination

EEPROM advance function return value

(3) Executes communication

processing when interrupt or system

call is detected.

Figure 5.6 Software Operation Outline (No OS/ OS Present Control)

Notes: 1. The OS control capabilities the sample code assume μITRON 4.0.

 2. For details, refer to the documentation of the I
2
C single master control software.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 25 of 66

Mar 31, 2016

5.4 Software Operation Sequence

(1) Normal Operation (No OS/OS Present)

The normal operation sequence (No OS/OS present) is shown below.

User system Low-level driver Interrupt Slave device

Advance function

Start condition generation

I
2
C interrupt
handler

Interrupt source

Processing to proceed with
I
2
C communication

Write, read, etc.

Interrupt source

Advance function

Interrupt source

Advance function
Stop condition generation

Interrupt source

Advance function

Communication

start

Communication

finished

Middleware

Start function
Start function

Advance function

Advance function

Advance
function

Advance
function

Advance function

Sample code

I
2
C interrupt
handler

I
2
C interrupt
handler

I
2
C interrupt
handler

No OS: Sets event flag.

OS present: Generates system call.

Processing to proceed with
I
2
C communication

Processing to proceed with I
2
C

communication does not take place

because I
2
C interrupt did not occur

immediately beforehand.

Write, read, etc.

Checks finished

determination.

Sets return value to finished

determination result.

Figure 5.7 Normal Operation (No OS/OS Present) Sequence Diagram

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 26 of 66

Mar 31, 2016

5.5 Block Rewrite Implementation Method

Calling the write start function causes one page’s worth of data to be written. To rewrite a quantity of data that extends

beyond a page boundary, it is necessary to call the write start function again after finishing communication by means of

the EEPROM advance function.

The sample code checks to determine if there will be data spanning a page boundary (referred to below as “leftover

data”) after finishing communication with the EEPROM advance function. If there will be leftover data, a return value

indicating “leftover data present” is returned. A block rewrite can therefore be accomplished by repeatedly calling the

write start function until a “no leftover data” return value is received.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 27 of 66

Mar 31, 2016

5.6 Operation Flowcharts

5.6.1 Write Operation Flowchart

(1) With Acknowledge Polling

Figure 5.8 is a flowchart of write operation using acknowledge polling.

Write start

Write end

Return value

Write start function

Starts data write.

• Sets slave address.

• Sets internal address.

• Sets data (adjusted to page size).

• Starts write.

EEPROM advance function

Communication

not finished

Communication finished

(leftover data present)

or

Communication finished

(no leftover data)

Acknowledge polling

function start

Return value

EEPROM advance function

Communication finished

(NACK received)

Communication finished (ACK

received, leftover data present)

Communication finished (ACK

received, no leftover data)

Communication processing,

communication finished determination

Starts EEPROM rewrite finished determination.

• Sets slave address.

• Starts acknowledge polling.

Communication processing,

communication finished determination

If there is leftover data, call the write start function

with the EEPROM structure set in the above advance

function as an argument.

Communication

not finished

Figure 5.8 Write Operation Flowchart (Acknowledge Polling Used)

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 28 of 66

Mar 31, 2016

(2) Without Acknowledge Polling

Figure 5.9 is a flowchart of write operation without using acknowledge polling.

Starts data write.

• Sets slave address.

• Sets internal address.

• Sets data (adjusted to page size).

• Starts write.

Communication

not finished

Communication processing,

communication finished determination

Write start

Write end

Return value

Write start function

EEPROM advance function

Communication finished

(No leftover data)

Wait for rewrite to finish

Note: 1. Refer to the datasheet of the EEPROM device

for the write cycle time.

Communication finished

(Leftover data present)

If there is leftover data, call the write start

function with the EEPROM structure set in the

above advance function as an argument.

Enough time for the EEPROM

rewrite to complete is necessary.*
1

Figure 5.9 Write Operation Flowchart (Acknowledge Polling Not Used)

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 29 of 66

Mar 31, 2016

5.6.2 Read Operation Flowchart

Figure 5.10 is a flowchart of read operation.

Starts data read.

• Sets slave address.

• Sets internal address.

• Sets data.

• Starts read.

Communication processing,

communication finished determination

Read start

Read end

Return value

Read start function

EEPROM advance function

Communication

not finished

Communication finished

Figure 5.10 Read Operation Flowchart

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 30 of 66

Mar 31, 2016

5.7 Relationship of Data Buffers and Transmit/Receive Data

The sample code is a block device driver, and transmit/receive data pointers are set as arguments. The relationship of

the data alignment of the data buffers in RAM and the transmit/receive order is described below. Regardless of the

endian mode or serial communication function used, data is transmitted in the transmit data buffer alignment order, and

data is written to the receive data buffer in the order received.

Master transmit

Transmit data buffer in RAM (numbers indicate bytes)

0 1 • • • 508 509 510 511

Data transmission order

0 1 • • • 508 509 510 511

Data reception order

Master receive

0 1 • • • 508 509 510 511

Data transmission order

0 1 • • • 508 509 510 511

Write to receive data buffer

Write to slave device (numbers indicate bytes)

Read from slave device (numbers indicate bytes)

Data buffer in RAM (numbers indicate bytes)

Figure 5.11 Storage of Transfer Data

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 31 of 66

Mar 31, 2016

5.8 Required Memory Sizes

The sizes of the required memory areas for each MCU of different instructions are given below. Investigate the

instructions of MCU to be used and give by reference.

For information on the environment, see section 2, Verified Operating Conditions.

5.8.1 RL78

(1) RL78/G14 IICA Integrated Development Environment CS+ for CA,CX (Compiler: CA78K0R)

Table 5.4 Required Memory Sizes

Memory Used Size Remarks

ROM 2,047 bytes r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

RAM 2 bytes r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

Maximum usable user stack 90 bytes

Maximum usable interrupt stack 

The required memory sizes differ according to the C compiler version and the compile options.

The ROM and RAM sizes listed do not include memory used by the lower layer I
2
C single master control software.

The required memory sizes may differ from those listed above when a different MCU is used.

The maximum usable user stack size includes the stack used by the lower layer I
2
C single master control software.

(2) RL78/G14 IICA Integrated Development Environment CS+ for CC (Compiler: CC-RL)

Table 5.5 Required Memory Sizes

Memory Used Size Remarks

ROM 1,329 bytes r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

RAM 2 bytes r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

Maximum usable user stack 70 bytes

Maximum usable interrupt stack 

The required memory sizes differ according to the C compiler version and the compile options.

The ROM and RAM sizes listed do not include memory used by the lower layer I
2
C single master control software.

The required memory sizes may differ from those listed above when a different MCU is used.

The maximum usable user stack size includes the stack used by the lower layer I
2
C single master control software.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 32 of 66

Mar 31, 2016

(3) RL78/G14 IICA Integrated Development Environment IAR Embedded Workbench

Table 5.6 Required Memory Sizes

Memory Used Size Remarks

ROM 3,892 bytes r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

RAM 4 bytes r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

Maximum usable user stack 272 bytes

Maximum usable interrupt stack 

The required memory sizes differ according to the C compiler version and the compile options.

The ROM and RAM sizes listed do not include memory used by the lower layer I
2
C single master control software.

The required memory sizes may differ from those listed above when a different MCU is used.

The maximum usable user stack size is the stack size for the entire project. It includes the stack used by the lower layer

I
2
C single master control software.

(4) RL78/L13 IICA Integrated Development Environment CubeSuite+

Table 5.7 Required Memory Sizes

Memory Used Size Remarks

ROM 1,963 bytes r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

RAM 4 bytes r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

Maximum usable user stack 78 bytes

Maximum usable interrupt stack 

The required memory sizes differ according to the C compiler version and the compile options.

The ROM and RAM sizes listed do not include memory used by the lower layer I
2
C single master control software.

The required memory sizes may differ from those listed above when a different MCU is used.

The maximum usable user stack size includes the stack used by the lower layer I
2
C single master control software.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 33 of 66

Mar 31, 2016

(5) RL78/L13 IICA Integrated Development Environment IAR Embedded Workbench

Table 5.8 Required Memory Sizes

Memory Used Size Remarks

ROM 3,482 bytes r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

RAM 4 bytes r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

Maximum usable user stack 146 bytes

Maximum usable interrupt stack 

The required memory sizes differ according to the C compiler version and the compile options.

The ROM and RAM sizes listed do not include memory used by the lower layer I
2
C single master control software.

The required memory sizes may differ from those listed above when a different MCU is used.

The maximum usable user stack size is the stack size for the entire project. It includes the stack used by the lower layer

I
2
C single master control software.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 34 of 66

Mar 31, 2016

5.8.2 RX

(1) RX63N RIIC

Table 5.9 Required Memory Sizes

Memory Used Size Remarks

ROM 1,155 bytes(Little Endian) r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

RAM 1 bytes(Little Endian) r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

Maximum usable user stack 136 bytes

Maximum usable interrupt stack 

The required memory sizes differ according to the C compiler version and the compile options.

The ROM and RAM sizes listed do not include memory used by the lower layer I
2
C single master control software.

The required memory sizes may differ from those listed above when a different MCU is used.

The maximum usable user stack size includes the stack used by the lower layer I
2
C single master control software.

(2) RX210 RIIC

Table 5.10 Required Memory Sizes

Memory Used Size Remarks

ROM 1,126 bytes(Little Endian) r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

RAM 1 bytes(Little Endian) r_iic_eepmdl_api.c

r_iic_eepmdl_sub.c

Maximum usable user stack 148 bytes

Maximum usable interrupt stack 

The required memory sizes differ according to the C compiler version and the compile options.

The ROM and RAM sizes listed do not include memory used by the lower layer I
2
C single master control software.

The required memory sizes may differ from those listed above when a different MCU is used.

The maximum usable user stack size includes the stack used by the lower layer I
2
C single master control software.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 35 of 66

Mar 31, 2016

5.9 File Structure

Table 5.11 lists the files used by the sample code. Note that files that are generated automatically by the integrated

development environment are not listed.

Table 5.11 File Structure

\an_r01an1075ej0103_mcu_seep <DIR> Sample code folder

 r01an1075ej0103_mcu.pdf Application note

 \ source <DIR> Program storage folder

 \ r_iic_eepmdl <DIR> Serial EEPROM control software folder

 r_iic_eepmdl_api.c API source file

 r_iic_eepmdl_api.h API header file

 r_iic_eepmdl_sub.c Internal function source file

 r_iic_eepmdl_sub.h Internal function header file

 \ sample <DIR> Operation verification program storage folder

 testmain.c Sample source file for operation verification with 1

device

 testmain.h Sample header file for operation verification with 1

device

 testmain2.c Sample source file for operation verification with 2

device

 testmain2.h Sample header file for operation verification with 2

device

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 36 of 66

Mar 31, 2016

5.10 Constants

5.10.1 Definitions

Definitions used in the sample code are listed below.

Table 5.12 Macro Definitions (Return Values)

Constant Name Setting Value Description

R_IIC_EEP_NO_INIT (error_t)(0) Uninitialized state

R_IIC_EEP_IDLE (error_t)(1) Idle state

R_IIC_EEP_COMMUNICATION (error_t)(4) Communication in progress: Write operation,

acknowledge polling, or read operation

communication in progress

R_IIC_EEP_LOCK_FUNC (error_t)(5) API processing in progress

This occurs in the following case:

 When another API is called while an API is

processing

R_IIC_EEP_BUS_BUSY (error_t)(6) Bus busy

This occurs in the following cases:

 When the EEPROM initialization function or a

start function is called while communication is

in progress

 When a start function or the EEPROM advance

function is called while communication is in

progress by another device on the same

channel

R_IIC_EEP_FINISH_WRITE (error_t)(21) Idle state: Write finished

Writing of all data finished

R_IIC_EEP_FINISH_WRITE_AGN (error_t)(22) Idle state: Write finished

Page write finished, leftover data present

R_IIC_EEP_FINISH_ACKPOL (error_t)(23) Idle state: Acknowledge polling finished

Rewriting of all data finished

R_IIC_EEP_FINISH_ACKPOL_AGN (error_t)(24) Idle state: Acknowledge polling finished

Page rewrite finished, leftover data present

R_IIC_EEP_FINISH_ACKPOL_NACK (error_t)(25) Idle state: Acknowledge polling finished

Page rewrite incomplete (NACK received)

R_IIC_EEP_FINISH_READ (error_t)(26) Idle state: Read finished

Reading of all data finished

R_IIC_EPP_ERR_PARAM (error_t)(-1) Parameter error

R_IIC_EPP_ERR_AL (error_t)(-2) Arbitration lost error

R_IIC_EPP_ERR_NON_REPLY (error_t)(-3) No reply error

R_IIC_EPP_ERR_SDA_LOW_HOLD (error_t)(-4) SDA low-hold error when EEPROM recovery

processing function called

R_IIC_EPP_ERR_OTHER (error_t)(-5) Other error

R_IIC_EEP_ERR_NACK (error_t)(-21) NACK received during write communication

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 37 of 66

Mar 31, 2016

Table 5.13 Macro Definitions (Change Prohibited)

Constant Name Setting Value Description

R_IIC_EEP_DEVCODE (uint8_t)(0xa0) EEPROM fixed device code

R_IIC_EEP_FALSE (uint8_t)(0x00) Flag “ON”

R_IIC_EEP_TRUE (uint8_t)(0x01) Flag “OFF”

Table 5.14 Macro Definitions (User Changeable)

Constant Name Setting Value Description

SCL_CLK_CNT (uint8_t)(0x09) SCL pseudo clock generation counter

Defines the number of pseudo clock cycles that

are generated and sent to SCL when the

EEPROM recovery function is called. The counter

value is set to 9 because a communication unit of

nine clock cycles is common.

5.11 Structures and Unions

5.11.1 EEPROM Communication Information Structure

The EEPROM communication information structure used in the sample code is shown below. This structure contains

the information required for communicating with the EEPROM. It must be set for each slave device used.

typedef struct

{

 r_iic_eepmdl_mode_t EepMode; /* Mode of EEPROM */

 r_iic_eepmdl_eepsize_t EepSize; /* Size of EEPROM */

 r_iic_eepmdl_pagesize_t PageSize; /* Size of write page */

 uint32_t EepIntAdr; /* Internal address of EEPROM */

 uint32_t EepRWCnt; /* R/W data counter */

 r_iic_drv_info_t RIic_Info; /* IIC information */

 uint8_t DevAdr; /* Address to appoint a slave device */

 uint8_t rsv1;

 uint8_t rsv2;

 uint8_t rsv3;

} r_iic_eepmdl_info_t;

Figure 5.12 EEPROM Communication Information Structure

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 38 of 66

Mar 31, 2016

(1) Description of Members

Table 5.15 describes structure r_iic_eepmdl_info_t.

Table 5.15 List of Members of Structure r_iic_eepmdl_info_t

Structure

Member

Allowable

Setting Range

Description

EepMode (Setting

prohibited)

Operating mode

There are four modes: Non-communication state, write in progress,

acknowledge polling in progress, and read in progress.

EepSize  EEPROM capacity

Capacities from 2 kbits to 1 Mbit are supported. Refer to the values defined

in enumerated type r_iic_eepmdl_romsize_t (Table 5.17), and set

EepSize to one of these defined values.

PageSize  EEPROM page size*
1
 *

2

Sizes from 8 bytes to 256 bytes are supported. Refer to the values defined

in enumerated type r_iic_eepmdl_pagesize_t (Table 5.18), and set

PageSize to one of these defined values.

EepIntAdr 0000 0000h to

FFFF FFFFh
EEPROM internal address (an)*

1

Specify the start address for writing to or reading from the EEPROM. Use a

setting value that is contained within the maximum of the EEPROM.

EepRWCnt 0000 0000h to

FFFF FFFFh
Data counter (byte count)*

1

Writing: transmit data counter (Sets the total number of data bytes to be

transmitted.)

Reading: receive data counter (Sets the total number of data bytes to be

received.)

RIic_Info  I
2
C single master control software I

2
C communication information structure

See Table 5.16 for details.

DevAdr 00h to 07h EEPROM device address code (An)*
3

As the EEPROM device address code, specify the device address code

indicated by the physical connections of EEPROM pins A0 to A2.

Table: Correspondence between physical pin connections and DevAdr

setting value

A2 A1 A0 DevAdr

L L L 0

L L H 1

L H L 2

L H H 3

H L L 4

H L H 5

H H L 6

H H H 7

rsv1

rsv2

rsv3

(Setting has no

effect.)

Used for alignment.

Notes: 1. Restrictions on values differ according to the EEPROM capacity. See 5.2.2 (4) for details.

 2. Set the page size specified for the EEPROM device used. The sample code can perform

communication if a value greater than the page size of the EEPROM device used is set. Note that

this will result in roll-over during writes.

 3. The maximum number of slave devices that can be connected differs depending on the EEPROM

type name. See 5.2.1 (2) for details.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 39 of 66

Mar 31, 2016

Table 5.16 List of Members of I
2
C Communication Information Structure of I

2
C Single Master Control

Software

Structure

Member

Allowable

Setting

Range

Description

*pSlvAdr  Slave address storage buffer pointer

This is the storage source location for the data specifying the slave

address. Specify the address of the data storage source location.

Reserve one byte.

*pData1st  EEPROM internal address storage buffer pointer

This is the storage source location for the data specifying the

EEPROM internal address. Specify the address of the data storage

source location.

Writing or reading:

Reserve one byte if the EEPROM capacity is 16 Kbits or less.

Reserve two bytes if the EEPROM capacity is 32 Kbits or more.

Acknowledge polling:

Setting not necessary. The setting value is ignored.

*pData2nd  Data storage buffer pointer

Writing: Storage source location for the data written to the EEPROM

Reading: Storage destination for the data read from the EEPROM

Acknowledge polling: Setting not necessary. The setting value is

ignored.

*pDevStatus  Device state flag pointer

Refer to the documentation of the I
2
C single master control software

for usage instructions.

Cnt1st (Setting

prohibited)

EEPROM internal address counter

This is a data counter that specifies the EEPROM internal address. It

is set by the sample code, so setting by the user is prohibited.

Cnt2nd (Setting

prohibited)

Data counter

Writing: Number of data bytes written to one page

Reading: Total number of data bytes to be read

This is set by the sample code, so setting by the user is prohibited.

CallBackFunc  Call-back function

Refer to the documentation of the I
2
C single master control software

for usage instructions.

ChNo 00h to FFh I
2
C bus control function channel number

Set ChNo to the channel number of the bus used.

rsv1

rsv2

rsv3

(Setting has

no effect.)

Used for alignment.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 40 of 66

Mar 31, 2016

5.12 Enumerated Types

The enumerated type definitions used in the sample code are listed below.

Table 5.17 EEPROM Capacity List (enum r_iic_eepmdl_eepsize_t)

Definition Description

R_IIC_EEP_EEPSIZE_002K EEPROM capacity 2 kbits

R_IIC_EEP_EEPSIZE_004K EEPROM capacity 4 kbits

R_IIC_EEP_EEPSIZE_008K EEPROM capacity 8 kbits

R_IIC_EEP_EEPSIZE_016K EEPROM capacity 16 kbits

R_IIC_EEP_EEPSIZE_032K EEPROM capacity 32 kbits

R_IIC_EEP_EEPSIZE_064K EEPROM capacity 64 kbits

R_IIC_EEP_EEPSIZE_128K EEPROM capacity 128 kbits

R_IIC_EEP_EEPSIZE_256K EEPROM capacity 256 kbits

R_IIC_EEP_EEPSIZE_512K EEPROM capacity 512 kbits

R_IIC_EEP_EEPSIZE_001M EEPROM capacity 1 Mbit

Table 5.18 EEPROM Page Size List (enum r_iic_eepmdl_pagesize_t)

Definition Description

R_IIC_EEP_PAGESIZE_8B EEPROM page size 8 bytes

R_IIC_EEP_PAGESIZE_16B EEPROM page size 16 bytes

R_IIC_EEP_PAGESIZE_32B EEPROM page size 32 bytes

R_IIC_EEP_PAGESIZE_64B EEPROM page size 64 bytes

R_IIC_EEP_PAGESIZE_128B EEPROM page size 128 bytes

R_IIC_EEP_PAGESIZE_256B EEPROM page size 256 bytes

Table 5.19 EEPROM Operating Mode (enum r_iic_eepmdl_mode_t)

Definition Description

R_IIC_EEP_MODE_NONE Non-communication state

R_IIC_EEP_MODE_WRITE Write in progress

R_IIC_EEP_MODE_ACKPOL Acknowledge polling in progress

R_IIC_EEP_MODE_READ Read in progress

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 41 of 66

Mar 31, 2016

5.13 Variables

Table 5.20 lists the global variable.

Table 5.20 Global Variable

Type Valuable Description Used by Function

bool g_iic_EepMdl_Api[MAX_IIC_CH_NUM]* EEPROM API flag

This is used to prevent

overlapping API calls by

the sample code. It is set

when API processing

starts and cleared after it

finishes.

R_IIC_EepMdl_Init()

R_IIC_EepMdl_Write()

R_IIC_EepMdl_AckPolling()

R_IIC_EepMdl_Read()

R_IIC_EepMdl_Advance()

R_IIC_EepMdl_Recovery()

Note: * The value of MAX_IIC_CH_NUM is defined by the I
2
C single master control software. It stores a

value for “maximum number of channels that can be used simultaneously + 1.”

5.14 Functions

Table lists the Functions.

Table 5.21 Functions

Function Name Outline

R_IIC_EepMdl_Init() EEPROM initialization function

R_IIC_EepMdl_Write() Write start function

R_IIC_EepMdl_AckPolling() Acknowledge polling start function

R_IIC_EepMdl_Read() Read start function

R_IIC_EepMdl_Advance() EEPROM advance function

R_IIC_EepMdl_Recovery() EEPROM recovery function

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 42 of 66

Mar 31, 2016

5.15 State Transition Diagram

Figure 5.13 is a diagram showing state transitions for each channel.

Uninitialized state Notation conventions

Notation of state

Event [condition]/action

• Events are notated on the left.

• Actions when events occur

are notated on the right.

Idle state
Communication in

progress

Error state

Call R_IIC_EepMdl_Init()

[Bus free state]/

• Initialization processing

Call R_IIC_EepMdl_Write()

[Error occurrence]/

• Setting of error state in return value

Call R_IIC_EepMdl_AckPolling()

[Error occurrence]/

• Setting of error state in return value

Call R_IIC_EepMdl_Read()

[Error occurrence]/

• Setting of error state in return value

Call R_IIC_EepMdl_Advance()

[Error occurrence]/

• Setting of error state in return value

Call R_IIC_EepMdl_Advance()

[Communication in progress]/

• Communication state monitoring

• Processing to proceed with I
2
C

communication

Call R_IIC_EepMdl_Recovery()

• EEPROM recovery processing

Call R_IIC_EepMdl_Write()

[Bus free state]/

• Write start processing

Call R_IIC_EepMdl_AckPolling()

[Bus free state]/

• Acknowledge polling start processing

Call R_IIC_EepMdl_Read()

[Bus free state]/

• Read start processing

Call R_IIC_EepMdl_Advance()

[Normal termination]/

• Communication termination processing

Call R_IIC_EepMdl_Recovery()/

• EEPROM recovery processing

Figure 5.13 State Transition Diagram

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 43 of 66

Mar 31, 2016

5.16 Function Specifications

In the user application, reserve a communication information storage area for the device and, during control, set

parameters and call functions as appropriate.

5.16.1 Common Function Processing

The sample code allows one function to be called at a time. If, while a function is being processed, another sample code

function is called, the second function is terminated without processing. In this case R_IIC_EEP_LOCK_FUNC is

returned as a return value.

The EEPROM API flag is provided to prevent more than one function from being called at the same time. This flag is

set while a function is being processed. Each function first checks the flag and executes processing only if the flag has

not beet set. Figure 5.14 is an outline flowchart illustrating this operation.

This processing is performed for the functions defined in section 5.14. The processing details of the API functions

shown in Figure 5.14 are listed in sections 5.16.2 and subsequent below.

Start

API function processing return value

API flag

EEPROM API flag

lock processing

Checks whether a function is currently

being processed. If not, sets the

EEPROM API flag.

Function not in use state
R_IIC_EEP_LOCK_FUNC

Actually executes the API function that was called.API function processing

EEPROM API flag unlock

processing
Clears the EEPROM API flag.

Function in use state

Parameter check R_IIC_EEP_ERR_PARAM
Parameter error

Parameter confirmed

Figure 5.14 Outline Flowchart of Processing to Prevent Multiple Function Calls

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 44 of 66

Mar 31, 2016

5.16.2 EEPROM Initialization Function

R_IIC_EepMdl_Init

Outline EEPROM initialization function

Header r_iic_eepmdl_api.h, r_iic_eepmdl_sub.h

Declaration error_t R_IIC_EepMdl_Init(r_iic_eepmdl_info_t FAR *pEep_Info)

Description  Makes initial settings for the target channel. After this, the device transitions to the

idle state and communication is possible.

 The following settings are required to perform this processing.

Member RIic_Info.ChNo of structure r_iic_eepmdl_info_t: Channel number used

Channel flag (g_iic_ChStatus[]): Set to R_IIC_NO_INIT*
1

Device state flag (*(pEep.Info.RIic_Info.pDevStatus)): Set to R_IIC_NO_INIT*
1

Arguments r_iic_eepmdl_info_t FAR *pEep_info ; EEPROM communication information

structure pointer

Return Value R_IIC_EEP_IDLE

Transitioned to idle state after initialization. No initialization performed if already

initialized.

 Communication is now possible by calling the start function.

R_IIC_EEP_LOCK_FUNC

No processing was performed because another API was being processed.

 Call the function after processing of the other API finishes.

R_IIC_EEP_BUS_BUSY

Communication is in progress. Could not initialize.

 Call the EEPROM advance function to terminate communication.

R_IIC_EEP_ERR_PARAM

Parameter error.

 Check the setting value(s).

R_IIC_EEP_ERR_AL

Arbitration lost.

 The EEPROM recovery function can be called to perform recovery processing.

R_IIC_EEP_ERR_NON_REPLY

No reply error.*
2

 The EEPROM recovery function can be called to perform recovery processing.

R_IIC_EEP_ERR_SDA_LOW_HOLD

SDA cannot be restored from low-hold state.

Check the system state to determine if the slave device is in the low-hold state, if

the master device is outputting a low signal, etc.

R_IIC_EEP_ERR_OTHER

Other error occurred.

Check the following.

 Confirm that the EEPROM communication information structure settings are

correct.

 Check to determine if an error occurred in OS control.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 45 of 66

Mar 31, 2016

Remarks  Call this function once for the control target device.

 If the device has already been initialized, no I
2
C driver initialization processing takes

place.

 To retry initialization after an error, etc., call the EEPROM recovery function.

Notes: 1. This is a global variable defined by the I
2
C single master control software. It

manages the bus state (uninitialized/idle/communication in progress/error).

Set R_IIC_NO_INIT before calling the EEPROM initialization function. If it is

not set before the EEPROM initialization function is called, initialization

processing may not perform.

 2. The no reply error definition differs depending on the MCU being controlled.

See the description of the no reply error in the documentation of the I
2
C single

master control software for details.

R_IIC_EEP_IDLE

R_IIC_EepMdl_Init

RAM initialization processing

r_iic_eepmdl_ram_init()

Return value

R_IIC_EEP_IDLE

I
2
C driver initialization processing

R_IIC_Drv_Init()

R_IIC_EEP_BUS_BUSY

R_IIC_EEP_ERR_PARAM

R_IIC_EEP_ERR_AL

R_IIC_EEP_ERR_NON_REPLY

R_IIC_EEP_ERR_SDA_LOW_HOLD

R_IIC_EEP_ERR_OTHER

Idle state (after communication finished)

Communication in progress

Error state

Transition from uninitialized state to idle state

Figure 5.15 Outline of EEPROM Driver Initialization Function

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 46 of 66

Mar 31, 2016

5.16.3 Write Start Function

R_IIC_EepMdl_Write

Outline Write start function

Header r_iic_eepmdl_api.h, r_iic_eepmdl_sub.h

Declaration error_t R_IIC_EepMdl_Write(r_iic_eepmdl_info_t FAR *pEep_Info)

Description  Starts data write to EEPROM.

 Use this function to write data from the master (MCU) to the slave (EEPROM).

Arguments r_iic_eepmdl_info_t FAR *pEep_Info ; EEPROM communication information storage

pointer

Return Value ■ Return value (when R_IIC_EepMdl_Write() is called)

R_IIC_EEP_COMMUNICATION

Writing to EEPROM started.

 Call the EEPROM advance function to terminate communication.

R_IIC_EEP_NO_INIT

Uninitialized state.

 Call the EEPROM initialization function.

R_IIC_EEP_LOCK_FUNC

No processing was performed because another API was being processed.

 Call the function after processing of the other API finishes.

R_IIC_EEP_BUS_BUSY

Communication is in progress. Processing of write to EEPROM could not start.

 Call the EEPROM advance function to terminate communication.

R_IIC_EEP_ERR_PARAM

Parameter error.

 Check the setting value(s).

R_IIC_EEP_ERR_AL

Arbitration lost.

 The EEPROM recovery function can be called to perform recovery processing.

R_IIC_EEP_ERR_NON_REPLY

No reply error.*
1

 The EEPROM recovery function can be called to perform recovery processing.

R_IIC_EEP_ERR_SDA_LOW_HOLD

SDA cannot be restored from low-hold state.

 Check the system state to determine if the slave device is in the low-hold state, if

the master device is outputting a low signal, etc.

R_IIC_EEP_ERR_OTHER

Other error occurred.

 Check the following.

 Confirm that the EEPROM communication information structure settings are

correct.

 Check to determine if an error occurred in OS control.

■ Return value (when R_IIC_EepMdl_Advance() is called after R_IIC_EepMdl_Write())

R_IIC_EEP_COMMUNICATION

Communication is in progress.

 Call the EEPROM advance function to terminate communication.

R_IIC_EEP_FINISH_WRITE

Writing of all data completed.

 The acknowledge polling start function can be called to determine if rewriting to

the EEPROM has finished.*
2

R_IIC_EEP_FINISH_WRITE_AGN

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 47 of 66

Mar 31, 2016

Page write finished. There is leftover data.

 Call the write start function after rewrite finishes. At this time do not change the

member information of the EEPROM communication information structure.*
3

See the description of the EEPROM advance function for information on the return

values in case of error.

Remarks  The I
2
C single master control software’s master transmit mode (pattern 1) is used.

 Settings must be made in r_iic_eepmdl_info_t to perform this processing. See

5.11.1 (1) for setting instructions.

 I
2
C communication is not finished at the point of return from this function. It is

necessary to call the EEPROM advance function to finish I
2
C communication.

 Calling this function causes one page’s worth of data to be written. If the end address

of the write data is a larger value than the page boundary address, the write data is

changed up to the page boundary.

 To rewrite the data beyond the page boundary, finish communication with the

EEPROM advance function and then call the write start function again.

Notes: 1. The no reply error definition differs depending on the MCU being controlled.

See the description of the no reply error in the documentation of the I
2
C single

master control software for details.

 2. The write or read start function can be called without determining the rewrite

status. To do this, call the start function after waiting for the EEPROM rewrite

to finish. Refer to the datasheet of the EEPROM device for the write cycle

time.

 3. The leftover data write information is stored in the members of the EEPROM

communication information structure, so communication cannot proceed

correctly if the member values are changed.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 48 of 66

Mar 31, 2016

Slave address setting

r_iic_eepmdl_set_slvadr()

R_IIC_EepMdl_Write

Page division processing

r_iic_eepmdl_page_calc()

Master transmit start processing

R_IIC_Drv_MasterTx()

Master transmit mode (pattern 1) of I
2
C single master

control software

Return value

R_IIC_EEP_COMMUNICATION

Write start

Operating mode setting

R_IIC_EEP_MODE_WRITE

R_IIC_EEP_NO_INIT

Uninitialized state

R_IIC_EEP_BUS_BUSY

Communication in progress

R_IIC_EEP_ERR_AL

R_IIC_EEP_ERR_NON_REPLY

R_IIC_EEP_ERR_SDA_LOW_HOLD

R_IIC_EEP_ERR_OTHER

Error state

RAM initialization processing

r_iic_eepmdl_ram_init()

Changes to size that can be written on one page.

EEPROM internal address setting

r_iic_eepmdl_set_memadr()

Figure 5.16 Outline of Write Start Function

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 49 of 66

Mar 31, 2016

5.16.4 Acknowledge Polling Start Function

R_IIC_EepMdl_AckPolling

Outline Acknowledge polling start function

Header r_iic_eepmdl_api.h, r_iic_eepmdl_sub.h

Declaration error_t R_IIC_EepMdl_AckPolling(r_iic_eepmdl_info_t FAR *pEep_Info)

Description  Starts acknowledge polling (determination of data rewrite completion).

 After a data write from the master (MCU) to the slave (EEPROM) finishes, use this

function to determine whether or not the EEPROM data rewrite has finished.

Arguments r_iic_eepmdl_info_t FAR *pEep_Info ; EEPROM communication information storage

pointer

Return Value ■ Return value (when R_IIC_EepMdl_AckPolling() is called)

R_IIC_EEP_COMMUNICATION

Acknowledge polling started.

 Call the EEPROM advance function to terminate communication.

R_IIC_EEP_NO_INIT

Uninitialized state.

 Call the EEPROM initialization function.

R_IIC_EEP_LOCK_FUNC

No processing was performed because another API was being processed.

 Call the function after processing of the other API finishes.

R_IIC_EEP_BUS_BUSY

Communication is in progress. Processing of Acknowledge polling could not start.

 Call the EEPROM advance function to terminate communication.

R_IIC_EEP_ERR_PARAM

Parameter error.

 Check the setting value(s).

R_IIC_EEP_ERR_AL

Arbitration lost.

 The EEPROM recovery function can be called to perform recovery processing.

R_IIC_EEP_ERR_NON_REPLY

No reply error.*
1

 The EEPROM recovery function can be called to perform recovery processing.

R_IIC_EEP_ERR_SDA_LOW_HOLD

SDA cannot be restored from low-hold state.

 Check the system state to determine if the slave device is in the low-hold state, if

the master device is outputting a low signal, etc.

R_IIC_EEP_ERR_OTHER

Other error occurred.

 Check the following.

 Confirm that the EEPROM communication information structure settings are

correct.

 Check to determine if an error occurred in OS control.

■ Return value

 (when R_IIC_EepMdl_Advance() is called after R_IIC_EepMdl_AckPolling)

R_IIC_EEP_COMMUNICATION

Communication is in progress.

 Call the EEPROM advance function to terminate communication.

R_IIC_EEP_FINISH_ACKPOL

Rewriting of all data completed.

 Communication is possible by calling the start function.

R_IIC_EEP_FINISH_ACKPOL_AGN

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 50 of 66

Mar 31, 2016

Page rewrite finished. There is leftover data.

 Call the write start function. At this time do not change the member information of

the EEPROM communication information structure.*
2

R_IIC_EEP_FINISH_ACKPOL_NACK

Page rewrite did not finish (NACK received after transmission of slave address).

 The acknowledge polling start function can be called to determine if rewriting to

the EEPROM has finished.*
3

See the description of the EEPROM advance function for information on the return

values in case of error.

Remarks  The I
2
C single master control software’s master transmit mode (pattern 3) is used.

 Settings must be made in r_iic_eepmdl_info_t to perform this processing. See

5.11.1 (1) for setting instructions.

 I
2
C communication is not finished at the point of return from this function. It is

necessary to call the EEPROM advance function to finish I
2
C communication.

 To rewrite the data beyond the page boundary, finish communication with the

EEPROM advance function and then call the write start function again.

Notes: 1. The no reply error definition differs depending on the MCU being controlled.

See the description of the no reply error in the documentation of the I
2
C single

master control software for details.

 2. The leftover data write information is stored in the members of the EEPROM

communication information structure, so communication cannot proceed

correctly if the member values are changed.

 3. The write or read start function can be called without determining the rewrite

status. To do this, call the start function after waiting for the EEPROM rewrite

to finish. Refer to the datasheet of the EEPROM device for the write cycle

time.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 51 of 66

Mar 31, 2016

It is necessary to set to NULL the *pData1st and *pData2nd pointer

addresses, which are EEPROM communication information structure

members used as arguments, in order to implement the I
2
C single-

master control software’s master transmit mode (pattern 3). Note that

setting EEPROM communication information structure values to NULL

causes the previous communication information to be lost.

To prevent this, the structure is copied to a local variable and the

settings of the copied structure are changed as required for the I
2
C

single master control software’s master transmit mode (pattern 3).

Master transmit mode (pattern 3) is implemented using the information

in this dummy structure as arguments.

Slave address setting

r_iic_eepmdl_set_slvadr()

R_IIC_EepMdl_AckPolling

Master transmit start processing

R_IIC_Drv_MasterTx()

Return value

Operating mode setting

R_IIC_EEP_MODE_ACKPOL

R_IIC_EEP_COMMUNICATION

Acknowledge polling start

R_IIC_EEP_NO_INIT

R_IIC_EEP_BUS_BUSY

R_IIC_EEP_ERR_AL

R_IIC_EEP_ERR_NON_REPLY

R_IIC_EEP_ERR_SDA_LOW_HOLD

R_IIC_EEP_ERR_OTHER

RAM initialization processing

r_iic_eepmdl_ram_init()

Copy EEPROM communication

information to local variable

Set *pData1st and *pData2nd pointer

addresses in copied local structure to

NULL

EEPROM internal address setting

r_iic_eepmdl_set_memadr()

Uninitialized state

Communication in progress

Error state

Sets the I
2
C single master control software’s master

transmit mode (pattern 3) arguments in the local structure.

Figure 5.17 Outline of Acknowledge Polling Start Function

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 52 of 66

Mar 31, 2016

5.16.5 Read Start Function

R_IIC_EepMdl_Read

Outline Read start function

Header r_iic_eepmdl_api.h, r_iic_eepmdl_sub.h

Declaration error_t R_IIC_EepMdl_Read(r_iic_eepmdl_info_t FAR *pEep_Info)

Description  Starts data read from the EEPROM.

 Use this function to enable the master (MCU) to read data from the slave (EEPROM).

Arguments r_iic_eepmdl_info_t FAR *pEep_Info ; EEPROM communication information storage

pointer

Return Value ■ Return value (when R_IIC_EepMdl_Read() is called)

R_IIC_EEP_COMMUNICATION

Data read from EEPROM started.

 Call the EEPROM advance function to terminate communication.

R_IIC_EEP_NO_INIT

Uninitialized state.

 Call the EEPROM initialization function.

R_IIC_EEP_LOCK_FUNC

No processing was performed because another API was being processed.

 Call the function after processing of the other API finishes.

R_IIC_EEP_BUS_BUSY

Communication is in progress. Processing of read from EEPROM could not start.

 Call the EEPROM advance function to terminate communication.

R_IIC_EEP_ERR_PARAM

Parameter error.

 Check the setting value(s).

R_IIC_EEP_ERR_AL

Arbitration lost.

 The EEPROM recovery function can be called to perform recovery processing.

R_IIC_EEP_ERR_NON_REPLY

No reply error.*
1

 The EEPROM recovery function can be called to perform recovery processing.

R_IIC_EEP_ERR_SDA_LOW_HOLD

SDA cannot be restored from low-hold state.

 Check the system state to determine if the slave device is in the low-hold state, if

the master device is outputting a low signal, etc.

R_IIC_EEP_ERR_OTHER

Other error occurred.

 Check the following.

 Confirm that the EEPROM communication information structure settings are

correct.

 Check to determine if an error occurred in OS control.

■ Return value (when R_IIC_EepMdl_Advance() is called after R_IIC_EepMdl_Read)

R_IIC_EEP_COMMUNICATION

Communication is in progress.

 Call the EEPROM advance function to terminate communication.

R_IIC_ EEP_FINISH_READ

Reading of all data has finished.

 Communication is possible by calling the start function.

See the description of the EEPROM advance function for information on the return

values in case of error.

Remarks  This function uses the I
2
C single master control software’s master composite mode.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 53 of 66

Mar 31, 2016

 Settings must be made in r_iic_eepmdl_info_t to perform this processing. See

5.11.1 (1) for setting instructions.

 I
2
C communication is not finished at the point of return from this function. It is

necessary to call the EEPROM advance function to finish I
2
C communication.

Note: 1. The no reply error definition differs depending on the MCU being controlled.

See the description of the no reply error in the documentation of the I
2
C single

master control software for details.

Slave address setting

r_iic_eepmdl_set_slvadr()

R_IIC_EepMdl_Read

Master composite start processing

R_IIC_Drv_MasterTRx()
I
2
C single master control software’s master composite mode

Return value

R_IIC_EEP_COMMUNICATION

Operating mode setting

R_IIC_EEP_MODE_READ

RAM initialization processing

r_iic_eepmdl_ram_init()

R_IIC_EEP_NO_INIT

R_IIC_EEP_BUS_BUSY

R_IIC_EEP_ERR_AL

R_IIC_EEP_ERR_NON_REPLY

R_IIC_EEP_ERR_SDA_LOW_HOLD

R_IIC_EEP_ERR_OTHER

Receive data count setting

EEPROM internal address setting

r_iic_eepmdl_set_memadr()

Read start

Uninitialized state

Communication in progress

Error state

Sets the receive data count in the counter.

Figure 5.18 Outline of Read Start Function

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 54 of 66

Mar 31, 2016

5.16.6 EEPROM Advance Function

R_IIC_EepMdl_Advance

Outline EEPROM advance function

Header r_iic_eepmdl_api.h, r_iic_eepmdl_sub.h

Declaration error_t R_IIC_EepMdl_Advance(r_iic_eepmdl_info_t FAR *pEep_Info)

Description  Monitors communication and executes processing to enable communication to

proceed. Returns the communication state as a return value.

Arguments r_iic_eepmdl_info_t FAR *pEep_Info ; EEPROM communication information

structure pointer

Return Value R_IIC_EEP_COMMUNICATION

Communication is in progress.

 Call the EEPROM advance function to terminate communication.

R_IIC_EEP_FINISH_WRITE

Writing of all data completed.

 The acknowledge polling start function can be called to determine if rewriting to

the EEPROM has finished.*
1

R_IIC_EEP_FINISH_WRITE_AGN

Page write finished. There is leftover data.

 Call the write start function after rewrite finishes. At this time do not change the

member information of the EEPROM communication information structure.*
2

R_IIC_EEP_FINISH_ACKPOL

Rewriting of all data completed.

 Communication is possible by calling the start function.

R_IIC_EEP_FINISH_ACKPOL_AGN

Page rewrite finished. There is leftover data.

 Call the write start function. At this time do not change the member information of

the EEPROM communication information structure.*2

R_IIC_EEP_FINISH_ACKPOL_NACK

Page rewrite did not finish (NACK received after transmission of slave address).

 The acknowledge polling start function can be called to determine if rewriting to

the EEPROM has finished.*1

R_IIC_EEP_FINISH_READ

Reading of all data completed.

 Communication is possible by calling the start function.

R_IIC_EEP_LOCK_FUNC

No processing was performed because another API was being processed.

 Call the function after processing of the other API finishes.

R_IIC_EEP_BUS_BUSY

Communication by another device is in progress on the same channel, so processing

could not be performed.

 Terminate communication by the other device.

R_IIC_EEP_NO_INIT

Uninitialized state.

 Call the EEPROM initialization function.

R_IIC_EEP_IDLE

Idle state.

 Communication is possible by calling the start function.

R_IIC_EEP_ERR_PARAM

Parameter error.

 Check the setting value(s).

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 55 of 66

Mar 31, 2016

R_IIC_EEP_ERR_AL

Arbitration lost.

 The EEPROM recovery function can be called to perform recovery processing.

R_IIC_EEP_ERR_NON_REPLY

No reply error.*
3

 The EEPROM recovery function can be called to perform recovery processing.

R_IIC_EEP_ERR_SDA_LOW_HOLD

SDA cannot be restored from low-hold state.

 Check the system state to determine if the slave device is in the low-hold state, if

the master device is outputting a low signal, etc.

R_IIC_EEP_ERR_OTHER

Other error occurred.

 Check the following.

 Confirm that the EEPROM communication information structure settings are

correct.

 Check to determine if an error occurred in OS control.

R_IIC_EEP_ERR_NACK

NACK received while write communication in progress.

 Check the following.

 If the write protect pin (WP) is high, drive it low and then call the write start

function. If the expected write data count does not match the data actually written,

the EEPROM recovery function can be called to perform recovery processing.

Remarks  After each start function is called, call the EEPROM advance function to finish

communication.

 The EEPROM advance function’s return value when communication finishes differs

depending on the start function called. Check the return value against the description

in this section or the EEPROM advance function return value description in the

section on the specific start function.

 If an error occurs during communication, reset the data and call the start function

again following recovery processing.

Notes: 1. The write or read start function can be called without determining the rewrite

status. To do this, call the start function after waiting for the EEPROM rewrite

to finish. Refer to the datasheet of the EEPROM device for the write cycle

time.

 2. The leftover data write information is stored in the members of the EEPROM

communication information structure, so communication cannot proceed

correctly if the member values are changed.

 3. The no reply error definition differs depending on the MCU being controlled.

See the description of the no reply error in the documentation of the I
2
C single

master control software for details.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 56 of 66

Mar 31, 2016

 R_IIC_EepMdl_Advance

A

Device state check

Target device in non-communication state

Communication in progress on target device

Operating mode
Acknowledge polling in progress

Write in progress/

read in progress

Copy EEPROM communication

information to local variable

Set *pData1st and *pData2nd pointer

addresses in copied local structure to

NULL

Advance processing

R_IIC_Drv_Advance()

Advance processing

R_IIC_Drv_Advance()

*
2

*

3

*
1

B

R_IIC_EEP_IDLE

Idle state?

R_IIC_EEP_NO_INIT

R_IIC_EEP_BUS_BUSY

R_IIC_EEP_ERR_AL

R_IIC_EEP_ERR_NON_REPLY

R_IIC_EEP_ERR_SDA_LOW_HOLD

R_IIC_EEP_ERR_OTHER

Yes

No

Notes: 1. It is necessary to set to NULL the *pData1st and *pData2nd pointer addresses, which are

EEPROM communication information structure members used as arguments, in order to

implement the I
2
C single master control software’s master transmit mode (pattern 3).

Note that setting EEPROM communication information structure values to NULL causes

the previous communication information to be lost.

To prevent this, the structure is copied to a local variable and the settings of the copied

structure are changed as required for the I
2
C single master control software’s master

transmit mode (pattern 3). Master transmit mode (pattern 3) is implemented using the

information in this dummy structure as arguments.

 2. Sets the EEPROM communication information structure information as arguments.

 3. Sets the local structure information as arguments.

Checks whether or not communication is in

progress on the specified device. This prevents

communication from being executed on a device

that is in a non-communication state in cases

where when multiple devices are connected to the

same bus.

Figure 5.19 Outline of EEPROM Advance Function (1/3)

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 57 of 66

Mar 31, 2016

A

Return value

R_IIC_EEP_COMMUNICATION

R_IIC_EEP_ERR_AL

R_IIC_EEP_ERR_NON_REPLY

R_IIC_EEP_ERR_OTHER

NACK detected

R_IIC_EEP_ERR_NACKCommunication finish

EEPROM capacity

Decrement *pData1st pointer

address twice.

Decrement *pData1st pointer

address.

Less than 32 Kbit

32 Kbit or more

*
1 *

1

Operating mode
Write in progress

No leftover data?

Data present

No data

Ret

Set R_IIC_EEP_FINISH_READ

as Ret

Set

R_IIC_EEP_FINISH_WRITE_AGN

as Ret

Set

R_IIC_EEP_FINISH_WRITE

 as Ret

Communication in progress

Error state

Read in progress

Note 1. *pData1st is a pointer to the EEPROM internal address storage buffer. The pointer

address is incremented when communication finishes, so it must be returned to the

position before communication started. Note that the value incremented differs

according to the EEPROM capacity. If the capacity is 32 Kbits or greater a 2-byte

internal address is transmitted, so the pointer address must be decremented twice. If

the capacity is less than 32 Kbits, the pointer address is decremented once.

Figure 5.20 Outline of EEPROM Advance Function (2/3)

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 58 of 66

Mar 31, 2016

B

Return value

R_IIC_EEP_COMMUNICATION

R_IIC_EEP_ERR_AL

R_IIC_EEP_ERR_NON_REPLY

R_IIC_EEP_ERR_OTHER

R_IIC_EEP_FINISH_ACKPOL_NACK

Acknowledge polling in process

No leftover data?

Data present

No data

Set

R_IIC_EEP_FINISH_ACKPOL_AGN

as Ret

Set

R_IIC_EEP_FINISH_ACKPOL

 as Ret

Ret

NACK detected

Communication in progress

Error state

Figure 5.21 Outline of EEPROM Advance Function (3/3)

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 59 of 66

Mar 31, 2016

5.16.7 EEPROM Recovery Function

R_IIC_EepMdl_Recovery

Outline EEPROM recovery function

Header r_iic_eepmdl_api.h, r_iic_eepmdl_sub.h,

Declaration error_t R_IIC_EepMdl_Recovery(r_iic_eepmdl_info_t FAR *pEep_Info)

Description  Can perform recovery processing after a communication error occurs.

 Call this function to force an initialization.

 After this function is called, a transition to the idle state occurs.

Arguments r_iic_eepmdl_info_t FAR *pEep_Info ; EEPROM communication information storage

pointer

Return Value R_IIC_EEP_IDLE

EEPROM recovery processing finished successfully and a transition to the idle state

has occurred.

 Communication is possible by calling the start function.

R_IIC_EEP_LOCK_FUNC

No processing was performed because another API was being processed.

 Call the function after processing of the other API finishes.

R_IIC_EEP_ERR_PARAM

Parameter error.

 Check the setting value(s).

R_IIC_EEP_ERR_AL

Arbitration lost.

 Recovery processing can be performed by calling the EEPROM recovery function

again.

R_IIC_EEP_ERR_NON_REPLY

No reply error.*
1

 Recovery processing can be performed by calling the EEPROM recovery function

again.

R_IIC_EEP_ERR_SDA_LOW_HOLD

EEPROM recovery processing was performed, but SDA did not recover from the

low-hold state.

 Check the system state to determine if the slave device is in the low-hold state, if

the master device is outputting a low signal, etc.

R_IIC_EEP_ERR_OTHER

Other error occurred.

 Check the following.

 Check the system state to determine if the slave device is not in the SCL low-hold

state, if the master device is not outputting a low signal, etc.

 Confirm that the EEPROM communication information structure settings are

correct.

 Check to determine if an error occurred in OS control.

Remarks  This function performs an I
2
C internal reset.

 If SDA is in the low-hold state after the reset, a pseudo clock is generated and sent

to SCL. The number of cycles generated can be set by the macro definition

SCL_CLK_CNT. (See Table 5.14 in 5.10.1for information on macro definitions.)

 I
2
C single master control software’s master transmit mode (pattern 4) is used to

generate a start condition and a stop condition, releasing the bus.

 If communication cannot be restored after executing this function, there may be a

fault such as SDA being fixed to GND.

Note: 1. The no reply error definition differs depending on the MCU being controlled.

See the description of the no reply error in the documentation of the I
2
C single

master control software for details.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 60 of 66

Mar 31, 2016

*
1

Note: 1. It is necessary to set to NULL the *pSlvAdr, *pData1st, and *pData2nd pointer

addresses, which are EEPROM communication information structure members used as

arguments, in order to implement the I
2
C single master control software’s master transmit

mode (pattern 4). Note that setting EEPROM communication information structure values

to NULL causes the previous communication information to be lost.

To prevent this, the structure is copied to a local variable and the settings of the copied

structure are changed as required for the I
2
C single master control software’s master

transmit mode (pattern 4). Master transmit mode (pattern 4) is implemented using the

information in this dummy structure as arguments.

I
2
C driver initialization processing

R_IIC_Drv_Init()

SCL pseudo clock generation

processing R_IIC_Drv_GenClk()

R_IIC_EepMdl_Recovery

Return value
Error state

R_IIC_EEP_ERR_PARAM

R_IIC_EEP_ERR_SDA_LOW_HOLD

SDA = H

A

I
2
C driver reset processing

R_IIC_Drv_Reset()
Resets the internal state of the I

2
C registers.

Return value
Initialization not possible

R_IIC_EEP_ERR_PARAM

R_IIC_EEP_ERR_OTHER

Initialization finished

Generates CLK to SCL to restore the slave

device from the SDA low-hold state.

Return value

R_IIC_EEP_ERR_PARAM

Reset finished

Copy EEPROM communication

information to local variable

Set *pSlvAdr, *pData1st, *pData2nd

pointer addresses in copied local

structure to NULL

Parameter error

Figure 5.22 Outline of EEPROM Recovery Function (1/2)

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 61 of 66

Mar 31, 2016

A

Advance processing

R_IIC_Drv_Advance()

Return value

Communication not finished

Error state

R_IIC_EEP_IDLE

Communication finished
R_IIC_EEP_ERR_AL

R_IIC_EEP_ERR_NON_REPLY

R_IIC_EEP_ERR_OTHER

Sets local structure

information as arguments.

Master transmit start processing

 R_IIC_Drv_MasterTx()

Return value
Error R_IIC_EEP_ERR_NON_REPLY

R_IIC_EEP_ERR_OTHER

Note: 1. Information from the local structure is set as arguments for the I
2
C single master control

software’s master transmit mode (pattern 4). The sequence “start condition generation 

stop condition generation” is performed. This causes the bus to be released.

Successful

*
1

Figure 5.23 Outline of EEPROM Recovery Function (2/2)

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 62 of 66

Mar 31, 2016

6. Application Example

6.1 r_iic_eepmdl_api.h

Example settings when using the software are described below.

The portion of each file where the settings are entered are designated with the comment line /** SET **/.

(1) Selection of MCU Used

Specify the MCU to be used.

/*---*/

/* Select to use MCU Type. */

/*---*/

#define MCU_RL78

/* #define MCU_RX */

(2) Definition of RAM Area Accessed

This setting defines the RAM area to be used when using the M16C.

The RAM is used to improve the efficiency of standard functions and some processing tasks.

This setting has no effect when an MCU other than the M16C is used.

In the example below, the FAR area is used.

/*---*/

/* If using a M16C, define the RAM area to be accessed by the user process.*/

/* Please choose one of definitions. */

/* Efficient operations for standard functions and processes are applied. */

/*---*/

#if defined(MCU_M16C)

#define R_IIC_FAR

/* #define R_IIC_NEAR */

#endif /* #if defined(M16C) */

(3) SCL Pseudo Clock Counter Value Definition

When SDA is in the low-hold state, the EEPROM recovery function generates a pseudo clock and sends it to SCL. Use

this setting to define the number of clock cycles.

The counter value is set to 9 in the sample code because an I
2
C communication unit of nine clock cycles is common.

/*---*/

/* Counter */

/*---*/

#define SCL_CLK_CNT (uint8_t)(9) /* Clock counter to SCL when recovers processing */

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 63 of 66

Mar 31, 2016

6.2 EEPROM Recovery Function

Figure 6.1 illustrates the EEPROM recovery processing to restore communication when SDA or SCL are in the low-

hold state because of an unexpected momentary power interruption or noise while communication is in progress. The

device transitions to the idle state when processing finishes.

SCLn

SDAn

Low

High

ST SP

Start Stop

 Pseudo clock

(1) I
2
C driver

reset function

(2) SCL pseudo

clock generation

function
(3) I

2
C driver

initialization function

(4) Master transmit

start function

(5) Advance function

(6) Recovery

finished

(1) Performs an I
2
C internal reset.

(2) Generates a pseudo clock and sends it to SCL, releasing the slave device from the low-hold state.

(3) Initialization is performed for master transmit (pattern 4).

(4) Starts master transmit (pattern 4). A start condition is generated, then a stop condition is generated.

(5) Ends communication by using the advance function.

(6) The device enters the idle state. After this, communication is possible by calling a start function.

Figure 6.1 Outline of EEPROM Recovery Function Operation

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 64 of 66

Mar 31, 2016

7. Usage Notes

7.1 Notes on Incorporation

Make sure to include the following files when incorporating the sample code into a user program.

 r_iic_eepmdl_api.h

 r_iic_eepmdl_sub.h

 r_iic_drv_api.h

 r_iic_drv_sub.h

 r_iic_drv_sfr.h

 r_iic_drv_int.h

 r_iic_drv_os.h

7.2 Page Size Setting

It is necessary to specify the page size in the EEPROM communication information structure member PageSize. Use

the page size stipulated for the EEPROM device used when making this setting. Depending on the EEPROM type name,

devices with the same capacity may have different page sizes. The sample code will perform communication even if a

setting different from the actual page size of the EEPROM device is used. Note that using a setting value greater than

the page size stipulated for the EEPROM device will result in roll-over during writes.

7.3 Structure Handling when Calling Acknowledge Polling Start Function

The I
2
C single master control software’s master transmit pattern 3 is used for EEPROM acknowledge polling, and this

requires setting the EEPROM communication information structure members *pData1st and *pData2nd, indicating

pointer addresses, to NULL.

After a write operation finishes, it is necessary to set information from the EEPROM communication information

structure of the communication currently in progress as arguments when calling the acknowledge polling start function

or EEPROM advance function. If the *pData1st and *pData2nd structure members indicating pointer addresses are set

to NULL while these functions are being processed, the communication information will be lost.

To prevent this, the acknowledge polling start function and EEPROM advance function each copy the structure with the

argument information to a local variable and change the settings of the copied structure to the I
2
C single master control

software function arguments. This prevents the loss of communication information.

7.4 Structure Handling when Calling EEPROM Recovery Function

Like the acknowledge polling start function, the EEPROM recovery function uses the I
2
C single master control

software’s master transmit pattern 4. This requires setting the EEPROM communication information structure members

*pSlvAdr, *pData1st, and *pData2nd, indicating pointer addresses, to NULL. The same method described in section 7.3

is used by the EEPROM recovery function to perform processing with a copy of the structure.

7.5 Communication after Calling EEPROM Recovery Function

When restarting communication after calling the EEPROM recovery function, it is possible that the previous

communication information may have been lost. Therefore, redo the communication procedure from the start.

7.6 Processing of EEPROM Advance Function within Interrupt Handler and OS
Control

Processing of the EEPROM advance function within an interrupt handler and OS control* are unverified. When using

these capabilities, careful evaluation should be performed and modifications applied if necessary.

Note: * The support for OS control in the sample code assumes µITRON 4.0.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 65 of 66

Mar 31, 2016

7.7 Notes on Connection of Multiple Devices to Same Bus

The number of serial EEPROM devices that can be connected as slave devices differs depending on the capacity. Make

sure to keep this in mind when connecting multiple slave devices to a single channel. See Table 5.2 for details on the

number of slave devices that can be connected.

7.8 Considerations at Compile-time

Case compiled with the CC-RL compiler, Output the warning "W0520111: Statement is unreachable."

This is a warning message that does not run the break statement. It does not affect behavior. Ignore and no problem.

RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM Control Software

R01AN1075EJ0103 Rev.1.03 Page 66 of 66

Mar 31, 2016

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

Rev. Date

Description

Page Summary

1.02 Oct 31, 2014 — First edition issued

1.03 Mar 31, 2016 6 Changed the following title to section 2.

(1) RL78/G14 IICA Integrated Development Environment CS+

for CA,CX (Compiler: CA78K0R)

Added the following title to section 2.

(2) RL78/G14 IICA Integrated Development Environment CS+

for CC (Compiler: CC-RL)

 31 Changed the following title to section 5.8.1

(1) RL78/G14 IICA Integrated Development Environment CS+

for CA,CX (Compiler: CA78K0R)

Added the following title to section 5.8.1

(2) RL78/G14 IICA Integrated Development Environment CS+

for CC (Compiler: CC-RL)

 35 Section 5.9 File Structure

Changed Application Note Number.

Changed Folder names.

 65 Added section 7.8.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as

well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,

and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a

product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Specifications
	2. Operation Confirmation Conditions
	2.1 RL78
	(1) RL78/G14 IICA Integrated Development Environment CS+ for CA,CX (Compiler: CA78K0R)
	(2) RL78/G14 IICA Integrated Development Environment CS+ for CC (Compiler: CC-RL)
	(3) RL78/G14 IICA Integrated Development Environment IAR Embedded Workbench
	(4) RL78/G1C IICA Integrated Development Environment CubeSuite+
	(5) RL78/G1C IICA Integrated Development Environment IAR Embedded Workbench
	(6) RL78/L12 IICA Integrated Development Environment CubeSuite+
	(7) RL78/L12 IICA Integrated Development Environment IAR Embedded Workbench
	(8) RL78/L13 IICA Integrated Development Environment CubeSuite+
	(9) RL78/L13 IICA Integrated Development Environment IAR Embedded Workbench
	(10) RL78/L1C IICA Integrated Development Environment CubeSuite+
	(11) RL78/L1C IICA Integrated Development Environment IAR Embedded Workbench

	2.2 RX
	(1) RX62N RIIC
	(2) RX63N RIIC
	(3) RX63T RIIC
	(4) RX210 RIIC
	(5) RX21A RIIC

	3. Reference Application Note
	4. Hardware
	4.1 Pins Used
	4.2 Reference Circuit
	4.3 Controlling Multiple Slave Devices
	4.4 Maximum Transfer Speed

	5. Software
	5.1 Operation Configuration
	5.2 Operation Overview
	5.2.1 Address Specification
	(1) Address that Designates the Slave Device
	(2) Address Specification According to EEPROM Capacity

	5.2.2 Write Operation
	(1) Data Write (WP = L)
	(2) Data Write (WP = H)
	(3) Acknowledge Polling
	(4) Block Rewrite

	5.2.3 Read Operation
	(1) Data Read

	5.3 Software Operation
	(1) Normal Control (No OS)
	(2) Normal Control (OS Present)

	5.4 Software Operation Sequence
	(1) Normal Operation (No OS/OS Present)

	5.5 Block Rewrite Implementation Method
	5.6 Operation Flowcharts
	5.6.1 Write Operation Flowchart
	(1) With Acknowledge Polling
	(2) Without Acknowledge Polling

	5.6.2 Read Operation Flowchart

	5.7 Relationship of Data Buffers and Transmit/Receive Data
	5.8 Required Memory Sizes
	5.8.1 RL78
	(1) RL78/G14 IICA Integrated Development Environment CS+ for CA,CX (Compiler: CA78K0R)
	(2) RL78/G14 IICA Integrated Development Environment CS+ for CC (Compiler: CC-RL)
	(3) RL78/G14 IICA Integrated Development Environment IAR Embedded Workbench
	(4) RL78/L13 IICA Integrated Development Environment CubeSuite+
	(5) RL78/L13 IICA Integrated Development Environment IAR Embedded Workbench

	5.8.2 RX
	(1) RX63N RIIC
	(2) RX210 RIIC

	5.9 File Structure
	5.10 Constants
	5.10.1 Definitions

	5.11 Structures and Unions
	5.11.1 EEPROM Communication Information Structure
	(1) Description of Members

	5.12 Enumerated Types
	5.13 Variables
	5.14 Functions
	5.15 State Transition Diagram
	5.16 Function Specifications
	5.16.1 Common Function Processing
	5.16.2 EEPROM Initialization Function
	5.16.3 Write Start Function
	5.16.4 Acknowledge Polling Start Function
	5.16.5 Read Start Function
	5.16.6 EEPROM Advance Function
	5.16.7 EEPROM Recovery Function

	6. Application Example
	6.1 r_iic_eepmdl_api.h
	(1) Selection of MCU Used
	(2) Definition of RAM Area Accessed
	(3) SCL Pseudo Clock Counter Value Definition

	6.2 EEPROM Recovery Function

	7. Usage Notes
	7.1 Notes on Incorporation
	7.2 Page Size Setting
	7.3 Structure Handling when Calling Acknowledge Polling Start Function
	7.4 Structure Handling when Calling EEPROM Recovery Function
	7.5 Communication after Calling EEPROM Recovery Function
	7.6 Processing of EEPROM Advance Function within Interrupt Handler and OS Control
	7.7 Notes on Connection of Multiple Devices to Same Bus
	7.8 Considerations at Compile-time

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

