

RX Family, RL78 Family, 78K0R/Kx3-L

Micron Technology N25Q Serial NOR Flash Memory Control Software R01AN1528EJ0104 Rev.1.04 Mar 31, 2016

Introduction

This application note describes how to control N25Q SPI serial NOR flash memory, manufactured by Micron Technology, Inc., using an MCU manufactured by Renesas Electronics, and it explains the usage of the sample code provided for that purpose.

Note that the sample code is upper-layer software for controlling the serial NOR flash memory as a slave device.

Lower-layer software (clock synchronous single master control software) for controlling the SPI modes specific to individual MCU models is available separately, and should be obtained by the user, so please obtain this from the following URL as well. In addition, when a new microcontroller is added to the clock synchronous single-master control software, update of this application note may not be in time. Refer to 'Clock Synchronous Single Master Control Software (Lower-level layer of the software)' information in the following URL for the combination information on the latest supported microcontroller and its single-master control software.

SPI/QSPI Serial Flash Memory, QSPI Serial Phase Change Memory Driver

http://www.renesas.com/driver/spi_serial_flash

Target Devices

Serial NOR Flash Memory: N25Q SPI serial NOR flash memory, manufactured by Micron Technology, Inc.

MCUs on which operation has been confirmed:

RX600 series	: RX63N Group (using RSPI)
RX100 series	: RX111 (using the SCI)
	: RX111 (using the RSPI)
RL78/G1x	: RL78/G14, RL78/G1C group (using the SAU)
RL78/L1x	: RL78/L12, RL78/L12, RL78/L1C group (using the SAU)

See 3, Reference Application Notes, regarding MCU models other than those listed above.

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Note that the following abbreviations are used in this application note:

- Single-SPI (communication in single-SPI mode)
- Dual-SPI (communication in dual-SPI mode)
- Quad-SPI (communication in quad-SPI mode)

Contents

1. Specifi	cations	4
2. Operat	ion Confirmation Conditions	5
2.1 RX	Family	5
2.2 RL	78 Family, 78K0R/Kx3-L	7
3. Refere	nce Application Notes	13
3.1 RX	CFamily: List of Related Application Notes	13
3.2 RL	78 Family, 78K0R Family: List of Related Application Notes	13
	are	
4.1 Ha	rdware Configuration	
4.1.1	Pin Assignments for Single-SPI Configuration	
4.1.2	Single-SPI Connection Example	14
4.1.3	Pin Assignments for Dual-SPI Configuration	15
4.1.4	Dual-SPI Connection Example	
4.1.5	Pin Assignments for Quad-SPI Configuration	
4.1.6	Quad-SPI Connection Example	16
5. Softwa	re	17
5.1 Op	eration Overview	17
5.1.1	Relationship Between Data Buffers and Transmit/Receive Data	17
5.1.2	Timing Generation in Clock Synchronous Mode	
5.1.3	Serial NOR Flash Memory S# Pin Control	
5.1.4	Serial NOR Flash Memory Instruction Codes	
5.2 So	ftware Configuration	22
5.3 Re	quired Memory Size	
5.3.1	RX Family	
5.3.2	RL78 Family, 78K0R/Kx3-L	
5.4 File	e Structure	
5.5 Co	nstants	
5.5.1	Return Value	
5.5.2	Command Definitions	29
5.5.3	Other Definitions	30
	ucture/Union List	
5.7 Va	riable	34
5.8 Fu	nctions	
5.9 Fu	nction Specifications	
5.9.1	Driver Initialization Processing	35
5.9.2	Status Register Read Processing	
5.9.3	Flag Status Register Read Processing	38
5.9.4	Write Protect Setting Processing	
5.9.5	Clear Flag Status Processing	
5.9.6	WRDI Command Issue Processing	
5.9.7	Data Read Processing	
5.9.8	Data Write Processing	46
5.9.9	Data Write Processing (for single-page write)	48

RX Family, RL78 Family, 78K0R/Kx3-L

5.9.1	0 Erase Processing
5.9.1	1 ID Read Processing
5.9.1	2 Busy Wait Processing
5.9.1	3 Address Mode Setting Processing 57
6. Applic	ation Example
6.1 S	erial NOR Flash Memory Control Software Settings 59
6.1.1	r_qspi_flash_n25q.h
6.1.2	r_qspi_flash_n25q_sfr.h61
6.1.3	r_qspi_flash_n25q_sub.h64
6.1.4	r_qspi_flash_n25q_sub.c65
6.1.5	r_qspi_flash_n25q_drvif.c66
6.1.6	r_qspi_flash_n25q_sfr_rl78.c69
7. Usage	e Notes
7.1 N	otes on Integrating Sample Code70
7.2 U	sing an MCU with On-Chip Cache70
7.3 S	upport for Other Capacities
7.4 U	sing Other Slave Devices
7.5 V	oltage Stabilization Time After Power-On70
7.6 U	nsupported N25Q256A83ESF40x and N25Q256A83E1240x Commands (ENTER QUAD and
EXIT QUA	AD Commands)

1. Specifications

A Renesas Electronics MCU is used to control N25Q serial NOR flash memory, manufactured by Micron Technology, Inc.

Separate MCU-specific clock synchronous single master control software is required.

Table 1-1 lists the peripheral functions used and their applications, and figure 1.1 shows a usage example.

Summaries of the functions are provided below:

- The software functions as a device driver, with a Renesas Electronics MCU operating as the master device and the Micron Technology, Inc., N25Q serial NOR flash memory operating as the slave device.
- The MCU's on-chip serial communication function (clock synchronous mode) is used in a single-SPI, dual-SPI, or quad-SPI configuration to control operation.
- One serial communication function channel can be specified by the user for use. It is not possible to use multiple channels.
- It is possible to control up to two serial NOR flash memory devices of the same type name.
- The communication speed can be specified by the user.
- Both big-endian and little-endian operation are supported. (The choice depends on the MCU used.)

Table 1-1 Peripheral Functions and Their Applications

Peripheral Function	Application
MCU's on-chip serial communication functionality (clock synchronous mode)	Communication with SPI slave device by means of serial communication function (clock synchronous mode) 1 channel (required)
Port	For SPI slave device select control signal
	Number of ports equal to number of devices (required)

Renesas Electronics MCU		Micron Technology, Inc., N25Q
Port Clock synchronous serial interface	Slave device select control signal Clock output, data I/O	Serial NOR flash memory

Figure 1.1 Usage Example

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

2.1 RX Family

(1) RX63N RSPI

Table 2-1 Operation Confirmation Conditions

Item	Description
Memory	Micron Technology N25Q Serial NOR Flash Memory
Microcontroller used	RX63N Group (Program ROM: 1 MB/RAM: 128 KB)
Operating frequency	ICLK: 96 MHz, PCLK: 48 MHz
Operating voltage	3.3 V
Integrated development	Renesas Electronics Corporation
environment	High-performance embedded Workshop Version 4.09.01.007
C compiler	Renesas Electronics Corporation
	RX Family C/C++ Compiler Package (Toolchain 1.2.1.0)
	Compiler options
	The integrated development environment default settings are used.
Endian order	Big endian / Little endian
Sample code version number	Ver. 2.20
Software	Clock synchronous single master control software using the RSPI, for
	RX63N, version 2.04
Board	Renesas Starter Kit for RX63N

(2) **RX111 RSPI**

Table 2-2 Operation Confirmation Conditions

ltem	Description
Memory	Micron Technology N25Q Serial NOR Flash Memory
Microcontroller used	RX111 Group (Program ROM: 128 KB, RAM: 16 KB)
Operating frequency	ICLK: 32 MHz, PCLK: 32 MHz
Operating voltage	3.3 V
Integrated development environment	Renesas Electronics CubeSuite+ V2.01.00
C compiler	Renesas Electronics RX family C/C++ compiler package (Toolchain 2.01.00)
	Compiler options: The default settings (Optimize Level: 2, Optimize for size) for the integrated development environment are used.
Endian order	Big endian / Little endian
Sample code version number	Ver. 2.21.R01
Software	RX210, RX21A, RX220, RX63N, RX63T, RX111 Group Clock Synchronous Single Master Control Software Using the RSPI (R01AN1196EJ), Ver. 2.04.R04
Board	Renesas Starter Kit for RX111

(3) **RX111 SCI**

Table 2-3 Operation Confirmation Conditions

Item	Description
Memory	Micron Technology N25Q Serial NOR Flash Memory
Microcontroller used	RX111 Group (Program ROM: 128 KB, RAM: 16 KB)
Operating frequency	ICLK: 32 MHz, PCLK: 32 MHz
Operating voltage	3.3 V
Integrated development environment	Renesas Electronics CubeSuite+ V2.01.00
C compiler	Renesas Electronics RX family C/C++ compiler package (Toolchain 2.01.00)
	Compiler options: The default settings (Optimize Level: 2, Optimize for size) for the integrated development environment are used.
Endian order	Big endian / Little endian
Sample code version number	Ver. 2.21.R01
Software	RX210, RX21A, RX220, RX63N, RX63T,RX111 Group Clock Synchronous Single Master Control Software Using the SCI (R01AN1229EJ), Ver. 2.01.R05
Board	Renesas Starter Kit for RX111

2.2 RL78 Family, 78K0R/Kx3-L

(1) RL78/G14 Integrated Development Environment CubeSuite+ (Compiler:CA78K0R)

Table 2-4 Operation Confirmation Conditions

ltem	Description
Memory	Micron Technology N25Q Serial NOR Flash Memory
Microcontroller used	RL78/G14 Group (Program ROM: 256 MB/RAM: 24 KB)
Operating frequency	Main system clock: 24 MHz
	CPU/peripheral hardware clock: 24 MHz
	Serial clock: 6 MHz
Operating voltage	3.3 V
Integrated development	Renesas Electronics Corporation
environment	CubeSuite+ V1.03.00
C compiler	Renesas Electronics Corporation
	CubeSuite+ RL78,78K0R Compiler CA78K0R V1.60
	Compiler options
	The integrated development environment default settings ("-qx2") are used.
Endian order	Little endian
Sample code version number	Ver. 2.20
Software	Clock synchronous single master control software using CSI mode of serial
	array unit, version 2.02
Board	Renesas Starter Kit for RL78/G14

(2) RL78/G14 Integrated Development Environment CS+ for CC (Compiler:CC-RL)

Table 2-5 Operation Confirmation Conditions

Item	Description
Memory	Micron Technology N25Q Serial NOR Flash Memory
Microcontroller used	RL78/G14 Group (Program ROM: 256 MB/RAM: 24 KB)
Operating frequency	Main system clock: 24 MHz
	CPU/peripheral hardware clock: 24 MHz
	Serial clock: 6 MHz
Operating voltage	3.3 V
Integrated development	Renesas Electronics Corporation
environment	CS+ for CC V3.02.00
C compiler	Renesas Electronics Corporation
	RL78 compiler CC-RL V1.02.00
	Compiler options
	The default settings (Perform the default optimization(None))
	for the integrated development environment are used.
Endian order	Little endian
Sample code version number	Ver. 2.22
Software	RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group
	Clock Synchronous Single Master Control Software Using CSI Mode of
	Serial Array Unit (R01AN1195EJ0105), version 2.05)
Board	Renesas Starter Kit for RL78/G14

(3) RL78/G14 Integrated Development Environment IAR Embedded Workbench

Table 2-6 Operation Confirmation Conditions

ltem	Description
Memory	Micron Technology N25Q Serial NOR Flash Memory
Microcontroller used	RL78/G14 Group (Program ROM: 256 KB/RAM: 24 KB)
Operating frequency	Main system clock: 24 MHz
	CPU/peripheral hardware clock: 24 MHz
	Serial clock: 6 MHz
Operating voltage	3.3 V
Integrated development	IAR Systems
environment	IAR Embedded Workbench for Renesas RL78 (Ver.1.30.2)
C compiler	IAR Systems
	IAR Assembler for Renesas RL78 (Ver.1.30.2.50666)
	IAR C/C++ Compiler for Renesas RL78 (Ver.1.30.2.50666)
	Compiler options: The default settings (Low) for the integrated
	development environment are used.
Endian order	Little endian
Sample code version number	Ver. 2.21
Software	Clock synchronous single master control software using CSI mode of serial
	array unit, version 2.03
Board	Renesas Starter Kit for RL78/G14

(4) RL78/G1C Integrated Development Environment CubeSuite+ (Compiler:CA78K0R)

Table 2-7 Operation Confirmation Conditions

ltem	Description
Memory	Micron Technology N25Q Serial NOR Flash Memory
Microcontroller used	RL78/G1C Group (Program ROM: 32 KB/RAM: 5.5 KB)
Operating frequency	Main system clock: 24 MHz
	CPU/peripheral hardware clock: 24 MHz
	Serial clock: 12 MHz
Operating voltage	3.3 V
Integrated development	Renesas Electronics Corporation
environment	CubeSuite+ V2.01.00
C compiler	Renesas Electronics Corporation
	CubeSuite+ RL78,78K0R Compiler CA78K0R V1.70
	Compiler options
	The integrated development environment default settings ("-qx2") are used.
Endian order	Little endian
Sample code version number	Ver. 2.21.R01
Software	RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock
	Synchronous Single Master Control Software Using CSI Mode of Serial
	Array Unit (R01AN1195EJ0103), Ver. 2.03
Board	Renesas RL78/G1C Target Board QB-R5F10JGC-TB

(5) RL78/G1C Integrated Development Environment CS+ for CC (Compiler:CC-RL)

 Table 2-8
 Operation Confirmation Conditions

ltem	Description		
Memory	Micron Technology N25Q Serial NOR Flash Memory		
Microcontroller used	RL78/G1C Group (Program ROM: 32 KB/RAM: 5.5 KB)		
Operating frequency	Main system clock: 24 MHz		
	CPU/peripheral hardware clock: 24 MHz		
	Serial clock: 12 MHz		
Operating voltage	3.3 V		
Integrated development	Renesas Electronics Corporation		
environment	CS+ for CC V3.02.00		
C compiler	Renesas Electronics Corporation		
	RL78 compiler CC-RL V1.02.00		
	Compiler options		
	The default settings (Perform the default optimization(None))		
	for the integrated development environment are used.		
Endian order	Little endian		
Sample code version number	Ver. 2.22		
Software	RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group		
	Clock Synchronous Single Master Control Software Using CSI Mode of		
	Serial Array Unit (R01AN1195EJ0105), version 2.05)		
Board	Renesas RL78/G1C Target Board QB-R5F10JGC-TB		

(6) RL78/G1C Integrated Development Environment IAR Embedded Workbench

Table 2-9 Operation Confirmation Conditions

ltem	Description		
Memory	Micron Technology N25Q Serial NOR Flash Memory		
Microcontroller used	RL78/G1C Group (Program ROM: 256 KB/RAM: 24 KB)		
Operating frequency	Main system clock: 24 MHz		
	CPU/peripheral hardware clock: 24 MHz		
	Serial clock: 12 MHz		
Operating voltage	3.3 V		
Integrated development	IAR Systems		
environment	IAR Embedded Workbench for Renesas RL78 (Ver.1.30.5)		
C compiler	IAR Systems		
	IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)		
	IAR C/C++ Compiler for Renesas RL78 (Ver.1.30.5.50715)		
	Compiler options: The default settings (Low) for the integrated		
	development environment are used.		
Endian order	Little endian		
Sample code version number	Ver. 2.21.R01		
Software	RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock		
	Synchronous Single Master Control Software Using CSI Mode of Serial		
	Array Unit (R01AN1195EJ0103), Ver. 2.03		
Board	Renesas RL78/G1C Target Board QB-R5F10JGC-TB		

(7) RL78/L12 Integrated Development Environment CubeSuite+

 Table 2-10
 Operation Confirmation Conditions

ltem	Description		
Memory	Micron Technology N25Q Serial NOR Flash Memory		
Microcontroller used	RL78/L12 Group (Program ROM: 32 KB, RAM:1.5 KB)		
Operating frequency	Main system clock: 24 MHz		
	CPU/peripheral hardware clock: 24 MHz		
	Serial clock: 6 MHz		
Operating voltage	3.3 V		
Integrated development	Renesas Electronics Corporation		
environment	CubeSuite+ V2.01.00		
C compiler	Renesas Electronics Corporation		
	CubeSuite+ RL78,78K0R Compiler CA78K0R V1.70		
	Compiler options		
	The integrated development environment default settings ("-qx2") are used.		
Endian order	Little endian		
Sample code version number	Ver. 2.21.R01		
Software	RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock		
	Synchronous Single Master Control Software Using CSI Mode of Serial		
	Array Unit (R01AN1195EJ0103), Ver. 2.03		
Board	Renesas Starter Kit for RL78/L12		

(8) RL78/L12 Integrated Development Environment IAR Embedded Workbench

Table 2-11 Operation Confirmation Conditions

Item	Description		
Memory	Micron Technology N25Q Serial NOR Flash Memory		
Microcontroller used	RL78/L12 Group (Program ROM: 32 KB, RAM:1.5 KB)		
Operating frequency	Main system clock: 24 MHz		
	CPU/peripheral hardware clock: 24 MHz		
	Serial clock: 6 MHz		
Operating voltage	3.3 V		
Integrated development	IAR Systems		
environment	IAR Embedded Workbench for Renesas RL78 (Ver.1.30.5)		
C compiler	IAR Systems		
	IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)		
	IAR C/C++ Compiler for Renesas RL78 (Ver.1.30.5.50715)		
	Compiler options: The default settings (Low) for the integrated		
	development environment are used.		
Endian order	Little endian		
Sample code version number	Ver. 2.21.R01		
Software	RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock		
	Synchronous Single Master Control Software Using CSI Mode of Serial		
	Array Unit (R01AN1195EJ0103), Ver. 2.03		
Board	Renesas Starter Kit for RL78/L12		

(9) RL78/L13 Integrated Development Environment CubeSuite+

Table 2-12 Operation Confirmation Conditions

Item	Description	
Memory	Micron Technology N25Q Serial NOR Flash Memory	
Microcontroller used	RL78/L13 Group (Program ROM: 128 KB/RAM: 8 KB)	
Operating frequency	Main system clock: 24 MHz	
	CPU/peripheral hardware clock: 24 MHz	
	Serial clock: 6 MHz	
Operating voltage	3.3 V	
Integrated development	Renesas Electronics Corporation	
environment	CubeSuite+ V2.01.00	
C compiler	Renesas Electronics Corporation	
	CubeSuite+ RL78,78K0R Compiler CA78K0R V1.70	
	Compiler options	
	The integrated development environment default settings ("-qx2") are used.	
Endian order	Little endian	
Sample code version number	Ver. 2.21.R01	
Software	RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock	
	Synchronous Single Master Control Software Using CSI Mode of Serial	
	Array Unit (R01AN1195EJ0103), Ver. 2.03	
Board	Renesas Starter Kit for RL78/L13	

(10) RL78/L13 Integrated Development Environment IAR Embedded Workbench

Table 2-13 Operation Confirmation Conditions

Item	Description		
Memory	Micron Technology N25Q Serial NOR Flash Memory		
Microcontroller used	RL78/L13 Group (Program ROM: 128 KB/RAM: 8 KB)		
Operating frequency	Main system clock: 24 MHz		
	CPU/peripheral hardware clock: 24 MHz		
	Serial clock: 6 MHz		
Operating voltage	3.3 V		
Integrated development	IAR Systems		
environment	IAR Embedded Workbench for Renesas RL78 (Ver.1.30.5)		
C compiler	IAR Systems		
	IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)		
	IAR C/C++ Compiler for Renesas RL78 (Ver.1.30.5.50715)		
	Compiler options: The default settings (Low) for the integrated		
	development environment are used.		
Endian order	Little endian		
Sample code version number	Ver. 2.21.R01		
Software	RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock		
	Synchronous Single Master Control Software Using CSI Mode of Serial		
	Array Unit (R01AN1195EJ0103), Ver. 2.03		
Board	Renesas Starter Kit for RL78/L13		

(11) RL78/L1C Integrated Development Environment CubeSuite+

Table 2-14 Operation Confirmation Conditions

Item	Description		
Memory	Micron Technology N25Q Serial NOR Flash Memory		
Microcontroller used	RL78/L1C Group (Program ROM: 256 KB/RAM: 16 KB)		
Operating frequency	Main system clock: 24 MHz		
	CPU/peripheral hardware clock: 24 MHz		
	Serial clock: 6 MHz		
Operating voltage	3.3 V		
Integrated development	Renesas Electronics Corporation		
environment	CubeSuite+ V2.01.00		
C compiler	Renesas Electronics Corporation		
	CubeSuite+ RL78,78K0R Compiler CA78K0R V1.70		
	Compiler options		
	The integrated development environment default settings ("-qx2") are used.		
Endian order	Little endian		
Sample code version number	Ver. 2.21.R01		
Software	RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock		
	Synchronous Single Master Control Software Using CSI Mode of Serial		
	Array Unit (R01AN1195EJ0103), Ver. 2.03		
Board	Renesas Starter Kit for RL78/L1C		

(12) RL78/L1C Integrated Development Environment IAR Embedded Workbench

Table 2-15 Operation Confirmation Conditions

ltem	Description		
Memory	Micron Technology N25Q Serial NOR Flash Memory		
Microcontroller used	RL78/L1C Group (Program ROM: 256 KB/RAM: 16 KB)		
Operating frequency	Main system clock: 24 MHz		
	CPU/peripheral hardware clock: 24 MHz		
	Serial clock: 6 MHz		
Operating voltage	3.3 V		
Integrated development	IAR Systems		
environment	IAR Embedded Workbench for Renesas RL78 (Ver.1.30.5)		
C compiler	IAR Systems		
	IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)		
	IAR C/C++ Compiler for Renesas RL78 (Ver.1.30.5.50715)		
	Compiler options: The default settings (Low) for the integrated		
	development environment are used.		
Endian order	Little endian		
Sample code version number	Ver. 2.21.R01		
Software	RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock		
	Synchronous Single Master Control Software Using CSI Mode of Serial		
	Array Unit (R01AN1195EJ0103), Ver. 2.03		
Board	Renesas Starter Kit for RL78/L1C		

3. Reference Application Notes

For additional information associated with this document, refer to the following application notes.

In the related application notes listed below, refer to the "Target Device" item on the cover for a listing of MCU models on which operation has been confirmed.

3.1 RX Family: List of Related Application Notes

- RX610 Group Clock Synchronous Single Master Control Software Using the SCI (R01AN0534EJ)
- RX62N Group Clock Synchronous Single Master Control Software Using the RSPI (R01AN0323EJ)
- RX62N Group Clock Synchronous Single Master Control Software Using the SCI (R01AN1088EJ)
- RX210, RX21A, RX220, RX63N, RX63T, RX111 Group Clock Synchronous Single Master Control Software Using the RSPI (R01AN1196EJ)
- RX210, RX21A, RX220, RX63N, RX63T, RX111 Group Clock Synchronous Single Master Control Software Using the SCI (R01AN1229EJ)

3.2 RL78 Family, 78K0R Family: List of Related Application Notes

- 78K0R/Kx3-L Clock Synchronous Single Master Control Software Using CSI Mode of Serial Array Unit (R01AN0708EJ)
- RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock Synchronous Single Master Control Software Using CSI Mode of Serial Array Unit (R01AN1195EJ)

4. Hardware

4.1 Hardware Configuration

An example hardware configuration is shown below.

4.1.1 Pin Assignments for Single-SPI Configuration

The following table lists the MCU pins used for single-SPI operation and their functions.

Table 4-1 Single-SPI Pins and Functions

MCU Pin Name	I/O	Description
CLK	Output	Clock output
DataOut	Output	Master data output
DataIn	Input	Master data input
Port (CS#)	Output	Slave device select output

4.1.2 Single-SPI Connection Example

A connection example for single-SPI operation is shown below:

Figure 4.1 MCU and SPI Slave Device Connection Example for Single-SPI

4.1.3 Pin Assignments for Dual-SPI Configuration

The following table lists the MCU pins used for dual-SPI operation and their functions.

In order to use a dual-SPI configuration, the MCU must have a quad serial peripheral interface function.

MCU Pin Name	I/O	Description
CLK	Output	Clock output
DataIn/Out0	Input/output	Master data input/output 0
DataIn/Out1	Input/output	Master data input/output 1
Port(CS#)	Output	Slave device select output

4.1.4 Dual-SPI Connection Example

A connection example for dual-SPI operation is shown below:

Figure 4.2 MCU and SPI Slave Device Connection Example for Dual-SPI

4.1.5 Pin Assignments for Quad-SPI Configuration

The following table lists the MCU pins used for quad-SPI operation and their functions.

In order to use a quad-SPI configuration, the MCU must have a quad serial peripheral interface function.

Table 4-3	Quad-SPI Pins and Functions

MCU Pin Name	I/O	Description
CLK	Output	Clock output
DataIn/Out0	Input/output	Master data input/output 0
DataIn/Out1	Input/output	Master data input/output 1
DataIn/Out2	Input/output	Master data input/output 2
DataIn/Out3	Input/output	Master data input/output 3
Port (CS#)	Output	Slave device select output

4.1.6 Quad-SPI Connection Example

A connection example for quad-SPI operation is shown below:

Figure 4.3 MCU and SPI Slave Device Connection Example for Quad-SPI

5. Software

5.1 Operation Overview

The MCU's clock synchronous serial communication function is used to control the serial NOR flash memory.

The sample code performs the following types of control:

- The S# pin of the SPI slave device is connected to the port of the MCU and is controlled by using MCU general port output. (This control is implemented by the sample code.)
- Data input and output is controlled in clock synchronous mode (using the internal clock of the MCU). (The sample code makes use of the MCU-specific clock synchronous single master control software.)

5.1.1 Relationship Between Data Buffers and Transmit/Receive Data

This sample code is a block type device driver and passes the transmit or receive data pointer as an argument. The relationship between the data ordering in the data buffer in RAM and the transmit/receive order is shown below and this sample code both transmits in the order data is stored in the transmit buffer and writes data to the receive data buffer in the order received regardless of the endian order or serial communication function used

Figure 5.1 illustrates the storage of transfer data.

Master transmi	Master transmission mode				
Transmit data	Transmit data buffer in RAM (bytes shown)				
0 1		508	509	510	511
Data transmis	ssion order				
		-			
Write to the s	lave device (bytes shown)				
0 1		508	509	510	511
Data receptio	n order				
Master reception	on mode				
Read from the	e slave device (bytes shown)				
0 1		508	509	510	511
Data transmis	Data transmission order				
		-			
Data buffer in	RAM (bytes shown)				
0 1		508	509	510	511
Write to recei	ve data buffer				_ →

5.1.2 Timing Generation in Clock Synchronous Mode

The timings generated in clock synchronous mode are shown below.

Refer to the data sheets of the MCU and SPI device when determining the serial clock frequency to be used.

(1) Single-SPI Operation

To control serial NOR flash memory, the SPI mode 3 (CPOL = 1, CPHA = 1) shown in figure 5.2 is generated.

Figure 5.2 Single-SPI Clock Synchronous Mode Timing Settings

RX Family, RL78 Family, 78K0R/Kx3-L

(2) Dual-SPI Operation

To control serial NOR flash memory, the SPI mode 3 (CPOL = 1, CPHA = 1) shown in figure 5.3 is generated.

Figure 5.3 Dual-SPI Clock Synchronous Mode Timing Settings

RX Family, RL78 Family, 78K0R/Kx3-L

(3) Quad-SPI Operation

To control serial NOR flash memory, the SPI mode 3 (CPOL = 1, CPHA = 1) shown in figure 5.4 is generated.

Figure 5.4 Quad-SPI Clock Synchronous Mode Timing Settings

5.1.3 Serial NOR Flash Memory S# Pin Control

The S# pin of the serial NOR flash memory is connected to the port of the MCU, and it is controlled by MCU general port output.

The duration from the falling edge of the S# (MCU port (CS#)) signal of the serial NOR flash memory to the falling edge of the C (MCU CLK) signal of the serial NOR flash memory is controlled by means of software wait to accommodate the S# setup time of the serial NOR flash memory.

The duration from the rising edge of the C (MCU CLK) signal of the serial NOR flash memory to the rising edge of the S# (MCU port (CS#)) signal of the serial NOR flash memory controlled by means of software wait to accommodate the S# hold time of the serial NOR flash memory.

Check the data sheet of the serial NOR flash memory and set the software wait time as appropriate for the system.

5.1.4 Serial NOR Flash Memory Instruction Codes

Instruction codes are used to control the serial NOR flash memory, and command control is implemented by using these codes.

Table 5-1 Instruction Set

Instruction	Description	Instruction Format
WREN	Write Enable	0000 0110 (06 h)
WRDI	Write Disable	0000 0100 (04 h)
RDSR	Read Status Register	0000 0101 (05 h)
WRSR	Write Status Register	0000 0001 (01 h)
RDFSR	Read Flag Status Register	0111 0000 (70 h)
CLFSR	Clear Flag Status Register	0101 0000 (50 h)
FAST_READ	Read Data at Higher Speed	0000 1011 (0b h)
DOFR	Dual Output Fast Read	0011 1011 (3b h)
QOFR	Quad Output Fast Read	0110 1011 (6b h)
PP	Page Program	0000 0010 (02 h)
DIFP	Dual Input Fast Program	1010 0010 (a2 h)
QIFP	Quad Input Fast Program	0011 0010 (32 h)
SE	Sector Erase	1101 1000 (d8 h)
SSE	Subsector Erase	0010 0000 (20 h)
BE	Bulk Erase	1100 0111 (c7 h)
DE	Die Erase	1100 0100 (c4 h)
RDID	Read Identification	1001 1111 (9f h)
ENTER4	Enter 4-Byte Address Mode	1011 0111 (b7 h)
EXIT4	Exit 4-Byte Address Mode	1110 1001 (e9 h)

5.2 Software Configuration

The sample code operates as upper-layer control software for controlling the SPI serial NOR flash memory (indicated as serial NOR flash memory control software in figure 5.5).

Figure 5.5 Software Configuration

The control procedure is as follows:

- 1. Port (CS#) signal falling edge
- 2. Software wait
- 3. Transmission and reception of commands and data using clock synchronous single master software
- 4. Software wait
- 5. Port (CS#) rising edge

5.3 Required Memory Size

The following table lists the required memory size.

5.3.1 RX Family

(1) RX63N

Table 5-2 Required Memory Size

Memory Used	Size	Remarks
ROM	3,760 bytes (little endian)	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
RAM	6 bytes (little endian)	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
Maximum user stack usage	140 bytes	
Maximum interrupt stack usage		No interrupts used

Note: The required memory size varies depending on the C compiler version and compile options.

The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

(2) **RX111 RSPI**

Table 5-3 Required Memory Size

Memory Used	Size	Remarks
ROM	3,792 bytes (little endian)	r_qspi_pcm_p5q_usr.c
		r_qspi_pcm_p5q_sub.c
		r_qspi_pcm_p5q_drvif.c
RAM	6 bytes (little endian)	r_qspi_pcm_p5q_usr.c
		r_qspi_pcm_p5q_sub.c
		r_qspi_pcm_p5q_drvif.c
Maximum user stack usage	160 bytes	
Maximum interrupt stack usage	—	No interrupts used

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

The maximum usable user stack size includes the stack size of the lower-layer clock synchronous single master software.

(3) RX111 SCI

Table 5-4 Required Memory Size

Memory Used	Size	Remarks
ROM	3,792 bytes (little endian)	r_qspi_pcm_p5q_usr.c
		r_qspi_pcm_p5q_sub.c
		r_qspi_pcm_p5q_drvif.c
RAM	6 bytes (little endian)	r_qspi_pcm_p5q_usr.c
		r_qspi_pcm_p5q_sub.c
		r_qspi_pcm_p5q_drvif.c
Maximum user stack usage	156 bytes	
Maximum interrupt stack usage	—	No interrupts used

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

5.3.2 RL78 Family, 78K0R/Kx3-L

Show the memory size of the different MCU of the order. Check the order of the MCU and please refer to the following memory sizes.

(1) RL78/G14 Integrated Development Environment CubeSuite+ (Compiler:CA78K0R)

Table 5-5 Required Memory Size

Memory Used	Size	Remarks
ROM	6,211 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
RAM	6 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
Maximum user stack usage	102 bytes	
Maximum interrupt stack usage		No interrupts used

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

The maximum usable user stack size includes the stack size of the lower-layer clock synchronous single master software.

(2) RL78/G14 Integrated Development Environment CS+ for CC (Compiler:CC-RL)

Table 5.4 Required Memory Size

Memory Used	Size	Remarks
ROM	5,020 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
RAM	6 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
Maximum user stack usage	82 bytes	
Maximum interrupt stack usage	-	No interrupts used

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

(3) RL78/G14 Integrated Development Environment IAR Embedded Workbench

Table 5-6 Required Memory Size

Memory Used	Size	Remarks
ROM	6,907 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
RAM	6 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
Maximum user stack usage	154 bytes	
Maximum interrupt stack usage	—	No interrupts used

Note: The required memory size varies depending on the C compiler version and compile options.

The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

The maximum user stack size is the stack size for the entire project. It includes the stack of the lowerlayer clock synchronous single-master control software.

(4) RL78/L13 Integrated Development Environment CubeSuite+ (Compiler:CA78K0R)

Table 5-7 Required Memory Size

Memory Used	Size	Remarks
ROM	6,309 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
RAM	6 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
Maximum user stack usage	102 bytes	
Maximum interrupt stack usage		No interrupts used

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

(5) RL78/L13 Integrated Development Environment CS+ for CC (Compiler:CC-RL)

Table 5-8 Required Memory Size

Memory Used	Size	Remarks
ROM	5,024 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
RAM	6 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
Maximum user stack usage	82 bytes	
Maximum interrupt stack usage	—	No interrupts used

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

The maximum usable user stack size includes the stack size of the lower-layer clock synchronous single master software.

(6) RL78/L13 Integrated Development Environment IAR Embedded Workbench

Table 5-9 Required Memory Size

Memory Used	Size	Remarks
ROM	5,398 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
RAM	6 bytes	r_qspi_flash_n25q_usr.c
		r_qspi_flash_n25q_sub.c
		r_qspi_flash_n25q_drvif.c
		r_qspi_flash_n25q_sfr_rl78.c
Maximum user stack usage	132 bytes	
Maximum interrupt stack usage		No interrupts used

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

The maximum user stack size is the stack size for the entire project. It includes the stack of the lowerlayer clock synchronous single-master control software.

5.4 File Structure

The following table lists the files used by the sample code.

Table 5-10 File Structure

\an	_r01an1528ej0104_mcu_serial <dir></dir>	Sample code folder
	r01an1528ej0104_mcu.pdf	Application note
	\source <dir></dir>	Program storage folder
	\r_qspi_flash_n25q <dir></dir>	Serial NOR Flash Memory control software folder
	r_qspi_flash_n25q.h	Header file
	r_qspi_flash_n25q_drvif.c	Driver interface source file
	r_qspi_flash_n25q_drvif.h	Driver interface header file
	r_qspi_flash_n25q_sfr.h.rl78g14	Common definition for registers (RL78/G14)
	r_qspi_flash_n25q_sfr.h.rl78g1c	Common definition for registers (RL78/G1C)
	r_qspi_flash_n25q_sfr.h.rl78l1c	Common definition for registers (RL78/L1C)
	r_qspi_flash_n25q_sfr.h.rl78l12	Common definition for registers (RL78/L12)
	r_qspi_flash_n25q_sfr.h.rl78l13	Common definition for registers (RL78/L13)
	r_qspi_flash_n25q_sfr.h.rx63n	Common definition for registers (RX63N)
	r_qspi_flash_n25q_sfr.h.rx111	Common definition for registers (RX111)
	r_qspi_flash_n25q_sfr_rl78g14.c	Common definition source file for registers (RL78/G14)
	r_qspi_flash_n25q_sfr_rl78g1c.c	Common definition source file for registers (RL78/G1C)
	r_qspi_flash_n25q_sfr_rl78l1c.c	Common definition source file for registers (RL78/L1C)
	r_qspi_flash_n25q_sfr_rl78l12.c	Common definition source file for registers (RL78/L12)
	r_qspi_flash_n25q_sfr_rl78l13.c	Common definition source file for registers (RL78/L13)
	r_qspi_flash_n25q_sub.c	Internal function source file
	r_qspi_flash_n25q_sub.h	Internal function header file
	r_qspi_flash_n25q_usr.c	User interface source file
	\sample <dir></dir>	Operation verification program storage folder
	testmain.c	Sample source file for operation verification

Note: In addition, separate MCU-specific clock synchronous single master control software is required.

5.5 Constants

5.5.1 Return Value

The following table lists the return value used in the sample code.

Constant Name	Setting Value	Contents
FLASH_OK	(error_t)(0)	Successful operation
FLASH_ERR_PARAM	(error_t)(-1)	Parameter error
FLASH_ERR_HARD	(error_t)(-2)	Hardware error
FLASH_ERR_WP	(error_t)(-4)	Write-protection error
FLASH_ERR_TIMEOUT	(error_t)(-6)	Time out error
FLASH_ERR_OTHER	(error_t)(-7)	Other error

Table 5-11 Return Value (Refer to r_qspi_flash_n25q.h)

5.5.2 Command Definitions

The following table lists the command definitions used in the sample code.

Table 5-12 Command Definitions (Refer to r_qspi_flash_n25q_sub.c)

Constant Name	Setting Value	Contents
FLASH_CMD_WREN	(uint8_t)(0x06)	Write Enable
FLASH_CMD_WRDI	(uint8_t)(0x04)	Write Disable
FLASH_CMD_RDSR	(uint8_t)(0x05)	Read Status Register
FLASH_CMD_WRSR	(uint8_t)(0x01)	Write Status Register
FLASH_CMD_RDFSR	(uint8_t)(0x70)	Read Flag Status Register
FLASH_CMD_CLFSR	(uint8_t)(0x50)	Clear Flag Status Register
FLASH_CMD_FREAD	(uint8_t)(0x0b)	Read Data at Higher Speed
FLASH_CMD_DOFR	(uint8_t)(0x3b)	Dual Output Fast Read
FLASH_CMD_QOFR	(uint8_t)(0x6b)	Quad Output Fast Read
FLASH_CMD_PP	(uint8_t)(0x02)	Page Program
FLASH_CMD_DIFP	(uint8_t)(0xa2)	Dual Input Fast Program
FLASH_CMD_QIFP	(uint8_t)(0x32)	Quad Input Fast Program
FLASH_CMD_SE	(uint8_t)(0xd8)	Sector Erase
FLASH_CMD_SSE	(uint8_t)(0x20)	Subsector Erase
FLASH_CMD_BE	(uint8_t)(0xc7)	Bulk Erase
FLASH_CMD_DE	(uint8_t)(0xc4)	Die Erase
FLASH_CMD_RDID	(uint8_t)(0x9f)	Read Identification
FLASH_CMD_ENTER4	(uint8_t)(0xb7)	Enter 4-Byte Address Mode
FLASH_CMD_EXIT4	(uint8_t)(0xe9)	Exit 4-Byte Address Mode

5.5.3 Other Definitions

The values of other definitions used in the sample code are listed below.

Table 5-13 Values Defined in r_qspi_flash_n25q.h

Constant Name	Setting Value	Contents
FLASH_DEV_NUM	(1)	Number of connected devices
FLASH_DEV0	(0)	Device number 0
FLASH_DEV1	(1)	Device number 1
FLASH_DELAY_TASK	(uint8_t)(1)	Wait time of delay task [unit: ms]*1
FLASH_LOG_ERR	(1)	Log Type: Error
FLASH_TRUE	(uint8_t)(0x01)	Flag "ON"
FLASH_FALSE	(uint8_t)(0x00)	Flag "OFF"
FLASH_MODE_B_ERASE	(uint8_t)(1)	Erase Mode: Bulk Erase
FLASH_MODE_S_ERASE	(uint8_t)(2)	Erase Mode: Sector Erase
FLASH_MODE_SS_ERASE	(uint8_t)(3)	Erase Mode: Subsector Erase
FLASH_MODE_D_ERASE	(uint8_t)(4)	Erase Mode: Dei Erase
FLASH_MODE_3BYTE	(uint8_t)(0)	Addressability Mode: 3-byte addressability Mode
FLASH_MODE_4BYTE	(uint8_t)(1)	Addressability Mode: 4-byte addressability Mode
FLASH_MODE_REG_WRITE	(uint8_t)(0)	Wait Mode: Register write mode
FLASH_MODE_PROG_ERASE	(uint8_t)(1)	Wait Mode: Page Program or Erase mode
FLASH_MEM_SIZE	(uint32_t)(33554432)	Memory size (byte units)
		Value at left corresponds to size of 256 Mbit.
FLASH_SECT_ADDR	(uint32_t)(0xffff0000)	Sector address mask value for sector erase
		Value at left corresponds to size of 256 Mbit.
FLASH_SSECT_ADDR	(uint32_t)(0xfffff000)	Sector address mask value for subsector erase
		Value at left corresponds to size of 256 Mbit.
FLASH_PAGE_SIZE	(uint32_t)(64)	Page size (byte units)
		Value at left corresponds to size of 256 Mbit.
FLASH_ADDR_SIZE	(uint8_t)(4)	Address size (byte units)
		Value at left corresponds to size of 256 Mbit.
FLASH_WP_WHOLE_MEM	(uint8_t)(0x1f)	Whole-chip write protect
		Value at left corresponds to size of 256 Mbit.
FLASH_FULL_CHIP_ERASE	FLASH_MODE_B_ERA	Supported erase-all command
	SE	Value at left corresponds to size of 256 Mbit.
FLASH_ADDR_MODE	FLASH_MODE_4BYTE	Addressability Mode
		Value at left corresponds to size of 256 Mbit.
FLASH_CMD_SIZE	(uint8_t)1	Command size (byte units)
FLASH_STSREG_SIZE	(uint16_t)1	Status register size (byte units)
FLASH_IDDATA_SIZE	(uint16_t)20	ID data size (byte units)

Note: 1. The delay task for OS control. The OS control used in the sample code assumes µITRON 4.0.

Constant Name	Setting Value	Contents
FLASH_DR_CS0	PORTA.PODR.BIT.B0	Device number 0 port output data register SFR definition
FLASH_DDR_CS0	PORTA.PDR.BIT.B0	Device number 0 port direction register SFR definition
FLASH_DR_CS1		Device number 1 port output data register SFR definition (This setting is needed when controlling two devices.)
FLASH_DDR_CS1		Device number 1 port direction register SFR definition (This setting is needed when controlling two devices.)
FLASH_HI	(uint8_t)(0x01)	Port "H"
FLASH_LOW	(uint8_t)(0x00)	Port "L"
FLASH_OUT	(uint8_t)(0x01)	Port Output Setting
FLASH_IN	(uint8_t)(0x00)	Port Input Setting
FLASH_BR	(uint8_t)(0x01)	Transfer rate for command transmission*1
FLASH_BR_WRITE_DATA	(uint8_t)(0x01)	Transfer rate for data transmission*1
FLASH_BR_READ_DATA	(uint8_t)(0x01)	Transfer rate for data reception*1

Note: 1. This value is set in the RSPI bit rate register (SPBR) when using the clock synchronous single master control software with the RSPI. The value shown is for a peripheral module clock setting of 48 [MHz] and a transfer rate of 12 [MHz].

This value is set in the bit rate register (BRR) when using the clock synchronous single master control software with SCI. The value shown is for a peripheral module clock setting of 48 [MHz] and a transfer rate of 6 [MHz].

Table 5-15	Values Defined in r	_qspi_flash_	_n25q_sfr.h.rl78
------------	---------------------	--------------	------------------

Constant Name	Setting Value	Contents
FLASH_DR_CS0	P4.2	Device number 0 port register SFR definition
FLASH_DDR_CS0	PM4.2	Device number 0 port mode register SFR definition
FLASH_DR_CS1		Device number 1 port output data register SFR definition (This setting is needed when controlling two devices.)
FLASH_DDR_CS1		Device number 1 port direction register SFR definition (This setting is needed when controlling two devices.)
FLASH_HI	(uint8_t)(0x01)	Port "H"
FLASH_LOW	(uint8_t)(0x00)	Port "L"
FLASH_OUT	(uint8_t)(0x00)	Port Output Setting
FLASH_IN	(uint8_t)(0x01)	Port Input Setting
FLASH_BR	(uint8_t)(0x01)	Transfer rate for command transmission*1
FLASH_BR_WRITE_DATA	(uint8_t)(0x01)	Transfer rate for data transmission*1
FLASH_BR_READ_DATA	(uint8_t)(0x01)	Transfer rate for data reception*1

Note: 1. This value is set in bits 15 to 9 of the serial data register (SDR) when using the clock synchronous single master control software in the serial array unit CSI mode. The sample code uses this value with an operation clock setting of 24 [MHz] and a transfer rate or 6 [MHz].

Table 5-16 Values Defined in r_qspi_flash_n25q_sub.c

Constant Name	Setting Value	Contents
FLASH_SHORT_SIZE	(uint32_t)(0x00008000)	Maximum transfer size setting for low-level functions (max.: 32 KB)

Table 5-17 Values Defined in r_qspi_flash_n25q_sub.h

Constant Name	Setting Value	Contents
FLASH_BE_BUSY_WAIT	(uint32_t)(480000)	Bulk Erase Busy Timeout
		480000 × 1 ms = 480s
FLASH_SE_BUSY_WAIT	(uint32_t)(3000)	Sector Erase Busy Timeout
		3000 × 1 ms = 3 s
FLASH_SSE_BUSY_WAIT	(uint32_t)(3000)	Subsector Erase Busy Timeout
		3000 × 1 ms = 3 s
FLASH_DE_BUSY_WAIT	(uint32_t)(480000)	Dei Erase Busy Timeout
		480000 × 1 ms = 480 s
FLASH_WBUSY_WAIT	(uint32_t)(8000)	Write Ready Timeout
		$8000 \times 1 \ \mu s = 8 \ ms$
FLASH_T_WBUSY_WAIT	(uint16_t)MTL_T_1US	Write Busy Polling Time
FLASH_T_EBUSY_WAIT	(uint16_t)MTL_T_1MS	Erase Busy Polling Time
FLASH_T_CS_HOLD	(uint16_t)MTL_T_1US	CS Stability Waiting Time
FLASH_T_R_ACCESS	(uint16_t)MTL_T_1US	Reading Start Waiting Time
FLASH_REG_SRWD	(uint8_t)(0x80)	Status Register Write Disable
FLASH_REG_BP3	(uint8_t)(0x40)	Block Protection Bit3
FLASH_REG_TB	(uint8_t)(0x20)	Top/Bottom Bit
FLASH_REG_BP2	(uint8_t)(0x10)	Block Protection Bit2
FLASH_REG_BP1	(uint8_t)(0x08)	Block Protection Bit1
FLASH_REG_BP0	(uint8_t)(0x04)	Block Protection Bit0
FLASH_REG_WEL	(uint8_t)(0x02)	Write Enable Latch Bit
FLASH_REG_WIP	(uint8_t)(0x01)	Write In Progress Bit
FLASH_REG_MASK	(uint8_t)(0xfc)	Write status fixed data
FLASH_FSTSREG_READY	(uint8_t)(0x80)	Program or erase controller
FLASH_FSTSREG_ERASE	(uint8_t)(0x20)	Erase (flag status register)
FLASH_FSTSREG_PROG	(uint8_t)(0x10)	Program (flag status register)
FLASH_FSTSREG_VPP	(uint8_t)(0x08)	V _{PP} (flag status register)
FLASH_FSTSREG_PROT	(uint8_t)(0x02)	Protection (flag status register)

5.6 Structure/Union List

Show the Structure/Union Used in the Sample Code.

typedef union { uint32_t ul;		
uint8_t uc[4]; } flash_exchg_long_t;	/* total 4bytes	*/

Figure 5.6 Union Used in the Sample Code (Refer to r_qspi_flash_n25q_sub.c)

typedef struct			
{			
uint32_t	Addr;	/* Address to issue a command	*/
uint32_t	Cnt;	/* Number of bytes to be read/written	*/
uint16_t	DataCnt;	/* Temporary counter or Number of bytes to be written in a page	*/
uint8_t	rsv[2];	/* Reserved	*/
uint8_t FAR*	pData;	/* Data storage buffer pointer	*/
<pre>} r_qspi_flash_info_t;</pre>			

Figure 5.7	Structure Used in the	e Sample Code	(Refer to r_	qspi_flash_n25q.h)
------------	-----------------------	---------------	--------------	--------------------

Table 5-18	Description of Structure "r_qspi_flash_info_t"	

Structure Member	Allowable Setting Range	Description
Addr	0000 0000h to FFFF FFFFh	Write/read start address
Cnt	0000 0000h to FFFF FFFFh	Write/read data counter (byte units)
DataCnt	(Setting prohibited.)	Write: Write data counter temp. (max. 1 page) Read: Read data counter temp. (max. 32 KB)
rsv[2]	(Setting has no effect.)	For alignment adjustment
pData	—	Data storage buffer pointer
		Write: Storage source of data to be written in serial NOR flash memory
		Read: Storage destination of data to be read from serial NOR flash memory

5.7 Variable

The following table lists the static variable.

Table 5-19 Static Variable (Refer to r_qspi_flash_n25q_sub.c)

Туре	Variable Name	Contents	Function Used
STATIC uint8_t	g_flash_cmdbuf[6]	Command buffer	r_qspi_flash_send_cmd r_qspi_flash_set_cmd

5.8 Functions

The following table lists the functions.

Table 5-20 Functions

Function Name	Outline
R_QSPI_FLASH_Init_Driver()	Driver initialization processing
R_QSPI_FLASH_Read_Status()	Status register read processing
R_QSPI_FLASH_Read_Flag_Status()	Flag status register read processing
R_QSPI_FLASH_Set_Write_Protect()	Write protect setting processing
R_QSPI_FLASH_Clear_Status()	Clear flag status processing
R_QSPI_FLASH_Write_Di	WRDI command issue processing
R_QSPI_FLASH_Read_Data()	Data read processing
R_QSPI_FLASH_Write_Data()	Data write processing
R_QSPI_FLASH_Write_Data_Page()	Data write processing (for single-page write)
R_QSPI_FLASH_Erase()	Erase processing
R_QSPI_FLASH_Read_ID()	ID read processing
R_QSPI_FLASH_Wait()	Busy wait processing
R_QSPI_FLASH_Set_Addressability_Mode()	Address mode setting processing

On cache-equipped MCUs, specify a non-cached area as the location of the read/write data storage buffer.

The read/write data storage buffer address is dependent on the lower-layer MCU-specific clock synchronous single master control software, and in some cases it is necessary to specify an address on a 4-byte boundary. For details, refer to the application note for the MCU-specific clock synchronous single master control software.

5.9 Function Specifications

The following tables list the sample code function specifications.

	j		
R_QSPI_FLASH_Init_Driver			
Outline	Driver initialization processir	ng	
Header		_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h,	
	r_qspi_flash_n25q_drvif.h		
Declaration	error_t R_QSPI_FLASH_Init_Driver(void)		
Description	• Calls the r_qspi_flash_init_port() function to initialize the CS# pin.		
	 Calls the initialization fun software to initialize the I 	ction of the clock synchronous single master control /O ports.	
	Call this function once at	 Call this function once at system startup 	
Arguments	None		
Return Value	The initialization result is ret	urned.	
	FLASH_OK	; Successful operation	
	FLASH_ERR_OTHER	; Other error	
	The return value of r_qspi_fl	ash_drvif_init_driver() is returned.	

5.9.1 Driver Initialization Processing

Figure 5.8 Overview of Driver Initialization Processing

R_QSPI_FLASH_Re	ad_Status			
Outline	Status register read processing			
Header	r_qspi_flash_n25q.h, r_qspi_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h,			
	r_qspi_flash_n25q_drvif.h			
Declaration	error_t R_QSPI_FLASH_Read_Status(uint8_t DevNo, uint8_t FAR* pStatus)			
Description	 Reads the status register and stores the result in pStatus. 			
	Set 1 byte as a read buffer.			
	 Stores the following information in the read status storage buffer (pStatus): Bit 7:SRWD 			
	1: TB, BP3, BP2, BP1, BP0 are read-only bits			
	0: TB, BP3, BP2, BP1, BP0 are read/writable			
	Bits 6 to 2: BP3, TB, BP2, BP1, BP0			
	Bit 1:WEL			
	1: Internal Write Enable Latch is set			
	0: Internal Write Enable Latch is reset			
	Bit 0:WIP			
	1: Program or Erase cycle is in progress			
	0: No Program or Erase cycle is in progress			
	 Refer to the data sheet of the serial NOR flash memory for the relationship between protect areas and protect bits. It is possible that the BP bits may not be allocated. 			
Arguments	uint8_t DevNo ; Device number			
	uint8_t FAR* pStatus ; Read status storage buffer pointer			
Return Value	The status register fetch result is returned.			
	FLASH_OK ; Successful operation			
	FLASH_ERR_PARAM ; Parameter error			
	FLASH_ERR_HARD ; Hardware error			
	FLASH_ERR_OTHER ; Other error			

Figure 5.9 Overview of Status Register Read Processing

5.9.3

Flag Status Register Read Processing

5.9.3 Flag St	atus Register Read Processing
R_QSPI_FLASH_R	ead_Flag_Status
Outline	Flag status register read processing
Header	r_qspi_flash_n25q.h, r_qspi_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h,
	r_qspi_flash_n25q_drvif.h
Declaration	error_t R_QSPI_FLASH_Read_Flag_Status(uint8_t DevNo, uint8_t FAR* pFStatus)
Description	 Reads the flag status register and stores the result in pFStatus. Set 1 byte as a read buffer.
	• Stores the following information in the read flag status storage buffer (pFStatus):
	Bit 7: Program or erase controller
	1: Ready
	0: Busy
	Bits 6: Erase suspend
	1: In effect
	0: Not in effect
	Bits 5: Erase
	1: Failure or protection error
	0: Clear
	Bits 4: Program
	1: Failure or protection error
	0: Clear
	Bits 3: VPP
	1: Disable
	0: Enabled
	Bits 2: Program suspend
	1: In effect
	0: Not in effect
	Bit 1: Protection
	1: Failure or protection error
	0: Clear
	Bit 0: Reserved
Arguments	uint8_t DevNo ; Device number
U U	uint8_t FAR* pFStatus ; Read flag status storage buffer pointer
Return Value	The flag status register fetch result is returned.
	FLASH_OK ; Successful operation
	FLASH_ERR_PARAM ; Parameter error
	FLASH_ERR_HARD ; Hardware error
	FLASH_ERR_OTHER ; Other error

Figure 5.10 Overview of Flag Status Register Read Processing

5.9.4 Write Protect Setting Processing							
R_QSPI_FLASH_Set_\	PI_FLASH_Set_Write_Protect						
Outline	Write protect setting processing						
Header	r_qspi_flash_n25q.h, r_qspi_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h,						
	r_qspi_flash_n2	•					
				/rite_Pro	otect(uir	nt8_t De	evNo, uint8_t WpSts)
Description	 Makes write p 		-				
	 Make settings 	s using	the follo	wing wr	ite prote	ect settir	ng data (WpSts):
	WpSts	BP3	TB1	BP2	BP1	BP0	Protected Area
	0x00	0	0	0	0	0	None
	0x01	0	0	0	0	1	Sector 2047
	0x02	0	0	0	1	0	Sectors (2046 to 2047)
	0x03	0	0	0	1	1	Sectors (2044 to 2047)
	0x04	0	0	1	0	0	Sectors (2040 to 2047)
	0x05	0	0	1	0	1	Sectors (2032 to 2047)
	0x06	0	0	1	1	0	Sectors (2016 to 2047)
	0x07	0	0	1	1	1	Sectors (1984 to 2047)
	0x10	1	0	0	0	0	Sectors (1920 to 2047)
	0x11	1	0	0	0	1	Sectors (1792 to 2047)
	0x12	1	0	0	1	0	Sectors (1536 to 2047)
	0x13	1	0	0	1	1	Sectors (1024 to 2047)
	0x14 – 0x17	1	0	1	0/1	0/1	All sectors
	0x08	0	1	0	0	0	None
	0x09	0	1	0	0	1	Sector 0
	0x0a	0	1	0	1	0	Sectors (0 to 1)
	0x0b	0	1	0	1	1	Sectors (0 to 3)
	0x0c	0	1	1	0	0	Sectors (0 to 7)
	0x0d	0	1	1	0	1	Sectors (0 to 15)
	0x0e	0	1	1	1	0	Sectors (0 to 31)
	0x0f	0	1	1	1	1	Sectors (0 to 63)
	0x18	1	1	0	0	0	Sectors (0 to 127)
	0x19	1	1	0	0	1	Sectors (0 to 255)
	0x1a	1	1	0	1	0	Sectors (0 to 511)
	0x1b	1	1	0	1	1	Sectors (0 to 1023)
	0x1c - 0x1f	1	1	1	0/1	0/1	All sectors

• Clears SRWD to 0.

- · Refer to the data sheet of the serial NOR flash memory for the relationship between protect areas and protect bits. It is possible that the BP bits may not be allocated.
- There are two ways to wait for write completion. These are described below. Note that the next processing task (write, read, erase, etc.) should be executed after confirming write completion.
- To use the user API to wait for write completion, enable FLASH_WAIT_READY in r_qspi_flash_n25q.h.
- To wait for write completion without using the user API, disable FLASH WAIT READY in r gspi flash n25g.h and call R QSPI FLASH Wait() after processing by the user API finishes. This processing method allows the use of a user-defined duration when waiting for write completion. Refer to figure 5.12 for the usage method.

RENESAS

RX Family, RL78 Family, 78K0R/Kx3-L

 To confirm whether or not protect was applied successfully, read the status register. In addition, if the WEL bit has be set to 1, execute the WRDI command issue processing function (R_QSPI_FLASH_Write_Di()). DevNo ; Device number Arguments uint8 t WpSts uint8_t ; Write protect setting data **Return Value** The write protect setting result is returned. FLASH OK ; Successful operation FLASH_ERR_PARAM ; Parameter error FLASH ERR HARD ; Hardware error FLASH_ERR_TIMEOUT; Time out error (FLASH_WAIT_READY enabled) FLASH_ERR_OTHER ; Other error

Figure 5.11 Overview of Write Protect Setting Processing

Figure 5.12 Using R_QSPI_FLASH_Wait() to Wait for Write Protect Setting Completion

Clear Flag Status Processing

5.9.5

J.J.J Clear I	lag Status i Tocessing			
R_QSPI_FLASH_CI	R_QSPI_FLASH_Clear_Status			
Outline	Clear flag status processing			
Header	r_qspi_flash_n25q.h, r_qspi_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h,			
	r_qspi_flash_n25q_drvif.h			
Declaration	error_t R_QSPI_FLASH_Clo	error_t R_QSPI_FLASH_Clear_Status(uint8_t DevNo)		
Description	 Clears the error bits in th 	Clears the error bits in the flag status register.		
	• When a programming error, erase error, or write protect error occurs, this function			
	must be called to clear th	ne error bits.		
Arguments	uint8_t DevNo ; Device number			
Return Value	The clearing result is returned	ed.		
	FLASH_OK	; Successful operation		
	FLASH_ERR_PARAM	; Parameter error		
	FLASH_ERR_HARD	; Hardware error		
	FLASH_ERR_OTHER	; Other error		

Figure 5.13 Overview of Clear Flag Status Processing

R_QSPI_FLASH_W	rite_Di			
Outline	WRDI command issue processing			
Header	r_qspi_flash_n25q.h, r_qspi_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h, r_qspi_flash_n25q_drvif.h			
Declaration	error_t R_QSPI_I	error_t R_QSPI_FLASH_Write_Di(uint8_t DevNo)		
Description	 Clears the WEL bit in the status register. 			
	 When a programust be called 	-	or, erase error, or write protect error occurs, this function e WEL bit.	
Arguments	uint8_t E	uint8_t DevNo ; Device number		
Return Value	The clearing result is returned.			
	FLASH_OK		; Successful operation	
	FLASH_ERR_PA	RAM	; Parameter error	
	FLASH_ERR_HA	RD	; Hardware error	
	FLASH_ERR_OT	HER	; Other error	

5.9.6 WRDI Command Issue Processing

Figure 5.14 Overview of WRDI Command Issue Processing

Data Read Processing

5.9.7

5.9.7 D	ala Rea	u Processin	y			
R_QSPI_FLA	\SH_Rea	d_Data				
Outlin	е	Data read pro	ocessing			
Heade	er	r_qspi_flash_	_n25q.h, r_	_qspi_flash_n	250	q_sub.h, r_qspi_flash_n25q_sfr.h,
		r_qspi_flash_	n25q_drv	if.h		
Declarat	ion		PI_FLAS	H_Read_Data	a(ui	nt8_t DevNo, r_qspi_flash_info_t FAR*
		pFlash_Info)				
Descript	ion		•	number of by mory, and sto		s of data from the specified address in the sit in pData.
				•		e serial NOR flash memory capacity – 1.
						by means of a rollover. After reading the final
					-	hen call the user API again after specifying a
		new addre	•	Ū		
Argume	nts	uint8_t	DevNo			; Device number
		r_qspi_flash_	_info_t FAF	R* pFlash_Inf	o	; FLASH communication information structure
		uint3	2_t	Addr		; Read start address
		uint3	2_t	Cnt		; Read byte count
		uint1	6_t	DataCnt		; Read byte temp. (setting prohibited)
		uint8	_t FAR*	pData		; Read data storage buffer pointer
Return Va	alue	The read res	ult is returi	ned.		
		FLASH_OK		; Su	ICCe	essful operation
		FLASH_ERR	_PARAM	; Pa	arar	neter error
		FLASH_ERR	_HARD	; Ha	ard	vare error
		FLASH_ERR	_OTHER	; Ot	her	error

5.9.8 Data Wi	rite Processing
R_QSPI_FLASH_W	rite_Data
Outline	Data write processing
Header	r_qspi_flash_n25q.h, r_qspi_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h,
	r_qspi_flash_n25q_drvif.h
Declaration	error_t R_QSPI_FLASH_Write_Data(uint8_t DevNo, r_qspi_flash_info_t FAR*
– • <i>/</i>	pFlash_Info)
Description	 Writes the specified number of bytes of the data in pData to the specified address in the serial NOR flash memory.
	 Writing to the serial NOR flash memory can only be performed to areas with write protect disabled. It is not possible to write to areas where protect is enabled. FLASH_ERR_WP is returned when a write is attempted.
	• The final write address is equal to the serial NOR flash memory capacity – 1.
	• The maximum value that can be set for the write byte count (Cnt) is equal to the
	serial NOR flash memory capacity.
	 The user API performs a wait for write completion regardless of the setting of FLASH_WAIT_READY in r_qspi_flash_n25q.h.
	 When the return value is FLASH_ERR_WP or FLASH_ERR_OTHER, an error bit has been set in the flag status register and clear flag status processing should be performed. To clear the WEL bit in the status register, perform WRDI command issue processing.
Arguments	uint8_t DevNo ; Device number
	r_qspi_flash_info_t FAR* pFlash_Info ; Flash communication information structure
	uint32_t Addr ; Write start address
	uint32_t Cnt ; Write byte count
	uint16_t DataCnt ; Write byte temp. (setting prohibited)
	uint8_t FAR* pData ; Write data storage buffer pointer
Return Value	The read result is returned.
	FLASH_OK ; Successful operation
	FLASH_ERR_PARAM ; Parameter error
	FLASH_ERR_HARD ; Hardware error
	FLASH_ERR_WP ; Write-protection error FLASH_ERR_TIMEOUT ; Time out error
	FLASH_ERR_OTHER ; Other error

5.9.8 Data Write Processing

Figure 5.16 Overview of Data Write Processing

5.9.9 Data W	rite Processing (for single-page write)				
R_QSPI_FLASH_W	/rite_Data_Page				
Outline	Data write processing (for single-page write)				
Header	r_qspi_flash_n25q.h, r_qspi_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h,				
	r_qspi_flash_n25q_drvif.h				
Declaration	error_t R_QSPI_FLASH_Write_Data_Page(uint8_t DevNo, r_qspi_flash_info_t FA				
	pFlash_Info)				
Description	 Writes the specified number of bytes (maximum: 1 page) of the data in pData to the specified address in the serial NOR flash memory. 				
	 Writing to the serial NOR flash memory can only be performed to areas with wr protect disabled. It is not possible to write to areas where protect is enabled. FLASH_ERR_WP is returned when a write is attempted. 				
	 It is not possible to write to areas where protect is enabled. When a write is attempted, an error is returned. 				
	• The final write address is equal to the serial NOR flash memory capacity – 1.				
	 The maximum value that can be set for the write byte count (Cnt) is equal to the serial NOR flash memory capacity. 				
	 Even if a byte count that exceeds one page is specified, the remaining byte cou and the next address information remains in the FLASH communication 				
	information structure (pFlash_Info) after write processing of one page finishes. is possible to write the remaining byte count by setting pFlash_Info once again				
	without modification.				
	• There are two ways to wait for write completion. These are described below. Note that the next processing task (write, read, erase, etc.) should be executed after				
	 confirming write completion. To use the user API to wait for write completion, enable FLASH_WAIT_READY in r_qspi_flash_n25q.h. 				
	 To wait for write completion without using the user API, disable 				
	FLASH_WAIT_READY in r_qspi_flash_n25q.h and call R_QSPI_FLASH_Waite				
	after processing by the user API finishes. This processing method allows the use				
	of a user-defined duration when waiting for write completion. Refer to figure 5.18 for the usage method.				
	• When the return value is FLASH ERR WP or FLASH ERR OTHER, an error				
	has been set in the flag status register and clear flag status processing should performed. To clear the WEL bit in the status register, perform WRDI command				
•	issue processing.				
Arguments	uint8_t DevNo ; Device number				
	r_qspi_flash_info_t FAR* pFlash_Info ; FLASH communication information structur				
	uint32_t Addr ; Write start address				
	uint32_t Cnt ; Write byte count				
	uint16_t DataCnt ; Write byte temp. (setting prohibited)				
Detum Value	uint8_t FAR* pData ; Write data storage buffer pointer				
Return Value	The read result is returned.				
	FLASH_OK ; Successful operation				
	FLASH_ERR_PARAM ; Parameter error				
	FLASH_ERR_HARD ; Hardware error				
	FLASH_ERR_WP ; Write-protection error (FLASH_WAIT_READY enabled)				
	FLASH_ERR_TIMEOUT; Time out error (FLASH_WAIT_READY enabled)				
	FLASH_ERR_OTHER ; Other error				

Figure 5.17 Overview of Data Write Processing (for single-page write)

Figure 5.18 Using R_QSPI_FLASH_Wait() to Wait for Data Write Processing (for Single-Page Write) Completion

5.9.10 Erase P	Processing			
R_QSPI_FLASH_Er	ase			
Outline	Erase processing			
Header	r_qspi_flash_n25q.h, r_qspi_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h, r_qspi_flash_n25q_drvif.h			
Declaration	error_t R_QSPI_FLASH_Erase(uint8_t DevNo, uint32_t Addr, uint8_t Mode)			
Description	 Erases all the data in the memory (bulk erase), all the data in a specified see (sector erase), all the data in a specified subsector (subsector erase), or all data in a specified die (die erase) by using the Mode setting. For bulk erase, set Addr to 0x00000000. For die erase, set Addr to the start address of the specific die. Erasing the serial NOR flash memory can only be performed on areas with 			
	 It is not possible to erase areas where protect is enabled. Executing a wait for			
	erase completion causes FLASH_ERR_WP to be returned.			
	 There are two ways to wait for erase completion. These are described below. Note that the next processing task (write, read, erase, etc.) should be executed after confirming erase completion. 			
	 To use the user API to wait for completion, enable FLASH_WAIT_READY in r_qspi_flash_n25q.h. 			
	• To wait for completion without using the user API, disable FLASH_WAIT_READY in r_qspi_flash_n25q.h and call R_QSPI_FLASH_Wait() after processing by the user API finishes. This processing method allows the use of a user-defined duration when waiting for completion. Refer to figure 5.20 for the usage method.			
	 The argument setting (BusyCnt) when calling R_QSPI_FLASH_Wait() differs depending on the erase mode. Bulk Erase; BusyCnt = FLASH_BE_BUSY_WAIT 			
	Build Erase;BusyCht = FLASH_BE_BUSY_WAITSector Erase;BusyCht = FLASH_SE_BUSY_WAITDie Erase;BusyCht = FLASH_DE_BUSY_WAIT			
	 When the return value is FLASH_ERR_WP or FLASH_ERR_OTHER, an error bit has been set in the flag status register and clear flag status processing should be performed. To clear the WEL bit in the status register, perform WRDI command issue processing. 			
Arguments	uint8_t DevNo ; Device number			
-	uint32_t Addr ; Erase address uint8_t Mode ; Erase mode (selectable from the following): FLASH_MODE_B_ERASE FLASH_MODE_S_ERASE FLASH_MODE_SS_ERASE FLASH_MODE_D_ERASE			
Return Value	The erase result is returned. FLASH_OK ; Successful operation FLASH_ERR_PARAM ; Parameter error FLASH_ERR_HARD ; Hardware error FLASH_ERR_WP ; Write-protection error (FLASH_WAIT_READY enabled) FLASH_ERR_TIMEOUT; Time out error (FLASH_WAIT_READY enabled) FLASH_ERR_OTHER ; Other error			

Figure 5.19 Overview of Erase Processing

Figure 5.20 Using R_QSPI_FLASH_Wait() to Wait for Erase Processing Completion

5.9.11 ID Read Processing

R_QSPI_FLASH_ReadID					
Outline	ID read processing				
Header	r_qspi_flash_n25q.h, r_qspi_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h,				
	- • •	r_qspi_flash_n25q_drvif.h			
Declaration	error_t R_QSPI_FLASH_Read_ID(uint8_t DevNo, uint8_t FAR* pData)				
Description	 Reads the manufacturer ID and device ID, and stores them in pData. Set 20 bytes as a read buffer. 				
	 Stores the f 	following in	formation in the read status storage buffer (pData):		
		-	facturer ID		
		(2) Memo	ргу Туре		
	(3) Memory Capacity				
	(4) Length of data to follow				
	(5) Extended device ID and device configuration information				
		(6 - 20) C	customized factory data		
Arguments	uint8_t	DevNo	; Device number		
	uint8_t FAR*	pData	; Read data storage buffer pointer		
Return Value	The read result is returned.				
	FLASH_OK		; Successful operation		
	FLASH_ERR_	PARAM	; Parameter error		
	FLASH_ERR_	HARD	; Hardware error		
	FLASH_ERR_	OTHER	; Other error		

Figure 5.21 Overview of ID Read Processing

R_QSPI_FLASH_W	/ait					
Outline	Busy wait processing					
Header	r_qspi_flash_n25q.h, r_qs r_qspi_flash_n25q_drvif.h	pi_flash_n25q_sub.h, r_qspi_	_flash_n25q_sfr.h,			
Declaration	error_t R_QSPI_FLASH_\ uint8_t Mode)	Wait(uint8_t DevNo, uint16_t	BusyTime, uint32_t BusyCnt			
Description	Use this function to con FLASH_WAIT_READY	nfirm completion of write or en	rase when			
	 When BusyCnt = 0, a v interval. 	wait is performed for a busy p	eriod equal to the BusyTime			
		wait is performed for a busy p usyCnt. If the busy state exce JT is returned.				
	setting.	ter write, data write, or erase,	-			
		WRITE: Register write mode G_ERASE: Data write and era				
	-	 In register write mode (small-capacity products of 256 Mbits or less), the function issues the RDSR command and determines the ready/busy state by means of the WIP bit. 				
	 In register write mode (512 Mbit and 1 Gbit products), the function issues the RDFSR command and determines the ready/busy state by means of the program or erase controller bit. The device is determined to be in the ready state when the read value of the program or erase controller is 1 (ready) twice in succession for 512 Mbit products, or four times in succession for 1 Gbit products. 					
	 In data write and erase mode, the function first determines the ready/busy state by means of the WIP bit. If the WIP bit indicates the ready state, the function issues the RDFSR command and determines the ready/busy state by means of the program or erase controller bit. 					
	• When the value of the protection error bit is 1, FLASH_ERR_WP is returned.					
	• When the value of the protection error bit is 0, and the value of the erase,					
	 programming, or V_{PP} error bit is 1, FLASH_ERR_OTHER is returned. The BusyCnt and BusyTime setting values are different for writing and erasing. A 					
	timeout error may occur if busy wait takes place using other than the expected settings. Make settings according to the following table:					
	State	BusyTime	BusyCnt			
	Status register write in progress (write protect bit set)	FLASH_T_WBUSY_WAIT	FLASH_WBUSY_WAIT			
	Data write in progress	FLASH_T_WBUSY_WAIT	FLASH_WBUSY_WAIT			
	Erase in progress (bulk erase)	FLASH_T_EBUSY_WAIT	FLASH_BE_BUSY_WAIT			
	Erase in progress (sector erase)	FLASH_T_EBUSY_WAIT	FLASH_SE_BUSY_WAIT			
	Erase in progress (subsector erase)	FLASH_T_EBUSY_WAIT	FLASH_SSE_BUSY_WAIT			
	Erase in progress (die erase)	FLASH_T_EBUSY_WAIT	FLASH_DE_BUSY_WAIT			

5.9.12 Busy Wait Processing

		Control Soltware
Arguments	uint8_t DevNo	; Device number
	uint16_t BusyTime	; Wait duration (selectable from the following):
		FLASH_T_WBUSY_WAIT: Write
		FLASH_T_EBUSY_WAIT: Erase
	uint32_t BusyCnt	; Counter (selectable from the following):
		FLASH_WBUSY_WAIT: Write
		FLASH_BE_BUSY_WAIT: Erase (Bulk Erase)
		FLASH_SE_BUSY_WAIT: Erase (Sector Erase)
		FLASH_SSE_BUSY_WAIT: Erase (Subsector Erase)
		FLASH_DE_BUSY_WAIT: Erase (Die Erase)
	uint8_t Mode	; Wait mode (selectable from the following):
		FLASH_MODE_REG_WRITE: Register write
		FLASH_MODE_PROG_ERASE: Data write and erase
Return Value	The wait result is returned	
	FLASH_OK	; Successful operation
	FLASH_ERR_PARAM	; Parameter error
	FLASH_ERR_HARD	; Hardware error
	FLASH_ERR_WP	; Write-protection error
	FLASH_ERR_TIMEOUT	; Time out error (when BusyCnt \neq 0)
	FLASH_ERR_OTHER	; Other error

Figure 5.20 Overview of Busy Wait Processing

5.9.13 Address	Mode Setting Processi	ng		
R_QSPI_FLASH_Se	t_Addressability_Mode			
Outline	Address mode setting processing			
Header		r_qspi_flash_n25q.h, r_qspi_flash_n25q_sub.h, r_qspi_flash_n25q_sfr.h, r_qspi_flash_n25q_drvif.h		
Declaration	error_t R_QSPI_FLASH_	error_t R_QSPI_FLASH_Set_Addressability_Mode (uint8_t DevNo)		
Description		enter_4addr() function to enable 4-byte address mode. this function once after calling the R_QSPI_FLASH_Init_		
Arguments	uint8_t DevNo	; Device number		
Return Value	The address mode setting result is returned.			
	FLASH_OK	; Successful operation		
	FLASH_ERR_PARAM	; Parameter error		
	FLASH_ERR_HARD	; Hardware error		
	FLASH_ERR_OTHER	; Other error		

Figure 5.23 Overview of Address Mode Setting Processing

6. Application Example

Example settings for the serial NOR flash memory control portion are shown below. (The serial I/O control portion is not covered.)

Refer to the MCU-specific application note on the clock synchronous single master control software for details of the serial I/O control portion.

Note that the communication speed requires settings for each individual slave device, and these setting are included in the sample code.

The setting locations are designated in each file by the comment /** SET **/.

In addition, for functions used in common (mtl_wait_lp(), etc.), make sure to use the versions included in the MCU-specific clock synchronous single master control software.

6.1 Serial NOR Flash Memory Control Software Settings

The setting locations are designated in each file by the comment /** SET **/.

6.1.1 r_qspi_flash_n25q.h

This is the definition file for the serial NOR flash memory.

The setting locations are designated in each file by the comment /** SET **/.

(1) Definition of Number of Devices Used and Device Numbers

Specify the number of devices to be used, and allocate a number to each device.

In the example below, one device is used, and it is allocated the device number 0.

Up to two devices can be controlled.

<pre>/* /* Define number of required /* Define the device number /* devices to be connected.</pre>	serial FLASH de in accordance wi	evices.(1~N devic ith the number of	es) E serial FLASH	*/ */ */
/*/* Define no. of devices */ #define FLASH_DEV_NUM	(1)		ldevice	*/ */
/* Define no. of slots */ #define FLASH_DEV0 #define FLASH_DEV1	(0) (1)	•	Device 0 Device 1	* / * /

(2) Definition of Capacity of Device Used

Specify the capacity of the device(s) used.

In the example below, a device with a capacity of 256 Mbit is used.

/* /* Define the serial FLASH device. /*		*/ */ */
//#define N25Q32M //#define N25Q64M //#define N25Q128M #define N25Q256M //#define N25Q512M //#define N2501G	<pre>/* 32Mbit (4MByte) /* 64Mbit (8MByte) /* 128Mbit (16MByte) /* 256Mbit (32MByte) /* 512Mbit (64MByte) /* 1Gbit (128MByte)</pre>	* / * / * / * / * /

(3) Delay Task Wait Time Setting (Valid when OS Control is Used)

This setting specifies the OS control* delay task wait time. The unit is ms.

In the example below, a setting of 1 ms is used.

/*----- Definitions of delay task wait time -----*/
#define FLASH_DELAY_TASK (uint8_t)(1) /* OS delay task wait time (Uint:ms) */

Note: * The OS control used in the sample code assumes µITRON 4.0.

(4) Write/Erase Completion Wait Processing Integration Setting

The functions listed below support a setting designating waiting for completion following execution of a command. To designate waiting for completion, enable the setting.

Affected functions:

- Write protect setting processing (R_QSPI_FLASH_Set_Write_Protect())
- Data write processing (for single-page write) (R_QSPI_FLASH_Write_Data_Page())
- Erase processing (R_QSPI_FLASH_Erase())

In the example below, waiting for completion is enabled.

/*----- Definitions of using wait -----*/
/* When you wait completion a Flash memory writing or erasing, please define it.*/
#define FLASH_WAIT_READY

RX Family, RL78 Family, 78K0R/Kx3-L

6.1.2 r_qspi_flash_n25q_sfr.h

A separate version of $r_qspi_flash_n25q_sfr.h.XXX$ is provided for each MCU model. Rename the version appropriate for the system to $r_qspi_flash_n25q_sfr.h$ in order to use it. If there is no available version corresponding to the MCU to be used, refer to the information below and create an appropriate version of $r_qspi_flash_n25q_sfr.h$.

The setting locations are designated in each file by the comment /** SET **/.

(1) Chip Select Signal Setting

Define the port SFR of the chip select signal to be used.

When connecting two devices, two ports must be defined.

In the example below, port A0 is used on the RX63N.

In the example below, port 80 is used on the RL78/G14.

/*	*/
/* Define the CS port.	*/ */
#ifdef CA78KOR	/* Renesas RL78 Compiler */
#define FLASH DR CS0 P8.0	/* FLASH CS0 (Negative-true logic) */
#define FLASH_DDR_CS0 PM8.0	/* FLASH CS0 (Negative-true logic)*/
<pre>#if (FLASH_DEV_NUM > 1)</pre>	
	/* FLASH CS1 (Negative-true logic)*/
#define FLASH_DDR_CS1	
<pre>#endif /* #if (FLASH_DEV_NUM > 1) #endif /* CA78K0R */</pre>	*/
	/* Renesas CC-RL Compiler */
#define FLASH DR CS0 P8 bit.no0	/* FLASH CS0 (Negative-true logic)*/
#define FLASH_DDR_CS0 PM8_bit.no0	/* FLASH CS0 (Negative-true logic)*/
<pre>#if (FLASH_DEV_NUM > 1)</pre>	
#define FLASH_DR_CS1	<pre>/* FLASH CS1 (Negative-true logic) */ /* FLASH CS1 (Negative-true logic) */</pre>
<pre>#endif /* #if (FLASH_DEV_NUM > 1)</pre>	*/
#endif /*CCRL */	
#dofine FINCH DD CS0 D9 bit no0	<pre>/* IAR RL78 Compiler</pre>
#define FLASH DDR CS0 PM8 bit.no0	/* FLASH CS0 (Negative-true logic) */
#deline Fiksh_Dbk_cs0 Tho_bit.no0	/ FIRSH CSU (Negacive cide logic) /
<pre>#if (FLASH_DEV_NUM > 1)</pre>	
#define FLASH_DR_CS1	/* FLASH CS1 (Negative-true logic) */
#define FLASH_DDR_CS1	
<pre>#endif /* #if (FLASH_DEV_NUM > 1) #endif /* ICCRL78 */</pre>	^/

(2) Communication Speed Settings

These settings define the communication speed. The unit is bits per second.

The appropriate setting values depend on the MCU and serial I/O interface used. Separate settings are provided for different communication applications. See table 6.1 for details.

Table 6-1 Communication Speed Settings

#define Definition	Application
FLASH_BR	Communication processing for other than the following two items (command transmission, etc.)
FLASH_BR_WRITE_DATA	Data write processing
FLASH_BR_READ_DATA	Data read processing

In the example below, the RSPI of the RX63N is used.

/* PCLK = 48MHz, n=0 for RX63N RSPI */ #define FLASH BR (uint8_t)(0x01) /* SPBR initial setting */ ++---- 12.00MHz /* */ /* PCLK = 48MHz, n=0 for RX63N RSPI Write Data */ #define FLASH BR WRITE DATA (uint8_t)(0x02) /* SPBR initial setting */ /* ++---- 12.00MHz */ /* PCLK = 48MHz, n=0 for RX63N RSPI Read Data */ #define FLASH BR READ DATA (uint8 t)(0x01) /* SPBR initial setting */ /* ++---- 12.00MHz */

In the example below, the CSI of the RL78/G14 is used.

<pre>/* fMCK = 24MHz for RL78 #define FLASH_BR</pre>		initial setting*/ */
<pre>/* fMCK = 24MHz for RL78 #define FLASH_BR_WRITE_DATA</pre>		initial setting*/ */
<pre>/* fMCK = 24MHz for RL78 #define FLASH_BR_READ_DATA</pre>		

Refer to the hardware manual of the MCU when determining the setting values.

6.1.3 r_qspi_flash_n25q_sub.h

The setting locations are designated in each file by the comment /** SET **/.

(1) **Erase Timeout Duration Settings**

These settings specify the timeout duration when erasing all the data in the memory (bulk erase), all the data in a specified sector (subsector erase), and all the data in a specified die (die erase).

The settings below should be reevaluated if the erase duration differs according to the device.

In the example below, the bulk erase and die erase timeout duration is set to 480 seconds, and the sector erase and subsector erase timeout duration is set to 3 seconds.

```
/*-----*/
/* Define the software timer value of erase or page program busy waiting. */
/*-----*/
/*----- Definitions of software timer value -----*/
/* Bulk Erase : 480s
                                                          */
/* Sector Erase
/* Subsector Erase : 3s
: 480s
                                                          */
                                                          */
                                                          */
/* Page (256 bytes) Program: 8ms
                                                          */
#define FLASH BE BUSY WAIT (uint32 t)(480000)
                    /* Bulk Erase busy timeout 480,000*1ms = 480s
                                                          */
#define FLASH SE BUSY WAIT (uint32 t)(3000)
                    /* Sector Erase busy timeout 3,000*1ms = 3s
                                                          */
#define FLASH SSE BUSY WAIT (uint32 t)(3000)
                    /* Subsector Erase busy timeout 3,000*1ms = 3s
                                                         */
#define FLASH DE BUSY WAIT (uint32 t) (480000)
```

(2) Write Timeout Duration Setting

The settings below should be reevaluated if the write duration differs according to the device.

In the example below, the write timeout duration is set 8 ms.

#define FLASH_WBUSY_WAIT	(uint32_t)(8000)	
	/* Write ready timeout	8,000*1us = 8ms */

6.1.4 r_qspi_flash_n25q_sub.c

This is the source file for internal functions of the serial NOR flash memory.

The setting locations are designated in each file by the comment /** SET **/.

(1) Macro Function R_QSPI_FLASH_CMD_READ() Definition

This specifies the operation command for read processing. Define one item from the table below.

Table 6-2 Macro Function R_QSPI_FLASH_CMD_READ() Definition

No.	#define Definition	Instruction Code on Data Sheet	Processing Details
1	r_qspi_flash_send_cmd(FLASH_CMD_FREAD,(uint32_t) Addr,FLASH_CMD_SIZE+FLASH_ADDR_SIZE+1)	FAST READ	Single-SPI read (high-speed)
2	r_qspi_flash_send_cmd(FLASH_CMD_DOFR,(uint32_t)	DUAL OUTPUT	Dual-SPI read
	Addr,FLASH_CMD_SIZE+FLASH_ADDR_SIZE+1)	FAST READ	(high-speed)
4	r_qspi_flash_send_cmd(FLASH_CMD_QOFR,(uint32_t)	QUAD OUTPUT	Quad-SPI read
	Addr,FLASH_CMD_SIZE+FLASH_ADDR_SIZE+1)	FAST READ	(high-speed)

(2) Macro Function R_QSPI_FLASH_CMD_PP() Setting

This specifies the operation command for write processing. Define one item from the table below.

Table 6-3 Macro Function R_QSPI_FLASH_CMD_PP() Definition

No.	#define Definition	Instruction Code on Data Sheet	Processing Details
1	r_qspi_flash_send_cmd(FLASH_CMD_PP ,(uint32_t)Addr, FLASH_CMD_SIZE+FLASH_ADDR_SIZE)	PAGE PROGRAM	Single-SPI write
2	r_qspi_flash_send_cmd(FLASH_CMD_DIPP,(uint32_t) Addr,FLASH_CMD_SIZE+FLASH_ADDR_SIZE)	DUAL INPUT FAST PROGRAM	Dual-SPI write
3	r_qspi_flash_send_cmd(FLASH_CMD_QIPP ,(uint32_t) Addr,FLASH_CMD_SIZE+FLASH_ADDR_SIZE)	QUAD INPUT FAST PROGRAM	Quad-SPI write

RX Family, RL78 Family, 78K0R/Kx3-L

6.1.5 r_qspi_flash_n25q_drvif.c

This is the source file for the clock synchronous single control software interface of the serial NOR flash memory. The setting locations are designated in each file by the comment /** SET **/.

(1) r_qspi_flash_drvif_init_driver() Setting

This specifies the driver initialization processing of the clock synchronous single master control software used.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_flash_drvif_init_driver(void)
{
    return R_SIO_Init_Driver();
}
```

$(2) \quad r_qspi_flash_drvif_disable() \ Setting$

This specifies the serial I/O disable setting processing of the clock synchronous single master control software used. If there is no corresponding item, add one as necessary.

```
error_t r_qspi_flash_drvif_disable(void)
{
    return R_SIO_Disable();
}
```

(3) r_qspi_flash_drvif_enable() Setting

This specifies the serial IO enable setting processing used by the clock-synchronous single master control software.

The value of the BrgData argument is set in the bit rate register.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_flash_drvif_enable(uint8_t BrgData)
{
    return R_SIO_Enable(BrgData);
}
```

(4) r_qspi_flash_drvif_enable_tx_data() Setting

This specifies the data write-only serial IO enable setting processing of the clock synchronous single master control software used.

The value of the BrgData argument is set in the bit rate register.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_flash_drvif_enable_tx_data(uint8_t BrgData)
{
    return R_SIO_Enable(BrgData);
}
```


(5) r_qspi_flash_drvif_enable_rx_data() Setting

This specifies the data read-only serial IO enable setting processing of the clock synchronous single master control software used.

The value of the BrgData argument is set in the bit rate register.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_flash_drvif_enable_rx_data(uint8_t BrgData)
{
    return R_SIO_Enable(BrgData);
}
```

(6) r_qspi_flash_drvif_open_port() Setting

This specifies the serial IO open setting processing of the clock synchronous single master control software used.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_flash_drvif_open_port(void)
{
    return R_SIO_Open_Port();
}
```

(7) r_qspi_flash_drvif_tx() Setting

This specifies the serial IO data transmit processing used by the clock-synchronous single master control software. It is mainly used for command transmission and writing to the status register.

The TxCnt argument specifies the transmit data size (bytes), and the pData argument specifies the transmit data storage destination buffer address.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_flash_drvif_tx(uint16_t TxCnt, uint8_t FAR * pData)
{
    return R_SIO_Tx_Data(TxCnt, pData);
}
```

(8) r_qspi_flash_drvif_tx_data() Setting

This specifies the serial IO data transmit processing exclusively for data writes used by the clock-synchronous single master control software. It is mainly used for writing data.

The TxCnt argument specifies the transmit data size (bytes), and the pData argument specifies the transmit data storage destination buffer address.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_flash_drvif_tx_data(uint16_t TxCnt, uint8_t FAR * pData)
{
    return R_SIO_Tx_Data(TxCnt, pData);
}
```


(9) r_qspi_flash_drvif_rx() Setting

This specifies the serial IO data receive processing used by the clock-synchronous single master control software. It is mainly used for reading the status register.

The RxCnt argument specifies the receive data size (bytes), and the pData argument specifies the receive data storage destination buffer address.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_flash_drvif_rx(uint16_t RxCnt, uint8_t FAR * pData)
{
    return R_SIO_Rx_Data(RxCnt, pData);
}
```

(10) r_qspi_flash_drvif_rx_data() Settings

This specifies the serial IO data transmit processing exclusively for data reads used by the clock-synchronous single master control software.

The RxCnt argument specifies the receive data size (bytes), and the pData argument specifies the receive data storage destination buffer address.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_flash_drvif_rx_data(uint16_t RxCnt, uint8_t FAR * pData)
{
    return R_SIO_Rx_Data(RxCnt, pData);
}
```


6.1.6 r_qspi_flash_n25q_sfr_rl78.c

This is an I/O module file for this Serial Flash memory.

The settings to be made are identified by the comments header "/** SET **/" in the file.

1. Setting the definition of SFR

When an RL78 family or 78K0R family microcontroller is used, there will be predefined preprocessor symbols in the C compiler used. The program is coded using these predefined preprocessor symbols.

Also, when the microcontroller used is an RL78 family or 78K0R family product and furthermore, the IAR Systems integrated development environment is used, it will be necessary to set the header file in which the SFRs for the microcontroller used are defined.

See the clock synchronous single master control software for the individual microcontroller.

These settings are used for the SPI slave device select control signals.

Integrated development environment	Microcontroller	SFR setting required?	Method
CubeSuite+	RL78	Not required	Not required
CS+	78K0R	Not required	Not required
	RX	Not required	Not required
IAR Embedded Workbench	RL78	Required	<pre>#ifdefICCRL78 #include <ior5f104pj.h> ← Change to match the microcontroller used. #include <ior5f104pj_ext.h> ← Change to match the microcontroller used. #endif</ior5f104pj_ext.h></ior5f104pj.h></pre>
	78K0R	Required	<pre>#ifdefICC78K #include <io78f1009_64.h> ← Change to match the microcontroller used. #include <io78f1009_64_ext.h> ← Change to match the microcontroller used. #endif</io78f1009_64_ext.h></io78f1009_64.h></pre>
	RX	(Not supported by this software)	(Not supported by this software)

Table 6-4 Microcontroller and SFR Area Define Settings

The example below is for the 100-pin RL78/G14 microcontroller.

#ifdef ICCRL78	/* IAR RL78 Compiler	*/
<pre>#include <ior5f104pj.h></ior5f104pj.h></pre>	/* for RL78/G14 100pin (R5F104PJ)	*/
<pre>#include <ior5f104pj ext.h=""></ior5f104pj></pre>	/* for RL78/G14 100pin (R5F104PJ)	*/
#endif /* ICCRL78 [*] /		

7. Usage Notes

7.1 Notes on Integrating Sample Code

To integrate the sample code, include the following header files:

r_qspi_flash_n25q.h r_qspi_flash_n25q_sub.h r_qspi_flash_n25q_sfr.h r_qspi_flash_n25q_drvif.h

7.2 Using an MCU with On-Chip Cache

Specify a non-cached area for the read/write data storage buffer.

7.3 Support for Other Capacities

To support other capacities, the following definitions must be reevaluated:

FLASH_MEM_SIZE FLASH_SECT_ADDR FLASH_SSECT_ADDR FLASH_PAGE_SIZE FLASH_ADDR_SIZE FLASH_WP_WHOLE_MEM FLASH_FULL_CHIP_ERASE FLASH_ADDR_MODE

It may be necessary to reevaluate definitions other than those listed above as well. Obtain the data sheet of the memory, and reevaluate the definitions as appropriate.

7.4 Using Other Slave Devices

It is possible to control other slave devices connected to the same SPI bus.

Refer to the sample code when creating slave device control software.

Note that the communication speed may be set individually for each slave device control software program.

7.5 Voltage Stabilization Time After Power-On

Make sure to allow sufficient time for the voltage to stabilize after power-on before calling the initialization function.

Check the data sheet of the slave device regarding the voltage stabilization wait time after power-on.

Note that in the case of serial NOR flash memory, the write in progress bit (WIP) of the status register is set to 1 after the S# pin reaches the specified voltage of $V_{CC min}$ or above following power-on. After this, WIP is reset to 0 after the 'VTW ($V_{CC, min}$ to device fully accessible) time elapses. During the period from when WIP is set to 1 and when it reverts to 0, no commands are accepted, except for READ STATUS REGISTER and READ FLAG STATUS REGISTER. The WRITE, PROGRAM, and ERASE commands should only be issued when the value of WIP is 0.

7.6 Unsupported N25Q256A83ESF40x and N25Q256A83E1240x Commands (ENTER QUAD and EXIT QUAD Commands)

To change to and from 4-byte address mode on the N25Q256A83ESF40x and N25Q256A83E1240x, it is necessary to issue the ENTER and EXIT QUAD commands. However, these commands are not supported by the sample code. It is therefore necessary for the user to provide suitable code for processing the issuing of these commands.

Website and Support

Renesas Electronics website <u>http://www.renesas.com</u>

Inquiries

http://www.renesas.com/contact/

REVISION HISTORY

RX Family, RL78 Family, 78K0R/Kx3-L Application Note Micron Technology N25Q Serial NOR Flash Memory Control Software

Davis	Data		Description
Rev.	Date	Page	Summary
1.01	Sep. 26, 2013	—	First edition issued
1.03	Apr. 30, 2014	1	Modified Introduction to add short address.
		1	Added RX63N, RX63T, RX210, RX21A, RX220, RX111 RL78/G1C, RL78/L12, RL78/L13, RL78/L1C and RL78/G14 as supported devices.
		5, 7	Added 2.1 RX Family and 2.2 RL78 Family, 78K0R/Kx3-L.
		6	Added the following conditions to section 2.1. (2) RX111 RSPI (3) RX111 SCI
		7 to 11	 Added the following conditions to section 2.1. (2) RL78/G14 SAU Integrated Development Environment IAR Embedded Workbench (3) RL78/G1C SAU Integrated Development Environment CubeSuite+
			(4) RL78/G1C SAU Integrated Development Environment IAR Embedded Workbench
			 (5) RL78/L12 SAU Integrated Development Environment CubeSuite+ (6) RL78/L12 SAU Integrated Development Environment IAR
			Embedded Workbench (7) RL78/L13 SAU Integrated Development Environment CubeSuite+
			 (8) RL78/L13 SAU Integrated Development Environment IAR Embedded Workbench (9) RL78/L1C SAU Integrated Development Environment
			 (10) RL78/L1C SAU Integrated Development Environment IAR Embedded Workbench
		12	Updated application note title in section 3, Related Application Notes.
			-RX210, RX21A, RX220, RX63N, RX63T, RX111 Group Clock Synchronous Single Master Control Software Using the RSPI (R01AN1196EJ)
			-RX210, RX21A, RX220, RX63N, RX63T, RX111 Group Clock Synchronous Single Master Control Software Using the SCI (R01AN1229EJ)
			-RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock Synchronous Single Master Control Software Using CSI Mode of Serial Array Unit (R01AN1195EJ)
		22, 24	Added 5.3.1 RX Family and 5.3.2 RL78 Family, 78K0R/Kx3-L.
		23	Added the following to section 5.3.1, Sizes of Required Memory. (2) RX111 RSPI (3) RX111 SCI
		24 to 25	 Added the following to section 5.3.2, Sizes of Required Memory. (2) RL78/G14 SAU Integrated Development Environment IAR Embedded Workbench (3) RL78/L13 SAU Integrated Development Environment
			CubeSuite+ (4) RL78/L13 SAU Integrated Development Environment IAR Embedded Workbench
		26	5.4 File Structure

	1		
			Changed name for folder for the sample code.
			Changed application note number.
			Added new device register common definitions.
		65	Added 6.1.6 r_qspi_flash_n25q_sfr_rl78.c.
		-	Changed "Table No" format.
1.04	Mar. 31, 2016	-	Support CC-RL compiler.
		7 to 9	Added the following conditions to section 2.2.
			(2) RL78/G14 Integrated Development Environment CS+ for CC (Compiler:CC-RL)
			(5) RL78/G1C Integrated Development Environment CS+ for CC (Compiler:CC-RL)
		25 to	Added the following to section 5.3.2, Required Memory Size.
		27	(2) RL78/G14 Integrated Development Environment CS+ for CC (Compiler:CC-RL)
			(5) RL78/L13 Integrated Development Environment CS+ for CC (Compiler:CC-RL)
		26 to	Modified the following to Remarks of table.
		27	(3) RL78/G14 Integrated Development Environment IAR Embedded Workbench
			(4) RL78/L13 Integrated Development Environment CubeSuite+ (Compiler:CA78K0R)
			(6) RL78/L13 Integrated Development Environment IAR Embedded Workbench
		28	Updated the software version in Table 5.10 File Structure.
		62	Updated example in 6.1.2 (1) Chip Select Signal Setting.
		69	Updated Table 6.4 Microcontrollers and Settings for Defining SFR Area.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
 the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use
 of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 1) Refless Electronics as used in this document means Refless Electronics Corporation and also includes its majority-owned s
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

 Reness Electronics America Inc.

 2801 Scott Boulevard Santa Clars, CA 95050-2549, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Reness Electronics Canada Limited

 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

 Tel: +1-405-237-2004

 Reness Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +44-1628-585-100, Fax: +44-1628-585-000

 Reness Electronics Europe MmbH

 Arcadastrasse 10, 40472 Disseldorf, Germany

 Tel: +49-1503-0, Fax: +49-211-6503-13227

 Reness Electronics (China) Co., Ltd.

 Room 1709, Quantum Plaza, No.27 ZinChunLu Haidian District, Beijing 100191, P.R.China

 Tel: +80-12226-0888, Fax: +86-10-8235-7679

 Renessa Electronics (Drina) Co., Ltd.

 Yonit 1001, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tel: +86-2226-0888, Fax: +86-2122-0999

 Renessa Electronics Taiwan Co., Ltd.

 Unit 301.1611.1617, LGVF, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +862-2265-6688, Fax: +862 2886-9022

 Renessa Electronics Taiwan Co., Ltd.

 TsF, No. 303, Fu Shing North Road, Taipei 10543, Taiwan

 Tel: +656213-0200, Fax: +865 2-23170-9670

 Renessa El