
 Application Note

R20AN0038EJ0414 Rev.4.14 Page 1 of 38
Mar.15.25

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module
Firmware Integration Technology
Introduction
This application note describes the RX Family Open Source FAT Filesystem M3S-TFAT-Tiny(Note) which uses
Firmware Integration Technology (FIT).

Note: TFAT is no relation to Microsoft Transaction-Safe FAT File System (TFAT).

In this document, the terms are used as follows.
• TFAT FIT:
 RX Family Open Source FAT File System M3S-TFAT-Tiny Module FIT (R20AN0038)
• TFAT driver FIT:
 RX Family M3S-TFAT-Tiny Memory Driver Interface Module FIT (R20AN0335)
• TFAT:
 M3S-TFAT-Tiny or generic term for TFAT FIT and TFAT driver FIT

TFAT FIT is FAT File system software and includes FatFs which is open source.

The LFN (long file name) extension on the FAT filesystem was a patent of Microsoft Corporation. However,
according to FatFs’s application note, the related patents all have expired and using the LFN feature has got
free for any projects.

Target Device
• RX Family
When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “7.1 Confirmed Operation
Environment".

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 2 of 38
Mar.15.25

Contents

1. Outline ... 4
1.1 What is FatFs? .. 4
1.2 Specification of TFAT .. 5
1.2.1 Specification of TFAT .. 5
1.2.2 Structure of software stack .. 6
1.2.3 Configuration options of FatFs .. 7
1.2.4 Supported RTOS ... 9
1.2.5 Conditions of use ... 10
1.2.6 Version compatibility of TFAT FIT ... 10
1.3 Overview of API function ... 11
1.4 Overview of Memory Driver Interface Function ... 12
1.5 Limitations ... 12

2. API Information .. 13
2.1 Hardware Requirements ... 13
2.2 Software Requirements ... 13
2.3 Supported Toolchains ... 13
2.4 Interrupt Vector .. 13
2.5 Header Files .. 13
2.6 Configuration Overview ... 13
2.7 Code Sizes .. 14
2.8 Type definition of TFAT FIT ... 15
2.9 TFAT FIT structure .. 15
2.9.1 FATFS - File system object structure .. 15
2.9.2 DIR - Directory object structure ... 16
2.9.3 FIL - File object structure ... 16
2.9.4 FILINFO - File status structure .. 17
2.9.5 FFOBJID - Object ID and assignment information structure ... 17
2.10 TFAT FIT constant... 18
2.10.1 FRESULT - API function return value ... 18
2.10.2 File attribute information .. 18
2.10.3 Macros for Disk Status .. 19
2.10.4 Return value of memory driver interface function ... 19
2.10.5 Format Options .. 19
2.11 Adding the FIT Module to Your Project ... 20
2.12 “for”, “while” and “do while” statements ... 21

3. API functions ... 22

4. Memory driver interface function .. 23

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 3 of 38
Mar.15.25

5. Pin Settings ... 24

6. Sample program .. 25
6.1 Outline ... 25
6.2 Sample software execution ... 26
6.2.1 The sample program with the SD mode SD memory card driver ... 26
6.2.2 Flow (SD card driver) .. 27
6.2.3 The sample program with the USB driver ... 28
6.2.4 Flow (USB driver) .. 29

7. Appendices .. 30
7.1 Confirmed Operation Environment .. 30
7.2 Troubleshooting ... 35

8. Reference Documents ... 36

Related Technical Updates ... 36

Revision History .. 37

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 4 of 38
Mar.15.25

1. Outline
TFAT FIT is FAT File system software that concerned about low-memory usage.

The TFAT FIT was made based on FatFs.

1.1 What is FatFs?
FatFs is the File system module for the small embedded system. FatFs is developed by ChaN Software.
FatFs is provided as non-payment for embedded system. Please refer to the Website below for more details
about ChaN Software and FatFs.

http://elm-chan.org/fsw/ff/00index_e.html

In addition, you can download documents related to FatFs (FatFs application note, configuration options, and
APIs detail description etc.) from below URL. Please download the appropriate FatFs version that matches
the “Base program” item of Table 1.1 Specification of TFAT FIT.

http://elm-chan.org/fsw/ff/archives.html

Or, they are included in this module downloaded from TFAT FIT’s Web page.

https://www.renesas.com/us/en/products/software-tools/software-os-middleware-driver/file-system/m3s-
tfat-tiny-for-rx.html

http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/archives.html
https://www.renesas.com/us/en/products/software-tools/software-os-middleware-driver/file-system/m3s-tfat-tiny-for-rx.html
https://www.renesas.com/us/en/products/software-tools/software-os-middleware-driver/file-system/m3s-tfat-tiny-for-rx.html

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 5 of 38
Mar.15.25

1.2 Specification of TFAT
1.2.1 Specification of TFAT
Following are the main specifications of the TFAT FIT.

Table 1.1 Specification of TFAT FIT

Category Item Specifications
Environment Device RX Family

Compiler CC-RX
GCC
IAR

Memory storage SD memory card (SD mode)
SD memory card (SPI mode)
USB memory
eMMC
Serial Flash memory

Dependency on FIT TFAT FIT Rev.4.14 - TFAT driver FIT Rev.2.61
RTOS None RTOS

FreeRTOS (Note1)
RI600V4 (RX Family uITRON) (Note1)

File system Base program Fatfs (R0.15)
Number of drives Max 10
FAT sub type

FAT16
FAT32

Sector size 512 bytes
1024 bytes (Note2)
2048 bytes (Note2)
4096 bytes (Note2)

Filename type

8.3 format (8 lettered filename and 3 lettered extension)
LFN (long file name, length is max 255 characters)

File path type Absolute path
Format feature Yes
Multi partition feature No

Note1: Only SD memory card (SD mode), SD memory card (SPI mode) and USB memory.
Note2: Only Serial Flash memory.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 6 of 38
Mar.15.25

1.2.2 Structure of software stack
Following are structure of software stack related to the TFAT FIT.

TFAT FIT works with TFAT driver FIT, system timer module FIT and various device driver FITs.

TFAT is the main module of file system which includes open source FatFs. TFAT driver FIT has wrapper
functions inside to switch file system I/O process for each memory storage. Users set the memory storage
used in the TFAT driver FIT configuration settings and operate the file system via the TFAT FIT’s API.

Figure 1.1 structure of software stack of the TFAT FIT

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 7 of 38
Mar.15.25

1.2.3 Configuration options of FatFs
FatFs has multiple configuration options (file name, etc.) defined in “ffconf.h”. You can customize available
APIs and function feature by changing these define value. You cannot set those options by using the Smart
Configurator.

The following “Table 1.2 FatFs configuration options related to number to drives” ~ “Table 1.7 FatFs
configuration options related to format feature” indicates confirmed operation of FatFs function feature by
ours.

Please refer to 1.3 Overview of API function for available APIs by confirmed options.

(1) Number of drives

The number of drives must be 1 or more and 10 or less (FatFs specification), and the total number of
drives for each storage medium defined by the TFAT driver FIT (Note 1) or less (TFAT specification).

Table 1.2 FatFs configuration options related to number to drives
Define name Allowable value Meaning of define value Default Value

FF_VOLUMES 1 to 10 Number of drives (Note 1) 1

Note1: TFAT_USB_DRIVE_NUM + TFAT_SDMEM_DRIVE_NUM + TFAT_SPI_SDMEM_DRIVE_NUM +

TFAT_USB_MINI_DRIVE_NUM + TFAT_MMC_DRIVE_NUM +
TFAT_SERIAL_FLASH_DRIVE_NUM

(2) Filename type

There are 1 type of 8.3 format and 3 types of LFN (long file name), totaling 4 types. Enabling LFN will
increase the module size depending on the code page selected. Refer to 1.1 What is FatFs? for detail.

According to FatFs application note, the LFN used to be patented by Microsoft, but now it is out of
patent and can be used free of charge.

Table 1.3 FatFs configuration options related to filename type
Define name Allowable value Meaning of define value Default Value

FF_USE_LFN 0 8.3 format (Note 2) 0
1 LFN

(static working buffer on the BSS) (Note 3)
2 LFN

(dynamic working buffer on the STACK)
3 LFN

(dynamic working buffer on the HEAP)

 Note 2: “FF_MAX_LFN” is also treated as invalid.
 Note 3: Always not thread-safe. Never use with RTOS.

(3) RTOS

When using RTOS, "FF_FS_REENTRANT", "FF_FS_TIMEOUT", and "FF_SYNC_t" are automatically
defined on the software. Users can change the value of "FF_FS_TIMEOUT" arbitrarily.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 8 of 38
Mar.15.25

Table 1.4 FatFs configuration options related to RTOS
Define name Allowable value Meaning of define value Default Value

FF_FS_REENTRANT 0 Disable reentrancy (Note 4) When not using RTOS: 0
When using RTOS: 1 1 Enable reentrancy

FF_FS_TIMEOUT -1 or more
(Note5)

Milliseconds until API function returns
"FR_TIMEOUT" value (timeout)

1000 (Note5)

FF_SYNC_t Type name Type name of RTOS synchronization
object (mutex)

When using FreeRTOS:
 SemaphoreHandle_t
When using RI600V4: ID

 Note 4: "FF_FS_TIMEOUT" and "FF_SYNC_t" are also treated as invalid.
 Note 5: Users can change it to any value. When "0" is specified, it is waiting for polling.

 Furthermore, if "-1" is specified when using the RI600V4, it will wait forever (FreeRTOS
 cannot use "-1").

(4) Sector size

In the FatFs specifications, "FF_MIN_SS" and "FF_MAX_SS" can be specified as "512", "1024", "2048",
"4096".

In TFAT V.4.11, the values to be specified for "FF_MIN_SS" and "FF_MAX_SS" are determined by the
combination of memory storage used by the user (Refer to Table 1.6 Combination of memory storage
and define of sector size).

Table 1.5 FatFs configuration options related to sector size
Define name Allowable value Meaning of define value Default Value

FF_MIN_SS 512 Minimum sector size 512 bytes (Note 6) 512
FF_MAX_SS 512 Maximum sector size 512 bytes (Note 6) 512

4096 Maximum sector size 4096 bytes (Note6)

 Note 6: For the values to be specified for "FF_MIN_SS" and "FF_MAX_SS",

 specify "512" when using SD card, USB memory or eMMC,
 and "512" for FF_MIN_SS, "4096" for FF_MAX_SS when using Serial Flash memory.

Table 1.6 Combination of memory storage and define of sector size
Combination of Memory Storage Define of sector size

Combination that does not include Serial Flash memory
(Only SD memory card, USB memory, and eMMC)

FF_MIN_SS = 512
FF_MAX_SS = 512

Only Serial Flash memory FF_MIN_SS = 512
FF_MAX_SS = 4096

SD memory card, USB memory, or eMMC + Serial Flash memory
FF_MIN_SS = 512
FF_MAX_SS = 4096

(5) Format feature

To choose whether to be available the format feature, define enable/disable of f_mkfs() API.

Table 1.7 FatFs configuration options related to format feature
Define name Allowable value Meaning of define value Default Value

FF_USE_MKFS 0 Disable f_mkfs() API 0
1 Enable f_mkfs() API

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 9 of 38
Mar.15.25

1.2.4 Supported RTOS
This module supported FreeRTOS and RI600V4.

(1) Outline of operation when using RTOS

Considering multi-task operation of RTOS, each API of FatFs has a mechanism to ensure reentrancy
(exclusive control) for the volume, except for a part. Specifically, each API uses the mutex with timeout
feature of RTOS. Mutexes are deleted / generated by the f_mount function. Then, mutexes are taken
immediately after starting the execution of each API and released immediately before is completed.

While taking the mutex by an API, when an API is executed to same volume by another task etc., the
API executed later is shifted to the state of waiting release for mutex and waits specified time which
defined by the FatFs configuration option “FF_FS_TIMEOUT”. Then, the return value of the API
executed later returns “FR_OK” if the mutex is released within the specified time (“FF_FS_TIMEOUT”)
and returns “FR_TIMEOUT” if it is not released.

Figure 1.2 Exclusive control for a volume

(2) Condition of exclusive control

The condition which each API applies to exclusive control is different by FatFs configuration options and
the accessed volume.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 10 of 38
Mar.15.25

Table 1.8 Condition of exclusive control (✓: Exclusive control, - : No exclusive control)

Configuration Option Access to Same Volume Access to Different Volume
FF_FS_REENTRANT = 0 &&
FF_USE_LFN != 1 - ✓

FF_FS_REENTRANT = 0 &&
FF_USE_LFN = 1 - -

FF_FS_REENTRANT = 1 &&
FF_USE_LFN != 1 ✓ (Note) ✓

FF_FS_REENTRANT = 1 &&
FF_USE_LFN = 1 - -

Note: Excluding f_mount, f_disk, and f_mkfs function. These functions are always not reentrancy for
access to same volume. Therefore, you must prevent another task etc. from accessing to the
same volume by application programs.

In addition, FatFs does not take attention to the reentrancy of the memory driver interface function and
its lower layer. Therefore, it is necessary to implement these low-level I/O functions separately to ensure
reentrancy.

(3) FatFs configuration options when using RTOS

TFAT FIT automatically sets the following FatFs configuration options (in “ffconf.h”) to ensure reentrancy
when using RTOS. For detail, refer to 1.2.3 (3) RTOS.

1.2.5 Conditions of use
This module is based on open source FatFs. Therefore, you must comply with conditions of the FatFs
license clauses.

http://elm-chan.org/fsw/ff/doc/appnote.html#license

Other conditions of use are governed by the end user license agreement of FIT.

https://www.renesas.com/us/en/common/disclaimers/disclaimer002.html

For questions related to FatFs contents, consider using the FatFs user forum.

http://elm-chan.org/fsw/ff/bd/

1.2.6 Version compatibility of TFAT FIT
TFAT FIT Rev.4.00 or later is not compatible with its previous TFAT FIT. This is because the
specifications of FatFs API functions are different.

http://elm-chan.org/fsw/ff/doc/appnote.html#license
https://www.renesas.com/us/en/common/disclaimers/disclaimer002.html
http://elm-chan.org/fsw/ff/bd/

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 11 of 38
Mar.15.25

1.3 Overview of API function
The following API functions are used in TFAT FIT. “✓” indicates that API is available by default configuration
options or is confirmed operation.

Table 1.9 API function

Name of API
function

Description Default Confirmed
Operation

File Access
f_open() Open/Create a file ✓ ✓
f_close() Close an open file ✓ ✓
f_read() Read data from the file ✓ ✓
f_write() Write data to the file ✓ ✓
f_lseek() Move read/write pointer, Expand size ✓ ✓
f_truncate() Truncate file size ✓ ✓
f_sync() Flush cached data ✓ ✓
f_forward() Forward data to the stream
f_expand() Allocate a contiguous block to the file
f_gets() Read a string
f_putc() Write a character
f_puts() Write a string
f_printf() Write a formatted string
f_tell() Get current read/write pointer ✓ ✓
f_eof() Test for end-of-file ✓ ✓
f_size() Get size ✓ ✓
f_error() Test for an error ✓ ✓
Directory Access
f_opendir() Open a directory ✓ ✓
f_closedir() Close an open directory ✓ ✓
f_readdir() Read a directory item ✓ ✓
f_findfirst() Open a directory and read the first item matched
f_findnext() Read a next item matched
File and Directory Management
f_stat() Check existence of a file or sub-directory ✓ ✓
f_unlink() Remove a file or sub-directory ✓ ✓
f_rename() Rename/Move a file or sub-directory ✓ ✓
f_chmod() Change attribute of a file or sub-directory
f_utime() Change timestamp of a file or sub-directory
f_mkdir() Create a sub-directory ✓ ✓
f_chdir() Change current directory
f_chdrive() Change current drive
f_getcwd() Retrieve the current directory and drive

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 12 of 38
Mar.15.25

Volume Management and System Configuration
f_mount() Register/Unregister the work area of the volume ✓ ✓
f_mkfs() Create a FAT volume on the logical drive ✓
f_fdisk() Create partitions on the physical drive
f_getfree() Get free space on the volume ✓ ✓
f_getlabel() Get volume label
f_setlabel() Set volume label
f_setcp() Set active code page

1.4 Overview of Memory Driver Interface Function
API functions of TFAT FIT use the following low-level functions. But, do not call these functions from the
application programs.

Table 1.10 Memory Driver Interface Function

Name of low-level function Description
disk_initialize() Initialize device
disk_status() Get device status
disk_read() Read data
disk_write() Write data
disk_ioctl() Control device dependent functions
get_fattime() Get current time

1.5 Limitations
(1) The target devices of TFAT are the devices supported by all FITs used by the user in the layer below

TFAT of structure of software stack. Refer to the application note for each FIT’s target device.

(2) When using TFAT FIT in combination with RTOS, use the API in the same thread.

(3) The f_mount, f_disk and f_mkfs functions are not reentrant for the same volume. When using it, the
application must perform exclusive control.

(4) The following standard functions are used inside TFAT.

・ memset, memcmp, memcpy

・ malloc (Note), free (Note)

 Note: In case of FF_USE_LFN == 3

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 13 of 38
Mar.15.25

2. API Information

2.1 Hardware Requirements
None

2.2 Software Requirements
This driver is dependent on the following FIT module:

 Renesas Board Support Package (r_bsp) Rev.5.52 or later

 M3S-TFAT-Tiny Memory Driver Interface Firmware Integration Technology (r_tfat_driver) Rev.2.50 or
later

 CMT Module Using Firmware Integration Technology (r_cmt) Rev.4.40 or later

 System Timer Module Firmware Integration Technology (r_sys_time) Rev.1.01 or later

2.3 Supported Toolchains
The TFAT FIT module has been confirmed with the toolchain listed in 7.1 Confirmed Operation Environment.

2.4 Interrupt Vector
The TFAT FIT uses no interrupt vector.

2.5 Header Files
All API and memory driver interface calls are accessed by including file " ff.h and diskio.h".

2.6 Configuration Overview
The configurable options of TFAT FIT that can be set at build time are located in the file “r_tfat_rx_config.h”
(Note).
FatFs Configuration options are located in “ffconf.h”.

Note: There is no options on the TFAT FIT Rev.4.12.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 14 of 38
Mar.15.25

2.7 Code Sizes
The sizes of ROM, RAM and maximum stack usage associated with this module are listed below.
Information is listed for a single representative device of the RX100 Series, RX200 Series, and RX600 Series,
respectively.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.6, Configuration Overview.
The values in the table below are confirmed under the following conditions.

Module Revision: r_tfat_rx rev.4.13

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00

(The option of “-lang = c99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 8.3.0.202405

(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 5.10.1

(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Code Sizes

Device Category Memory Used
Renesas Compiler GCC IAR Compiler

RX113 ROM (Note) 6,516 bytes 7,688 bytes 8,657 bytes

RAM (Note) 26 bytes 8 bytes 56 bytes

STACK (Note) 192 bytes - 348 bytes

RX231 ROM (Note) 6,517 bytes 7,688 bytes 8,659 bytes

RAM (Note) 26 bytes 8 bytes 56 bytes

STACK (Note) 192 bytes - 348 bytes

RX65N ROM (Note) 6,517 bytes 7,688 bytes 8,652 bytes

RAM (Note) 26 bytes 8 bytes 58 bytes

STACK (Note) 192 bytes - 352 bytes

Note The sizes of ROM, RAM, and stack of TFAT driver FIT is included.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 15 of 38
Mar.15.25

2.8 Type definition of TFAT FIT
The type definition used by TFAT is shown below (In case of C99. FIT uses C99.).

Table 2.1 Type of TFAT FIT

Datatype Typedef
unsigned char BYTE
unsigned char DSTATUS
uint16_t WORD
uint16_t WCHAR
unsigned int UINT
uint32_t DWORD
uint64_t QWORD

Also, TCHAR changes depending on the setting, and is defined as follows.

 WCHAR if FF_USE_LFN && FF_LFN_UNICODE = 1

 Char when FF_USE_LFN && FF_LFN_UNICODE = 2

 DWORD when FF_USE_LFN && FF_LFN_UNICODE = 3

 Char other than the above

2.9 TFAT FIT structure
This section describes in detail the structures used by TFAT FIT.

2.9.1 FATFS - File system object structure
FATFS structure has a work area for logical drive. It is allocated by the application program and
registered/unregistered with f_mount function.

Application program must not modify any member in this structure.

The details of the members of FATFS structure are shown below.
typedef struct {
 BYTE fs_type; /* Filesystem type (0:not mounted) */
 BYTE pdrv; /* Volume hosting physical drive */
 BYTE ldrv; /* Logical drive number (used only when
FF_FS_REENTRANT) */
 BYTE n_fats; /* Number of FATs (1 or 2) */
 BYTE wflag; /* win[] status (b0:dirty) */
 BYTE fsi_flag; /* FSINFO status (b7:disabled, b0:dirty) */
 WORD id; /* Volume mount ID */
 WORD n_rootdir; /* Number of root directory entries (FAT12/16) */
 WORD csize; /* Cluster size [sectors] */
#if FF_MAX_SS != FF_MIN_SS
 WORD ssize; /* Sector size (512, 1024, 2048 or 4096) */
#endif
#if FF_USE_LFN
 WCHAR* lfnbuf; /* LFN working buffer */
#endif
#if FF_FS_EXFAT
 BYTE* dirbuf; /* Directory entry block scratchpad buffer
 for exFAT */
#endif
#if !FF_FS_READONLY

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 16 of 38
Mar.15.25

 DWORD last_clst; /* Last allocated cluster */
 DWORD free_clst; /* Number of free clusters */
#endif
#if FF_FS_RPATH
 DWORD cdir; /* Current directory start cluster (0:root) */
#if FF_FS_EXFAT
 DWORD cdc_scl; /* Containing directory start cluster (invalid
 when cdir is 0) */
 DWORD cdc_size; /* b31-b8:Size of containing directory, b7-b0:
 Chain status */
 DWORD cdc_ofs; /* Offset in the containing directory (invalid
 when cdir is 0) */
#endif
#endif
 DWORD n_fatent; /* Number of FAT entries (number of clusters + 2)
*/
 DWORD fsize; /* Number of sectors per FAT */
 LBA_t volbase; /* Volume base sector */
 LBA_t fatbase; /* FAT base sector */
 LBA_t dirbase; /* Root directory base sector (FAT12/16) or
 cluster (FAT32/exFAT) */
 LBA_t database; /* Data base sector */
#if FF_FS_EXFAT
 LBA_t bitbase; /* Allocation bitmap base sector */
#endif
 LBA_t winsect; /* Current sector appearing in the win[] */
 BYTE win[FF_MAX_SS]; /* Disk access window for Directory, FAT (and file
 data at tiny cfg) */
} FATFS;

2.9.2 DIR - Directory object structure
DIR structure (Directory Object) has related data from directory info.
The related data from directory info is stored to DIR structure used f_opendir() or f_readdir() functions.
Application program must not modify any member in this structure.

The details of the members of FATFS structure are shown below.
typedef struct {
 FFOBJID obj; /* Object identifier */
 DWORD dptr; /* Current read/write offset */
 DWORD clust; /* Current cluster */
 LBA_t sect; /* Current sector (0:Read operation has

 terminated) */
 BYTE* dir; /* Pointer to the directory item in the
 win[] */
 BYTE fn[12]; /* SFN (in/out) {body[8],ext[3],status[1]} */
#if FF_USE_LFN
 DWORD blk_ofs; /* Offset of current entry block being
 processed (0xFFFFFFFF:Invalid) */
#endif
#if FF_USE_FIND
 const TCHAR* pat; /* Pointer to the name matching pattern */
#endif
} DIR;

2.9.3 FIL - File object structure
The FIL structure (file object) holds state of a file. It is created by f_open function and discarded by f_close
function. Application program must not modify any member in this structure except for “cltbl”.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 17 of 38
Mar.15.25

typedef struct {
 FFOBJID obj; /* Object identifier (must be the 1st member
 to detect invalid object pointer) */
 BYTE flag; /* File status flags */
 BYTE err; /* Abort flag (error code) */
 FSIZE_t fptr; /* File read/write pointer (Zeroed on file
 open) */
 DWORD clust; /* Current cluster of fpter (invalid when
 fptr is 0) */
 LBA_t sect; /* Sector number appearing in buf[]
 (0:invalid) */
#if !FF_FS_READONLY
 LBA_t dir_sect; /* Sector number containing the directory
 entry (not used at exFAT) */
 BYTE* dir_ptr; /* Pointer to the directory entry in the
 win[] (not used at exFAT) */
#endif
#if FF_USE_FASTSEEK
 DWORD* cltbl; /* Pointer to the cluster link map table
 (nulled on open, set by application) */
#endif
#if !FF_FS_TINY
 BYTE buf[FF_MAX_SS]; /* File private data read/write window */
#endif
} FIL;

2.9.4 FILINFO - File status structure
The FILINFO structure holds the file information returned by f_stat() and f_readdir() functions.
typedef struct {
 FSIZE_t fsize; /* File size */
 WORD fdate; /* Modified date */
 WORD ftime; /* Modified time */
 BYTE fattrib; /* File attribute */
#if FF_USE_LFN
 TCHAR altname[FF_SFN_BUF + 1];/* Alternative file name */
 TCHAR fname[FF_LFN_BUF + 1]; /* Primary file name */
#else
 TCHAR fname[12 + 1]; /* File name */
#endif
} FILINFO;

2.9.5 FFOBJID - Object ID and assignment information structure
The FFOBJID structure holds the object ID and assignment information.
typedef struct {
 FATFS* fs; /* Pointer to the hosting volume of this object */
 WORD id; /* Hosting volume's mount ID */
 BYTE attr; /* Object attribute */
 BYTE stat; /* Object chain status (b1-0: =0:not contiguous,
 =2:contiguous, =3:fragmented in this session,
 b2:sub-directory stretched) */
 DWORD sclust; /* Object data start cluster (0:no cluster or root
 directory) */
 FSIZE_t objsize; /* Object size (valid when sclust != 0) */
#if FF_FS_EXFAT
 DWORD n_cont; /* Size of first fragment - 1 (valid when stat ==
 3) */
 DWORD n_frag; /* Size of last fragment needs to be written to

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 18 of 38
Mar.15.25

 FAT (valid when not zero) */
 DWORD c_scl; /* Containing directory start cluster (valid when
 sclust != 0) */
 DWORD c_size; /* b31-b8:Size of containing directory, b7-b0:
 Chain status (valid when c_scl != 0) */
 DWORD c_ofs; /* Offset in the containing directory (valid when
 file object and sclust != 0) */
#endif
#if FF_FS_LOCK
 UINT lockid; /* File lock ID origin from 1 (index of file
 semaphore table Files[]) */
#endif
} FFOBJID;

2.10 TFAT FIT constant
This section describes in detail the constants used. The following constants are defined in ff.h.

2.10.1 FRESULT - API function return value
The return value of API function is defined as enum type.
typedef enum
{
 FR_OK = 0, /* (0) Succeeded */
 FR_DISK_ERR, /* (1) A hard error occurred in the low
 level disk I/O layer */
 FR_INT_ERR, /* (2) Assertion failed */
 FR_NOT_READY, /* (3) The physical drive cannot work */
 FR_NO_FILE, /* (4) Could not find the file */
 FR_NO_PATH, /* (5) Could not find the path */
 FR_INVALID_NAME, /* (6) The path name format is invalid */
 FR_DENIED, /* (7) Access denied due to prohibited
 access or directory full */
 FR_EXIST, /* (8) Access denied due to prohibited
 access */
 FR_INVALID_OBJECT, /* (9) The file/directory object is
 invalid */
 FR_WRITE_PROTECTED, /* (10) The physical drive is write
 protected */
 FR_INVALID_DRIVE, /* (11) The logical drive number is
 invalid */
 FR_NOT_ENABLED, /* (12) The volume has no work area */
 FR_NO_FILESYSTEM, /* (13) There is no valid FAT volume */
 FR_MKFS_ABORTED, /* (14) The f_mkfs() aborted due to any
 problem */
 FR_TIMEOUT, /* (15) Could not get a grant to access
 the volume within defined period */
 FR_LOCKED, /* (16) The operation is rejected according
 to the file sharing policy */
 FR_NOT_ENOUGH_CORE, /* (17) LFN working buffer could not be
 allocated */
 FR_TOO_MANY_OPEN_FILES, /* (18) Number of open files > FF_FS_LOCK */
 FR_INVALID_PARAMETER /* (19) Given parameter is invalid */
}FRESULT;

2.10.2 File attribute information
These macros are values to be set the “fattrib” member of FILINFO structure. The following list shows the
contents of each bit.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 19 of 38
Mar.15.25

Table 2.2 Attribute information macros

Name Value Explanation
AM_RDO 0x01 When this flag is set the applicable file(or directory) is read only.
AM_HID 0x02 When this flag is set the applicable file(or directory) is hidden.
AM_SYS 0x04 When this flag is set the applicable file(or directory) is system file.
AM_DIR 0x10 When this flag is set the applicable file is directory.
AM_ARC 0x20 When this flag is set the applicable file(or directory) is Archive.

2.10.3 Macros for Disk Status
These macros show status of disk to set in DSTATUS type. User sets applicable macro by Memory driver
interface function and passes a result to the TFAT FIT.

Table 2.3 Macros for Disk Status

Name Value Explanation
STA_NOINIT 0x01 This flag indicates that the disk drive has not been initialized. This flag is

set on: system reset, disk removal and failure of disk_initialize function,
and cleared on: success of disk_initialize function.

STA_NODISK 0x02 If this flag is set, it indicates that there is no media in the drive. This is
flag is cleared when media is present in the drive.

STA_PROTECT 0x04 This flag is used to indicate that the media is write protected. This is
always cleared on the drive that does not support write protect notch.
This flag is not valid when STA_NODISK is set.

2.10.4 Return value of memory driver interface function
This enum is used to indicate the result of the disk operations performed by the driver functions.

Table 2.4 DRESULT Value

Name Value Explanation
RES_OK 0 Function execution is successful.
RES_ERROR 1 Error occurred during function execution.
RES_WRPRT 2 Disk is write protected.
RES_NOTRDY 3 Disk drive is not initialized.
RES_PARERR 4 Invalid argument passed to the function.

2.10.5 Format Options
The following macros show the contents of the format options. It is used as the second argument of f_mkfs
function. In addition, the actual formatted FAT type is affected on cluster size (the third argument of f_mkfs).

For details, refer to f_mkfs.

Table 2.5 File attribute information macro

Name Value
FM_FAT 0x01
FM_FAT32 0x02
FM_EXFAT 0x04
FM_ANY 0x07
FM_SFD 0x08

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 20 of 38
Mar.15.25

2.11 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) or (4) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’s Guide: CS+ (R20AN0470)” for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (R01AN1826)” for details.

(4) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 21 of 38
Mar.15.25

2.12 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :

/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{

 /* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example :

/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{

 g_protect_counters[i] = 0;

}

do while statement example :

/* Reset completion waiting */

do

{

 reg = phy_read(ether_channel, PHY_REG_CONTROL);

 count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 22 of 38
Mar.15.25

3. API functions
This document does not describe details of APIs.

Please refer to FatFs documents indicated 1.1 What is FatFs?.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 23 of 38
Mar.15.25

4. Memory driver interface function
Memory driver interface functions are prototyped in “diskio.h” or “ff.h”. The actual function entity exists in
“r_tfat_drv_if.c” in TFAT driver FIT.
For details on these functions, refer to the application note (r20an0335xxxxxx) of TFAT driver FIT.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 24 of 38
Mar.15.25

5. Pin Settings
The TFAT FIT has no pin settings.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 25 of 38
Mar.15.25

6. Sample program

6.1 Outline
The sample program is e2 studio project that works at the board (hereafter referred to as "CPU board")
shown in 7.1 Confirmed Operation Environment. The sample program prepares for two kinds of following
projects

• Sample program using the SD mode SD memory card driver
• Sample program using the USB driver
In addition, above sample programs combine with RTOS (FreeRTOS and RI600V4).

 Document No.: R01AN3852
 Document Title: RX Family SDHI Module Using Firmware Integration Technology: Application note

 Document No.: R01AN4233
 Document Title: RX Family SD mode SD memory Card Firmware Integration Technology: Application

note

 Document No.: R01AN6908
 Document Title: RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology:

Application note

 Document No.: R01AN2025
 Document Title: USB Basic Host and Peripheral Driver Firmware Integration Technology: Application

note

 Document No.: R01AN2026
 Document Title: USB Host Mass Storage Class Driver (HMSC) Firmware Integration Technology:

Application note

 Document No.: R01AN2166
 Document Title: USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware

Integration Technology: Application note

 Document No.: R01AN2169
 Document Title: USB Host Mass Storage Class Driver (HMSC) for USB Mini Firmware Integration

Technology: Application note

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 26 of 38
Mar.15.25

6.2 Sample software execution
6.2.1 The sample program with the SD mode SD memory card driver
When the program is run, a FAT filesystem work area is registered. A directory and a file are created on the
memory media and text data of 2 KB is written to the file. The file is then closed. For confirmation of the data
that is written, the file is opened again in the read mode. The entire contents of the file are read, and they are
compared with the write buffer data in the program. Whether the contents of the data are matching or not is
indicated on Debug Console (Renesas Virtual Debug Console) on e2studio.

Table 6.1 Explanation of Debug Console display

Characters Explanation
Detected attached SD card. Insertion of the SD card was detected.
Detected detached SD card. The SD card removal was detected.
!!! Attach SD card. !!!! Insert the SD card.
!!! Detach SD card. !!!! Remove the SD card.
Start TFAT sample Started sample program.
Finished TFAT sample Finished sample program.
!!!!! TFAT error !!!!! An error occurred.

The sample data for file read / write is stored in the “r_data_file.c”. The data is stored in an array of 2048
elements giving a total size of 2 KB (2048 Bytes). The data array consists of the text string "Renesas\n"
written repeatedly. If required, the user can modify this array and the corresponding macro FILESIZE.

The primary functions used in sample program is the following. Regardless of using RTOS, the processing of
sample is same. However, FreeRTOS and RI600V4 perform them as tasks.

Table 6.2 Primary functions of sample program

Processing Function Name with
None RTOS

Function Name with
FreeRTOS

Function Name with
RI600V4

Initialization main() main_task() main_task()
Idle for device detection idle_sdc_detection() idle_detection_task() idle_detection_task()
TFAT FIT API execution tfat_sample() tfat_sample_task() (Note) tfat_sample_task() (Note)
Note: Exclusive control should be performed when this function is executed, but it is omitted for simplicity of

sample program.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 27 of 38
Mar.15.25

6.2.2 Flow (SD card driver)
Flow of a sample program with the SD card driver is shown below.

Figure 6.1 Flow of sample program with the SD card driver

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 28 of 38
Mar.15.25

6.2.3 The sample program with the USB driver
When the program is run, a FAT filesystem work area is registered. A directory and a file are created on the
memory media and text data of 2 KB is written to the file. The file is then closed. For confirmation of the data
that is written, the file is opened again in the read mode. The entire contents of the file are read, and they are
compared with the write buffer data in the program. Whether the contents of the data are matching or not is
indicated on Debug Console (Renesas Virtual Debug Console) on e2studio.

Table 6.3 Explanation of Debug Console display

Characters Explanation
Detected attached USB
memory.

Insertion of the USB memory was detected.

Detected detached USB
memory.

The USB memory removal was detected.

!!! Attach USB memory. !!!! Insert the USB memory.
!!! Detach USB memory. !!!! Remove the USB memory.
Start TFAT sample Started sample program.
Finished TFAT sample Finished sample program.
!!!!! TFAT error !!!!! An error occurred.

The sample data for file read / write is stored in the “r_data_file.c”. The data is stored in an array of 2048
elements giving a total size of 2 KB (2048 Bytes). The data array consists of the text string "Renesas,"
written repeatedly. If required, the user can modify this array and the corresponding macro FILESIZE.

The primary functions used in sample program is the following. Regardless of using RTOS, the processing of
sample is same. However, FreeRTOS and RI600V4 perform them as tasks.

Table 6.4 Primary functions of sample program

Processing Function Name with
None RTOS

Function Name with
FreeRTOS

Function Name with
RI600V4

Initialization main() main_task() main_task()
Idle for device detection idle_sdc_detection() idle_detection_task() idle_detection_task()
TFAT FIT API execution tfat_sample() tfat_sample_task() (Note) tfat_sample_task() (Note)
Note: Exclusive control should be performed when this function is executed, but it is omitted for simplicity of

sample program.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 29 of 38
Mar.15.25

6.2.4 Flow (USB driver)
Flow of a sample program with the USB driver is shown below.

Figure 6.2 Flow of sample program with the USB driver

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 30 of 38
Mar.15.25

7. Appendices
7.1 Confirmed Operation Environment
This section describes the operation confirmation environment for TFAT FIT.

Table 7.1 Confirmed Operation Environment (Rev.3.04)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V7.1.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Little endian
Revision of the module Rev.3.04
Board used Renesas Starter Kit for RX231 (product No.:R0K505231Sxxxxx)

Renesas Starter Kit+ for RX65N-1MB (product No.:RTK500565NSxxxxxxx)
RTOS None

Table 7.2 Confirmed Operation Environment (Rev.4.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.13.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.201904

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.13.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.00
Board used Renesas Starter Kit+ for RX72M (product No.:RTK5572Mxxxxxxxxxx)
RTOS FreeRTOS V10.0.00

RI600V4 V1.06.00

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 31 of 38
Mar.15.25

Table 7.3 Confirmed Operation Environment (Rev.4.01)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0
IAR Embedded Workbench for Renesas RX 4.14.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.201904

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.01
Board used Renesas Starter Kit for RX231 (product No.:RTK55231xxxxxxxxxx)

Renesas Starter Kit+ for RX64M (product No.:RTK5564Mxxxxxxxxxx)
RTOS FreeRTOS V10.0.00

RI600V4 V1.06.00

Table 7.4 Confirmed Operation Environment (Rev.4.02)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2020-07
IAR Embedded Workbench for Renesas RX 4.14.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202002

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.02
Board used Renesas Starter Kit for RX231 (product No.:RTK55231xxxxxxxxxx)

Renesas Starter Kit+ for RX72N (product No.:RTK5572Nxxxxxxxxxx)
Renesas Starter Kit+ for RX72M (product No.:RTK5572Mxxxxxxxxxx)

RTOS FreeRTOS V10.0.03
RI600V4 V1.06.00

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 32 of 38
Mar.15.25

Table 7.5 Confirmed Operation Environment (Rev.4.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202305

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.10
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565Nxxxxxxxxx)

Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxx)
Renesas Starter Kit+ for RX72M (product No.:RTK5572Mxxxxxxxxxx)

RTOS FreeRTOS V10.4.3
RI600V4 V1.06.01

Table 7.6 Confirmed Operation Environment (Rev.4.11)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202305

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.11
Board used Renesas Starter Kit+ for RX72M (product No.:RTK5572Mxxxxxxxxxx)
RTOS None

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 33 of 38
Mar.15.25

Table 7.7 Confirmed Operation Environment (Rev.4.12)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-07
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202405

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.12
Board used Renesas Target Board for RX140 (product No.: RTK5RX1400xxxxxxxx

Renesas Starter Kit+ for RX140 (product No.: RTK551406Bxxxxxxxx)
Renesas Starter Kit+ for RX64M (product No.: R0K50564Mxxxxxx
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565Nxxxxxxxxxx)
Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

RTOS FreeRTOS V10.4.3

Table 7.8 Confirmed Operation Environment (Rev.4.13)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-07
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202405

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.13
Board used None
RTOS None

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 34 of 38
Mar.15.25

Table 7.9 Confirmed Operation Environment (Rev.4.14)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202411

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.14
Board used None
RTOS None

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 35 of 38
Mar.15.25

7.2 Troubleshooting
 (1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

"platform.h".

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note "Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)"

 Using e2 studio:

Application note "Adding Firmware Integration Technology Modules to Projects (R01AN1723)"

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note "Board Support Package Module Using Firmware Integration
Technology (R01AN1685)".

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_sdc_sd_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_tfat_rx_config.h” may be wrong. Check the file “r_tfat_rx_config.h”. If there is a
wrong setting, set the correct value for that. Refer to 2.6 Configuration Overview for details.

(4) Q: The pin setting is supposed to be done, but this does not look like it.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 5 Pin Settings for details.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 36 of 38
Mar.15.25

8. Reference Documents
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family C/C++ Compiler CC-RX User's Manual (R20UT3248)
The latest version can be downloaded from the Renesas Electronics website.

Related Technical Updates
This module reflects no technical updates.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 37 of 38
Mar.15.25

Revision History

Rev. Date
Description
Page Summary

1.00 Oct 08, 2010 - First edition issued
1.01 Sep 01, 2012 - RX210 correspondence
1.02 Nov 08, 2013 - Changed document title

Changed the structure of sections
Added Fatfs copyright to library source

1.03 Nov 30, 2013 - Changed the base version of the open source into V0.09b from
V0.06.

3.00 Apr 01, 2014 - FIT Module correspondence
3.01 Dec.28.2014 - Corresponded to RX71M/RX113.

Updated the xml file for FIT.
3.02 May.01.2015 - Corresponded to RX231.

Updated the xml file for FIT.
3.03 Oct.01.2016 - Corresponded to RX family.

Updated the xml file for FIT.
3.04 Nov.30.2018 - Chapter 2.4, added limitation when using Real Time OS.

Chapter 4 and 6 was added
Updated the xml file for FIT.

4.00 Feb.25.2020 - Updated the open source base version from V0.09b to V0.13c.
Supported the following compilers.
- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX
Supported the following RTOS.
- FreeRTOS
- RI600V4
Removed "R_TFAT_" from the function names.
Added Fatfs copyright notice to source.

4.01 Jul.27, 2020 - Supported the following storage devices.
- eMMC
- Serial Flash memory
Supported the format function for following storage devices.
- eMMC
- Serial Flash memory
Supported sector size 4096 bytes.
Supported the following RTOS with using USB mini FIT.
- FreeRTOS
- RI600V4

4.02 Sep.10, 2020 - Supported the format function for following storage devices.
- SD
- USB

4.10 Aug.31, 2023 25

Deleted the description of FIT configurator from "2.11 Adding
the FIT Module to Your Project"
Updated the open source base version from V0.13c to V0.15.
Updated the xml file for FIT.
Added new demo projects.

4.11 Dec.15, 2023 5, 8 Added support Serial Flash FAT sector size selectable.
 5 Updated FIT module version for Table 1.1
 14 Updated the section of 2.7 Code Size.
 21 Added 2.12 “for”, “while” and “do while” statements.

RX Family
Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

R20AN0038EJ0414 Rev.4.14 Page 38 of 38
Mar.15.25

Rev. Date
Description
Page Summary

4.11 Dec.15, 2023 32 7.1 Confirmed Operation Environment:
Added Table for Rev.4.11.

 Program Added WAIT_LOOP comments.
Updated the xml file for FIT.

4.12 Sep.16, 2024 5
7

14
33

Updated to support SPI mode SD card module for Table 1.1
Added configuration option when using TFAT and SPI mode
SD card memory
Updated the section of 2.7 Code Size.
7.1 Confirmed Operation Environment:
Added Table for Rev.4.12

Program Updated the xml file for FIT.

4.13 Nov.01, 2024 5
14
33

Updated FIT module version.
Updated the section of 2.7 Code Size.
7.1 Confirmed Operation Environment:
Added Table for Rev.4.13.

Program Updated the xml file for FIT.

4.14 Mar.15, 2025 5
34

Updated FIT module version.
7.1 Confirmed Operation Environment:
Added Table for Rev.4.14.

Program Updated FIT Disclaimer and Copyright.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Outline
	1.1 What is FatFs?
	1.2 Specification of TFAT
	1.2.1 Specification of TFAT
	1.2.2 Structure of software stack
	1.2.3 Configuration options of FatFs
	1.2.4 Supported RTOS
	1.2.5 Conditions of use
	1.2.6 Version compatibility of TFAT FIT

	1.3 Overview of API function
	1.4 Overview of Memory Driver Interface Function
	1.5 Limitations

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Interrupt Vector
	2.5 Header Files
	2.6 Configuration Overview
	2.7 Code Sizes
	2.8 Type definition of TFAT FIT
	2.9 TFAT FIT structure
	2.9.1 FATFS - File system object structure
	2.9.2 DIR - Directory object structure
	2.9.3 FIL - File object structure
	2.9.4 FILINFO - File status structure
	2.9.5 FFOBJID - Object ID and assignment information structure

	2.10 TFAT FIT constant
	2.10.1 FRESULT - API function return value
	2.10.2 File attribute information
	2.10.3 Macros for Disk Status
	2.10.4 Return value of memory driver interface function
	2.10.5 Format Options

	2.11 Adding the FIT Module to Your Project
	2.12 “for”, “while” and “do while” statements

	3. API functions
	4. Memory driver interface function
	5. Pin Settings
	6. Sample program
	6.1 Outline
	6.2 Sample software execution
	6.2.1 The sample program with the SD mode SD memory card driver
	6.2.2 Flow (SD card driver)
	6.2.3 The sample program with the USB driver
	6.2.4 Flow (USB driver)

	7. Appendices
	7.1 Confirmed Operation Environment
	7.2 Troubleshooting

	8. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

