
 Application Note

R01AN7374EJ0100 Rev.1.00 Page 1 of 62
Apr.21.25

RX Family
MCUboot Firmware Integration Technology

Introduction
This application note describes the MCUboot module that uses Firmware Integration Technology (FIT). This
module is hereinafter referred to as the “MCUboot FIT module”.

The MCUboot FIT module is a FIT module created on the basis of MCUboot V2.1.0, which is publicly
available at the following “mcu-tools” web page of GitHub: https://github.com/mcu-tools/mcuboot.

This application note describes how to use the MCUboot FIT module and how to embed the module into a
user application.

The release package of this application note includes a demo project. You can build the environment for
executing demonstration by using the procedure described in “4. Demo Project”. With the demonstration, you
can check the basic operation of the MCUboot FIT module.

Target Devices
MCUs of the RX261 Group

MCUs of the RX65N and RX651 Groups

MCUs of the RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Application Notes
The following shows a list of application notes that are related to this application note. Refer also to them.

• Firmware Integration Technology User’s Manual (R01AN1833)
• RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• RX Family Flash Module Using Firmware Integration Technology (R01AN2184)
• RX Family TSIP (Trusted Secure IP) Module Firmware Integration Technology (R20AN0371)
• RX Family RSIP (Renesas Secure IP) Module in Protected Mode Using Firmware Integration Technology

(R20AN0748)
• RX Family SCI Module Using Firmware Integration Technology (R01AN1815)
• RX Family BYTEQ Module Using Firmware Integration Technology (R01AN1683)

https://github.com/mcu-tools/mcuboot

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 2 of 62
Apr.21.25

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for RX

For details of the confirmed operation contents of each compiler, refer to “5.1 Environment Used for Verifying
Operation”.

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 3 of 62
Apr.21.25

Contents

1. Overview ...6
1.1 Overview of MCUboot ... 6
1.2 Overview of the MCUboot FIT Module .. 6
1.3 System Configuration .. 7
1.4 Operation of MCUboot .. 8
1.5 Supported Update Methods of MCUboot .. 9
1.5.1 Overwrite Only/Only Fast Methods .. 9
1.5.1.1 Overwrite Only Method .. 9
1.5.1.2 Overwrite Only Fast Method .. 9
1.5.2 Swap Method .. 10
1.5.3 DirectXIP Method .. 11
1.5.3.1 DirectXIP Method in Linear Mode .. 11
1.5.3.2 DirectXIP Method in Dual Mode .. 11
1.6 Package Configuration .. 12
1.7 Overview of API Functions .. 14

2. API Information ...15
2.1 Hardware Requirements ... 15
2.2 Software Requirements ... 15
2.3 Supported Toolchain ... 15
2.4 Header Files .. 15
2.5 Integer Types .. 15
2.6 Configuration Overview ... 16
2.7 Code Sizes of the Sample Project ... 19
2.8 Parameters .. 23
2.9 Return Values.. 23
2.10 How to Add a FIT Module .. 24
2.11 About the “for”, “while”, and “do while” Statements ... 25
2.12 Example of Implementing API Functions ... 26

3. API Functions ...27
3.1 boot_go ... 27
3.2 RM_MCUBOOT_BootApp ... 27
3.3 RM_MCUBOOT_GetVersion... 27

4. Demo Project ..28
4.1 Configuration of the Demo Project .. 28
4.1.1 Details of the Initial Image ... 29
4.2 Preparing the Operating Environment ... 32
4.2.1 Installing Terminal Software .. 32

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 4 of 62
Apr.21.25

4.2.2 Obtaining Imgtool .. 32
4.2.3 Installing the Python Runtime Environment ... 32
4.2.4 Installing the OpenSSL Runtime Environment .. 32
4.2.5 Installing a Flash Memory Writer ... 33
4.2.6 Installing Security Key Management Tool ... 33
4.2.7 USB-to-Serial Conversion Board ... 33
4.3 Procedure for Executing the Demo Project ... 34
4.3.1 Key Injection .. 34
4.3.1.1 Generating Key Data by Using Security Key Management Tool ... 34
4.3.1.2 Preparation for Key Injection ... 36
4.3.1.3 Executing the Key Injection Program .. 37
4.3.2 Embedding the Public Key for Signature Verification .. 39
4.3.3 Preparing the Images for the Demo Project .. 40
4.3.3.1 Generating a Bootloader Image .. 40
4.3.3.2 Generating the Initial Image .. 41
4.3.3.3 Generating an Update Image .. 42
4.3.4 Programming the Demo Project .. 44
4.3.5 Executing the Demo Project .. 48

5. Appendix ...49
5.1 Environment Used for Verifying Operation .. 49
5.2 Operating Environment of the Demo Project ... 51
5.2.1 Environment Used for Verifying Operation of the RX261 .. 51
5.2.1.1 Information on Hardware Component Connections... 51
5.2.1.2 Memory Allocation and Configuration Option Settings .. 52
5.2.2 Environment Used for Verifying Operation of the RX65N .. 53
5.2.2.1 Information on Hardware Component Connections for an Update in Linear Mode 53
5.2.2.2 Memory Allocation and Configuration Option Settings in the Case Where the Update Method Uses

Linear Mode .. 54
5.2.2.3 Information on Hardware Component Connections for an Update in Dual Mode 55
5.2.2.4 Memory Allocation and Configuration Option Settings in the Case Where the Update Method Uses

Dual Mode ... 56
5.2.3 Environment Used for Verifying Operation of the RX72N .. 57
5.2.3.1 Information on Hardware Component Connections for an Update in Linear Mode 57
5.2.3.2 Memory Allocation and Configuration Option Settings in the Case Where the Update Method Uses

Linear Mode .. 58
5.2.3.3 Information on Hardware Component Connections for an Update in Dual Mode 59
5.2.3.4 Memory Allocation and Configuration Option Settings in the Case Where the Update Method Uses

Dual Mode ... 60

6. Notes...61
6.1 Notes on Transition from Bootloader(MCUboot) to Application. .. 61

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 5 of 62
Apr.21.25

Revision History ...62

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 6 of 62
Apr.21.25

1. Overview

1.1 Overview of MCUboot
MCUboot is a secure bootloader for 32-bit microcontrollers.

MCUboot provides a secure bootloader that enables easy software upgrade by defining a common
infrastructure for the bootloader and system flash layout on microcontroller systems.

MCUboot does not depend on any specific operating system and hardware. It depends on hardware porting
layers from the operating system it works with.

MCUboot is publicly available at the following “mcu-tools” web page of GitHub: https://github.com/mcu-
tools/mcuboot.

Major functions supported by MCUboot are as follows:

• Function that starts an application
• Function that verifies the signature of an application
• Function that updates or switches an application
• Function that decrypts and updates an encrypted application image

1.2 Overview of the MCUboot FIT Module
The MCUboot FIT module is a FIT module created on the basis of aforementioned MCUboot. When users
create a bootloader, they can easily embed MCUboot into it by using this FIT module.

In addition, MCUboot FIT uses Renesas security IP (TSIP and RSIP), which enable secure user key
concealment and faster decryption.

The MCUboot FIT module supports the following update methods:

• Overwrite Only (linear mode)
• Overwrite Only Fast (linear mode)
• Swap (linear mode)
• DirectXIP (linear or dual mode)

The MCUboot FIT module supports the following signature verification methods:

• ECDSA NIST P-256
• RSA 2048 (RSASSA-PSS) : RX261 not supported
• No signature verification

https://github.com/mcu-tools/mcuboot
https://github.com/mcu-tools/mcuboot

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 7 of 62
Apr.21.25

1.3 System Configuration
Figure 1-1 shows the system configuration of a bootloader, the MCUboot FIT module used by the
bootloader, and the demo application. Table 1-1 lists the modules used in this system.

Figure 1-1 System Configuration of the Bootloader and Demo Application

Table 1-1 List of Modules Used by the Bootloader and Demo Application

Type Application Note Name (Document No.) FIT Module Name Remarks
BSP RX Family Board Support Package Module Using

Firmware Integration Technology (R01AN1685)
r_bsp

Device
driver

RX Family Flash Module Using Firmware
Integration Technology (R01AN2184)

r_flash_rx

Device
driver

RX Family TSIP (Trusted Secure IP) Module
Firmware Integration Technology (R20AN0371)

r_tsip Used for the
RX65N/RX651/
RX72N

Device
driver

RX Family RSIP (Renesas Secure IP) Module in
Protected Mode Using Firmware Integration
Technology (R20AN0748)

r_rsip_protected_rx Used for the
RX261

Device
driver

RX Family SCI Module Using Firmware Integration
Technology (R01AN1815)

r_sci_rx

Middleware RX Family BYTEQ Module Using Firmware
Integration Technology (R01AN1683)

r_byteq

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 8 of 62
Apr.21.25

1.4 Operation of MCUboot
MCUboot uses the flash memory of the microcontroller by segmenting it as shown in Figure 1-2.

Figure 1-2 Memory Map of the Flash Memory Used by MCUboot

• Bootloader: Area that stores the bootloader that uses MCUboot
• Primary slot: Area that stores the bootable image

(User application started by MCUboot)
• Secondary slot: Area that stores the update image

(To update the image in the primary slot, place the update image in this area.)
• Scratch area: Buffer area used only for an update by the Swap method

(This area is unnecessary for the update methods other than Swap.)

MCUboot operates as follows:

1. The bootloader (MCUboot) starts after the MCU is released from the reset state.
2. MCUboot checks whether an update image is stored in the secondary slot.
3. If there is no update image in the secondary slot, go to step 6.
4. If there is an update image in the secondary slot, MCUboot verifies the signature of the update image.
5. If verification is passed, MCUboot replaces the image in the primary slot by the update image in the

secondary slot. Only the Overwrite Only / Only Fast method erases the Secondary slot after the update.
6. MCUboot verifies the signature of the image in the primary slot.
7. If verification is passed, MCUboot activates the image (user application) in the primary slot.

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 9 of 62
Apr.21.25

1.5 Supported Update Methods of MCUboot
The MCUboot FIT module supports the following update methods of MCUboot:

• Overwrite Only/Only Fast
• Swap
• DirectXIP
The update methods that can be used depend on the mode of flash memory. In linear mode, the Overwrite
Only/Only Fast, Swap, and DirectXIP methods can be used. In dual mode, the DirectXIP method can be
used.

For details of these update methods, refer to sections 1.5.1 to 1.5.3.

1.5.1 Overwrite Only/Only Fast Methods
In Overwrite methods, the bootable image is always stored in the primary slot and activated from the slot.
The update image is stored in the secondary slot.

When an update image is stored in the secondary slot, signature verification is performed for the content of
the secondary slot. If verification is passed, the content of the secondary slot is copied to the primary slot. As
a result, the content of the primary slot is updated, the secondary slot is then erased.

1.5.1.1 Overwrite Only Method
In the Overwrite Only method, an update is performed by copying the whole area of the secondary slot to the
whole area of the primary slot.

Figure 1-3 Update Operation of the Overwrite Only Method

1.5.1.2 Overwrite Only Fast Method
In the Overwrite Only Fast method, copy from the secondary slot to the primary slot is performed as in the
Overwrite Only method. However, the Overwrite Only Fast method copies only the update image, whereas
the Overwrite Only method copies the whole area of the secondary slot. The unused area in the secondary
slot is not subject to copy. Therefore, if the update size is small, the time required to copy the update can be
reduced.

Figure 1-4 Update Operation of the Overwrite Only Fast Method

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 10 of 62
Apr.21.25

1.5.2 Swap Method
In the Swap method, the bootable image is always stored in the primary slot and activated from the slot. The
update image is stored in the secondary slot.

When an update image is stored in the secondary slot, signature verification is performed for the content of
the secondary slot. If verification is passed, the image in the secondary slot is saved in the scratch area, and
then the image in the primary slot is copied to the secondary slot. After that, the image saved in the scratch
area is copied to the primary slot. As a result, the image in the primary slot is updated.

In this method, the images in both slots are swapped by using the scratch area. Because the image that
existed in the primary slot remains in the secondary slot, it is possible to perform a rollback to a pre-update
state.

Figure 1-5 Update Operation of the Swap Method

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 11 of 62
Apr.21.25

1.5.3 DirectXIP Method
Unlike the Overwrite Only/Only Fast and Swap methods, copy between the primary and secondary slots
does not occur in the DirectXIP method. The image in each slot can be directly activated.

The operation of the MCUboot FIT module changes according to the mode of flash memory.

Bootable images exist in both of the primary and secondary slots.

1.5.3.1 DirectXIP Method in Linear Mode
In the DirectXIP method in linear mode, MCUboot switches the valid slot from which to activate an image so
that an update is performed.

Figure 1-6 Update Operation of the DirectXIP Method in Linear Mode

1.5.3.2 DirectXIP Method in Dual Mode
In the DirectXIP method in dual mode, MCUboot uses the dual bank function of flash memory to swap the
two banks of the flash memory so that the images in the primary and secondary slots are swapped.

Figure 1-7 Update Operation of the DirectXIP Method in Dual Mode

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 12 of 62
Apr.21.25

1.6 Package Configuration
The package of the MCUboot FIT module contains software, tools, and other files. The following table lists
these files.

Table 1-2 Folder Configuration of the Package of the MCUboot FIT Module

Folder Name Description
rm_mcuboot_v1.00 FIT Module
├─rm_mcuboot MCUboot Module
│ ├─doc Application Notes
│ ├─src
│ │ ├─rm_mcuboot_port MCUboot FIT
│ │ └──mcu-tools MCUboot & imgtool
│ └─rm_mcuboot_if.h Interface Header Files
└─r_config
 └─rm_mcuboot_config.h Configuration Definition Files

fitdemos FIT Demo
├─common Sample Common Files
├─e2_ccrx For CC-RX
│ ├─rx261-ek For EK-RX261
│ │ └─linear
│ │ ├─application_primary Application for initial image
│ │ ├─application_primary_another_slot Application for updated image (for DirectXIP)
│ │ ├─boot_loader Bootloader
│ │ └─key_injection Application of key injection
│ ├─rx65n-rsk For RSK-RX65N
│ │ ├─dual_bank For dual mode
│ │ │ ├─application_primary Initial Image Application
│ │ │ ├─boot_loader Bootloaders
│ │ │ └─key_injection Application of key injection
│ │ └─linear For linear mode
│ │ ├─application_primary Application for initial image
│ │ ├─application_primary_another_slot Application for updated image (for DirectXIP)
│ │ ├─boot_loader Bootloader
│ │ └─key_injection Application of key injection
│ └─rx72n-rsk For RSK-RX72N
│ ├─dual_bank For dual mode
│ │ ├─application_primary Initial Image Application
│ │ ├─boot_loader Bootloaders
│ │ └─key_injection Application of key injection
│ └─linear For linear mode
│ ├─application_primary Application for initial image
│ ├─application_primary_another_slot Application for updated image (for DirectXIP)
│ ├─boot_loader Bootloader
│ └─key_injection Application of key injection
├─e2_gcc For GCC-R
│ ├─rx261-ek For EK-RX261
│ │ └─linear
│ │ ├─application_primary Application for initial image
│ │ ├─application_primary_another_slot Application for updated image (for DirectXIP)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 13 of 62
Apr.21.25

│ │ ├─boot_loader Bootloader
│ │ └─key_injection Application of key injection
│ ├─rx65n-rsk For RSK-RX65N
│ │ ├─dual_bank For dual mode
│ │ │ ├─application_primary Initial Image Application
│ │ │ ├─boot_loader Bootloaders
│ │ │ └─key_injection Application of key injection
│ │ └─linear For linear mode
│ │ ├─application_primary Application for initial image
│ │ ├─application_primary_another_slot Application for updated image (for DirectXIP)
│ │ ├─boot_loader Bootloader
│ │ └─key_injection Application of key injection
│ └─rx72n-rsk For RSK-RX72N
│ ├─dual_bank For dual mode
│ │ ├─application_primary Initial Image Application
│ │ ├─boot_loader Bootloaders
│ │ └─key_injection Application of key injection
│ └─linear For linear mode
│ ├─application_primary Application for initial image
│ ├─application_primary_another_slot Application for updated image (for DirectXIP)
│ ├─boot_loader Bootloader
│ └─key_injection Application of key injection
└─iar For IAR
 ├─rx261-ek For EK-RX261
 │ └─linear
 │ ├─application_primary Application for initial image
 │ ├─application_primary_another_slot Application for updated image (for DirectXIP)
 │ ├─boot_loader Bootloader
 │ └─key_injection Application of key injection
 ├─rx65n-rsk For RSK-RX65N
 │ ├─dual_bank For dual mode
 │ │ ├─application_primary Initial Image Application
 │ │ ├─boot_loader Bootloaders
 │ │ └─key_injection Application of key injection
 │ └─linear For linear mode
 │ ├─application_primary Application for initial image
 │ ├─application_primary_another_slot Application for updated image (for DirectXIP)
 │ ├─boot_loader Bootloader
 │ └─key_injection Application of key injection
 └─rx72n-rsk For RSK-RX72N
 ├─dual_bank For dual mode
 │ ├─application_primary Initial Image Application
 │ ├─boot_loader Bootloaders
 │ └─key_injection Application of key injection
 └─linear For linear mode
 ├─application_primary Application for initial image
 ├─application_primary_another_slot Application for updated image (for DirectXIP)
 ├─boot_loader Bootloader
 └─key_injection Application of key injection

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 14 of 62
Apr.21.25

1.7 Overview of API Functions
Table 1-3 describes the API functions included in the MCUboot FIT module.

Table 1-3 List of API Functions

Function Function Description

boot_go This function obtains the information about the image to be
activated. If an update image is identified in the secondary slot
during verification of the image information, signature verification
of the image is performed. If verification is passed, the update
image is stored in the primary slot according to the update method.

RM_MCUBOOT_BootApp This function closes the drivers related to the MCUboot FIT
module, and then activates the image specified in the parameter.

RM_MCUBOOT_GetVersion This function obtains the version of the module.

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 15 of 62
Apr.21.25

2. API Information
Operation of the MCUboot FIT module was verified under the conditions shown in the following sections.

2.1 Hardware Requirements
The MCU being used must support the following components:

• On-chip flash memory
• Hardware cryptography (TSIP/RSIP)

2.2 Software Requirements
The MCUboot FIT module is dependent on the following drivers:

• Board Support Package (r_bsp)
• Flash module (r_flash_rx)
• TSIP/RSIP module (r_tsip/r_rsip_protected_rx)
• Serial Communications Interface (SCI) (asynchronous/clock synchronous mode) (r_sci_rx)
• Byte Queue (BYTEQ) module (r_byteq)

2.3 Supported Toolchain
Operation of the MCUboot FIT module was verified by using the toolchain shown in “5.1 Environment Used
for Verifying Operation”.

2.4 Header Files
All API function calls and the interface definitions that support the API function calls are described in
rm_mcuboot_if.h.

2.5 Integer Types
This project uses ANSI C99. This type is defined in stdint.h.

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 16 of 62
Apr.21.25

2.6 Configuration Overview
The configuration options of the MCUboot FIT module are set in rm_mcuboot_config.h.

Table 2-1 (Configuration Options) shows the names of configuration options and describes the values that
can be set.

Table 2-1 Configuration Options (1/2)

Configuration Options
RM_MCUBOOT_CFG_UPGRADE_MODE

This option sets the update method.
The following update methods of MCUboot can be selected:
0: Overwrite Only [Default]
1: Overwrite Only Fast
2: Swap
3: DirectXIP

RM_MCUBOOT_CFG
_VALIDATE_PRIMARY_SLOT

This option sets whether to perform signature verification of
the primary image.
Enable this option if you want to perform signature verification
of the primary image before activating the image.
0: Disable
1: Enable [Default]

RM_MCUBOOT_CFG
_DOWNGRADE_PREVENTION

This option sets whether to prevent the image from being
downgraded during an update.
Change the setting of this option when you use the Overwrite
Only or Overwrite Only Fast method.
0: Disable [Default]
1: Enable

RM_MCUBOOT_CFG
_WATCHDOG_FEED_ENABLED

This option must be enabled when a user-defined watchdog
feed is used.
Enabling this option prevents the system from being reset by
watchdog before the processing of MCUboot is completed.
0: Disable [Default]
1: Enable

RM_MCUBOOT_CFG
_WATCHDOG_FEED_FUNCTION

This option registers the user-defined watchdog function in
MCUBOOT_WATCHDOG_FEED.

RM_MCUBOOT_CFG_SIGN This option sets the signature verification method.
Use this option to set the method of signature verification for
the image. If signature verification for the primary image is
enabled, signature verification is performed by the method
set by this option.
0: None
1: ECDSA P-256 [Default]
2: RSA 2048

RM_MCUBOOT_CFG
_ APPLICATION_ENCRYPTION_SCHEME

This option must be enabled if the update image is to be
encrypted. This option can be set when the update method is
Overwrite Only/Only Fast or Swap.
0: Encryption Disabled [Default]
1: Key Wrap

RM_MCUBOOT_CFG
_DER_PUB_USER_KEY_ENABLE

This option must be enabled if DER-formatted public key data
provided by the user is to be used.
The setting of this option can be changed only if the method
of signature verification is set.
0: Disable [Default]
1: Enable

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 17 of 62
Apr.21.25

Table 2-2 Configuration Options (2/2)

Configuration Options
RM_MCUBOOT_CFG
_VERIFY_KEY_ADDRESS

This option sets the address of the public key used for
signature verification.
[Default: NULL]

RM_MCUBOOT_CFG
_ENCRYPT_KEY_ADDRESS

This option sets the address of the key encryption key used
by the image decryption function.
[Default: NULL]

RM_MCUBOOT_CFG
_MCUBOOT_AREA_SIZE

This option sets the size of the area allocated to MCUboot.
(Note: When setting this option, consider the block size of the
flash memory mounted on the device you use.)
[Default: 0x10000]

RM_MCUBOOT_CFG
_APPLICATION_AREA_SIZE

This option sets the size of the area allocated to the
application image.
(Note: When setting this option, consider the block size of the
flash memory mounted on the device you use.)
[Default: 0xF8000]

RM_MCUBOOT_CFG
_SCRATCH_AREA_SIZE

This option sets the size of the scratch area.
This option must be set if the specified update method is
Swap.
(Note: When setting this option, consider the block size of the
flash memory mounted on the device you use. The value to
be set must be a multiple of the sector size of the flash
memory to be used as the scratch area.)
[Default: 0x0]

RM_MCUBOOT_CFG_LOG_LEVEL This option sets the logging level.
MCUboot outputs the log data whose level is equal to or
higher than the level set by this option.
0: Off [Default]
1: Error
2: Warning
3: Info
4: Debug

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 18 of 62
Apr.21.25

Some of the configuration options listed in Table 2-1 and Table 2-2 are overridden by other options that are
set to specific values. The following tables show the option settings that override other options.

Table 2-3 Combination of the Option That Sets the Update Method and the Option That Sets

Whether to Prevent Downgrading

RM_MCUBOOT_CFG
_UPGRADE_MODE

RM_MCUBOOT_CFG
_DOWNGRADE_PREVENTION

1 (Overwrite Only) 0 (Disable) / 1 (Enable)
2 (Overwrite Only Fast) 0 (Disable) / 1 (Enable)
3 (Swap) This option is overridden.
4 (DirectXIP) This option is overridden.

Table 2-4 Combination of the Macro Definitions Related to User-Defined Watchdog Feed

RM_MCUBOOT_CFG
_WATCHDOG_FEED_ENABLED

RM_MCUBOOT_CFG
_WATCHDOG_FEED_FUNCTION

0 (Disable) This option is overridden.
1 (Enable) The user-defined watch dog function is registered.

Table 2-5 Combination of the Options Related to the Signature Verification Method Settings

RM_MCUBOOT_CFG_SIGN RM_MCUBOOT_CFG
_VERIFY_KEY_ADDRESS

RM_MCUBOOT_CFG
_VALIDATE_PRIMARY_SLOT

0 (None) This option is overridden. This option is overridden.

1 (ECDSA P-256) The address of the public key is set. 0 (Disable)
1 (Enable)

2 (RSA 2048) The address of the public key is set. 0 (Disable)
1 (Enable)

Table 2-6 Combination of the Option That Sets Decryption of the Encrypted Image and the Option

That Sets the Address of the Key Encryption Key

RM_MCUBOOT_CFG
_APPLICATION_ENCRYPTION_SCHEME RM_MCUBOOT_CFG_ENCRYPT_KEY_ADDRESS

0 (Encryption Disable) This option is overridden.
1 (Key Wrap) The address of the key encryption key is set.

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 19 of 62
Apr.21.25

2.7 Code Sizes of the Sample Project
Table 2-7 shows the sizes of ROM and RAM spaces and the maximum size of stack area used by the
sample project included in the package of this application note. The values in this table were verified under
the following conditions:

Module revision: MCUboot Module for RX v1.0.0

Compiler versions: Renesas Electronics C/C++ Compiler for RX Family V3.06.00

GCC for Renesas RX 8.3.0.202405

IAR C/C++ Compiler for Renesas RX 5.10.1

CC-RX

• Optimization level: Size & execution speed (-Odefault)
• Option that deletes variables/functions that have never been referenced (-optimize = symbol_delete)
• Subroutine multiple identical instructions (-optimize=same_code)
• Replace instructions with ones that have smaller code size (-optimize=short_format)
• Optimize branch instruction size based on program layout (-optimize=branch)
• Option that generates a functionally cut down version of the set of I/O functions (Yes: Maximally cut-down

version)

GCC

• Optimization level: Size (-Os)
• Use newlib-nano (--specs = nano.specs)
• Set ‘User defined options, -Wl,--no-gc-sections’ only for ‘RX65N/RX72N,dual-bank,application_primary’

IAR

• Optimization level: High (Balance)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 20 of 62
Apr.21.25

Table 2-7 Sizes of the ROM, RAM, and Stack Areas Required by the Sample Project

compiler device bank
mode sample ROM RAM stack

CC-RX

RX261 linear

application_primary 17673 9903 192

key_injection 17673 9903 192

boot_loader

overwrite only 59876 12236 456

overwrite only fast 60189 12268 456

swap 62922 13052 457

directXIP 55123 9696 458

RX65N

linear

application_primary 17306 10813 188

key_injection 26745 11185 284

boot_loader

overwrite only 47607 19598 316

overwrite only fast 48058 20006 320

swap 52732 20006 320

directXIP 36784 18234 248

dual-
bank

application_primary 17933 9417 188

key_injection 25099 11345 188

boot_loader directXIP 38193 16822 248

RX72N

linear

application_primary 17667 11044 192

key_injection 27395 11166 284

boot_loader

overwrite only 48300 20341 320

overwrite only fast 49167 20489 320

swap 53835 21001 316

directXIP 37883 18461 248

dual-
bank

application_primary 18312 9253 192

key_injection 30581 11840 192

boot_loader directXIP 37975 16946 248

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 21 of 62
Apr.21.25

compiler device bank
mode sample ROM RAM stack

GCC

RX261 linear

application_primary 14640 12436 68

key_injection 21400 11796 260

boot_loader

overwrite only 54408 14752 700

overwrite only fast 52915 14764 700

swap 57274 15532 700

directXIP 49023 12200 684

RX65N

linear

application_primary 23572 13472 48

key_injection 26352 13080 1056

boot_loader

overwrite only 48388 21412 1056

overwrite only fast 47070 21552 1056

swap 51441 21808 1056

directXIP 37487 20140 1056

dual-
bank

application_primary 24628 11040 48

key_injection 24864 13080 1056

boot_loader directXIP 39336 18092 1046

RX72N

linear

application_primary 18776 12952 68

key_injection 26976 13208 1056

boot_loader

overwrite only 48972 22180 1056

overwrite only fast 49624 22320 1056

swap 53996 22832 1056

directXIP 40036 20268 1056

dual-
bank

application_primary 26188 11040 48

key_injection 25464 13208 1056

boot_loader directXIP 39840 18220 1056

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 22 of 62
Apr.21.25

compiler device bank
mode sample ROM RAM stack

IAR

RX261 linear

application_primary 11516 7259 920

key_injection 18406 6618 1604

boot_loader

overwrite only 49243 9578 3044

overwrite only fast 49615 9620 3164

swap 54867 10404 3148

directXIP 45378 7044 3012

RX65N

linear

application_primary 15832 5855 1324

key_injection 24481 8855 1532

boot_loader

overwrite only 44443 17276 2592

overwrite only fast 45206 17435 2604

swap 50446 17691 2588

directXIP 34607 15915 2332

dual-
bank

application_primary 16526 6834 1440

key_injection 17291 8845 1468

boot_loader directXIP 35842 14225 2324

RX72N

linear

application_primary 16375 8737 1400

key_injection 25476 9360 1605

boot_loader

overwrite only 46420 18028 2692

overwrite only fast 47087 18176 2692

swap 52343 18688 2676

directXIP 36446 16145 2420

dual-
bank

application_primary 17109 6961 1516

key_injection 23896 9382 1540

boot_loader directXIP 36551 14349 2420

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 23 of 62
Apr.21.25

2.8 Parameters
This section shows the parameters used in the API functions. These parameters are defined by the following
structure, which is specified in bootutil.h together with the prototype declarations of the API functions.

struct boot_rsp {
 /** A pointer to the header of the image to be executed. */
 const struct image_header *br_hdr;

 /**
 * The flash offset of the image to execute. Indicates the position of
 * the image header within its flash device.
 */
 uint8_t br_flash_dev_id;
 uint32_t br_image_off;
};

Table 2-8 List of Parameters

Structure Name Member Description
boot_rsp image_header br_hdr Pointer to the header file of the image to be executed

uint8_t br_flash_dev_id ID of the flash device
uint32_t br_image_off Offset from the image to be executed

2.9 Return Values
This section shows the return values of the API functions. These return values are defined by the following
enumeration, which is specified in bootutil.h together with the prototype declarations of the API functions.

#define FIH_POSITIVE_VALUE 0
#define FIH_NEGATIVE_VALUE -1

extern fih_ret FIH_SUCCESS;
extern fih_ret FIH_FAILURE;

Table 2-9 List of Return Values

Constant Definition Numeric Value Description
FIH_SUCCESS 0 A return value of API functions. This value is used to indicate

that the processing of the API function was successful.
FIH_FAILURE -1 A return value of API functions. This value is used to indicate

that the processing of the API function failed.

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 24 of 62
Apr.21.25

2.10 How to Add a FIT Module
The MCUboot FIT module must be added to each project to be used.

(1) Adding a FIT module by using Smart Configurator on e2 studio

A FIT module can be automatically added to a user project by using Smart Configurator of e2 studio. For
details, refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)”.

(2) Adding a FIT module by using Smart Configurator in the environment of IAR Embedded Workbench for
Renesas RX
If you are using the environment of IAR Embedded Workbench for Renesas RX, use RX Smart
Configurator to add a FIT module to a user project. For details, refer to the following application note: “RX
Smart Configurator User’s Guide: IAREW (R20AN0535)”.

https://www.renesas.com/document/mat/rx-smart-configurator-users-guide-e-studio?r=485911
https://www.renesas.com/document/mat/rx-smart-configurator-users-guide-iarew?r=485911
https://www.renesas.com/document/mat/rx-smart-configurator-users-guide-iarew?r=485911

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 25 of 62
Apr.21.25

2.11 About the “for”, “while”, and “do while” Statements
The MCUboot FIT module uses the “for”, “while”, and “do while” statements (that is, loop processing) in
cases such as when waiting for some settings to be applied to registers. In sections where such loop
processing is used, comments including the keyword “WAIT_LOOP” are added. If you want to add fail-safe
processing to loop processing, you can locate the relevant sections by using “WAIT_LOOP” as a search
string.

The following shows examples of sections where loop processing is coded:

Example of the "while" statement:
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{

/* The delay period needed is to make sure that the PLL has stabilized. */
}

Example of the "for" statement:
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{

g_protect_counters[i] = 0;
}

Example of the "do while" statement:
/* Reset completion waiting */
do
{

reg = phy_read(ether_channel, PHY_REG_CONTROL);
count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET));
/* WAIT_LOOP */

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 26 of 62
Apr.21.25

2.12 Example of Implementing API Functions
This section shows an example of implementing API functions in the MCUboot FIT module.

For details, refer to the source code of the demo project included in the package of this application note.

Figure 2-1 Example of Implementing API Functions in the MCUboot FIT Module

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 27 of 62
Apr.21.25

3. API Functions

3.1 boot_go

Table 3-1 Specifications of the “boot_go” Function

Format fih_ret boot_go(struct boot_rsp *rsp)
Description This function obtains the information about the image to be activated in the following

procedure:
1. Checks whether there is an image including a valid image header in each slot. If there is

no update image in the secondary slot, this function skips step 2.
2. Verifies the signature of the update image and updates the target image according to the

specified update method. The verification and update methods can be changed by using
configuration options.

Returns the information about the image to be activated.
Parameters struct boot_rsp *rsp
Return
Values

FIH_SUCCESS The information about the image was successfully
obtained.

FIH_FAILURE The information about the image could not be
obtained.

Special
Notes

For details, refer to the following web page:
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

3.2 RM_MCUBOOT_BootApp
Table 3-2 Specifications of the RM_MCUBOOT_BootApp Function

Format void RM_MCUBOOT_BootApp (struct boot_rsp * rsp)
Description This function closes the drivers related to the MCUboot FIT module, and then activates the

image specified in the parameter.
Parameters struct boot_rsp * rsp
Return
Values

None

Special
Notes

If the update method is DirectXIP in dual mode and the boot address is at the secondary
slot, the RM_MCUBOOT_BootApp function swaps the banks and performs a software reset.

3.3 RM_MCUBOOT_GetVersion
Table 3-3 Specifications of the RM_MCUBOOT_GetVersion Function

Format uint32_t RM_MCUBOOT_GetVersion(void)
Description This function obtains the version of the MCUboot FIT module.
Parameters None
Return
Values

Version number of the MCUboot FIT module

Special
Notes

The major and minor version numbers of the MCUboot FIT module are managed by using
the interface header file.

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 28 of 62
Apr.21.25

4. Demo Project
The demo project is a sample program for demonstrating a firmware update by using MCUboot and Serial
Communications Interface (SCI).

4.1 Configuration of the Demo Project
The demo project consists of a bootloader and initial image. The bootloader includes the MCUboot FIT
module and other dependent modules. The initial image includes the function for performing a firmware
update. The demo project provided by the package of this application note supports the devices and
compilers shown in section 1.6.

The demonstration of a firmware update using MCUboot is implemented by using the following projects:

• Bootloader (MCUboot): This component is first executed after a reset to verify the target image based on
the verification method set by the relevant configuration option of the MCUboot FIT module.
If there is an update image, this component updates the target image according to the
specified update method.

• Initial image: When this component is activated by the bootloader (MCUboot), it downloads the update
image through the communications interface and writes the update image to the secondary
slot.

• Update image: This component is the same as the initial image but has a different version number. The
update image can be encrypted but the initial image cannot be encrypted.

• Key injection program: This component is used when the public key for signature verification and the key
for image decryption are injected.

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 29 of 62
Apr.21.25

4.1.1 Details of the Initial Image
The initial image is activated by the bootloader and placed in the primary slot. The initial image receives an
update image through the communications interface and writes it to the secondary slot.

Figure 4-1 to Figure 4-5 show a processing flowchart of the initial image.

For details, refer to the source code included in the package of this application note.

Figure 4-1 Processing Flowchart of the Initial Image (1/5)

Figure 4-2 Processing Flowchart of the Initial Image (2/5)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 30 of 62
Apr.21.25

Figure 4-3 Processing Flowchart of the Initial Image (3/5)

Figure 4-4 Processing Flowchart of the Initial Image (4/5)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 31 of 62
Apr.21.25

Figure 4-5 Processing Flowchart of the Initial Image (5/5)

Table 4-1 Information Output to the Log for the Initial Image

Output Timing Output Information
When the initial image is activated
(Log message 1)

Primary Slot Application Image Start (ver 1.0.0)

When the secondary slot is
erased
(Log message 2)

Erase the code flash of the Secondary Slot.

When the update image is
transferred
(Log message 3)

send user program (MCUboot image) via UART.

When erasure of the secondary
slot fails
(Log message 4)

Erase the code flash of the Secondary Slot failed.

When a reset is performed after
writing data
(Log message 5)

software reset...

When the writing of data fails
(Log message 6)

Failed to write code flash.

When opening the flash module
fails
(Log message 7)

Flash driver open failure.

When registration of the BGO
callback function fails
(Log message 8)

BGO callback function set failure.

When the destination address and
size of data to write are output
(Log message 9)

Example:
W 0xFFF00000, 256 ... OK

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 32 of 62
Apr.21.25

4.2 Preparing the Operating Environment
Before you can execute the MCUboot demo project, you must install the necessary tools on your Windows
PC.

4.2.1 Installing Terminal Software
Terminal software is required to perform an update by transferring a firmware image from the Windows PC to
the target board via serial communication.

We have confirmed that the demo project can operate with Tera Term v5.2.

Specify the communication settings of the serial port as shown in Table 4-2.

Table 4-2 Communication Specifications

Item Description
Communication mode Asynchronous mode
Bit rate 115200 bps
Data length 8 bits
Parity None
Stop bit 1 bit
Flow control CTS/RTS

4.2.2 Obtaining Imgtool
Imgtool adds a signature or other information, such as header information and trailer, to an image. It can
generate a key pair for signature verification.

Imgtool has been partially modified for MCUboot FIT, so use imgtool.py stored in the package.

The version of Imgtool is v2.1.0.

For more information, refer to the information at the following URL about Imgtool of MCUboot:

https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md

4.2.3 Installing the Python Runtime Environment
To use lmgtool included in MCUboot, the Python runtime environment is required.

We have confirmed that the demo project can operate with Python 3.11.4.

Because the encryption library of Python (pycryptodome) is used, after installing Python, first execute the
following command to update the version of “pip”.

Install the dependencies using the following command.

Note: scripts/requirements.txt is included in mcu-tools in the MCUboot FIT package.

4.2.4 Installing the OpenSSL Runtime Environment
OpenSSL is used to generate the keys that are required to encrypt images. Download the OpenSSL installer
from the following URL, and then install OpenSSL. No problems occur with the Light version.

We have confirmed that the demo project can operate with OpenSSL 3.4.1.

https://slproweb.com/products/Win32OpenSSL.html

python -m pip install --upgrade pip

pip3 install --user -r scripts/requirements.txt

https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://slproweb.com/products/Win32OpenSSL.html

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 33 of 62
Apr.21.25

4.2.5 Installing a Flash Memory Writer
A flash memory writer is used when the MCUboot FIT module, initial image, key wrapping data, and other
items are written to flash memory. This tool and details on how to install it are available at the URL shown
below.

In the demo project, Renesas Flash Programmer v3.14.00 (RFP) is used as a flash memory writer.

Renesas Flash Programmer (Programming GUI) | Renesas

4.2.6 Installing Security Key Management Tool
Security Key Management Tool is used to generate key wrapping data. This tool and details on how to install
it are available at the URL shown below.

Security Key Management Tool | Renesas

4.2.7 USB-to-Serial Conversion Board
Note that the on-board USB-to-serial conversion circuit of the RSK-RX65N/RSK-RX72N board is unavailable
in linear mode. Therefore, if the target board is RSK-RX65N/RSK-RX72N, use the external USB-to-Serial
conversion board introduced at the URL shown below.

If the target board is EK-RX261, the on-board USB-to-serial conversion circuit can be used.

For details on how to connect the conversion board to the target board, refer to “5.2 Operating Environment
of the Demo Project”.

Note that the external USB-to-serial conversion board uses a Pmod USBUART (from DIGILENT).

https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

https://www.renesas.com/en/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/en/software-tool/security-key-management-tool
https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 34 of 62
Apr.21.25

4.3 Procedure for Executing the Demo Project
This section describes the procedure for executing the demo project.

Note that the address and other values shown in this section are applicable when the RSK-RX65N is used.
For the values to be set for each product, refer to “5.2 Operating Environment of the Demo Project”.

The sample keys are included in the demo project. You can use it in the demo. However, you must generate
a new key for the production version.

4.3.1 Key Injection
In the demo project, the TSIP or RSIP module is used to verify signatures and decrypt images. Before the
TSIP or RSIP module can be used, you must use Hardware Unique Key (HUK) to wrap a key for wrapping
the following keys and then inject the key into the device: the public key for signature verification, the key for
image decryption, and the key for wrapping the image encryption key.

For details on key generation and injection, refer to the procedures described in the following subsections.

Note: “TSIP” appearing in the following subsections refers to TSIP or RSIP.

4.3.1.1 Generating Key Data by Using Security Key Management Tool
Use Security Key Management Tool (SKMT) to generate a User Factory Programming Key (UFPK) file.
Then, use the file to wrap the key (AES-KeyWrap) for wrapping the public key for signature verification and
the key for wrapping the image encryption key.

Also, from Renesas Key Wrap Service, obtain a W-UFPK, which is a UFPK file wrapped by using Hardware
Root Key (HRK).

For details on SKMT, refer to the Renesas web page about Security Key Management Tool (Security Key
Management Tool | Renesas) and “Security Key Management Tool User’s Manual (R20UT5349)”.

For details on Renesas Key Wrap Service (https://dlm.renesas.com/keywrap), refer to its FAQ and operation
manual.

Use the following procedure to generate key data:

Step 1: Use SKMT to generate the UFPK file.

Step 2: Send the UFPK file generated in step 1 to Renesas Key Wrap Service.

Step 3: From Renesas Key Wrap Service, obtain a W-UFPK, which was created by wrapping the UFPK file
by HRK.

Step 4: Use “imgtool” to generate a key pair for signature verification. (You will use “imgtool” again when

generating images in sections 4.3.3.2 and 4.3.3.3, and when embedding a public key in section
4.3.2.)

Execute “imgtool.py” at mcu-tools\MCUboot\scripts in the Python environment.

ECDSA P-256:

RSA 2048:

python imgtool.py keygen -k ecc_sign_key_pair.pem -t ecdsa-p256

python imgtool.py keygen -k rsa_sign_key_pair.pem -t rsa-2048

https://www.renesas.com/en/software-tool/security-key-management-tool
https://www.renesas.com/en/software-tool/security-key-management-tool
https://dlm.renesas.com/keywrap

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 35 of 62
Apr.21.25

Step 5: Generate an AES-KeyWrap key that will be used when you use a random number to wrap an image
encryption key with OpenSSL.

Step 6: Use a random number to generate an image encryption key with OpenSSL. (The generated key will

be used to generate an update image in section 4.3.3.3.)

Step 7: Prepare the public key for signature verification that was generated in step 4 and the AES-KeyWrap

key generated in step 5. Then, wrap these keys with the UFPK file that was generated in step 1.

Step 8: Generate a file (binary format) of key data encrypted with UFPK using SKMT.

The generated binary file will be written to code flash memory in section 4.3.1.2.

Figure 4-6 Generating Key Data by Using SKMT

openssl rand 32 -out AES-KeyWrap.bin

openssl rand 32 -out AES-CTR.bin

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 36 of 62
Apr.21.25

4.3.1.2 Preparation for Key Injection
In section 4.3.1.1, you generated wrapped key data (a W-UFPK, public key for signature verification, and
AES-KeyWrap key). Here, you write the key data and a key injection program (provided as a sample
program) to flash memory by using Renesas Flash Programmer (RFP).

Step 1: Prepare the key data file generated in binary format in section 4.3.1.1, and then use RFP to write the
file to data flash memory (at 0x00100000).

For details on how to use RFP, refer to “Renesas Flash Programmer flash memory programming
software User’s Manual (R20UT5517)”.

Step 2: Use RFP to write the key injection program to code flash memory (at 0xFFFF2000).

Figure 4-7 Preparation for Key Injection

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 37 of 62
Apr.21.25

4.3.1.3 Executing the Key Injection Program
In this section, you execute the key injection program to inject a key.

For flash memory in linear mode:

Step 1: Reset the board, and then execute the key injection program.

Step 2: Confirm that key data has been stored in data flash memory by the key injection program, and use
the key data to wrap the public key for signature verification and the AES-KeyWrap key by HUK of
TSIP. Then, write the resulting wrapped key to code flash memory (at 0xFFFF0000).

Step 3: Erase the key data stored in the data flash.

Figure 4-8 Executing the Key Injection Program (in Linear Mode)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 38 of 62
Apr.21.25

For flash memory in dual mode:

Step 1: Reset the board, and then execute the key injection program.

Step 2: Confirm that key data has been stored in data flash memory by the key injection program, and use
the key data to wrap the public key for signature verification and the AES-KeyWrap key by HUK of
TSIP. Then, write the resulting wrapped key to code flash memory (at 0xFFFF0000 and
0xFFEF0000).

Step 3: Erase the key data stored in the data flash.

Figure 4-9 Executing the Key Injection Program (in Dual Mode)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 39 of 62
Apr.21.25

4.3.2 Embedding the Public Key for Signature Verification
In this section, you embed the public key for signature verification into “keys.c” in the demo project.

Step 1: Use “imgtool” to extract the public key for signature verification to be embedded into the bootloader.

“Imgtool” extracts the public key data from the *.pem file generated in step 4 in section 4.3.1.1 and
displays it on the console.

ECDSA P-256:

RSA 2048:

Output example:

Step 2: Embed the data displayed on the console into “keys.c” in the demo project.

python imgtool.py getpub -k ecc_sign_key_pair.pem

python imgtool.py getpub -k rsa_sign_key_pair.pem

/* Autogenerated by imgtool.py, do not edit. */
const unsigned char ecdsa_pub_key[] = {
 0x30, 0x59, 0x30, 0x13, 0x06, 0x07, 0x2a, 0x86,
 0x48, 0xce, 0x3d, 0x02, 0x01, 0x06, 0x08, 0x2a,
 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0x03,
 0x42, 0x00, 0x04, 0x53, 0x5a, 0x25, 0x70, 0xe6,
 0xa4, 0xd1, 0x0b, 0xaa, 0x25, 0x52, 0x14, 0xf7,
 0xa2, 0x69, 0x3b, 0xc5, 0x02, 0xe0, 0xe7, 0x96,
 0x0c, 0xa8, 0x59, 0x5f, 0x28, 0x04, 0x95, 0x52,
 0x05, 0x3d, 0xea, 0x46, 0x75, 0xd6, 0xa9, 0xd5,
 0x0b, 0x99, 0x5d, 0x1a, 0x2f, 0x10, 0x31, 0x01,
 0xc9, 0x1e, 0x67, 0x42, 0x6d, 0xea, 0xec, 0x77,
 0x3d, 0x23, 0xd4, 0x23, 0x75, 0x28, 0x67, 0x29,
 0xd1, 0x4f, 0x4a,
};
const unsigned int ecdsa pub key len = 91;

#include <bootutil/sign_key.h>

const unsigned char root_pub_der[] = {

/* embed signature verification public key generated in DER format */
};
const unsigned int root_pub_der_len = 0; /* embed "len" */

const struct bootutil_key bootutil_keys[] = {
 {
 .key = root_pub_der,
 .len = &root_pub_der_len,
 },
};
const int bootutil_key_cnt = 1;

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 40 of 62
Apr.21.25

4.3.3 Preparing the Images for the Demo Project
In this section, you prepare the demo project components (bootloader, initial image, and update image). Note
that the addresses of code flash memory at which to store images and parts of the procedure differ
depending on the update method.

4.3.3.1 Generating a Bootloader Image
Build the bootloader of the demo project to generate an image in binary format.

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 41 of 62
Apr.21.25

4.3.3.2 Generating the Initial Image
Build the initial image of the demo project to generate an image in binary format, and then use “imgtool” to
add information with which MCUboot can manage the image.

Step 1: Build the initial image of the demo project (application program that receives the update image via

UART communication and writes it to the secondary slot) to generate an image in binary format.

Step 2: Use “imgtool” to add the trailer information that will be managed by MCUboot to the image generated
in step 1. The resulting data becomes the new initial image.

Example of the option settings for generating the initial image:

--version #.#.#: Specify the version number.

--slot-size 0x####: Specify the slot size.

--key ########.pem: Set the key pair for signature verification generated in step 4 in section 4.3.1.1.

########.bin: Set the binary file of the image generated in step 1.

########.bin.ecc_sign: The initial image is output.

Note: The initial image cannot be encrypted.

Figure 4-10 Generating the Initial Image

imgtool.py sign --version 1.0.0 --header-size 0x200 --align 128
--max-align 128 --slot-size 0xF0000 --max-sectors 16 --confirm
--pad-header --key ecc_sign_key_pair.pem input_image.bin
input_image.bin.ecc_sign

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 42 of 62
Apr.21.25

4.3.3.3 Generating an Update Image
In the demo project, you create the update image by reusing the initial image.

When you use “imgtool” to add information, specify the “--version” option with a version number higher than
the version number of the initial image.

If you want to encrypt the update image, also specify the encryption key (‘--encrypted-rx’ option) and the
wrapped image encryption key (‘--wrapped-enckey’ option) when generating the update image.

Note that the DirectXIP method does not support image encryption.

Step 1: Build the initial image of the demo project to generate an image in binary format.

Step 2: Use RFC3394_KeyWrap.py to generate a wrapped image encryption key (wrapped-AES-CTR.bin)
using the image encryption key and the key for wrapping the image encryption key generated in
Steps 5 and 6 of 4.3.1.1.

Example of the option settings for generating a wrapped image encryption key:

Step 3: Use “imgtool” to add the trailer information that will be managed by MCUboot to the image generated

in step 1. The resulting data is used as the update image. When adding the information, be sure to
specify a version number higher than the version number of the initial image.

Example of the option settings for generating an encrypted update image:

--version #.#.#: Specify the version number. (Specify a version number higher than the version

number of the initial image, so that the generated image can be used as the update
image.)

--slot-size 0x####: Specify the slot size.

--key ########.pem: Set the key pair for signature verification generated in step 4 in section 4.3.1.1.

--encrypted-rx ########.bin: Set the image encryption key generated in step 6 in section 4.3.1.1.

--wrapped-enckey ########.bin: Set the wrapped image encryption key generated in Step 2.

########.bin: Set the binary file of the image generated in step 1.

########.bin.ecc_sign.enc: An encrypted update image is output.

Example of the option settings for generating an unencrypted update image:

The option settings for generating an unencrypted update image are the same as those for
generating the initial image except that the value of the “--version” option is changed to a higher
version number.

python RFC3394_KeyWrap.py AES-KeyWrap.bin AES-CTR.bin
wrapped-AES-CTR.bin

imgtool.py sign --version 1.1.0 --header-size 0x200 --align 128
--max-align 128 --slot-size 0xF0000 --max-sectors 16 –confirm
--pad-header --key ecc_sign_key_pair.pem
--encrypted-rx AES-CTR.bin --wrapped-enckey AES-KeyWrap.bin
input_image.bin input_image.bin.ecc_sign.enc

imgtool.py sign --version 1.1.0 --header-size 0x200 --align 128
--max-align 128 --slot-size 0xF0000 --max-sectors 16 –confirm
--pad-header --key ecc_sign_key_pair.pem input_image.bin
input image.bin.ecc sign

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 43 of 62
Apr.21.25

Figure 4-11 Generating an Update Image (in Encrypted Format)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 44 of 62
Apr.21.25

4.3.4 Programming the Demo Project
In this section, you use RFP to write the images to be used for the demo project that was generated in
section 4.3.3.

In the procedure described below, you use RPF to erase the flash memory in step 1 and write code in step 2
or later. When you write code after erasure, specify multiple files so that the processing will be completed at
once.

Note that the write-destination addresses differ depending on the update method and the configuration of the
flash memory. For the write-destination addresses, refer to the memory map for the method you use in “5.2
Operating Environment of the Demo Project”.

In the case of linear mode:

Step 1: Use RFP to erase the code flash memory areas other than the HUK-wrapped key data generated in
4.3.1.3.

Figure 4-12 Erasing the Write Destinations (in the Case of Linear Mode)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 45 of 62
Apr.21.25

Step 2: Use RFP to write the bootloader (MCUBoot) generated in section 4.3.3.1 to the Bootloader area, and
the initial image generated in section 4.3.3.2 to the primary slot.

Figure 4-13 Programming the Demo Project (in the Case of Linear Mode)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 46 of 62
Apr.21.25

In the case of dual mode:

Step 1: Use RFP to erase the code flash memory areas other than the HUK-wrapped key data generated in
4.3.1.3.

Figure 4-14 Erasing the Write Destinations (in the Case of Dual Mode)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 47 of 62
Apr.21.25

Step 2: Use RFP to write the bootloader (MCUBoot) generated in section 4.3.3.1 to the Bootloader areas in
Banks 0 and 1, and the initial image generated in section 4.3.3.2 to the primary slot.

Figure 4-15 Programming the Demo Project (in the Case of Dual Mode)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 48 of 62
Apr.21.25

4.3.5 Executing the Demo Project
In this section, you execute the demo project that was programmed in section 4.3.4.

When you start the demo project, the bootloader (MCUboot) starts and activates the initial image written in
the primary slot. In this demo application, the update image received via terminal software is written to the
secondary slot.

After the writing is completed, the software is reset, and the bootloader (MCUboot) is started again.

Use the following procedure to execute the demo project:

1. Connect the hardware components by referring to “5.2.2 Environment Used for Verifying Operation of the

RX65N”.
2. Start the terminal software on the PC, and then select the serial COM port and specify the connection

settings.
3. Turn on the power of the target board. The bootloader (MCUboot) starts, and the initial image written in

the primary slot is activated.

4. When the initial image begins to wait for reception of the update image, send the update image from the

terminal software.
While the received update image is being written to the secondary slot, the following messages are
output:

5. When the writing of the update image is completed, the software is reset.

6. The bootloader (MCUboot) starts again and performs an update according to the specified update mode.

When the update is completed, the bootloader activates the updated image.

Update start
[INF] Primary slot: version=1.0.0+0
[INF] Image 0 Secondary slot: Image not found
[INF] Image 0 loaded from the primary slot
--
Primary Slot Application Image Start (ver 1.0.0)
--
Erase the code flash of the Secondary slot.

send user program (MCUboot image) via UART.
W 0xffe10000, 512 ... OK
W 0xffe10200, 512 ... OK
...
W 0xffeffc00, 512 ... OK
W 0xffeffe00, 512 ... OK

software reset..

Update start
[INF] Swap type: perm
[INF] Image upgrade secondary slot -> primary slot
[INF] Erasing the primary slot
[INF] Copying the secondary slot to the primary slot: 0xf0000 bytes
--
Primary Slot Application Image Start (ver 1.1.0)
--
Erase the code flash of the Secondary slot.
send user program (MCUboot image) via UART.

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 49 of 62
Apr.21.25

5. Appendix

5.1 Environment Used for Verifying Operation
This appendix shows the environment used for verifying the operation of the MCUboot FIT module.

Table 5-1 Environment Used for Verifying Operation (CC-RX)

Item Description
Integrated development
environment

Renesas Electronics e2 studio 2025-01

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.07.00
Compiler options: The following option was used in addition to the default
settings of the integrated development environment:
-lang = c99

Endianness Little endian
Revision number of the
module

Rev.1.00

Boards used Evaluation Kit for RX261 (Product No.: RTK5EK2610SxxxxxBE)
Renesas Starter Kit+ for RX65N (Product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit+ for RX72N (Product No.: RTK5572NNxxxxxxxBE)

Table 5-2 Environment Used for Verifying Operation (GCC)

Item Description
Integrated development
environment

Renesas Electronics e2 studio 2025-01

C compiler GCC for Renesas RX 8.3.0.202411
Compiler options: The following option was used in addition to the default
settings of the integrated development environment:
-std=gnu99

Endianness Little endian
Revision number of the
module

Rev.1.00

Boards used Evaluation Kit for RX261 (Product No.: RTK5EK2610SxxxxxBE)
Renesas Starter Kit+ for RX65N (Product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit+ for RX72N (Product No.: RTK5572NNxxxxxxxBE)

Table 5-3 Environment Used for Verifying Operation (IAR)

Item Description
Integrated development
environment

IAR Systems IAR Embedded Workbench for Renesas RX 5.10.1
RX Smart Configurator V2.24.0

C compiler IAR Systems
IAR C/C++ Compiler for Renesas RX 5.10.1
Compiler options: The default settings of the integrated development
environment were used.

Endianness Little endian
Revision number of the
module

Rev.1.00

Boards used Evaluation Kit for RX261 (Product No.: RTK5EK2610SxxxxxBE)
Renesas Starter Kit+ for RX65N (Product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit+ for RX72N (Product No.: RTK5572NNxxxxxxxBE)

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 50 of 62
Apr.21.25

The following lists the version numbers of the FIT modules used in the demo project when operation of
MCUboot was verified.

(1) Environment that used Renesas Electronics C/C++ Compiler Package for RX Family

Table 5-4 List of Version Numbers of the FIT Modules (CC-RX)

Device Project r_bsp r_flash_
rx

r_tsip r_rsip_p
rotected
_rx

r_sci_rx r_byteq rm_mcu
boot

RX72N,
RX65N

application_primary 7.52 5.21 1.21 - 5.40 2.10 1.00
boot_loader 7.52 5.21 1.21 - 5.40 2.10 1.00
key_injection 7.52 5.21 1.21 - 5.40 2.10 1.00

RX261 application_primary 7.52 5.21 - 1.00 5.40 2.10 1.00
boot_loader 7.52 5.21 - 1.00 5.40 2.10 1.00
key_injection 7.52 5.21 - 1.00 5.40 2.10 1.00

(2) Environment that used GCC for Renesas RX

Table 5-5 List of the Version Numbers of the FIT Modules (GCC)

Device Project r_bsp r_flash_
rx

r_tsip r_rsip_p
rotected
_rx

r_sci_rx r_byteq rm_mcu
boot

RX72N,
RX65N

application_primary 7.52 5.21 1.21 - 5.40 2.10 1.00
boot_loader 7.52 5.21 1.21 - 5.40 2.10 1.00
key_injection 7.52 5.21 1.21 - 5.40 2.10 1.00

RX261 application_primary 7.52 5.21 - 1.00 5.40 2.10 1.00
boot_loader 7.52 5.21 - 1.00 5.40 2.10 1.00
key_injection 7.52 5.21 - 1.00 5.40 2.10 1.00

(3) Environment that used IAR C/C++ Compiler for RX

Table 5-6 List of Version Numbers of the FIT Modules (IAR)

Device Project r_bsp r_flash_
rx

r_tsip r_rsip_p
rotected
_rx

r_sci_rx r_byteq rm_mcu
boot

RX72N,
RX65N

application_primary 7.52 5.21 1.21 - 5.40 2.10 1.00
boot_loader 7.52 5.21 1.21 - 5.40 2.10 1.00
key_injection 7.52 5.21 1.21 - 5.40 2.10 1.00

RX261 application_primary 7.52 5.21 - 1.00 5.40 2.10 1.00
boot_loader 7.52 5.21 - 1.00 5.40 2.10 1.00
key_injection 7.52 5.21 - 1.00 5.40 2.10 1.00

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 51 of 62
Apr.21.25

5.2 Operating Environment of the Demo Project
The demo project supports multiple products. The settings to be specified when using the demo project differ
depending on the product. This section shows these differences.

5.2.1 Environment Used for Verifying Operation of the RX261

5.2.1.1 Information on Hardware Component Connections
The following shows the information on hardware component connections for the EK-RX261.

Figure 5-1 Hardware Component Connection Diagram for the EK-RX261

Figure 5-2 Connection Information of the EK-RX261 Board

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 52 of 62
Apr.21.25

5.2.1.2 Memory Allocation and Configuration Option Settings
The following figure shows the memory allocation of the demo project for the EK-RX261.

Figure 5-3 Memory Map of the Demo Project for the EK-RX261

Table 5-7 Configuration Option Settings of the Demo Project for the EK-RX261

Configuration options in rm_mcuboot_config.h
Parameter Name mcu_boot
RM_MCUBOOT_CFG_UPGRADE_MODE Select a number in the range from 0 to 3.
RM_MCUBOOT_CFG_VALIDATE_PRIMARY_SLOT 1
RM_MCUBOOT_CFG_DOWNGRADE_PREVENTION 0
RM_MCUBOOT_CFG_WATCHDOG_FEED_ENABLED 0
RM_MCUBOOT_CFG_WATCHDOG_FEED_FUNCTION NULL
RM_MCUBOOT_CFG_SIGN 1
RM_MCUBOOT_CFG_APPLICATION _ENCRYPTION_SCHEME 1
RM_MCUBOOT_CFG_ DER_PUB_USER_KEY_ENABLE 1
RM_MCUBOOT_CFG_VERIFY_KEY_ADDRESS 0xFFFF0000
RM_MCUBOOT_CFG_ENCRYPT_KEY_ADDRESS 0xFFFF1000
RM_MCUBOOT_CFG_MCUBOOT_AREA_SIZE 0x10000
RM_MCUBOOT_CFG_APPLICATION_AREA_SIZE 0x30000
RM_MCUBOOT_CFG_SCRATCH_AREA_SIZE 0x10000
RM_MCUBOOT_CFG_LOG_LEVEL 3

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 53 of 62
Apr.21.25

5.2.2 Environment Used for Verifying Operation of the RX65N

5.2.2.1 Information on Hardware Component Connections for an Update in Linear Mode
The following shows the information on hardware component connections for the RSK-RX65N in the case
where the update method is Overwrite Only, Overwrite Only Fast, Swap, or DirectXIP and the flash memory
is in linear mode.

Figure 5-4 Hardware Component Connection Diagram for the RSK-RX65N When the
Update Method Uses Linear Mode

Figure 5-5 Information on Hardware Component Connections for the RSK-RX65N When the
Update Method Uses Linear Mode

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 54 of 62
Apr.21.25

5.2.2.2 Memory Allocation and Configuration Option Settings in the Case Where the
Update Method Uses Linear Mode

The following shows the memory map and configuration option settings of the demo project in the case
where the update method is Overwrite Only, Overwrite Only Fast, Swap, or DirectXIP and the flash memory
is in linear mode.

Figure 5-6 Memory Map of the Demo Project for the RSK-RX65N (2 MB) in the Case Where the
Update Method Uses Linear Mode

Table 5-8 Configuration Option Settings for the RSK-RX65N (2 MB) in the Case Where the Update

Method Uses Linear Mode

Configuration options in rm_mcuboot_config.h
Parameter Name mcu_boot
RM_MCUBOOT_CFG_UPGRADE_MODE Select a number in the range from 0 to 3.
RM_MCUBOOT_CFG_VALIDATE_PRIMARY_SLOT 1
RM_MCUBOOT_CFG_DOWNGRADE_PREVENTION 0
RM_MCUBOOT_CFG_WATCHDOG_FEED_ENABLED 0
RM_MCUBOOT_CFG_WATCHDOG_FEED_FUNCTION NULL
RM_MCUBOOT_CFG_SIGN 1
RM_MCUBOOT_CFG_APPLICATION _ENCRYPTION_SCHEME 1
RM_MCUBOOT_CFG_ DER_PUB_USER_KEY_ENABLE 1
RM_MCUBOOT_CFG_VERIFY_KEY_ADDRESS 0xFFFF0000
RM_MCUBOOT_CFG_ENCRYPT_KEY_ADDRESS 0xFFFF1000
RM_MCUBOOT_CFG_MCUBOOT_AREA_SIZE 0x10000
RM_MCUBOOT_CFG_APPLICATION_AREA_SIZE 0xF0000
RM_MCUBOOT_CFG_SCRATCH_AREA_SIZE 0x10000
RM_MCUBOOT_CFG_LOG_LEVEL 3

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 55 of 62
Apr.21.25

5.2.2.3 Information on Hardware Component Connections for an Update in Dual Mode
The following shows the information on hardware component connections in the case where the update
method is DirectXIP and the flash memory is in dual mode.

Figure 5-7 Hardware Component Connection Diagram for the RSK-RX65N When the
Update Method Uses Dual Mode

Figure 5-8 Information on Hardware Component Connections for the RSK-RX65N When the
Update Method Uses Dual Mode

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 56 of 62
Apr.21.25

5.2.2.4 Memory Allocation and Configuration Option Settings in the Case Where the
Update Method Uses Dual Mode

The following shows the memory map and configuration option settings of the demo project in the case
where the update method is DirectXIP and the flash memory is in dual mode.

Figure 5-9 Memory Map of the Demo Project for the RSK-RX65N (2 MB) in the Case Where the
Update Method Uses Dual Mode

Table 5-9 Configuration Option Settings of the Demo Project for the RSK-RX65N (2 MB) in the Case

Where the Update Method Uses Dual Mode

Configuration options in rm_mcuboot_config.h
Parameter Name mcu_boot
RM_MCUBOOT_CFG_UPGRADE_MODE 3 (DirectXIP)
RM_MCUBOOT_CFG_VALIDATE_PRIMARY_SLOT 1
RM_MCUBOOT_CFG_DOWNGRADE_PREVENTION 0 (This setting takes no effect in this

update method.)
RM_MCUBOOT_CFG_WATCHDOG_FEED_ENABLED 0
RM_MCUBOOT_CFG_WATCHDOG_FEED_FUNCTION NULL
RM_MCUBOOT_CFG_SIGN 1
RM_MCUBOOT_CFG_APPLICATION _ENCRYPTION_SCHEME 0 (This setting takes no effect in this

update method.)
RM_MCUBOOT_CFG_ DER_PUB_USER_KEY_ENABLE 1
RM_MCUBOOT_CFG_VERIFY_KEY_ADDRESS 0xFFFF0000
RM_MCUBOOT_CFG_ENCRYPT_KEY_ADDRESS NULL
RM_MCUBOOT_CFG_MCUBOOT_AREA_SIZE 0x10000
RM_MCUBOOT_CFG_APPLICATION_AREA_SIZE 0xF0000
RM_MCUBOOT_CFG_SCRATCH_AREA_SIZE 0 (This setting takes no effect in this

update method.)
RM_MCUBOOT_CFG_LOG_LEVEL 3

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 57 of 62
Apr.21.25

5.2.3 Environment Used for Verifying Operation of the RX72N

5.2.3.1 Information on Hardware Component Connections for an Update in Linear Mode
The following shows the information on hardware component connections for the RSK-RX72N in the case
where the update method is Overwrite Only, Overwrite Only Fast, Swap, or DirectXIP and the flash memory
is in linear mode.

Figure 5-10 Hardware Component Connection Diagram for the RSK-RX72N When the
Update Method Uses Linear Mode

Figure 5-11 Information on Hardware Component Connections for the RSK-RX72N When the
Update Method Uses Linear Mode

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 58 of 62
Apr.21.25

5.2.3.2 Memory Allocation and Configuration Option Settings in the Case Where the
Update Method Uses Linear Mode

The following shows the memory map and configuration option settings of the demo project in the case
where the update method is Overwrite Only, Overwrite Only Fast, Swap, or DirectXIP and the flash memory
is in linear mode.

Figure 5-12 Memory Map of the Demo Project for the RSK-RX72N in the Case Where the Update
Method Uses Linear Mode

Table 5-10 Configuration Option Settings for the RSK-RX72N in the Case Where the Update Method

Uses Linear Mode

Configuration options in rm_mcuboot_config.h
Parameter Name mcu_boot
RM_MCUBOOT_CFG_UPGRADE_MODE Select a number in the range from 0 to 3.
RM_MCUBOOT_CFG_VALIDATE_PRIMARY_SLOT 1
RM_MCUBOOT_CFG_DOWNGRADE_PREVENTION 0
RM_MCUBOOT_CFG_WATCHDOG_FEED_ENABLED 0
RM_MCUBOOT_CFG_WATCHDOG_FEED_FUNCTION NULL
RM_MCUBOOT_CFG_SIGN 1
RM_MCUBOOT_CFG_APPLICATION _ENCRYPTION_SCHEME 1
RM_MCUBOOT_CFG_ DER_PUB_USER_KEY_ENABLE 1
RM_MCUBOOT_CFG_VERIFY_KEY_ADDRESS 0xFFFF0000
RM_MCUBOOT_CFG_ENCRYPT_KEY_ADDRESS 0xFFFF1000
RM_MCUBOOT_CFG_MCUBOOT_AREA_SIZE 0x10000
RM_MCUBOOT_CFG_APPLICATION_AREA_SIZE 0x1F0000
RM_MCUBOOT_CFG_SCRATCH_AREA_SIZE 0x10000
RM_MCUBOOT_CFG_LOG_LEVEL 3

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 59 of 62
Apr.21.25

5.2.3.3 Information on Hardware Component Connections for an Update in Dual Mode
The following shows the information on hardware component connections in the case where the update
method is DirectXIP and the flash memory is in dual mode.

Figure 5-13 Hardware Component Connection Diagram for the RSK-RX72N When the
Update Method Uses Dual Mode

Figure 5-14 Information on Hardware Component Connections for the RSK-RX72N When the
Update Method Uses Dual Mode

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 60 of 62
Apr.21.25

5.2.3.4 Memory Allocation and Configuration Option Settings in the Case Where the
Update Method Uses Dual Mode

The following shows the memory map and configuration option settings of the demo project in the case
where the update method is DirectXIP and the flash memory is in dual mode.

Figure 5-15 Memory Map of the Demo Project for the RSK-RX72N in the Case Where the Update
Method Uses Dual Mode

Table 5-11 Configuration Option Settings of the Demo Project for the RSK-RX72N in the Case Where

the Update Method Uses Dual Mode

Configuration options in rm_mcuboot_config.h
Parameter Name mcu_boot
RM_MCUBOOT_CFG_UPGRADE_MODE 3 (DirectXIP)
RM_MCUBOOT_CFG_VALIDATE_PRIMARY_SLOT 1
RM_MCUBOOT_CFG_DOWNGRADE_PREVENTION 0 (This setting takes no effect in this

update method.)
RM_MCUBOOT_CFG_WATCHDOG_FEED_ENABLED 0
RM_MCUBOOT_CFG_WATCHDOG_FEED_FUNCTION NULL
RM_MCUBOOT_CFG_SIGN 1
RM_MCUBOOT_CFG_APPLICATION _ENCRYPTION_SCHEME 0 (This setting takes no effect in this

update method.)
RM_MCUBOOT_CFG_ DER_PUB_USER_KEY_ENABLE 1
RM_MCUBOOT_CFG_VERIFY_KEY_ADDRESS 0xFFFF0000
RM_MCUBOOT_CFG_ENCRYPT_KEY_ADDRESS NULL
RM_MCUBOOT_CFG_MCUBOOT_AREA_SIZE 0x10000
RM_MCUBOOT_CFG_APPLICATION_AREA_SIZE 0x1F0000
RM_MCUBOOT_CFG_SCRATCH_AREA_SIZE 0 (This setting takes no effect in this

update method.)
RM_MCUBOOT_CFG_LOG_LEVEL 3

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 61 of 62
Apr.21.25

6. Notes

6.1 Notes on Transition from Bootloader(MCUboot) to Application.
When transitioning from the sample bootloader program to the application, the settings of the bootloader's
peripheral functions will be taken over by the application.

For the peripheral functions used in the sample bootloader (Table 7.1), the API functions of each FIT module
are closed at the end of the bootloader. Other settings are default values when the smart configurator is
used.

If the customer modifies the bootloader sample program for use, the settings of the peripheral functions set
in the bootloader will be inherited by the application side. Therefore, it is recommended to initialize the
settings of the peripheral functions before moving from the bootloader to the application, or to share the
settings of the peripheral functions with the application.

When creating an application, please take the implementation of the bootloader into consideration.

Table 6.1 Notes on peripheral functions used in the bootloader

Peripheral Functions FIT Modeule Settings and Notes on the Boot Loader
Board Functions r_bsp These are the default values when the BSP FIT module is

embedded in the Smart Configurator. The settings are not
changed in the bootloader.
Please note that the PMR and PFS registers are also set to match
the board.

Functions of Flash
Memory

r_flash_rx The Flash FIT API performs Close for peripheral functions related
to flash memory and transitions to the application.

Serial Communication
Functions

r_sci_rx For peripheral functions related to serial communication, Close is
performed by the SCI FIT API and the transition is made to the
application.
For the SCI channels used in the bootloader, refer to the device
connection diagram for each product in 6.2 Operating
Environment for Demo Project.

Option Setting Memory - For the option setting memory, set the same value in the
bootloader and the application program.

Other Functions - As for the settings of other functions, these are the default values
when using the Smart Configurator.
The PSW's interrupt enable flag is set to interrupt disabled to
transition to the application.

RX Family MCUboot Firmware Integration Technology

R01AN7374EJ0100 Rev.1.00 Page 62 of 62
Apr.21.25

Revision History

Rev. Date
Description
Page Summary

1.00 Apr. 21, 2025 — First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Overview of MCUboot
	1.2 Overview of the MCUboot FIT Module
	1.3 System Configuration
	1.4 Operation of MCUboot
	1.5 Supported Update Methods of MCUboot
	1.5.1 Overwrite Only/Only Fast Methods
	1.5.1.1 Overwrite Only Method
	1.5.1.2 Overwrite Only Fast Method

	1.5.2 Swap Method
	1.5.3 DirectXIP Method
	1.5.3.1 DirectXIP Method in Linear Mode
	1.5.3.2 DirectXIP Method in Dual Mode

	1.6 Package Configuration
	1.7 Overview of API Functions

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchain
	2.4 Header Files
	2.5 Integer Types
	2.6 Configuration Overview
	2.7 Code Sizes of the Sample Project
	2.8 Parameters
	2.9 Return Values
	2.10 How to Add a FIT Module
	2.11 About the “for”, “while”, and “do while” Statements
	2.12 Example of Implementing API Functions

	3. API Functions
	3.1 boot_go
	3.2 RM_MCUBOOT_BootApp
	3.3 RM_MCUBOOT_GetVersion

	4. Demo Project
	4.1 Configuration of the Demo Project
	4.1.1 Details of the Initial Image

	4.2 Preparing the Operating Environment
	4.2.1 Installing Terminal Software
	4.2.2 Obtaining Imgtool
	4.2.3 Installing the Python Runtime Environment
	4.2.4 Installing the OpenSSL Runtime Environment
	4.2.5 Installing a Flash Memory Writer
	4.2.6 Installing Security Key Management Tool
	4.2.7 USB-to-Serial Conversion Board

	4.3 Procedure for Executing the Demo Project
	4.3.1 Key Injection
	4.3.1.1 Generating Key Data by Using Security Key Management Tool
	4.3.1.2 Preparation for Key Injection
	4.3.1.3 Executing the Key Injection Program

	4.3.2 Embedding the Public Key for Signature Verification
	4.3.3 Preparing the Images for the Demo Project
	4.3.3.1 Generating a Bootloader Image
	4.3.3.2 Generating the Initial Image
	4.3.3.3 Generating an Update Image

	4.3.4 Programming the Demo Project
	4.3.5 Executing the Demo Project

	5. Appendix
	5.1 Environment Used for Verifying Operation
	5.2 Operating Environment of the Demo Project
	5.2.1 Environment Used for Verifying Operation of the RX261
	5.2.1.1 Information on Hardware Component Connections
	5.2.1.2 Memory Allocation and Configuration Option Settings

	5.2.2 Environment Used for Verifying Operation of the RX65N
	5.2.2.1 Information on Hardware Component Connections for an Update in Linear Mode
	5.2.2.2 Memory Allocation and Configuration Option Settings in the Case Where the Update Method Uses Linear Mode
	5.2.2.3 Information on Hardware Component Connections for an Update in Dual Mode
	5.2.2.4 Memory Allocation and Configuration Option Settings in the Case Where the Update Method Uses Dual Mode

	5.2.3 Environment Used for Verifying Operation of the RX72N
	5.2.3.1 Information on Hardware Component Connections for an Update in Linear Mode
	5.2.3.2 Memory Allocation and Configuration Option Settings in the Case Where the Update Method Uses Linear Mode
	5.2.3.3 Information on Hardware Component Connections for an Update in Dual Mode
	5.2.3.4 Memory Allocation and Configuration Option Settings in the Case Where the Update Method Uses Dual Mode

	6. Notes
	6.1 Notes on Transition from Bootloader(MCUboot) to Application.

