
 Application Note

R20AN0335EJ0261 Rev.2.61 Page 1 of 78
Mar.15.25

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module
Firmware Integration Technology
Introduction
This Application Note describes the M3S-TFAT-Tiny Memory Driver Interface module which uses Firmware
Integration Technology (FIT). This module uses as memory driver interface to combine RX Family Open
source FAT filesystem M3S-TFAT-Tiny FIT (TFAT FIT) with each memory drivers. In this document, this
module is referred to as the TFAT driver FIT module.

Please refer to the following URL to know the details about FIT Modules.

https://www.renesas.com/en-us/solutions/rx-applications/fit.html

In this document, the terms are used as follows.

• TFAT FIT:
 RX Family Open Source FAT File System M3S-TFAT-Tiny Module FIT (R20AN0038)

• TFAT driver FIT:
 RX Family M3S-TFAT-Tiny Memory Driver Interface Module FIT (R20AN0335)

• TFAT:

 M3S-TFAT-Tiny or generic term for TFAT FIT and TFAT driver FIT

https://www.renesas.com/en-us/solutions/rx-applications/fit.html

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 2 of 78
Mar.15.25

This Application Note provides the driver interface corresponding to SD memory card (SD mode), SD
memory card (SPI mode), USB memory, USB Mini, eMMC, Serial Flash memory. Please use with following
FIT Modules.

Function Product Website
File system (*1) TFAT FIT http://www.renesas.com/mw/tfat-rx
SD memory card Drive (*2) SD memory card Driver

(SD mode)
https://www.renesas.com/driver/rtm0rx000
0dsdd

SPI mode SD memory
card Driver

USB Driver (*2) USB Basic Host and
Peripheral Driver

http://www.renesas.com/driver/usb

USB Host Mass Storage
Class Driver (HMSC)

USB Mini Driver (*2) USB Basic Mini Host and
Peripheral Driver (USB
Mini Firmware)

http://www.renesas.com/driver/usb

USB Host Mass Storage
Class Driver for USB Mini
Firmware

eMMC Driver (*2) MMC Mode MMCIF Driver https://www.renesas.com/products/softwar
e-tools/software-os-middleware-
driver/mmc/multimediacard-emmc-driver-
for-rx-family.html

Serial Flash memory Driver (*2) Clock Synchronous
Control Module for Serial
Flash Memory Access

https://www.renesas.com/products/softwar
e-tools/software-os-middleware-
driver/serial-memory/spi-qspi-serial-flash-
driver.html

*1 This is required.
*2 One module is required.

Target Device
• RX Family
When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX
For details of the confirmed operation contents of each compiler, refer to “6.1 Confirmed Operation
Environment".

http://www.renesas.com/mw/tfat-rx
https://www.renesas.com/driver/rtm0rx0000dsdd
https://www.renesas.com/driver/rtm0rx0000dsdd
http://japan.renesas.com/driver/usb
http://japan.renesas.com/driver/usb
https://www.renesas.com/products/software-tools/software-os-middleware-driver/mmc/multimediacard-emmc-driver-for-rx-family.html
https://www.renesas.com/products/software-tools/software-os-middleware-driver/mmc/multimediacard-emmc-driver-for-rx-family.html
https://www.renesas.com/products/software-tools/software-os-middleware-driver/mmc/multimediacard-emmc-driver-for-rx-family.html
https://www.renesas.com/products/software-tools/software-os-middleware-driver/mmc/multimediacard-emmc-driver-for-rx-family.html
https://www.renesas.com/products/software-tools/software-os-middleware-driver/serial-memory/spi-qspi-serial-flash-driver.html
https://www.renesas.com/products/software-tools/software-os-middleware-driver/serial-memory/spi-qspi-serial-flash-driver.html
https://www.renesas.com/products/software-tools/software-os-middleware-driver/serial-memory/spi-qspi-serial-flash-driver.html
https://www.renesas.com/products/software-tools/software-os-middleware-driver/serial-memory/spi-qspi-serial-flash-driver.html

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 3 of 78
Mar.15.25

Related Documents
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• RX Family Open Source FAT File System M3S-TFAT-Tiny Module Firmware Integration Technology

 (R20AN0038)
• RX Family SD Mode SD Memory Card Driver Firmware Integration Technology (R01AN4233)
• RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology (R01AN6908)
• RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology (R01AN2025)
• RX Family USB Host Mass Storage Class Driver (HMSC) Firmware Integration Technology (R01AN2029)

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration
Technology (R01AN2166)
• RX Family USB Host Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration

Technology (R01AN2169)
• RX Family MMC Mode MMCIF Driver Firmware Integration Technology (R01AN4234)
• RX Family Clock Synchronous Control Module for Serial Flash Memory Access Firmware Integration

Technology (R01AN2662)
• RX Family System Timer Module Firmware Integration Technology(R20AN0431)

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 4 of 78
Mar.15.25

Contents

1. Overview ... 7
1.1 This Application Note... 7
1.2 Structure of Application ... 7
1.2.1 Structure of Application ... 7
1.2.2 Structure of Software ... 8
1.3 API Overview ... 10
1.4 Limitations ... 10

2. API Information .. 11
2.1 Hardware Requirements ... 11
2.2 Software Requirements ... 11
2.3 Supported Toolchain ... 11
2.4 Interrupt Vector .. 11
2.5 Header Files .. 11
2.6 Integer Types ... 11
2.7 Configuration Overview ... 12
2.8 Code Size .. 14
2.9 Arguments ... 15
2.10 Return Values .. 15
2.11 Adding the FIT Module to Your Project ... 16
2.12 “for”, “while” and “do while” statements ... 17

3. API Functions .. 18
disk_initialize() ... 19
disk_status() .. 20
disk_read() ... 21
disk_write() .. 23
disk_ioctl() .. 25
get_fattime() ... 27
drv_change_alloc() .. 28

4. Local API ... 29
4.1 For USB Memory ... 29
4.1.1 usb_disk_initialize() ... 30
4.1.2 usb_disk_read() ... 31
4.1.3 usb_disk_write() .. 32
4.1.4 usb_disk_ioctl().. 33
4.1.5 usb_disk_status() .. 34
4.1.6 R_usb_hmsc_WaitLoop() .. 35
4.2 For SD Memory Card .. 36

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 5 of 78
Mar.15.25

4.2.1 sdmem_disk_initialize() ... 37
4.2.2 sdmem_disk_read() ... 38
4.2.3 sdmem_disk_write() .. 39
4.2.4 sdmem_disk_ioctl() ... 40
4.2.5 sdmem_disk_status() .. 41
4.3 For SPI mode SD Memory Card ... 42
4.3.1 spi_sdmem_disk_initialize() .. 43
4.3.2 spi_sdmem_disk_read() .. 44
4.3.3 spi_sdmem_disk_write() .. 45
4.3.4 spi_sdmem_disk_ioctl() ... 46
4.3.5 spi_sdmem_disk_status() .. 47
4.4 For USB Mini ... 48
4.4.1 usb_mini_disk_initialize() .. 49
4.4.2 usb_mini_disk_read() .. 50
4.4.3 usb_mini_disk_write() .. 51
4.4.4 usb_mini_disk_ioctl() ... 52
4.4.5 usb_mini_disk_status() .. 53
4.4.6 R_usb_mini_hmsc_WaitLoop() ... 54
4.5 For eMMC .. 55
4.5.1 mmcif_disk_initialize() ... 56
4.5.2 mmcif_disk_read() ... 57
4.5.3 mmcif_disk_write() .. 58
4.5.4 mmcif_disk_ioctl() .. 59
4.5.5 mmcif_disk_status() .. 60
4.6 For Serial Flash Memory ... 61
4.6.1 flash_spi_disk_initialize() ... 62
4.6.2 flash_spi_disk_read() .. 63
4.6.3 flash_spi_disk_write() .. 64
4.6.4 flash_spi_disk_ioctl() ... 65
4.6.5 flash_spi_disk_status() .. 66
4.6.6 flash_spi_1ms_interval() ... 67

5. Pin Settings ... 68

6. Appendices .. 69
6.1 Confirmed Operation Environment .. 69
6.2 Troubleshooting ... 74

7. Reference Documents ... 75

Related Technical Updates ... 75

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 6 of 78
Mar.15.25

Revision History .. 76

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 7 of 78
Mar.15.25

1. Overview
1.1 This Application Note
This Application describes memory driver interface combines TFAT FIT and each memory drivers. This
Module can change the target of memory driver using config file.

The APIs provided by this module are called by TFAT FIT. It is no need to call by user.

The drive number controlled in TFAT FIT and the drive number controlled in device drivers (SD memory card
driver etc.) are not equal. Therefore, this module has the conversion table for drive. Initial value can be
configured, please refer to the section drv_change_alloc() if you change this as dynamic.

1.2 Structure of Application

1.2.1 Structure of Application
This application note includes the files below.

Table 1.1 Structure of application note

file/folder name description

FITModules

driver_rx_v2.61.xml FIT plug-in XML

driver_rx_v2.61_extend.mdf Smart Configurator setting File

driver_rx_v2.61.zip FIT plug-in ZIP
 configuration (r_config)

 driver_rx_config.h configuration file(default)
FIT Module (driver_rx)
 document(doc)

 English(en)
 r20an0335ej0261-rx-tfat.pdf Application note (English)
 Japanese(ja)
 r20an0335jj0261-rx-tfat.pdf Application note (Japanese)
source code(src)
readme (readme.txt) readme
r_tfat_driver_rx_if.h Header file

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 8 of 78
Mar.15.25

1.2.2 Structure of Software
This product works with the TFAT FIT, the system timer module FIT, and various device driver FITs.

TFAT FIT is the main module of file system that contains open source the FatFs inside. The TFAT driver FIT
has Wrapper functions inside and switches the I/O processing for the file system for each storage device.
The user sets the storage device used by the TFAT driver FIT configuration settings and operates the file
system via the TFAT FIT API.

Fig.1-1 Structure of software

SD Mode
SD Memory
Card Driver

USB Host
Mass

Storage
Class Driver

(HMSC)
MMC
Mode

MMCIF
Driver

RSPI
Module

QSPI Clock
Synchronous
Single Master

Control
Module

SCI
Module

(SPI
Mode)

M3S-TFAT-Tiny Memory Driver Interface Module

Open Source FAT File System M3S-TFAT-Tiny Module

SDHI
Module

USB Basic
Host and
Peripheral

Driver

Clock Synchronous Control Module
 for Serial Flash Memory Access

SD Card USB Memory eMMC Serial Flash memory

USB Host
Mass

Storage
Class Driver
for USB Mini

Firmware

USB Basic
Mini Host

and
Peripheral

Driver

Application

Board Support Package Module

Board

System
Timer

Module

CMT
Module

Memory Access Driver Interface Module SPI Mode
SD

Memory
Card
Driver

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 9 of 78
Mar.15.25

Table 1.2 Using FIT Modules version

Storage Device Product version
Common Board Support Package (BSP) 7.52

TFAT 4.14
System Timer module
CMT Module

1.01
5.71

SD memory card
(SD mode)

SD Mode SD Memory Card Driver
SDHI Module

3.00
2.11

SD memory card
(SPI mode)

SPI Mode SD Memory Card Driver 1.10
RSPI Module 3.50
SCI Module (SPI Mode) 5.30

USB memory USB Basic Host and Peripheral Driver
USB Host Mass Storage Class Driver (HMSC)

1.42
1.42

USB Basic Mini Host and Peripheral Driver
USB Host Mass Storage Class Driver for USB Mini Firmware

1.20
1.20

eMMC MMC Mode MMCIF Driver 1.10
Serial Flash memory Clock Synchronous Control Module for Serial Flash Memory Access

Memory Access Driver Interface Module
3.30
1.20

RSPI Module
QSPI Clock Synchronous Single Master Control Module
SCI Module (SPI Mode)

3.50
1.21
5.30

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 10 of 78
Mar.15.25

1.3 API Overview
Table 1.3 shows the API Functions for this driver.

Table 1.3 API Functions

Function Functional Overview
disk_initialize() Initialize disk drive.
disk_status() Get the information about disk drive status.
disk_read() Read the data from disk.
disk_write() Write the data to disk.
disk_ioctl() Control the drive.
get_fattime() Get the time information.
drv_change_alloc() Change the allocation of drive number between TFAT

module and device driver.

1.4 Limitations
(1) The target devices of TFAT are the devices supported by all the FITs that users use as lower layer

than the TFAT. For the target devices of each FIT, refer to the respective application note.

(2) Use Rev.1.20 or later for the USB Basic Mini Host and Peripheral Driver FIT and the USB Host Mass
Storage Class Driver for USB Mini Firmware FIT.
Because these revisions support RTOS.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 11 of 78
Mar.15.25

2. API Information

2.1 Hardware Requirements

The microcontroller used must support the following functionality.

 USB

 SDHI

 CMT

2.2 Software Requirements

This FIT Module is dependent on the following packages:

 r_bsp(Rev. 5.52 or later)

 r_tfat_rx (Rev.4.12 or later)

 r_sys_time_rx (Rev.1.01 or later)

 r_cmt_rx (Rev.4.40 or later)

The kind of memory driver to use can be set in r_tfat_driver_rx_config.h

2.3 Supported Toolchain

The supported toolchains of this module are dependent on the toolchains of each memory driver.

2.4 Interrupt Vector

The TFAT driver FIT uses no interrupt vector.

2.5 Header Files
All API calls and their supporting interface definitions are located in "r_tfat_driver_rx_if.h".
Build-time configuration options are selected or defined in the file "r_tfat_driver_rx_config.h".

2.6 Integer Types
This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable.
These types are defined in “stdint.h”.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 12 of 78
Mar.15.25

2.7 Configuration Overview
The configuration options in this module are specified in "r_tfat_driver_rx_config.h”.
The option names and setting values are listed in the table below.

Configuration options in r_tfat_driver_rx_config.h

#define
TFAT_USB_DRIVE_NUM
- Default value = (0)

The number of drives for USB.
Please set (0) if user does not use USB.

#define
TFAT_SDMEM_DRIVE_NUM
- Default value = (0)

The number of drives for SD memory card.
Please set (0) if user does not use SD memory card.

#define
TFAT_SPI_SDMEM_DRIVE_NUM
- Default value = (0)

The number of drives for SPI mode SD memory card.
Please set (0) if user does not use SPI mode SD
memory card.

#define
TFAT_USB_MINI_DRIVE_NUM
- Default value = (0)

The number of drives for USB Mini.
Please set (0) if user does not use USB Mini.

#define
TFAT_MMC_DRIVE_NUM
- Default value = (0)

The number of drives for eMMC.
Please set (0) if user does not use eMMC.

#define
TFAT_SERIAL_FLASH_DRIVE_NUM
- Default value = (0)

The number of drives for Serial Flash memory.
Please set (0) if user does not use Serial Flash
memory.

#define
TFAT_FLASH_SECTOR_SIZE
- Default value = (4096)

The sector size configuration when using TFAT and
Serial Flash memory.

512 bytes = (512)
1024 bytes = (1024)
2048 bytes = (2048)
4096 bytes = (4096)

#define
TFAT_DRIVE_ALLOC_NUM_i
i = 0-9
- Default value = (TFAT_CTRL_NONE)

This config allocates the device for each drive number.

The drive for USB = (TFAT_CTRL_USB)
The driver for SD memory card = (TFAT_CTRL_SDMEM)
The driver for USB Mini = (TFAT_CTRL_USB_MINI)
The driver for eMMC = (TFAT_CTRL_MMC)
The driver for Serial Flash memory
 = (TFAT_CTRL_SERIAL_FLASH)
The driver for “not using” = (TFAT_CTRL_NONE)

This module uses these parameters for relating the
drive number for TFAT FIT with the drive number of
memory driver. The drive number is allocated
ascending order. Please refer to the section 3.7
drv_change_alloc if user change this in dynamic.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 13 of 78
Mar.15.25

Configuration options in r_tfat_driver_rx_config.h

#define
RI600V4_MUTEX_ID_FOR_TFAT_DRIVE_ALLOC_NUM_i
i = 0~9
- Default value = (0)

When using RI600V4, input the mutex ID created by
RI600V4 configuration.
This mutex is used by TFAT APIs to obtain the
reentrancy (file/directory exclusive access) on a drive
(logical volume).
Please set (0) if not use RI600V4 or the memory drive.
Duplication with ID “0” is allowed.
Please set (1 to 255) for mutex ID if use RI600V4 and
the memory drive. Duplication with ID for other using
drives is not allowed.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 14 of 78
Mar.15.25

2.8 Code Size
The sizes of ROM, RAM and maximum stack usage associated with this module are listed below.
Information is listed for a single representative device of the RX200 Series, and RX600 Series, respectively.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7 Configuration Overview

The values in the table below are confirmed under the following conditions.

Module Revision: r_tfat_driver_rx rev.2.60

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00

(The option of “lang = c99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 8.3.0.202405

(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 5.10.1

(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Code Sizes

Device Category Memory Used
Renesas Compiler GCC IAR Compiler

RX113 ROM(Note) 6,516 bytes 7,688 bytes 8,657 bytes

RAM(Note) 26 bytes 8 bytes 56 bytes

STACK (Note) 192 bytes - 348 bytes

RX231 ROM(Note) 6,517 bytes 7,688 bytes 8,659 bytes

RAM(Note) 26 bytes 8 bytes 56 bytes

STACK (Note) 192 bytes - 348 bytes

RX65N ROM(Note) 6,517 bytes 7,688 bytes 8,652 bytes

RAM(Note) 26 bytes 8 bytes 58 bytes

STACK (Note) 192 bytes - 352 bytes

Note. The sizes of ROM, RAM, and stack of TFAT FIT are included.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 15 of 78
Mar.15.25

2.9 Arguments

Please use definition of drive number when calling TFAT FIT.

typedef enum

{

 TFAT_DRIVE_NUM_0 = 0x00,

 TFAT_DRIVE_NUM_1,

 TFAT_DRIVE_NUM_2,

 TFAT_DRIVE_NUM_3,

 TFAT_DRIVE_NUM_4,

 TFAT_DRIVE_NUM_5,

 TFAT_DRIVE_NUM_6,

 TFAT_DRIVE_NUM_7,

 TFAT_DRIVE_NUM_8,

 TFAT_DRIVE_NUM_9,

}TFAT_DRV_NUM;

2.10 Return Values
Return values are defined in "diskio.h" in TFAT FIT module.

/* Disk Status Bits (DSTATUS) */

typedef uint8_t DSTATUS;

- #define STA_NOINIT 0x01 /* Drive not initialized */
- #define STA_NODISK 0x02 /* No medium in the drive */
- #define STA_PROTECT 0x04 /* Write protected */

/* Results of Disk Functions */

typedef enum

{

 RES_OK = 0, /* 0: Successful */

 RES_ERROR, /* 1: R/W Error */

 RES_WRPRT, /* 2: Write Protected */

 RES_NOTRDY, /* 3: Not Ready */

 RES_PARERR /* 4: Invalid Parameter */

} DRESULT;

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 16 of 78
Mar.15.25

2.11 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) or (4) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’s Guide: CS+ (R20AN0470)” for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (R01AN1826)” for details.

(4) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 17 of 78
Mar.15.25

2.12 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows an example of description.

while statement example :

/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{

 /* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example :

/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{

 g_protect_counters[i] = 0;

}

do while statement example :

/* Reset completion waiting */

do

{

 reg = phy_read(ether_channel, PHY_REG_CONTROL);

 count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 18 of 78
Mar.15.25

3. API Functions
The following functions are called by TFAT FIT module. These functions (excluded some ones) call lower
layer functions (4 Local API), which are prepared for each storage devices, according to the configuration.
Note that application programs should not call the following APIs.

Table 3.1 Functions List

Function Name Function Overview

disk_initialize() Initialize disk drive

disk_status() Get disk status

disk_read() Read sectors

disk_write() Write sectors

disk_ioctl() Control device dependent features

get_fattime() Get current time

drv_change_alloc() Change the allocation of drive number between
TFAT module and device driver.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 19 of 78
Mar.15.25

disk_initialize()
The disk_initialize() function is called to initialize the storage device.

format
#include "ff.h"
DSTATUS disk_initialize (
 BYTE pdrv /* [IN] Physical drive number */
);

Parameters
pdrv

Physical drive number to identify the target device. Always zero at single drive system.

Return Values
This function returns the current drive status flags as the result. For details of the drive status, refer to the
disk_status() function.

Properties
Prototyped in file “diskio.h”.

Description
This function initializes the storage device and puts it ready to generic read/write. When the function
succeeds, STA_NOINIT flag in the return value is cleared.

Remarks: This function needs to be under the control of FatFs module. Application program MUST NOT call
this function, or FAT structure on the volume can be broken. To re-initialize the filesystem, use f_mount
function instead.

Example
None.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 20 of 78
Mar.15.25

disk_status()
This function is called to inquire the current drive status.

format
DSTATUS disk_status (
 BYTE pdrv /* [IN] Physical drive number */
);

Parameters
pdrv

Physical drive number to identify the target device. Always zero at single drive system.

Return Values
The current drive status is returned in combination of status flags described below. FatFs refers only to STA_NOINIT
and STA_PROTECT.

• STA_NOINIT: Indicates that the device has not been initialized and not ready to work. This flag is set on
system reset, media removal or failure of disk_initialize() function. It is cleared on disk_initialize() function
succeeded. Any media change that occurs asynchronously must be captured and reflected to the status
flags, or auto-mount function will not work correctly. If the system does not support media change
detection, the application program needs to explicitly re-mount the volume with f_mount() function after
each media change.

• STA_NODISK: Indicates that there is no medium in the drive. This is always cleared at fixed disk drive.

Note that FatFs does not refer to this flag.

• STA_PROTECT: Indicates that the medium is write-protected. This is always cleared at the drives

without the write protect function. Not valid if STA_NODISK is set.

Properties
Prototyped in file “diskio.h”.

Description
None.

Example
None.

Special Notes:
None.

http://elm-chan.org/fsw/ff/doc/dinit.html

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 21 of 78
Mar.15.25

disk_read()
This function is called to read data from the sector(s) of storage device.

format
#include "ff.h"
DRESULT disk_read (
 BYTE pdrv, /* [IN] Physical drive number */
 BYTE* buff, /* [OUT] Pointer to the read data buffer */
 LBA_t sector, /* [IN] Start sector number */
 UINT count /* [IN] Number of sectors to read */
);

Parameters
pdrv

Physical drive number to identify the target device.

buff

Pointer to the first item of the byte array to store read data. Size of read data will be the sector size * count
bytes.

sector

Start sector number in 32-bit logical block address (LBA).

count

Number of sectors to read.

Return Values
RES_OK

The function succeeded.

RES_ERROR

An unrecoverable hard error occurred during the read operation.

RES_PARERR

Invalid parameter.

RES_NOTRDY

The device has not been initialized.

Properties
Prototyped in file “diskio.h”.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 22 of 78
Mar.15.25

Description
Read/write operation to the generic storage devices, such as memory card, hard disk and optical disk, is
done in unit of block of data bytes called sector. FatFs supports the sector size in the range of 512 to 4096
bytes. When FatFs is configured for fixed sector size (FF_MIN_SS == FF_MAX_SS, this is the most case),
the read/write function must work at that sector size. When FatFs is configured for variable sector size
(FF_MIN_SS < FF_MAX_SS), the sector size of medium is inquired with disk_ioctl() function immediately
following disk_initialize() function succeeded.

There are some considerations about the memory address passed via buff. It is not that always aligned to
word boundary because the argument is defined as BYTE*. The unaligned transfer request can occur at
direct transfer. If the bus architecture, especially DMA controller, does not allow unaligned memory access, it
should be solved in this function. If it is the case, there are some workarounds described below to avoid this
issue.

Convert word transfer to byte transfer with some method in this function. - Recommended.

On the f_read() calls, avoid long read request that includes a whole sector. - Any direct transfer never
occurs.

On the f_read(fp, dat, btw, bw) calls, make sure that (((UINT)dat & 3) == (f_tell(fp) & 3)) is true. - Word
alignment of buff is guaranteed.

Also, the memory area may be out of reach in DMA. This is the case if it is in tightly coupled memory which
is usually used for stack. Use double buffered transfer or avoid to define any file I/O buffer includes FatFs
and FIL structure as local variables where on the stack.

Generally, a multiple sector read request must not be split into single sector transactions to the storage
device, or read throughput gets worse.

Example
None.

Special Notes:
None.

http://elm-chan.org/fsw/ff/doc/appnote.html#fs1

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 23 of 78
Mar.15.25

disk_write()
This function is called to write data to the sector(s) of storage device.

format
DRESULT disk_write (
 BYTE pdrv, /* [IN] Physical drive number */
 const BYTE* buff, /* [IN] Pointer to the data to be written */
 LBA_t sector, /* [IN] Sector number to write from */
 UINT count /* [IN] Number of sectors to write */
);

Parameters
pdrv

Physical drive number to identify the target device.

buff

Pointer to the first item of the byte array to be written. The size of data to be written is sector size * count
bytes.

sector

Start sector number in 32-bit logical block address (LBA).

count

Number of sectors to write.

Return Values
RES_OK

The function succeeded.

RES_ERROR

An unrecoverable hard error occurred during the read operation.

RES_WRPRT

The device is write-protected.

RES_PARERR

Invalid parameter.

RES_NOTRDY

The device has not been initialized.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 24 of 78
Mar.15.25

Properties
Prototyped in file “diskio.h”.

Description
The specified memory address is not that always aligned to word boundary because the argument is defined
as BYTE*. For more information, refer to the description of disk_read() function.

Generally, a multiple sector write request (count > 1) must not be split into single sector transactions to the
storage device, or the file write throughput will be drastically decreased.

FatFs expects delayed write function of the disk control layer. The write operation to the media does not
need to be completed at return from this function by what write operation is in progress or data is only stored
into the write-back cache. But writing data on the buff is invalid after return from this function. The write
completion request is done by CTRL_SYNC command of disk_ioctl() function. Therefore, if a delayed write
function is implemented, the write throughput of the filesystem will be improved.

Remarks: Application program MUST NOT call this function, or FAT structure on the volume can be
collapsed.

Example
None.

Special Notes:
This function is not needed when FF_FS_READONLY = 1.

http://elm-chan.org/fsw/ff/doc/dread.html
http://elm-chan.org/fsw/ff/doc/dioctl.html
http://elm-chan.org/fsw/ff/doc/config.html#fs_readonly

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 25 of 78
Mar.15.25

disk_ioctl()
This function is called to control device specific features and miscellaneous functions other than generic
read/write.

format
DRESULT disk_ioctl (
 BYTE pdrv, /* [IN] Drive number */
 BYTE cmd, /* [IN] Control command code */
 void* buff /* [I/O] Parameter and data buffer */
);

Parameters
pdrv
Physical drive number to identify the target device.

cmd
Command code.

buff
Pointer to the parameter depends on the command code. Do not care if the command has no parameter to

be passed.

Return Values
RES_OK

The function succeeded.

RES_ERROR

An error occurred.

RES_PARERR

The command code or parameter is invalid.

RES_NOTRDY

The device has not been initialized.

Properties
Prototyped in file “diskio.h”.

Description
The FatFs module requires only five device general-purpose commands described below.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 26 of 78
Mar.15.25

Table 3.2 general-purpose commands

Command Describe
CTRL_SYNC Make sure that the device has finished pending write process. If the disk I/O

module or storage device has a write-back cache, the cached data marked
dirty must be written back to the media immediately. Nothing to do for this
command if each write operation to the media is completed within the
disk_write function.

GET_SECTOR_SIZE Returns number of available sectors on the drive into the DWORD variable
pointed by buff. This command is used by f_mkfs and f_fdisk function to
determine the volume/partition size to be created. Required at
FF_USE_MKFS = 1.

GET_SECTOR_COUNT Returns sector size of the device into the WORD variable pointed by buff.
Valid return values for this command are 512, 1024, 2048 and 4096. This
command is required only if FF_MAX_SS > FF_MIN_SS. When FF_MAX_SS
= FF_MIN_SS, this command is never used and the device must work at that
sector size.

GET_BLOCK_SIZE Returns erase block size of the flash memory media in unit of sector into the
DWORD variable pointed by buff. The allowable value is 1 to 32768 in power
of 2. Return 1 if the erase block size is unknown or non flash memory media.
This command is used by only f_mkfs function and it attempts to align data
area on the erase block boundary. Required at FF_USE_MKFS = 1.

CTRL_TRIM Informs the device the data on the block of sectors is no longer needed and it
can be erased. The sector block is specified by a DWORD array {<start
sector>, <end sector>} pointed by buff. This is an identical command to Trim
of ATA device. Nothing to do for this command if this function is not
supported or not a flash memory device. FatFs does not check the result
code and the file function is not affected even if the sector block was not
erased well. This command is called on remove a cluster chain and in the
f_mkfs function. Required at FF_USE_TRIM = 1.

Example
None.

Special Notes:
The disk_ioctl() function is not needed when FF_FS_READONLY = 1 and FF_MAX_SS = FF_MIN_SS.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 27 of 78
Mar.15.25

get_fattime()
This function is called to get the current time.

format
DWORD get_fattime (void);

Parameters
None.

Return Values
Current local time shall be returned as bit-fields packed into a DWORD value. The bit fields are as follows:

• bit31:25 Year origin from the 1980 (0..127, e.g. 37 for 2017)

• bit24:21 Month (1..12)

• bit20:16 Day of the month (1..31)

• bit15:11 Hour (0..23)

• bit10:5 Minute (0..59)

• bit4:0 Second / 2 (0..29, e.g. 25 for 50)

Properties
Prototyped in file “ff.h”.

Description
The get_fattime() function shall return any valid time even if the system does not support a real time clock. If
a zero is returned, the file will not have a valid timestamp.

Example
None.

Special Notes:
This function is not needed when FF_FS_READONLY = 1 or FF_FS_NORTC = 1.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 28 of 78
Mar.15.25

drv_change_alloc()
This function changes a drive’s allocation. This function has nothing to do with FatFs and is a unique API of
Renesas.

format
DRESULT drv_change_alloc(TFAT_DRV_NUM tfat_drv, uint8_t dev_type,
 uint8_t dev_drv_num);

Parameters
tfat_drv

Th physical drive number for TFAT FIT.

dev_type

The device defines type (TFAT_USB_DRIVE_NUM, TFAT_SDMEM_DRIVE_NUM, or
TFAT_USB_MINI_DRIVE_NUM).

dev_drv_num

The drive number/device channel for device driver.

Return Values
RES_OK

The function succeeded.

RES_PARERR

The specified value of tfat_drv is invalid.

Properties
Prototyped in file “r_tfat_driver_rx_if.h”.

Description
The drive used for TFAT FIT is specified by the TFAT_DRIVE_ALLOC_NUM_i definition in
r_tfat_driver_rx_config.h, and the drive number for TFAT FIT is associated with the drive number of the
memory driver.

Drive numbers for memory drivers are automatically assigned in ascending order.

Use this function if you want to change the association dynamically.

Example
None.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 29 of 78
Mar.15.25

4. Local API
There are functions for SD memory card (SD mode), SD memory card (SPI mode), USB memory, USB Mini,
eMMC, and Serial Flash memory. Each function calls memory driver functions.

4.1 For USB Memory
Table 4.1 Functions List are called when Section 2.7 Configuration Overview TFAT_USB_DRIVE_NUM and
TFAT_DRIVE_ALLOC_NUM_i(i=0-9) have the settings “TFAT_CTRL_USB”.

Table 4.1 Functions List

Function name Function Overview

usb_disk_initialize() Initialize disk drive

usb_disk_read() Read sectors

usb_disk_write() Write sectors

usb_disk_ioctl() Control device dependent features

usb_disk_status() Get disk status

Table 4.2 Other Functions List

Function name Function Overview

R_usb_hmsc_WaitLoop() Wait for read and write

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 30 of 78
Mar.15.25

4.1.1 usb_disk_initialize()
This function initializes the disk drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS usb_disk_initialize (uint8_t pdrv);

Parameters
pdrv input Specifies the initialize drive number.

Return Value
TFAT_RES_OK Normal termination.
Others DSTATUS status of the disk after function execution

as explained in section 2.10 Return Values.

Description
This API does not call USB driver initialize function because of USB driver limitation (1 time call is only
accepted). Please call USB driver initialize function in user program.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 31 of 78
Mar.15.25

4.1.2 usb_disk_read()
This function reads the data from disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT usb_disk_read (uint8_t pdrv,
 uint8_t *buff,
 uint32_t sector,
 uint8_t count
);

Parameters
pdrv input Specifies the physical drive number.
buff output Pointer to the read buffer to store the read data. A buffer of the size equal to
 the number of bytes to be read is required.
sector input Specifies the start sector number in logical block address (LBA).
count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
This function reads the data from disk drive. The position of read data is specified using this function
argument.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 32 of 78
Mar.15.25

4.1.3 usb_disk_write()
This function writes the data to the disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT usb_disk_write (uint8_t pdrv,
 uint8_t *buff,
 uint32_t sector,
 uint8_t count
);

Parameters
pdrv input Specifies the physical drive number.
buff input Pointer to the data to be written.
sector input Specifies the start sector number in logical block address (LBA).
count input Specifies number of sectors to write. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
This function writes the data to the disk drive. The position of write data is specified using this function
argument.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 33 of 78
Mar.15.25

4.1.4 usb_disk_ioctl()
This function controls the drive.

Format
#include "r_tfat_drv_if_dev.h"
DRESULT usb_disk_ioctl (uint8_t pdrv,

uint8_t cmd,
void *buff

);

Parameters
pdrv input Specifies the physical drive number.
cmd input Specifies the command code. The command code will always be 0.
buff input Pointer should always be a NULL pointer.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
The usb_disk_ioctl function is used only by the f_sync function amongst all the TFAT FIT functions. Users
who do not plan to use f_sync function in their applications can skip the implementation for this particular
driver interface function.

For users who wish to use f_sync function in their applications, the command CTRL_SYNC has to be
implemented.

For users who wish to use f_sync function in their applications, this particular driver interface function will
have to be implemented. This driver function should consist of the code to finish off any pending write
process. If the disk i/o module has a write back cache, the dirty sector must be flushed immediately. The
f_sync function will perform a save operation to the unsaved data related to the file object passed as
argument.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 34 of 78
Mar.15.25

4.1.5 usb_disk_status()
This function gets the information about disk drive.

Format
#include "r_tfat_drv_if_dev.h"
DSTATUS usb_disk_status (uint8_t pdrv);

Parameters
pdrv input Specifies the physical drive number.

Return Value
TFAT_RES_OK Normal termination.
Others DSTATUS status of the disk after function execution

as explained in section 2.10 Return Values.

Description
This function should consist of the code that checks the disk and returns the current disk status. The disk
status can have any of the three values as explained in section 2.10 Return Values. The disk status can be
returned by updating the return value with the macros related to disk status.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 35 of 78
Mar.15.25

4.1.6 R_usb_hmsc_WaitLoop()
This function waits for the data read/write.

Format
void R_usb_hmsc_WaitLoop (void);

Parameters
None.

Return Value
None.

Description
Please refer to the USB driver document for details.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 36 of 78
Mar.15.25

4.2 For SD Memory Card
Table 4.3 List of Functions are called when Section 2.7 Configuration Overview
TFAT_SDMEM_DRIVE_NUM and TFAT_DRIVE_ALLOC_NUM_i (i=0-9) have the settings
“TFAT_CTRL_SDMEM”.

Table 4.3 List of Functions

Function Name Outline

sdmem_disk_initialize() Initialize disk drive

sdmem_disk_read() Read sectors

sdmem_disk_write() Write sectors

sdmem_disk_ioctl() Control device dependent features

sdmem_disk_status() Get disk status

[Notice about SD memory card]

This module does not execute mount process and VDD power supply process. Please refer to the SD
memory card module document and please implement. Otherwise, this module works abnormally.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 37 of 78
Mar.15.25

4.2.1 sdmem_disk_initialize()
This function initializes the disk drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS sdmem_disk_initialize (uint8_t drive);

Parameters
drive input Specifies the initialize drive number.

Return Value
TFAT_RES_OK Normal termination.
Others DSTATUS status of the disk after function execution
 as explained in section 2.10 Return Values.

Description
This function does not execute the SD memory card driver initialize. Please implement SD memory card
initialize code in user code.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 38 of 78
Mar.15.25

4.2.2 sdmem_disk_read()
This function reads the data from disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT sdmem_disk_read (uint8_t drive,
 uint8_t *buffer,
 uint32_t sector_number,
 uint8_t sector_count
);

Parameters
drive input Specifies the physical drive number.
buffer output Pointer to the read buffer to store the read data. A buffer of the size equal to
 the number of bytes to be read is required.
sector_number input Specifies the start sector number in logical block address (LBA).
sector_count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
Read data from SD memory by block.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 39 of 78
Mar.15.25

4.2.3 sdmem_disk_write()
This function writes the data to the disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT sdmem_disk_write (uint8_t drive,
 uint8_t *buffer,
 uint32_t sector_number,
 uint8_t sector_count
);

Parameters
drive input Specifies the physical drive number.
buffer input Pointer to the data to be written.
sector_number input Specifies the start sector number in logical block address (LBA).
sector_count input Specifies number of sectors to write. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
Write the data to the SD memory by block.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 40 of 78
Mar.15.25

4.2.4 sdmem_disk_ioctl()
This function controls the drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT sdmem_disk_ioctl (uint8_t drive,
 uint8_t command,
 void *buffer
);

Parameters
drive input Specifies the physical drive number.
command input Specifies the command code. The command code will always be 0.
buffer input Pointer should always be a NULL pointer.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
The sdmem_disk_ioctl function is used only by the f_sync function amongst all the TFAT FIT functions.
Users who do not plan to use f_sync function in their applications can skip the implementation for this
particular driver interface function.

For users who wish to use f_sync function in their applications, the command CTRL_SYNC has to be
implemented.

For users who wish to use f_sync function in their applications, this particular driver interface function will
have to be implemented. This driver function should consist of the code to finish off any pending write
process. If the disk i/o module has a write back cache, the dirty sector must be flushed immediately. The
f_sync function will perform a save operation to the unsaved data related to the file object passed as
argument.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 41 of 78
Mar.15.25

4.2.5 sdmem_disk_status()
This function gets the disk drive status.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS sdmem_disk_status (uint8_t drive
);

Parameters
drive input Specifies the physical drive number.

Return Value
TFAT_RES_OK Normal termination.
Other DSTATUS status of the disk after function execution

as explained in section 2.10 Return Values.

Description
This function should consist of the code that checks the disk and returns the current disk status. The disk
status can have any of the three values as explained in section 2.10 Return Values. The disk status can be
returned by updating the return value with the macros related to disk status.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 42 of 78
Mar.15.25

4.3 For SPI mode SD Memory Card
Table 4.4 List of Functions are called when Section 2.7 Configuration Overview
TFAT_SPI_SDMEM_DRIVE_NUM and TFAT_DRIVE_ALLOC_NUM_i (i=0-9) have the settings
“TFAT_CTRL_SPI_SDMEM”.

Table 4.4 List of Functions

Function Name Outline

spi_sdmem_disk_initialize() Initialize disk drive

spi_sdmem_disk_read() Read sectors

spi_sdmem_disk_write() Write sectors

spi_sdmem_disk_ioctl() Control device dependent features

spi_sdmem_disk_status() Get disk status

[Notice about SPI mode SD memory card]

This module does not execute mount process and VDD power supply process. Please refer to the SPI mode
SD memory card module document and please implement. Otherwise, this module works abnormally.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 43 of 78
Mar.15.25

4.3.1 spi_sdmem_disk_initialize()
This function initializes the disk drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS spi_sdmem_disk_initialize (uint8_t drive);

Parameters
drive input Specifies the initialize drive number.

Return Value
TFAT_RES_OK Normal termination.
Others DSTATUS status of the disk after function execution
 as explained in section 2.10 Return Values.

Description
This function does not execute the SPI mode SD memory card driver initialize. Please implement SPI mode
SD memory card initialize code in user code.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 44 of 78
Mar.15.25

4.3.2 spi_sdmem_disk_read()
This function reads the data from disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT spi_sdmem_disk_read (uint8_t drive ,
 uint8_t *buffer,
 uint32_t sector_number,
 uint8_t sector_count
);

Parameters
drive input Specifies the physical drive number.
buffer output Pointer to the read buffer to store the read data. A buffer of the size equal to
 the number of bytes to be read is required.
sector_number input Specifies the start sector number in logical block address (LBA).
sector_count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
Read data from SPI mode SD memory by block.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 45 of 78
Mar.15.25

4.3.3 spi_sdmem_disk_write()
This function writes the data to the disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT spi_sdmem_disk_write (uint8_t drive,
 uint8_t *buffer,
 uint32_t sector_number,
 uint8_t sector_count
);

Parameters
drive input Specifies the physical drive number.
buffer input Pointer to the data to be written.
sector_number input Specifies the start sector number in logical block address (LBA).
sector_count input Specifies number of sectors to write. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
Write the data to the SPI mode SD memory by block.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 46 of 78
Mar.15.25

4.3.4 spi_sdmem_disk_ioctl()
This function controls the drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT spi_sdmem_disk_ioctl (uint8_t drive ,
 uint8_t command ,
 void *buffer
);

Parameters
drive input Specifies the physical drive number.
command input Specifies the command code. The command code will always be 0.
buffer input Pointer should always be a NULL pointer.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
The spi_sdmem_disk_ioctl function is used only by the f_sync function amongst all the TFAT FIT functions.
Users who do not plan to use f_sync function in their applications can skip the implementation for this
particular driver interface function.

For users who wish to use f_sync function in their applications, the command CTRL_SYNC has to be
implemented.

For users who wish to use f_sync function in their applications, this particular driver interface function will
have to be implemented. This driver function should consist of the code to finish off any pending write
process. If the disk i/o module has a write back cache, the dirty sector must be flushed immediately. The
f_sync function will perform a save operation to the unsaved data related to the file object passed as
argument.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 47 of 78
Mar.15.25

4.3.5 spi_sdmem_disk_status()
This function gets the disk drive status.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS spi_sdmem_disk_status (uint8_t drive
);

Parameters
drive input Specifies the physical drive number.

Return Value
TFAT_RES_OK Normal termination.
Others DSTATUS status of the disk after function execution
 as explained in section 2.10 Return Values.

Description
This function should consist of the code that checks the disk and returns the current disk status. The disk
status can have any of the three values as explained in section 2.10 Return Values. The disk status can be
returned by updating the return value with the macros related to disk status.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 48 of 78
Mar.15.25

4.4 For USB Mini
Table 4.5 Functions List are called when Section 2.7 Configuration Overview
TFAT_USB_MINI_DRIVE_NUM and TFAT_DRIVE_ALLOC_NUM_i(i=0-9) have the settings
“TFAT_CTRL_USB_MINI”.

Table 4.5 Functions List

Function name Function Overview

usb_mini_disk_initialize() Initialize disk drive

usb_mini_disk_read() Read sectors

usb_mini_disk_write() Write sectors

usb_mini_disk_ioctl() Control device dependent features

usb_mini_disk_status() Get disk status

Table 4.6 Other Function List

Function name Function Overview

R_usb_mini_hmsc_WaitLoop() Wait for read and write

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 49 of 78
Mar.15.25

4.4.1 usb_mini_disk_initialize()
This function initializes the disk drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS usb_mini_disk_initialize (uint8_t drive);

Parameters
drive input Specifies the initialize drive number.

Return Value
TFAT_RES_OK Normal termination.

Others DSTATUS status of the disk after function execution
as explained in section 2.10 Return Values.

Description
This API does not call USB driver initialize function because of USB driver limitation (1 time call is only
accepted). Please call USB driver initialize function in user program.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 50 of 78
Mar.15.25

4.4.2 usb_mini_disk_read()
This function reads the data from disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT usb_mini_disk_read (uint8_t drive ,
 uint8_t *buffer ,
 uint32_t sector_number ,
 uint8_t sector_count
);

Parameters
drive input Specifies the physical drive number.
buffer output Pointer to the read buffer to store the read data. A buffer of the size equal to
 the number of bytes to be read is required.
sector_number input Specifies the start sector number in logical block address (LBA).
sector_count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
This function reads the data from disk drive. The position of read data is specified using this function
argument.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 51 of 78
Mar.15.25

4.4.3 usb_mini_disk_write()
This function writes the data to the disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT usb_mini_disk_write (uint8_t drive ,
 uint8_t *buffer ,
 uint32_t sector_number ,
 uint8_t sector_count
);

Parameters
drive input Specifies the physical drive number.
buffer input Pointer to the data to be written.
sector_number input Specifies the start sector number in logical block address (LBA).
sector_count input Specifies number of sectors to write. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
This function writes the data to the disk drive. The position of write data is specified using this function
argument.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 52 of 78
Mar.15.25

4.4.4 usb_mini_disk_ioctl()
This function controls the drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT usb_mini_disk_ioctl (uint8_t drive,
 uint8_t command,
 void *buffer
);

Parameters
drive input Specifies the physical drive number.
command input Specifies the command code. The command code will always be 0.
buffer input Pointer should always be a NULL pointer.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
The usb_mini_disk_ioctl function is used only by the f_sync function amongst all the TFAT FIT functions.
Users who do not plan to use f_sync function in their applications can skip the implementation for this
particular driver interface function.

For users who wish to use f_sync function in their applications, the command CTRL_SYNC has to be
implemented.

For users who wish to use f_sync function in their applications, this particular driver interface function will
have to be implemented. This driver function should consist of the code to finish off any pending write
process. If the disk i/o module has a write back cache, the dirty sector must be flushed immediately. The
f_sync function will perform a save operation to the unsaved data related to the file object passed as
argument.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 53 of 78
Mar.15.25

4.4.5 usb_mini_disk_status()
This function gets the information about disk drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS usb_mini_disk_status (uint8_t drive);

Parameters
drive input Specifies the physical drive number.

Return Value
TFAT_RES_OK Normal termination.

Others DSTATUS status of the disk after function execution
 as explained in section 2.10 Return Values.

Description
This function should consist of the code that checks the disk and returns the current disk status. The disk
status can have any of the three values as explained in section 2.10 Return Values. The disk status can be
returned by updating the return value with the macros related to disk status.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 54 of 78
Mar.15.25

4.4.6 R_usb_mini_hmsc_WaitLoop()
This function waits for the data read/write.

Format
 void R_usb_mini_hmsc_WaitLoop (void);

Parameters
None.

Return Value
None.

Description
Please refer to the USB driver document for details.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 55 of 78
Mar.15.25

4.5 For eMMC
Table 4.7 List of Functions are called when Section 2.7 Configuration Overview TFAT_MMC_DRIVE_NUM
and TFAT_DRIVE_ALLOC_NUM_i (i=0-9) have the settings “TFAT_CTRL_MMC”.

Table 4.7 List of Functions

Function Name Outline

mmcif_disk_initialize() Initialize disk drive

mmcif_disk_read() Read sectors

mmcif_disk_write() Write sectors

mmcif_disk_ioctl() Control device dependent features

mmcif_disk_status() Get disk status

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 56 of 78
Mar.15.25

4.5.1 mmcif_disk_initialize()
This function initializes the disk drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS mmcif_disk_initialize (uint8_t drive);

Parameters
drive input Specifies the initialize drive number.

Return Value
TFAT_RES_OK Normal termination.
Others DSTATUS status of the disk after function execution
 as explained in section 2.10 Return Values.

Description
This function does not execute the eMMC driver initialize. Please implement eMMC initialize code in user
code.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 57 of 78
Mar.15.25

4.5.2 mmcif_disk_read()
This function reads the data from disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT mmcif_disk_read (uint8_t drive ,
 uint8_t *buffer,
 uint32_t sector_number,
 uint8_t sector_count
);

Parameters
drive input Specifies the physical drive number.
buffer output Pointer to the read buffer to store the read data. A buffer of the size equal to
 the number of bytes to be read is required.
sector_number input Specifies the start sector number in logical block address (LBA).
sector_count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
Read data from eMMC by block.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 58 of 78
Mar.15.25

4.5.3 mmcif_disk_write()
This function writes the data to the disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT mmcif_disk_write (uint8_t drive ,
 uint8_t *buffer,
 uint32_t sector_number,
 uint8_t sector_count
);

Parameters
drive input Specifies the physical drive number.
buffer input Pointer to the data to be written.
sector_number input Specifies the start sector number in logical block address (LBA).
sector_count input Specifies number of sectors to write. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
Write the data to the eMMC by block.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 59 of 78
Mar.15.25

4.5.4 mmcif_disk_ioctl()
This function controls the drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT mmcif_disk_ioctl (uint8_t drive,
 uint8_t command,
 void *buffer
);

Parameters
drive input Specifies the physical drive number.
command input Specifies the command code. The command code will always be 0.
buffer input Pointer should always be a NULL pointer.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
The mmcif_disk_ioctl function is used only by the f_sync or f_mkfs function amongst all the TFAT FIT
functions. Users who do not plan to use f_sync function in their applications can skip the implementation for
this particular driver interface function.

For users who wish to use f_sync function in their applications, the command CTRL_SYNC has to be
implemented.

The command CTRL_SYNC should consist of the code to finish off any pending write process. If the disk i/o
module has a write back cache, the dirty sector must be flushed immediately. The f_sync function will
perform a save operation to the unsaved data related to the file object passed as argument.

For other commands, refer to Table 3.2 general-purpose commands.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 60 of 78
Mar.15.25

4.5.5 mmcif_disk_status()
This function gets the disk drive status.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS mmcif_disk_status (uint8_t drive
);

Parameters
drive input Specifies the physical drive number.

Return Value
TFAT_RES_OK Normal termination.
Others DSTATUS status of the disk after function execution

as explained in section 2.10 Return Values.

Description
This function should consist of the code that checks the disk and returns the current disk status. The disk
status can have any of the three values as explained in section 2.10 Return Values. The disk status can be
returned by updating the return value with the macros related to disk status.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 61 of 78
Mar.15.25

4.6 For Serial Flash Memory
Table 4.8 List of Functions are called when Section 2.7 Configuration Overview
TFAT_SERIAL_FLASH_DRIVE_NUM and TFAT_DRIVE_ALLOC_NUM_i (i=0-9) have the settings
“TFAT_CTRL_SERIAL_FLASH”.

Table 4.8 List of Functions

Function Name Outline

flash_spi_disk_initialize() Initialize disk drive

flash_spi_disk_read() Read sectors

flash_spi_disk_write() Write sectors

flash_spi_disk_ioctl() Control device dependent features

flash_spi_disk_status() Get disk status

Table 4.9 Other Functions List

Function name Function Overview

flash_spi_1ms_interval() Update internal timer per 1 ms

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 62 of 78
Mar.15.25

4.6.1 flash_spi_disk_initialize()
This function initializes the disk drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS flash_spi_disk_initialize (uint8_t drive);

Parameters
drive input Specifies the initialize drive number.

Return Value
TFAT_RES_OK Normal termination.
Others DSTATUS status of the disk after function execution
 as explained in section 2.10 Return Values.

Description
This function does not execute the Serial Flash memory driver initialize. Please implement Serial Flash
memory initialize code in user code.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 63 of 78
Mar.15.25

4.6.2 flash_spi_disk_read()
This function reads the data from disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT flash_spi_disk_read (uint8_t drive,
 uint8_t *buffer,
 uint32_t sector_number,
 uint8_t sector_count
);

Parameters
drive input Specifies the physical drive number.
buffer output Pointer to the read buffer to store the read data. A buffer of the size equal to
 the number of bytes to be read is required.
sector_number input Specifies the start sector number in logical block address (LBA).
sector_count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
Read data from Serial Flash memory by block.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 64 of 78
Mar.15.25

4.6.3 flash_spi_disk_write()
This function writes the data to the disk.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT flash_spi_disk_write (uint8_t drive,
 uint8_t *buffer,
 uint32_t sector_number,
 uint8_t sector_count
);

Parameters
drive input Specifies the physical drive number.
buffer input Pointer to the data to be written.
sector_number input Specifies the start sector number in logical block address (LBA).
sector_count input Specifies number of sectors to write. The value can be 1 to 255.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
Write the data to the Serial Flash memory by block.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 65 of 78
Mar.15.25

4.6.4 flash_spi_disk_ioctl()
This function controls the drive.

Format
 #include "r_tfat_drv_if_dev.h"
 DRESULT flash_spi_disk_ioctl (uint8_t drive,
 uint8_t command,
 void *buffer
);

Parameters
drive input Specifies the physical drive number.
command input Specifies the command code. The command code will always be 0.
buffer input Pointer should always be a NULL pointer.

Return Value
DRESULT Result of the function execution as explained in section 2.10 Return Values.

Description
The flash_spi_disk_ioctl function is used only by the f_sync or f_mkfs function amongst all the TFAT FIT
functions. Users who do not plan to use f_sync function in their applications can skip the implementation for
this particular driver interface function.

For users who wish to use f_sync function in their applications, the command CTRL_SYNC has to be
implemented.

The command CTRL_SYNC should consist of the code to finish off any pending write process. If the disk i/o
module has a write back cache, the dirty sector must be flushed immediately. The f_sync function will
perform a save operation to the unsaved data related to the file object passed as argument.

For other commands, refer to Table 3.2 general-purpose commands.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 66 of 78
Mar.15.25

4.6.5 flash_spi_disk_status()
This function gets the disk drive status.

Format
 #include "r_tfat_drv_if_dev.h"
 DSTATUS flash_spi_disk_status (uint8_t drive
);

Parameters
drive input Specifies the physical drive number.

Return Value
TFAT_RES_OK Normal termination.
Others DSTATUS status of the disk after function execution

as explained in section 2.10 Return Values.

Description
This function should consist of the code that checks the disk and returns the current disk status. The disk
status can have any of the three values as explained in section 2.10 Return Values. The disk status can be
returned by updating the return value with the macros related to disk status.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 67 of 78
Mar.15.25

4.6.6 flash_spi_1ms_interval()
This function updates the internal timer per 1 ms.

Format
 #include "r_tfat_drv_if_dev.h"
 void flash_spi_1ms_interval (void);

Parameters
None.

Return Value
None.

Description
This function updates the internal timer of the TFAT driver FIT per 1 ms. This timer is used to check the busy
status of the serial flash memory.

Special Notes:
None.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 68 of 78
Mar.15.25

5. Pin Settings
The TFAT driver FIT has no pin settings.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 69 of 78
Mar.15.25

6. Appendices
6.1 Confirmed Operation Environment
This section describes the operation confirmation environment for TFAT driver FIT.

Table 6.1 Confirmed Operation Environment (Rev.1.05 for SD Memory Card Driver and USB Mini Driver)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V6.3.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V2.08.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.1.05
Board used Renesas Starter Kit+ for RX64M (product No.:R0K50564MSxxxxx)

Renesas Starter Kit for RX231 (product No.:R0K505231Sxxxxx)
RTOS None

Table 6.2 Confirmed Operation Environment (Rev.1.05 for USB Driver)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V7.3.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.1.05
Board used Renesas Starter Kit+ for RX64M (product No.:R0K50564MSxxxxx)
RTOS None

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 70 of 78
Mar.15.25

Table 6.3 Confirmed Operation Environment (Rev. 2.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.13.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.201904

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.13.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.00
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)
RTOS FreeRTOS V10.0.00

RI600V4 V1.06.00

Table 6.4 Confirmed Operation Environment (Rev. 2.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0
IAR Embedded Workbench for Renesas RX 4.14.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.201904

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.10
Board used Renesas Starter Kit for RX231 (product No.: RTK55231xxxxxxxxxx)

Renesas Starter Kit+ for RX64M (product No.: RTK5564Mxxxxxxxxxx)
RTOS FreeRTOS V10.0.00

RI600V4 V1.06.00

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 71 of 78
Mar.15.25

Table 6.5 Confirmed Operation Environment (Rev. 2.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2020-07
IAR Embedded Workbench for Renesas RX 4.14.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202002

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.20
Board used Renesas Starter Kit for RX231 (product No.: RTK55231xxxxxxxxxx)

Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)
Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

RTOS FreeRTOS V10.0.03
RI600V4 V1.06.00

Table 6.6 Confirmed Operation Environment (Rev. 2.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202305

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.30
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)
RTOS FreeRTOS V10.4.3

RI600V4 V1.06.01

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 72 of 78
Mar.15.25

Table 6.7 Confirmed Operation Environment (Rev. 2.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202305

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.40
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)
RTOS None

Table 6.8 Confirmed Operation Environment (Rev. 2.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-07
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202405

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.50
Board used Renesas Target Board for RX140 (product No.: RTK5RX1400xxxxxxxx)

Renesas Starter Kit+ for RX140 (product No.: RTK551406Bxxxxxxxx)
Renesas Starter Kit+ for RX64M (product No.: R0K50564Mxxxxxx)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565Nxxxxxxxxxx)
Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

RTOS FreeRTOS V10.4.3

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 73 of 78
Mar.15.25

Table 6.9 Confirmed Operation Environment (Rev. 2.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-07
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202405

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.60
Board used None
RTOS None

Table 6.10 Confirmed Operation Environment (Rev. 2.61)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202411

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.61
Board used None
RTOS None

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 74 of 78
Mar.15.25

6.2 Troubleshooting
 (1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_tfat_driver_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_tfat_driver_rx_config.h” may be wrong. Check the file
“r_tfat_driver_rx_config.h”. If there is a wrong setting, set the correct value for that. Refer to 2.7
Configuration Overview for details.

(4) Q: The pin setting is supposed to be done, but this does not look like it.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 5 Pin Settings for details.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 75 of 78
Mar.15.25

7. Reference Documents
User's Manual: Hardware
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools
RX Family C/C++ Compiler CC-RX User's Manual (R20UT3248)
The latest version can be downloaded from the Renesas Electronics website.

Related Technical Updates
This module reflects no technical updates.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 76 of 78
Mar.15.25

Revision History

Rev. Date
Description
Page Summary

1.00 Dec 01, 2014 - First edition issued
1.01 Jan 05, 2015 - Added support MCUs.
1.02 Jun 30, 2015 - Added support MCU RX231.
1.03 Oct 01, 2016 - Added support RX family.
1.04 Jun 29, 2018 - 1.2.2 Fig.1-1 Added System timer and CMT modules.

1.3 Added API Overview
2.6 Changed SD memory card define name.
2.7 Added Code Size
3.6 Modified get_fattime() description.
4.2.1-4.2.5 Changed API name.
5 Added Appendices
6 Added Reference Documents

1.05 Dec 14, 2018 - Revision up by USB driver supporting RTOS.
2.00 Feb. 25, 2020 - Supported the following compilers.

- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX
Supported the following RTOS.
- FreeRTOS
- RI600V4
Removed "R_TFAT_" from the function names.

2.10 Jul. 27, 2020 - Supported the following storage devices.
- eMMC
- Serial Flash memory
Supported the format function for following storage devices.
- eMMC
- Serial Flash memory
Supported sector size 4096 bytes.
Supported the following RTOS with using USB mini FIT.
- FreeRTOS
- RI600V4

2.20 Sep. 10, 2020 - Supported the format function for following storage devices.
- SD memory card
- USB

 Program Modified the TFAT driver FIT module due to the software
issue

[Description]
The BLOCK SIZE value of eMMC obtained by the
GET_BLOCK_SIZE command is incorrect.

[Conditions]
The following two conditions are met:
- Rev.2.10 version of the TFAT driver FIT module is used.
- Format eMMC.

[Workaround]
Please use Rev.2.20 or a later version of the TFAT driver FIT
module.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 77 of 78
Mar.15.25

Rev. Date
Description
Page Summary

2.20 Sep. 10, 2020 Program Modified the TFAT driver FIT module due to the software
issue

[Description]
The BLOCK SIZE value of Serial Flash memory obtained by
the GET_BLOCK_SIZE command is incorrect.
If the size of the Serial Flash memory is very large, the
format processing time will be long and the available memory
will be small.

[Conditions]
The following two conditions are met:
- Rev.2.10 version of the TFAT driver FIT module is used.
- Format Serial Flash memory.

[Workaround]
Please use Rev.2.20 or a later version of the TFAT driver FIT
module.

2.30 Aug. 31, 2023 14

18, 20

Deleted the description of FIT configurator from "2.11 Adding
the FIT Module to Your Project"
Updated the open source base version from V0.13c to V0.15.

Program Updated the open source base version from V0.13c to V0.15.
2.40 Dec. 15, 2023 8 Updated FIT module version for Table 1.2

12

13

Updated the sector size configuration option when using
TFAT and Serial Flash memory.
Updated the section of 2.8 Code Size.

16 Added 2.12 “for”, “while” and “do while” statements.
65 6.1 Confirmed Operation Environment:

Added Table for Rev.2.40
Program Added support Serial Flash FAT sector size selectable.

2.50 Sep 16, 2024 2, 8, 29
3
7
9

12

14
42-47
72

Updated to support SPI mode SD card.
Added related document for SPI mode SD card module.
Updated FIT module version
Updated to support SPI mode SD card module for Table 1.2
Updated FIT module version for Table 1.2
Added configuration option when using TFAT and SPI mode
SD card memory.
Updated the section of 2.8 Code Size.
Added support SPI mode SD card
6.1 Confirmed Operation Environment:
Added Table for Rev.2.50

Program Added support SPI mode SD card.

RX Family
M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

R20AN0335EJ0261 Rev.2.61 Page 78 of 78
Mar.15.25

Rev. Date
Description
Page Summary

2.60 Nov 01, 2024 7, 9
14
73

Updated FIT module version
Updated the section of 2.8 Code Size.
6.1 Confirmed Operation Environment:
Added Table for Rev.2.60

Program Changed the comment of API functions to the Doxygen style.
2.61 Mar 15, 2025 7, 9

73
Updated FIT module version
6.1 Confirmed Operation Environment:
Added Table for Rev.2.61

Program Updated FIT Disclaimer and Copyright.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 This Application Note
	1.2 Structure of Application
	1.2.1 Structure of Application
	1.2.2 Structure of Software

	1.3 API Overview
	1.4 Limitations

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchain
	2.4 Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Arguments
	2.10 Return Values
	2.11 Adding the FIT Module to Your Project
	2.12 “for”, “while” and “do while” statements

	3. API Functions
	disk_initialize()
	disk_status()
	disk_read()
	disk_write()
	disk_ioctl()
	get_fattime()
	drv_change_alloc()

	4. Local API
	4.1 For USB Memory
	4.1.1 usb_disk_initialize()
	4.1.2 usb_disk_read()
	4.1.3 usb_disk_write()
	4.1.4 usb_disk_ioctl()
	4.1.5 usb_disk_status()
	4.1.6 R_usb_hmsc_WaitLoop()

	4.2 For SD Memory Card
	4.2.1 sdmem_disk_initialize()
	4.2.2 sdmem_disk_read()
	4.2.3 sdmem_disk_write()
	4.2.4 sdmem_disk_ioctl()
	4.2.5 sdmem_disk_status()

	4.3 For SPI mode SD Memory Card
	4.3.1 spi_sdmem_disk_initialize()
	4.3.2 spi_sdmem_disk_read()
	4.3.3 spi_sdmem_disk_write()
	4.3.4 spi_sdmem_disk_ioctl()
	4.3.5 spi_sdmem_disk_status()

	4.4 For USB Mini
	4.4.1 usb_mini_disk_initialize()
	4.4.2 usb_mini_disk_read()
	4.4.3 usb_mini_disk_write()
	4.4.4 usb_mini_disk_ioctl()
	4.4.5 usb_mini_disk_status()
	4.4.6 R_usb_mini_hmsc_WaitLoop()

	4.5 For eMMC
	4.5.1 mmcif_disk_initialize()
	4.5.2 mmcif_disk_read()
	4.5.3 mmcif_disk_write()
	4.5.4 mmcif_disk_ioctl()
	4.5.5 mmcif_disk_status()

	4.6 For Serial Flash Memory
	4.6.1 flash_spi_disk_initialize()
	4.6.2 flash_spi_disk_read()
	4.6.3 flash_spi_disk_write()
	4.6.4 flash_spi_disk_ioctl()
	4.6.5 flash_spi_disk_status()
	4.6.6 flash_spi_1ms_interval()

	5. Pin Settings
	6. Appendices
	6.1 Confirmed Operation Environment
	6.2 Troubleshooting

	7. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

