
 APPLICATION NOTE

R01AN1668EJ0471 Rev.4.71 Page 1 of 60
Mar.15.25

RX Family
IRQ Module Using Firmware Integration Technology
Introduction
This application note describes the Interrupt Request (IRQ) module which uses Firmware Integration
Technology (FIT). This module uses IRQ to provide a unified, abstracted interface for handling events from
external pin interrupts. In this document, this module is referred to as the IRQ FIT module.

Target Devices
• RX110, RX111, RX113 Groups
• RX130 Group
• RX13T Group
• RX140 Group
• RX230 Group
• RX231 Group
• RX23T Group
• RX23W Group
• RX23E-A Group
• RX23E-B Group
• RX24T Group
• RX24U Group
• RX26T Group
• RX260, RX261 Group
• RX64M Group
• RX651, RX65N Group
• RX66T Group
• RX66N Group
• RX660 Group
• RX671 Group
• RX71M Group
• RX72T Group
• RX72M Group
• RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX
For details of the confirmed operation contents of each compiler, refer to “6.1 Confirmed Operation
Environment".

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 2 of 60
Mar.15.25

Contents

1. Overview ... 4
1.1 IRQ FIT Module ... 4
1.2 Overview of the IRQ FIT Module ... 4
1.3 Using the FIT IRQ module ... 5
1.3.1 Using FIT IRQ module in C++ project ... 6
1.4 API Overview ... 6
1.5 Limitations ... 6

2. API Information .. 7
2.1 Hardware Requirements ... 7
2.2 Software Requirements ... 7
2.3 Limitations ... 7
2.3.1 RAM Location Limitations.. 7
2.4 Supported Toolchain ... 7
2.5 Interrupt Vector .. 8
2.6 Header Files .. 8
2.7 Integer Types .. 9
2.8 Configuration Overview ... 9
2.9 Code Size .. 10
2.10 Parameters .. 28
2.10.1 Special Data Types ... 28
2.11 Return Values .. 29
2.12 Callback Function .. 29
2.13 Adding the FIT Module to Your Project ... 30
2.14 “for”, “while” and “do while” statements ... 31

3. API Functions .. 32
R_IRQ_Open() ... 32
R_IRQ_Control() .. 34
R_IRQ_Close() .. 36
R_IRQ_ReadInput() ... 37
R_IRQ_InterruptEnable() ... 38
R_IRQ_GetVersion() ... 39
R_IRQ_IRClear() ... 40

4. Pin Setting ... 41

5. Demo Projects ... 42
5.1 irq_demo_rskrx113, irq_demo_rskrx231, irq_demo_rskrx64m, irq_demo_rskrx71m,

irq_demo_rskrx65n, irq_demo_rskrx65n_2m, irq_demo_rskrx72m, irq_demo_rskrx671,
irq_demo_rskrx113_gcc, irq_demo_rskrx231_gcc, irq_demo_rskrx64m_gcc, irq_demo_rskrx71m_gcc,
irq_demo_rskrx65n_gcc, irq_demo_rskrx65n_2m_gcc, irq_demo_rskrx72m_gcc,

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 3 of 60
Mar.15.25

irq_demo_rskrx671_gcc .. 42
5.2 Adding a Demo to a Workspace ... 42
5.3 Downloading Demo Projects ... 42

6. Appendices .. 43
6.1 Confirmed Operation Environment .. 43
6.2 Troubleshooting ... 55

7. Reference Documents ... 56

Related Technical Updates ... 56

Revision History .. 57

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 4 of 60
Mar.15.25

1. Overview
1.1 IRQ FIT Module
The IRQ FIT module can be used by being implemented in a project as an API. See section 2.13, Adding the
FIT Module to Your Project for details on methods to implement this FIT module into a project.

1.2 Overview of the IRQ FIT Module
This software provides a unified, abstracted interface for handling events from external pin interrupts. These
events are mapped to the IRQ vectors. The operations needed to prepare the IRQs for handling interrupts
are performed in the R_IRQ_Open() API function. IRQ vectors supported by each MCU can be used, so a
means to identify a particular IRQ vector in each API function is provided. The software makes use of a data
structure assigned to each IRQ that stores information specific to that vector required to perform the various
IRQ API functions. One such data structure is allocated for each IRQ in use. Each of these data structures is
referred to as an IRQ handle, and each has a handle pointer.

When an IRQ is initialized through the R_IRQ_Open() function, its handle pointer is returned to the caller.
Thereafter, the application must provide the handle pointer for the selected IRQ when calling any of the
remaining IRQ API functions. When called, the API functions extract the IRQ number from the handle, as
well as other information linked to that IRQ and contained in the handle structure.

When an IRQ event is triggered, an interrupt handler is invoked that passes control to a user defined
"Callback" function. Since Callbacks are executed in the interrupt state, further interrupts are disabled until
the callback completes and the program returns from the ISR. Interrupt processing may be enabled or
disabled by the user application at any time after the IRQ vector has been initialized.

User application code:
callback functions

FIT IRQ Support Module
FIT BSP

RX MCU GPIO Input
Figure 1 : Example Figure Showing Project Layers

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 5 of 60
Mar.15.25

1.3 Using the FIT IRQ module
The primary use of the IRQ module is to make it easy to generate interrupt events that are triggered by a
change in state of an MCU GPIO input pin. The user's application can arbitrarily assign a callback function to
the event that will execute upon event detection.

After adding the IRQ module to your project you will need to modify the r_irq_rx_config.h file to configure the
software for your installation.

If Smart Configurator is used, at least one IRQ pin must be chosen, otherwise build error would happen.
#include "r_irq_rx_pinset.h"
#ifndef R_IRQ_RX_H
#error "Please check IRQ port assignments in Smart Configurator"
#endif

See Section 2.8, Configuration Overview for details on configuration options.

Control registers for input pins to be used for IRQ sources must be correctly set up before the IRQ module
can communicate with them. The IRQ module does not provide any means to initialize the pin registers--that
needs to be done externally prior to calling IRQ API functions. Typically this would be accomplished at
system startup time as part of a general pin initialization routine.

There is no need to set up interrupt vectors for IRQs as this software takes care of that automatically based
on the IRQs that have been enabled for use at build time through the configuration options.

The first step in using IRQs at run time is to call the R_IRQ_Open() function, passing the desired IRQ
number and other required settings. On completion, the IRQ will be active and ready to respond to the
specified transition or state of the input pin. On the occurrence of an IRQ event, the ISR will call the callback
function that you provided as an argument in your R_IRQ_Open() call.

Two convenient commands are provided in the R_IRQ_Control() function to allow changing the interrupt
trigger mode, and the priority level. This permits the interrupt event to be adjusted to adapt to current
conditions as desired. Interrupts for the selected IRQ number are disabled briefly while the R_IRQ_Control()
function is making the changes.

Other IRQ settings are only configured at the R_IRQ_Open(); these are the settings that are not expected to
frequently change. If they need to be changed later during run-time, the R_IRQ_Close() function must be
called so that R_IRQ_Open() can be called again with new settings.

Generally, most of the IRQ API functions will require a 'handle' argument. This is used to identify the IRQ
number that is selected for the operation. A handle is obtained by first calling the R_IRQ_Open() function.
You must provide the address of a location where you will store the handle to R_IRQ_Open(), and on
completion the handle will be available for use. Thereafter, simply pass the provided handle value for that
IRQ number to the other IRQ functions when calling them. In your application you will need to keep track of
which handle belongs to a given IRQ, as each IRQ will be assigned its own handle.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 6 of 60
Mar.15.25

1.3.1 Using FIT IRQ module in C++ project
For C++ project, add FIT IRQ module interface header file within extern “C”{}:

Extern “C”
{

#include “r_smc_entry.h”
#include “r_irq_rx_if.h”

}

1.4 API Overview
Table 1.1 lists the API functions included in this module.

Table 1.1 API Functions

Function Description

R_IRQ_Open()

Initializes the associated registers required to prepare the specified
IRQ for use, enables interrupts, and provides the handle for use with
other API functions. Takes a callback function pointer for responding
to interrupt events. This function must be called before calling any
other API functions.

R_ IRQ_Close() Disables the specified IRQ and its associated interrupt.
R_IRQ_Control() Handles special hardware or software operations for the IRQ.
R_IRQ_ReadInput() Reads the current level of the pin assigned to the specified IRQ.
R_IRQ_InterruptEnable() Enables or disables the ICU interrupt for the specified IRQ.
R_IRQ_GetVersion() Returns the driver version number.
R_IRQ_IRClear() This function clears the IR flag for the specified IRQ.

1.5 Limitations
This driver is applicable only to IRQ type interrupts; i.e.: external input pin interrupts.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 7 of 60
Mar.15.25

2. API Information
This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
The MCU used must support the following functions:

 IRQ

 One or more available GPIO input pins that are configurable as interrupt sources

2.2 Software Requirements
This driver is dependent upon the following FIT modules:

 Renesas Board Support Package (r_bsp) v5.20 or higher. It assumes that the related I/O ports
have been correctly initialized elsewhere prior to calling this software's API functions.

 Use of the digital filtering features requires that the peripheral clock (PCLK) has been initialized
by an external procedure prior to calling the APIs of this module.

2.3 Limitations
2.3.1 RAM Location Limitations
In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.
The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.
In the case of the CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the
variable from being located at address 0x0. In the case of the GCC project (e2 studio V7.5.0) and IAR
project (EWRX V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.
The default settings of the section may be changed due to the IDE version upgrade. Please check the
section settings when using the latest IDE.

2.4 Supported Toolchain
This driver has been confirmed to work with the toolchain listed in 6.1, Confirmed Operation Environment.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 8 of 60
Mar.15.25

2.5 Interrupt Vector
When a change of state on an IRQ input pin occurs that matches the trigger mode setting an interrupt
request is generated. If interrupts are enabled, the interrupt ISR will execute which will call your assigned
callback function. It is within the callback that you will place the code that you want to occur immediately in
response to the ISR. Since callbacks are being processed within the context of the interrupt, and interrupts
are disabled at this time, it is strongly recommended that your callback function complete as quickly as
possible to avoid missing other interrupts that might occur in the system.

IRQ interrupt is enabled by executing the R_IRQ_Open() function.
Table 2.1 lists the interrupt vector used in the IRQ FIT Module.

Table 2.1 Interrupt Vector Used in the IRQ FIT Module

Device Interrupt Vector
RX110 *1
RX111 *1
RX113 *1
RX130 *1

RX13T *2

RX140 *4

RX230 *1
RX231 *1
RX23T *2
RX23W*3

RX23E-A*1

RX23E-B*1

RX24T *1
RX24U *1
RX26T
RX260*1
RX261*1
RX64M
RX651
RX65N
RX66T
RX66N
RX660
RX671
RX71M
RX72T
RX72M
RX72N

IRQ0 interrupt (vector no.: 64)
IRQ1 interrupt (vector no.: 65)
IRQ2 interrupt (vector no.: 66)
IRQ3 interrupt (vector no.: 67)
IRQ4 interrupt (vector no.: 68)
IRQ5 interrupt (vector no.: 69)
IRQ6 interrupt (vector no.: 70)
IRQ7 interrupt (vector no.: 71)
IRQ8 interrupt (vector no.: 72)
IRQ9 interrupt (vector no.: 73)
IRQ10 interrupt (vector no.: 74)
IRQ11 interrupt (vector no.: 75)
IRQ12 interrupt (vector no.: 76)
IRQ13 interrupt (vector no.: 77)
IRQ14 interrupt (vector no.: 78)
IRQ15 interrupt (vector no.: 79)

Note 1. Only have IRQ0 to IRQ7.
Note 2. Only have IRQ0 to IRQ5.
Note 3. Only have IRQ0, IRQ1, IRQ4 to IRQ7.
Note 4. Only have IRQ0 to IRQ2, IRQ4 to IRQ7.

2.6 Header Files
All API calls and their supporting interface definitions are located in r_irq_rx_if.h.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 9 of 60
Mar.15.25

2.7 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

2.8 Configuration Overview
The configuration option settings of this module are located in r_irq_rx_config.h. The option names and
setting values are listed in the table below:

Configuration options in r_irq_rx_config.h

IRQ_CFG_REQUIRE_LOCK 1

If defined as 1 then the R_IRQ_Open() function will attempt to obtain
a BSP lock for the duration of the function execution. This is to
protect its internal state from reentrant access. On exit the lock will
be released. This option may be set to 0 if BSP locking is not
required or available in the system.

IRQ_CFG_PARAM_CHECKING

* Default = BSP_CFG_PARAM_
CHECKING_ENABLE

Checking of arguments passed to IRQ API functions can be enabled
or disabled. Disabling argument checking is provided for systems that
absolutely require faster and smaller code.
By default the module is configured to use the setting of the system-
wide BSP_CFG_PARAM_CHECKING_ENABLE macro. This can be
locally overridden for the IRQ module by redefining
IRQ_CFG_PARAM_CHECKING.
To control parameter checking locally, set
IRQ_CFG_PARAM_CHECKING to 1 to enable it, otherwise set to 0
skip checking.

IRQ_PORT_IRQn_PORT
IRQ_PORT_IRQn_BIT

The port and port-bit assignments to each IRQ must be defined so
that the IRQ module can perform port specific operations, such as
R_IRQ_ReadInput().
Set these as required according to the following format:
#define IRQ_PORT_IRQ*_PORT (‘m’)
 (where m is the port number and the IRQ number replaces *)
 #define IRQ_PORT_IRQ*_BIT (‘n’)
 (where n is the bit number and the IRQ number replaces *)
Note:
 Port assignments here must match the port configuration
settings performed externally for them by the BSP

IRQ_CFG_FILT_EN_IRQn 0 If defined as 1 digital filtering is enabled for the IRQ number n. 0 =
not enabled.

IRQ_CFG_FILT_PCLK_IRQn

PCLK digital filter clock divisor setting for the IRQ number n.
Select from one of the predefined constants IRQ_CFG_PCLK_DIVxx.
Example:
/* Filter sample clock divisor for IRQ 0 = PCLK/64. */
#define IRQ_CFG_FILT_PLCK_IRQ0 (IRQ_CFG_PCLK_DIV64)

IRQ_CFG_NESTED_INT_EN_IRQn 0 If defined as 1 nested interrupt is enabled for the IRQ number n. 0 =
not enabled.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 10 of 60
Mar.15.25

2.9 Code Size
Typical code sizes associated with this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.8, Configuration Overview. The table lists reference values when the C compiler’s
compile options are set to their default values, as described in 2.4, Supported Toolchains. The compile
option default values are optimization level: 2, optimization type: for size, and data endianness: little-endian.
The code size varies depending on the C compiler version and compile options.

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks Renesas Compiler
With Parameter

Checking
Without Parameter

Checking
RX110,
RX111

ROM

1 IRQ 777 bytes 527 bytes

8 IRQs

1377 bytes 1127 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage 48 bytes 46 bytes The maximum value when one
channel is used is listed.

RX130,
RX230,
RX24T,
RX24U ROM

1 IRQ 777 bytes 527 bytes

8 IRQs

1366 bytes 1116 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage 48 bytes 36 bytes The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 11 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks Renesas Compiler
With Parameter

Checking
Without Parameter

Checking
RX23T

ROM

1 IRQ 767 bytes 521 bytes

6 IRQs

1207 bytes 961 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 10 bytes 4 bytes

6 IRQs

30 bytes 24 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage 48 bytes 36 bytes The maximum value when one
channel is used is listed.

RX23W

ROM

1 IRQ 696 bytes 448 bytes
6 IRQs 986 bytes 738 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM

1 IRQ 12 bytes 4 bytes
6 IRQs 32 bytes 24 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 84 bytes 76 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
stack size of peripheral interrupt.

RX64M,
RX65N,
RX66T,
RX71M ROM

1 IRQ 892 bytes 640 bytes

16 IRQs

2180 bytes 1928 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage 48 bytes 40 bytes The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 12 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks Renesas Compiler
With Parameter

Checking
Without Parameter

Checking
RX113,
RX231

ROM

1 IRQ 777 bytes 529 bytes

8 IRQs

1366 bytes 1118 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage 48 bytes 36 bytes The maximum value when one
channel is used is listed.

RX72T

ROM

1 IRQ 892 bytes 640 bytes

16 IRQs

2181 bytes 1929 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage 48 bytes 40 bytes The maximum value when one
channel is used is listed.

RX72M

ROM

1 IRQ 879 bytes 620 bytes
16 IRQs 2160 bytes 1901 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM

1 IRQ 20 bytes 4 bytes
16 IRQs 80 bytes 64 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 84 bytes 80 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
stack size of peripheral interrupt.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 13 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks Renesas Compiler
With Parameter

Checking
Without Parameter

Checking
RX13T

ROM

1 IRQ 695 bytes 440 bytes

6 IRQs
985 bytes 730 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM

1 IRQ 10 bytes 4 bytes

6 IRQs
30 bytes 24 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 84 bytes 80 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
usage stack size of interrupts
functions.

RX66N

ROM

1 IRQ 819 bytes 560 bytes

16 IRQs
2100 bytes 1841 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs
80 bytes 64 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 72 bytes 72 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
usage stack size of interrupts
functions.

RX72N

ROM

1 IRQ 819 bytes 560 bytes

6 IRQs
2100 bytes 1841 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM

1 IRQ 20 bytes 4 bytes

6 IRQs
80 bytes 64 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 72 bytes 72 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
usage stack size of interrupts
functions.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 14 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX23E-
A

ROM

1 IRQ 786 bytes 531 bytes

8 IRQs
1385 bytes 1130 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs
40 bytes 32 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 76 bytes 76 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
stack size of peripheral interrupt.

RX671

ROM 1 IRQ 871 bytes 599 bytes

16 IRQs
2141 bytes 1869 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM 1 IRQ 20 bytes 4 bytes

16 IRQs
80 bytes 64 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 72 bytes 68 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
stack size of peripheral interrupt.

RX140

ROM 1 IRQ 855 bytes 571 bytes

8 IRQs
1362 bytes 1078 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM 1 IRQ 12 bytes 4 bytes

8 IRQs
36 bytes 28 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 72 bytes 64 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
stack size of peripheral interrupt.

RX660

ROM 1 IRQ 962 bytes 677 bytes

16 IRQs
2257 bytes 1972 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM 1 IRQ 20 bytes 4 bytes

16 IRQs
80 bytes 64 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 72 bytes 68 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
stack size of peripheral interrupt.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 15 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX26T

ROM 1 IRQ 980 bytes 695 bytes

16 IRQs
2552 bytes 2267 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM 1 IRQ 20 bytes 4 bytes

16 IRQs
80 bytes 64 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 84 bytes 84 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
stack size of peripheral interrupt.

RX23E-
B

ROM 1 IRQ 850 bytes 571 bytes

8 IRQs
1444 bytes 1165 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM 1 IRQ 12 bytes 4 bytes

8 IRQs
40 bytes 32 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 72 bytes 64 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
stack size of peripheral interrupt.

RX260

ROM 1 IRQ 850 bytes 571 bytes

8 IRQs
1439 bytes 1160 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM 1 IRQ 12 bytes 4 bytes

8 IRQs
40 bytes 32 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 72 bytes 64 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
stack size of peripheral interrupt.

RX261

ROM 1 IRQ 850 bytes 571 bytes

8 IRQs
1439 bytes 1160 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM 1 IRQ 12 bytes 4 bytes

8 IRQs
40 bytes 32 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage 72 bytes 64 bytes Maximum stack usage is the
sum of the maximum size of
peripheral API and maximum
stack size of peripheral interrupt.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 16 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks GCC
With Parameter

Checking
Without Parameter

Checking
RX110,
RX111

ROM

1 IRQ 1532 bytes 1140 bytes

8 IRQs

2592 bytes 2200 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage - - The maximum value when one
channel is used is listed.

RX130,
RX230,
RX24T,
RX24U ROM

1 IRQ 1532 bytes 1140 bytes

8 IRQs

2592 bytes 2200 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage - - The maximum value when one
channel is used is listed.

RX13T

ROM

1 IRQ 1604 bytes 1204 bytes
6 IRQs 2360 bytes 1960 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM

1 IRQ 12 bytes 4 bytes
6 IRQs 32 bytes 24 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage - - The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 17 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks GCC
With Parameter

Checking
Without Parameter

Checking
RX23T

ROM

1 IRQ 1532 bytes 1140 bytes

6 IRQs

4048 bytes 3656 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 20 bytes 4 bytes

6 IRQs

80 bytes 64 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage - - The maximum value when one
channel is used is listed.

RX64M,
RX65N,
RX66T,
RX71M ROM

1 IRQ 1772 bytes 1380 bytes

16 IRQs

2288 bytes 1904 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 8 bytes 4 bytes

16 IRQs

28 bytes 24 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage - - The maximum value when one
channel is used is listed.

RX66N

ROM

1 IRQ 596 bytes 164 bytes

16 IRQs
2872 bytes 2440 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs
80 bytes 64 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage - - The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 18 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks GCC
With Parameter

Checking
Without Parameter

Checking
RX113,
RX231

ROM

1 IRQ 1540 bytes 1148 bytes

8 IRQs

2600 bytes 2216 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage - - The maximum value when one
channel is used is listed.

RX72T

ROM

1 IRQ 1772 bytes 1380 bytes

16 IRQs

4048 bytes 3656 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage - - The maximum value when one
channel is used is listed.

RX72M

ROM

1 IRQ 1892 bytes 1484 bytes
16 IRQs 4168 bytes 3760 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM

1 IRQ 20 bytes 4 bytes
16 IRQs 80 bytes 64 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage - - The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 19 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks GCC
With Parameter

Checking
Without Parameter

Checking

RX72N

ROM

1 IRQ 596 bytes 164 bytes

16 IRQs
2872 bytes 2440 bytes ROM size is the sum of

Program, Constant, and
Initialized data.

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs
80 bytes 64 bytes RAM size is the sum of

Uninitialized data, Data, Stack
and Others.

Maximum stack usage - - The maximum value when one
channel is used is listed.

RX23E-
A

ROM

1 IRQ 1652 bytes 1236 bytes

8 IRQs

2704 bytes 2296 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage. - - The maximum value when one
channel is used is listed.

RX671

ROM

1 IRQ 1912 bytes 1480 bytes

16 IRQs

4172 bytes 3748 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage. - - The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 20 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks GCC
With Parameter

Checking
Without Parameter

Checking

RX140

ROM 1 IRQ 1784 bytes 1328 bytes

8 IRQs

2836 bytes 2388 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM 1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage. - - The maximum value when one
channel is used is listed.

RX660

ROM

1 IRQ 2056 bytes 1600 bytes

16 IRQs

4316 bytes 3856 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 0 bytes 0 bytes

16 IRQs

128 bytes 128 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage. - - The maximum value when one
channel is used is listed.

RX26T

ROM

1 IRQ 1204 bytes 860 bytes

16 IRQs

2528 bytes 2176 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 0 bytes 0 bytes

16 IRQs

128 bytes 128 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage. - - The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 21 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks GCC
With Parameter

Checking
Without Parameter

Checking

RX23E-
B

ROM

1 IRQ 1036 bytes 684 bytes

8 IRQs

1632 bytes 1280 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage. - - The maximum value when one
channel is used is listed.

RX260

ROM

1 IRQ 1036 bytes 692 bytes

8 IRQs

1640 bytes 1296 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage. - - The maximum value when one
channel is used is listed.

RX261

ROM

1 IRQ 1028 bytes 684 bytes

8 IRQs

1640 bytes 1288 bytes ROM size can be calculated with
the following formula:
ROM size for 1 channel + (58
bytes x number of additional
channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with
the following formula:
RAM size for 1 channel + (4
bytes x number of additional
channels)

Maximum stack usage. - - The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 22 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks IAR Compiler
With Parameter

Checking
Without Parameter

Checking
RX110,
RX111

ROM

1 IRQ 1120 bytes 792 bytes

8 IRQs

1676 bytes 1348 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 152 bytes 152 bytes The maximum value when one
channel is used is listed.

RX130,
RX230,
RX24T,
RX24U

ROM

1 IRQ 1120 bytes 792 bytes

8 IRQs

1672 bytes 1344 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 152 bytes 152 bytes The maximum value when one
channel is used is listed.

RX13T

ROM 1 IRQ 1112 bytes 784 bytes
6 IRQs 1509 bytes 1184 bytes ROM size can be calculated with the

following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM 1 IRQ 12 bytes 4 bytes
6 IRQs 32 bytes 24 bytes RAM size can be calculated with the

following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 104 bytes 104 bytes The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 23 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks IAR Compiler
With Parameter

Checking
Without Parameter

Checking
RX23T

ROM

1 IRQ 1112 bytes 784 bytes

6 IRQs

1504 bytes 1176 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 8 bytes 4 bytes

6 IRQs

28 bytes 24 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 152 bytes 152 bytes The maximum value when one
channel is used is listed.

RX64M,
RX65N,
RX66T,
RX71M

ROM

1 IRQ 1338 bytes 1039 bytes

16 IRQs

2523 bytes 2289 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 168 bytes 168 bytes The maximum value when one
channel is used is listed.

RX66N

ROM

1 IRQ 1278 bytes 937 bytes

16 IRQs

2463 bytes 2128 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 88 bytes 88 bytes The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 24 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks IAR Compiler
With Parameter

Checking
Without Parameter

Checking
RX113,
RX231

ROM

1 IRQ 1120 bytes 792 bytes

8 IRQs

1674 bytes 1346 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 152 bytes 152 bytes The maximum value when one
channel is used is listed.

RX72T

ROM

1 IRQ 1319 bytes 984 bytes

16 IRQs

2504 bytes 2167 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 168 bytes 168 bytes The maximum value when one
channel is used is listed.

RX72M

ROM

1 IRQ 1320 bytes 992 bytes

16 IRQs

2505 bytes 2174 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 172 bytes 172 bytes The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 25 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks IAR Compiler
With Parameter

Checking
Without Parameter

Checking

RX72N

ROM

1 IRQ 1278 bytes 937 bytes

16 IRQs

2463 bytes 2128 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 88 bytes 88 bytes The maximum value when one
channel is used is listed.

RX23E-
A

ROM

1 IRQ 1054 bytes 718 bytes

8 IRQs

1606 bytes 1272 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 76 bytes 76 bytes The maximum value when one
channel is used is listed.

RX671

ROM

1 IRQ 1301 bytes 969 bytes
16 IRQs 2486 bytes 2155 bytes ROM size can be calculated with the

following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 20 bytes 4 bytes
16 IRQs 80 bytes 64 bytes RAM size can be calculated with the

following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 76 bytes 76 bytes The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 26 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks IAR Compiler
With Parameter

Checking
Without Parameter

Checking

RX140

ROM

1 IRQ 1168 bytes 801 bytes

16 IRQs

1646 bytes 1279 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 12 bytes 4 bytes

16 IRQs

36 bytes 28 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 76 bytes 76 bytes The maximum value when one
channel is used is listed.

RX660

ROM

1 IRQ 1431 bytes 1056 bytes

16 IRQs

2616 bytes 2239 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 76 bytes 76 bytes The maximum value when one
channel is used is listed.

RX26T

ROM

1 IRQ 1424 bytes 1056 bytes

16 IRQs

2609 bytes 2240 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 20 bytes 4 bytes

16 IRQs

80 bytes 64 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 76 bytes 76 bytes The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 27 of 60
Mar.15.25

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks IAR Compiler
With Parameter

Checking
Without Parameter

Checking

RX23E-
B

ROM

1 IRQ 1229 bytes 864 bytes

8 IRQs

1782 bytes 1415 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 76 bytes 76 bytes The maximum value when one
channel is used is listed.

RX260

ROM

1 IRQ 1239 bytes 872 bytes

8 IRQs

1792 bytes 1064 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 12 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 40 bytes 40 bytes The maximum value when one
channel is used is listed.

RX261

ROM

1 IRQ 1239 bytes 872 bytes

8 IRQs

1792 bytes 1424 bytes ROM size can be calculated with the
following formula:
ROM size for 1 channel + (58 bytes
x number of additional channels)

RAM

1 IRQ 12 bytes 4 bytes

8 IRQs

40 bytes 32 bytes RAM size can be calculated with the
following formula:
RAM size for 1 channel + (4 bytes x
number of additional channels)

Maximum stack usage 40 bytes 40 bytes The maximum value when one
channel is used is listed.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 28 of 60
Mar.15.25

2.10 Parameters
This section describes the parameter structure used by the API functions in this module. The structure is
located in r_irq_rx_if.h as are the prototype declarations of API functions.

2.10.1 Special Data Types
To provide strong type checking and reduce errors, many parameters used in API functions require
arguments to be passed using the provided type definitions. Allowable values are defined in the public
interface file r_irq_rx_if.h. The following special types have been defined:

Enumeration of IRQ numbers
Type: irq_number_t

Macro: IRQ_NUM_n

Values (n): (all MCUs) 0 through 7 (and for RX MCUs with 16 IRQs) 8 through 15

Example: IRQ_NUM_2

IRQ control command codes
Type: irq_cmd_t

Values: IRQ_CMD_SET_PRIO, IRQ_CMD_SET_TRIG

IRQ interrupt priority settings.
Type: irq_prio_t

Macro: IRQ_PRI_n

Value s (n): 0 through 15

Example: IRQ_PRI_3

IRQ trigger mode settings
Type: irq_trigger_t
Values: IRQ_TRIG_LOWLEV, IRQ_TRIG_FALLING, IRQ_TRIG_RISING,
IRQ_TRIG_BOTH_EDGE

 Handle
Type: irq_handle_t

Values: User provides pointer to storage for this type for a handle. Handle value is automatically
assigned by R_IRQ_Open function

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 29 of 60
Mar.15.25

2.11 Return Values
This section describes return values of API functions. This enumeration is located in r_irq_rx_if.h as are the
prototype declarations of API functions.

Return Type: irq_err_t

Values: Cause
IRQ_SUCCESS Function completed without errors
IRQ_ERR_BAD_NUM Invalid IRQ number was passed
IRQ_ERR_NOT_OPENED IRQ not yet opened. Function cannot be completed.
IRQ_ERR_NOT_CLOSED IRQ still open from previous open.
IRQ_ERR_UNKNOWN_CMD Control command is not recognized.
IRQ_ERR_INVALID_ARG Argument is not valid for parameter.
IRQ_ERR_INVALID_PTR Received null pointer; missing required argument.
IRQ_ERR_LOCK A lock procedure failed.

2.12 Callback Function
In this module, the callback function specified by the user is called when the IRQ interrupt occurs.

The callback function is specified by storing the address of the user function in the “void (*const
pcallback)(void *pargs))” structure member (see 2.10, Parameters). When the callback function is called, the
variable which stores the channel number is passed as the argument.

The argument is passed as void type. Thus, the argument of the callback function is cast to a void pointer.
See examples below as reference.

When using a value in the callback function, type cast the value.
void my_irq_callback(void * pdata)
{
 irq_number_t my_triggered_irq_number;

 my_triggered_irq_number = *((irq_number_t *)pdata);
 ...
}

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 30 of 60
Mar.15.25

2.13 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for
details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 31 of 60
Mar.15.25

2.14 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 32 of 60
Mar.15.25

3. API Functions

R_IRQ_Open()
This function initializes the associated IRQ registers, enables interrupts, and provides the handle for use with
other API functions. This function must be called before calling any other API functions.

Format
irq_err_t R_IRQ_Open (

irq_number_t irq_number,

 irq_trigger_t trigger,

 irq_prio_t priority,

 irq_handle_t *phandle,

 void (*const pcallback)(void *pargs)

)

Parameters
irq_number_t irq_number
 Number of the IRQ to be initialized.

irq_trigger_t trigger
 Enumerated type for trigger type: low level, rising edge, falling edge, both edges.

irq_prio_t priority
 Enumerated priority level setting for the IRQ.

irq_handle_t phandle
 Pointer to a location for handle for IRQ. Handle value will be set by this function.

pcallback
 Pointer to function called from interrupt.

Return Values
[IRQ_SUCCESS] /* Successful; IRQ initialized */
[IRQ_ERR_BAD_NUM] /* IRQ number is invalid or unavailable */
[IRQ_ERR_NOT_CLOSED] /* IRQ currently in operation; Perform R_IRQ_Close() first */
[IRQ_ERR_INVALID_PTR] /* phandle pointer is NULL */
[IRQ_ERR_INVALID_ARG] /* An invalid argument value was passed. */
[IRQ_ERR_LOCK] /* The lock could not be acquired. */

Properties
Prototyped in file “r_irq_rx_if.h”.

Description
The Open function is responsible for preparing an IRQ for operation. After completion of the Open function
the IRQ shall be enabled and ready to service interrupts. This function must be called once prior to calling
any other IRQ API functions. Once successfully completed, the status of the selected IRQ will be set to
"open". After that this function should not be called again for the same IRQ without first performing a "close"
by calling R_IRQ_Close().

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 33 of 60
Mar.15.25

Example
/* Allocate a handle that will be used for access to other IRQ API functions. */
irq_handle_t my_handle;
irq_err_t result;

/* Prepare IRQ0 for use. Trigger interrupt on falling edge, priority level 3. */
result = R_IRQ_Open (IRQ_NUM_0,
 IRQ_TRIG_FALLING,
 IRQ_PRI_3,
 &my_handle,
 &my_callback);

if(IRQ_SUCCESS != result)
{
 // Handle the error.
}

Special Notes:
None.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 34 of 60
Mar.15.25

R_IRQ_Control()
The Control function is responsible for handling special hardware or software operations for the IRQ.

Format
irq_err_t R_IRQ_Control (

irq_handle_t const handle,

irq_cmd_t const cmd,

void *pcmd_data

)

Parameters
irq_handle_t const handle

Handle for the IRQ.

irq_cmd_t cmd

Enumerated command codes:

IRQ_CMD_SET_PRIO - Changes the interrupt priority level.

IRQ_CMD_SET_TRIG - Changes the interrupt triggering mode.

pcmd_data
Pointer to the command-data structure parameter of type void that is used to reference the location of any data
specific to the command that is needed for its completion.

Return Values
[IRQ_SUCCESS] /* Command successfully completed. */
[IRQ_ERR_NOT_OPENED] /* The IRQ has not been opened. Perform R_IRQ_Open() first */
[IRQ_ERR_BAD_NUM] /* IRQ number is invalid or unavailable */
[IRQ_ERR_UNKNOWN_CMD] /* Control command is not recognized. */
[IRQ_ERR_INVALID_PTR] /* pcmd_data pointer or handle is NULL */
[IRQ_ERR_INVALID_ARG] /* An element of the pcmd_data structure contains an invalid value. */
[IRQ_ERR_LOCK] /* The lock could not be acquired */

Properties
Prototyped in file “r_irq_rx_if.h”

Description
This function is responsible for handling special hardware or software operations for the IRQ . It takes an
IRQ handle to identify the selected IRQ, an enumerated command value to select the operation to be
performed, and a void pointer to a location that contains information or data required to complete the
operation. This pointer must point to storage that has been type-cast by the caller for the particular command
using the appropriate type provided in "r_irq_rx_if.h".

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 35 of 60
Mar.15.25

Example
/* Change trigger mode to rising edge. */
irq_trigger_t my_trig_mode = IRQ_TRIG_RISING;

result = R_IRQ_Control(my_handle, IRQ_CMD_SET_TRIG, &my_trig_mode);

/* Change the priority. */
irq_prio_t my_priority = IRQ_PRI_10;

result = R_IRQ_Control(my_handle, IRQ_CMD_SET_PRIO, &my_priority);

Special Notes:
None.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 36 of 60
Mar.15.25

R_IRQ_Close()
Fully disables the IRQ designated by the handle.

Format
irq_err_t R_IRQ_Close (

irq_handle_t handle

)

Parameters
irq_handle_t handle

Handle for the IRQ.

Return Values
[IRQ_SUCCESS] /* Successful; IRQ closed */
[IRQ_ERR_NOT_OPENED] /* The IRQ has not been opened so closing has no effect. */
[IRQ_ERR_BAD_NUM] /* IRQ number is invalid or unavailable */
[IRQ_ERR_INVALID_PTR] /* A required pointer argument is NULL */

Properties
Prototyped in file “r_irq_rx_if.h”

Description
This function frees the IRQ by clearing its assignment to a port, and disables the associated interrupts. The
IRQ handle is modified to indicate that it is no longer in the 'open' state. The IRQ cannot be used again until
it has been reopened with the R_IRQ_Open function. If this function is called for an IRQ that is not in the
open state then an error code is returned.

Example
irq_err_t result;

result = R_IRQ_Close(my_handle);

Special Notes:
None.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 37 of 60
Mar.15.25

R_IRQ_ReadInput()
This function reads the current level of the pin assigned to the specified IRQ.

Format
irq_err_t R_IRQ_ReadInput (

irq_handle_t const handle,

uint8_t *plevel

)

Parameters
irq_handle_t const handle

Handle for the IRQ.

uint8_t plevel

Pointer to location where the input pin state can be returned.

Return Values
[IRQ_SUCCESS] /* Operation successfully completed. */
[IRQ_ERR_NOT_OPENED] /* The IRQ has not been opened. Perform R_IRQ_Open() first */
[IRQ_ERR_BAD_NUM] /* IRQ number is invalid or unavailable */
[IRQ_ERR_INVALID_PTR] /* plevel data pointer or handle is NULL */

Properties
Prototyped in file “r_irq_rx_if.h”

Description
This function reads the current level of the pin assigned to the specified IRQ. This is a realtime read which
may indicate a different value than the level that initially triggered an interrupt. One example use is for cases
in which a switch has triggered an interrupt and then needs to be polled for debounce.

Example
/* What logic level does the input currently see? */
uint8_t irq_pin_level;

result = R_IRQ_ReadInput(my_handle, (uint8_t*)&irq_pin_level);

Special Notes:
None.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 38 of 60
Mar.15.25

R_IRQ_InterruptEnable()
This function enables or disables the ICU interrupt for the specified IRQ.

Format
irq_err_t R_IRQ_InterruptEnable (

irq_handle_t const handle,

bool enable

)

Parameters
irq_handle_t const handle
 Handle for the IRQ.

bool enable

true = enable the interrupt.
false = disable interrupt.

Return Values
[IRQ_SUCCESS] /* Operation successfully completed. */
[IRQ_ERR_NOT_OPENED] /* The IRQ has not been opened. Perform R_IRQ_Open() first */
[IRQ_ERR_BAD_NUM] /* IRQ number is invalid or unavailable */
[IRQ_ERR_INVALID_PTR] /* handle is NULL */

Properties
Prototyped in file “r_irq_rx_if.h”

Description
The function enables or disables the ICU interrupt for the IRQ specified by the handle argument. This
function is potentially called frequently and is expected to execute quickly.

Example
irq_err_t result;

/* Enable interrupt */
result = R_IRQ_InterruptEnable (my_handle, true);

/* Disable interrupt */
result = R_IRQ_InterruptEnable (my_handle, false);

Special Notes:
None.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 39 of 60
Mar.15.25

R_IRQ_GetVersion()
This function returns the driver version number at runtime.

Format
uint32_t R_IRQ_GetVersion (void)

Parameters
None.

Return Values
Version number with major and minor version digits packed into a single 32-bit value.

Properties
Prototyped in file “r_irq_rx_if.h”.

Description
The function returns the version of this module. The version number is encoded such that the top 2 bytes are
the major version number and the bottom 2 bytes are the minor version number.

Example
/* Retrieve the version number and convert it to a string. */

uint32_t version, version_high, version_low;
char version_str[9];

version = R_IRQ_GetVersion();

version_high = (version >> 16)&0xf;
version_low = version & 0xff;

sprintf(version_str, "IRQv%1.1hu.%2.2hu", version_high, version_low);

Special Notes:
None.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 40 of 60
Mar.15.25

R_IRQ_IRClear()
This function clears the IR flag for the specified IRQ.

Format
irq_err_t R_IRQ_IRClear (

irq_handle_t const handle,

)

Parameters
irq_handle_t const handle
 Handle for the IRQ.

Return Values
[IRQ_SUCCESS] /* Operation successfully completed. */
[IRQ_ERR_NOT_OPENED] /* The IRQ has not been opened. Perform R_IRQ_Open() first */
[IRQ_ERR_BAD_NUM] /* IRQ number is invalid or unavailable */
[IRQ_ERR_INVALID_PTR] /* handle is NULL */

Properties
Prototyped in file “r_irq_rx_if.h”

Description
The function clears the IR flag for the IRQ specified by the handle argument.

Example
/* Clear IR flag */
irq_err_t result;

result = R_IRQ_IRClear (my_handle);

Special Notes:
The IR flag is cleared only when edge detection is used.
When the interrupt request destination is the DTC or DMAC, do not write 0 to the IR flag.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 41 of 60
Mar.15.25

4. Pin Setting
To use the IRQ FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document. Please
perform the pin setting after calling the R_IRQ_Open() function.

When performing the Pin Setting in the e2 studio, the Pin Setting feature of the Smart Configurator can be
used. When using the Pin Setting feature, a source file is generated according to the option selected in the
Pin Setting window in the Smart Configurator. Pins are configured by calling the function defined in the
source file.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 42 of 60
Mar.15.25

5. Demo Projects
Demo projects include function main() that utilizes the FIT module and its dependent modules (e.g. r_bsp).
This FIT module includes the following demo projects.

5.1 irq_demo_rskrx113, irq_demo_rskrx231, irq_demo_rskrx64m,
irq_demo_rskrx71m, irq_demo_rskrx65n, irq_demo_rskrx65n_2m,
irq_demo_rskrx72m, irq_demo_rskrx671, irq_demo_rskrx113_gcc,
irq_demo_rskrx231_gcc, irq_demo_rskrx64m_gcc, irq_demo_rskrx71m_gcc,
irq_demo_rskrx65n_gcc, irq_demo_rskrx65n_2m_gcc,
irq_demo_rskrx72m_gcc, irq_demo_rskrx671_gcc

These are the demo programs for the IRQ FIT module, designed for the Renesas RSKRX113, RSKRX231,
RSKRX64M, RSKRX71M, RSKRX65N, RSKRX65N-2MB, RSKRX72M and RSKRX671 demo boards. The
programs demonstrate how to use the R_IRQ_Open API call to configure a port bit as an interrupt input and
how to set up a callback function to handle the interrupt. They also demonstrate how to use the
R_IRQ_Control API call to reconfigure the interrupt trigger conditions, how to use the R_IRQ_ReadInput API
call and how to dereference the callback argument to obtain the interrupt number. IRQ2 (IRQ4 on the
RX231, IRQ9 on the RX65N, IRQ13 on the RX65N-2MB, IRQ12 on the RX72M, IRQ10 on the RSKRX671)
is chosen as the interrupt and is used to detect key presses on SW2.
All three demo programs operate the same, once the code is compiled and down-loaded to the target board
and running, SW2 can be pressed to cause IRQ2 (IRQ4 on the RX231, IRQ9 on the RX65N, IRQ13 on the
RX65N-2MB, IRQ12 on the RX72M, IRQ10 on the RSKRX671) interrupts to occur. LED3 will turn on in
response to a falling edge when SW2 is pressed and, will turn off in response to a rising edge when SW2 is
released.

5.2 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add
a demo
project to a workspace, select File >> Import >> General >> Existing Projects into Workspace, then click
“Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.3 Downloading Demo Projects
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
“Sample Code (download)” from the context menu in the Smart Browser >> Application Notes tab.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 43 of 60
Mar.15.25

6. Appendices
6.1 Confirmed Operation Environment
This section describes confirmed operation environment for the IRQ FIT module.

Table 6.1 Confirmed Operation Environment (Rev.4.71)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.4.71
Board used -

Table 6.2 Confirmed Operation Environment (Rev.4.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-10
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.4.70
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 44 of 60
Mar.15.25

Table 6.3 Confirmed Operation Environment (Rev.4.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-07
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202405
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.4.60
Board used Evaluation Kit for RX261 (product No.: RTK5EK2610S00011BJ)

Renesas Solution Starter Kit for RX23E-B (product No.:
RTK0ES1001C00001BJ)
Renesas Flexible Motor Control Kit for RX26T (Part Number:
RTK0EMXE70S00020BJ)
Renesas Starter Kit for RX113 (product No.: R0K505113CxxxBE)
Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit for RX64M (product No.: R0K50564MxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDCxxxxxBJ)
Renesas Starter Kit for RX71M (product No.: R0K50571MCxxxBE)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit for RX660 (product No: RTK556609HCxxxxxBJ)
Renesas Starter Kit for RX66T (product No: RTK50566T0SxxxxxBE)
Renesas Starter Kit+ for RX140 (product No.: RTK5RX140xxxxxxxxx)
Renesas Solution Starter Kit+ for RX23E-A (product No.:
RTK0ESXBxxxxxxxxxx)
Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)
RX13T CPU Card (product No.: RTK0EMXA10C00000BJ)
Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxx)
Renesas Starter Kit for RX72T (product No.: RTK5572Txxxxxxxxxx)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308CxxxxxBR)
Renesas Starter Kit for RX24T (product No.: RTK500524TSxxxxxBE)
Renesas Starter Kit for RX24U (product No.: RTK500524USxxxxxBE)
Renesas Starter Kit for RX23T (product No.: RTK500523TSxxxxxBE)
Renesas Starter Kit for RX111 (product No.: R0K505111SxxxBE)
Renesas Starter Kit for RX110 (product No.: R0K505110xxxxxx)
Target Board for RX66N (product No.: RTK5RX66N0C00000BJ)
Custom board (Target device: R5F52306ADFP)
Custom board (Target device: R5F5651EHxLC)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 45 of 60
Mar.15.25

Table 6.4 Confirmed Operation Environment (Rev.4.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-07
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202405
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.4.50
Board used Evaluation Kit for RX261 (product No.: RTK5EK2610S00011BJ)

Table 6.5 Confirmed Operation Environment (Rev.4.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.4.40
Board used Renesas Solution Starter Kit for RX23E-B (product No.:

RTK0ES1001C00001BJ)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 46 of 60
Mar.15.25

Table 6.6 Confirmed Operation Environment (Rev.4.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.4.30
Board used Renesas Flexible Motor Control Kit for RX26T (Part Number:

RTK0EMXE70S00020BJ)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 47 of 60
Mar.15.25

Table 6.7 Confirmed Operation Environment (Rev.4.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.4.20
Board used Renesas Starter Kit for RX113 (product No.: R0K505113CxxxBE)

Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit for RX64M (product No.: R0K50564MxxxxBE)
Renesas Starter Kit+ for RX65N (product No.: RTK5005651CxxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDCxxxxxBJ)
Renesas Starter Kit for RX71M (product No.: R0K50571MCxxxBE)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)

Table 6.8 Confirmed Operation Environment (Rev.4.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.4.10
Board used Renesas Starter Kit for RX660 (product No: RTK556609HCxxxxxBJ)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 48 of 60
Mar.15.25

Table 6.9 Confirmed Operation Environment (Rev.4.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.4.00
Board used Renesas Starter Kit for RX66T (product No: RTK50566T0SxxxxxBE)

Table 6.10 Confirmed Operation Environment (Rev.3.90)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.3.90
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 49 of 60
Mar.15.25

Table 6.11 Confirmed Operation Environment (Rev.3.80)
Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.3.80
Board used Renesas Starter Kit+ for RX140 (product No.: RTK5RX140xxxxxxxxx)

Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)
Renesas Starter Kit+ for RX65N (product No.: RTK50565NCxxxxxBE)
Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

Table 6.12 Confirmed Operation Environment (Rev.3.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/Little endian
Revision of the module Rev.3.70
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 50 of 60
Mar.15.25

Table 6.13 Confirmed Operation Environment (Rev.3.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

Endian Little endian
Revision of the module Rev.3.60
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX65N (product No.: RTK50565NCxxxxxBE)
Renesas Starter Kit+ for RX64M (product No.: RTK50564Mxxxxxxxx)
Renesas Starter Kit+ for RX71M (product No.: RTK50571Mxxxxxxxx)
Renesas Starter Kit+ for RX113 (product No.: RTK505113xxxxxxxx)
Renesas Starter Kit+ for RX231 (product No.: RTK505231xxxxxxxx)

Table 6.14 Confirmed Operation Environment (Rev.3.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.50
Board used Renesas Solution Starter Kit+ for RX23E-A

(product No.: RTK0ESXBxxxxxxxxxx)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 51 of 60
Mar.15.25

Table 6.15 Confirmed Operation Environment (Rev.3.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.40
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx).

Table 6.16 Confirmed Operation Environment (Rev.3.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.30
Board used RX13T CPU Card (product No.: RTK0EMXA10C00000BJ)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 52 of 60
Mar.15.25

Table 6.17 Confirmed Operation Environment (Rev.3.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.20
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 6.18 Confirmed Operation Environment (Rev.3.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.10
Board used Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxx)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 53 of 60
Mar.15.25

Table 6.19 Confirmed Operation Environment (Rev.3.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.00
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565Nxxxxxxxxx)

Table 6.20 Confirmed Operation Environment (Rev.2.40)

Item Contents
Integrated development
environment Renesas Electronics e2 studio version 7.3.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.40
Board used Renesas Starter Kit for RX72T (product No.: RTK5572Txxxxxxxxxx)

Table 6.21 Confirmed Operation Environment (Rev.2.31)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.3.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.31

Board used
Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE)
Renesas Starter Kit+ for RX 65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308CxxxxxBR)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 54 of 60
Mar.15.25

Table 6.22 Confirmed Operation Environment (Rev.2.30)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.30

Board used
Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE)
Renesas Starter Kit+ for RX 65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308CxxxxxBR)

Table 6.23 Confirmed Operation Environment (Rev.2.21)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 6.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.21

Board used Renesas Starter Kit+ for RX 65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308CxxxxxBR)

Table 6.24 Confirmed Operation Environment (Rev.2.20)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 6.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.20

Board used Renesas Starter Kit+ for RX 65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308CxxxxxBR)

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 55 of 60
Mar.15.25

6.2 Troubleshooting

 (1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_irq_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_irq_rx_config.h” may be wrong. Check the file “r_irq_rx_config.h”. If there is a
wrong setting, set the correct value for that. Refer to 2.8, Configuration Overview for details.

(4) Q: Interrupt does not occur.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 4. Pin Setting for details.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 56 of 60
Mar.15.25

7. Reference Documents
User’s Manual: Hardware
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family Compiler CC-RX User’s Manual (R20UT3248)
The latest versions can be downloaded from the Renesas Electronics website.

Related Technical Updates
This module reflects the content of the following technical updates.
 None

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 57 of 60
Mar.15.25

Revision History

Rev.

Date

Description
Page Summary

1.00 Nov 15, 2013 -- First edition issued
1.20 April 10, 2014 1 Added RX110 to list of tested MCUs
 4 Added sections 1.2, 1.3 callback functions usage
 Updated Colophon to 4.0
1.30 July 23, 2014 Various Added mention of RX64M in supported MCUs, added code

size information, updated format.
1.40 Jan 08,2015 Various Updated to current template.
 — Added support for the RX113 Group.
1.50 Mar 24,2015 — Added support for the RX71M Group.
1.60 June 30,2015 — Added support for the RX231 Group.
1.70 Sep 30,2015 — Added support for the RX23T Group.
 — Fixed typo in the Return value:

IRQ_ERR_NOT_OPEN -> IRQ_ERR_NOT_OPENED
 7 Updated code sizes in 2.8 Code Size for the RX23T Group.
1.80 Oct 1, 2015 — Added support for the RX130 Group.
 7 Updated code sizes in 2.8 Code Size for the RX130 Group.
1.90 Dec 1, 2015 — Added support for the RX230 and the RX24T Groups.
 1, 9 Changed the document number for the “Board Support

Package Firmware Integration Technology Module” application
note.

 5 Changed the description in section 2.
 7 Updated 2.8 Code Size for the RX230 and the RX24T Groups.
 17 Added “4. Demo Projects”.
1.91 June 15, 2016 17 Added RSKRX64M to “4. Demo Projects”.
 18 Added “Related Technical Updates”.
2.00 Oct 1, 2016 — Added support for the RX65N Group.
 7, 8 Changed 2.8 Code Size for the tabular format of Code Size.

Updated 2.8 Code Size for the RX65N Group.
 18 Added “4. Pin Setting”.
2.10 Feb 28, 2017 ― Added support for the RX24U Group.
 7 Updated 2.8 Code Size for the RX24U Group.
2.20 July 21, 2017 ― Added support for the RX130-512KB and RX65N-2MB.
 5 Added RXC v2.07.00 to “2.4 Supported Toolchains”.
 6 Added “2.5 Interrupt Vector”
 11 Added “2.12 Adding the FIT Module to Your Project”.
 19 Added “4. Pin Setting”.
2.21 Oct 31, 2017 20 Added RSKRX65N, RSKRX65N-2MB to “5. Demo Projects”
 20 Added 5.3 Downloading Demo Project
 21 Added 6. Appendices

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 58 of 60
Mar.15.25

Rev.

Date

Description
Page Summary

2.30 Sep 28, 2018 ― Changed the structure of macros in r_irq_rx_config.h,
r_irq_rx_private.h

 1, 7 Added support for the RX66T.
 4 Added instruction on how to comment/uncomment macros

when Smart Configurator or FIT Configurator is used.
 8 In “Configuration options in r_irq_rx_config.h” table,

removed IRQ_CFG_USE_IRQn 0,
changed IRQ_PORT_IRQn to IRQ_PORT_IRQn_PORT
changed IRQ_PORT_BIT_IRQn to IRQ_PORT_IRQn_BIT

 10 Added code size corresponding to RX66T
 26 6.1 Confirmed Operation Environment:

Added table for Rev.2.30
2.31 Nov 16, 2018 ― Added document number in XML
 26 Changed Renesas Starter Kit Product No for RX66T.

Added table for Rev.2.31
2.40 Feb 01, 2019 Program Added support for the RX72T
 1, 7, 11 Added support for the RX72T
 16-23 Removed ‘Reentrant’ description in each API function.
 26 6.1 Confirmed Operation Environment:

Added table for Rev.2.40
3.00 May.20.19 — Supported the following compilers:

- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX

 1 Deleted the RX210, and RX63N in Target Devices for end of
update these devices.

 Added the section of Target compilers.

6
Deleted related documents.
2.2 Software Requirements
Requires r_bsp v5.20 or higher

 9-14 Updated the section of 2.8 Code Size
 7

32
2.4 Interrupt Vector: Deleted RX210, RX63N
Table 6.1 Confirmed Operation Environment:
Added table for Rev.3.00

 36 Deleted the section of Website and Support.
 Program Changed bellow for support GCC and IAR compiler:

1. Deleted the inline expansion of the R_IRQ_GetVersion
function.
2. Replaced nop with the intrinsic functions of BSP.
3. Replaced the declaration of interrupt functions with the
macro definition of BSP.

3.10 Jun.28.19 1, 7 Added support for RX23W
 10 Added code size corresponding to RX23W
 32 6.1 Confirmed Operation Environment:

Added Table for Rev.3.10
 Program Added support for RX23W
3.20 Aug.15.19 1, 7 Added support for RX72M
 11, 14, 17 Added code size corresponding to RX72M
 32 6.1 Confirmed Operation Environment:

Added Table for Rev.3.20
Table 6.2: Corrected board name for RX23W

 Program Added support for RX72M

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 59 of 60
Mar.15.25

Rev.

Date

Description
Page Summary

3.30 Nov.25.2019 1, 7 Added support for RX13T
 6 2.3 Limitations

Added limitations
 12, 13, 16 Added code size corresponding to RX13T
 33 6.1 Confirmed Operation Environment:

Added Table for Rev.3.30
 Program Added support for RX13T

Changed the comment of API functions to the doxygen style.
3.40 Dec.30.2019 1, 7 Added support for RX66N and RX72N
 12, 14, 16,

18, 20
Added code size corresponding to RX66N and RX72N

 35 6.1 Confirmed Operation Environment:
Added Table for Rev.3.40

 Program Added support for RX66N and RX72N
3.50 Mar.31.2020 1, 8 Added support for RX23E-A
 13, 14, 18,

22
Added code size corresponding to RX23E-A

 37 6.1 Confirmed Operation Environment:
Added Table for Rev.3.50

 Program Added support for RX23E-A
3.60 Jun.30.20 36 Updated and added new demo project

Added RSKRX72M to “5. Demo Projects”.
 37 6.1 Confirmed Operation Environment:

Added Table for Rev.3.60
 Program Updated and added new demo project
3.70 Mar.31.21 1, 8 Added support for RX671.
 6 Added 1.3.1 Using FIT IRQ module in C++ project.
 14, 18, 22 Added code size corresponding to RX671.
 37 6.1 Confirmed Operation Environment:

Added Table for Rev. 3.70.
 Program Added support for RX671
3.80 Apr.15.21 1, 8 Added support for RX140.
 14, 19, 24 Added code size corresponding to RX140.
 6, 37 Added R_IRQ_IRClear() function to clear IR flag.
 40 6.1 Confirmed Operation Environment:

Added Table for Rev. 3.80.
 Program Added support for RX140.

Added CS+ support for demo project.
Added R_IRQ_IRClear() function to clear IR flag.

3.90 Sep.13.21 39 Added RSKRX671 to “5. Demo Projects”.
 40 6.1 Confirmed Operation Environment:

Added Table for Rev. 3.90.
 Program Updated and added new demo projects
4.00 Mar.14.22 40

6.1 Confirmed Operation Environment:
Added Table for Rev. 4.00.

 Program Added support for RX66T-48Pin.
4.10 Mar.31.22 1, 8

15, 20, 25
41

Added support for RX660
Added code size corresponding to RX660.
6.1 Confirmed Operation Environment:
Added Table for Rev. 4.10.

 Program Added support for RX660.

RX Family IRQ Module Using Firmware Integration Technology

R01AN1668EJ0471 Rev.4.71 Page 60 of 60
Mar.15.25

Rev.

Date

Description
Page Summary

4.20 Jun.28.22 41 6.1 Confirmed Operation Environment:
Added Table for Rev. 4.20.

 Program Updated demo projects
4.30 Aug.15.22 1, 8 Added support for RX26T.
 15, 20, 25 Added code size corresponding to RX26T.
 41 6.1 Confirmed Operation Environment:

Added Table for Rev. 4.30.
 Program Added support for RX26T.
4.40 May.29.23 1, 8 Added support for RX23E-B.
 16, 22, 28

5, 31, 42
Added code size corresponding to RX23E-B.
Deleted the description of FIT configurator from "1.3 Using the
FIT IRQ Module", "2.13 Adding the FIT Module to Your Project"
and "4. Pin Settings".

 44 6.1 Confirmed Operation Environment:
Added Table for Rev. 4.40.

 Program Added support for RX23E-B.
Deleted the description of FIT configurator.

4.50 Jun.28.24 1, 8 Added support for RX261, RX260.
 16, 22, 28 Added code size corresponding to RX261, RX260.
 44 6.1 Confirmed Operation Environment:

Added Table for Rev. 4.50.
 Program Added support for RX261, RX260.

Updated constraint in MDF file to disable configuration of
unsupported channels for RX260, RX261.
Updated .ftl file to set register value using BYTE format.

4.60 Nov.01.24 44 6.1 Confirmed Operation Environment:
Added Table for Rev. 4.60.

 Program Updated constraint in MDF file to disable configuration of
unsupported channels for all devices.

4.70 Dec.31.24 9 Added new macros IRQ_CFG_NESTED_INT_EN_IRQn to
support nested interrupt.

 10-12, 16-
27

2.9 Code Size, amended.

 44 6.1 Confirmed Operation Environment:
Added Table for Rev. 4.70.

 Program Added support nested interrupt.
4.71 Mar.15.25 43 6.1 Confirmed Operation Environment:

Added Table for Rev. 4.71.
 Program Updated FIT Disclaimer and Copyright.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

 © 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)
Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 IRQ FIT Module
	1.2 Overview of the IRQ FIT Module
	1.3 Using the FIT IRQ module
	1.3.1 Using FIT IRQ module in C++ project

	1.4 API Overview
	1.5 Limitations

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Limitations
	2.3.1 RAM Location Limitations

	2.4 Supported Toolchain
	2.5 Interrupt Vector
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Code Size
	2.10 Parameters
	2.10.1 Special Data Types

	2.11 Return Values
	2.12 Callback Function
	2.13 Adding the FIT Module to Your Project
	2.14 “for”, “while” and “do while” statements

	3. API Functions
	R_IRQ_Open()
	R_IRQ_Control()
	R_IRQ_Close()
	R_IRQ_ReadInput()
	R_IRQ_InterruptEnable()
	R_IRQ_GetVersion()
	R_IRQ_IRClear()

	4. Pin Setting
	5. Demo Projects
	5.1 irq_demo_rskrx113, irq_demo_rskrx231, irq_demo_rskrx64m, irq_demo_rskrx71m, irq_demo_rskrx65n, irq_demo_rskrx65n_2m, irq_demo_rskrx72m, irq_demo_rskrx671, irq_demo_rskrx113_gcc, irq_demo_rskrx231_gcc, irq_demo_rskrx64m_gcc, irq_demo_rskrx71m_gcc, irq_demo_rskrx65n_gcc, irq_demo_rskrx65n_2m_gcc, irq_demo_rskrx72m_gcc, irq_demo_rskrx671_gcc
	5.2 Adding a Demo to a Workspace
	5.3 Downloading Demo Projects

	6. Appendices
	6.1 Confirmed Operation Environment
	6.2 Troubleshooting

	7. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

