RENESAS Application Note
RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI
Asynchronous Mode

Introduction

This application note describes methods of starting transmission immediately after writing transmit data in
asynchronous mode of the serial communication interface (SCI).

Target Devices
RX Family
Target Tools
° Smart Configurator V2.19.0 or earlier

° e2 studio Version 2023-10 or earlier

Please use the Smart Configurator implemented in e2 studio 2024-01 and Smart Configurator V2.20.0 or
later version because equivalent functions have been implemented in Smart Configurator.

Confirmed Devices
RX660 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

RO1AN6595EJ0101 Rev.1.01 Page 1 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

Contents

Y = 1 A T L= T T € = T O 4
1.1 OVerview Of the WAL TIME ...oooiiiiiieiieii ettt s e e st e e s st e e e s bt e e e e e nbee e e e nnbaeeeenneeas 4
1.2 Instant TranSMISSION FUNCLONciiiiiiiiiiiiiiie ittt ettt st e e s st e e e e bt e e s enbe e e e e nnbaeeeenneeas 4
1.3 Overview of the Code Generation Function of Smart Configuratorccccccevviiiiiiieee e 4
2. Operation Confirmation CONUITIONSuuuuuuuuuuiiititeieiieeaaaeaee e eaeeaeeeaeaeennes 5
3. DeSCriPtioN Of SOMWAIE.......uuuiiiiiiiiiiiiiii bbb sessnennennes 6
3.1 Control Example by Using the Transmit Data Empty INtEITUPLcoccveiiiiiiiieiiiiie e 6
I 001 R O AV V1= SRR SR 6
3.1.2 Code Generation Procedure EXamPIEuuuuuuuimiiimiii s 8
3.1.3 MOdIfyiNg the PrOQramuuiiiiiiiii s 11
R o] o S O b] = 14 A PO PO TP PP PP PUPPPO 11
R_CONTIG_SCIL2_SErIAl_SENA ().rrteeiiurreeeiitiiee ittt e et e e e st e e e ae b et e e e anbe e e e e anbr e e e s anbneeeeanens 12
r_Config_SCI12_tranSmit__INTEITUDE ()eeeiirreeeiitiee ettt ettt e e s st e e e e st e e e s snbn e e e ennens 13
r_Config_SCI12_transSmitend_INTEITUPT () ...eeeereeeeeieieieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessesesesesesaessssssssssssssssssssssnsnnsnsnnnes 14
00 I S = 0 0] 0] L= 0T = 1 15
3.1.5 Operation After MOGIfICAION..........uuuuiiiiiiiii s 16
3.2 Control Example USING the DIMACooiiiiiiiiiiiee ettt ettt e et e et e e e abn e e e s anbeeeeeaae 18
0 A © 1Y = o - RS PPRR 18
3.2.2 Code Generation Procedure EXAmMPIEoooiiiiiiiiiii e 19
3.2.3 MOdIfYiNG the PrOQraIMuieiiiiiiiii s 22
L o a1 To TS T 2] = U) PRSPPIt 22
R o] a1 To TS T 2 S 1T = LIRS =T Lo I P PPPPPPPPNt 23
R_CONTIG_DMACO_CFEALE () .eeeiureeeeiittieeeiaitite e ettt e e e sttt e ettt e e e sttt e e e atb et e e e asbe e e e e aabe e e e e asbe e e e e aabb e e e s anbbeeeeanbbeeeeanrnas 24
RSV (=10 01T T P PR PP PUPPR 26
K - 00 o L= o (oo | =T o O PP P PP UPPPRPPPPPRN 28
3.2.5 Operation of the SAMPIE Program.............. e e 31
3.3 Control Example USING the DTCuuuiiiiiiiiiiiii s 32
R I A O 1V =T o= TP PP OPPPPPPRT 32
3.3.2 Code Generation Procedure EXAMPIEooooiiiiiiiiiii et 33
I 0 N ¥ o To 11471 e Lo R (g oI o To | = U ISP PUPRPPTPRRN 36
R o]) o TS O b S] = 14 A RO RP TP 36
R_CoNfig_SCIL2_SEIIAI_SENA () ...uuueteeeteaeiiiiitiit ettt e e ettt e e e e e st bt e e e e e e e e e aanbebeeaeaeesaaannbbseeeaaaeaaannnes 37
R_CONIJ_DTEC_CIEALE () -vveeeeeeetiiutttiiiiae e e e e ettt e ee e e s e ettt ettt e e e e e s s aaabe e et e aeaeaaabebeeeeeaeaeaannbeseeaaaeesaannbsseeaaeaesannnne 38
RS A1 (= 0 01T VL I TP UOPPUPPPPT 40
e IR = a0 o] L= o (oo | =T o OO PRPUTPPRRN 42
3.3.5 Operation of the SAMPIE PrOGIaM.......ccoi ittt e et e e e sbee e e s sbeeeeeane 45
4. Disabling Automatic Code Regeneration at Build Time ..o 46
RO1AN6595EJ0101 Rev.1.01 Page 2 of 50

Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

T 1 41 oo 1] To = W d (0] [A PSR 47
5.1 Importing & Project iNt0 €2 STUIOeiiiiiieiiiieiie ettt ettt sttt et e bt ssbe e s be e e sbee e snbeeesaneeaas 47
5.2 Importing @ ProjECE INTO CS+ ..ottt e et e et e e e st e e e e sbb e e e e abb e e e e abreeeeaae 48
T = (=TT g Lot B o o U o (=T o] £ 49
YAV ES o] T 1151 (o] Y2 PP 50
RO1AN6595EJ0101 Rev.1.01 Page 3 of 50

Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

1. Wait Time in the SCI

1.1 Overview of the Wait Time
In asynchronous mode, data transmission starts when transmit data is written to the TDR register after the
SCR.TE hitis set to 1.

However, after the SCR.TE bit is set to 1, an internal wait time that is equal to the time required to transmit
one frame of data is generated before data transmission starts, and this internal wait time occurs each time
the SCR.TE bit is set to 1.

Mode X Asynchronous mode
i
SCR.TE hit
— 1 Waittime N Data transmission KK - I— Wait time
_ < > \ > _ < >
. Hi-Z | \ Hi-Z
TXD pin 0 / DO Xj)) b7 y 1 Waittime also |
/ generated in the
Set the pin Write the ziﬁgg‘g d?: d
function transmit data transmissigns

Figure 1.1 Internal Wait Time in Data Transmission

1.2 Instant Transmission Function

In some products that support the SEMR.ITE bit, the SCI can be used without generating internal wait times
by controlling this bit.

1.3 Overview of the Code Generation Function of Smart Configurator

The SCI components generated by the code generation function support processing equivalent to the
flowchart example for serial transmission in asynchronous mode described in the user's manual.

In the serial transmission flowchart example, the transmission process is controlled by the TE bit, so an
internal wait time occurs when the SCI components are used.

In this application note, the SCI components generated by the code generation function are used for a
sample program, so the processing has been modified not to generate internal wait times. Sections 3 and 4
describe modification procedures.

RO1AN6595EJ0101 Rev.1.01 Page 4 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

2. Operation Confirmation Conditions

Table 2.1 Operation Confirmation Conditions

Iltem Description
MCU used R5F56609HDFB (RX660N Group)
Operating frequency e Main clock: 24 MHz

e PLL: 240 MHz (Main clock, divided by 1, multiplied by 10)
e System clock (ICLK): 120 MHz (PLL divided by 2)
e Peripheral module clock B (PCLKB): 60 MHz (PLL divided by 4)

Operating voltage 3.3V

Integrated development Renesas Electronics
environment e? studio Version 2023-01 (23.1.0)
C compiler Renesas Electronics

C/C++ Compiler Package for RX Family V.3.05.00

Compile options

-lang = c99
iodefine.h version Version 1.00
Endian order Little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample program version Version 1.00
Board used Renesas Starter Kit for RX660 (Product No.: RTK556609XXXXXXXXX)
RO1AN6595EJ0101 Rev.1.01 Page 5 of 50

Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3. Description of Software

This section describes how to start transmission immediately after writing transmit data. This sample
program uses SCI components (SClIh module (SCI12)) that do not have an instant transmission function.

3.1 Control Example by Using the Transmit Data Empty Interrupt

3.1.1 Overview

An internal wait time is generated when the TE bit changes from O to 1 for the reason described in section
1.1. The modified method described in this section controls interrupts by using a 0-to-1 state change of the
IEN bit as the trigger while maintaining the state of TE = 1, and writes transmit data within the interrupt
process so that no internal wait time is generated in the second and subsequent transmissions.

Figure 3.1 is a timing chart before modification, and Figure 3.2 is a timing chart after modification.

RO1AN6595EJ0101 Rev.1.01 Page 6 of 50
Mar.21.24 RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

Mode X Asynchronous mode
I I
SCR.TE I I
| | | |
| | | |
SCR.TIE : | | : _
| | | |
| | | |
R | [T []]
IEN Wait I o I Wait	.	
L time J Data tr:ansmlssmn - L time J Data tr:ansmlssmn %		
TXD pin S \DataO X Datal X Data2 / I \ Data0 X Datal X Data2 /		
Write transmit Write transmit Write transmit Write transmit ~ Write transmit Write transmit		
data (Data0) data (Datal) data (Data2) data (Data0) data (Datal) data (Data2)		
Figure 3.1 Timing Chart Before Modification		
Mode X Asynchronous mode		
I		
SCR.TE I		
T		
SCR.TIE I		
I		
IR	1	
IEN 4,J Wait | |
L time J _Data transmission Data transmission
TXD pin —/ \'DataO x L‘;atal X Data2 / Dat'aO)(D;'ital X Data2 /
Write transmit ~ Write transmit ~ Write transmit Write transmit ~ Write transmit Write transmit
data (Data0) data (Datal) data (Data2) data (Data0) data (Datal) data (Data2)
Figure 3.2 Timing Chart After Modification
RO1AN6595EJ0101 Rev.1.01 Page 7 of 50

Mar.21.24

RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.1.2 Code Generation Procedure Example
This section describes a code generation procedure example in Smart Configurator.

1. Open the [Components] tab and click on the [Add component] icon.

] O X
¢ *interrupt_sample_for_sci.scfg > = 8
i % &
Software component configuration Generate Code Generate Report
Components x5 1. = [+ :%:(» Configure (A
&
type filter text A |Add component
v (= Startup
Vv = Generic
& rbsp
v
< >
Overview | Board | Clocks | System| Components |Pins | Interrupts
I—I

2. In the [Software Component Selection] window, select [SCI (SCIF) Asynchronous Mode], and then click
on [Next].

® e O
Software Component Selection |
Select component from those available in list
| Category All v
Function |All i
|
| Filter ‘
Components - Short Name Type Version A
Remote Control Signal Receiver Code Generator 120
3 RSCI Driver T_rsci_rx Firmware Integra... 2.10
£ RSPI Driver r_rspi_rx Firmware Integra... 3.04
£ 51 Driver I scirx Firmware Integra... 4.40
5 SCI/SCIF Asynchronous Mode Code Generator 1.12.0 I
5 sCI/SCIF Clock Synchronous Mode Code Generator 1.12.0
3 5D Mode SD Memory Card Driver r_sdc_sdmem_rx Firmware Integra... 3.00 v
e e e Ceiivi o nn

Show only latest version
Hide items that have duplicated functionality

Description

This software component provides configurations for SCI(SC|F, RSCI) single(multi-processor)
asynchronous mode.

Download the latest FIT drivers and middleware

Configure general settings...

)

RO1AN6595EJ0101 Rev.1.01

Page 8 of 50
Mar.21.24 RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3. Specify an appropriate configuration name, work mode, and resource, and then click on [Finish].

In this sample, the configuration name is "Config_SCI12", the work mode is "Transmission”, and the
resource is "SCI12".

®
| Add new configuration for selected component

i
| SCI/SCIF Asynchronous Mode
Configuration name: | |Config_SCI12
| Work mode: Transmission ~
Resource: scl12 >
| @ <Back Nect > Concel

RO1AN6595EJ0101 Rev.1.01 Page 9 of 50
Mar.21.24 RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

4. Configure software component settings for SCI12, and then click on the [Generate Code] icon.
The required settings for this sample are listed below.

Transmit data handling: Data handled by the interrupt service routine
Callback function setting: "Transmission end" selected

9% *interrupt_sample_for_sciscfg X

=0

%l

. O (=]

Software component configuration Generate Code [Generate Report

Compone... gx3 1.3 —| + I Configure)

L Data length setting
pe filter text O 9bits (®) 8 bits O7 bits
v & Startup Parity setting
.8 Generic @® None Okven Oodd
@ rbsp
v (& Drivers Stop bit length setting
v (& Communications (® 1 bit O 2 bits
@ Config SCl12

Transfer direction setting
(®) LSB-first O MsB-first
Data inversion setting
(®) Normal () Inverted
Transfer rate setting
Transfer clock Internal clock ~
Base clock 16 cycles for 1-bit period B
Bit rate 9600 (bps) {Actual fralue: 9615.385, Error: 0.16

[] Enable modulation duty correction

SCK12 pin function

Hardware flow control setting

(®) None

SCK12 is not used

QO crsi2#

Data handling setting

Transmit data handling

Data handled in interrupt service routine

Interrupt setting

TXI12 priority

TEN2 priority (Group BLO)

Level 15 (highest)
Level 15 (highest)

Callback function setting

[Transmission end

<

Overview Board | Clocks System Components Pins Interrupts

5. A message box for code generation appears. Click on [Proceed].

a Code Generating

Proceed with save and generate?

["] Always save and generate without asking?

Configuration must be saved before generating code.

Proceed |

Cancel

RO1AN6595EJ0101 Rev.1.01

RENESAS

Page 10 of 50

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.1.3 Modifying the Program
Table 3.1 lists the functions to be modified.

Table 3.1 Functions to Be Modified

Function Name
R_Config_SCI12_Start
R_Config_SCI12_Serial_Send
r_Config_SCI12_transmit_interrupt
r_Config_SCI12_transmitend_interrupt

R_Config_SCI12_Start ()

Before modification:

void R _Config SCI12 Start(void)
{
/* Clear interrupt flag */
IR(SCI12, TXI1l2) = 0U;

/* Enable SCI interrupt */ .
[fEn(scTi2, TxT12) = 1U;}e— To be deleted because IEN is set to 1 at the start of

TCU.GENBLO.BIT.EN1G6 = 1U; transmission by the R_Config_SCI12_Serial_Send function

After modification:

void R _Config SCI12 Start(void)

{
/* Clear interrupt flag */

IR(SCI12, TXI12) = 0QU; .

To prevent a 0-to-1 TE state change from working as a
/* Enable SCI interrupt */ trigger, set TE = 1 by this function to inhibit control by the

ICU.GENBLO.BIT.EN16 = 1U; R_Config_SCI12_Serial_Send function.

SCI12.SCR.BYTE |= OxAOU; Although TE =1 sets IR of TXI12 to 1, no interrupt is
generated to the CPU because IEN = 0. The interrupt is

/* Set TXD12 pin */ held pending.

PORTA.PMR.BYTE [= 0x10U; Also, set the TXD12 pin when setting TE = 1.

}
RO1AN6595EJ0101 Rev.1.01 Page 11 of 50

Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

iConfig=SCI12=SeriaI=Send 0

Before modification:

MD STATUS R Config SCI12 Serial Send(uint8 t * const tx buf, uintl6 t tx num)
{
MD STATUS status = MD OK;

if (1U > tx num)
{

status = MD ARGERROR;
}

else if (0U == IEN(SCI12, TXI12))
{ To be deleted because the
status = MD_ERROR; R_Config_SCI12_Start function does not set IEN
}
else

{
gp_scil2 tx address = tx buf;

g scil2 tx count = tx num;

IEN(SCI12, TXIlz) = QU; To be deleted because this function is executed when
SCI12.SCR.BYTE |= 0xAOQU; IEN is O

/* Set TXD12 pin */ To be deleted because SCI12.SCR.BYTE and the
PORTA.PMR.BYTE |= 0x10U; L);Ez)t?snpln are set by the R_Config_SCI12_Start

IEN (SCI12, TXI12) = 1U;

return (status);

After modification:

MD STATUS R Config SCI12 Serial Send(uint8 t * const tx buf, uintl6 t tx num)
{
MD STATUS status = MD OK;

if (1U > tx num)

{
status = MD_ ARGERROR;

}

else

{
gp_scil2 tx address = tx buf;
g_scil2 tx count = tx num;

IEN (SCI12, TXI12) = 1U; <«— SettingIEN =1 enal_)Ies the TXI12 interrupt that
) has been held pending.

return (status);

RO1AN6595EJ0101 Rev.1.01 Page 12 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

r_Config_SCI12_transmit_interrupt ()

Before modification:

{

1

gp_scil2 tx address++;
g _scil2 tx count--;

}

static void r Config SCI12 transmit interrupt (void)

Interrupts are to be controlled by changing this

if (0U < g_scil2_tx_count)le—— to"if (1U < g_scil2_tx_count)" to change IEN

from 0 to 1 after transmitting the last data

SCI12.TDR = *gp scil2 tx address; because IEN mustchange from 1 to O after

finishing transmission.

IEN is to change from 1 to O with "else if(1U ==

else
{
SCI12.SCR.BIT.TIE = 0U;
SCI12.SCR.BIT.TEIE = 1U;

/ g_scil2_tx_count)" after writing the last data.

The conditional expressions must be changed
because interrupts must be disabled after
transmitting the last data. "else" is unnecessary
because the processing after transmitting the

last data changes.

After modification:

{

static void r Config SCI12 transmit interrupt (void)

Except for the last data, the same

|if (1U < g scil2 tx count)«
{

gp_scil2 tx address++;
g _scil2 tx count--;

}

processing as before the change is

SCI12.TDR = *gp scil2 tx address; performed.

{

gp_scil2 tx address--;
IEN(SCI12, TXI1l2) = 0U;
SCI12.SCR.BIT.TEIE = 1U;

else if (1U == g scil2 tx count)

SCI12.TDR = *gp scil2 tx address;

nop(); /* Actions not normally performed */

Interrupts are disabled after
transmitting the last data.

) Although this processing is

usually not performed, it is
added as exception
handling.

RO1AN6595EJ0101 Rev.1.01
Mar.21.24

Re Page 13 of 50
RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

r_ Config=SCI12=transmitend=interrupt 0

Before modification:

{

/* Set TXD12 pin */

void r Config SCI12 transmitend interrupt (void)

«—— To be deleted to maintain the transmission

setting (TE=1)

PORTA.PMR.BYTE &= OxEFU;
SCI12.SCR.BIT.TIE = 0U;
SCI12.SCR.BIT.TE = 0U;

SCI12.SCR.BIT.TEIE = 0U;

r Config SCI12 callback transmitend();

After modification:

{

SCIl2.

SCR.BIT.TEIE = 0U;

void r Config SCI12 transmitend interrupt (void)

r Config SCI12 callback transmitend();

RO1AN6595EJ0101 Rev.1.01

Mar.21.24

RENESAS

Page 14 of 50

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.1.4 Sample Program
The following shows how the sample program works.

[Main function]

(1) Call the R_Config_SCI12_Start function to configure transmission.

(2) Set g_flag = 0.

(3) Call the R_Config_SCIl12_Serial_Send function to transmit 3-byte data {Ox11, 0x22, 0x33}.

(4) Wait until transmission is completed. (Wait until g_flag = 1 is set by the transmission end interrupt.)

(5) Insert 300-pus wait time.

(6) Repeat steps (2) to (5) twice.

(7) After transmission is completed, call the R_Config_SCI12_Stop function to disable the transmission setting.

Note: Since the R_Config_SCI12_Create function is called in the R_Systeminit function before reaching the
main function, it does not need to be called in the main function.

/***

Global variables
*********~k~k~k~k~k******************************/

volatile uint8 t g flag;

/***

Private (static) wvariables and functions
*********~k~k~k~k~k******************************/

uint8 t g datal[] = {0x11, 0x22, 0x33};
void main (void) ;

/~k************************

* Function Name: main

* Description ¢ This function uses the modified program to send data without a wait time.
* Arguments : None
* Return Value : None

***/
void main (void)
{

uint8 t i = 0;

uint8 t send count = 2;

R Config SCI12 Start();

for (1 = 0; i < send count; i++)
{
g flag = 0;
R Config SCI12 Serial Send(g data, 3);

while (0 == g flag)
{
nop () ;
}
RiBSPisoftwareDelay((uint327t)300, BSP DELAY MICROSECS) ;
}

R Config SCI12 Stop();

while (1)
{
nop () ;
}
}
Figure 3.3 "main" Function of the Sample Program
RO1AN6595EJ0101 Rev.1.01 Page 15 of 50

Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

[SCI12 transmission end callback function]

(1) Set the transmission end flag (g_flag = 1).

static void r_Config_SCI12_callback_transmitend(void)
{

/* Start user code for r_Config SCI12_callback_transmitend. Do not edit comment
generated here */

g flag = 1;

/* End user code. Do not edit comment generated here */

Figure 3.4 "r_Config_SCI12_callback_transmitend" Function in the Sample Program

3.1.5 Operation After Modification

Figure 3.5 and Figure 3.6 show the operation waveforms before and after modification when 3-byte data
{Ox11, 0x22, 0x33} is transmitted.

Operation before modification

OO0V, 2 500/ 5.00%/ 5.00v/ 1.000%/

IEN bit

Inverted when
the TDR register
is written to

Figure 3.5 Waveform Before Modification

Before the modification, it can be confirmed that an internal wait time occurs when TE changes from 0 to 1.

RO1AN6595EJ0101 Rev.1.01 Page 16 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

Operation after modification:

5.00/ 5.00W/ 0.0s 2 1.50V

TKEYSIGH'[

TE bit g LChannals
0c |
0c

IEN bit
Inverted when

the TDR register
is written to

pe Eng I P
Figure 3.6 Waveform After Modification

It can be confirmed that during the first transmission, an internal wait time occurs when TE changes from 0 to
1, but during the second transmission, the TE bit is not controlled, so the transmission starts without
generating an internal wait time. For the first transmission, no internal wait time occurs either if the
R_Config_SCI12_Serial_Send function is executed at least one frame after the R_Config_SCI12_Start
function is called.

RO1AN6595EJ0101 Rev.1.01 Page 17 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.2 Control Example Using the DMAC

3.2.1 Overview

As in section 3.1, Control Example by Using the Transmit Data Empty Interrupt, this section describes the
case where the TE = 1 state is maintained and transmit data is written by DMAC transfer.

Figure 3.7 is a timing chart after modification (writing transmit data by DMAC transfer).

(Timings before modification are equivalent to those in Figure 3.1 except for DMAC operation.)

Mode X Asynchronous mode

SCR.TE |
IR of TXI12 !_ !_ _I J j

IEN of TXI12

|
DMCNT.DTE

Clear IEN by DMAC transfer
end interrupt |

-
| |
/ 1

|
IR of DMACOI '
I Wait
| time Data transm|33|on Data tran smission
[=: >
TXD pin V \DataO X Datal X Data2 / DataO X Datal X Data2 /
Write transmit Write transmit Write transmit Write transmit Write transmit Write transmit
data (Data0) by data (Datal) by data (Data2) by data (Data0) by data (Datal) by data (Data2) by
DMAC transfer DMAC transfer DMAC transfer DMAC transfer DMAC transfer DMAC transfer

Figure 3.7 Timing Chart After Modification (Writing Transmit Data by DMAC Transfer)

RO1AN6595EJ0101 Rev.1.01 Page 18 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.2.2 Code Generation Procedure Example

Code generation is performed using Smart Configurator in the same way as in the code generation
procedure example in section 3.1, Control Example by Using the Transmit Data Empty Interrupt.

1. Perform the same procedure as steps 1 through 3 in section 3.1.2, Code Generation Procedure Example.

2. Configure software component settings for SCI112, and then click on the [Generate Code] icon.
The required settings for this sample are listed below.

Transmit data handling: Data handled by DMAC
TXI12 priority: Level O (disabled)
Callback function setting: "Transmission end" selected

@ Config DMACO
v i Communications
@ Config SCI12

<

o dmac_sample_for_sciscfg >
P ’
= L 4
Components e l% 5+ 32 v Configure
- . Data length setting
ter text ") 9 bits (@ 8 bits
v & Startup Parity setting
v &> Generic ® None O tven
@ rbsp
v (& Drivers Stop bit length setting
v (& DMA ®) 1 bit (2 bits

Transfer direction setting
® LSB-first (O MsB-first

Data inversion setting

® Normal O Inverted

Transfer rate setting

Transfer clock Internal clock
Base clock 16 cycles for 1-bit period
Bit rate 9600

[] Enable modulation duty correction

SCK12 pin function SCK12 is not used

Hardware flow control setting

®) None QO crsia#

Data handling setting

O7bits

X
S8

Generate Code Generate Report

(bps) (Actual value: 9615.385, Error: 0.16

Transmit data handling | Data handled by DMAC

Interrupt setting

TXI12 priority | Level 0 (disabled)

TEI2 priority (Group BLO) Level 15 (highest)

Callback function setting

[Transmission end

Overview Board | Clocks | System Components Pins | Interrupts

RO1AN6595EJ0101 Rev.1.01
Mar.21.24

RENESAS

Page 19 of 50

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3. Go to the [Software Component Selection] window again. Select [DMA Controller], and then click on
[Next].

Q New Component

Software Component Selection

Select component from those available in list

Category All

Function All

Filter ‘

~

Components Short Name
Data Transfer Controller

Dead-time Compensation Counter

DMA Controller
1 DMAC driver r dmaca_rx
#DTC driver r_dtec_rx

Event Link Controller

£ Flash API for RX100, RX200, RX600. and ... r flash_rx

Type Version N
Code Generator 1.11.0

Code Generator 1.11.0

Code Generator 1.8.0

Firmware Integra.. 2.90
Firmware Integra... 4.10
Code Generator 1.9.0

Firmware Integra... 4.90 v

Show only latest version
Hide items that have duplicated functionality

Description

The DMAC is a module to transfer data without the CPU.

Download the latest FIT drivers and middleware

Configure general settings...

\{) < Back | Next > I Finish Cancel

4. Specify an appropriate configuration name and resource, and then click on [Finish].
In this sample, the configuration name is "Config_ DMACOQ" and the resource is "DMACOQ".

m New Component (] =
Add new configuration for selected component

DMA Controller

Configuration name: | |IConfig_ DMACO

Resource: DMACO =
? < Bock Cancel

RO1AN6595EJ0101 Rev.1.01

Page 20 of 50
Mar.21.24 RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

5. Configure software component settings for DMACO, and then click on the [Generate Code] icon.
The required settings for this sample are listed below.

Activation source: SCI12 (TXI12)

Activation source flag control: Clear interrupt flag of the activation source

Transfer mode: Normal mode
Transfer data size: 8 bits
Source address: Incremented
Destination address: Fixed

Enable interrupt on transfer end: Selected

Priority: Level 15 (highest)

Destination address setting

Destination address

-] m] X
¢ dmac_sample_for sciscfg > =5
i %l =
Software component configuration Genarata Coda fiansrata Report
Components =3 13 — & 3~ Configure @
L Transfer setting
type filter text Activation source SCI2{TXI12) Y
v = Startup Activation source flag control Clear interrupt flag of the activation source v
¥ (= Generic
@ rbsp Transfer mode Normal mode v
¥ (& Drivers Transfer data size 8 bits v
—— Transf R Block
& Config DMACO ransfer count / Repeat size / Block size 1
¥ (= Communications
@ Config 5C112 Total ansher size 1 byte(s)
Block / Repeat area setting
Source address setting
Source address 0x00000000 Incremented ¥

[] specify the transfer source as extended repeat area

Lower 1 bit of the address (2 bytes)

0x00000000 Fixed

Lower 1 bit of the address (2 bytes)

Address offset setting

Priority

Interrupt setting (DMACOI)

[] Enable interru pt on transfer end

ended repeat are
Level 15 (highest)

Owerview Board Clocks | System Components Pins | Interrupts

Note: The transfer count, source address, and destination address are to be changed by software, so here

they are left at their default values.

RO1AN6595EJ0101 Rev.1.01
Mar.21.24

RENESAS

Page 21 of 50

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.2.3 Modifying the Program
Table 3.2 lists the functions to be modified.

Table 3.2 Functions to Be Modified

Function Name
R_Config_SCI12_Start
R_Config_SCI12_Serial_Send
R_Config DMACO_Create
R_Systeminit

R_Config_SCI12_Start ()

Before modification:

void R _Config SCI12 Start(void)
{
/* Clear interrupt flag */
IR(SCI12, TXI1l2) = 0U;

/* Enable SCI interrupt */
[[EN(sCcT12, TXI12) = 1U;|
ICU.GENBLO.BIT.EN1l6 = 1U;

To be deleted because IEN is set to 1 at the start of
transmission by the R_Config_SCI12_Serial_Send function

After modification:

void R _Config SCI12 Start(void)
{
/* Clear interrupt flag */

IR(SCI12, TXI12) = 0U; .
To prevent a 0-to-1 TE state change from working as a

/* Enable SCI interrupt */ trigger, _set TE =1 by Fhis function to_inhibit control by the
ICU.GENBLO.BIT.EN16 = 1U; / R_Config_SCI12_Serial_Send function.

SCI12.SCR.BYTE |= 0xAQ0U; Although TE =1 sets IR of TXI12 to 1, no DMAC transfer
request is generated because IEN = 0. The request is held

* Set TXD12 pin */ pending.

PORTA.PMR.BYTE [= 0x10U; Also, set the TXD12 pin when setting TE = 1.

RO1AN6595EJ0101 Rev.1.01 Page 22 of 50
Mar.21.24 RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

iConfig=SCI12=SeriaI=Send 0

Before modification:

{

MD STATUS R Config SCI12 Serial Send(uint8 t * const tx buf, uintl6 t tx num)

SCI12.SCR.BYTE |= 0xAQU;

/* Set TXD12 pin */

PORTA.PMR.BYTE |= 0x10U;

«—— To be deleted because SCI12.SCR.BYTE and the
TXD12 pin are set by the R_Config_SCI12_Start

function

return MD OK;

After modification:

{

MD STATUS R Config SCI12 Serial Send(uint8 t * const tx buf, uintl6 t tx num)

IEN(SCI12, TXIl2) =

10;

«—— SetlEN to 1 to enable TXI interrupt that is the

activation source for the DMAC.

return MD OK;

RO1AN6595EJ0101 Rev.1.01
Mar.21.24

Re Page 23 of 50
RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

iConfig=DMACO=Create 0

Before modification:

void R Config DMACO_Create < To be changed so that the transfer

{ . source address and the transfer
/* Cancel DMAC/DTC module stop state in LPC */ count can be set as arguments.

MSTP (DMAC) = 0U;

/* Disable DMAC interrupts */
IEN (DMAC, DMACOI) = 0U;

/* Disable DMACO transfer */
DMACO.DMCNT.BIT.DTE = 0U;

/* Set DMACO activation source */
ICU.DMRSRO = _75_DMACO_ACTIVATION_SOURCE;

/* Set DMACO transfer address update and extended repeat setting */
DMACO.DMAMD.WORD = 8000 DMAC SRC _ADDR UPDATE INCREMENT |
0000 _DMAC DST ADDR UPDATE FIXED |
0000 DMACO SRC_EXT RPT AREA |
0000 _DMACO DST EXT RPT AREA;

/* Set DMACO transfer mode, data size and repeat area */
DMACO .DMTMD.WORD = _OOOO_DMAC_TRANS_MODE_NORMAL |
2000 _DMAC_REPEAT AREA NONE |
0000 DMAC_ TRANS DATA SIZE 8 |
_OOOl_DMAC_TRANS_REQ_SOURCE_INT;

/* Set DMACO interrupt flag control */

DMACO.DMCSL.BYTE = 00 DMAC INT TRIGGER FLAG CLEAR;

/* Set DMACO source address */ The transfer source

DMACO.DMSAR o (void *)_00000000_DMACO_SRC_ADDR; address and the transfer
count are to be set from

/* Set DMACO destination address */ arguments.

— .
DMACO.DMDAR o (void *)_00000000_DMACO_DST ADDR; The transfer destination

address is to be changed
/* Set DMACO transfer count */ to SCI12.TDR

DMACO.DMCRA < 00000001 _DMACO_DMCRA_COUNT;

/* Set DMACO interrupt settings */
DMACO.DMINT.BIT.DTIE = 1U;

/* Set DMACO priority level */
IPR(DMAC,DMACOI) = OF DMAC PRIORITY LEVEL1S5;

/* Enable DMAC activation */
DMAC.DMAST.BIT.DMST = 1U;

R Config DMACO Create UserInit();

RO1AN6595EJ0101 Rev.1.01 Page 24 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

After modification:

void R _Config DMACO Create|(void *sar, uintl6 t count) |

{
/* Cancel DMAC/DTC module stop state in LPC */
MSTP (DMAC) = 0U;
. . Changed so that the transfer
/* Disable DMAC interrupts */ source address and the transfer
IEN (DMAC, DMACOI) = 0U; count can be set as arguments.

/* Disable DMACO transfer */
DMACO.DMCNT.BIT.DTE = 0U;

/* Set DMACO activation source */
ICU.DMRSRO = _75_DMACO_ACTIVATION_SOURCE;

/* Set DMACO transfer address update and extended repeat setting */
DMACO.DMAMD.WORD = 8000 DMAC SRC_ADDR UPDATE INCREMENT |
0000 _DMAC DST ADDR UPDATE FIXED |
0000 DMACO SRC_EXT RPT AREA |
0000 _DMACO DST EXT RPT AREA;

/* Set DMACO transfer mode, data size and repeat area */
DMACO .DMTMD.WORD = _OOOO_DMAC_TRANS_MODE_NORMAL |
2000 _DMAC_REPEAT AREA NONE |
0000 DMAC TRANS DATA SIZE 8 |
_OOOl_DMAC_TRANS_REQ_SOURCE_INT;

/* Set DMACO interrupt flag control */
DMACO.DMCSL.BYTE = 00 DMAC INT TRIGGER FLAG CLEAR;

/* Set DMACO source address */

DMACO . DMSAR :|sar; The transfer source

address and the transfer
/* Set DMACO destination address */ count are set from
DMACO . DMDAR :|(void *) (& (SCI12.TDR)) ; arguments.

/% Set DMACO t c .y The transfer destination
© oS er coun address is changed to

DMACO . DMCRA :|count; SCI12.TDR.

/* Set DMACO interrupt settings */
DMACO.DMINT.BIT.DTIE = 1U;

/* Set DMACO priority level */
IPR(DMAC,DMACOI) = OF DMAC PRIORITY LEVEL1S5;

/* Enable DMAC activation */
DMAC.DMAST.BIT.DMST = 1U;

R Config DMACO Create UserInit();

Modifying the prototype declaration in the Config_ DMACO.h file:

/***

Global functions
***/

void R Config DMACO Create|(void *sar, uintl6 t count);

RO1AN6595EJ0101 Rev.1.01 Page 25 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

iSysteminit()

Before modification:

{

void R Systeminit (void)

/* Enable writing to registers related to operating modes, LPC, CGC and

software reset */

SYSTEM.PRCR.WORD = 0xA50BU;

/* Enable writing to MPC pin function control registers */
MPC.PWPR.BIT.BOWI = 0U;
MPC.PWPR.BIT.PFSWE = 1U;

/* Write 0 to the target bits in the POECR2 registers */
POE3.POECR2.WORD = 0x0000U;

/* Initialize clocks settings */
R CGC _Create();

/* Set peripheral settings */ o)
R Config SCI12 Create(); The initial settings are to be deleted because DMAC

R_Config DMACO Create(); |¢—— settings will be changed to such a specification that
— — — the transmit buffer and the transfer count are set

/* Set interrupt settings */ before transmission from the SCI.

R Interrupt Create();
/* Register undefined interrupt */

R _BSP InterruptWrite (BSP INT SRC UNDEFINED INTERRUPT,
(bsp int cb t)r undefined exception);

/* Register group BLO interrupt TEI12 (SCIl1l2) */
R BSP InterruptWrite (BSP INT SRC BLO SCI12 TEI12,
(bsp int cb t)r Config SCI12 transmitend interrupt);

/* Disable writing to MPC pin function control registers */
MPC.PWPR.BIT.PFSWE = 0U;
MPC.PWPR.BIT.BOWI = 1U;

/* Enable protection */
SYSTEM.PRCR.WORD = 0xA500U;

RO1AN6595EJ0101 Rev.1.01 Page 26 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

After modification:

{

void R Systeminit (void)

/* Enable writing to registers related to operating modes, LPC, CGC and

software reset */

SYSTEM.PRCR.WORD = 0xA50BU;

/* Enable writing to MPC pin function control registers */
MPC.PWPR.BIT.BOWI = 0U;
MPC.PWPR.BIT.PFSWE = 1U;

/* Write 0 to the target bits in the POECR2 registers */
POE3.POECR2.WORD = 0x0000U;

/* Initialize clocks settings */
R CGC _Create();

/* Set peripheral settings */
R Config SCI12 Create();

/* Set interrupt settings */
R Interrupt Create();

/* Register undefined interrupt */

R BSP InterruptWrite (BSP INT SRC UNDEFINED INTERRUPT,

(bsp int cb t)r undefined exception);

/* Register group BLO interrupt TEI12 (SCI12) */
R _BSP InterruptWrite (BSP INT SRC BLO SCI12 TEI12,
(bsp _int cb t)r Config SCI12 transmitend interrupt);

/* Disable writing to MPC pin function control registers */
MPC.PWPR.BIT.PFSWE = 0U;
MPC.PWPR.BIT.BOWI = 1U;

/* Enable protection */
SYSTEM.PRCR.WORD = 0xA500U;

RO1AN6595EJ0101 Rev.1.01 Page 27 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.2.4 Sample Program
The following shows how the sample program works.

[Main function]

(1) Call the R_Config_SCI12_Start function to configure transmission.

(2) Call the R_Config_ DMAC_Create function to set transmit data for the DMAC transfer source, the SCI
transmit buffer for the transfer destination, and the transfer count.

(3) Set g_flag = 0, and set g_flag = 1 only after transmission is complete to prevent further processing until
transmission is complete.

(4) Execute the R_Config DMAC_ Start function to put the DMAC in a state waiting for transfer.

(5) Call the R_Config_SCI12_Serial_Send function to enable the TXI interrupt that works as an activation
source for the DMAC. DMAC transfer occurs at the timing of the TXI interrupt and transmit data is written
to the transmit buffer.

(6) Wait until transmission is completed.

(7) Insert 300-ps wait time.

(8) Repeat steps (2) to (7) twice.

(9) After transmission is completed, call the R_Config_ DMAC_Stop function and the R_Config_SCI12_Stop
function to disable the transmission setting.

Note: Since the R_Config_SCI12_Create function is called in the R_Systeminit function before reaching the
main function, it does not need to be called in the main function.

RO1AN6595EJ0101 Rev.1.01 Page 28 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

/***

Global variables
**/

volatile uint8 t g flag;

/~k************************

Private (static) variables and functions
**/

uint8 t g datal[] = {0x11, 0x22, 0x33};
void main (void) ;

/***

* Function Name: main

* Description ¢ This function uses the modified program to send data without a wait time.
* Arguments : None
* Return Value : None

***/
void main (void)
{

uint8 t i = 0;

uint8 t send count = 2;

R Config SCI12 sStart();

for (i = 0; 1 < send count; i++)
{
g flag = 0;
R Config DMACO Create((void *)g data, 3);
R Config DMACO Start();
R Config SCI12 Serial Send(NULL, 0);

while (0 == g flag)
{
nop () ;
}
R _BSP SoftwareDelay ((uint32 t)300, BSP_DELAY MICROSECS);
}

R Config DMACO Stop();
R Config SCI12 Stop();

while (1)
{
nop () ;
}
}
Figure 3.8 "main" Function of the Sample Program
RO1AN6595EJ0101 Rev.1.01 Page 29 of 50

Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

[DMACO transfer end callback function]

(1) The DMACO transfer end callback function (r_dmacO_callback_transfer_end) is called when all transmit
data has been transferred to the SCI's transmit buffer.
(2) The function disables the TXI interrupt request and enables the transmission end interrupt (TEIE = 1).

/***

* Function Name: r dmacO callback transfer end

* Description : This function is dmacO transfer end callback function
* Arguments : None

* Return Value : None
**/

static void r dmacO_callback transfer end(void)

{

/* Start user code for r dmacO callback transfer end. Do not edit comment
generated here */

/* Interrupt processing when DMAC transfer is completed */
IEN (SCI1l2, TXI1l2) = QU;
SCI12.SCR.BIT.TEIE = 1U;

/* End user code. Do not edit comment generated here */

Figure 3.9 "r_dmacO_callback_transfer_end" Function in the Sample Program

[SCI12 transmission end callback function]

(1) The function disables the transmission end interrupt and sets the transmission end flag (g_flag = 1).
Note: Since the r_Config_SCI12_callback_transmitend function is also called during the TXI12 interrupt, it
should only be processed when the transmission end interrupt is enabled.

/***

* Function Name: r Config SCI12 callback transmitend

* Description : This function is a callback function when SCI12 finishes
transmission

* Arguments : None

* Return Value : None

**/
static void r Config SCI12 callback transmitend(void)

{
/* Start user code for r Config SCI12 callback transmitend. Do not edit
comment generated here */
if(1 == SCI12.SCR.BIT.TEIE)
{
/* Interrupt processing when SCI12 transmit end */
SCI12.SCR.BIT.TEIE = 0U;
g flag = 1;
}

/* End user code. Do not edit comment generated here */

Figure 3.10 "r_dmacO_callback_transfer_end" Function in the Sample Program

RO1AN6595EJ0101 Rev.1.01 Page 30 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.2.5 Operation of the Sample Program
Figure 3.11 shows the waveforms when the control example using the DMAC is operated.

D0 202448, MYE9125974: FriJan 13 16:55.06 2023

5.00y/ 5004/ -1.000% 1.000%/] 2004

KEYSIGHT

TEC S

TEbit |} 0C :
L Oc 10.0:1

IEN bit

Inverted at the
start of DMAC
transfer

HF Reject i External
] ~P-

Figure 3.11 Waveforms of the Sample Program

It can be confirmed that during the first transmission, an internal wait time occurs when TE changes from 0 to
1, but during the second transmission, the TE bit is not controlled, so the transmission starts without
generating an internal wait time. For the first transmission, no internal wait time occurs either if the
R_Config_SCI12_Serial_Send function is executed at least one frame after the R_Config_SCI12_Start

function is called.

RO1AN6595EJ0101 Rev.1.01 Page 31 of 50

Mar.21.24 RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.3 Control Example Using the DTC
3.3.1 Overview

As in section 3.1, Control Example by Using the Transmit Data Empty Interrupt, this section describes the

case where the TE = 1 state is maintained and transmit data is written by DTC transfer.
Figure 3.12 is a timing chart after modification (writing transmit data by DTC transfer).

(Timings before modification are equivalent to those in Figure 3.1 except for DTC operation.)

Asynchronous mode

Mode :X

SCR.TE

I
IR of TXI12 !_ !_ |_ |
I : Clear IEN by an interrupt when 5
' ' DTC transfer is completed
. I
IEN of TXI12 : Wait | | |

I time ‘! Data transmlssmn Data transmlssmn _
|‘ L) L

TXD pin / \DataO X Datal X Data2 / DataO)(Datal X Data2 /

/

Write transmit

/ /oA

Write transmit Write transmit Write transmit
data (Data0) by data (Datal) by data (Data2) by
DTC transfer DTC transfer DTC transfer

DTC transfer DTC transfer

Y

Write transmit
data (Data0) by data (Datal) by data (Data2) by

Write transmit

DTC transfer

Figure 3.12 Timing Chart After Modification (Writing Transmit Data by DTC Transfer)

RO1AN6595EJ0101 Rev.1.01

Mar.21.24 RENESAS

Page 32 of 50

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.3.2 Code Generation Procedure Example

Code generation is performed using Smart Configurator in the same way as in the code generation
procedure example in section 3.1, Control Example by Using the Transmit Data Empty Interrupt.

1. Perform the same procedure as steps 1 through 3 in section 3.1.2, Code Generation Procedure Example.

2. Configure software component settings for SCI112, and then click on the [Generate Code] icon.
The required settings for this sample are listed below.

Transmit data handling: Data handled by DTC

TXI12 priority: Level 15 (highest)

Callback function setting: "Transmission end" selected

-] o X

% dtc_sample_forsciscfg =g

%l =)

Generate Code Generate Report

Software component configuration

Compon... x5 ¢4 (%, (= 4 I Configure a
s Data length setting
(O 9 bits (® 8 bits 7 bits
v & Startup Parity setting
¥ @ Genic ®) None O Even Odd
@ rbsp
v (& Drivers Stop bit length setting
v & DMA ®1bit O 2 bits
@ Config DTC
A CoriTaEations Transfer direction setting
@ Config SCI12 ®) LSB-first (O MsB-first

Data inversion setting

(® Normal O Inverted

Transfer rate setting

Transfer dlock Internal clock
Base clock 16 cycles for 1-bit period
Bit rate 9600 (bps) (Actual value: 9615.385, Errc

[[] Enable modulation duty correction

SCK12 pin function SCK12 is not used N

Hardware flow control setting

(®) None Qcrs12#

Data handling setting

Data handled by DTC v Please ensure DTC config is added |

Transmit data handling
Interrupt setting
TXI12 priority | Level 15 (highest) v |
TEI2 priority (Group BLO) Level 15 (highest) v
Callback function setting
[Transmission end
< >
Overview Board Clocks System Components Pins. Interrupts
RO1AN6595EJ0101 Rev.1.01 Page 33 of 50

Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3. Go to the [Software Component Selection] window again. Select [Data Transfer Controller], and then click
on [Next].

&) New Component [} X

Software Component Selection |

Select component from those available in list

Category |All &2
Function |All e
Filter |
~

Components Short Name Type Version
£ Control Low Power States. r_Ipcrx Firmware Integra... 2.04

CRC Calculator Code Generator ~ 1.11.0

D/A Converter Code Generator 1.11.0

8 Data Qperation Circuit Cade Generatar 1110

Data Transfer Controller Code Generator 1.11.0

T Dead time C Gmpensation Counter Code Generator 1.11.0

DMA Controller Code Generator 1.8.0

Ml mnan s S R [T S Ann

Show only latest version
Hide items that have duplicated functionality

Description

This software component provides configurations for DTC to pe/orm data transfers.

Download the latest FIT drivers and middleware

Configure general settings...

< Back | Next > | Finish Cancel

4. Specify an appropriate configuration name and resource, and then click on [Finish].
In this sample, the configuration name is "Config_DTC" and the resource is "DTC".

Q New Component O X

Add new configuration for selected component |

Data Transfer Controller

Configuration name: ‘konﬂg_DTC

Resource: DTC 2

'?‘ < Back Next > I Cancel

RO1AN6595EJ0101 Rev.1.01 Page 34 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

5. Configure software component settings for the DTC, and then click on the [Generate Code] icon.
The required settings for this sample are listed below.

Activation source: SCI12 (TXI12)
Transfer mode: Normal mode

Transfer data size: 8 bits

Interrupt setting: An interrupt request to the CPU is generated when specified data transfer is completed
Source address: Address incremented

Destination address: Address fixed

Transfer data size setting

(®) 8 bits) 16 bits (O 32 bits

Interrupt setting
(®) An interrupt request to the CPU is generated when specified data transfer is completed

() An interrupt request to the CPU is generated each time DTC data transfer is performed

Block/Repeat area setting

tinatior

Write back setting

(®) Enable _) Disable

Transfer address and count setting

Source address 0x00000000 Address incremented ¥
Destination address 0x00000000 Address fixed v }
Count 1

Block size

Total transfer size 1 byte(s)

Overview Board |Clocks System Components Pins| Interrupts

-] [m] X
¢ dtc_sample_for_sciscfg =0
- % &
Software component configuration Canarmia Corla) Fanersie Rapo
Compone... p23 1% - + % Configure @
. Base setting DTCO
e Activation source setting
vE
M Startup | Activation source SCI12(TX112) v
V (& Generic
@ rbsp [_] Chain transfer
V.9 Drivers Chain transfer setting
v (& DMA
& Config DTC
v (& Communications Transfer mode setting
@ Config sci12 (®) Normal mode _) Repeat mode (O Block mode

Note: The transfer count, source address, and destination address are to be changed by software, so here
they are left at their default values.

RO1AN6595EJ0101 Rev.1.01
Mar.21.24

RENESAS

Page 35 of 50

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.3.3 Modifying the Program
Table 3.2 lists the functions to be modified.

Table 3.3 Functions to Be Modified

Function Name
R_Config_SCI12_Start
R_Config_SCI12_Serial_Send
R_Config DTC_Create
R_Systeminit

R_Config_SCI12_Start ()

Before modification:

void R _Config SCI12 Start(void)
{
/* Clear interrupt flag */

IR(SCI12, TXI1l2) = 0U;
[* Enable SCI interrupt */ To be deleted because IEN is set to 1 at the start of
[IEN(sc112, TXT12) = 1U;|4— transmission by the R_Config_SCI12_Serial_Send function

ICU.GENBLO.BIT.ENl6 = 1U;

After modification:

void R _Config SCI12 Start(void)
{
/* Clear interrupt flag */

IR(SCI12, TXI1Z2) = 0U; To prevent a 0-to-1 TE state change from working as a
trigger, set TE = 1 by this function to inhibit control by the
/* Enable SCI interrupt */ R_Config_SCI12_Serial_Send function.

ICU.GENBLO.BIT.ENl6 = 1U;

Although TE = 1 sets IR of TXI12 to 1, no DTC transfer

SCI12.SCR.BYTE |= 0xAOU; request is generated because IEN = 0. The request is held
/* Set TXD12 pin */ pending.
PORTA.PMR.BYTE |= 0x10U; Also, set the TXD12 pin when setting TE = 1.
}
RO1AN6595EJ0101 Rev.1.01 Page 36 of 50

Mar.21.24 RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

iConfig=SCI12=SeriaI=Send 0

Before modification:

{

SCI12.SCR.BYTE |= 0xAQU;

/* Set TXD12 pin */

PORTA.PMR.BYTE |= 0x10U;

return MD OK;

MD STATUS R Config SCI12 Serial Send(uint8 t * const tx buf, uintl6 t tx num)

<«—— To be deleted because SCI12.SCR.BYTE and the
TXD12 pin are set by the R_Config_SCI12_Start
function

After modification:

{

IEN(SCI12, TXIl2) =

10;

return MD OK;

MD STATUS R Config SCI12 Serial Send(uint8 t * const tx buf, uintl6 t tx num)

<«—— SetlENto 1 to enable TXI interrupt that is the
activation source for the DTC.

RO1AN6595EJ0101 Rev.1.01
Mar.21.24

Re Page 37 of 50
RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

iConfig=DTC=Create 0

Before modification:

void R_Config DTC_Create < To be changed so that the transfer

{ source address and the transfer
/* Cancel DTC module stop state */ count can be set as arguments.
MSTP (DTC) = 0U;

/* Disable transfer data read skip to clear the flag */
DTC.DTCCR.BYTE = 08 DTC TRANSFER READSKIP DISABLE;

/* Set DTCO transfer data */
dtc_transferdata vectorll7.mra mrb = ((uint32 t) (00 DTC WRITE BACK ENABLE

08 DTC_SRC_ADDRESS INCREMENTED |
_00_DTC TRANSFER SIZE 8BIT |
~00_DTC TRANSFER MODE NORMAL)<<24U) |

((uint32 t) (_00 DTC_DST ADDRESS FIXED |
00 DTC INTERRUPT COMPLETED)<<16U) ;

dtc_transferdata vectorll7.sar = 00000000 _DTCO_SRC_ADDRESS;

dtc _transferdata vectorll7.dar ~00000000_DTCO_DST ADDRESS;
dtc_transferdata vectorll7.cra crb § (uint32 t)

(_ 0001 DTCO TRANSFER COUNT CRA) << 16U;

/* Set transfer data start address in DTC vector table */

dtc_vectorll7 = (uint32 t) &dtc transferdata vectorll7;

/% Set address mode */ The transfer source

DTC.DTCADMOD.BYTE = 00 DTC ADDRESS MODE FULL; address and the transfer

- - - - - count are to be set from

/* Set base address */ arguments.

DTC.DTCVBR = (void *)0x0001FCO0UL; The transfer destination
address is to be changed

/* Enable DTC module start */ to SCI12.TDR.

DTC.DICST.BYTE = 01 DIC MODULE START;

R Config DTC Create UserInit();

}
RO1AN6595EJ0101 Rev.1.01 Page 38 of 50

Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

After modification:

void R_Config DTC Create (uint32 t sar, uintl6 t count) |

{
/* Cancel DTC module stop state */ \ Changed so that the transfer source
MSTP (DTC) = 0U; address and the transfer count can

be set as arguments.

/* Disable transfer data read skip to clear the flag */
DTC.DTCCR.BYTE = 08 DTC TRANSFER READSKIP DISABLE;

/* Set DTCO transfer data */
dtc_transferdata vectorll7.mra mrb = ((uint32 t) (00 DTC WRITE BACK ENABLE

08 DTC_SRC_ADDRESS INCREMENTED |
00 DTC TRANSFER SIZE 8BIT |
~00_DTC TRANSFER MODE NORMAL)<<24U) |

((uint32 t) (_ 00 DTC DST ADDRESS FIXED |
00 DTC INTERRUPT COMPLETED)<<16U);
dtc transferdata vectorll’.sar = sar;
dtc transferdata vectorll’.dar (uint32 t) (& (SCI12.TDR));
dtc_transferdata vectorll7.cra crb = |[(uint32 t)count << 16U;

/* Set transfer data start address in DTC vector table */

dtc_vectorll7 = (uint32 t) &dtc transferdata vectorll7;
/* Set address mode */ The transfer source
DTC.DTCADMOD.BYTE = 00 DTC ADDRESS MODE FULL; address and the transfer
count are set from
/* Set base address */ arguments.
address is changed to
/* Enable DTC module start */ SCI12.TDR.
DTC.DTCST.BYTE = 01 DTC MODULE START;

R Config DTC Create UserInit();

Modifying the prototype declaration in the Config_DTC.h file:

/***

Global functions
***/

void R _Config DTC Createl|(uint32 t sar, uintl6_t count);

RO1AN6595EJ0101 Rev.1.01 Page 39 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

iSysteminit()

Before modification:

{

void R _Systeminit (void)

/* Enable writing to registers related to operating modes, LPC, CGC and

software reset */

SYSTEM.PRCR.WORD = 0xA50BU;

/* Enable writing to MPC pin function control registers */
MPC.PWPR.BIT.BOWI = 0U;
MPC.PWPR.BIT.PFSWE = 1U;

/* Write 0 to the target bits in the POECR2 registers */
POE3.POECR2.WORD = 0x0000U;

/* Initialize clocks settings */
R CGC _Create();

/* Set peripheral settings */ o)
R Config SCI12 Create(); The initial settings are to be deleted because DTC

R_Config DIC Create(); | settings will be changed to such a specification that
— — — the transmit buffer and the transfer count are set

/* Set interrupt settings */ before transmission from the SCI.

R Interrupt Create();
/* Register undefined interrupt */

R _BSP InterruptWrite (BSP INT SRC UNDEFINED INTERRUPT,
(bsp int cb t)r undefined exception);

/* Register group BLO interrupt TEI12 (SCIl1l2) */
R BSP InterruptWrite (BSP INT SRC BLO SCI12 TEI12,
(bsp int cb t)r Config SCI12 transmitend interrupt);

/* Disable writing to MPC pin function control registers */
MPC.PWPR.BIT.PFSWE = 0U;
MPC.PWPR.BIT.BOWI = 1U;

/* Enable protection */
SYSTEM.PRCR.WORD = 0xA500U;

RO1AN6595EJ0101 Rev.1.01 Page 40 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

After modification:

{

void R _Systeminit (void)

/* Enable writing to registers related to operating modes, LPC, CGC and

software reset */

SYSTEM.PRCR.WORD = 0xA50BU;

/* Enable writing to MPC pin function control registers */
MPC.PWPR.BIT.BOWI = 0U;
MPC.PWPR.BIT.PFSWE = 1U;

/* Write 0 to the target bits in the POECR2 registers */
POE3.POECR2.WORD = 0x0000U;

/* Initialize clocks settings */
R CGC _Create();

/* Set peripheral settings */
R Config SCI12 Create();

/* Set interrupt settings */
R Interrupt Create();

/* Register undefined interrupt */

R BSP InterruptWrite (BSP INT SRC UNDEFINED INTERRUPT,

(bsp int cb t)r undefined exception);

/* Register group BLO interrupt TEI12 (SCI12) */
R _BSP InterruptWrite (BSP INT SRC BLO SCI12 TEI12,
(bsp _int cb t)r Config SCI12 transmitend interrupt);

/* Disable writing to MPC pin function control registers */
MPC.PWPR.BIT.PFSWE = 0U;
MPC.PWPR.BIT.BOWI = 1U;

/* Enable protection */
SYSTEM.PRCR.WORD = 0xA500U;

RO1AN6595EJ0101 Rev.1.01 Page 41 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.3.4 Sample Program
The following shows how the sample program works.

[Main function]

(1) Call the R_Config_SCI12_Start function to configure transmission.

(2) Call the R_Config_DTC_Create function to set transmit data for the DTC transfer source, the SCI transmit
buffer for the transfer destination, and the transfer count.

(3) Set g_flag = 0, and set g_flag = 1 only after transmission is complete to prevent further processing until
transmission is complete.

(4) Execute the R_Config_DTC_Start function to put the DTC in a state waiting for transfer.

(5) Call the R_Config_SCI12_Serial_Send function to enable the TXI interrupt that works as an activation
source for the DTC. DTC transfer occurs at the timing of the TXI interrupt, and transmit data is written to
the transmit buffer.

(6) Wait until transmission is completed.

(7) Insert 300-ps wait time.

(8) Repeat steps (2) to (7) twice.

(9) After transmission is completed, call the R_Config_DTC_Stop function and the R_Config_SCI12_Stop
function to disable the transmission setting.

Note: Since the R_Config_SCI12_Create function is called in the R_Systeminit function before reaching the
main function, it does not need to be called in the main function.

RO1AN6595EJ0101 Rev.1.01 Page 42 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

/***

Global variables
**/

volatile uint8 t g flag;

/~k************************

Private (static) variables and functions
**/

uint8 t g datal[] = {0x11, 0x22, 0x33};

void main (void) ;

/***

* Function Name: main

* Description ¢ This function uses the modified program to send data without a wait time.
* Arguments : None
* Return Value : None

***/
void main (void)
{

uint8 t i = 0;

uint8 t send count = 2;

R Config SCI12 sStart();

for (i = 0; 1 < send count; i++)
{
g flag = 0;
R Config DTC Create((uint32 t)g data, 3);
R Config DTC Start();
R Config SCI12 Serial Send(NULL, 0);

while (0 == g flag)
{
nop () ;
}
R _BSP SoftwareDelay((uint32 t)300, BSP DELAY MICROSECS) ;
}

R Config DTC Stop();
R Config SCI12 Stop();

while (1)
{
nop () ;
}
}
Figure 3.13 "main" Function of the Sample Program
RO1AN6595EJ0101 Rev.1.01 Page 43 of 50

Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

[SCI12 transmission end callback function]

(1) The SCI12 transmit end callback function (r_Config_SCI12_callback_transmitend) is called upon
completion of DTC transfer and upon completion of SCI transfer.

(2) When the transmission end interrupt is disabled (TEIE = 0), the function judges that it is called because
DTC transfer is completed, so it disables the TXI interrupt request and enables the transmission end
interrupt (TEIE = 1).

(3) When the transmission end interrupt is enabled (TEIE = 1), the function judges that it is called because
transmission is completed, so it disables the transmission end interrupt and sets the transmission end flag

(g_flag = 1).

/~k************************

* Function Name: r Config SCI12 callback transmitend

* Description : This function is a callback function when SCI12 finishes
transmission
* Arguments : None

* Return Value : None
**/
static void r Config SCI12 callback transmitend(void)
{
/* Start user code for r Config SCI12 callback transmitend. Do not edit
comment generated here */
if(0 == SCI12.SCR.BIT.TEIE)
{
/* Interrupt processing when DTC transfer is completed */
IEN(SCI12, TXI1l2) = 0U;
SCI12.SCR.BIT.TEIE = 1U;
}
else

{

/* Interrupt processing when SCI12 transmit end */
SCI12.SCR.BIT.TEIE = 0U;
g flag = 1;

}

/* End user code. Do not edit comment generated here */

}

Figure 3.14 "r_Config_SCI12_callback_transmitend” Function in the Sample Program

RO1AN6595EJ0101 Rev.1.01 Page 44 of 50
Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

3.3.5 Operation of the Sample Program
Figure 3.15 shows the waveforms when the control example using the DTC is operated.

-1.0002 1.000%/ Stop] 2004

TKEYSIGH'!_'
TE bit -5
0c
i

IEN bit

Inverted at the
start of DTC
transfer

Moize Reject HF Reject f External
: ~p-

Figure 3.15 Waveforms of the Sample Program

It can be confirmed that during the first transmission, an internal wait time occurs when TE changes from 0 to
1, but during the second transmission, the TE bit is not controlled, so the transmission starts without
generating an internal wait time. For the first transmission, no internal wait time occurs either if the
R_Config_SCI12_Serial_Send function is executed at least one frame after the R_Config_SCI12_Start

function is called.

RO1AN6595EJ0101 Rev.1.01 Page 45 of 50

Mar.21.24 RENESAS

RX Family How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

4. Disabling Automatic Code Regeneration at Build Time

Smart Configurator is provided with a function that automatically regenerates code at build time.

In this sample program, this function is disabled because code-generated components are modified for use.
Note that if you regenerate the code manually, the components will be overwritten.

If you generate the code manually, salvage the components from the trash folder or make a backup
beforehand.

Figure 4.1 shows how to disable code regeneration when building with e? studio.

@ interrupt_sample_for_sci - interrupt_sample_for_sci/src/main.c - e studio — [l X

File Edit Source Refactor Navigate Search | Project [Renesas Views Run Window Help

&|[#%|[®] # Debug Finterupt_ | Oper| Projec foi% 4 vQwin~ - b WA AR AT N A R v § - v oo
Closd Project Q @ |BCCs+ #AV—b YT 6T)W)

e Project Explorer s Buidal CuleAlt+B = O & outlne AW o m =D

v Buld|Configurations . A | ® Csmeentyh

— - uild[project cules | ;‘_l'":‘l;:;(“ con Deserinti o g flag
Select the project. uild|Working Set > [verasen Beseraption * g.data
Lk Clear].. [system Includes> , "Project Includes” mainfvoid)
& HardwareDebug BuildAutomatically |smc_entry.h" @ mainvoid)
& doc
Build[largets > fbles

interrupt_sample_for_scircpe , JtB_t g_flag;

interrupt_sample_for_sciscfg C/CH Index
interrupt_sample_for_sci HardwareDeb. # Update All Dependencies Alt+D jtic) variables and functions|
@ Developer Assistance Chanje Device g_data[] = {@x11, ex22, ex33};
Chanfge Toolchain Version Jd);
® C/C+f Project Settings Ctrl+AltsP)
[Prophries | J‘;:;‘ wain
54
ase « Select [Project] with the project selected, and then select [Properties].
jS . .) .
= * You can also right-click the project, and then select [Properties].
61
62 g_flag = @;
63 R_Config_SCI12_Serial_Send(g_data, 3);
64 v
£ R @Console x DJ0/F{— @ AX—hT50— & A7- 3270l rg--=a8

No consoles to display at this time.

b5 interrupt_sample_for_sci

; 8 Propefties for interrupt_sample_for_sci [m} x
pe fterfet “HEI T Q Configure Builder X

Resouye Configure the builders for the project:

. Builder W

C/Crs . P

Clos Goneral | | WCDT Builder — un this builder:

Project Natures [tiScanner Configuration Builder = . .

Project Referer [6 MISRA-C In-editor Checker Edit... After a "Clean

refactoring Hi DOUbIe-click on [SC Code Generation Builder] in the [Builders] window. ‘ Duri | build

Renesas QF uring manual builds

Run/Debug Settir . .

During auto builds

Down

During a "Clean"

‘Deselect all items and click [OK].

< > | OK I Cancel

2 Apply and Close Cancel

| @ Properties for interrupt_sample_for sci 0 x
type filter text Builders P
Resource Configure the builders for the project
Builders - T
C/Ce+ Build E7 i SC Code Generation Builder New...
C/Chs General | |2 WCDT Builder o B Import...
Project Natures : ki Scanner Configuration Builder =
= .
Project Reference MISRA-C In-editar Checker
Refactoring Histo R
Renesas QF
Run/Debug Settir T
Down
< »|Select [Apply and Close] to finish.

2z | Apply and Close | Cancel

Figure 4.1 Disabling Automatic Code Regeneration at Build Time

RO1AN6595EJ0101 Rev.1.01 Page 46 of 50
Mar.21.24 RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

5. Importing a Project

The sample programs are distributed in e? studio project format. This section shows how to import a project
into e? studio or CS+. After importing the sample project, make sure to confirm build and debugger setting.

5.1

Importing a Project into e? studio

To use sample programs in e? studio, follow the steps below to import them into e? studio.

In projects managed by e? studio, do not use space codes, multibyte characters, and symbols such as "$",

"#", "%" in folder names or paths to them.

(Note that depending on the version of e2 studio you are using, the interface may appear somewhat different

from the screenshots below.)

8 work - e studio

Ed\t Source Refactor Mavigate Search Project RenesasViews Rul

New Alt+5hift+N > | Configurations
Open File...
& - &%
(", Open Projects from File System... SR & import o %
Recent Files >
Select
Close Editor Cirl+W Creat . rive file or directs N
Close All f 2 _ Frel 4 H
; Start the e” studio and select the
. |File >> [Import ...]. Select an import wizarck
[type fitter text
Il Ctrl+Shift+S
— v (= General ~
o & Archive File
Move... —-{ Existing Projects into Workspace
Rename... . File System
[T] Preferences
§ Refresh Fs
(= Projects from Holl P . .
Convert Line Delimiters Jd > & rename & mpbr| S€1ECT [EXiSting Projects into Workspace].
Corlep Ta# Renesas CCRX pr
. T Renesas C5+ Ploj
g @ Renesas CS+ Pfoject for CC-RX and CC-RL
i Export a# Renesas GitHup FreeRTOS (with loT libraries) Project
@) Sample Projectf on Renesas Website
Properties Alt+Enter o CCes
Switch Workspace y F’ ICDfEHGE”E’E“” .
Restart
Exit
\
A
@ < Back | Next > | Finish Cancel
& Import O %

Import Projects

Select a directory to search for existing Eclipse projects.

-ésam root directory: || C¥éapplication_note¥sample._project

e]

O Select archive file:

Projects:

sample_project (C¥application_nate¥sample_proje

Options
[Search for néfted projects

|| Close newly imported projects upon completion
[Hide projects that already exist in the workspace

Working sets

Select [Add project to working sets]
when using the working sets.

< Back Next >

[Add project to working sets

Y

Select All
Deselect All

Refresh

| Einish | Cancel

Select [Select root directory:].

Select [Select root directory:], and specify the
directory which stored the project to import.
(sample_project)

Each application note has its own project name.

Select [Copy projects into
workspace(C)] when to copy project to
workspace.

Figure 5.1 Importing a Project into e? studio

RO1AN6595EJ0101 Rev.1.01
Mar.21.24

Re Page 47 of 50
RENESAS

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

5.2

Importing a Project into CS+

To use sample programs in CS+, follow the steps below to import them into CS+.

In projects managed by CS+, do not use space codes, multibyte characters, and symbols such as "$", "#",
"%'" in folder names or paths to them.

(Note that depending on the version of CS+ you are using, the interface may appear somewhat different from
the screenshots below.)

& ¢S+ for CC - [Start]

File Edit View Project Build Debug Tool Windew Help

Drop here to open the project

Start the CS+, and select
[Open Existing MCU Simulator / e? studio /
CubeSuite / High-performance Embedded
Workshop / PM+ Project]

on registered to an existing project

@oar JAH @ X DHE[0 O B8 = & @ AL @@ @ ==
) SR NI
i BN, Stert
" 5
£ W-IE Learn About CS+
We recommend reading the tutorial to find out what can be done in CS+.
J The tutorial contains the information on how to effectively use CS+.

Open Sample Project
Many sample projects that can

—

[Documents
11
ads
|_| sample_projectrcpc

11/24/2021 5:49PM RCPC File

File pame:

P x
Open Existing Project
A« Windows (C) » application_note » sample_project v O | Search sample_project »
ppl ple_proj ple_proj
Open Existing MCU Simulator Onlil
The project created with the MCY| ~ Organize ~ New folder - W @
Support version: ~ - s 2.
e e S ThispC Name Date modified Type Size
cutput by the MCU - A - -
settings 02
() Buld optons ambeagstor op 8 3D Objects 9 =2 Select a repc file, and click
B Deskiop HardwareDebug il

st /s

the button [Open].

31KB

file(* mtp] RHBS 78 | R fMus\(
Select a project (e.g. sample_project). hdeos
Each application note has its own project name. findows ()
Ua-L(D)
v

sample_project.rcpe

| [Preject Fietor MCU Simuistg

Check [Project File for e2 studio (*.rcpc)].

Project Convert Settings x
Project:
Project Convert Settings X
(& Degription Youe:
—— | Broect:
sever: @ Description._ Project settings
" LR . New microcontroller
place e icroconialler RX -
[Noti
i Update.
| | Product Name:R5F572NNHxBD
On-chip ROM size[KBytes]-4096
On-chip RAM size[Bytes]: 1048576
Addttional Infomation: Package=PLBG0224GA-A
New project
Kind of project: Empty Application(CC-RX) ~
H ; R Project I ject
Select [Empty Application(CC-RX)] in st semeeprel
[K|nd Of project.] [Crezte on = different place from the source project
i
and specify the project name and place,
and select whether to backup. Capy allfiles inthe flder of 1
Backup the project composition files after conversion
0K Cancel Help

Figure 5.2

Importing a Project into CS+

RO1AN6595EJ0101 Rev.1.01
Mar.21.24

RENESAS

Page 48 of 50

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

6.

Reference Documents

RX660 Group User's Manual: Hardware (RO1UH0937)

Renesas e? studio Smart Configurator User's Guide (R20AN0451)

Renesas Starter Kit for RX660 User's Manual (R20UT5017)

Renesas Starter Kit for RX660 CPU Board Circuit Diagram (R20UT5016)

RO1AN6595EJ0101 Rev.1.01
Mar.21.24

RENESAS

Page 49 of 50

RX Family

How to Start Transmission Immediately After Writing Transmit Data in SCI Asynchronous Mode

Revision History

Description
Rev. Date Page Summary
1.00 Mar.20.23 First edition issued
1.01 Mar.21.24 1 Added Target Tools

RO1AN6595EJ0101 Rev.1.01

Mar.21.24

RENESAS

Page 50 of 50

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
Www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Wait Time in the SCI
	1.1 Overview of the Wait Time
	1.2 Instant Transmission Function
	1.3 Overview of the Code Generation Function of Smart Configurator

	2. Operation Confirmation Conditions
	3. Description of Software
	3.1 Control Example by Using the Transmit Data Empty Interrupt
	3.1.1 Overview
	3.1.2 Code Generation Procedure Example
	3.1.3 Modifying the Program
	R_Config_SCI12_Start ()
	R_Config_SCI12_Serial_Send ()
	r_Config_SCI12_transmit_interrupt ()
	r_Config_SCI12_transmitend_interrupt ()

	3.1.4 Sample Program
	3.1.5 Operation After Modification

	3.2 Control Example Using the DMAC
	3.2.1 Overview
	3.2.2 Code Generation Procedure Example
	3.2.3 Modifying the Program
	R_Config_SCI12_Start ()
	R_Config_SCI12_Serial_Send ()
	R_Config_DMAC0_Create ()
	R_Systeminit()

	3.2.4 Sample Program
	3.2.5 Operation of the Sample Program

	3.3 Control Example Using the DTC
	3.3.1 Overview
	3.3.2 Code Generation Procedure Example
	3.3.3 Modifying the Program
	R_Config_SCI12_Start ()
	R_Config_SCI12_Serial_Send ()
	R_Config_DTC_Create ()
	R_Systeminit()

	3.3.4 Sample Program
	3.3.5 Operation of the Sample Program

	4. Disabling Automatic Code Regeneration at Build Time
	5. Importing a Project
	5.1 Importing a Project into e2 studio
	5.2 Importing a Project into CS+

	6. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

