ENESAS APPLICATION NOTE

RX Family
CAN FD API Using Firmware Integration Technology

Introduction

The Renesas CAN FD (Controller Area Network with Flexible Data Rate) Application Programming Interface
enables you to send, receive, and monitor data on the CAN bus. This manual explains the usage of this API
and some of the features of the CAN FD peripheral.

Target Devices

The following is a list of devices that are currently supported by this API:
e RX660 Group
e RX26T Group
e RX261 Group

When using this application note with other Renesas MCUSs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
¢ Renesas Electronics C/C++ Compiler Package for RX Family
e GCC for Renesas RX
e |AR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “7.1 Confirmed Operation
Environment.”

RO1AN6130ES0150 Rev.1.50 Page 1 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

Contents

L © 1= Y 1= PP 4
R = 7= T o S 4
S R o 1V o L= B = e T I SRR 4
R 2 = 1 = 1 (I =1 Lo U =1 oo SR 5
118 ErrOr HaniNg ... ———— 7
L B | I O 0 1= Tox 4] o [PP 7
1.1.5 FD Payload OVEITIOWooeiiiiiiiiieeee ettt e e e e e e e e st te e e e e e e e e seasbaaneeeeessasnnnraneeaaaeas 7
1.2 COMMUNICAION LAYEIS......oiiiiiiiii ittt ettt ettt e e e et et e e e aab et e e e aabe e e e s aabeeeesanbeeeeaans 7
1.3 Using the FIT CAN FD MOGUIE.oiiiiiiiii ittt e et e et e e e s aabeeeeens 7
1.3.1 Using FIT CAN FD module in CH+ Projectccooiiiiiiiiiie ettt 7
L I o 01V (x| I 7] oo 1= Tox 1o o W USRS 7
1.5 THE CAN FD BUFFEE ..ottt e ettt e ettt e e e emt e e e e e ante e e e e amteeeesanbeeeeeanteeaeaans 8
2. APLINTOIMELIONot 11
D T o =1 (o A1V T =T o LU (=T 0 1= 1
2.2 Hardware Resource ReqUIrEMENTScccoiiiiiii e 1
D I =10 1= r= 1 =T T 11 =Y o 1
2.2.2 Other Peripherals USEd..........o ettt e e e e et e e e e e e e et e e e e e e e e e e annnnnneeaeeeas 11
2.3 SOftWare REQUIMEMENTS ... ettt e e e e e e et e e e e e e e e et e e e e e e e e e s nneneneeaeeeaaannnnneeeaeeean 1
D22 N 1911 =1 {0 T OSSR 11
241 RAM LoCation LIMITAtiONScoeiieeeie et e e e e e e 11
R STIESTW] o) oo Ty (Yo I WoTo] (o] o F= 11 o PSP PP 11
D22 T 11 (=13 (1 01 SV (o) 1
D A o == T oY {1 SRR 12
D I 101 (=To =T g 1Y o 1= TSP PUPPPPPPRRN 12
b B Oo 101 {e 0] = o] o H PSP PUPRPRPPPRRN 13
210 Interfaces and INSTANCESooiiiiiiii ettt e ettt e e e et e e e et e e e e ante e e e e anreeeeen 19
bt O B B O A AV 01 (=T = Vo PRSI 19
2.10.2 CAN FD INSTANCE...cciiitiiie ittt ettt ettt e ettt e e e sttt e e e sttt e e e amteeeeeanteeeeeanbeeaeeanteeeeaanseeeeaans 28
D2t I B 1] = Tt I] (U o 11 SRR 33
Dt N 0o o =T . T SO EE 35
D220 BC T -1 | oY= Tod . 0 T 1o o <SSR 36
2.14 Adding the CAN FD FIT Module t0 YOUI PrOjECE.........uuviiiiiie et 36
2.15 “for”, “while” and “do while” StatemeENtsooi i 37
R T N I U T[] o - TP 38
SUMMIAIY ittt e ettt e e e e e ettt e et e e e ee e tateeeeeaeeesaataseeeeaeeaeassteaeeeaeeeaasssseaeeaaeeeaannsssnaeaeeseaansssseneeeeeeannsnes 38
L= 0 T O To Lo RSP SR 38
07N\ | 0 @ o =Y o OO PPPPPRN 39
L O N O [L1 YRS 40
RO1AN6130ES0150 Rev.1.50 Page 2 of 64

Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

L O N AT (= SRR 41
R 07 N I == T SRR 42
07NN | B /oo [N =T a I3 1 o o [S SOPPPPPRN 43
R 07 N D [) o €= SRS 44
R_CANFD _CallDACKSEL........eiiiiieiiie ittt e et e e sttt e e e ettt e e ettt e s e steeeaansteeesansseeeaansseeesansseeesansseeeeansees 45
=10 T o (= S USPRRR 46
S IS 7= 111 [P 51
T B =10 Lo I o] [= e £ PP 52
51 Adding a DemO t0 @ WOIrKSPACE..........uuuuuiiiiiiiiiiiiiiiiiieieieieieieeaeaeeeaeeeabaeeeetebeeeee e sasssssssssssssssnsssnsnsnsssnsnrnnes 52
5.1.1 Import and Debug Project With €2 StUAIOcccuriiiieeie e 52
o 0t I {0 T 19 =0 o USSR 52
52 The Renesas Debug CONSOIEcoooiiiiiiiiiie et 53
G =1 1Y o T Lo 54
6.1 Channel SPeCific TEST MOUEoeiiiiieiie ittt et e e e e e e et e e e e e e e e s nreeeeeeaeeaaannes 54
&0t I IO = =] o = 0 o T [SO 54
6.1.2 Listen Only mode = BUS MONITOIINGc.ooiuiiiiiiiiiie i 54
&g U T o o o o 7= o7 QPSPPSR PPPPPPRRNt 55
6.1.3.1 Internal loopback mode - Test node without CAN DUS...........oooiiiiiiiiiiiiiie e 55
6.1.3.2 External loopback mode - Test NOde 0N DUS............uuuiiiiiiiiiiiii e reeneneeee 57
0t S S oS {4 e (=T B o] oY1 = 4o o SO PR 57
6.2 Global test mode enNable rEGISTEroii i 57
A Y o] o 1= o To [o7 =S EPUPPR 58
7.1 Confirmed Operation ENVIFONMENT et e e e e e e e e e e 58
42 B (o 10 o] [=3=1 g T To 1 o o [PSPPI 63
Related Technical Updatesoouiiiiiiiiiic e e e 63
REVISION HISTOIY ... et e e e e e e e e et e e e e e e e e e e e eaaeas 64
RO1AN6130ES0150 Rev.1.50 Page 3 of 64

Oct.30.25 RENESAS

RX Family

CAN FD API Using Firmware Integration Technology

1. Overview

The CAN FD module can be used to communicate over CAN networks, optionally using Flexible Data

(CAN FD) to accelerate the data phase. A variety of message filtering and buffer options are

available.

1.1

Basics

Features

1.1.1

Compatibility

o Send and receive CAN 2.0 and CAN FD frames on the same channel

o Data transfer rate: Arbitration phase up to 1 Mbps. With FD, Data phase up to 8 Mbps

o 180 11898-1:2015 compliant

Buffers
o 32 global receive Message Buffers (RX MBs)
o 2 global receive FIFOs (RX FIFOs)

o 4 transmit Message Buffers (TX MBs) per channel
o One common FIFO that can be configured as a receive FIFO or transmit FIFO

Filtering
o Up to 128 filter rules across both channels

o Each rule can be individually configured to filter based on:

= ID
= Standard or Extended ID (IDE bit)
= Data or Remote Frame (RTR bit)
= |ID/IDE/RTR mask
= Minimum DLC (data length) value
Interrupts

o Configurable Global RX FIFO Interrupt

= Configurable per FIFO

= Interrupt at a certain depth or on every received message

o Channel TX Interrupt
o Global Error

= DLC Check

= Message Lost

= FD Payload Overflow
o Channel Error
Bus Error
Error Warning
Error Passive
Bus-Off Entry
Bus-Off Recovery
Overload
Bus Lock
Arbitration Loss
Transmission Aborted

Flexible Data (FD)

Flexible Data is an extension of the CAN protocol allowing for messages up to 64 bytes and higher

data bitrates, among other features. The CAN FD driver supports the following:

Sending and receiving FD messages
Bitrate switching for data phase (up to 8 MHz)
Manual and automatic setting of the error state (ESI) bit

To specify one or more of these options when transmitting set can_frame_t::options with combined
values from canfd_frame_options_t. Received messages will automatically have this field filled, if
applicable.

RO1AN6130ES0150 Rev.1.50
Oct.30.25 RENESAS

Page 4 of 64

RX Family CAN FD API Using Firmware Integration Technology

#define CAN FD DATA LENGTH CODE (64) //Data Length code for FD frame

/* Configure a frame to write 64 bytes with bitrate switching (BRS) enabled */
g _canfd tx frame.id = CAN EXAMPLE ID;

g canfd tx frame.id mode = CAN ID MODE STANDARD;

g canfd tx frame.type = CAN FRAME TYPE DATA;

g canfd tx frame.data length code = CAN FD DATA LENGTH CODE;

g canfd tx frame.options = CANFD FRAME OPTION FD | CANFD FRAME OPTION BRS;

Note
When using bitrate switching be sure to configure the Data Bitrate as desired in the “Smart Configurator”.

1.1.2 Bit Rate Calculation

The bit rate of the CAN FD peripheral is manually set through the “Smart Configurator”.

The CAN FD peripheral uses either PLL or the main oscillator as its clock source. To achieve an exact bitrate
the CAN FD source clock or divisor may need to be adjusted to meet the criteria in the formula below:

Bitrate = canfd clock hz / ((time segment 1 + time segment 2 + 1) * prescaler)

For CAN FD, the possible values for each element are as follows:

Element Min Max (Nominal) Max (Data)
Bitrate - 1 Mbps 8 Mbps

Time Segment 1 2Tq 256 Tq 32 Tq

Time Segment 2 2Tq 128 Tq 16 Tq

Sync Jump Width 1Tq Time Segment 2 Time Segment 2
Prescaler 1 1024 256

Use the Components tab of the “Smart Configurator” to configure the CAN FD clock source/divisor as
well as to set the frequency of PLL or the main oscillator.

The Sync Jump Width option specifies the maximum number of time quanta that the sample point
may be delayed by to account for differences in oscillators on the bus. It should be set to a value
between 1 and the configured Time Segment 2 value depending on the maximum permissible clock
error.

The following relations between frequencies must apply if the CAN FD module is to be used.
e PCLKA: PCLKB =2:1
e PCLKB = CANFDCLK
e PCLKB = CANFDMCLK
Formulas to calculate the bitrate register settings.
PCLK is the peripheral clock frequency, PCLKB.
fcan = PCLK or EXTAL
The prescaler scales the CAN FD peripheral clock down with a factor.
fcanclk = fcan/prescaler
One Time Quantum is one clock period of the CAN FD clock.
Tq =1/fcanclk

RO1AN6130ES0150 Rev.1.50 Page 5 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

Tqtot is the total number of CAN FD peripheral clock cycles during one CAN FD bit time and is by
the peripheral built by the sum of the “time segments” and “SS” which is always 1. In the code, Tqtot
is shown to be

BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL)/ (CANFD_BRP * BITRATE * BSP_CFG_PCKB_DIV)
Set these macros so that a Tqtot is found which is not larger than accepted by the CANFD registers.
Note: CANFD_BRP defined in user program
BITRATE as expected bitrate
See the HW-manual’s table of examples for bitrate settings.
Another restriction is:
Tqtot = TSEG1 + TSEG2 + SS (TSEG1 must be > TSEG2)
SS is always 1. SIW is often given by the bus administrator. Select 1 <= SJW <= 4.
Example calculate the bitrate register settings

CAN FD BITRATE Settings
Consult Section 33.4.1 "Initialization of CAN Clock, Bit Timing and Bit Rate" in the RX660 User's
Manual (RO1UHQ0937EJ) for details.

CCLKS is 0(running on PCLK which is PCLKB), that is,

FCANFD = PCLK = PCLKB.

CANFD_BRP = Bit Rate Prescaler.

FCANFDCLK = FCANFD / CANFD_BRP

P = value selected in BRP[9:0] bits in BCR (P = 0 to 1023). P + 1 = CANFD_BRP.
TQTOT = Nr CANFD clocks in one CANFD bit = FCANFDCLK/BITRATE.

With CCLKS = 0, and using r_bsp macros we get:
FCANFD = (BSP_CFG_XTAL_HZ *BSP_CFG_PLL_MUL / BSP_CFG_PCKB_DIV) (Eq. 1)
TQTOT = (FCANFD / (CANFD_BRP * BITRATE)) (Eq. 2)

Eqg. (1) in (2):
TQTOT = (BSP_CFG_XTAL_HZzZ * BSP_CFG_PLL_MUL / BSP_CFG_PCKB_DIV)/(CANFD_BRP *
BITRATE)), or
TQTOT = (BSP_CFG_XTAL_HZ *BSP_CFG_PLL_MUL) / (CANFD_BRP * BITRATE *
BSP_CFG_PCKB_DIV) (Eq. 3)
Example: Desired bit rate 500 kbps.
Try CANFD_BRP = 4. Equation 3:
TQTOT = (24000000 * 10) / (4 * 500000 * 4) = 30. This is too large. TQTOT can be max 25.
Try CANFD_BRP = 5.
TQTOT =
(BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL)/ (CANFD_BRP * BITRATE *
BSP_CFG_PCKB_DIV)
= (24000000 * 10) / (5 * 500000 * 4) = ***24***
TQTOT =24 = TSEG1 + TSEG2 + SS:
Try:
SS =1 Tq always.
TSEG1=15Tq
TSEG2=8Tq

RO1AN6130ES0150 Rev.1.50 Page 6 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

1.1.3 Error Handing

The CAN FD peripheral provides two types of error interrupts: Channel and Global. As the names

imply, each channel has its own Channel Error interrupt but there is only one Global Error interrupt.

Only the configured channel will receive callbacks for Global Errors.

Error interrupt callbacks will pass either CAN_EVENT_ERR_CHANNEL or CAN_EVENT_ERR_GLOBAL in
the can_callback_args_t::event field. A second field, can_callback_args_t::error, provides the actual

error code as canfd_error_t. Cast to this enum to retrieve the error condition.

1.1.4 DLC Checking

When DLC Checking is enabled messages are checked against the destination.minimum_dlc value of
each AFL rules. If the data length of a message is less than this value, the message will be rejected.

When DLC checking is set to "DLC Replacement Enable" in the “Smart Configurator” any data in excess
of the minimum DLC setting will be truncated and the DLC value for the frame will be set to match.

1.1.5 FD Payload Overflow

When an FD message is received with a DLC larger than the destination buffers an FD Payload
Overflow interrupt is thrown (if configured). When Payload Overflow is set to "Truncate" the message
will still be accepted but only data up to the buffer capacity will be preserved. The DLC value is
unchanged in this case; any data beyond this value in the can_frame_t::data array should not be
used.

1.2 Communication Layers

The figure below shows the CAN FD communication layers, with the application layer at the top and the
hardware layer at the bottom.

Application
Renesas CAN FD API
CAN FD peripheral
MCU/transceivers/CANbus

1.3 Using the FIT CAN FD module

1.3.1 Using FIT CAN FD module in C++ project
For C++ project, add FIT CAN FD module interface header file within extern “C”{}:

Extern “C”

{
#include “r smc entry.h”
#include “r canfd rx if.h”

}

1.4 Physical Connection

The Protocol Controller of the CAN FD peripheral in your CAN FD MCU must be connected to a bus
transceiver located outside the chip via the CAN FD Transmit (CTXn) and receive (CRXn) MCU pins.

RO1AN6130ES0150 Rev.1.50 Page 7 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology
1.5 The CAN FD Buffer

Buffers

The CAN FD driver provides three types of buffers: Transmit Message Buffers (TX MBs), Receive
Message Buffers (RX MBs) and FIFO Buffers. The total number of FIFO buffers is three (two receive FIFOs
(RX FIFOs) + one common FIFO).

TX Message Buffers

TX MBs is used for transmission only. Refer to the hardware manual for your device for information
on which TX MBs are available.

Note
The CAN FD peripheral continually scans TX MBs for new data. Depending on the provided clock it
may be possible to write to multiple TX MBs before transmission begins. In this case, messages will
be sent in the priority specified by the Transmission Priority option in the “Smart Configurator”.

RX Message Buffers

RX MBs are for reception only and may only hold one message at a time.
No interrupts are provided for RX MBs in this software. Use R_CANFD_InfoGet and R_CANFD_Read to poll
and read them, respectively.

RX FIFOs

RX FIFOs provide interrupt-driven queue functionality for receiving messages. 2 RX FIFOs are
available. All FIFOs have the following capabilities:

e Up to 64 bytes payloads

e Up to 48 message capacity
Once an interrupt is fired it will continue to fire until the FIFO is emptied, and all messages have been
passed to user code via the callback. When using the threshold interrupt mode, a FIFO can be
checked for data and read between interrupts by calling R_CANFD_InfoGet and R_CANFD_Read,
respectively.

RX Buffer Pool

The RAM allocated to the receive message buffers and FIFO buffers is limited to 16 messages (1216 bytes)
when the payload size is set to 64 bytes. Do not configure the receive message buffers and FIFO buffers that
exceed this maximum limit. CAN FD module does not have the function to check the validity of the
configuration.

Limitations

Developers should be aware of the following limitations when using CAN FD:

e RX MBs interrupt is available in the RX MCUs that have CAN FD hardware; however it is not
supported in this software. To use them in an application one of the following is recommended: Use
R_CANFD_InfoGet to determine if any RX MBs have received data, then use R_CANFD_Read to
obtain it.

e The CAN FD peripheral has a limited amount of buffer pool RAM available for allocating RX
MBs and FIFO stages. See the RX Buffer Pool section above for more information.

e When switching modes with R_CANFD_ModeTransition a delay of up to several CAN frames
may be incurred. Consult Section 33.3.3.2 "Timing of Channel Mode Change" in the RX660
User's Manual (RO1UHO0937EJ) for details.

RO1AN6130ES0150 Rev.1.50 Page 8 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

Message Filtering (Acceptance Filter List)

To filter messages to the desired message buffer or FIFO the CAN FD peripheral uses an Acceptance
Filter List (AFL). Each entry in the AFL provides a rule to check a message against along with

destination and other filtering information. When a message is received the CAN FD peripheral

internally checks against every configured AFL rule for the channel. If a match is found the message

is transferred to the destination(s) specified in the rule. See structure of an AFL entry at canfd_afl_entry t
below:

/** AFL Entry */
typedef struct st canfd afl entry t
{

uint32 t id 29; ///< ID to match against

uint32 t rs 1y

can frame type t frame type 1; ///< Frame type (Data or Remote)

can_id mode t id mode 1; ///< ID mode (Standard or Extended)

uint32 t mask id : 29; ///< ID Mask

uint32 t rsl 3 Ag

uint32 t mask frame type : 1; ///< Only accept frames with the
configured frame type

uint32 t mask id mode : 1; ///< Only accept frames with the
configured ID mode

canfd minimum dlc t minimum dlc : 4; ///< Minimum DLC value to accept
(valid when DLC Check is enabled)

uint32 t rs2 : 4;

canfd rx mb t rx buffer : 8; ///< RX Message Buffer to receive

messages accepted by this rule

uint32 t rs3 5 1LES

canfd rx fifo t fifo select flags; ///< RX FIFO(s) to receive messages
accepted by this rule
} canfd afl entry t;

For an example configuration refer to the AFL Example below.

AFL Example

The below is an example Acceptance Filter List (AFL) declaration with one rule.
/* Acceptance filter array parameters

CANFD CFG AFL CHO RULE NUM = 1 */

/* Acceptance filter array parameters */
#define CANFD FILTER ID (0x00001000)

#define MASK ID (OxOFFFF000)
#define MASK ID MODE (1)
#define ZERO (0U) //Array Index value

const canfd afl entry t p canfd0 afl[CANFD CFG AFL CHO RULE NUM] =
{
/* Accept a message with Extended ID 0x1000-0x1FFF */
/* Specify the ID, ID type and frame type to accept. */
{
CANFD FILTER ID,
0,
CAN FRAME TYPE DATA,
CAN_ID MODE_EXTENDED,
MASK_ID,
0,
ZERO,
MASK_ID MODE,

RO1AN6130ES0150 Rev.1.50 Page 9 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

(canfd minimum dlc t) ZERO,
0,
CANFD RX MB 0,
0,
CANFD RX FIFO 0
b
b5

void main (void)
{
g canfd0 extended cfg.p afl = p canfd0 afl;
err = R CANFD Open (&g canfdO ctrl, &g canfd0 cfg);

}

Consult Section 33.5 "Filtering Using Acceptance Filter List (AFL)" in the RX660
User's Manual (RO1UH0937EJ) for details.

RO1AN6130ES0150 Rev.1.50
Oct.30.25 RENESAS

Page 10 of 64

RX Family CAN FD API Using Firmware Integration Technology

2. API Information
The names of the APIs of the CAN FD FIT module follow the Renesas APl naming standard.

2.1 Hardware Requirements

This driver requires that your MCU supports the following peripheral:
e CAN FD Module (CAN FD)

2.2 Hardware Resource Requirements

This section details the hardware peripherals that this driver requires. Unless explicitly stated, these
resources must be reserved for the driver, and cannot be used elsewhere in the application.

2.2.1 Peripheral Required
CAN FD Module (CAN FD)

2.2.2 Other Peripherals Used

The driver requires I/O port pins to be assigned for CAN FD bus receive and transmit signals. Assigned pins
may not be used for GPIO.

The driver optionally uses GPIO port pins for Standby and Enable corresponding to each CAN FD channel.

2.3 Software Requirements

This driver is dependent upon the following FIT module:

e Renesas Board Support Package (r_bsp) v7.20 or higher

2.4 Limitations

2.4.1 RAM Location Limitations

In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.

The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.

In the case of the CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the
variable from being located at address 0x0. In the case of the GCC project (e2 studio V7.5.0) and IAR project
(EWRX V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.

The default settings of the section may be changed due to the IDE version upgrade. Please check the
section settings when using the latest IDE.

2.5 Supported Toolchain

This driver has been confirmed to work with the toolchain listed in 7.1 Confirmed Operation Environment.

2.6 Interrupt Vector

When CAN TX and CAN RX interrupts are used, make sure the respective interrupt are mapped to a
software configurable interrupt. This can be done in “r_bsp_interrupt_config.h”

RO1AN6130ES0150 Rev.1.50 Page 11 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

2.7 Header Files

All API calls and their supporting interface definitions are located in “r_canfd.h”.

Build-time configuration options are selected or defined in the file "r_canfd_rx_config.h”.
To reference CAN FD API elements in this FIT Module from your code include the following:

#include “r_canfd_rx_if.h”

2.8 Integer Types

This software uses ANSI C99. These types are defined in stdint.h.

RO1AN6130ES0150 Rev.1.50 Page 12 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

2.9 Configuration

It will be necessary to make modifications to the r_canfd_rx_config.h file to customize the application for
desired functionality. It is not recommended to change the r_canfd_rx.c file, which contains the Renesas
CAN FD API driver function, but this may be merited to add some features not available with the API.

If installing this software by using the “Smart Configurator” in e? studio, the configuration settings for this FIT
module are made through the Smart Configurator “Components-> Property” view. Otherwise,
r_canfd_rx_config.h can be edited manually using the following tables as a guide.

Configuration options in r_canfd_rx_config.h

1: Parameter checking is included in
the build.

CANFD_CFG_PARAM_CHECKING_ENABLE
(BSP_CFG_PARAM_CHECKING_ENABLE)

0: Parameter checking is omitted
from the build.

Setting this #define to
BSP_CFG_PARAM_CHECKING_E
NABLE utilizes the system default
setting.

CANFD_CFG_AFL_CHO_RULE_NUM 32

Number of acceptance filter list rules
dedicated to Channel 0.

Any value (0~32)

Default value is 32.

CANFD_CFG_FD_PROTOCOL_EXCEPTION 0

Select whether to enter the protocol
exception handling state when a
RES bit is sampled recessive as
defined in ISO 11898-1.

(0) = Enabled (1SO 11898-1)
(default)

(R_CANFD_GFDCFG_PXEDIS_Ms
k) = Disabled

CANFD_CFG_GLOBAL_ERR_SOURCES 0x3

Select which errors should trigger
an interrupt.

(0x3) (default)
(R_CANFD_GCR_DEIE_Msk | 0x3)
(R_CANFD_GCR_MLIE_Msk | 0x3)
(R_CANFD_GCR_POIE_Msk | 0x3)
(R_CANFD_GCR_DEIE_Msk |

R _CANFD_GCR_MLIE_Msk | 0x3)
(R_CANFD_GCR_DEIE_Msk |

R _CANFD_GCR _POIE_Msk | 0x3)
(R_CANFD_GCR_MLIE_Msk |

R _CANFD_GCR _POIE_Msk | 0x3)
(R_CANFD_GCR_DEIE_Msk |
R_CANFD_GCR_MLIE_Msk |
R_CANFD_GCR _POIE_Msk | 0x3)

CANFD_CFG_TX_PRIORITY (R_CANFD_GCFG_TPRI_Msk)

Select how messages should be
prioritized for transmission. In either
case, lower numbers indicate higher
priority.
(0) = Message ID
(R_CANFD_GCFG_TPRI_Msk) =
Buffer Number (default)

RO1AN6130ES0150 Rev.1.50
Oct.30.25 RENESAS

Page 13 of 64

RX Family CAN FD API Using Firmware Integration Technology

Configuration options in r_canfd_rx_config.h

When enabled received messages
will be rejected if their DLC field is
less than the value configured in the
associated AFL rule.

CANFD_CFG_DLC_CHECK 0

If 'DLC Replacement Enable' is
selected and a message passes the
DLC check the DLC field is set to
the value in the associated AFL rule
and any excess data is discarded.

(0) = Disabled (default)

(R_CANFD_GCFG_DCE_Msk) =
Enabled

(R_CANFD_GCFG_DCE_Msk |
R_CANFD_GCFG_DRE_Msk) =
DLC Replacement Enable

CANFD_CFG_FD_OVERFLOW 0

Configure whether received
messages larger than the
destination buffer should be
truncated or rejected.
(0) = Reject (default)
(R_CANFD_GCFG_TPRI_Msk) =
Truncate

CANFD_CFG_CANFDCLK_SOURCE 0

Configure the CAN FD Clock source
to be either PLL (default) or crystal
direct.

(0) = PLL (default)

(1) = Crystal direct

CANFD_CFG_RXMB_NUMBER 0

Number of message buffers
available for reception. As there is
no interrupt for message buffer
reception it is recommended to use
RX FIFOs instead.

Set this value to 0 to disable RX
Message Buffers.

Any value (0~32)

Default value is 0.

CANFD_CFG_RXMB_SIZE 0

Payload size for all RX Message
Buffers.

(0) = 8 bytes (default)

(1) =12 bytes

(2) = 16 bytes

(3) = 20 bytes

(4) = 24 bytes

(5) = 32 bytes

(6) = 48 bytes

(7) = 64 bytes

CANFD_CFG_GLOBAL_ERR_IPL 12

This interrupt is fired for each of the
error sources selected below.

Any value (0) ~ (15)

Default value is (12)

RO1AN6130ES0150 Rev.1.50
Oct.30.25 RENESAS

Page 14 of 64

RX Family CAN FD API Using Firmware Integration Technology

Configuration options in r_canfd_rx_config.h
Selects whether to include
parameter checking in the code.

CANFD_CFG_RX_FIFO_IPL 12 BSP_CFG_PARAM_CHECKING_E
NABLE = Default (BSP).

Any value (0) ~ (15)
Default value is (12).
Set the interrupt threshold value for
RX FIFO 0. This setting is only
applicable when the Interrupt Mode
is set to 'At Threshold Value'.

(0U) = 1/8 full

(1U) = 1/4 full

(2U) = 3/8 full

(3U) = 1/2 full (default)

(4U) = 5/8 full

(5U) = 3/4 full

(6U) = 7/8 full

(7U) = full
Select the number of stages for RX
FIFO 0.

(1) = 4 stages
CANFD_CFG_RXFIFOO_DEPTH 3 (2) = 8 stages

(3) = 16 stages (default)

(4) = 32 stages

(5) = 48 stages
Select the message payload size for
RX FIFO 0.

(0) = 8 bytes

(1) = 12 bytes

(2) = 16 bytes

(3) = 20 bytes

(4) = 24 bytes

(5) = 32 bytes

(6) = 48 bytes

(7) = 64 bytes (default)
Set the interrupt mode for RX FIFO
0. Threshold mode will only fire an
interrupt each time an incoming
message crosses the threshold
value set below.

(0) = Disabled

(R_CANFD_RFCR_RFIE_Msk) =
At Threshold Value

(R_CANFD_RFCR_RFIE_Msk |
R_CANFD_RFCR_RFIM_Msk) =
Every Frame (default)
Enable or disable RX FIFO 0.
CANFD_CFG_RXFIFOO_ENABLE 1 (0) = Disabled
(1) = Enabled (default)

CANFD_CFG_RXFIFOO_INT_THRESHOLD 3U

CANFD_CFG_RXFIFOO_PAYLOAD 7

CANFD_CFG_RXFIFOO_INT_MODE
((R_CANFD_RFCR_RFIE_Msk | R_CANFD_RFCR_RFIM_Msk))

RO1AN6130ES0150 Rev.1.50 Page 15 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

Configuration options in r_canfd_rx_config.h

Set the interrupt threshold value for
RX FIFO 1. This setting is only
applicable when the Interrupt Mode
is set to 'At Threshold Value'.

(0U) = 1/8 full

(1U) = 1/4 full

(2U) = 3/8 full

(3U) = 1/2 full (default)

(4U) = 5/8 full

(5U) = 3/4 full

(6U) = 7/8 full

(7U) = full
/* Select the number of stages for
RX FIFO 1.

(1) = 4 stages
CANFD_CFG_RXFIFO1_DEPTH 3 (2) = 8 stages

(3) = 16 stages (default)

(4) = 32 stages

(5) = 48 stages
Select the message payload size for
RX FIFO 1.

(0) = 8 bytes

(1) = 12 bytes

(2) = 16 bytes

(3) = 20 bytes

(4) = 24 bytes

(5) = 32 bytes

(6) = 48 bytes

(7) = 64 bytes (default)
Set the interrupt mode for RX FIFO
1. Threshold mode will only fire an
interrupt each time an incoming
message crosses the threshold
value set below.

(0) = Disabled

(R_CANFD_RFCR_RFIE_Msk) =
At Threshold Value

(R_CANFD_RFCR_RFIE_Msk |
R_CANFD_RFCR_RFIM_Msk) =
Every Frame (default)
Enable or disable RX FIFO 0.

CANFD_CFG_RXFIFO1_INT_THRESHOLD 3U

CANFD_CFG_RXFIFO1_PAYLOAD 7

CANFD_CFG_RXFIFO1_INT_MODE
((R_CANFD_RFCR_RFIE_Msk | R_CANFD_RFCR_RFIM_Msk))

CANFD_CFG_RXFIFO1_ENABLE 0 (0) = Disabled (default)
(1) = Enabled
CANFDO_EXTENDED_CFG_TXMBO_TXI_ENABLE ~OULL Select TX Message buffers should

trigger an interrupt when
transmission is complete.
Disabled = OULL (default)
Enabled = (1ULL << 0)
Select Error Warning interrupt
sources to enable.
Disabled = OULL (default)
Enabled =
R_CANFD_CHCR_EWIE_Msk

CANFDO_EXTENDED_CFG_TXMB1_TXI_ENABLE OULL
CANFDO_EXTENDED_CFG_TXMB2_TXI_ENABLE OULL
CANFDO_EXTENDED_CFG_TXMB3_TXI_ENABLE OULL

CANFDO_EXTENDED_CFG_WARNING_ERROR_INTERRUPTS
ouU

RO1AN6130ES0150 Rev.1.50 Page 16 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

Configuration options in r_canfd_rx_config.h
Select error passive interrupt
sources to enable.
Disabled = 0U (default)
Enabled =
R_CANFD_CHCR_EPIE_Msk

CANFDO_EXTENDED_CFG_PASSING_ERROR_INTERRUPTS
ouU

CANFDO_EXTENDED_CFG_BUS_OFF_ENTRY_ERROR_INTER
RUPTS ou

Select which channel bus-Off Entry
error interrupt sources to enable.
Disabled = 0U (default)
Enabled =
R _CANFD_CHCR_BOEIE_Msk

CANFDO_EXTENDED_CFG_BUS_OFF_RECOVERY_ERROR_IN
TERRUPTS 0U

Select channel bus-Off Recovery

error interrupt sources to enable.
Disabled = 0U (default)
Enabled =

R_CANFD_CHCR_BORIE_Msk

CANFDO_EXTENDED_CFG_OVERLOAD_ERROR_INTERRUPT
S 0ouU

Select channel overload error

interrupt sources to enable.
Disabled = 0U (default)
Enabled =

R _CANFD_CHCR_OLIE_Msk

CANFDO_CFG_IPL 12

This interrupt is fired for each of the
error sources selected below.

Any value (0) ~ (15)

Default value is (12).

CANFDO_BIT_TIMING_CFG_BRP 1

Specify clock divisor for nominal
bitrate.

Any value (1~1024)
Default value is (1).

CANFDO_BIT_TIMING_CFG_TSEG1 29

Select the Time Segment 1 value.
Check module usage notes for how
to calculate this value.

Any value (2~256)

Default value is (29).

CANFDO_BIT_TIMING_CFG_TSEG2 10

Select the Time Segment 2 value.
Check module usage notes for how
to calculate this value.

Any value (2~128)

Default value is (10).

CANFDO_BIT_TIMING_CFG_SJW 4

Select the Synchronization Jump
Width value. Check module usage
notes for how to calculate this value.
Any value (1~128)
Default value is (4).

CANFDO_DATA_TIMING_CFG_BRP 1

Specify clock divisor for data bitrate.
Any value (1~1024)
Default value is (1).

CANFDO_DATA_TIMING_CFG_TSEG1 5

Select the Time Segment 1 value.
Check module usage notes for how
to calculate this value.

Any value (2~32)

Default value is (5).

RO1AN6130ES0150 Rev.1.50
Oct.30.25 RENESAS

Page 17 of 64

RX Family CAN FD API Using Firmware Integration Technology

Configuration options in r_canfd_rx_config.h

Select the Time Segment 2 value.
Check module usage notes for how
CANFDO_DATA_TIMING_CFG_TSEG2 2 to calculate this value.

Any value (2~16)

Default value is (2).

Select the Synchronization Jump
Width value. Check module usage
CANFDO_DATA_TIMING_CFG_SJW 1 notes for how to calculate this value.

Any value (1~16)

Default value is (1).
When enabled the CAN FD module
will automatically compensate for
any transceiver or bus delay
between transmitted and received
bits.
When manually supplying bit timing
values with delay compensation
enabled be sure the data prescaler
is 2 or smaller for correct operation.

(0) = Disabled

(1) = Enabled (default)

Default value is (1).

CANFDO_EXTENDED_CFG_DELAY_COMPENSATION 1

RO1AN6130ES0150 Rev.1.50 Page 18 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

2.10 Interfaces and Instances

This section describes structures in r_canfd_rx/inc
2.10.1 CAN interface

This section describes structures in r_canfd_rx/inc/ r_can_api.h

The CAN interface provides common features and interaction methods of different implementations of CAN
drivers. These common features and interaction methods allow upper layer caller function to be able to swap
in and out different CAN driver modules which provide the same features. In this Application Note, CAN
interface is implemented by CAN FD

CAN interface supports following features:
Full-duplex CAN communication
Generic CAN parameter setting
Interrupt driven transmit/receive processing
Callback function support with returning event code
o Hardware resource locking during a transaction
Implemented by:
e Controller Area Network - Flexible Data (r_canfd)

Data Structures

struct can_info_t
struct can_bit_timing_cfg_t

struct can_frame_t

struct can_callback_args_t
struct can_cfg_t

struct can_api_t

struct can_instance_t

Enumerations

enum can_event t

enum can_operation_mode_t
enum can_test mode t

enum can_id_mode_t

enum can_frame_type t

Typedefs

typedef void can_ctrl_t

RO1AN6130ES0150 Rev.1.50 Page 19 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology
¢ can_info_t
struct can_info_t
CAN status info
Data Fields
uint32_t status Useful information
from theCAN status
register.
uint32_t rx_mb_status RX Message Buffer
New Data flags.
uint32_t rx_fifo_status RX FIFO Empty flags.
uint8_t error_count_transmit Transmit error count.
uint8_t error_count_receive Receive error count.
uint32_t error_code Error code, cleared
after reading.
4 can_bit_timing_cfg_t
struct can_bit_timing_cfg_t
CAN bit rate configuration.
Data Fields
uint32_t baud_rate prescaler Baud rate prescaler.
Validvalues: 1 -
1024.
uint32_t time_segment_1 Time segment 1 control.
uint32_t time_segment_2 Time segment 2 control.
uint32_t synchronization_jump_width Synchronization jump

width.

¢ can_frame_t

struct can_frame_t

CAN data Frame

Data Fields
uint32_t id CAN ID.
can_id_mode_t id_mode Standard or Extended ID
(IDE).
can_frame_type t type Frame type (RTR).

uint8_t

data_length_code

CAN Data Length Code
(DLC).

RO1AN6130ES0150 Rev.1.50
Oct.30.25

RENESAS

Page 20 of 64

RX Family CAN FD API Using Firmware Integration Technology

uint32_t options Implementation-
Specific options

uint8_t data[CAN_DATA_BUFFER_LEN | CAN data.
G TH]

¢ can_callback_args_t

struct can_callback_args_t
CAN callback parameter definition
Data Fields
uint32_t channel Device channel number.
can_event t event Event code.
uint32_t error Error code.
union uint32_t mailbox Mailbox number of interrupt
source.
uint32_t buffer Buffer number of interrupt
source.
can_frame t* p_frame DEPRECATED Pointer to the
received frame.
void const * p_context Context provided to user
during callback
can_frame_t frame Received frame data.
¢ can_cfg_t
struct can_cfg_t
CAN Configuration
Data Fields

uint32_t | channel

CAN channel.

can_bit_timing cfg t * | p_bit _timing

CAN bit timing.

void(* | p_callback)(can_callback _args t *p_args)

Pointer to callback function.

void const * | p_context

RO1AN6130ES0150 Rev.1.50 Page 21 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

User defined callback context.

void const * | p_extend

CAN hardware dependent configuration.

uint8_t | ipl

Error/Transmit/Receive interrupt priority.

¢ can_api_t

struct can_api_t
Shared Interface definition for CAN

Data Fields

fsp_err_t(*open)(can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

fsp_err_t(*write)(can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const p_frame)

fsp_err_t(*read)(can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const p_frame)

fsp_err_t(*close)(can_ctrl_t *const p_ctrl)

fsp_err_t(*modeTransition)(can_ctrl_t *const p_api_ctrl, can_operation_mode_toperation_mode,
can_test mode_ttest_mode)

fsp_err_t(*infoGet)(can_ctrl_t *const p_ctrl, can_info_t *const p_info)

fsp_err_t(*callbackSet)(can_ctrl_t *const p_api_ctrl, void(*p_callback)(can_callback_args_t *),
void const *constp_context, can_callback args _t *const p_callback_memory)

Field Documentation

4 open

RO1AN6130ES0150 Rev.1.50 Page 22 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

fsp_err_t(* can_api_t::open) (can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

Open function for CAN device

Implemented as
R_CANFD_Open()

Parameters

[in] p_ctrl Pointer to the CAN control
block. Must be declared by
user.

[in] can_cfg_t Pointer to CAN configuration
structure. All elements of this
structure must be set by user

4 write

fsp_err_t(* can_api_t::write) (can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const
p_frame)

Write function for CAN device

Implemented as
R_CANFD_Write()

Parameters

[in] p_ctrl Pointer to the CAN control
block.

[in] buffer_number Buffer number (mailbox or
message buffer) to write to.

[in] p_frame Pointer for frame of CAN ID,
DLC, data and frame type to
write.

¢ read

fsp_err_t(* can_api_t::iread) (can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const p_frame)

Read function for CAN device

Implemented as
R_CANFD_Read()

Parameters

RO1AN6130ES0150 Rev.1.50 Page 23 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

[in] p_ctrl Pointer to the CAN control
block.

[in] buffer_number Message buffer (number) to
read from.

[in] p_frame Pointer to store the CAN ID,
DLC, data and frame type.

4 close

fsp_err_t(* can_api_t::close) (can_ctrl_t *const p_ctrl)

Close function for CAN device

Implemented as
R_CANFD_Close()

Parameters

[in] p_ctrl Pointer to the CAN control
block.

4 modeTransition

fsp_err_t(* can_api_t::modeTransition) (can_ctrl_t *const p_api_ctrl, can_operation_mode_t
operation_mode, can_test mode_t test mode)

Mode Transition function for CAN device

Implemented as
R_CANFD_ModeTransition()

Parameters
[in] p_api_ctrl Pointer to the CAN control
block.
[in] operation_mode Destination CAN operation
state.
[in] test_mode Destination CAN test state.
¢ infoGet

fsp_err_t(* can_api_t::infoGet) (can_ctrl_t *const p_ctrl, can_info_t *const p_info)

Get CAN channel info.

Implemented as
R_CANFD_InfoGet()

Parameters
[in] p_ctrl Handle for channel (pointer
to channel control block)
RO1AN6130ES0150 Rev.1.50 Page 24 of 64

Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

[out] p_info Memory address to return
channel specific data to.

4 callbackSet

fsp_err_t(* can_api_t::callbackSet) (can_ctrl_t *const p_api_ctrl,
void(*p_callback)(can_callback args t *), void const *const p_context, can_callback_args_t
*constp_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as
R_CANFD_CallbackSet()

Parameters

[in] p_ctrl Control block set in
can_api_t::open call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory | Pointer to volatile memory

where callback structure can
be allocated. Callback

arguments allocated here are
only valid during the callback.

4 can_instance_t

struct can_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

can_ctrl_t* p_ctrl Pointer to the control
structure for this instance.

can_cfg _t const * p_cfg Pointer to the
configuration structure for
this instance.

can_api_t const * p_api Pointer to the API
structure for this instance.

RO1AN6130ES0150 Rev.1.50 Page 25 of 64
Oct.30.25 RENESAS

RX Family

CAN FD API Using Firmware Integration Technology

4 can_ctrl_t

typedef void can_ctrl_t

Implemented as
o canfd_instance_ctrl_t

CAN control block. Allocate an instance specific control block to pass into the CAN FD API calls.

4 can_event_t

enum can_event_t

CAN event codes

Enumerator

CAN_EVENT_ERR_WARNING

Error Warning event.

CAN_EVENT_ERR_PASSIVE

Error Passive event.

CAN_EVENT_ERR_BUS_OFF

Bus Off event.

CAN_EVENT_BUS_RECOVERY

Bus Off Recovery event.

CAN_EVENT_MAILBOX_MESSAGE_LOST

Mailbox has been overrun.

CAN_EVENT_ERR_BUS_LOCK

Bus lock detected (32 consecutive
dominant bits).

CAN_EVENT_ERR_CHANNEL

Channel error has occurred.

CAN_EVENT_TX_ABORTED

Transmit abort event.

CAN_EVENT_RX_COMPLETE

Receive complete event.

CAN_EVENT_TX_COMPLETE

Transmit complete event.

CAN_EVENT_ERR_GLOBAL

Global error has occurred.

CAN_EVENT_TX_FIFO_EMPTY

Transmit FIFO is empty.

¢ can_operation_mode_t

enum can_operation_mode_t

CAN Operation modes

Enumerator

CAN_OPERATION_MODE_NORMAL

CAN Normal Operation Mode.

CAN_OPERATION_MODE_RESET

CAN Reset Operation Mode.

RO1AN6130ES0150 Rev.1.50
Oct.30.25

Page 26 of 64

RENESAS

RX Family CAN FD API Using Firmware Integration Technology

CAN_OPERATION_MODE_HALT

CAN Halt Operation Mode.

CAN_OPERATION_MODE_SLEEP

CAN Sleep Operation Mode.

CAN_OPERATION_MODE_GLOBAL_OPERATION

CAN FD Global Operation Mode.

CAN_OPERATION_MODE_GLOBAL_RESET

CAN FD Global Reset Mode.

CAN_OPERATION_MODE_GLOBAL_HALT

CAN FD Global Halt Mode.

CAN_OPERATION_MODE_GLOBAL_SLEEP

CAN FD Global Sleep Mode.

¢ can_test_mode_t

enum can_test_mode _t

CAN Test modes

Enumerator

CAN_TEST_MODE_DISABLED

CAN Test Mode Disabled.

CAN_TEST_MODE_LISTEN

CAN Test Listen Mode.

CAN_TEST_MODE_LOOPBACK_EXTERNAL

CAN Test External Loopback Mode.

CAN_TEST_MODE_LOOPBACK_INTERNAL

CAN Test Internal Loopback Mode.

CAN_TEST_MODE_INTERNAL_BUS

CAN FD Internal CAN Bus
Communication TestMode.

4 can_id_mode _t

enum can_id_mode_t

CAN ID modes

Enumerator

CAN_ID_MODE_STANDARD

Standard IDs of 11 bits used.

CAN_ID_MODE_EXTENDED

Extended IDs of 29 bits used.

¢ can_frame_type_t

enum can_frame_type t

CAN frame types

Enumerator

CAN_FRAME_TYPE_DATA

Data frame.

RO1AN6130ES0150 Rev.1.50

Page 27 of 64

Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

CAN_FRAME_TYPE_REMOTE Remote frame.

2.10.2 CAN FD instance

This section describes structures in r_canfd_rx/inc/ r_canfd.h

CAN FD instance is one of the actual implementations of CAN interface. The CAN FD instance uses the
enumerations, data structures, and API prototypes from the CAN interface

Data Structures
struct canfd_instance ctrl_t
struct canfd_afl_entry_t

struct canfd_global_cfg_t
struct canfd_extended cfg t

Enumerations

enum canfd_frame_options_t
enum canfd_error_t

enum canfd_tx_mb_t

enum canfd_rx_buffer t
enum canfd_rx_mb t

enum canfd_rx _fifo_t

enum canfd_minimum_dic t

¢ canfd_instance_ctrl_t

struct canfd_instance_ctrl_t

CAN FD Instance Control Block

Data Fields

can_cfg_t const * p_cfg Pointer to the configuration
structure

uint32_t open Open status of channel

can_operation_mode _t operation_mode Can operation mode

can_test mode_t test_mode Can test mode

void (* p_callback)(can_callback_args_t *) Pointer to callback

can_callback_args t * p_callback_memory Pointer to optional callback
argument memory

void const * p_context Pointer to context to be
passed into callback function

RO1AN6130ES0150 Rev.1.50 Page 28 of 64

Oct.30.25 RENESAS

RX Family

CAN FD API Using Firmware Integration Technology

¢ canfd_afl_entry_t

struct canfd_afl_entry_t

AFL Entry

Data Fields

uint32_t id ID to match against

can_frame_type_t frame_type Frame type (Data or
Remote)

can_id_mode _t id_mode ID mode (Standard or
Extended)

uint32_t mask_id ID Mask

uint32_t mask_frame_type Only accept frames with the
configured frame type

uint32_t mask_id_mode Only accept frames with the

configured ID mode

canfd_minimum_dlc_t

minimum_dlc

Minimum DLC value to
accept (valid when DLC
Check is enabled)

canfd_rx_mb_t

rx_buffer

RX Message Buffer to
receive messages accepted
by this rule

canfd_rx_fifo_t

fifo_select flags

RX FIFO(s) to receive
messages accepted by this
rule

¢ canfd_global_cfg_t

struct canfd_global_cfg_t
CAN FD Global Configuration
Data Fields
uint32_t global_interrupts Global control options (GCR register
setting)
uint32_t global_config Global configuration options(GCFG
register setting)
uint32_t rx_fifo_config[2] RX FIFO configuration (RFCRn
register settings)
uint32_t rx_mb_config Number and size of RX Message
buffers (RMCR register setting)
uint8_t global_err_ipl Global Error interrupt priority.
uint8_t rx_fifo_ipl RX FIFO interrupt priority.
RO1AN6130ES0150 Rev.1.50 Page 29 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

¢ canfd_extended_cfg_t

struct canfd_extended_cfg_t
CAN FD Extended Configuration
Data Fields

canfd_afl_entry tconst* p_afl AFL rules list.

uint32_t txmb_txi_enable Array of TX Message
Bufferenable bits.

uint32_t error_interrupts Error interrupts enable bits.

can_bit_timing_cfg_t * p_data_timing FD Data Rate (when
bitrate switching is
used)

uint8_t delay _compensation FD Transceiver Delay
Compensation (enable
or disable)

canfd_global_cfg_t* p_global_cfg Global configuration
(global error callback
channel only)

4 canfd_status_t
enum canfd_status _t
CAN FD Status
Enumerator

CANFD_STATUS_RESET_MODE Channel in Reset mode.

CANFD_STATUS_HALT_MODE Channel in Halt mode.

CANFD_STATUS_SLEEP_MODE Channel in Sleep mode.

CANFD_STATUS_ERROR_PASSIVE Channel in error-passive state.

CANFD_STATUS_BUS_OFF Channel in bus-off state.

CANFD_STATUS_TRANSMITTING Channel is transmitting.

CANFD_STATUS_RECEIVING Channel is receiving.

CANFD_STATUS_READY Channel is ready for communication.

CANFD_STATUS_ESI Atleast one CAN FD message was

received with the ESI flag set.

RO1AN6130ES0150 Rev.1.50 Page 30 of 64
Oct.30.25 RENESAS

RX Family

CAN FD API Using Firmware Integration Technology

4 canfd_error_t

enum canfd_error_t

CAN FD Error Code

Enumerator

CANFD_ERROR_CHANNEL_BUS

Bus Error.

CANFD_ERROR_CHANNEL_WARNING

Error Warning (TX/RX error count over
0x5F)

CANFD_ERROR_CHANNEL_PASSIVE

Error Passive (TX/RX error count over
Ox7F)

CANFD_ERROR_CHANNEL_BUS_OFF_ENTR
Y

Bus-Off State Entry.

CANFD_ERROR_CHANNEL_BUS_OFF_RECO
VERY

Recovery from Bus-Off State.

CANFD_ERROR_CHANNEL_OVERLOAD

Overload.

CANFD_ERROR_CHANNEL_BUS_LOCK

Bus Locked.

CANFD_ERROR_CHANNEL_ARBITRATION_L
0SS

Arbitration Lost.

CANFD_ERROR_CHANNEL_STUFF

Stuff Error.
CANFD_ERROR_CHANNEL_FORM Form Error.
CANFD_ERROR_CHANNEL_ACK ACK Error.
CANFD_ERROR_CHANNEL_CRC CRC Error.

CANFD_ERROR_CHANNEL_BIT_RECESSIVE

Bit Error (recessive) Error.

CANFD_ERROR_CHANNEL_BIT_DOMINANT

Bit Error (dominant) Error.

CANFD_ERROR_CHANNEL_ACK_DELIMITER

ACK Delimiter Error.

CANFD_ERROR_GLOBAL_DLC

DLC Error.

CANFD_ERROR_GLOBAL_MESSAGE_LOST

Message Lost.

CANFD_ERROR_GLOBAL_PAYLOAD_OVERF
LOW

FD Payload Overflow.

CANFD_ERROR_GLOBAL_TXQ_OVERWRITE

TX Queue Message Overwrite.

CANFD_ERROR_GLOBAL_TXQ_MESSAGE_L
OST

TX Queue Message Lost.

CANFD_ERROR_GLOBAL_CHO_SCAN_FAIL

Channel 0 RX Scan Failure.

CANFD_ERROR_GLOBAL_CH1_SCAN_FAIL

Channel 1 RX Scan Failure.

RO1AN6130ES0150 Rev.1.50
Oct.30.25

Page 31 of 64

RENESAS

RX Family CAN FD API Using Firmware Integration Technology

CANFD_ERROR_GLOBAL_CHO_ECC Channel 0 ECC Error.

CANFD_ERROR_GLOBAL_CH1_ECC Channel 1 ECC Error.

4 canfd_tx_mb_t

enum canfd_tx mb t

CAN FD Transmit Message Buffer (TX MB)

¢ canfd_rx_buffer_t

enum canfd_rx_buffer_t

CAN FD Receive Buffer (MB + FIFO)

4 canfd_rx_mb_t

enum canfd_rx_mb_t

CAN FD Receive Message Buffer (RX MB)

¢ canfd_rx_fifo_t

enum canfd_rx_fifo_t

CAN FD Receive FIFO (RX FIFO)

¢ canfd_minimum_dic_t

enum canfd_minimum_dlc _t

CAN FD AFL Minimum DLC settings

¢ canfd_frame_options_t

enum canfd_frame_options_t
CAN FD Frame Options
Enumerator
CANFD_FRAME_OPTION_ERROR Error state set (ESI).
CANFD_FRAME_OPTION_BRS Bit Rate Switching (BRS) enabled.
CANFD_FRAME_OPTION_FD Flexible Data frame (FDF).
RO1AN6130ES0150 Rev.1.50 Page 32 of 64

Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

2.11 Instance Structure

The CANFD source code created an instance structure to use this module:
It includes:

e A pointer(p_ctrl) to the control structure

e A pointer(p_cfg) to the configuration structure

e A pointer(p_api) to the instance API structure

The control, configuration, and instance API structure have been created with the default value in the file
‘r_canfd_data.c”.

Below is the instance structure(g_canfd0) which has been created for channel 0 with the control
structure(g_canfd0_ctrl), the configuration structure(g_canfd0_cfg) and the instance API structure
(g_canfd_on_canfd).

Example:

/* Instance structure to use CAN FD module channel 0. */
const can_instance t g canfd0 =
{
.p_ctrl = &g canfdO0 ctrl,
.p_cfg = &g canfd0_cfg,
.p_api = &g canfd on canfd
}i

canfd instance ctrl t g canfd0 ctrl;

can_cfg t g canfd0 cfg =

{
.channel = 0,
.p bit timing = &g canfd0 bit timing cfg,
.p_callback = NULL,
.p_extend = &g _canfd0 extended cfg,
.p_context = NULL,
.ipl = CANFDO CFG_IPL,

}i

/* Config Nominal bit rate */
can bit timing cfg t g canfd0 bit timing cfg =
{
.baud rate prescaler = CANFDO BIT TIMING CFG BRP,
.time segment 1 = CANFDO BIT TIMING CFG TSEGI,
.time segment 2 = CANFDO BIT TIMING CFG TSEG2,
.synchronization jump width = CANFDO BIT TIMING CFG SJW
b
canfd extended cfg t g canfd0 extended cfg =
{
.p_afl = NULL,
.txmb_ txi enable = (CANFDO EXTENDED CFG TXMBO TXI ENABLE
| CANFDO EXTENDED CFG TXMBl TXI ENABLE
| CANFDO EXTENDED CFG TXMB2 TXI ENABLE
| CANFDO EXTENDED CFG TXMB3 TXI ENABLE | OULL),
.error interrupts = (CANFDO EXTENDED CFG WARNING ERROR INTERRUPTS
| CANFDO EXTENDED CFG PASSING ERROR INTERRUPTS
| CANFDO EXTENDED CFG BUS OFF ENTRY ERROR INTERRUPTS
| CANFDO EXTENDED CFG BUS OFF RECOVERY ERROR INTERRUPTS
| CANFDO EXTENDED CFG OVERLOAD ERROR INTERRUPTS | 0U),
.p_data timing = &g canfd0 data timing cfg, .delay compensation =
CANFDO EXTENDED CFG DELAY COMPENSATION,
.p_global cfg = &g canfd global cfg,
}i

RO1AN6130ES0150 Rev.1.50 Page 33 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

/* Config data rate */

can bit timing cfg t g canfd0 data timing cfg =

{
.baud rate prescaler = CANFDO DATA TIMING CFG BRP,
.time segment 1 = CANFDO DATA TIMING CFG TSEGI,
.time segment 2 = CANFDO DATA TIMING CFG TSEG2,
.synchronization jump width = CANFDO DATA TIMING CFG SJW

bi

#ifndef CANFD PRV _GLOBAL CFG

#define CANFD PRV _GLOBAL CFG

canfd global cfg t g canfd global cfg =

{
.global interrupts = CANFD CFG GLOBAL ERR SOURCES,

.global config = (CANFD CFG_TX PRIORITY | CANFD CFG_DLC_ CHECK
| ((1U == CANFD_CFG_CANFDCLK SOURCE)? R _CANFD GCFG DLLCS Msk: 0U)
| CANFD CFG_FD OVERFLOW),

.rx_mb_config = (CANFD CFG_RXMB NUMBER | (CANFD CFG _RXMB SIZE <<

R_CANFD RMCR PLS Pos)),
.global err ipl = CANFD CFG GLOBAL ERR IPL,
.rx_fifo ipl = CANFD CFG RX FIFO IPL,
.rx fifo config =
{
((CANFD_CFG RXFIFOO INT THRESHOLD << R _CANFD RFCR RFITH Pos)
| (CANFD CFG RXFIFOO DEPTH << R _CANFD RFCR _FDS Pos)
| (CANFD CFG RXFIFOO PAYLOAD << R CANFD RFCR PLS Pos) |
(CANFD CFG _RXFIFOO INT MODE) | (CANFD CFG RXFIFOO ENABLE)),
((CANFD CFG RXFIFOl INT THRESHOLD << R CANFD RFCR RFITH Pos)
| (CANFD CFG RXFIFOl DEPTH << R _CANFD RFCR _FDS Pos)
| (CANFD CFG RXFIFOl PAYLOAD << R _CANFD RFCR PLS Pos) |

(CANFD_CFG_RXFIFOl INT MODE) | (CANFD CFG RXFIFOl ENABLE)),
I o

I8

#endif

/* CANFD function pointers =/
/* g canfd on canfd in the file "r canfd rx.c" */
const can api t g canfd on canfd =
{
.open R CANFD Open,
.close = R CANFD Close,

.write = R CANFD Write,
.read = R CANFD Read,
.modeTransition = R CANFD ModeTransition,

.infoGet = R _CANFD InfoGet,
.callbackset R CANFD CallbackSet,

RO1AN6130ES0150 Rev.1.50 Page 34 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

2.12 Code Size

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.9 Configuration. The table lists reference values when the C compiler’'s compile
options are set to their default values, as described in 2.5 Supported Toolchains. The compile option default
values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The code size
varies depending on the C compiler version and compile options.

ROM, RAM and Stack Code Sizes

Category | Memory Used
Renesas Compiler IAR Compiler
With Parameter Without With Without With Without
Checkin Parameter Parameter Parameter Parameter Parameter
9 Checking Checking Checking Checking Checking
RX660 | roMm 2533 bytes 2115 bytes 4260 bytes 3404 bytes 3210 bytes 2546 bytes
RAM 136 bytes 128 bytes 4 bytes
STACK'" | 76 bytes . 304 bytes
RX26T | rom 2610 bytes 2194 bytes 2856 bytes 2240 bytes 3144 bytes 2472 bytes
RAM 136 bytes 128 bytes 4 bytes
STACK™ | 76 bytes - 304 bytes
ROM 2346 bytes 1950 bytes 2696 bytes 2112 bytes 2975 bytes 2343 bytes
RX261 RAM 136 bytes 32 bytes 4 bytes
STACK'" | 76 bytes . 336 bytes
Note 1. The sizes of maximum usage stack of Interrupts functions is included.
RO1AN6130ES0150 Rev.1.50 Page 35 of 64

Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

2.13 Callback Functions

In this module, a callback function set up by the user is called when either of the following conditions is met.

(1) Global interrupts:

* Receive FIFO interrupt.

* Global error interrupt: DLC Error Detect, Message Lost Detect, Payload Overflow Detect.
(2) Channel interrupts:

* Channel transmit interrupt: Successful transmission interrupt.

e Channel error interrupt: Error Warning Detect, Error Passive Detect, Bus-Off Entry Detect, Bus-
Off Recovery Detect, Overload Detect.

The callback function is set up by storing the address of the user function in the p_callback argument of
g_canfd0_cfg structure. The default value of the p_callback argument is NULL. User can change it into the
user function by changing the value of the p_callback argument.

See example below to change the value of the p_callback argument from NULL to User_callback:

void User callback(can callback arg t *g args);

void main (void)
{

g canfd0 cfg.p callback = User callback;

R CANFD Open (&g canfdO ctrl, &g canfd0 cfg);
}

void User callback(can callback arg t *g args)

{
User programf() ;

}

2.14 Adding the CAN FD FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends using “Smart
Configurator” described in (1) or (2). However, “Smart Configurator” only supports some RX devices. Please
use the methods of (3) for unsupported RX devices.

(1) Adding the FIT module to your project using “Smart Configurator” in e? studio.
By using the “Smart Configurator” in 2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e? studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using “Smart Configurator” on CS+
By using the “Smart Configurator Standalone version” in CS+, the FIT module is automatically added to
your project. Refer to “Renesas e? studio Smart Configurator User Guide (R20AN0451)” for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (RO1AN1826)” for details.

RO1AN6130ES0150 Rev.1.50 Page 36 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

2.15 “for”, “while” and “do while” statements

LT

In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example:
/* WAIT LOOP */
while (0 == SYSTEM.OSCOVFEFSR.BIT.PLOVF)
{
/* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example:
/* Initialize reference counters to 0. */
/* WAIT LOOP */
for (i = 0; i < BSP _REG PROTECT TOTAL ITEMS; i++)
{
g _protect counters[i] = 0;

}

do while statement example:
/* Reset completion waiting */

do
{
reg = phy read(ether channel, PHY REG CONTROL) ;
count++;
} while ((reg & PHY CONTROL RESET) && (count < ETHER CFG PHY DELAY RESET)); /*

WAIT LOOP */

RO1AN6130ES0150 Rev.1.50 Page 37 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

3. API Functions

The API is a set of functions that allow you to

use CAN FD without having to commit attention to all the

details of setting up the CAN FD peripheral, to be able to easily have your application communicate with

other nodes on the network.

CAN FD configuration and communication are accomplished via the CAN FD SFR (Special Function
Register) Registers described in the MCU’s HW manual. As the registers in the CAN FD peripheral must be
configured and read in the proper sequence to achieve useful communication, a CAN FD API greatly
simplifies this. The API takes numerous tedious issues and does them for you.

After initializing the peripheral through the R_CANFD_Open function, all you need to do is use the
receive(R_CANFD_Read) and transmit(R_CANFD_Write) API calls, and regularly check for any CAN FD
error states. As well as you can close the CAN FD channel by the R_CANFD_Close function or switch to a
different test mode through the R_CANFD_ModeTransition function.

For details refer to below.

Summary

The following functions are included in this design:

Function Name

Description

R_CANFD_Open()

Open and configure the CAN FD channel for operation.

R_CANFD_Close()

Close the CAN FD channel.

R_CANFD_Write()

Write data to the CAN FD channel.

R_CANFD_Read()

Read data from a CAN FD Message Buffer or FIFO.

R_CANFD_ModeTransition()

Switch to a different channel, global or test mode.

R_CANFD_InfoGet()

Get CAN FD state and status information for the channel.

R_CANFD_CallbackSet()

Updates the user callback with the option to provide memory
for the callback argument structure.

Return Codes

API Return Codes

Description

FSP_SUCCESS

Action completed successfully.

FSP_ERR_IP_CHANNEL_NOT_PRESENT

Requested channel does not exist on this device.

FSP_ERR_ASSERTION

A critical assertion has failed.

FSP_ERR_CAN_INIT_FAILED

Hardware initialization failed.

FSP_ERR_CLOCK_INACTIVE

Inactive clock specified as system clock.

FSP_ERR_CAN_TRANSMIT_NOT_READY

Transmit in progress.

FSP_ERR_INVALID_ARGUMENT

Invalid input parameter.

FSP_ERR_INVALID_MODE

Unsupported or incorrect mode.

FSP_ERR_NOT_OPEN

Requested channel is not configured or API not open.

FSP_ERR_IN_USE

Channel/peripheral is running/busy.

FSP_ERR_ALREADY_OPEN

Requested channel is already open in a different
configuration.

FSP_ERR_NO_CALLBACK_MEMORY

Non-secure callback memory not provided for non-
secure callback.

FSP_ERR_BUFFER_EMPTY

No data available in buffer.

RO1AN6130ES0150 Rev.1.50
Oct.30.25

Page 38 of 64
RENESAS

RX Family CAN FD API Using Firmware Integration Technology

R_CANFD_Open

Open and configure the CAN FD channel for operation.

Format
fsp_err t R_CANFD_Open (can_ctrl_t * const p_api_ctrl,
can_cfg_t const * const p_cfg);

Parameters

p_api_ctrl
Pointer to the CAN control block. Must be declared by user.
Consult Section 2.11 Instance Structure for details.

p_cfg
Pointer to CAN configuration structure. All elements of this structure must be set by user.
Consult Section 2.11 Instance Structure for details.

Return Values

FSP_SUCCESS Channel opened successfully.

FSP_ERR _ALREADY OPEN Driver already open.

FSP_ERR _IN_USE Channel is already in use.

FSP_ERR _IP_CHANNEL NOT _PRESENT Channel does not exist on this MCU.

FSP_ERR _ASSERTION A required pointer was NULL.

FSP_ERR _CAN_INIT _FAILED The provided nominal or data bitrate is invalid.
FSP_ERR CLOCK INACTIVE CAN FD source clock is disabled (PLL or PLL2).
Properties

Prototyped in r_canfd.h
Implemented in r_canfd _rx.c

Description
Open and configure the CAN FD channel for operation.

Example
/* Initialize the CAN FD module */
R _CANFD Open (&g canfdO ctrl, &g canfd0 cfg)

RO1AN6130ES0150 Rev.1.50 Page 39 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

R_CANFD_Close

Close the CAN FD channel.

Format
fsp_err t R_CANFD_Close (can_ctrl_t *const p_api_ctrl);

Parameters
p_api_ctrl
Pointer to the CAN control block.
Consult Section 2.11 Instance Structure for details.

Return Values

FSP_SUCCESS Channel closed successfully.
FSP_ERR _NOT_OPEN Control block not open.
FSP_ERR ASSERTION Null pointer presented.
Properties

Prototyped in r_canfd.h
Implemented in r_canfd _rx.c

Description
Close the CAN FD channel.

Example
/* Close the CAN FD module */
R _CANFD Close (&g _canfd0 ctrl);

RO1AN6130ES0150 Rev.1.50
Oct.30.25 RENESAS

Page 40 of 64

RX Family CAN FD API Using Firmware Integration Technology

R_CANFD_Write
Write data to the CAN FD channel.

Format

fsp_err t R_CANFD_Write (can_ctrl_t *const p_api_ctrl,
uint32_t buffer,
can_frame_t *const p_frame);

Parameters
p_api_ctrl
Pointer to the CAN control block.
Consult Section 2.11 Instance Structure for details.
buffer
Buffer number (mailbox or message buffer) to write to.
p_frame
Pointer for frame of CAN ID, DLC, data and frame type to write.

Return Values

FSP_SUCCESS Operation succeeded.

FSP_ERR _NOT_OPEN Control block not open.

FSP_ERR _CAN_TRANSMIT_NOT_READY Transmit in progress, cannot write data at this time.
FSP_ERR_INVALID _ARGUMENT Data length or buffer number invalid.
FSP_ERR_INVALID _MODE An FD option was set on a non-FD frame.
FSP_ERR _ASSERTION Null pointer presented

Properties

Prototyped in r_canfd.h
Implemented in r_canfd _rx.c

Description
Write data to the CAN FD channel.

Example
#define CAN BUFFER NUMBER 0 (0U) //buffer number
can_frame t g canfd tx frame; //CAN FD transmit frame

/* Fill tx frame data that is to be sent*/
for (uintl6e t j = 0; j < SIZE 8; j++)
{
g _canfd tx frame.data[j] = (uint8 t) (3 + 1);
}

/* Send data on the bus */
err = R CANFD Write (&g canfd0 ctrl, CAN BUFFER NUMBER 0, &g canfd tx frame);

RO1AN6130ES0150 Rev.1.50 Page 41 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

R_CANFD_Read

Read data from a CAN FD Message Buffer or FIFO.

Format
fsp_err_ t R_CANFD_Read (can_ctrl_t *const p_api_ctrl, uint32_t buffer,

can_frame_t *const p_frame);

Parameters
p_api_ctrl
Pointer to the CAN control block.

Consult Section 2.11 Instance Structure for details.
buffer

Message buffer (number) to read from.
p_frame

Pointer to store the CAN ID, DLC, data and frame type.

Return Values

FSP_SUCCESS Operation succeeded.
FSP_ERR _NOT_OPEN Control block not open.
FSP_ERR_INVALID_ARGUMENT Buffer number invalid.
FSP_ERR _ASSERTION p_api_ctrl or p_frame is NULL.
FSP_ERR BUFFER_EMPTY Buffer or FIFO is empty.
Properties

Prototyped in r_canfd.h
Implemented in r_canfd _rx.c

Description
Read data from a CAN FD Message Buffer or FIFO.

Example
#define ZERO (0U)
can_frame_t g canfd rx frame;

/* Read the input frame received */
err = R_CANFD_Read (&g canfd0 ctrl, ZERO, &g canfd rx frame);

RO1AN6130ES0150 Rev.1.50
Oct.30.25 RENESAS

Page 42 of 64

RX Family CAN FD API Using Firmware Integration Technology

R_CANFD_ModeTransition

Switch to a different channel, global or test mode.

Format

fsp_err_ t R_CANFD_ModeTransition (can_ctrl_t *const p_api_ctrl,
can_operation_mode_t operation_mode,
can_test mode_t test mode);

Parameters
p_api_ctrl

Pointer to the CAN control block.

Consult Section 2.11 Instance Structure for details.
operation_mode

Destination CAN FD operation state.
test_mode

Destination CAN FD test state.

Return Values

FSP_SUCCESS Operation succeeded.

FSP_ERR _NOT _OPEN Control block not open.

FSP_ERR _ASSERTION Null pointer presented.

FSP_ERR _INVALID_MODE Cannot change to the requested mode from

the current global mode.

Properties
Prototyped in r_canfd.h
Implemented in r_canfd _rx.c

Description
Switch to a different channel, global or test mode.

Example
/* Switch to external loopback mode */

R CANFD ModeTransition (&g canfd0 ctrl, CAN OPERATION MODE NORMAL,
(can_test mode t) CAN TEST MODE LOOPBACK EXTERNAL) ;

RO1AN6130ES0150 Rev.1.50
Oct.30.25 RENESAS

Page 43 of 64

RX Family CAN FD API Using Firmware Integration Technology

R_CANFD_InfoGet

Get CAN FD state and status information for the channel.

fsp_err_ t R_CANFD_InfoGet (can_ctrl_t *const p_api_ctrl,

can_info_t *const p_info);

Parameters
p_api_ctrl
Handle for channel (pointer to channel control block)
Consult Section 2.11 Instance Structure for details.
p_info
Memory address to return channel specific data to.

Return Values

FSP_SUCCESS Operation succeeded.
FSP_ERR _NOT _OPEN Control block not open.
FSP_ERR _ASSERTION Null pointer presented.
Properties

Prototyped in r_canfd.h
Implemented in r_canfd _rx.c

Description
Get CAN FD state and status information for the channel.

Example
#define RESET VALUE (0x00)
/* Variable to store rx frame status info*/
can_info t can rx info =
{
.error code = RESET VALUE,
.error count receive = RESET VALUE,
.error count transmit = RESET VALUE,
.rx_fifo status = RESET VALUE,
.rx mb status = 1,
.status = RESET VALUE,
bi

/* Get CAN FD status*/
R _CANFD InfoGet (&g canfd0 ctrl, &can rx info);

RO1AN6130ES0150 Rev.1.50 Page 44 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

R_CANFD_CallbackSet

Updates the user callback with the option to provide memory for the callback argument structure.
Implements can_api_t::callbackSet..

Format

fsp_err t R_CANFD_CallbackSet (can_ctrl_t *const p_api_ctrl,
void(*)(can_callback _args_t *) p_callback,
void const *const p_context,
can_callback_args_t *const p_callback_memory);

Parameters
p_api_ctrl
Control block set in can_api_t::open call.
Consult Section 2.11 Instance Structure for details.
p_callback
Callback function to register
p_context
Pointer to send to callback function
p_callback_memory
Pointer to volatile memory where callback structure can be allocated. Callback
arguments allocated here are only valid during the callback.

Return Values

FSP_SUCCESS Callback updated successfully.

FSP_ERR _ASSERTION A required pointer is NULL.

FSP_ERR _NOT_OPEN The control block has not been opened.

FSP_ERR _NO_CALLBACK_MEMORY p_callback is non-secure and p_callback_memory is either

secure or NULL.

Properties
Prototyped in r_canfd.h
Implemented in r_canfd_rx.c

Description
Updates the user callback with the option to provide memory for the callback argument structure.

Example
/* Config callback function */
R _CANFD CallbackSet (&g canfd0 ctrl, canfd callback, NULL, NULL);

RO1AN6130ES0150 Rev.1.50 Page 45 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

Example

Basic Example

This is a basic example of minimal use of the CAN FD module in an application. It is implemented with
classic CAN. If have a new message coming, the program will read it. Or the User can press sw2 to send a
message to a CAN bus.

Note
It is recommended to use RX FIFOs for reception as there are no interrupts for RX message buffers
in this software.
#define CAN BUFFER NUMBER 0 (0U) //buffer number
#define ZERO (0U)
#define CAN ID (0x1100) //ID of transmit frame

#define CAN CLASSIC FRAME DATA BYTES (8U) //Data Length code for classic frame
#define SIZE 8 (8u)

extern can bit timing cfg t g canfd0 bit timing cfg; /* extern to change default
value */

can_frame t g canfd tx frame; //CAN FD transmit frame
can_frame_t g canfd rx frame;

#define RESET VALUE (0x00)

/* Variable to store rx frame status info*/
can_info t can rx info =
{
.error code = RESET VALUE,
.error count receive = RESET VALUE,
.error count transmit = RESET VALUE,
.rx_fifo status = RESET VALUE,
.rx mb status = 1,
.status = RESET VALUE,
}i
/* Acceptance filter array parameters
CANFD CFG AFL CHO RULE NUM = 1 */
/* Acceptance filter array parameters */
#define CANFD FILTER ID (0x00001000)

#define MASK_ID (0OxOFFFF000)
#define MASK ID MODE (1)
#define ZERO (0U) //Array Index value

const canfd afl entry t p canfd0 afl[CANFD CFG AFL CHO RULE NUM] =
{
/* Accept a message with Extended ID 0x1000-0x1FFF */
/* Specify the ID, ID type and frame type to accept. */
{
CANFD FILTER ID,
0,
CAN FRAME TYPE DATA,
CAN ID MODE EXTENDED,
MASK_ID,
0,
ZERO,
MASK ID MODE,
(canfd minimum dlc t) ZERO,
0,
CANFD RX MB 0,
0,
CANFD RX FIFO 0
b
}i

void main (void)

RO1AN6130ES0150 Rev.1.50 Page 46 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

{
g canfd0 extended cfg.p afl = p canfd0 afl;
/* Nominal rate: 1Mbps; DLL: 40M Hz. */
g canfd0 bit timing cfg.baud rate prescaler = 1;
g _canfd0 bit timing cfg.synchronization jump width = 1;
g canfd0 bit timing cfg.time segment 1 = 20;
g canfd0 bit timing cfg.time segment 2 = 19;

/* Fill tx frame data that is to be sent*/
for(uintlée t j = 0; j < SIZE 8; Jj++)
{
g canfd tx frame.data[j] = (uint8 t) (J + 1);
}

R BSP RegisterProtectDisable (BSP_REG PROTECT MPC) ;

/* Set CRX0 pin */
PORT3.PMR.BIT.B3 = 0U;
PORT3.PDR.BIT.B3 = 0U;
MPC.P33PFS.BYTE 0x10U;
PORT3.PMR.BIT.B3 = 1U;
PORT3.PDR.BIT.B3 = 0U;

/* Set CTXO0 pin */
PORT3.PMR.BIT.B2 = 0U;
PORT3.PDR.BIT.B2 = 0U;
MPC.P32PFS.BYTE = 0x10U;
PORT3.PMR.BIT.B2 = 1U;
PORT3.PDR.BIT.B2 = 1U;

R BSP RegisterProtectEnable (BSP_REG PROTECT MPC) ;

fsp err t err;
/* Initialize the API. */
err = R_CANFD_Open (&g canfd0 ctrl, &g canfd0 cfg);

while (1)

{
/* Check whether having the new message... */
can_read_operation () ;

/* press sw2 to send a message to a CAN bus */
read switches () ;

}

/* Call sw2 func() when press sw2 */
void sw2 func(void)
{
can_operation () ;
}/* end sw2 func() */

void can_ operation (void)

{

/* Update transmit frame parameters */

g canfd tx frame.id = CAN ID;

g canfd tx frame.id mode = CAN ID MODE EXTENDED;
g canfd tx frame.type = CAN FRAME TYPE DATA;

/* Classic CAN 8 bytes */
g canfd tx frame.data length code = CAN CLASSIC FRAME DATA BYTES;

RO1AN6130ES0150 Rev.1.50 Page 47 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

g canfd tx frame.options = ZERO;

/* Transmission of data over classic CAN frame */
can_write operation(g canfd tx frame);

}

static void can write operation(can frame t can transmit frame)
{
fsp err t err = FSP SUCCESS;

/* Transmit the data from buffer #0 with tx frame */
err = R CANFD Write (&g canfd0 ctrl, CAN BUFFER NUMBER O,
&can_ transmit frame);

}

void can read operation (void)
{
fsp err t err = FSP_SUCCESS;

/* Get the status information for CAN FD transmission */
err = R CANFD InfoGet (&g canfd0 ctrl, &can rx info);

/* Check if the data is received in FIFO */
if (can_rx info.rx mb status)
{
/* Read the input frame received */
err = R CANFD Read(&g canfdO ctrl, ZERO, &g canfd rx frame);

}
Flexible Data
This example demonstrates sending an FD message with bitrate switching (Nominal rate = 1Mbps, Data rate

= 8Mbps). If have a new message coming, the program will read it. Or the User can press switch 2 to send a
message to a CAN bus

#define CAN BUFFER NUMBER 0 (0U) //buffer number
#define ZERO (0U)

#define CAN ID (0x1100) //ID of transmit frame

#define CAN FD DATA LENGTH CODE (640) //Data Length code for classic frame
#define SIZE 64 (64u)

extern can bit timing cfg t g canfd0 bit timing cfg; /* extern to change default
value */

extern can bit timing cfg t g canfd0 data timing cfg; /* extern to change
default value */

can_ frame t g canfd tx frame; //CAN FD transmit frame

can frame t g canfd rx frame;

#define RESET VALUE (0x00)

/* Variable to store rx frame status info*/
can info t can rx info =
{
.error code = RESET VALUE,
.error count receive = RESET VALUE,
.error count transmit = RESET VALUE,
.rx fifo status = RESET VALUE,
.rx mb status = 1,
.status = RESET VALUE,
b
/* Acceptance filter array parameters
CANFD CFG AFL CHO RULE NUM = 1 */

RO1AN6130ES0150 Rev.1.50 Page 48 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

/* Acceptance filter array parameters */
#define CANFD FILTER ID (0x00001000)

#define MASK ID (OxOFFFF000)
#define MASK ID MODE (1)
#define ZERO (0U) //Array Index value

const canfd afl entry t p canfd0 afl[CANFD CFG AFL CHO RULE NUM] =
{
/* Accept a message with Extended ID 0x1000-0x1FFF */
/* Specify the ID, ID type and frame type to accept. */
{
CANFD FILTER ID,
0,
CAN_FRAME TYPE DATA,
CAN ID MODE EXTENDED,
MASK_1ID,
0,
ZERO,
MASK_ID MODE,
(canfd minimum dlc_t) ZERO,
0,
CANFD RX MB O,
0,
CANFD RX FIFO 0
}y
}i

void main (void)
{
g canfd0 extended cfg.p afl = p canfd0 afl;
/* Nominal rate: 1Mbps; DLL: 40M Hz. */
g canfd0 bit timing cfg.baud rate prescaler = 1;
g canfd0 bit timing cfg.synchronization jump width = 1;
g canfd0 bit timing cfg.time segment 1 = 20;
g _canfd0 bit timing cfg.time segment 2 = 19;

/* Data rate: 8Mbps; DLL: 40M Hz. */

g _canfd0 data timing cfg.baud rate prescaler = 1;

g canfd0 data timing cfg.synchronization jump width = 1;
g _canfd0 data timing cfg.time segment 1 = 2;

g _canfd0 data timing cfg.time segment 2 = 2;

/* Fill tx frame data that is to be sent*/
for(uintlée t j = 0; j < SIZE 64; J++)
{
g _canfd tx frame.datal[j] = (uint8 t) (j + 1);
}

R BSP RegisterProtectDisable (BSP_REG PROTECT MPC) ;

/* Set CRX0 pin */
PORT3.PMR.BIT.B3 = 0U;
PORT3.PDR.BIT.B3 = 0U;
MPC.P33PFS.BYTE = 0x10U;
PORT3.PMR.BIT.B3 = 1U;
PORT3.PDR.BIT.B3 = 0U;

/* Set CTX0 pin */
PORT3.PMR.BIT.B2 = 0U;
PORT3.PDR.BIT.B2 0U;
MPC.P32PFS.BYTE = 0x10U;
PORT3.PMR.BIT.B2 = 1U;

RO1AN6130ES0150 Rev.1.50 Page 49 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

PORT3.PDR.BIT.B2 = 1U;
R BSP RegisterProtectEnable (BSP_REG PROTECT MPC) ;

fsp err t err;
/* Initialize the API. */
err = R CANFD Open (&g canfdO ctrl, &g canfd0 cfg);

while (1)

{
/* Check whether having the new message... */
can_read operation();

/* press sw2 to send a message to a CAN bus */
read switches () ;

}

/* Call sw2 func() when press sw2 */
void sw2 func(void)
{
canfd operation();
}/* end sw2 func() */

void canfd operation (void)

{

/* Update transmit frame parameters */

g canfd tx frame.id = CAN ID;

g _canfd tx frame.id mode = CAN ID MODE EXTENDED;
g canfd tx frame.type = CAN FRAME TYPE DATA;

/* FD CAN 64bytes*/
g canfd tx frame.data length code = CAN FD DATA LENGTH CODE;
g _canfd tx frame.options = CANFD FRAME OPTION FD | CANFD FRAME OPTION BRS;

/* Transmission of data over FD CAN frame */
can write operation (g canfd tx frame);

}

void can_read operation (void)

{
fsp err t err = FSP_SUCCESS;

/* Get the status information for CAN FD transmission */
err = R_CANFD_InfoGet (&g canfd0 ctrl, s&can_rx_info) ;

/* Check if the data is received in FIFO */
if (can_rx info.rx mb status)
{
/* Read the input frame received */
err = R CANFD Read(&g canfdO ctrl, ZERO, &g canfd rx frame);
}
}

static void can write operation(can frame t can transmit frame)

{
fsp err t err = FSP _SUCCESS;

/* Transmit the data from buffer #0 with tx frame */
err = R CANFD Write (&g canfd0 ctrl, CAN BUFFER NUMBER O,

&can_ transmit frame);

}

RO1AN6130ES0150 Rev.1.50 Page 50 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

4. Pin Setting

To use the CAN FD FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document.

Please perform the pin setting after calling the R_CANFD_Open function.

When performing the pin setting in the e? studio, the Pin Setting feature of the Smart Configurator can be
used. When using the Pin Setting feature, a source file is generated according to the option selected in the
Pin Setting window in the Smart Configurator. Then pins are configured by calling the function defined in the
source file. Refer to Table 4.1 Function Output by the Smart Configurator for details.

Table 4.1 Function Output by the Smart Configurator

MCU Used Function to be Output Remarks
All MCUs R_CANFD_PinSet_ CANFDx x: Channel number
RO1AN6130ES0150 Rev.1.50 Page 51 of 64

Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

5. Demo Projects

Demo projects include function main() that utilizes the FIT module and its dependent modules (e.g. r_bsp).
This FIT module includes the following demo projects.

5.1 Adding a Demo to a Workspace

Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click
“Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

The demo CAN FD application code is in the ../src directory, namely in files main.c and switches.c.

To run the demo, import the e2studio project archive r01an6130esxxxx-rx-canfd.zip into e? studio as
explained below.

5.1.1 Import and Debug Project with e? studio
(a) New workspace

Create an empty folder, where you want the workspace.
Start e? studio, and point to above folder when e? studio asks what workspace to open.
Click Workbench icon (bottom right in blue intro-screen).
Continue with next step below.
(b) Existing workspace
Select Import.
Select General => Existing Projects into workspace. ("Create new projects from an archive file or directory.")
If the code is a zipped, previously exported archive:
Browse to the archive zip-file and select it.

If the code is an e? studio project directory with source code (with a .project file):
Browse to the root directory of the project. (The folder containing the “.project” file.) Make sure to check
box "Copy project to workspace" if you want the code to be local to the workspace (where the .metadata
directory is).

Click "Finish".

You have now imported this project into the workspace. You can go ahead and import other projects into the
same workspace.

(c) Run the code

Create a debug session, download and run the code.

5.1.2 Run Demo

Included in the package is a demonstration of receiving and transmitting data at Nominal and Data Bit Rate
of 1 Mbps and 5 Mbps respectively.

The demo can physically be set up a few different ways:
Program two boards and connect them together over the CAN bus.
Use a CAN FD bus monitor, e.g. Kvaser Leaf Pro HS v2, to send and receive frames to/from the demo.

With CAN_TEST_MODE_LOOPBACK_INTERNAL is used, communication is internally and no external bus
is needed

(a) Operation

The demo transmits and receives frames with the default TX-ID as CAN_ID and RX_ID as
CANFD_FILTER _ID. The demo starts up by setting callback function to canfd0_callback, and initializing

RO1AN6130ES0150 Rev.1.50 Page 52 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

necessary I/O pins of the CAN FD module. Then R_CANFD_Open is called to open the CAN FD module. If it
is opened successfully, the program runs into a loop which checks whether there are new messages or
which switch is pressed.

(b) User action

Press SW1 to transmit and receive a message in the internal loop-back test mode.

Press SW2 to send a message to the CAN FD analyzer or other board.

5.2 The Renesas Debug Console

Enabling trace data from the E1/E20 to the e? studio Debug Console allows you to output data from your
application in real-time. This means you have the ability to use printf() statements in C to send trace strings
to the standard output. Standard output will in this case be the E1/E20 debug register.

To use this set BSP_CFG_10_LIB_ENABLE to 1 in ../r_config/r_bsp_config.h.

The macro should automatically enable code in order to make the Debug Console available, but there are
certain actions you must take.

1.

Make sure INIT_IOLIB() is called. See resetprog.c.

2. The code in lowlvl.c should contain functions charput and charget so that E1/E20 debug registers
are used for the lowest level I/O processing. charput for example must contain
/* Wait for transmit buffer to be empty */
while (0 != (E1 DBG PORT.DBGSTAT & TXFLOEN));
3. Include <stdio.h> in any files where you wish to use printf-statements.
To any file where printf() is called, add
#if BSP CFG IO LIB ENABLE
#include <stdio.h>
#endif
4. In e? studio, depending on version, it may be necessary to add the Debug Console window by
clicking on both icons “1/0” and “Pin Console” as shown below. Both must be on so the print
buffer in E1/E20 can be emptied and not block code execution.
x| Hl)EFE2~s-=8
PH1Ccn5ﬂE|
Figure 1. Buttons to control the Debug Console.
5. Press the I/O button for the console in e2 studio again if the console seems unresponsive. If nothing
is printed, press the Clear icon a few times. (The icon partially concealed by the red border.)
RO1AN6130ES0150 Rev.1.50 Page 53 of 64

Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

6. Test Modes

The CANFD module can be configured into test modes to allow testing of certain features. These features
are provided only for special purposes and care must be taken when configuring the CANFD module in the
test modes.
The test modes can be broadly split into two groups:

e Channel specific test modes

e Global test mode (the current source code does not support global test mode)

6.1 Channel Specific Test Mode

CAN FD channel can be configured into following test modes:
- Basic test mode
Listen-only mode
External loop back mode
Internal loop back mode
Restricted operation mode (the current source code does not support this test mode)
Use R_CANFD_ModeTransition to switch to a test mode.

6.1.1 Basic test mode

The basic test mode should be used when a particular test setting needs to be enabled other than when in
listen-only and self-test modes.

6.1.2 Listen Only mode = Bus Monitoring

In Listen Only mode, or Bus Monitoring, the node is quiet. A node in Listen Only mode will not acknowledge
messages or send Error frames etc. This enables you to test your node without affecting bus traffic.

Caution:

1. Do not transmit frames from the Listen Only node. That is not a correct behavior, and the CAN FD
module has not been designed for this.

2. If you only have two nodes on the network and one of them is Listen Only, the other node will not get
any ACKs and will keep trying to send over and over.

3. Mark entering listen only mode clearly in your code, so you remember to disable Listen Only mode
again.

RO1AN6130ES0150 Rev.1.50 Page 54 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

“Normal” node: ACK is output,
or, if communication error,
Error frame is output instead.

Node transmitting frame

Bus node - Bus node
e v o
Bus node &= Transmitting Bus node Transmitting
- node > Moda
F 3
Node in _ Mode in
Listen Only = Listen Only
mode 4 mode
No ACK or Error frame

sent by
Listen Only node!

Figure 2. Listen-only mode node: Do not send ACK or error message

A node in Listen Only mode will not acknowledge messages or send Error frames etc.

Listen Only is useful for bringing up a new node that has been added to an existing CAN bus. The mode can
be used for a recently connected node’s application to ensure that frames have properly been received
before going live.

A common usage is to detect a bus’s communication speed before letting the new unit go ‘live’. Listen Only
is not a part of the Bosch CAN specification, but is required by 1ISO-11898 for bitrate detection.

6.1.3 Loopback

With loopback modes, the node will itself also receive any messages it sends if a buffer is configured to
receive the same message. This can be useful for testing an application, or self-diagnosis during application
debug.

6.1.3.1 Internal loopback mode - Test node without CAN bus

Internal Loopback mode, or Self-Test mode, allows you to communicate via the CAN FD buffers without
connecting to a bus. The node acknowledges its own data with the ACK bit in the data frame. The node also
stores its own transmitted messages into a receive buffer if it was configured for that CAN FD ID. This is
normally not possible.

RO1AN6130ES0150 Rev.1.50 Page 55 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

CAN bus

Node can
acknowledge its own data, and

Message transmission

receive sent data to another mailbox
‘ el without CAN bus (Communicating node
not necessary)
‘ Receive slot

Same ID set for transmit
and receive slot

Figure 3. CAN internal loopback mode

CAN Internal Loopback mode let you test the functionality of a node without having a CAN bus connected.

Internal Loopback can be convenient when testing as this mode allows the CAN FD controller to run without
sending CAN FD errors due to no ACKs received when the node is alone on the bus, it acknowledges
transmitted frames itself.

RO1AN6130ES0150 Rev.1.50 Page 56 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

6.1.3.2 External loopback mode - Test node on bus

External Loopback is like Internal Loopback with the differences that there must be a CAN bus connected to
the node, and that the messages is also transmitted onto the bus. Just like internal loopback, a sent
message is acknowledged by the node itself so the node can be alone on the bus. This is an advantage as
nodes can be tested standalone.

CAN bus

Node can
acknowledge its own data, and
receive sent data to another mailbox
via CAN bus (Communicating node
not necessary)

Message transmission

‘ Transmit slot | >

‘ Receive slot |

Same ID set for transmit
and receive slot

Figure 4. External loopback: Send a message over the CAN bus and receive the message on the
same node

The message is transmitted onto the CAN bus and can be received back on the same node. This is
convenient when testing code and when a node is alone on the bus.

6.1.4 Restricted operation
The current source code does not support restricted operation mode.

6.2 Global test mode enable register

The current source code does not support global test mode.

RO1AN6130ES0150 Rev.1.50 Page 57 of 64
Oct.30.25 RENESAS

RX Family

CAN FD API Using Firmware Integration Technology

7. Appendices

7.1 Confirmed Operation Environment
This section describes confirmed operation environment for the CAN FD FIT module.

Table 7.1 Confirmed Operation Environment (Rev.1.50)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2025-10
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.1.50

Board used

Custom board (Target device: R5F526 TAEXNH)

RO1AN6130ES0150 Rev.1.50
Oct.30.25

Page 58 of 64
RENESAS

RX Family

CAN FD API Using Firmware Integration Technology

Table 7.2 Confirmed Operation Environment (Rev.1.41)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.1.41

Board used

Table 7.3 Confirmed Operation Environment (Rev.1.40)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 2024-07
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202405
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.1.40

Board used

Evaluation Kit for RX261 (product No.: RTK5EK2610S00011BJ)

RO1AN6130ES0150 Rev.1.50

Oct.30.25

Page 59 of 64
RENESAS

RX Family

CAN FD API Using Firmware Integration Technology

Table 7.4 Confirmed Operation Environment (Rev.1.31)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio Version 23.10.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202305
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.1.31

Board used

Table 7.5 Confirmed Operation Environment (Rev.1.30)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 22.10.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.1.30

Board used

Renesas Flexible Motor Control Kit for RX26T (Part Number:
RTKOEMXE70S00020BJ)

RO1AN6130ES0150 Rev.1.50

Oct.30.25

Page 60 of 64
RENESAS

RX Family

CAN FD API Using Firmware Integration Technology

Table 7.6 Confirmed Operation Environment (Rev.1.20)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio Version 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.1.20

Board used

Renesas Starter Kit for RX660 (product number. RTK556609HC10000BJ)

Table 7.7 Confirmed Operation Environment (Rev.1.10)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.1.10

Board used

Renesas Starter Kit for RX660 (product number. RTK556609HC10000BJ)

RO1AN6130ES0150 Rev.1.50

Oct.30.25

Page 61 of 64
RENESAS

RX Family

CAN FD API Using Firmware Integration Technology

Table 7.8 Confirmed Operation Environment (Rev.1.00)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio Version 22.4.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.1.00

Board used

Renesas Starter Kit for RX660 (product number. RTK556609HC10000BJ)

RO1AN6130ES0150 Rev.1.50
Oct.30.25

Page 62 of 64
RENESAS

RX Family CAN FD API Using Firmware Integration Technology

7.2 Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then | got the error: Could not open source file
“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

® Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(RO1AN1826)”
° Using e? studio:

Application note “Adding Firmware Integration Technology Modules to Projects (RO1AN1723)"

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (RO1AN1685)”.

(2) Q: | have added the FIT module to the project and built it. Then | got the error: This MCU is not supported
by the current r_canfd_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then | got an error for when the configuration
setting is wrong.

A: The setting in the file “r_canfd_rx_config.h” may be wrong. Check the file “r_canfd_rx_config.h”. If there
is a wrong setting, set the correct value for that. Refer to 2.9 Configuration for details.

Related Technical Updates
This module reflects the content of the following technical updates.

None

RO1AN6130ES0150 Rev.1.50 Page 63 of 64
Oct.30.25 RENESAS

RX Family CAN FD API Using Firmware Integration Technology

Revision History

Description
Rev. Date Page Summary
1.00 May.31.2022 — First release.
1.10 Jun.28.2022 52,53 Updated demo projects.
58 7.1 Confirmed Operation Environment:

Added Table for Rev.1.10
Program Updated demo projects.

1.20 Jan.06.2023 58 7.1 Confirmed Operation Environment:
Added Table for Rev.1.20
Program Fixed TXRF flag not cleared in the function
canfd_channel_tx_isr().

1.30 Mar.31.2023 1 Added support for RX26T.
35 Added code size corresponding to RX26T.
58 7.1 Confirmed Operation Environment:

Added Table for Rev.1.30
Program Added support for RX26T.

1.31 Dec.13.2023 34, 49 Deleted the description of FIT configurator from "2.14 Adding
the CAN FD FIT Module to Your Project", "4. Pin Settings".
56 7.1 Confirmed Operation Environment:

Added Table for Rev.1.31.
Program Added WAIT_LOOP comments.

1.40 Jun.28.2024 1 Added support for RX261.
35 Added code size corresponding to RX261.
58 7.1 Confirmed Operation Environment:

Added Table for Rev.1.40
Program Added support for RX261.

1.41 Mar.15.2025 58 7.1 Confirmed Operation Environment:
Added Table for Rev.1.41
Program Updated FIT Disclaimer and Copyright.

1.50 Oct.30.2025 58 7.1 Confirmed Operation Environment:
Added Table for Rev.1.50
Program Removed support for RX26T-32 Pins.
Removed doc folder and updated .rcpc file in FITDemos.

RO1AN6130ES0150 Rev.1.50 Page 64 of 64
Oct.30.25 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LS|, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between ViL (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

1.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Basics
	1.1.1 Flexible Data (FD)
	1.1.2 Bit Rate Calculation
	1.1.3 Error Handing
	1.1.4 DLC Checking
	1.1.5 FD Payload Overflow

	1.2 Communication Layers
	1.3 Using the FIT CAN FD module
	1.3.1 Using FIT CAN FD module in C++ project

	1.4 Physical Connection
	1.5 The CAN FD Buffer

	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.2.1 Peripheral Required
	2.2.2 Other Peripherals Used

	2.3 Software Requirements
	2.4 Limitations
	2.4.1 RAM Location Limitations

	2.5 Supported Toolchain
	2.6 Interrupt Vector
	2.7 Header Files
	2.8 Integer Types
	2.9 Configuration
	2.10 Interfaces and Instances
	2.10.1 CAN interface
	2.10.2 CAN FD instance

	2.11 Instance Structure
	2.12 Code Size
	2.13 Callback Functions
	2.14 Adding the CAN FD FIT Module to Your Project
	2.15 “for”, “while” and “do while” statements

	3. API Functions
	Summary
	Return Codes
	R_CANFD_Open
	R_CANFD_Close
	R_CANFD_Write
	R_CANFD_Read
	R_CANFD_ModeTransition
	R_CANFD_InfoGet
	R_CANFD_CallbackSet
	Example

	4. Pin Setting
	5. Demo Projects
	5.1 Adding a Demo to a Workspace
	5.1.1 Import and Debug Project with e2 studio
	5.1.2 Run Demo

	5.2 The Renesas Debug Console

	6. Test Modes
	6.1 Channel Specific Test Mode
	6.1.1 Basic test mode
	6.1.2 Listen Only mode = Bus Monitoring
	6.1.3 Loopback
	6.1.4 Restricted operation

	6.2 Global test mode enable register

	7. Appendices
	7.1 Confirmed Operation Environment
	7.2 Troubleshooting

	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

