REN ESAS Application Note

RL78/G24
Flexible Application Accelerator (FAA) Tool Guide: e2 studio

Introduction

This guide describes the options that must be set for the build process and debugger of the flexible
application accelerator (FAA) contained in RL78/G24. It also describes how to operate the debugger.

Target Device
RL78/G24
RL78/G24 Fast Prototyping Board

Chapter Composition
Chapter 1: Overview of Flexible Application Accelerator (FAA)

This chapter describes the overview of the flexible application accelerator (FAA) and program creation.

Chapter 2: Overview of build process and debugger of Flexible Application Accelerator (FAA)

This chapter describes the new project creation procedure and the options that must be set for the build
process and debugger of the flexible application accelerator (FAA). It also describes how to operate the
debugger.

Chapter 3: Debugger operation using sample project

This chapter describes debugging operations for FAA programs using the sample code and the sample
script.

Related Documents
RL78/G24 User’'s Manual: Hardware (RO1UH0961)
RL78/G24 Fast Prototyping Board User’'s Manual (R20UT5091)

RO1AN7095EJ0100 Rev.1.00 Page 1 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

Contents

(P O 1YY 4V 11 R 4
1.1 Flexible Application ACCEIerator (FAA) ... e e e e e e e e e s s e saaraareaae s 4
1.2 Internal Memory SPAce OFf FAA .. ... et e e e e e e e e e e e e st ae e e e e e s s e anaraaeeeaeeas 4
1.3 Program fOr RL78/G24 ...ttt e e e e et e e e e e e e et e e e e e e e e s anbaaeeeaeessesansranneaaeeas 5
1.3 Program STIUCIUIE .........eiii ettt ettt e e e ettt e e e aab et e e e aabe e e e e aabeeeesanbeeeeeans 5
1.3.2 Transfer of Program and Data for FAA ... e e e 5
R TR N o Y N o o[- o TR TSP PTPPPOTPRPNS 6
1.3.4 Build Process and Debug Of FAA Program ...........cooiiiiiiiiiee et a e et e e e e e s e snnraaneaae s 6
2. Option Setting and OPEratioN .........ccccoiiiiiiieieice e e e e e e e e e 7
2.1 Operating ENVIFONMENT ...t a e e bt e e e e bt e s abee e e e eanees 7
D o (o] [=Ter 014 Y- 4 To] o SRR 7
DZ20C T Vo (o [1a T N e o T =T o o T 12
D22 Tt B Yo (o [1a o [ oy oW AN 7] 131 0o ) 0 1= | SO PSPPI 12
2.3.2 Overview of FAA library’s File StruCUIe ..o e 21
2.4 Build TOOI OPtioN SEHNG.......eieiiiiiiiee ittt e et e e e et e e e e s anbeeeeean 22
241  FAA ASSEMDIET OPLIONS ..ottt e e e e e et e et e e e e e e e eeeeea e e e e e annteeeeeaaeeeaannrnneeaaeean 23
D W1 o1 (=Y O] o] (1] o 1= PRSPPI 25
D 3G T o T = o T8 = T oy 27
2.5 Debug Tool Option SEHING .......cccuiiiiiiee e e e e e e e e e e e s e araeaaee s 29
b T I B = o1 To o =T @ o) o] o - T PP PUPPPTPPPSRN 30
DA T | - 1 (0 o TN @ o] 1o o - SRR 30
2.5.3  Program DOWNIOAA. .......ccooiuiiiiiiiiiie ittt e et e e et e e et e e e e e aabe e e e aanbeeeean 33
2.6 FAA PIrogram DebUQG .....ccoo oo 34
D22 TR I 19T o T8 o 1= o 1Y 34
2.6.2  SOUICE File DISPIAY ....uvvveiiieeiiiiiitieie ettt e e e e e e e e et e e e e e e e e se b s beeeeaeesesasbaaeeeaeeeseannsraneaaaeeas 35
D2 0 T oo (o o J SR 36
DA = == do o | | USSR 37
DGR T 1Y (=10 T Y2 SO PUPRPRPPPRRN 38
DI T Y 401 oo I (=T o =Y ) PRSPPI 40
D2 TR A =T 13 = 41
DGR T SO UPEPUPRRR 41
3. SAMPIE PrOJECE ... e e i ———— 43
K Tt B T o 1= Yol 0= o] [ OO PPPPRN 43
3.1.1  SPECIfiICAtION OVEIVIEW ...ttt e e et e e e e e e st e e e e e e e s et sbeeeeeaeeesaatsreeeeaeeeaannes 43
Tt B @ T o T=T = 1 o T @ =T V1SS 44
3.2  Operation Confirmation CONAItIONS ..........eiiiiiiie et e e e e e e e e e e e e e ennes 45
3.3 Hardware DESCIIPLION .....coi et e ettt e e e e ettt et e e e e e e ettt e e e e e e e e e eneeeeeeae e e e nnnreeeaeeeaaannes 46
3.3.1  Example of Hardware Configuration ...............coiioiiiiiiiiii i e e e e e e st e e e e e e e e 46
RO1AN7095EJ0100 Rev.1.00 Page 2 of 68

Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

K T I 11 e U LYo I TSRS 46
3.4 SOftWAre DESCIIPLION ... ettt e oottt et e e e e e e et e e e e e e e e e s eneeeeeaaeeeaanrneeeeeaeeaaannes 47
3.4.1  Smart Configurator SEHING .........cooiiiii e 47
K Sy g B O o TSRS 47
R I V£ =Y o o OO PPPRRN 48
R I O 00 44 o Yo ] 1= o | USRI 48
K ] [0 [ ] 1 0[BT 51
3.4.3  Option Byte SettiNgS ....ccoiiiiiiiiiiie e 51
3.4.4  List Of CONSIANTS ...ttt et e e e e e e ettt e e e e e e e e e neeeeaaae e e e nnnneeeeaaeaaaannes 52
K I 11 ) Y 2= 14 =T o[ SO PR 52
K T I 11 e ) U] T (o) 3 - SRR 53
3.4.7  FUNCHON SPECIfICALION .....coiiiieiee e e e e e e e e e e et e e e e e e e e s nrareeeaaeeaaaanes 53
K S B o (o 11 Vo o = o PP OOTPPPPPPPN 54
R TR I |V = I 0T = USSR 54
3.4.8.2 r_Config_TKBO_end_count_interrupt FUNCLON ...... ... 55
R TR B oY o Fe Tt =TT o o PSPPSR 56
3.5  Sample Script SPECIfICALION.........uiiiiieiiee e e e e e e aaaeeaaaanes 57
3.5.1  SFR DISPIay OVEIVIEW .........eeiiiiiiiie ettt e e e e e ettt e e e e e s e st a e e e e e e e ss st sbeeeaaaeeesasrsreeeaaeeaaannes 57
3.5.2  OPEratioN OVEIVIEW.......cciiiiiiiiiieiie et e e ettt e e e e e e et e e e eeeesesasbeaeeaaeeesaaassteaeaaaeessnnnrsseeeaeeeaaasnes 58
3.5.3 LISt Of FUNCLIONS ...ttt e e e e et e e e e e e e e et eeee e e e e e s nneneeeeaaeaaaannes 60
T I 11 o) Y 2= 14 =T o[ SO PR 60
S TR N o1 g =T o USSR 61
TS G TS Tor | o gl =T (Yo UL (oo H OO UPPPPRN 63
G TR T A = = 11 oo (=1 o1 Lo I o] oT=1 =11 o] o -SSPt 64
3.5.8 Cautions When Using the Sample SCript..........ccooiiiiiiiii i e e 66
S T 1101 o1 [T 0o o [P 67
5. ReferenCe DOCUMENTS .......uuuiiiiiiiiiiiiiiiiiieiii s 67
REVISION HISTOIY ... et e e e e e e e e e e e e e e e e e s e eaaeas 68
RO1AN7095EJ0100 Rev.1.00 Page 3 of 68

Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio
1. Overview
1.1 Flexible Application Accelerator (FAA)

The flexible application accelerator (FAA) contained in RL78/G24 is a Renesas original application
accelerator with a Harvard architecture. It can execute 32-bit multiplication, addition, and subtraction in a
single cycle.

FAA can access some peripheral functions directly by the address bus select function. Operations by the
CPU and FAA can be combined to suit the application, it can improve operation efficiency of the system.

Figure 1-1

1.2

Image diagram of RL78/G24 FAA

RL78/G24

CPU

'

!
'

Serial

Timer

; '
O A

A/D

Internal Memory Space of FAA

When the FAA is in use, some of the RL78/G24's internal RAM is dedicated to the FAA.

Instruction Code Memory: Store the program for FAA
Data Memory: Store the data for FAA

Figure 1-2 Memory Map of the Instruction Code Memory and Data Memory

When the FAA is not in use (FAAEN =0) When the FAA is in use (FAAEN = 1)
FFFFFH FFFFFH
Special function registers (SFRs) Special fimetion registers (SFRs) Data Memor
258 bytes 256 bytes
FEFOOH FFFOOH Details
FFEFFH General-purpose registers FFEFFH (General-purposs registers FFEFFH User area
FFEEOH 32 bytes FFEEDH 32 bytes 3480 bytes
{dedicated area
FFEDFH FFEDFH EFO00H for the B TELCPL
Ciata area
FEFFFH 2043 bytes
{dedicated area
FES00H fog the FAA)
RAM RAM FETFFH Code area
12 Kbytes 12 Kbytes 4004 bytes
EDO00H {dedicated area
far the EAA]
FDTFFH User area
{for use by the ©CD and
lIpranies: dedicated ara for
FCFOOH FCFO0H FCFOOH | the RLTA CPU) 2304 byles
Data memory FCEFFH Mimar FCEFFH Miror
Space 43.75 Kbytes 43.75 Kbyles .
F2000H F2000H " Instruction Code
Memory
EFFFFH EFFFFH
Resenved Reserved
20000H H00H
1FFFFH Code flash memory IFFFFH Code flash memory
123 Kbytes 128 Kbytes
00000H 00000H
RO1AN7095EJ0100 Rev.1.00 Page 4 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

1.3 Program for RL78/G24

1.3.1 Program Structure

Programs for the CPU and programs for the FAA are coded in separate files. FAA programs use the FAA-
dedicated instruction sets. CPU programs and FAA programs are built together in an object file (load module
file) that can be executed in RL78/G24.

Figure 1-3 Program structure when FAA is in use

CPU program EAA program
source file source file

- (The extension is fixed as “.dsp”)

RL78/G24 program
Executable object file

Remark. For instruction sets for FAA, refer to the chapter for FAA in RL78/G24 User’'s Manual: Hardware
(RO1UH0961).

1.3.2 Transfer of Program and Data for FAA

An executable object file is written to the RL78/G24 code flash memory. However, FAA programs must be
placed in the instruction code memory and FAA data must be placed in the data memory. Therefore, before
executing an FAA program, the FAA program and data stored in the code flash memory must be transferred
to the instruction code memory and data memory, respectively.

Figure 1-4 Transfer of the program and data for FAA

‘When the FAA is in use (FAAEN = 1)
FFFFFH

Special function registers (SFRs)

256 bytes
FFFOOH Details
FFEFFH General-purpose registers FFEFFH User area
FFEEOH 32 bytes 3480 bytes
FFEDFH (dedicated area
EFO00H for the RLTE CFU)
Diata area
FEFFFH 2028 byes
(dedicated area
FEBO0OH for the FAA)
RAM FETFFH Code area
12 Kbytes 4008 bytes
dedicated area
FDa0aH for the EAR] 4
FOTFFH User area
{far yse by the OCD and
libranss: dedicated ap2a for
FCFOOH FCFOJH | the RL73 CPU) 2304 byles
FCEFFH Morror
43.75 Kbytes

F2000H

%_—f

re—————

Reserved
Transfer

20000H _/
IFFFFH Code fiash memony

128 Kbytes
O0000H

Remark. FAA component in the RL78 Smart Configurator provides API functions for transfer processing.

RO1AN7095EJ0100 Rev.1.00 Page 5 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

1.3.3 FAA Program
You can create an FAA program by either of the following ways:

® Use a provided FAA library according to the purpose. The library is provided in a source file in which
code cannot be changed. (FAA library of various function)

® Use a template file to code your own FAA program. (Template (Custom FAA library))
In both cases, add the FAA program to the program project by using the Smart Configurator (SC).

For details about how to use the Smart Configurator (SC) to output an FAA program file (library or template),
see 2.3 Adding FAA Program.

1.3.4 Build Process and Debug of FAA Program

To build and debug FAA programs, some options must be set up. This guide describes the options that must
be specified for the processing shown in Figure 1-5. It also describes how to use the debugger for debugging
FAA programs.

Note that this guide requires the use of FAA programs (libraries or templates) generated by the Smart
Configurator (SC).

Figure 1-5 Operating instruction in chapter 2 of this guide

Project creation

v

Adding FAA program

v

Build option setting,
Program build

v

Debug tool option setting,
Program download

v

Debugging FAA program

End

RO1AN7095EJ0100 Rev.1.00 Page 6 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2. Option Setting and Operation

This chapter explains the option settings and debugger operation required for building and debugging an
FAA program in the e2 studio environment.

For options that are not described in this guide, set them if necessary. For details about the options and
operations, see the help or documentation of e2 studio.

2.1 Operating Environment
This guide uses the following tools:

Table 2-1 Software tool

Integrated development Item version
environment
e2 studio e2 studio Manufactured by Renesas Electronics v2023-10
CC-RL Manufactured by Renesas Electronics V1.12.01

DSPASM FAA/GREEN_DSP Structured Assembler V1.04.02
Manufactured by Renesas Electronics

RL78 Smart Configurator Manufactured by Renesas | V1.8.0

Electronics
Table 2-2 Hardware tool
Board / Emulator Item
Board RL78/G24 Fast Prototyping Board Manufactured by Renesas Electronics
Emulator Nete? E2 emulator Lite Manufactured by Renesas Electronics
E2 emulator Manufactured by Renesas Electronics

Note1. When the debugger and the RL78/G24 Fast Prototyping Board are connected via COM port, the
emulator is not required.

2.2 Project Creation
Select the RL78/G24 product as the microcontroller to be used and create a program project.

Procedure:
1. Launch the e2 studio.

2.  Specify the workspace directory in the [e2 studio Launcher] dialog, and then click the [Launch].

Figure 2-1 e2 studio Launcher

&) & studio Launcher O X

Select a directory as workspace

e? studio uses the workspace directory to store its preferences and development
artifacts.

~ || | Browse...

Dgse this as the default and do not ask again

RO1AN7095EJ0100 Rev.1.00 Page 7 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3. Select the [File] menu -> [New] -> [C/C++ Project].

Figure 2-2

[File] menu -> [New] -> [C/C++ Project]

3 example - €% studio

File| Edit Source Refactor MNavigate Search Project RenesasViews Run Renesas Al Window Help

New Alt+Shift+N > | Renesas C/C++ Project >
Open File.. [c¥] Makefile Project with Existing Code
4 Open Projects from File System... | [t] C/C++ Project
Recent Files > ™ Project.
Close Editor Ctrl+W [e%] Cenvert to a C/C++ Project (Adds C/C++ Nature)
Close All Editors Ctrl+Shift+W &3 Source Folder
Save Ctrl+5 [ Folder
Save As... Source File

4. Select the [Renesas RL78] -> [Renesas CC-RL C/C++ Execution Project].in the [New C/C++ Project]
dialog, click the [Next].

Figure 2-3

[New C/C++ Project] dialog (Selecting the template)

Q New C/C++ Project

Templates for New C/C++ Project

All

CMake

Make

Renesas Debug
Renesas BA

Renesas RL78 m_-;é‘

3
CIST:]

LLVM for Renesas RL78 C/C++ Executable Project ~
A C/C++ Executable Project for Renesas RL78 using
LLVM for Renesas RL78 Toolchain.

LLVM for Renesas RL78 C/C++ Library Project
A G/C++ Library Project for Renesas RL78 using LLVM
for Renesas RL78 Toolchain.

G

Renesas CC-RL C/C++ Executable Project
A C/C++ Executable Praject for Renesas RL78 using the
CC-RL toolchain.

3
CIST:]

"’ < Back Finish Cancel

Renesas CC-RL C/C++ Library Project
A C/C++ Library Project for Renesas RL78 using the
CC-RL toolchain.

RO1AN7095EJ0100 Rev.1.00

Nov.14.23

RENESAS

Page 8 of 68



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

5. Select the [Renesas RL78] -> [Renesas CC-RL C/C++ Execution Project].in the [New C/C++ Project]
dialog, click the [Next].

Figure 2-4 [New C/C++ Project] dialog (Specifying the file name)

a8 O X

New Renesas CC-RL Executable Project

Mew Renesas CC-RL Executable Project

Project name: ‘sample1

Use default location
C¥work¥example¥samplel Browse...
Create Directory for Project

default
Working sets

[JAdd project to working sets New...

Select..

'?\ < Back Finish Cancel

6. Input “R7F101GLGxFB” at the [Target Device], click the [Next].
(Device name can be also selected from a list of device names by clicking [...].)

Figure 2-5 [New C/C++ Project] dialog (Selecting the target device)

@ o X

New Renesas CC-RL Executable Project

Select toolchain, device & debug settings

Toolchain Settings

Language: ®WC OC++
Toolchain: Renesas CC-RL =
Toolchain Version: |v1.12.01 ~
Manage Toolchains..
Device Settings Configurations
Target Board: .Custom ’: Create Hardware Debug Configuration

Download additional boards E2 Lite (RL78) ~
Target Devicel R7F101GLGXFB

[[] Create Debug Configuration

Unlock Devices..
e ———— RL78 Simulator v
Endian: |Little
Project Type: | Default [ Create Release Configuration
? < Back Finist Cancel
RO1AN7095EJ0100 Rev.1.00 Page 9 of 68

Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

7. Check the box of [Use Smart Configurator], click the [Finish].

Figure 2-6 [New C/C++ Project] dialog (Selecting the Smart Configurator)

e} O X

New R CC-RL Executable Project —

Select Coding Assistant settings

Smart Configurator is a single User Interface that combines the functionalities of Code Generator and RL78 SIS
Configurator which imports, configures and generates different types of drivers and middleware modules.
Smart Configurator encompasses unified clock configuration view, interrupt configuration view and pin
configuration view.

Hardware resources conflict in peripheral modules, interrupts and pins occurred in different types of drivers and
middleware modules will be notified.

(Smart Configurator is available only for the supported devices)

Application Code

se Smart Configurator

Use Peripheral Code Generator &

w
3
Software Components a ﬁ
Drivers
RTOS 2
N
-
o
-
=)
MCU Hardware
o <Back || Next> | Finish Cancel

8. Check the [Open Perspective] in the [Open Associate Perspective?] dialog. If the [Welcome] tab is
displayed at the top, click the [Hide] of the [Welcome] tab.

Figure 2-7 [Open Associate Perspective?] dialog

w Open Associated Perspective? *

Open the Smart Configurator perspective?

[] Remember my decision

Open Perspective No

Figure 2-8 [Welcome] tab

Welcome to e2 studio

RO1AN7095EJ0100 Rev.1.00 Page 10 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

9. The perspective of the Smart Configurator is displayed.

Figure 2-9 Smart Configurator perspective

Q example - sample1/sample.scfg - e* studio

File Edit Navigate Search Project RenesasViews Run Renesas Al Window Help

- O X

[-- Overview

Get an overview of the features
provided by Smart Configurator.

Videos

| S Q- Q iE ‘ Efc/C++ &7 Smart Configurator
{5 Proje.. =0 "-.fz; samplel.scfg X‘ =0 EMCU/MPU Pac.. X @) Developer Ass... = 0
= & 7 . . ) = =
< = Overview information GenerafiCode Genera;ke ort
1= samplel G n A | XX L »
la}
~ General Information @

s
Introduction to Smart

Configurator
Browse related videos

7~ What's New

Check out what's new in the
latest release.

Product Documentation
User manual and release notes

Application Notes
Tool news

e

Application Code

Software Components

Middleware &

Device Drivers

% )

MCU Hardware

Overview‘ Board | Clucks‘ System‘ Cumpanems‘ Pins‘ Interrupt|

» legend

RO1AN7095EJ0100 Rev.1.00
Nov.14.23

RENESAS

Page 11 of 68



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.3 Adding FAA Program
Use the Smart Configurator (SC) to add an FAA program (library or template) to your project.

This guide only describes the procedure for adding an FAA program, [Clock], [System] and [Voltage
detection] that need to be set in the CPU program. Please set other peripheral functions as appropriate to
suit your system.

2.3.1 Adding FAA Component

Procedure:
1. In the Smart Configurator (SC), click [Clock].

Figure 2-10 Smart Configurator: Selecting [Clock] tab

@ example - samplet/samplet.scfg - € studio

File Edit Nevigate Search Project RenesasViews Run RenesasAl Window Help

|9 -& - 45 - G~
{5 Proje.. x| = O ||&F samplelscfg X =0
== P - ic| =)
< N Overview information
S samplet Generate Code Generate Report
~
~ General Information @

Overview

Get an overview of the features

provided by Smart Configurator.
. Application Code
Videos )

Introduction to Smart
Confiqurator ; Soh.wa re Components

Browse relted videos ‘

What's New

Check out what's new in the
latest release.

Product Documentation MCU Hardware

User manual and release notes

Application Notes
Tool news

Overview BnardSystem Components| Pins| Interrupt

2. Set various clocks and the operation mode according to your system.

Figure 2-11  Smart Configurator: [Clock] tab

‘j;r‘rsample'\‘s:fg x ==
%l ]

Clocks configuration Generate Code Generate Report

.
.

Screén size can be adjusted by placing the mouse cursor on
the screen, holding down the "CTRL" key and moving the

mouse wheel up or down. =

Overview | Board| Clocks |System | Components | Pins | Interrupt

RO1AN7095EJ0100 Rev.1.00 Page 12 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3. Click the [System]. In the [System] tab, set the debug tool and functions to be used, and security ID.

Figure 2-12  Smart Configurator: [System] tab

1‘; samplelscfg X

System configuration

=

w On-chip debug setting
On-chip debug operation setting
O Unused
Emulator setting
Or2
Pseudo-RRM/DMM function setting
) Unused

Start/Stop function setting
@ Unused

Monitoring point function setting

Unused
Trace function setting
O Unused
Security ID setting
Use security ID
Security ID
Security ID authentication failure setting
() Do not erase flash memory data

@ Erase flash memory data

Overview | Board | Cloc

@) Use emulator

@ E2 Lite

@ Used

QO Used

Used

@ Used

(O COM Port

0x00000000000000000000

omponents | Pins| Interrupt

Generate Code Generate Report

]

~

4. Click the [Component]. Next, click the [Add component] to open the [New Component] dialog.

Figure 2-13  Smart Configurator: [Component] tab

Components B3 =S

o

~h Iz

5,‘; samplel.scfg

|t',fpe filter text |

~ = Startup
v = Generic

& rbsp

Software component configuratior

Config

Overview | Board | Clocks Syste

Q New Component

Software Component Selection

Select component from those available in list

Category All ~
Function |All b
Filter |

Components - Short Name Type Version
i B A/D Converter Code Generator 14.1

£ Board Support Packages. - v1.61 r_bsp RL78 Software In.. 161

8 Clock Output /Buzzer Output Controller Code Generator 140

-3 Comparator Code Generator 131

£ D/A Converter Code Generator 130

H# DALl Communication {Control devices) Code Generator 1.1.0

#8 DAL Communication (Control gear) Code Generator 1.1.0

## Data Transfer Controller Code Generator 13.1

EDelay Counter Code Generator 141

B8 Divider Function Code Generator ~ 14.1

H# Event Link Controller Code Generator 120

## External Event Counter Code Generator 141

#4 Flexible Application Accelerator FAA Configurator  1.0.0

#811C Communication (Master mode) Code Generator 151

## 1IC Communication (Slave mode) Code Generator 141

Elnput Capture Function Code Generator 120 v

T SO - S P S . aaa
Show only latest version
Description

The analog to digital (A/D) converter is function for converting analog inputs to digital signals.

Download RL78 Software

System modules

Configure general settings...

Cancel

RO1AN7095EJ0100 Rev.1.00

Nov.14.23

Page 13 of 68



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

5. Inthe [New Component] dialog, select [Voltage Detector] and click the [Next].

Figure 2-14  Select [Voltage Detector]

G New Component m} s ‘

Software Component Selection tb

Select compeonent from those available in list

Category All k4
Function |All ~
Filter

Components ; Short Name Type Version

# Phase Counting Mode Code Generator 1

# Ports Code Generator 1

8 Programmable Gain Amplifier Code Generator 1

B PWM Ontion Linit A Codle Generator 1

8 SPI (CSI) Communication Code Generator 1

# Square Wave Output Code Generator 1

# Three-phase PWM Output Code Generator 1

f# UART Communication Code Generatar 1
| # Violtage Detector Code Generator | 130 |

CoUE GETEraTor—

Show only latest version
Description

The voltage detector is a function that compares the supply voltage with the detection
voltage, and generates internal interrupt signal or internal reset signal.

Download RL78 Software Integration System modules

Configure general settings...

6. Select the [LVDO] at the [Resource]. Check the configuration name and click the [Finish]. (The
configuration name can be changed to any name.)

Figure 2-15  Select resource and check configuration name [Voltage Detector]

6 Mew Component ] X ‘

Add new configuration for selected component t}j

Voltage Detector

Configuration name: | |Konfig_LVDO

Resource: VDO ™

v T e

@ < Back

RO1AN7095EJ0100 Rev.1.00 Page 14 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

7. The Voltage Detector is added to the component tree. In the settings screen, set the Voltage Detector
according to your system.

Figure 2-16  Smart Configurator: [Voltage Detector] setting screen

% *samplel.scfg x ==
. . %l =
Software component configuration Generats Cade: Generte Report
Components i ed % = @ Configure @

Bg 1 - - Operation mode setting

type filter text (@ Reset mode

v & Startup When setting LVDO to reset mode, set the detection voltage of LVD1 higher than the detection voltage of LVDO.

v & Generic O Interrupt mode
@ rbsp t LVDO to interm etection vol

D indef
v (& Drivers W und

- @ T Level 3 (low)
« Config_LVDO

Voltage detection setting

Reset generation level(VLVDO) 1.65 > (W

165 )

< >

Overview Board |Clocks | System | Components | Pins| Interrupt

8. Open the [New Component] dialog again, select the [Flexible Application Accelerator] and click the
[Next].

Figure 2-17  Select [Flexible Application Accelerator]

EG New Component m} * ‘
Software Component Selection t&f
Select component from those available in list
Category |All v
Function |All ~
Filter
Components ! Short Name Type Version
# Data Transfer Controller Code Generator 1.
i Delay Counter Code Generator 1.
# Divider Function Code Generator 1.
£ Event Link Controller Code Generator 1
# Futernal Fuvent Counter Code Generator 1
[ # Flexible Application Accelerator s s o e L FALCOMY 00
T Communication (Master mode] Code Generator 1.
# 1IC Communication (Slave mode) Code Generator 1.
& Input Capture Function Code Generator 1.
& Input Pulse Interval/Period Measurem... Code Generator 1.
# Input Signal High-/Low-Level Width .. Code Generator 1.
# Interrupt Controller Code Generator 1.
| # Interval Timer Code Generator 1. ¥
Show only latest version
Description
[ The flexible application accelerator (FAA) is a processor that specializes in specific arithmetic
operations. It can execute 32-bit multiplication, addition, and subtraction in a single cycle.
Download RL78 Software Integration System modules
Configure general settings

RO1AN7095EJ0100 Rev.1.00 Page 15 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

9. Check the configuration name and click the [Finish]. (The configuration name can be changed to any

name.)

Figure 2-18 Select resource and check configuration name [Flexible Application Accelerator]

E New Component

Add new configuration for selected component

< |

#

Flexible Application A ar
Configuration name |Conf|g,FAA

@ < Back

Cancel

10. The Flexible Application Accelerator is added to the component tree.

Figure 2-19  Add [Flexible Application Accelerator] component

& *samplel.scfg X
Software component configuration

Components £ -| & Configure

[T -
v I .

1]

v [ Starup
~ (& Generic
@ 1_bsp
v (& Drivers
~ & Power management and re
& Config_LVDO
~ = Middleware

v = FAR
« Config_FAA

< >

Overview Board |Clocks |System Components Pins| Interrupt

type filter text Please download FAA data

= B8
4
Generate Code Generate Report

@

RO1AN7095EJ0100 Rev.1.00

Nov.14.23 RENESAS

Page 16 of 68



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

11. When the FAA component is used for the first time, the download of FAA libraries or template from the
configurator's dedicated server is needed. Click the [Update FAA modules] or the [Please download
FAA data] to download them. (Please use the [Update FAA modules] to check and obtain the latest
version libraries as well.)

Figure 2-20 Update/Download FAA module (Library)

o *samplel.scfg N EY
ic| =]
Generate Code Generate Report

(0]

Software component configuration

Components i i - = Config

Ep o1 -
i o

[v & Startup
~ & Generic
& rbsp
| ¥ & Drivers
~ = Power management and re
@« Config_LVDO
|~ &= Middleware
- FAA
« Config_FAA

| < >

Overview Board Clocks System Components Pins| Interrupt

12. Select the library you want to download and click the [Download]. In the disclaimer dialog that follows,
click the [Agree].

Figure 2-21  Download FAA module (Library)

[ O X ‘
RL78 FAA Modules Download Ny
Select the RL78 FAA modules for download H
Title Version Select All

e

Calculation 1.00 .
[ [Filter Library 1.00

Custom FAA Library 1.00

RL78/G24 Common FAA Module 100

Remark. The content displayed on the actual download screen will differ.

Table 2-3 FAA library

Title Overview
RL78/G24 Common The FAA program and data transfer routine described in 1.3.2 Transfer of
FAA Library Program and Data for FAA. When using FAA libraries/templates, this is always
downloaded.
Custom Library A template for writing FAA programs.
Others FAA library of various function
RO1AN7095EJ0100 Rev.1.00 Page 17 of 68

Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio
13. The downloaded libraries are added. (“RL78/G24 Common FAA Module” is not displayed.)

Figure 2-22  Added FAA library

& *sampleiscfg x

Software component configuration

Components T -| & Configure
N & = 2 Calculation % 1
type filter text *2 Custom Library Please download FAA data
~ & Startup
~ (& Generic
@ 1_bsp
v & Drivers

~ = Power management and re
@ Config_LVDO
~ (& Middleware
~ = FAA
@ Config_FAA

14. Check the box which libraries/functions you will actually use among the downloaded libraries. If there
are any setting items in the properties of the checked function, set them as appropriate.

Figure 2-23  Select/set FAA library

% *samplelscfg % —
%l

: . — |
Software component configuration Generate Code Generate Report

Components el - = Configure @
BE I TR w *3 Calculation N |
type filter text ~ Max Calculation
PfcPi Calculation \ Property yalue

v & Startup w *2 Custom Library N| « @ Configuration

v & Generic Template # FAA operation status checking Disabled

@ rbsp # Enable Max3 calculation Enalbed

~ & Drivers # Enable Max2 calculation Disabled v

~ = Power management and ra Disabled
« config ' Check the box which libraries/ Enalbed

v = Middleware  features to use.

~ = FAA
« Config FAA ; Set selectable items as necessary .
———— (reflected in the generated code) —
Enable Max2 calc 2200
If set to enabled, generating Max2 calculation APls.
< > < >

Overview Board Clocks System Components Pins| Interrupt

Remark. Two types of libraries and functions are provided: The subprocessor type, which can be used in
conjunction with other functions, and the standalone type, which cannot. Do not use the standalone
type simultaneously with any other library or function. When a standalone library or function is
selected, selecting another library or function causes the following message to appear on the
[Console] page.

Figure 2-24 Warning

B Console x bl @ "B-m>=0
Smart Configurator Output
Me4050006: Template feature is independent operation type. The independent type cannot be used in combination with other FAA feature.

RO1AN7095EJ0100 Rev.1.00 Page 18 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

15. Click the [Generate Code] to generate source files of FAA library and added peripheral functions.

Figure 2-25 Generate Code

% *samplel.scfg X =8
= - f D
Software component configuration e e e
Components PR ] = & Configure @
B 1 o w +3 Calculation % 1
type filter text | ¥ Max Calculation
ype filter text
PfcPi Calculation Property Value
v & Startup + * Custom Library ~ @ Configuration
v & Generic Template # FAA operation status checking Disabled
@ rbsp # Enable Max3 calculation Enalbed
v & Drivers # Enable Max2 calculation Disabled
~ = Power management and
@ Config_LVDO
~ & Middleware
~ = FAA
) < >
« Config_FAA
Calculate the maximum value.
< > |« »
Overview Board Clocks|System Components Pins| Interrupt

16. When the [Code Generating] dialog appears, click the [Continue].

Figure 2-26 [Code Generating] dialog

ﬁ_v_; # samplel.scfg

Software component configuration

Components 2 A — 4 Configure

ke W . Q Code Generating %

‘type filter text ‘

Configuration must be saved before generating code.
~ = Startup

w [= Generic Proceed with save and generate?
& rbsp
~ (= Drivers

[] Always save and generate without asking?
~ (= Power management and 1|

& Config VDO I Cancel
~ (= Middleware

T
v = FAA
.f Config_FAA

RO1AN7095EJ0100 Rev.1.00

Page 19 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

17. When the [Confirmation linker option change] dialog appears, click the [OK].

Figure 2-27  [Confirmation linker option change] dialog

Q Confirm linker option change X
Setting Old value New value
User option byte value E
RAM area without section
< >

Remark. Some items set in Smart Configurator's the [Clock], the [System] and the [Voltage Detector] (LVDO)
are reflected in option settings of the build tool (CC-RL).

18. Source files of the FAA library and added peripheral functions are generated and registered in the
project. The FAA library source files are shown below.

Figure 2-28 Registered FAA library source files

Q example - sample1/samplel.scfg - e studio
File Edit MNavigate Search Project Renesas Views
| &~ 5~ Q ~
o

I3 Project Explorer X =h= ]

v S samplel
mt Includes
v (£ src
¥ = smc_gen
~[ = Config_FAA
\£ Config_FAA_common.c

/ (Include FAA program and data

transfer routine)

RL78/G24 Common FAA Module
[n Config_FAA_common.h }

|n Config_FAA_common.inc

|£ Config_FAA_Max.c
[n Config_FAA_Max.h = Source files of selected FAA library
[ Config_FAA_srcdsp (.dsp: source file of FAA program)

=~ general

= 1_bsp
+ r_config

= r_pincfg
€ samplel.c

File with empty main()

Remark. For files other than the red frame above, refer to RL78 Smart Configurator User's Guide: e2 studio
(R20AN0579).

19. API functions to control the FAA are defined in the FAA library source file. Call these functions in the
CPU program to operate the FAA. Create a CPU program according to your system.

RO1AN7095EJ0100 Rev.1.00 Page 20 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.3.2 Overview of FAA library’s File Structure
The overview of the FAA library file structure is shown below.

Table 2-4 Overview of FAA library’s file structure

Library name Files Description
RL78/G24 Common <Config_ FAA>_common.c The transfer processing and common
FAA Library <Config_ FAA>_common.h functions to control the FAA are defined.

The transfer processing is executed within
the peripheral function initialization function
(R_Systeminit) generated by SC, so there
is no need to call it within the user program.

<Config_FAA>_common.inc SFRs for FAA are defined.
Custom FAA Library <Config_FAA>_src.dsp The template for the FAA source file.
Others <Config_FAA>_XXX.c/asm/s | FAA library of various functions.
<Config_FAA>_XXX.h /inc Refer to documents of each FAA library.

<Config_FAA>_src.dsp

<Config_FAA> is the configuration name set/checked in the step 9.
“XXX” depends on each library.

In the FAA source file (.dsp) provided by the FAA library and the template (Custom FAA Library), the
code section name is defined as FAACODE and the data section name is defined as FAADATA.

When using the Custom FAA Library, add your user code and data to the template. If you build the
template as is, an error will occur.

RO1AN7095EJ0100 Rev.1.00 Page 21 of 68
Nov.14.23 RENESAS



RL78/G24

2.4 Build Tool Option Setting

Before starting a build, set the build tool options required to build the FAA program. Some options are set by
the Smart Configurator (SC) in 2.3.1 Adding FAA Component. Manually set the options for which “No” is

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

indicated in the “Set by SC” column in Table 2-5.

For build tool options that are not described in this guide, set them if necessary.

How to open the build tool property:

Select the project in the project tree, and then select the [Project] menu -> [Property] or select the

[Property] from the context menu.

How to close the build tool property:

Select the [Apply and Close] to apply the changed option settings.

Figure 2-10 shows the build tool options required to build the FAA program.

Table 2-5 Setting options of build tool

Tool name Category ltem Description Sgth y
FAA Preprocessor | How to identify the exact Yes
Assembler | control macro
(-macro_exact)
Code Section name FAACODER,FAADATAR Yes
generation (-dsp_section)
Section to map form FAACODE=FAACODER,FAADATA=FAADATAR | Yes
ROM to RAM
(-rom)
Linker Section Layout sections Check No
automatically or
(-auto_section_layout) | yncheck
Sections (-start) FAACODE,FAADATA/XXXX No
XXXX (hexadecimal number without “0x”)
specifies an even address after address D8H
in the code flash memory.
Allocate FAA memory | Yes YesNotet
area automatically or
(-dsp_memory_area) | ygs(Automatically allocate sections by
striding FAA memory area) Note2
Output ROM to RAM mapped | FAACODE=FAACODER Yes
section FAADATA=FAADATAR
(-rom)

Note 1. SC sets “Yes”.
2. When the RAM size used by the user program (CPU program) is larger than 2304 bytes (the user
RAM area before the FAA code area on RAM), manually set it to "No". Also, when
“Yes(Automatically allocate sections by striding FAA memory area)” is specified, the setting "No" of
“Layout sections automatically” is ignored.

RO1AN7095EJ0100 Rev.1.00

Nov.14.23

Page 22 of 68

RENESAS




RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.41

FAA Assembler Options

Figure 2-29 FAA Assembler - Preprocessor control

C/C++ General
Project Natures
Project References

™ Preprocessor control

=2 Code generation

(= Miscellaneous
~ B Compiler

B Properties for sample O hat
type filter text Settings - -
Resource
A
Builders
w C/C++ Build Configuration: HardwareDebug [ Active ] = Manage Configurations...
Build Vanables
Environment
Logging ) Tool Settings | Toplchain| Device | #* Build Steps Build Artifact | a4 Binary Parsers | @ Ermror Parsers
———— :
SOTCTET Editor J( 5] Fﬂ:}\ Assembler First character of text macro (-text_macro) d
= Obje

Text macro definition (-define) (]

Renesas QE _ (@ User

Run/Debug Settings v & Common

Task Tags T“ cru %
Validation (2 Device

(= Output Code

(= Miscellaneous

(53 MISRA C Rule Check
(5 User

v (2 Source ) !
_\5 Language [l Allows to define text macro (-allow_text_macro_redefine)
(2 Object How 1o identify the macro (-macro_identify) exact v
& Optimization
= op Include file directory (-inc_dir) € Hl

${workspace_loc/${ProjNamel/src/smc_gen/Config

Table 2-6 FAA Assembler - Preprocessor control, Overview of settings

Category

ltem

Description

Preprocessor control | How to identify the maro

(-macro_exact)

Set “exact”.

A text macro is replaced in the FAA source file in units
of tokens. Unless Exact is specified, replacement is
performed even if the identifier to be replaced is

included in another identifier.

RO1AN7095EJ0100 Rev.1.00

Nov.14.23

Page 23 of 68

RENESAS




RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

Figure 2-30 FAA Assembler - Code Generation

Q Properties for samplel

Settings
Resource
Builders

w C/C++ Build

Build Vanables
Emvironment
Logging

Configuration: HardwareDebug [ Active ]

8 Tool Settings iqﬁlcham Device /# Build Steps

~ | Manage Configurations...

Build Artifact | |l Binary Parsers| € Error Parsers

oot Chain Editor

C/C++ General
Project Natures
Project References
Renesas Q
Run/Debug Settings
Task Tags

Validation

(! Object

=4 User
~ & Common
@& cru

~ & Compiler

T !
W FAA Assembler
& b | DIoCesso QOiro
. Code generation

(® Device
(& Miscellaneous

v (8 Source

DSP type (-dsp) RL78 DSP ~

DSP core version (-core_version) V2 care -
Start section of code (-code_section_start)
Start section of data (-data_section_start)

[JHandle Iabels as a global symbol (-label global)

Section name (-dsp_section) FAACODERFAADATAR

Section to map from ROM to RAM (-rom) |FAACODE=FAACODER FAADATA=FAADATAR

Table 2-7 FAA Assembler - Code Generation, Overview of settings

Category

Item

Description

Code Generation

Section name
(-dsp_section)

Set “FAACODER,FAADATAR”.

In the FAA program file (library or template) generated by
the Smart Configurator (SC), the code section name is
defined in FAACODE and the data section name is
defined in FAADATA.

However, specify the section name FAACODER and
FAADATAR to be relocated to the RAM area.

(-rom)

Section to map from
ROM to RAM

Set “FAACODE=FAACODER,FAADATA=FAADATAR”.

The definition symbols for the FAA program and data
placed in the code flash memory will be relocated to the
internal RAM (instruction code memory and data
memory). If relocation is not performed, the addresses of
the FAA program and data symbols will remain in the
code flash memory area, and symbol information cannot
be handled correctly during debugging.

The left side specifies the FAA program and data sections
located in code flash memory. The right side specifies the
section of RAM to be transferred.

In the processing to transfer the FAA program and data to
the instruction code memory and data memory (in
Config_FAA_Common.c generated by SC), FAACODER
and FAADATAR is handled as the transfer destination
RAM section, so the right side specifies FAACODER and
FAADATAR.

RO1AN7095EJ0100 Rev.1.00
Nov.14.23

Re Page 24 of 68
RENESAS




RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.4.2 Linker Options

Figure 2-31 Linker - Sections

Resource
Builders
~ C/C++ Build
Build Vanables
Environment
Logging
Settings
ool Chain Editor
C/C++ General
Project Natures
Project References
Renesas QE
Run/Debug Settings
Task Tags
Validation

Q Properties for samplel

[m] *
Settings > i
-~
Configuration: HardwareDebug [ Active ] ~ | Manage Configurations...
®3 Tool Settings | Tpolchain| Device | #* Build Steps Build Artifact | a1} Binary Parsers | €@ Emor Parsers
_w FAA Assembler ] Specify execution start address (-entry)
® Common Execution start address (-entry=<symbol>) _start
® Compiler [] Layout sect tomatically (-auto_section_layout) |
ut sections automatically (-auto_section_layoul
& Assembler A Y = . _
v B Linker [_JAllocate sections per each module with automatic section layout {-split_section)
e [
o Py | Sections (-start) |FMCODE.FAAUATMEEIO[1 |

(= Advanced
@ List

| Allocate FAA memory area automatically (-cdsp_memory_area) | Yes |

Table 2-8 Linker - Section, Overview of settings

Category

ltem Description

Section

Layout sections Check the box.
automatically
(-auto_section_layout) Sections are automatically allocated based on
information in the device file.

When unchecking, the address of each section used in
the program need to be specified in "Section Start
Address".

Sections (-start) Set “FAACODE,FAADATA/address”.

Specify the address of code flash memory to store
FAA programs and data. In the FAA program file
(library or template) generated by the Smart
Configurator (SC), the code section name is defined in
FAACODE and the data section name is defined in
FAADATA. Therefore, specify “FAACODE” and
“FAADATA” as the section name.

In addition, SC provides the processing (in
Config_FAA_Common.c, generated by SC) to transfer
the FAA program and data to the instruction code
memory and data memory. The processing is
performed in units of 2 bytes. Therefore, FAACODE
and FAADATA must be aligned to the 2-byte
boundary. specify an even number address after D8H.
(at address 2000H in the example).

Allocate FAA memory Set “Yes”.
area automatically
(-dsp_memory_area) Reserve a dedicated area for FAA in the internal RAM.
Variables for the CPU program will not be placed in the
FAA instruction code memory (FD800OH-FE7FFH) or
data memory (FE800H-FEFFFH) in the internal RAM.

RO1AN7095EJ0100 Rev.1.00 Page 25 of 68

Nov.14.23

RENESAS




RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

Figure 2-32 Linker - Output

type filter text

Resource

Builders
Build Vaniables
Environment
Logging

1ain Editor
C/C++ General
Project Matures
Project References
Renesas Q
Run/Debug Settings
Task Tags
Validation

& Properties for samplel

Settings

Configuration: HardwareDebug [ Active |

3 Tool Settings | Tgolchain  Device| #* Build Steps

#3 FAA Assembler
% Common
3 Compiler
B2 Assembler

v .:'. fpu

= Advanced
(= List
(& Optimization
(= Section

(=2 Advanced

(& Miscellaneous
= User

v & Converter
2 Output
% Hex format
(= CRC Operation
= Miscellaneous
(@2 User

~ | Manage Configurations...

Build Artifact | ld Binary Parsers| € Error Parsers

Type of output file (-form) Absolute w

[+] Output debug information (-nodebug/-debug)

[l Compress debug information (-compress/-nocompress)
[] Delete local symbol name information (-hide)

[[] Reduce memory occupancy of linker (-memary)

[C] Fill with padding data at the end of a section (-padding)
Address setting for unused vector area (-vect)

[[] Generate divided vector table section (-split_vect)

Address setting for specified area of vector table (-vectn) <
ROM to RAM mapped section (-rom) AN A ?
sdata=.sdataR

FAACODE=FAACODER
FAADATA=FAADATAR

Table 2-9 Linker - Output, Overview of settings

Category ltem Description
Output ROM to RAM mapped Set “FAACODE=
section FAACODER,FAADATA=FAADATAR".
(-rom)

The definition symbols for the FAA program and data
placed in the code flash memory will be relocated to
the internal RAM (instruction code memory and data
memory). If relocation is not performed, the addresses
of the FAA program and data symbols will remain in
the code flash memory area, and symbol information
cannot be handled correctly during debugging.

The left side specifies the FAA program and data
sections located in code flash memory. The right side
specifies the section of RAM to be transferred.

In the processing to transfer the FAA program and
data to the instruction code memory and data memory
(in Config_ FAA_Common.c generated by SC),
FAACODER and FAADATAR is handled as the
transfer destination RAM section, so the right side
specifies FAACODER and FAADATAR.

RO1AN7095EJ0100 Rev.1.00

Nov.14.23

Re Page 26 of 68
RENESAS




RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

Figure 2-33 Memory image before and after transfer processing

The linker relocates the defined symbols
in the RAM i
to addresses in the section FAADATAR
FE8OOH (FAA data memory area)
FAACODER
FD800H (FAA instruction code area)
FAADATA FAADATA
FAACODE By executing the transfer process FAACODE
2000H generated by SC, the contents are
transferred from the CODE section to
CODER and from the DATA section to
Before transfer processing DATAR. After transfer processing

2.4.3 Program Building

After setting the build tool options necessary to build the FAA program, build it. There are several ways to
run a build. Two methods are described here.

®  Select the [Project] menu -> [Build Project] (Figure 2-34)
®  Click the [Builds the project] on the toolbar (Figure 2-35)

Figure 2-34 [Project] menu

Q example - samplel/samplel.scfg - e studio

File Edit Navigate Searcl Renesas\flews Run Renesas Al Windo
R pen Project

B Close Project

(1 Project Explorer )

Open FSP Configuration

s Build All Ctri+Alt+B
v 125 samplel [HardwareDeb ' : A
Build Configurations >
n Includes N X
. Build Project Ctri+B
w2 s

T T Wlslins Tar

Figure 2-35 Tool bar

Q example - samplel/samplel.scfg - €” studia
File Edit MNawvigate Search Project Renes:
SR AL Q-

{1 ProjectExplorer =0

Remark. Smart Configurator (SC) automatically generates code before building or after cleaning the project
to prevent mismatches between the settings on SC's GUI and the generated code in the file. To
stop this function, uncheck "SC Code Generation Builder" in the project properties.

RO1AN7095EJ0100 Rev.1.00 Page 27 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio
Figure 2-36 SC Code Generation Builder

B Properties for samplet [m] X ‘

|Typ? filter text Builders =R - §
» Resource ~
Builders
~ C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
Project Matures
Project References
Renesas QF Down
Run/Debug Settings v

/N
'\_?, Apply and Close Cancel

B Confirm Disable Builder x ‘

Configure the builders for the project:
51 [ 5C Code Generation Builder New..
ls3h COT Builder

. ) mport...
lssh Scanner Configuration Builder Impo
a3k MISRA-C In-editor Checker Edit...

Remove

Up

This is an advanced operation. Disabling a project builder can have many
side-effects. Continue?

-

8 Properties for samplet O X
type filter text Builders o= -~ 8
R
E_mume Configure the builders for the project:
Builders
~ C/C++ Build [J [shSC Code Generation Builder New...
Build Variables (ssh CDT Builder import
Environment las Scanner Configuration Builder R
Logging st MISRA-C In-editor Checker Edit..
Settings =
Tool Chain Editor LEmave
C/C++ General
Project Natures U

Project References
Renesas QF Down
Run/Debug Settings b

'/?; Apply and Close Cancel

RO1AN7095EJ0100 Rev.1.00 Page 28 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.5 Debug Tool Option Setting

Before downloading an executable object to the RL78/G24 Fast Prototyping Board, set the debug tool
options required to debug an FAA program. Some options are set by the Smart Configurator (SC) in 2.3.1
Adding FAA Component. Manually set the options for which “No” is indicated in the “Set by SC” column in
Table 2-10. For debug tool options that are not described in this guide, set them if necessary.

After setting the required options, download the object.

How to open the debug configurations:

1.  Select the project un the project tree, and then select the [Run] -> [Debug Configurations] or select
the [Debug as] -> [ Debug Configurations.
2. Inthe [Debug Configurations] dialog, click the [‘Project name” Hardware Debugging] under the
[Renesas GDB Hardware Debugging].
How to close the build tool property:

Select the [Apply] and [Close] to apply the changed option settings.

Figure 2-37 Debug Configurations

{8 Debug Configurations O

4 |
Create, manage, and run configurations @
) -

F LIRS X Name: |sample1 HardwareDebug

|| Main, %% Debugger | B Startup % Source [Z] Common
[€] C/C++ Application
[€] C/C++ Remote Application
EASE Script
[©] GDB Hardware Debugging C/C++ Application:
[€] GDB Simulator Debugging (RHB50)
8 Launch Group

v“( Renesas GDB Hardware Debuggw Variables... Search Project... Browse...
¢ | sample1 HardwareDebug Build (if required) before launching

'] Renesas Simulator Debugging (RX, RL78)

Project:

samplel Browse..

HardwareDebug/samplel.x

Build Configuration: Select Automatically ~
() Enable auto build () Disable auto build
@) Use workspace settings Configure Workspace Settings...
Filter matched 9 of 11 items

Table 2-10 shows the build tool options required to build the FAA program.

Table 2-10 Setting options of debug tool

Tab Lower tab ltem Description Sgté) y
Debugger | Multiple Core | Core State — FAA | Enabled Yes
Setting
Startup - Load image and Filename: “Project name”GreenDSP_Core.x No
symbols Load type: Symbols only
Offset (hex): 0
On connect: Yes
Core: FAA
RO1AN7095EJ0100 Rev.1.00 Page 29 of 68

Nov.14.23 RENESAS




RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.5.1 Debugger Options

Figure 2-38 Debugger options

Name: |samplel HardwareDebug

Mai EDehugger i Startup| & Source| [C] Common

Debug hardware: E2 Lite (RL78) ~ Target Device: R7F101GLG

GDB Settings Connection Settings Debug Tool Settings | Multiple Core Settings  FAA Core Settings

~ Core State
CPU Enabled v
FAA Enabled ‘ v

Core Selection
~ Synchronization
Suspend FAA when CPU is suspended No v

Table 2-11  Setting options of debug tool, Overview of settings

Lower tab Item Description
Multiple Core Settings | Core State - FAA Set “Enabled”.

Enable source debugging of the FAA program.

2.5.2 Startup Options

Figure 2-39 Startup options

Name: [sample1 HardwareDebug

Main | %5 Debugge; Source| ("] Common

Load image and symbols

Filename Load type Offset (hex)  Onconnect Core Add
Program Binary [samplel.x] Image and Symbols 0 Yes CPU
| sample1GreenDSP_Core0.x [Hardwar.. Symbols only 0 Yes FAA Edit..
Remove
Move up
< 3

Runtime Options

Sat nranram countar at (havi:

Table 2-12  Startup options, Overview of settings

Lower tab Item Description
- Load image and Specify the binary module of the FAA program.
symbols Filename: “Project name”’GreenDSP_Core.x

Load type: Symbols only
Offset (hex): 0

On connect: Yes

Core: FAA

The symbols of the FAA program’s binary module are
downloaded to enable source debugging of the FAA program.

RO1AN7095EJ0100 Rev.1.00 Page 30 of 68
Nov.14.23 RENESAS




RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

How to set:
(Do this after the project has finished building.)

1. Click the [Add].

Figure 2-40 Adding module (1/6)

Load image and symbols

Filename Load type Offset (hex) Onconnect Core

[[] Program Binary [sample1x]  Image and Symbols 0 Yes U

2.  Click the [Search Project] in the [Add download module] dialog.
Figure 2-41 Adding module (2/6)

&) Add download module *

Specify download module name:

Variables... Search Project.. || Workspace... File System...

Cancel

3. Click the “Project name”GreenDSP_Core0.x” and click the [OK].

Figure 2-42 Adding module (3/6)

& Program Selection [m| x ‘

Choose a program to run:

Binaries:

Osamplel.abs

0.

Qualifier:

35 r78le - fsample1/HardwareDebug/sample1GreenDSP_Cc

RO1AN7095EJ0100 Rev.1.00 Page 31 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio
4.  Click the [OK].

Figure 2-43 Adding module (4/6)

& Add download module *

Specify download module name:

Hardware Debug/sample1GreenDSP_Core0.x

Variables... Search Project..{ | Workspace.. File System...

[ e

5. Set “Symbols only” in the [Load type and “FAA” in the [Core].

Figure 2-44 Adding module (5/6)

Name: |sample1 HardwareDebug

Main | %% Debugger | Startup| %~ Source| ("] Common

Load image and symbols

Filename Load type Offset (hex) Onconnect Core Add
Program Binary [sample1.x] Image and Symbols 0 Yes CPU .
sample1GreenDSP_CoreQ.x [Hardwar.. sonly | o Edit...
Remove
Move up
. . M dawen
Runtime Options
[T Sat nrnaram countar at fhasi: b
6. Click the [Apply] and the [Close].
Figure 2-45 Adding module (6/6)
Name: .sample‘l HardwareDebug
[] Main | %% Debugger @ Startup| - Source| (=] Common
Load image and symbols
Filename Load type Offset (hex)  Onconnect Core Add
Program Binary [sample1.x] Image and Symbols 0 Yes CcPU .
sample1GreenDSP_Core0.x [Hardwar.. Symbols only 0 Yes FAA Edit..
Remove
Maove up
< >
Runtime Options
(] Sat nrnaram cauntar at (hawl: Y
s
| Debug ” Close ‘
RO1AN7095EJ0100 Rev.1.00 Page 32 of 68

Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.5.3 Program Download

After setting the debug tool options necessary to debug the FAA program, connect PC and RL78/G24 Fast
Prototyping Board and then download the object. There are several ways to download. Two methods are
described here.

®  Select the [Run] menu -> [Debug] (Figure 2-46)
®  Click the button on the toolbar (Figure 2-47)

Caution1: Before downloading, check the power supply in the [Debug Configurations] dialog.

- [Debugger] tab -> [Connection Settings] tab -> [Connection with Target Board]

Caution2: The FAA program is not placed in the instruction code memory by simply downloading the object.
You need to transfer the FAA program and data from the code flash memory to the instruction
code memory and data memory by using the CPU program.

The RL78 Smart Configurator provides transfer processing functions as FAA components. The
transfer processing function is executed in the initialization routine before the main function is
executed, and the transfer is performed.

Figure 2-46 [Debug] menu

Q example - samplel/samplel.scfg - €7 studio

File Edit Mavigate Search Project RenesasVleRenesasAl Window Help

R~ tr~ Q- Renesas Debug Tools »
(7 Project Explorer X =0 @, Run Ctri+F11
= ‘ 1%, Debug F11

B N B Hictans 5

Figure 2-47 Debug tool bar

Q example - samplel/sampletl.scfg - e studi

File Edit Mavigate Search Project Renes

o DL L
= 0

{3 Project Explorer X

RO1AN7095EJ0100 Rev.1.00 Page 33 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.6 FAA Program Debug

2.6.1 Debug Target

When debugging the RL78/G24 program, select whether to debug the CPU or FAA. The debug target is
selected in the [Debug] view.

® How to select CPU: Select the source under the “(CPU) [core: 0]. (Figure 2-48)
® How to select FAA: Select the source under the “(FAA) [core: 1]. (Figure 2-49)

Figure 2-48 Selecting CPU as debug target

Q example - samplel/src/samplel.c - €? studio

File Edit Source Refactor Navigate Search Project Renesas\Views Run Renesas Al Window Help

B-R-i< a2 R H-Q- -0 R
1% Debug X - i+ § = 0O || [§ cstartasm || samplel.c <  [S| Config_FAA_src.d:
v sample1 HardwareDebug [Renesas GDB Hardware Debugging] 2 ® * DISCLAIMER
v B sample1.x [256] [cores: O] -
~ @ Thread #1 1 (CPU) [core: 0] (Suspended : Breakpoint) g » File Name : samplel.c

= main() at sample1.c:34 0x19f #include "r_smc_entry.h

w r78-elf-gdb (7.82)
mi Renesas GDB server (Host)

uint32_t gResult;

v [E7 FAA [Renesas GDB Hardware Debugging] Click here to select CPU. int main (void);
~ 1% Process [257] [cores: 1]
~ @ Thread #1 1 (FAA) [core: 1] (Suspended : Signal : SIGTRAP:Trace/breakpoint trap) * = int main(void)

= P Max3() at Config_FAA_src.dsp:58 0x0
w. green_dsp-elf-gdb (7.9.1)

{
> ELN0000019 N IS (O H

Figure 2-49 Selecting FAA as debug target

a example - samplel/src/sme_gen/Config_FAA/Config_FAA_src.dsp - e studio
File Edit Navigate Search Project RenesasViews Run Renesas Al Window Help
&~ o | 0» 00 @ 3. i R Q- -0l §
nTbugx - i# § = 0O || [§ cstartasm €] samplet.c m
v [t sample1 HardwareDebug [Renesas GDB Hardware Debugging] A9

v ¥ sample1.x [256] [cores: 0]
v o Thread #1 1 (CPU) [core: 0] (Suspended : Breakpoint)

- _ 52 > 1% 3 N_Max
3 ma_-er::;g ;‘_;:“p'et'{'y e Click here to select FAA. i L 3
w: Renesas GDB server (Host) :
w T'_ FAA [Renesas GDB Hardware Debugging)] 5 .PUBLIC _P_Max3
~ 1% Process [257] [cores: 1] 57 —P_Max3:

MOV #_V_Max3, DP@
MOV #_V_Max3, DP1
MOV #_V_Max3, RP@

v @ Thread #1 1 (FAA) [core: 1] (Suspended : Signal : SIGTRAP:Trace/breakpoint trap)
= P Max3() at Config_FAA_src.dsp:58 0x0
i green_dsp-elf-gdb (7.9.1)

000020 MOV (#N_Max3_Valuel, DP@),

Address information is displayed in the address area only for the source file to be debugged, and debugging
operations such as step execution are possible at the source level.

It is possible to change the debug target while the program is running.

RO1AN7095EJ0100 Rev.1.00 Page 34 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.6.2 Source File Display

After selecting the FAA as the debug target, display the .dsp file containing the FAA program on the [Editor]
panel. The address information appears in the address area, and debug operations such as step execution
can be performed at the FAA source level.

The address area indicates the addresses in the FAA instruction code memory space. The address area is
not displayed when the debug target is CPU.

Figure 2-50 Source file display

S| Config_FAA srcdsp X =

; [OUT] N_Max3_Result
; [NOTE]

-PUBLIC _P_Max3
_P_Max3:
» (alslalalelslee) MOV #_V_Max3, DP@
}a0 MOV #_V_Max3, DP1
MOV #_V_Max3, RP@

MOV (#N_Max3 Valuel, DP@), A@
MOV (#N_Max3 Value2, DP1), RO
JSR #P_Max2_Direct

MOV (#N_Max3_Value3, DP1), R@
JSR #P_Max2 _Direct

MOV A@, (#N_Max3_Result, RP@)

STOP

RO1AN7095EJ0100 Rev.1.00 Page 35 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.6.3 Run/ Stop

When selecting FAA as the debug target, FAA source debugging is enabled. There are several ways to

run/stop FAA program. Two methods are described here.

® Select the [Run] menu -> [Resume] / [Suspend]. (Figure 2-51)
® Click the [Resume] / [Suspend] on the toolbar. (Figure 2-52)

Figure 2-51 [Run] menu

-;;.c%- e | 0> . 3T

v [£9 sample1 HardwareDebug [Renesas GDB Hardwal
~ ¥ sample1x [256] [cores: 0]

= main() at sample1.c:34 Ox19f

w A78-elf-gdb (7.8.2)

w1 Renesas GDB server (Host)

~ [£'] FAA [Renesas GDB Hardware Debugging]
v 1% Process [257] [cores: 1]

~ o Thread #1 1 (FAA) [core: 1] (Suspended : Sii =*~
= P Max3() at Config_FAA src.dsp:58 0x0 -

i green_dsp-elf-gdb (7.9.1)

W Terminate
&4 Disconnect

Step Into

Step Over

Q example - samplel/src/smc_gen/Config_FAA/Config_FAA_src.dsp - e’ studio
File Edit Navigate Search Project Renesas VIPWS Renesas Al Window Help Run
Renesas Debug Tools

1% Debug X - i i# Instruction Stepping Mode

~ o Thread #1 1 (CPU) [core: 0] (Suspended a

3 Renesas Debug Tools

i+ Instruction Stepping Mode

F& n

Ctri+F2 W Terminate Ctri+F2
&4 Disconnect

Figure 2-52 Debug tool bar

Q example - samplel/src/samplel.c - ¥ studio
File Edit Source Refactor Mawvigate Search Project
®- % e : o

15 Debug [Resume (F8) |

1% Debug X

Q example - samplel/src/samplel.c - ¥ studio

File Edit Source Refactor Navigate Search Project

The FAA program control are as follows:

v' If the FAA status is the following cases, program execution cannot start and other debug operations

such as step execution are also disabled.

Clock is not supplied to the FAA. (FAAEN bit = 0)

- The FAA operation is disabled. (ENB bit = 0)

When using FAA libraries, FAA programs runs by calling the start function (that executes FAAEN=1,

ENB=1) provided by each FAA library.

v When the debug target is FAA, the operation to execute or stop programs only executes or stops the
FAA program. The CPU program is not executed or stopped in synchronization. However, you can
use a debug tool option so that stopping a CPU program also stops the FAA program when the debug
target is CPU. To do this, on the [Debugger] tab -> the [Multiple Core Settings] tab -> the
[Synchronization] category, select [Yes] for [Suspend FAA when CPU is suspended)].

v' Step execution is applicable only to the FAA.

v" Reset operation performs a software reset for the FAA. The whole MCU (CPU and peripheral
functions) are not reset. When the debug target is CPU, the whole MCU (CPU and peripheral

functions) are reset.

v" Do not proceed with debugging of the FAA during execution of a CPU program that includes
operations with the WIND register. Since the debugger temporarily rewrites the WIND register in the
debugging operations for the FAA, the use of FAA debugging may make operation of the program

being executed by the CPU incorrect.

RO1AN7095EJ0100 Rev.1.00
Nov.14.23

RENESAS

Page 36 of 68



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

v' If you change the source file of the CPU or FAA program and build it while debugging, the modified
program will not be downloaded correctly even if you download it. If you make changes to your
program, disconnect, and reconnect the debug connection.

v' The [Resume All] and [Pause All] buttons on the toolbar do not work in projects that debug CPU and

FAA.

v' Ifthe FAA is started or stopped by the CPU program, the state of the FAA on the [Debug] view is not
updated. Even if you select FAA in the [Debug] view, FAA information (status, [Register] view, etc.)
will not be updated. Click the [Refresh All] button on the toolbar to refresh each view.

Figure 2-53 Debug tool bar - Resume all, Suspend all, Refresh all

Q example

| ® &~

File Edit Navigate Search Project RenesasViews Run Renesas Al

L EE T 1 o o

Window Help

2.6.4 Breakpoint

After selecting the FAA as the debug target, display the FAA source on the editor. You can set a breakpoint
by double- clicking outside the source row on which you want to set the breakpoint. To cancel a breakpoint,
double-click the icon set for the breakpoint.

The breakpoint controls for the FAA program are as follows:

v' 4 points hardware breaks are available. (Break after execution)

v' If the FAA is stopped after detecting a hardware break, the CPU is not synchronously stopped.

Figure 2-54 FAA program, breakpoint setting

48
49
50
51
52
53
54
55
56
-
® 58 00000000
59 00000002
pi<:N 00000004

0000RR6
00000008
000OR00a

P000RReC
P000RAve

JOh O S D O O O O

P WO 0o~ BN

P000Re10

|5 Config_FAA_sredsp ¥

SECTION CODE

_PUBLIC _P_Max3
_P_Max3:
MOV # V_Max3, DP®
MOV # V Max3, DP1
| mMov # v Max3, RPe

MOV (#N_Max3_Valuel, DP@), A@
MOV (#MN_Max3_Value2, DP1), R@
JSR #P_Max2_Direct

MOV (#MN_Max3_Value3, DP1), R@
ISR #P_Max2_Direct

MOV AR, (#N_Max3_Result, RP@)

A8

3

; Max3
N
5 [IN] MN_Max3_Valuel, N_Max3_Value2, N_Max3_Value3

; [OUT] MN_Max3_Result

; [NOTE] -

3

Max2(Valuel, Value2)

Max2 (A8, Valuel)

RO1AN7095EJ0100 Rev.1.00
Nov.14.23

RENESAS

Page 37 of 68



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.6.5 Memory

When selecting FAA as the debug target, FAA instruction code memory and data memory are displayed in

the [Memory] view.

The memory display control for the FAA are as follows:

v" To display the FAA area, specify the display address as follows. (Figure 2-55, Figure 2-56)
+  FAA instruction code memory area:
Address of FAA instruction code memory area + 0x10000000
- FAA data memory area:
Address of FAA data memory area + 0
v When the debug target is CPU, CPU memory is displayed in the [Memory] view.
v' The display cannot be updated while the FAA program is running.
v' If the FAA status is the following cases, the display contents are undefined.
= Clock is not supplied to the FAA. (FAAEN bit = 0)
+  The FAA operation is disabled. (ENB bit = 0)

Figure 2-55 [Memory] view, FAA instruction code memory area

) console Registers [*| Problems | & Smart Browser [} Debugger Console| [J Memory > ¥ =“ ([EE :| ~ §
Monitors
\Add Memory Monitor

Click

.

&) Monitor Memory X

Enter address or expression to monitor:

|0x10000000 /vf// When specifying address 0 of
the FAA instruction code memory area

) Console Registers | |%. Problems | Smart Browser [} Debugger Console | [J Memory R RS =‘| || L :| dg ¥ &
Monitors 4 3 % |0x10000000 : 0x10000000 <Hex Integer> 3 | 4= New Renderings..
@ 0x10000000 Address -3 4 -7 8 -8B C-F

0000000010000000 00410288  13A00144  13A00244
8000000010008018 4C200347  3IEABISD8  GA3E352F  0ABAGGEO
0000000010000020 ©O00AORA  PODAGORD  00AERA00  DOBOAEOO
8000000010008038 000000P0  00PABAGE  0PABAGBO  PPBAABEO
00000A010000040 ©O00A0RA  G0DAORAO  00AERA0D  0OAGAAOO
8000000010008058 000000P0  G0PABAGE  0PABAAGE  PPBAABEO
APARARRAATAAARAARA ARARARAA AARAAARA ARAAAAAA ARAARAGRA

RO1AN7095EJ0100 Rev.1.00 Page 38 of 68

Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

Figure 2-56 [Memory] view, FAA data memory area
) console Registers |[£ Problems | @ Smart Browser [} Debugger Console| [ Memory X 53 "'" 'l:‘ =5 | ~§ = 0O
Monitors
\Add Memory Monitor
Click
&) Monitor Memory X
Enter address or expression to monitor:
‘0 /T// When specifying address 0 of
the FAA data memory area
®
& console Registers [£ Problems | @ Smart Browser | G} Debugger Console | [J Memory % i3 g e R "" 'L-;‘ 5= | Gg~ 8§ = 0
Monitors 4+ ¥ %% 0:0x0 <Hex Integer> » | & New Renderings..
@ 0x10000000 Address @ -3 4 -7 8 -B C-F ~
@0 IR LR 00000060 A 14
0000000000000010 ©ORRRALE 20000000 00000000 000e0000
006000000000020 ©BRBR0D 00000000 00000000 00000000
0000000000000030 00RO 20000000 00000000 00000000
0060000000000040 0B 00000000 00000000 00000000
0000000V00000050 BOBOVRA 00000000 00000000 00000000
0060000000000060 0B 00000000 00000000 00000000

Remark. The display format of the [Memory] view can be changed using the [Format] menu in the context

menu.
Figure 2-57 [Memory] view, change display format
) Console Registers [2 Problems | @ Smart Browser | [} Debugger Console | [J Memary X g 'y e 9 "'| 1-;‘ 5= | g~ § = 0
Monitors 4+ 9% % |0x10000000 : 0x10000000 <Hex Integer> < < New Renderings..
@ 0x10000000 Address o -3 4.7 g -8 C-F ~
0000000010000000 LLLILLN 00410288 13A00144  13A00244
P geeeeeeaweeeew 4020/ o ) 1 Rerdering lgg
B (]
Right click on this area. A~ ecoecoon10000030 0600 | T 8@
0BPERERO10000040 0000 “» Resetto Base Address 100
0000000010000050 0000 Go to Address.. 8@
ARRARAAATARANAAR BAGA AR
Resize to Fit
RO1AN7095EJ0100 Rev.1.00 Page 39 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

2.6.6 Symbol (Label)

When selecting FAA as the debug target, the symbols (labels) defined in the FAA program are displayed in

the [Expressions] view.

The expression display control for the FAA are as follows:

v" When registering symbols/labels in the expression view, delete the
(label) name.

v" Address is the FAA space address.
If the debug target is CPU, the display contents are undefined.

AN

v' If the FAA status is the following cases, the display contents are undefined.
+  Clock is not supplied to the FAA. (FAAEN bit = 0)
+  The FAA operation is disabled. (ENB bit = 0)

at the beginning of the symbol

. . . . . . won
Remark. To make a symbol accessible to the CPU program, it must be defined with a name starting with "_
and must be declared public in the FAA program.
Figure 2-58 [Expressions] view
|| Config_FAA srcdsp X = 0 .. X |(%)=Variables | ®g Breakpoi.. | @® Eventpoi.. | i I0Regis..| = O
10 S Drag & drop .. A —
: ; : HEle X% Q%o g
32 ST Expression Type Value Address
33 _V_WORK_1 Error: Multiple er...
34 DATA H'00eeee00 ; WORK variable w Add new expres:
35 _V_WORK_2: DATA  H'00000000 ; LWORK variable
36
37 _PUBLIC _V_Max3 If there is a first letter "_", it is not
38 _V_Max3: recognized in the [Expressions] view.
39 DATA [2] 5 N_Max3_Valuel
40 DATA 4] 5 N_Max3_Value2 =
a1 DATA 4] ; N_Max3_value3
42 DATA [4] 5 N_Max3_Result
43
a4 e
45 ; Const
S i
| d 1
|S| Config_FAA_srcdsp X = O | |67 Expressio.. X | (= Variables| ® Breakpoi.. | @® Eventpoi.. | i | IORegis..| — O
30 il A =1 52 S| e o B
31 ; Variables = ‘ r % \|
32 e Expression Type Value Address
33 )= V_WORK_1 <data varia.. 0 0x0
34 IATITE: DATA  H'0000860@ ; LWORK variable 5 AGH NEW EXDressic
35 _V_WORK_2: DATA  H'00000OP0 ; WORK variable
36
37 -PUBLIC _V_Max3 Click to enable editing.
38 _V_Max3: Delete the first letter "_"
39 DATA (2] ; N_Max3_Valuel
40 DATA 2] ; N_Max3_Value2 =
41 DATA a ; N_Max3_Value3
42 DATA (2] ; N_Max3_Result
43
44 T T
45 ; Const
AR I v
< >
io.. % |(x)= Variables| ®g Breakpoi.. | @® Eventpoi.. | [ 10 Regis.. = a
HE |+ X% QX et §
Expression Type Value Address Name
()= V_WORK_1 <data varia.. 0 0x0 F
52 Add new expressic Select All Ctri+A
-| Copy Expressions Ctrl+C
¥ Remove
) . . . . 5* Remove All
The value at the time of registration is a decimal
Number Format >
number. q Y Add Expression Group > LGS
Format can be changed by right-clicking the . Default
registration line and selecting the [Number Format] Find.. Cul+F Decimal
menu. Show Details As > e
5 Add Watch Expression... Binary
Disable Octal
Fnahle e mole
RO1AN7095EJ0100 Rev.1.00 Page 40 of 68
Nov.14.23 RENESAS



RL78/G24

2.6.7 Register

When selecting FAA as the debug target, the operation parameter register set, address pointer set, the
processor control register, etc. are displayed in the [Register] view.

Figure 2-59 [Register] view

EConso Problems @ Smart Browser G} Debugger Console| [J Memory SR s g i =
Name Value Description o
~ 54 General Registers General Purpose and FPU Register Group
AD 0x0
MO 0x0
M1 0x0
M Lo 0x0
it L1 0x0
i RO 0x0 v
< >
2.6.8 SFR

When selecting FAA as the debug target, the [IO Register] view displays only SFRs (Special Function
Register) that FAA can access. There are two types of SFRs that the FAA can access.

® SFRs of the FAA

Registers that are not affected by the address bus select register (ADBSEL) settings and can be
accessed via the FAA bus.

Registers of the peripheral functions

Registers that can be accessed via the FAA bus when “access from the FAA” is selected in the
ADBSEL register.

There are two different types of register access to the peripheral functions as described below.
- Access to a peripheral function register through the FAA address map
- Access to a peripheral function register by using the FAA address pointer (FAAAP)

For the address bus select register (ADBSEL) and how to access, refer to RL78/G24 User’s Manual:
Hardware (RO1UHO0961).

The SFR display control for the FAA are as follows:

The SFR display control for the FAA are as follows:

v
v

The address area for the FAA SFR displays the FAA addresses.

Access to some peripheral function SFRs is enabled by using the address bus function to permit
bus access from the FAA. For such SFRs, the display name is suffixed by “ PTR”. The address
displayed in the address field is the FAA address pointer values that be set in the FAA address
pointer (FAAAP) when accessing using the FAAAP register.

The debugger reads or writes peripheral function SFR values through bus access from the CPU.
Therefore, it cannot access the peripheral function SFRs for which bus access from the FAA is

selected by using the address bus selection function, and the displayed values for these SFRs are

undefined. To display the values of the peripheral function SFRs for which bus access from the
FAA is selected, see 3.5 Sample Script Specification.

RO1AN7095EJ0100 Rev.1.00

Nov.14.23 RENESAS

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

Page 41 of 68



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio
Figure 2-60 [IO Register] view

—————
&1 Expressions | ()= Variables | % Breakpoints | @® Eventpoints [i | 10 Registe.. » | = O
v FEZd0=H o §
Name Value (Hex) Address 2
~ 2. FAA(PORT)
SarRaraIRGEGRg | PTPTR Oxft 0x00001701 :
erip ergFR NELONS™ — e pr1_pTR Oxff 000001721 | — | FAA ad(\i/;elflse [BolfiEr
84 PU1_PTR 0x00 0x00000031
ste1 PIM1_PTR 0x00 0x00000041
iai POM1_PTR 0x00 0x00000051
38 PMCA1_PTR Oxff 0x00000061
0x00000000 0x00000012
FAA SFR 0x00000000 0x00000013 FAA address
0x00000000 0x00000014 v
All Registers Selected Registers
R0O1AN7095EJ0100 Rev.1.00 Page 42 of 68

Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3. Sample Project

This section describes how to display the SFR values of peripheral functions in the e2 studio's [IO Register]
view when debugging a FAA program using sample code and sample scripts.

3.1 Specifications
3.1.1 Specification Overview

This sample code uses a 16-bit timer KB30 (TKB30) to perform two PWM outputs.

PWM output is connected to LED1 and LED2. Initialize TKB30 using the CPU program, count the number of
TKB30 timer interrupts (INTTKBO0O), create a fixed cycle (500ms) timing, and start FAA operation at a fixed

cycle.

The FAA program controls the LED brightness by changing the duty ratio of the PWM output. After changing

the duty ratio, the operation stops.

Table 3-1 Peripheral Functions and Their Usage

Peripheral

Usage

16-bit timer KB30 (TKB30)

Output PWM from TKBOOO pin and TKBOO01 pin

Flexible application accelerator (FAA)

Change the duty ratio of PWM output from TKBOOO pin and
KBOO01 pin

Figure 3-1 Operation overview of PWM output

After 500ms

<Output>
Brightness 80%

]

LED1

After 500ms

Brightness 10%

Brightness 10%

L)

LED2

Brightness 40%

W G

<Output>
Brightness 80%

After 500ms

<Output>
Brightness 20% Brightness 40%

WL

LED1 LED2

<Output>

Brightness 209 After 500ms

LED1 LED2

Table 3-2 Relationship between PWM output duty ratio and LED brightness

Duty ratio Brightness
10% 10%
20% 20%
40% 40%
80% 80%
RO1AN7095EJ0100 Rev.1.00 Page 43 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.1.2 Operation Overview
In this sample code, 16-bit timer KB30 (TKB30) is used with the standalone mode (period controlled by the
TKBCRNO register), PWM signals are output from P12/TKBOO0O and P13/TKBOO1.

The PWM pulse period of TKB30 is 2ms, and the interrupts (INTTKB30) that occur in each period are
counted 250 times. Start the FAA from the CPU every 500ms and change the duty ratio of PWM output with
FAA.

1. [CPU program] Store the initial values of the TKBCRO1 register and the TKBCRO3 register in variables
for checking the duty value.

[CPU program] Enable the TKB30 operation.

[CPU program] Set SFR access of the TKB30 to FAA bus.

[CPU program] Wait until the TKB30 interrupt occurs 250 times (500ms).

[CPU program] After the TKB30 starts the operation, the TKB30 interrupt occurs every 2ms.
[CPU program] Count the number of interrupt occurrences in the TKB30 interrupt (INTTKB30).

[CPU program] When TKB30 interrupt (INTTKB30) occurs 250 times (500ms), clock supply to the FAA
is enabled and FAA operation is enabled.

8. [CPU program] Set the FAA stack pointer and the start address of the FAA program and start FAA
operation. Then wait until the FAA program completes.

9. [FAA program] Update the compare register (TKBCRO01) and change the duty ratio of TKBOOO output.
And update the compare register (TKBCRO03) and change the duty ratio of TKBOO01 output. Every
500ms, the duty ratio of the TKBOOO output is updated by double in the order of 10% — 20% — 40% —
80%, and after the duty ratio reaches 80%, it is set to 10% again. The duty ratio of the TKBO01 output
is updated by 1/2 in the order of 80% — 40% — 20% — 10%, and after the duty ratio is 10%, it is set to
80% again.

10. [FAA program] Store the updated duty ratio (values of the TKBCRO1 register and the TKBCRO03
register) in global variables and the FAA stops operating.

N o gk~ ooDd

11. [CPU program] When FAA program execution is completed, clock supply to the FAA is stopped and
FAA operation is disabled.

12. [CPU program] Store the updated duty ratio (values of the TKBCRO1 register and the TKBCRO03
register) in variables for duty value confirmation.

13. [CPU program] Return to step 4 and wait for TKB30 interrupts (INTTKB30) to occur 250 times (500ms)
again.

RO1AN7095EJ0100 Rev.1.00 Page 44 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.2 Operation Confirmation Conditions

Table 3-3 Operation Confirmation Conditions

ltem

Description

MCU

Operating frequency

RL78/G24 (R7F101GLG)
+ High-Speed On-Chip Oscillator Clock: 32MHz
CPU/Peripheral Hardware Clock: 32MHz

Operating voltage

3.3V (Can operate between 2.7V to 5.5V)
LVDO Operation (VLVDO0): Reset Mode
Rising edge = 2.97V

Falling edge = 2.91V

Integrated development
environment (e2 studio)

V2023-10 Manufactured by Renesas Electronics

C compiler (e2 studuo)

CC-RL V1.12.01 Manufactured by Renesas Electronics

Smart Configurator (SC) Manufactured by Renesas Electronics
V1.8.0
Board Support Package (BSP) Manufactured by Renesas Electronics
V1.61
Emulator E2 Emulator Lite
Board RL78/G24 Fast Prototyping Board (RTK7RLG240C00000BJ)

RO1AN7095EJ0100 Rev.1.00
Nov.14.23

Re Page 45 of 68
RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.3 Hardware Description

3.3.1 Example of Hardware Configuration
The example of the hardware configuration used in this sample code is shown below.

Figure 3-2 Example of Hardware Configuration

Vbbp

Vbbp

L Voo / EVbbo RESET j

For On-chip Debug <—| pag /TooLo 13 /TKBOO1
P12 /TKBOOO

RL78/G24

r REGC
Vss/ EVsso LED1 LE‘I(D§2
P V4

Note 1. This simplified circuit diagram was created to show an overview of connections only. When actually
designing your circuit, make sure the design includes appropriate pin handling and meets electrical
characteristic requirements (connect each input-only port to VDD or VSS through a resistor).

Note 2. Connect any pins whose name begins with EVSS to VSS, and any pins whose name begins with

EVDD to VDD, respectively.

Note 3. VDD must not be lower than the reset release voltage (VLVDO0) that is specified for the LVDO.

3.3.2 List of Used Pins

Table 3-1 shows the pins used and their function.

Table 3-4 Pins Used and their Functions

Pin name I/0 Function
P12 / TKBOOO Output PWM output (lighting control for LED1)
P13/ TKBOO1 Output PWM output (lighting control for LED2)

Caution. In this application note, only the used pins are processed. When actually designing your circuit,
make sure the design includes sufficient pin processing and meets electrical characteristic

requirements.

RO1AN7095EJ0100 Rev.1.00
Nov.14.23

Re Page 46 of 68
RENESAS




RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.4 Software Description

3.4.1 Smart Configurator Setting

The Smart Configurator (SC) settings in this sample code are shown below. The items and settings in each
SC settings table are explained using the description on the settings screen.

3.4.1.1 Clock

The clock settings used in this sample code are shown below.

Operation mode: High-speed main mode 2.7(V)~5.5(V)
EVDD setting: 2.7 V < EVDDO < 5.5V

High-speed on-chip oscillator: 32MHz
fCLK: 32000kHz

Figure 3-3 Clock Settings

Clocks configuration Gensr;g Code Genera;:‘Report
'1. — :.L |
C.rverview BoardSystem Components | Pins | Interrupt
Remark. This sample code does not use the clocks with “!”.
RO1AN7095EJ0100 Rev.1.00 Page 47 of 68

Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.41.2 System
The system settings used in this sample code are shown below.

Figure 3-4 System Settings

. q %l 2
SYStem co“ﬁguratlon Generate Code Generate Report
18] =
~ On-chip debug setting
On-chip debug operation setting
O Unused @ Use emulator (O COM Port
Emulator setting
OF2 @E2 Lite
Pseudo-RRM/DMM function setting
(O Unused @ Used
Start/Stop function setting
@ Unused (O Used
Monitoring point function setting
Unused Used
Trace function setting
(O Unused @ Used
Security ID setting
Use security ID
Security ID | 0x00000000000000000000
Security ID authentication failure setting
(O Do not erase flash memary data
(@) Erase flash memory data
v
Overview |Board | Clocks | System | Jomponents | Pins| Interrupt
3.4.1.3 Component
The component settings used in this sample code are shown below.
Table 3-5 Component settings (LVDO)
ltem Description
Component Voltage Detector
Configuration name Config_LVDO
Resource LVDO
Figure 3-5 LVDO Settings
Configure @
Operation mode setting
(@ Reset mode
When setting LVDO to reset mode, set the detection voltage of LVD1 higher than the detection voltage of LVDO.
() Interrupt mode
If LVDO is set to interrupt mode and the LVDO detection voltage is greater than the LVD1 detection voltage,
VDO becomes undefined after the LWVD1 setting following release from the reset state.
Level 3 (low)
Voltage detection setting
Reset generation level(VLVDO) 291 v~ (V)
1.86 (V)
RO1AN7095EJ0100 Rev.1.00 Page 48 of 68

Nov.14.23

RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

Table 3-6 Component settings (TKB30)

ltem Description
Component PWM Output
Operation Standalone mode (Period controlled by the TKBCRNO register)
Configuration name Config_TKBO
Resource TKBO

Figure 3-6 TKB30 Settings

Configure

Count source setting

Operation clock K20 d

Clock source fKBKC » Clock freque s selected as fKBKC
PWM output setting

PWM period 2 | |ms ~ Actual value: 2

Duty (TKBOOO cutput) 10 | o0

Duty (TKBOO1 output) 80 (%)

Delay (TKBOO1 output) 0 (%)

A/D conversion start timing signal output function setting

TKBTGCRD value 0

Output setting

[ Enable TKBOOO output

Default level Low level v
Active level High level bod
Enable TKBOO1 output

Default level Low level i
Active level High level ~

PWM output smooth start function setting
[[] Enable TKBOOO smooth start function

[[] Enable TKBOO1 smaooth start function

/—_J—E_—_‘%

Interrupt setting

Level 3 (low
Level 3 (low)
Level 3 (low)
Level 3 (low)
Enable 16-bit timer KB30 end count
Priority Level 3 (low) ~
RO1AN7095EJ0100 Rev.1.00 Page 49 of 68

Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio
Table 3-7 Component settings (FAA)
ltem Description
Component Flexible Application Accelerator
Configuration name Config_FAA
Figure 3-7 FAA Settings
Configure @
»% Crypto Library (AES) % i
w #3 Custom Library :
7 Template Property Value
=3 Digital Fier @ Configuration
o3 FFT
s LED Control
+3 SHA Library
< >
Template file (.dsp) for FAA source is generated. A
Add user program in user code area. if there is no code and data in the file, FAA
% 3 assembler error will occur when building. s

Remark. If any FAA library is not displayed after the sample project is opened, refer to step 11 in 2.3.1
Adding FAA Component to download FAA libraries.

RO1AN7095EJ0100 Rev.1.00
Nov.14.23

RENESAS

Page 50 of 68



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.4.2 Folder Structure

Table 3-8 shows the structure of the source files/header files used in the sample project.

Table 3-8 Folder Structure

Folder, File name Description Generated
by SC
\sample_project<DIR> Sample project folder

sample_script.py (Sample script)

\src<DIR> Program storage folder \
sample_project.c Sample source file A/ Note 1
\smc_gen<DIR> Smart Configurator generated folder \

\Config_FAA<DIR> FAA program storage folder N
Config_FAA_common.c Common FAA module source file N
Config_FAA_common.h Common FAA module header file N
Config_FAA_common.inc Include file for FAA assembly source file N
Config_FAA_src.dsp FAA assembly source file \/ Note 2

\Config_ TKBO<DIR> TKB30 program storage folder \
Config_TKBO.c TKB30 source file \
Config_TKBO0.h TKB30 header file \
Config_ TKBO user.c TKB30interrupt source file A/ Note 3

¥general<DIR> Initialization and common program storage | V

folder

¥r_bsp<DIR> BSP program storage folder N

¥r_config<DIR> Configuration header storage folder N

Note. “<DIR>”" indicates a directory.
Note 1. Sample code has been added.

Note 2. This sample project uses the Custom Library of FAA library. Therefore, file content is only a template
and no code right after the file is generated. Sample code has been added for this sample project.
Note 3. Sample code has been added in the user code area of SC.

3.4.3 Option Byte Settings
Table 3-9 shows the option byte settings.

Table 3-9 Option Byte Settings

Address Setting value Description

000COH/040COH 1110 1111B (EFH) Watchdog Timer stopped operation

(Count stops after reset release)
000C1H/040C1H 1111 1011B (FBH) LVDO reset mode.

Detection voltage: Rising 2.97V / Falling 2.91V
000C2H/040C2H 1110 1000B (E8H) lash operation mode: High-speed main mode.

High-speed on-chip oscillator frequency: 32MHz
000C3H/040C3H 1000 0100B (84H) On-chip debug operation enabled

RO1AN7095EJ0100 Rev.1.00
Nov.14.23

RENESAS

Page 51 of 68




RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.4.4 List of Constants
Table 3-10 and Table 3-11 show constants used in the sample code.

Table 3-10 Constants (CPU program)

Constant name Value Description Function that
uses the constant
FAA BUS ACCESS 0200H Enable to access TKB30 register from FAA. | main
(ADBSEL setting value)

Table 3-11 Constans (FAA program)

Constant name Value Description
_C_TKBOOO_DUTY_INIT 1900H Initial duty ratio for TKBOOO output (TKBCRO01 setting value)
_C_TKBOO1_DUTY_INIT C800H Initial duty ratio for TKBOO1 output (TKBCRO03 setting value)
_C _TKBTRG_TKBRDT _REQ | 1H Batch overwrite request of TKB30 compare register

(TKBRDTO setting value)

3.4.5 List of Variables
Table 3-12 and Table 3-13 show variables used in the sample code.

Table 3-12 Variables (CPU program)

Type Variable name Description Function that uses
the variable
uint32_t g_work_tkbo00 Variable to check the current duty ratio for main
TKBOOO output
(Value of TKBCRO1)
uint32_t g_work_tkbo01 Variable to check the current duty ratio for main
TKBOO1 output
(Value of TKBCRO3)
uint8_t g_tkb_interrupt_flag 500ms elapsed flag r_Config TKBO_end
_count_interrupt

Table 3-13 Variables (FAA program)

Size Variable name Description
4 bytes | _V_TKBOOO_DUTY | Storage the updated duty ratio for TKBOOO output (TKBCRO1 setting
value)
4 bytes | _V_TKBOO1_DUTY Storage the updated duty ratio for TKBOO1 output (TKBCRO3 setting
value)
RO1AN7095EJ0100 Rev.1.00 Page 52 of 68

Nov.14.23 RENESAS




RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.4.6 List of Functions

Table 3-14 and Table 3-15show functions and processing used in the sample code. However, functions
generated by the Smart Configurator that have not been modified are excluded.

Table 3-14 Functions (CPU program)

Function name Description Source file
main main process main.c
r_Config TKBO_end_count_interrupt TKB30 interrupt processing Config_ TKBO_user.c
(Count the number of INTTKBOO
occurrences)

Table 3-15 Processing (FAA program)

Label name Description Source file
_P_TKB_PWM Change the duty ratio of TKBOO0O0 and TKBOO1 output | Config_FAA_src.dsp

3.4.7 Function Specification
The function specifications of the sample code are shown below.

CPU program
[FUnction name] main()

Outline main process

Header r_smc_entry.h, Config_TKBO0.h
Declaration void main(void)
Description Start operation of the Timer TKB30, and start operation of the FAA every 500ms.
Argument -

Return value -

CPU program
[Function name] r_Config_ TKBO_end_count_interrupt()

Outline Timer TKB30 interrupt processing
Header r_cg_macrodriver.h, r_cg_userdefine.h, Config_ TKBO0.h
Declaration static void __near r_Config_ TKBO_end_count_interrupt(void)

Count INTTMKB30 occurrences and set the 500ms elapsed flag every 250
interrupts (500ms elapsed).

Argument -
Return value -

Description

FAA program
[Label name] _P_TKB_PWM
Outline Change processing of the duty ratio for TKBO0OO and TKBOO1 output
Header Config_FAA_common.inc
Declaration -
Description Change the duty ratio for TKBO00 and TKBOO1 output.
Argument -

Return value -

RO1AN7095EJ0100 Rev.1.00 Page 53 of 68
Nov.14.23 RENESAS




RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.4.8 Flowchart
3.4.8.1 Main Process

Figure 3-8 shows the flowchart for the main process.

Figure 3-8 Main process

=

Store the initial duty ratio of TKBOO0O
and TKBOO1 in variables

Start TKB30 operation
R_Config_TKBO0_Start()

Enable interrupt

Enable access from FAA to
peripheral registers of TKB30

ADBSEL<+0x0200

»
>
>
'

500ms elapsed? g_tkb_interrupt flag == 1?

Clear 500ms elapsed flag g_tkb_interrupt _flag < 0

Enable FAA operation
R_Config_FAA_Enable()

Set FAA stack pointer SPO < End address of FAA data
| memory area (2048)

Set FAA program pointer PGO < _P_TKB_PWM in FAA
| program

Start FAA operation

Wait until FAA process completes
R_Config_FAA_Wait()

Disable FAA operation
R_Config_FAA_Disable()

Store the updated duty ratio for TKBO0O
and TKBOO1 output in variables

RO1AN7095EJ0100 Rev.1.00 Page 54 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio
3.4.8.2r_Config_TKBO0_end_count_interrupt Function

Figure 3-9 shows the flowchart of the r_Config_ TKBO_end_count_interrupt function.

Figure 3-9 r_Config_ TKBO_end_count_interrupt function

@Conﬁ g_TKBO_end_count_i nterru@

Counter +1, then
No 500ms elapsed? 250 == s_tkb_count+1?

Yes
Clear the counter s_tkb_count < 0
Set the 500ms elapsed flag g tkb_interrupt_flag < 1

A 4

( return )

RO1AN7095EJ0100 Rev.1.00

Page 55 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.4.8.3 FAA Processing

Figure 3-10 shows the flowchart of the r_Config_ TKBO_end_count_interrupt function.

Figure 3-10 FAA processing

( _P_TKB_PWM )

Set the address of variable to RPO
register

Store the current duty ratio for TKBO0O
output in the register

Double the duty ratio

Store the PWM period in the register

100%(period) > duty ratio?

No

Set the doubled duty ratio for TKBOOO
output

Store the doubled duty ratio in the
variable

Store the current duty ratio for TKBO01
output in the register

Divide the duty ratio by two

Set the 1/2 duty ratio for TKBOO1 output

Store the 1/2 duty ratio in the variable

L

Set the duty ratio to 10% for TKBO0O
output

Store the duty ratio in the variable

Set the duty ratio to 80% for TKBOO1
output

Store the duty ratio in the variable

<
<

Request batch overwrite of compare
register

v
GRS

RPO — # V_TKBOO0O_DUTY

AQ — TKBCRO1

A0 — TKBCRO1 * 2
RO < A0

AQ — TKBCROO

A0 >R0 ?

RO < AO
TKBCRO1 < A0

_V_TKBOO00_DUTY « A0

A0 — TKBCRO03

A0 < TKBCRO03 * 1/2

TKBCRO1 < A0

_V_TKBOO1_DUTY < A0

A0 < Initial value

TKBCRO1 <— A0

_V_TKBOOO_DUTY — A0

A0 < Initial value
TKBCR03 — A0

_V_TKBOO1_DUTY « A0

TKBRDTO < 1

RO1AN7095EJ0100 Rev.1.00

Nov.14.23

RENESAS

Page 56 of 68



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.5 Sample Script Specification

This sample project includes the sample script that manipulates the value of the address bus selection
register (ADBSEL) to display peripheral function SFRs on the [IO Register] view in e2 studio when
debugging an FAA program. (sample_script.py in the sample project)

GDB used during debugging supports Python scripts. You can control debugging using Python. For more
information about GDB and Python, see the e2 studio Help (e2 studio User Guide - Debugging Projects -
GDB).

3.5.1 SFR Display Overview

For some peripheral functions of RL78/G24, access from the CPU or from the FAA can be selected with the
address bus selection register (ADBSEL). For the address bus select register (ADBSEL), refer to RL78/G24
User’s Manual: Hardware (RO1UH0961).

The debugger reads or writes peripheral function SFR values through bus access from the CPU. It cannot
access the peripheral function SFRs for which bus access from the FAA is selected with the address bus
select register (ADBSEL). Therefore, reading from or writing to these peripheral function SFRs cannot be
performed on the debugger’s [SFR] panel.

To enable read and write on the debugger’s [SFR] panel for the peripheral function SFRs for which bus
access from the FAA is selected when the debug target is FAA, use the script to manipulate the ADBSEL
register value.

Figure 3-11 Image diagram of address bus select function

—|o
apgnnnn
0
T
(=
mnmoanan

B
1 ]

[TTTTTIT)
2]
b
c

e

ADBSEL.TKB30SEL=0

] g |
Timer KB30 1 7@3&
0
1 |

ADBSEL.TKB30SEL=1

Timer KB30 o -3¢+
1 P
Accessible from FAA
O B mmanam
1 @

Accessible from CPU Not accessible from CPU

Not accessible from FAA

P

RO1AN7095EJ0100 Rev.1.00 Page 57 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.5.2 Operation Overview

When the debug target is FAA, after the FAA program is stopped by using the stop button, step execution, or
breakpoint, the script assigns the XORed value to the current setting of the ADBSEL register. This
temporality permits access from the CPU (the debugger) for the peripheral function SFRs for which access
from the FAA is selected. In addition, before the FAA program is executed by using the execution button or
step execution, the script assigns the original setting to the ADBSEL register to return the setting to permit
access from the FAA.

This allows access from the FAA to the relevant SFRs during execution of the FAA program and, after the
FAA program stops, allows the debugger to access the relevant SFRs and read or write values on the [SFR]
panel.

Figure 3-12 Image of sample script

Sample script file (.py)

e |n addition to the functions and control statements
supported by the Python language, write the processing

def BeforeCpuR t): . . .
ef BeforeCpuRun(event) using GDB extension functions.

processing

e Register functions to be executed before the program starts

f Aff :
def AfterCpuStop(event) running and after it stops running.

processing

e Write the process to change ADBSEL register values in each

Variable initialization .
function.

The script file for this sample project is sample_script.py.

RO1AN7095EJ0100 Rev.1.00 Page 58 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

Figure 3-13

Image diagram of changing ADBSEL register values by script

In the case that script is not used.

ADBSEL register setting: Timer KB30 Bus access is from FAA

~|o o o
!4.

ADBSEL.TKB30SEL=1

When the FAA program stops:

In the case that ADBSEL value is manipulated by script after FAA program stops/before FAA program runs.

ADBSEL.TKB305EL=0

When the program Runs:.

Il

ADBSEL.TKB30SEL=1

CcPU

FAA program stopped:
The debugger cannot access Timer KB30' SFRs.
{Because the debugger accesses SFRs via CPU bus.)

FAA program running:
The debugger can access Timer KB30' SFRs.

After the FAA program stops:

The script assigns the XORed value to the current setting
of the ADBSEL Register.

This changes the bus access from the FAA to the CPU.
The debugger can access Timer KB30' SFRs.

(R/W to Timer KB30' SFRs is possible on the [SFR] panel.)

Before the FAA program runs:

The script assigns the original setting to the ADBSEL
register to return the setting to permit access from the
FAA.

The FAA program can access Timer KB30' SFRs.

=5
RO1AN7095EJ0100 Rev.1.00 Page 59 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.5.3 List of Functions
In the sample script, the value of the ADBSEL register is changed within the function that is called when an
event occurs. Table 3-16 lists the functions used in the script and provides an overview of processing.

Table 3-16 Functions used in the sample script and processing overview

Function name

Event

overview

BeforeCpuRun Before execute Write the original value that CPU sets to ADBSEL register
to the ADBSEL register.
AfterCpuStop After break Write the XORed value of the original value to the ADBSEL

register.

3.5.4 List of Variables
Table 3-17 lists the variables used in the script and provides an overview of processing.

Table 3-17 Variables used in the sample script and processing overview

Variable name

Overview

changed_flag

[Value]

Status for ADBSEL value

True: Script wrote the XORed value in ADBSEL register.
False: Script wrote the original value in ADBSEL register.

adbsel value cpu

ADBSEL register’s value set by the CPU program

number of command

The number of times the function was executed.

RO1AN7095EJ0100 Rev.1.00

Nov.14.23

Re Page 60 of 68
RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.5.5 Flowchart
(1) Initialization Process

Figure 3-14 shows the flowchart of the initialization process that is executed after loading the sample script
(-py).

Figure 3-14 Initialization process

( After reading of script )

Initialize variables

Show message in console
Print “Initialize”

=

(2) AfterCpuReset Process
Figure 3-15 shows the flowchart of the AfterCpuReset process.

Figure 3-15 AfterCpuReset process

( AfterCpuStop() )

Show message in console
“FAA STOP”

|

adbsel_value_cpu = ADBSEL

|

ADBSEL = XOR-ed original value

|

Changed flag = True

|

Show message in console
“ADBSEL = XXXXH”

|

=

RO1AN7095EJ0100 Rev.1.00 Page 61 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

(3) BeforeCpuRun Process

Figure 3-16 shows the flowchart of the BeforeCpuRun process.

Figure 3-16 BeforeCpuRun process

( BeforeCpuRun() )

Show message in console
“FAA RUN”

Changed flag is True?

Yes

ADBSEL = original value

l

Changed flag = False

l

Show message in console
“ADBSEL = XXXXH”

-t

=

RO1AN7095EJ0100 Rev.1.00 Page 62 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.5.6 Script Execution
This section explains how to execute the script.

Procedure:
1. Build the sample project. (Refer to 2.4.3 Program Building)
2. Connect the RL78/G24 Fast Prototyping Board (with the emulator or via COM port) to the PC.

3. Download the object of the sample project to the RL78/G24 Fast Prototyping Board. (Refer to 2.5.3
Program Download)

Select the FAA as the debug target. (Refer to 2.6.1 Debug Target)
Input “source sample_script.py” in the [Debug Console] view.

In the [Debug Console] view, confirm that the script executes.

Note 1. The contents in the [Debugger Console] view change depending on the debug target. Execute the
source command when FAA is the target of debugging.

Note 2. When using this sample script, debug the FAA program with the CPU program stopped. Also, after
stopping the FAA program, do not switch the debug target to the CPU and run the CPU program
without disabling the script. This is because the value of ADBSEL register remains the value
rewritten by the script, and the CPU program does not work properly.

Note 3. To disable this script, enter the following in the [Debugger Condole] view when the FAA is the debug
target.
py gdb.events.stop.disconnect (AfterCpuStop)
py gdb.events.cont.disconnect (BeforeCpuRun)

Alternatively, if you want to re-enable the sample script, enter the following in the [Debugger
Console] view when the FAA is the debug target.
source sample_script.py

Figure 3-17 [Debugger Console] view

15 Debug X = ‘i#f § = 08 || |5 Config_FAA_srcdsp X | [€] sample_project.c 8] cstart.asm [c] oxo = O
~ [£7] sample_project HardwareDebug [Renesas GDB Hardware| |3 47 popeeeee | MOV # V_TKBO@@_DUTY, RP@ ~
~ (% sample_projectx [256] [cores: 0] 43 00000002 IN (#TKBCRO1), A®
~ f® Thread #1 1 (CPU) [core: 0] (Suspended : Signal : SI|| 44 00000004 SFT_LL ;5 AB ¥ 2 -> A@ : A@ = (TKBCRO1*2)
= start)) at cstartasm:126 Oxd8 45 9000005 MOV AG, RO ; AB -> RO : RO = (TKBCRO1*2)
W2 H78-elf-gdb (7.82) 4? 00000606 IN (#TKBCR@®), A@ ] )
% Renesas GDB server (Host) 47 80000008 SUB_R ; AB - RO -> AB : (TKBCR@® - (TKBC
—_ 48 0000000S JMP UNDER, #P_DUTY_INIT ; TKBCRO® < (TKBCRO1*2)
~ [c '] FAA [Renesas GDB Hardware Debugging] 49
v (i Process [257] [cores: 1] 50 P_DUTY_CHANGE :
~ f® Thread #1 1 (FAA) [core: 1] (Suspended : Signal : Sl 51 eeeeeeeb PUSH R@ ; R@ -» stack
| = P_TKB_PWM() at Config_FAA_src.dsp:42 0x0 | 52 0000000C POP A® ; stack -> AB : A@ = (TKBCRO1*2)
& ‘Green dep-elfodb (91 53 2000000d OUT AB, (#TKBCRD1) ; (TKBCRO1*2) -> TKBCRL
54 B020000T MOV A@, (B, RP@) ; current TKBCRO1 -> _V_TKBO@@_DUT
55 00800011 IN (#TKBCR@3), A®
56 00000013 SFT_RL ; AB / 2 -> AB : A@ = (TKBCRO3/2)
Select FAA as the debug target 57 00000014 OUT A@, (#TKBCRO3) ; (TKBCRO3/2) -> TKBCRE3
58 000ARA16 MOV A@, (1, RP@) s current TKBCR@2 -> V TKBO@L DUT
59 00E00018 JMP #P_DUTY_END
60
61 P_DUTY_INIT:
62 0000001a MOV (# C_TKBO®@@ DUTY_INIT), A®
63 0000001c OUT A@, (#TKBCRO1) ; Initial value -> TKBCRO1
64 0006001e MOV A@, (@, RP@) ; current TKBCR@1 -»> _V_TKBOB8_DUT
65 00000026 MOV (# C TKBO@1 DUTY INIT)., A@ 7
< >

) Console Register1 Q Debugger Console X | . Peripherals
FAA [Renesas GDB Hardware Debugging| green_dsp-elf-gdb (7.9.1)
For help, type "help".

Type “"apropos word" to search for commands related to SpeC|fy the script file by
Warning: the current language does not match t i5/£Pﬁn’s°urce command.

[(1y (output by script)---------------------
INITIALIZE script

' Confirm that the script executes.

RO1AN7095EJ0100 Rev.1.00 Page 63 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

3.5.7 Basic debug operations

This section explains the basic operations of debugging a FAA program using sample code and sample
scripts.

Procedure:
1. Select the CPU as the debug target. (Refer to 2.6.1 Debug Target)

2. Open the sample_project.c. Open the context menu at the address row of “FAACNT = 0x0001U;” to set
the breakpoint (Software break). Click the [Toggle Software Breakpoint] in the context menu.

Figure 3-18 sample_project.c (Debug target: CPU)

i Debug X =] |]'."-v § = 0O |_S, Config_FAA_src.dsp |_S, cstart.asm €] sample _projectc X = 0 {5 Project Explorer > | |*)= Variables “g |

v [ sample_project HardwareDebug [Renesas GD 69 e while (1) ()
v (1 sample_project.x [256] [cores: 0] 70 { N =7 sample pro}ect%
~ ® Thread #1 1 (CPU) [core: 0] (Suspended : Zf 1 /* _Nait IHTIHTTMKB@ */ "4‘}; Blnanes et
[ = s@n0 at cstartasm:126 0xd8 ] 72 000001d7 = while (g tkb_interrupt _flag == eu)
S Ti78-elf-ggb (78.2) 3 { il Includes
' : . 74 B v S sic
»| Renesas DB server (Host) 75 ) b
5 v
v [c”] FAA [Renes3s GDB Hardware Debugging] 76 b Smc_geﬂ
~ 1 Process J257] [cores: 1] 77 /* Clear user flag */ = CU“f‘ELFAA
f Thregd #1 1 (FAA) [core: 1] (Suspended : 78 000001dc g tkb_interrupt_flag = @U; = Config Tlsli’snplay e Gl RER
= P/TKB_PWM() at Config_FAA_src.dsp:4. 79 (= gener - .
; 50 /% FAA operation enable */ . file on the editor.
i green (dsp-elf-gdb (7.9.1) ) ] ) & rbsp
81 000E0Ldf R_Config_FAA_Enable(); i i
82 [~ r,cc_)n ig
Select CPU as the debug target. 83 /* Set stack pointer for FAA */ =L DiD
84 0000019 SP® = FAA_ADDR_SP; .t sample_project.c

53 /* Set program pointer for FAA */

) (= HardwareDebug
000001ce PGO = FAA ADDR CODE(P_TKB_PUM); i
* Start FAA program cution */ = tras!
Open the context menu at the FARCNT = 0x0001U: = -~ sample_project.rcpc
address row of “FAACNT =

‘2:,_% sample_project.scfg

0x0001U;".
Click the [Toggle Software
Breakpoint] in the context menu.

¥ samnle nroiect HardwareNehun |

Toggle Software Breakpoint
Toggle Hardware Breakpoint

Toggle Breakpoint Ctrl+Shift+B

3. Click the [Reset] and then click the [Resume] on the tool bar. The program will run to the beginning of
the main function and stop, so click the [Resume] again.

Figure 3-19 Tool bar

File Edit Source Refactor Navigate Search Project Renesas Views Run Renesas Al Window Help
| &~ & ~ Q H B2y Qi _'I-th'-':g"‘g_g

4. After the program stopped by the breakpoint, change the debug target to the FAA. To debug FAA
programs, the FAA must be enabled (FAAEN=1, ENB=1).
In the sample code, “R_Config_ FAA_Enable()” enables the FAA. Therefore, the FAA has been enabled
at the breakpoint.

RO1AN7095EJ0100 Rev.1.00 Page 64 of 68
Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

5. Register variables (_ V_TKBO00_DUTY, _V _TKBOO01_DUTY) whose values are changed in the FAA
program to the [Expressions] view.

@ o»

«  After registering the variable, delete the first letter
notation. (Refer to 2.6.6 Symbol (Label)

and change the format to hexadecimal

Figure 3-20 [Expressions] view

& Expressions > | 5 Project Explorer | (%)= Variables | ®g Breakpoints =

BB+ X% AR e

Expression Type Value Address i
()= V_TKBOO0_DUTY volatile unsigned long  Ox0 (Hex) (e
()= V_TKBOO1_DUTY volatile unsigned long  Ox0 (Hex) 0x10

n° Add new expression

6. Register SFRs (TKBCR01_PTR., TKBCRO03_PTR) whose values are changed in the FAA program to
the [Selected Register] tab of [IO Register] view.

Figure 3-21 [lIO Register] view

i_| I0Registers X || Expressions | [(5 Project Exp...| (%)= Variables| ®g Breakpoints) = O If 10 Registers X }'If Expressions | [( Project Exp...| (%)= Variables| ® Breakpoints) — O
TKBCRO1_PTR VP EREds0=EE| 8 |TkBCRO1_PTR VEP PR 0=EE| 8
Name Value (Hex) Address (N Name Value (Hex) Address
MALSES TS ARET ou. S 0x0000 0x0000842a v FAA(TMR

Input the register name to 0x0000 0x00008430 ¥ TKBCROT_PTR 0x0000 0x00008742
be registered and press UXEI | - W TKBCRO3_PTR 0x0000 0x00008746
0

5 Add to Selected Registers
the Enter key to search it. X 2
0x0 Remouewted Registers

ate1 TKBPAFLG2_PTR 0x0 . o )
11 TKBPACTL22_PTR oxo  Click the [Add to Selected Registers].
1010
ta1 TKBPACTL23_PTR 0x0 2 LockRefresh
o141 TKBPACTL24_PTR 0x0
7 . %0 + Expand All Groups
Right-click on the searched X
; . heo| E Collapse All
register to display the context
menu. %0 Find
oy TREFAFLSZTLFTR U0 5 Manage Selected Registers...
0x0 ™ Print Expanded Groups
0x0 El S
1119 TRBCROZ_PTR 0x0 ave
114 TKBCRO3 PTR oxo| = “opy
1 TKBTGCRO_PTR 0x0 Show Value (Bin) column v
All Registers |Selected Registers Show Access column All Registerd Selected Registers
Renesas Eventpoints >
RO1AN7095EJ0100 Rev.1.00 Page 65 of 68

Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

8.

Step-execute/execute the FAA program and debug while checking the values of variables, SFRs, and
registers.

+  Breakpoints can be set by clicking in the main area of the FAA program source. (Refer to 2.6.4
Breakpoint)

After running the program, check in the [Debug Console] view whether the ADBSEL register value
is the value set in the CPU program.

(Remark: ADBSEL register is only accessible by the CPU, so the value of the ADBSEL register
cannot be displayed in the [SFR] panel while debugging the FAA.)

Figure 3-22 Example of FAA program debugger screen

15 Debug X - i® § = DO | [§ Config FAA srcdsp X | [8) cstartasm €| sample_project.c = O | & Expressions X | (5 Project Explorer | (x)= Variables| ®g Breakpoints = la
~ [ sample_project HardwareDebug [Renesas GDB Hardwa| | 4 .PUBLIC _P_TKB_PWM A EE| e XFAXRC
v il sample_projectx [256] [cores: 0] ! _P_TKB_PWM: P T Value 2 Ne
) 10 | MOV #_V_TKBOBO_DUTY, RPO
~ o Thread #1 1 (CPU) [core: 0] (Suspended : Breakpo acctho ” » 9= V_TKBOOO_DUTY volatile unsigned long  0x0 (Hex) 0
= main() at sample_project.c:88 0x1f4 o IN_(¥TKBCROL), A9
g ) » 4 c A SFT_LL S AD * 2 -> AD : A = ( 69 V_TKBOO1_DUTY volatile unsigned long  0x0 (Hex) 0
- r78-elf-gdb ( ) Py MOV AB, RO . A RO RO KB( Add new expression
wo Renesas GDB server (Host) IN (#TKBCRE®), A®
+ [£7] FAA [Renesas GDB Hardware Debugging] o¢ SUB_R i ; A2 - RB -> AD o "
v 5B Process [257] [cores: 1] IMP UNDER, #P_DUTY_INIT 90 < (TKBCROL*2 Variables’ value
~ o® Thread #1 1 (FAA) [core: 1] (Suspended : Stegy 4
= P_TKB_PWM() at Config_FAA_srcdspiddfd P_DUTY_CHANGE: < > ©
2 PUSH R te
w_green dsp-elf-gdb (7.9.1) " — o
9 & 224 ) POP AD ; stack -> AB : A® 10 Registers =]
. ) ! OUT A, (#TKBCRO1) ; (TKBCR@1%2) KBCRE —
Hardware breakpoint 1 00000001 MOV A2, (8, RPE) . current TKBCRE1 -> VI TKBCROLPTR EEEY ]
1 IN (#TKBCRE3), AB Name Value (Hex) Address
SFT_RL ; AB /2 -> AB : AD Nar=ymo——
el E:T"igg‘;” i SENICHRGE b SN ¥ TKBCRO1 PTR %1900 000008742
3 30 TUTY B ¥ TKBCRO3_PTR 0xc800 0x00008746
N
P_DUTY_INIT: ’
MOV (#_C_Ti HIT), AD SFRs’ value
OUT AR (& Tnitial value -> TKBC™
" > All Registers Selected Registers
Registers X = 7
Name Value Description A
~ 84 General Registers General Purpase and FPU Register Group
AD 0x1900
Mo 0:0 . o
M1 00 Registers’ value
Lo 00 5
- — >
Droaram check i & e oo 1]
(& Debuoger Consote < |7 Perpherat sE--C
POSMICHECOWRCERN © (e ) L
q [Renesas ardware Debugging] green_dsp-elf-gi )
the ADBSEL l‘eglster value (8) (OUtPUt BY SCRIPE)---------—-mmoom =
was restored to the original itins BOTT
e s s e
(5) (output by script)---------------oooov
FAA STOP
ADBSEL= BDFF H v
< >

3.5.8 Cautions When Using the Sample Script

v

When using this sample script, debug the FAA program with the CPU program stopped. Also, after
stopping the FAA program, do not switch the debug target to the CPU and run the CPU program without
disabling the script. This is because the value of ADBSEL register remains the value rewritten by the
script, and the CPU program does not work properly.

To disable this script, enter the following in the [Debugger Condole] view when the FAA is the debug
target.

py gdb.events.stop.disconnect (AfterCpuStop)
py gdb.events.cont.disconnect (BeforeCpuRun)

Alternatively, if you want to re-enable the sample script, enter the following in the [Debugger Console]
view when the FAA is the debug target.

source sample_script.py

The operation of sample code is not guaranteed. And the operation of this sample script is not
guaranteed with all application programs and debugging operations.

This sample script assists in displaying SFRs when debugging FAA programs. After completing
debugging, thoroughly evaluate your system without using the sample script.

RO1AN7095EJ0100 Rev.1.00

Page 66 of 68

Nov.14.23 RENESAS



RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: e2 studio

4. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

5. Reference Documents

RL78/G24 User’s Manual: Hardware (RO1UH0961)

RL78 family User's Manual: Software (R0O1US0015)

DSPASM FAA/GREEN_DSP Structured Assembler User's Manual (R20UT3911)
RL78/G24 Fast Prototyping Board User’s Manual (R20UT5091)

RL78 Smart Configurator User’s Gude: e2 studio (R20AN0579)

(The latest version can be downloaded from the Renesas Electronics website.)
Technical Update/Technical News

(The latest version can be downloaded from the Renesas Electronics website.)

All trademarks and registered trademarks are the property of their respective owners.

RO1AN7095EJ0100 Rev.1.00 Page 67 of 68
Nov.14.23 RENESAS



RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: e2 studio

Revision History

Description
Rev. Date Page Summary
1.00 Nov.14.23 - First edition
RO1AN7095EJ0100 Rev.1.00 Page 68 of 68
Nov.14.23 RENESAS




General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.



Notice

1.

10.

11.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.


https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Flexible Application Accelerator (FAA)
	1.2 Internal Memory Space of FAA
	1.3 Program for RL78/G24
	1.3.1 Program Structure
	1.3.2 Transfer of Program and Data for FAA
	1.3.3 FAA Program
	1.3.4 Build Process and Debug of FAA Program


	2. Option Setting and Operation
	2.1 Operating Environment
	2.2 Project Creation
	2.3 Adding FAA Program
	2.3.1 Adding FAA Component
	2.3.2 Overview of FAA library’s File Structure

	2.4 Build Tool Option Setting
	2.4.1 FAA Assembler Options
	2.4.2 Linker Options
	2.4.3 Program Building

	2.5 Debug Tool Option Setting
	2.5.1 Debugger Options
	2.5.2 Startup Options
	2.5.3 Program Download

	2.6 FAA Program Debug
	2.6.1 Debug Target
	2.6.2 Source File Display
	2.6.3 Run / Stop
	2.6.4 Breakpoint
	2.6.5 Memory
	2.6.6 Symbol (Label)
	2.6.7 Register
	2.6.8 SFR


	3. Sample Project
	3.1 Specifications
	3.1.1 Specification Overview
	3.1.2 Operation Overview

	3.2 Operation Confirmation Conditions
	3.3 Hardware Description
	3.3.1 Example of Hardware Configuration
	3.3.2 List of Used Pins

	3.4 Software Description
	3.4.1 Smart Configurator Setting
	3.4.1.1 Clock
	3.4.1.2 System
	3.4.1.3 Component

	3.4.2 Folder Structure
	3.4.3 Option Byte Settings
	3.4.4 List of Constants
	3.4.5 List of Variables
	3.4.6 List of Functions
	3.4.7 Function Specification
	3.4.8 Flowchart
	3.4.8.1 Main Process
	3.4.8.2 r_Config_TKB0_end_count_interrupt Function
	3.4.8.3 FAA Processing


	3.5 Sample Script Specification
	3.5.1 SFR Display Overview
	3.5.2 Operation Overview
	3.5.3 List of Functions
	3.5.4 List of Variables
	3.5.5 Flowchart
	(1) Initialization Process
	(2) AfterCpuReset Process
	(3) BeforeCpuRun Process

	3.5.6 Script Execution
	3.5.7 Basic debug operations
	3.5.8 Cautions When Using the Sample Script


	4. Sample Code
	5. Reference Documents
	Revision History

