

## RL78/G23

### How to control HDMI-CEC with a General-Purpose Timer

### Introduction

This application note describes an application that uses the RL78/G23-64p Fast Prototyping Board (FPB) to control HDMI.

There are three modes in the sample codes: Monitor mode, Audio mode, and Player mode.

Monitor mode:

The CEC Viewer attached to the sample codes is used to monitor CEC/DDC signals on your PC monitor connected to the FPB via USB.

Audio mode:

The FPB is used as a Sound Bar in Audio mode. You can control the LEDs on the FPB through operations (Volume Up / Volume Down / Mute) on a TV remote control.

Player mode:

The FPB is used as a BD Player in Player mode. You can control the LEDs on the FPB through operations (Play, Fast Forward, Fast Reverse, Pause) on a TV remote control.

### Target Device

RL78/G23

When applying this application note to other microcontrollers, please change them according to the specifications of the microcontroller and evaluate them thoroughly.



### Contents

| 1.    | Overview                                            | 4    |
|-------|-----------------------------------------------------|------|
| 2.    | Operation check conditions                          | 6    |
| 3.    | Hardware                                            | 7    |
| 3.1   | Example of Connecting FPB and HDMI Connection Board | 7    |
| 3.2   | Pins to be Used                                     | 8    |
| 3.3   | Required Devices                                    | 8    |
| 3.4   | Power Supply Selection Header                       | 9    |
| 4.    | Project                                             | .10  |
| 4.1   | List of Projects                                    | . 10 |
| 5.    | Modes                                               | .11  |
| 5.1   | Monitor Mode                                        | . 11 |
| 5.1.1 | Connection Configuration                            | . 11 |
| 5.1.2 | Setting Procedure                                   | . 12 |
| 5.1.3 | Monitor Starting                                    | . 12 |
| 5.2   | Audio Mode                                          | . 13 |
| 5.2.1 | Reproducible Functions                              | . 13 |
| 5.2.2 | Connection configuration                            | . 14 |
| 5.2.3 | Start Method                                        | . 14 |
| 5.3   | Player mode                                         | . 16 |
| 5.3.1 | Reproducible Functions                              | . 16 |
| 5.3.2 | Connection Configuration                            | . 17 |
| 5.3.3 | Start Method                                        | . 17 |
| 6.    | CEC Viewer                                          | .19  |
| 6.1   | Function                                            | . 19 |
| 6.2   | Installation Modules                                | . 19 |
| 6.3   | Installation and Startup                            | . 19 |
| 6.4   | File List                                           | . 20 |
| 6.5   | Command.csv                                         | . 21 |
| 6.6   | Main Window                                         | . 22 |
| 6.7   | File Menu                                           | . 23 |
| 6.8   | Monitor                                             | . 24 |
| 6.9   | Settings                                            | . 25 |
| 6.10  | Preset Key                                          | . 27 |
| 6.10  | 1 Setting Method                                    | . 27 |
| 6.10  | 2 Usage                                             | . 28 |
| 6.10  | 3 Operation Conditions of the Preset Keys           | . 29 |



| 6.10.4 | Preset Keys Configured                | 29 |
|--------|---------------------------------------|----|
| 6.11 N | Message Window                        | 30 |
| 7. S   | oftware Configurations                | 31 |
| 7.1 F  | Folder Structure                      | 31 |
| 7.2 [  | Drivers                               | 32 |
| 7.2.1  | Summary                               | 32 |
| 7.2.2  | Software Hierarchy                    | 32 |
| 7.2.3  | Hardware Resources                    | 33 |
| 7.2.4  | CEC Specification                     | 33 |
| 7.2.5  | Functional Overview                   | 34 |
| 7.2.6  | File Structure                        | 36 |
| 7.2.7  | How to Import the Driver Software     | 36 |
| 7.2.8  | Defining Types in the Driver Software | 37 |
| 7.2.9  | User-Modifiable Definitions           | 37 |
| 7.2.10 | List of User Variables                | 38 |
| 7.2.11 | User I/F Functions                    | 39 |
| 7.2.12 | Function Specifications               | 39 |
| 7.2.13 | Error Status                          | 40 |
| 7.2.14 | Operation Description                 | 41 |
| 7.3 (  | Controllers                           | 50 |
| 7.3.1  | Overview                              | 50 |
| 7.3.2  | Software Layers                       | 50 |
| 7.3.3  | Flowchart                             | 51 |
| 7.3.4  | Functions of Each Mode                | 53 |
| 7.3.5  | Status Changing                       | 59 |
| 8. Sa  | ample Codes                           | 60 |
| 9. R   | eferences                             | 60 |
| Home   | page                                  | 60 |
| Revisi | on History                            | 61 |



### 1. Overview

There are three modes in the sample codes: Monitor mode, Audio mode, and Player mode.

Monitor mode:

The CEC Viewer attached to the sample codes is used to monitor CEC/DDC signals on your PC monitor connected to the FPB via USB.

Audio mode:

The FPB is used as a Sound Bar in Audio mode. You can control the LEDs on the FPB through operations (Volume Up / Volume Down / Mute) on a TV remote control.

Player mode:

The FPB is used as a BD Player in Player mode. You can control the LEDs on the FPB through operations (Play, Fast Forward, Fast Reverse, Pause) on a TV remote control.





Note: It is not used in the demo project. It is only used in development projects.



Figure 1-2 Audio mode / Player mode Configuration

Note: It is not used in the demo project. It is only used in development projects.



| Peripheral<br>Functions                       |           | Usage                                                           |  |  |
|-----------------------------------------------|-----------|-----------------------------------------------------------------|--|--|
| IICA                                          | IICA0*    | Used to receive DDC signals.                                    |  |  |
| INTC                                          | INTP0     | Used to detect the key (SW1) input when selecting a mode.       |  |  |
|                                               | INTP1     | Used to detect CEC signals.                                     |  |  |
| PORT                                          | P51       | Used as a receiving terminal for CEC signals.                   |  |  |
|                                               | P52       | Used for LED2 control.                                          |  |  |
|                                               | P53       | Used for LED1 control.                                          |  |  |
|                                               | P42       | Used as a transmitter terminal for CEC signals.                 |  |  |
| TAU0 Channel 0 Used for LED flashing control. |           | Used for LED flashing control.                                  |  |  |
|                                               | Channel 1 | Used for CEC communication.                                     |  |  |
|                                               | Channel 3 | Used for SW1 press and hold determination and CEC line monitor. |  |  |
| SAU                                           | UART0     | Used for UART communication with a PC. (Demo project)           |  |  |
|                                               | UART1     | Used for UART communication with a PC. (Development project)    |  |  |

## Table 1-1 Peripheral Functions and Applications to be Used

Note: Since the all address match function is enabled, INTIICA0 interrupts are generated for all slave addresses.



### 2. Operation check conditions

The sample codes in this application note have been tested under the following conditions.

| Table 2-1 | Operation | Confirming | Conditions |
|-----------|-----------|------------|------------|
|-----------|-----------|------------|------------|

| ltem                                | Contents                                                                          |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Microcontroller                     | RL78/G23 (R7F100GLGxFB)                                                           |  |  |  |
| Board                               | RL78/G23 Fast Prototyping Board (RTK7RLG230CLG000BJ)                              |  |  |  |
| Operating Frequency                 | <ul> <li>High-speed on-chip oscillator clock (f<sub>IH</sub>): 16 MHz*</li> </ul> |  |  |  |
|                                     | <ul> <li>CPU/peripheral hardware clock: 16 MHz*</li> </ul>                        |  |  |  |
|                                     | Note: Changeable between 4 - 32 MHz.                                              |  |  |  |
| Operating Voltage                   | 3.3V                                                                              |  |  |  |
| Integrated Development              | Renesas Electronics                                                               |  |  |  |
| Environment (CS+)                   | CS+ V8.10.00                                                                      |  |  |  |
| C Compiler (CS+)                    | Renesas Electronics                                                               |  |  |  |
|                                     | CC-RL V1.12.01                                                                    |  |  |  |
| Integrated Development              | Renesas Electronics                                                               |  |  |  |
| Environment (e <sup>2</sup> studio) | e <sup>2</sup> studio V2023-10 (23.10.0)                                          |  |  |  |
| C Compiler (e <sup>2</sup> studio)  | Renesas Electronics                                                               |  |  |  |
|                                     | CC-RL V1.12.01                                                                    |  |  |  |
| Integrated Development              | IAR Systems                                                                       |  |  |  |
| Environment (IAR)                   | IAR Embedded Workbench for Renesas RL78 V5.10.3                                   |  |  |  |
| C Compiler (IAR)                    | IAR Systems                                                                       |  |  |  |
|                                     | IAR C/C++ Compiler for Renesas RL78 V5.10.3.2716                                  |  |  |  |
| Smart Configurator                  | CS+ V1.8.0,                                                                       |  |  |  |
|                                     | e2studio 23.10.0.v20230925-1024,                                                  |  |  |  |
|                                     | IAR V1.8.0                                                                        |  |  |  |
| Board Support Packages              | V1.61                                                                             |  |  |  |
| (r_bsp)                             |                                                                                   |  |  |  |
| Operating System                    | Windows 10/11                                                                     |  |  |  |

#### Table 2-2 Operation Confirming Devices

| Item      | Contents             |
|-----------|----------------------|
| TV        | 32LX7000PJB, 32S518K |
| BD Player | BP350Q, SGP200W      |
| Sound Bar | SN7CY, YAS-109       |



### 3. Hardware

### 3.1 Example of Connecting FPB and HDMI Connection Board

The following is an example of the connection between the FPB and the HDMI connection board used in this application note.





Note: A USB cable is used in the demo project. To use the CEC Viewer, connect it to a PC via the USB connector on the FPB with a USB cable.

A UART-to-USB cable and a USB cable are used in development projects. To use the IDE, connect it to a PC with a USB cable via the USB connector on the FPB. In addition, to use the CEC Viewer, connect a USB-to-serial conversion cable to the J3-1 / J3-2 of the FPB and connect it to the PC.



### 3.2 Pins to be Used

The pins to be used are listed in Table 3-1.

#### Table 3-1 List of Pins to be Used on FPB

| Pin Name<br>in the FPB Circuit<br>Diagram | Pin Name<br>on RL78/G23 | I/O    | Contents                             |
|-------------------------------------------|-------------------------|--------|--------------------------------------|
| D1-5 (5V)                                 | -                       | Output | HDMI connection board +5V supply and |
|                                           |                         |        | SCL/SDA pull-up                      |
| D1-4 (3V3)                                | VDD                     | Output | CEC pull-up                          |
| J1-6 (GND)                                | GND                     | -      | Connection to GND on the HDMI        |
|                                           |                         |        | connection board                     |
| J4-10 (SCL)                               | P60 / SCLA0             | Input  | SCL (Clock) Connection (DDC)         |
| J4-9 (SDA)                                | P61 / SDAA0             | I/O    | SDA (Data) Connectivity (DDC)        |
| J4-5                                      | P50                     | Input  | CEC Line Input (CEC_IN)              |
| J3-4                                      | P42                     | Output | Output to CEC line (CEC_OUT)         |
| J3-2*                                     | P02 / TxD1              | Output | UART transmission to PC              |
| J3-1*                                     | P03 / RxD1              | Input  | UART reception from PC               |
| USB                                       | P12 / TxD0              | Output | UART transmission to PC              |
|                                           | P11 / RxD0              | Input  | UART reception from PC               |

Note: It is not used in the demo project. It is only used in development projects.

#### Table 3-2 List of Pins to be Used on the HDMI Connection Board

| Pin Name | I/O    | Contents                          |
|----------|--------|-----------------------------------|
| 13 / CEC | I/O    | FPB CEC_IN/CEC_OUT and connection |
| 15 / SCL | Output | Connection to SCL on the FPB      |
| 16 / 1   | I/O    | Connection to SDA on the FPB      |
| 17 / GND | -      | Connection to GND on the FPB      |
| 18 / +5V | Input  | Connection to 5V on the FPB       |

### 3.3 Required Devices

Required devices are listed in Table 3-3.

#### Table 3-3 List of Required Devices

| Device Name                         | Quantity | Usage                                      |
|-------------------------------------|----------|--------------------------------------------|
| RL78/G23-64p Fast Prototyping Board | 1        | Used as a Demo machine                     |
| HDMI connection board               | 1        | HDMI wire connection                       |
| ARC-compatible HDMI cable*          | 2        | Used to connect a TV to an HDMI connection |
|                                     |          | board, or an HDMI connection board to an   |
|                                     |          | HDMI device                                |
| HDMI Relay Adapter                  | 1        | HDMI (male to male) cable connection       |
| USB Cable (micro USB Type-B)        | 1        | Used to connect the FPB to the PC          |
| 27 kΩ resistor                      | 1        | CEC Line pull-up resistor                  |
| 1.8 kΩ resistor                     | 2        | Pull-up resistors for SCL/SDA lines        |
| USB to serial cable                 | 1        | Used to use the CEC Viewer when using      |
|                                     |          | development projects.                      |

Note: An ARC-compatible cable is required only when using Audio mode or monitoring the Sound Bar.



### 3.4 Power Supply Selection Header

The FPB power supply selection header (J17) is used to select 3.3V as the MCU's operating power supply (VDD). Changing the jumper setting of the J17 should be done with the power supply OFF.

• When setting Jumper J17 to pins 2-3, 3.3V Power Supply is selected.

#### Figure 3-2 Header Setting when Using 3.3V (Component Side)





### 4. Project

There are projects for demo and development. For the demo project, connect the micro USB Type-B terminal of the FPB to the PC. For the development project, connect the FPB J3-1 / J3-2 to the PC via a USB to serial cable.

### 4.1 List of Projects

Table 4-1 shows the list of projects and Table 4-2 shows the list of ROM/RAM usage.

#### Table 4-1 Project List (for Windows)

| Demo /<br>Development  | Mode                                                                     | IDE                 | Project Folder Name         |
|------------------------|--------------------------------------------------------------------------|---------------------|-----------------------------|
| Demo<br>project        | Monitor mode,<br>Audio mode*1,<br>Player mode*1                          | CS+, e2 studio, IAR | RL78G23-HDMI-CEC-Demo       |
| development<br>project | Monitor mode, Audio<br>mode <sup>*1</sup> , Player<br>mode <sup>*1</sup> | CS+, e2 studio, IAR | rl78g23-hdmi-cec-dev        |
|                        | Audio mode <sup>*1,2,3</sup>                                             | CS+, e2 studio, IAR | rl78g23-hdmi-cec-dev-audio  |
|                        | Player mode*1,2,4                                                        | CS+, e2 studio, IAR | rl78g23-hdmi-cec-dev-player |

Note 1: Operation has been confirmed only with the 32LX7000PJB.

Note 2: It is a sample project designed for product development and does not include the Monitor function.

Note 3: The HDMI connector number is set to 2.

Note 4: The HDMI connector number is set to 1.

| Demo /<br>Development | Mode         | IDE       | Compiler | ROM          | RAM         |
|-----------------------|--------------|-----------|----------|--------------|-------------|
| Demo                  | Monitor mode | CS+       | CC-RL    | 20,941 bytes | 4,250 bytes |
| project               | Audio mode   | E2 Studio | CC-RL    | 20,941 bytes | 4,250 bytes |
|                       | Player mode  | AGAIN     | AGAIN    | 15,091 bytes | 4,740 bytes |
| Development           | Monitor mode | CS+       | CC-RL    | 21,679 bytes | 4,250 bytes |
| project               | Audio mode   | E2 Studio | CC-RL    | 21,742 bytes | 4,250 bytes |
|                       | Player mode  | AGAIN     | AGAIN    | 15,292 bytes | 4,740 bytes |
|                       | Audio mode   | CS+       | CC-RL    | 15,861 bytes | 492 bytes   |
|                       |              | E2 Studio | CC-RL    | 15,889 bytes | 492 bytes   |
|                       |              | AGAIN     | AGAIN    | 11,053 bytes | 1,004 bytes |
|                       | Player mode  | CS+       | CC-RL    | 16,135 bytes | 490 bytes   |
|                       |              | E2 Studio | CC-RL    | 16,163 bytes | 490 bytes   |
|                       |              | AGAIN     | AGAIN    | 11,274 bytes | 1,004 bytes |



#### **RL78/G23**

### 5. Modes

There are three modes: Monitor mode, Audio mode, and Player mode. In Monitor mode, it monitors communication between the devices connected with HDMI. In Audio mode and Player mode, it is used as an HDMI-connected device to demonstrate operation.

### 5.1 Monitor Mode

Monitor mode allows for the monitoring of CEC/DDC communication by the FPB connected via an HDMI cable. The attached CEC Viewer can be used to view the communication status on a PC.

### 5.1.1 Connection Configuration

Figure 5-1 shows the connection configuration in Monitor mode.





Note 1: When connecting the Sound Bar, use an ARC-compatible HDMI cable, and connect the TV to an ARC-compatible HDMI connector.

- Note 2: Connect the HDMI cable to the HDMI connection board via the HDMI relay adapter.
- Note 3: It is not used in the demo project. It is only used in development projects.



### 5.1.2 Setting Procedure

The following procedure describes how to set Monitor Mode.

- Connect the FPB to the PC with a USB cable. Start CEC Viewer (PC software). "Renesas Electronics" is displayed in the CEC Viewer message window.
- If using a development project, load the project in the IDE and start debugging. (When using the demo project, there is no need to load the project in the IDE.)
   The name of the currently selected mode is blinking in the CEC Viewer message window. If it is not blinking, check the Serial Config settings.
- 3) Switch modes with SW1. Each time SW1 is pressed, it switches between Audio mode, Player mode, and Monitor mode (repeatedly).

The LED lighting status of FPB during mode selection is as follows.

| Mode         | LED1 | LED2 |
|--------------|------|------|
| Monitor Mode | ON   | ON   |
| Audio Mode   | OFF  | ON   |
| Player Mode  | ON   | OFF  |

- 4) While "Monitor Mode" is blinking in the message window of CEC Viewer, press SW1 for more than 3 seconds to confirm the mode. "Monitor Mode" displayed in the message window of the CEC Viewer changes to always on. When the mode is switched, the logs currently displayed in the CEC Viewer will be deleted.
- 5) Connect an ARC-compatible HDMI cable to the ARC-compatible HDMI connector on the TV.
- Note 1. For details on how to install and launch CEC Viewer on a PC, see "6.3 Installation and Startup" for more information.
- Note 2. To change the mode again after the mode is confirmed, press RESET (SW2).

#### 5.1.3 Monitor Starting

Press the Start button on the CEC Viewer to start Monitor mode. The communication data is displayed in the CEC/DDC Communication Data area.



### 5.2 Audio Mode

FPB is operated as a Sound Bar. The FPB LED lighting is controlled through the TV remote control operation (Volume Up/Down and Mute).

### 5.2.1 Reproducible Functions

When the audio output is switched to the Sound Bar using the keys on the TV remote control or the buttons on the TV, LEDs 1 and LED2 on the FPB simultaneously light up for 2 seconds from the off state, and then go off again.

The following is a list of features that can be reproduced in Audio mode.

| Function    | Operating Method*                                                | FPB Operation                                                                                                                                                                                                                                         |
|-------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume Up   | Volume + (plus) button                                           | <ul> <li>LED2 blinks once if the button is pressed once.</li> <li>LED2 blinks shortly and repeatedly while the button is held down.</li> <li>When the volume reaches the upper limit, LED2 blinks once for a long duration.</li> </ul>                |
| Volume Down | Volume - (minus) button                                          | <ul> <li>LED1 blinks once if the button is pressed once.</li> <li>LED1 blinks shortly and repeatedly while the button is held down.</li> <li>When the volume reaches the lower limit, LED1 blinks once for a long duration.</li> </ul>                |
| Mute        | Mute button                                                      | • The device is muted and LED1 and LED2 blink at the same time.                                                                                                                                                                                       |
| Unmute      | Mute button<br>Volume + (plus) button<br>Volume - (minus) button | <ul> <li>Mute is canceled, LED1 and LED2 stop blinking<br/>and go out.</li> <li>When volume + button is pressed, it will be<br/>unmuted after volume +1.</li> <li>When volume - button is pressed, it will be<br/>unmuted after volume -1.</li> </ul> |

#### Table 5-1 List of Reproducible Function

Note. Use the keys on the TV remote control or the buttons on the TV.



### 5.2.2 Connection configuration

Figure 5-2 shows the connection configuration in Audio mode.





Note 1. For the TV, connect the ARC-compatible HDMI to the HDMI connector.

Note 2. It is not used in the demo project. It is only used in development projects.

#### 5.2.3 Start Method

The following procedure describes how to set Audio mode.

- Connect the FPB to the PC with a USB cable. Start CEC Viewer (PC software). "Renesas Electronics" is displayed in the CEC Viewer message window.
- If using a development project, load the project in the IDE and start debugging. (When using the demo project, there is no need to load the project in the IDE.)
   The name of the currently selected mode is blinking in the CEC Viewer message window. If it is not blinking, check the Serial Config settings.
- 3) Switch modes with SW1. Each time SW1 is short-pressed, it switches between Audio mode, Player mode, and Monitor mode (repeatedly).

The LED lighting status of FPB during mode selection is as follows.

| Mode         | LED1 | LED2 |
|--------------|------|------|
| Monitor Mode | ON   | ON   |
| Audio Mode   | OFF  | ON   |
| Player Mode  | ON   | OFF  |



- RL78/G23
  - 4) While "Audio Mode" is blinking in the message window of CEC Viewer, press SW1 for at least 3 seconds to confirm the mode. "Audio mode" displayed in the message window of the CEC Viewer changes to always on. When the mode is switched, the logs currently displayed in the CEC Viewer will be deleted.
  - 5) Next, it switches to the HDMI connector number selection. Select the number of the HDMI connector on the TV to which the HDMI cable is to be connected. Each time SW1 is short-pressed, it switches between HDMI 2, HDMI 3, HDMI 4, HDMI 1 (repeatedly). The FPB LED lighting status during HDMI connector number selection is as follows.

| HDMI Connector Number | LED1 | LED2 |
|-----------------------|------|------|
| HDMI 1                | OFF  | ON   |
| HDMI 2                | ON   | OFF  |
| HDMI 3                | ON   | ON   |
| HDMI 4                | OFF  | OFF  |

And the currently selected HDMI connector number is displayed blinking in the message window of the CEC Viewer.

- 6) While the HDMI connector number is blinking in the message window of the CEC Viewer, press SW1 for at least 3 seconds to confirm the HDMI connector number. The HDMI connector number displayed in the message window of the CEC Viewer changes to always on.
- 7) "Audio Mode" is displayed in the message window of the CEC Viewer.
- 8) Connect an ARC-compatible HDMI cable to the ARC-compatible HDMI connector on the TV.
- Note 1. For details on how to install and launch CEC Viewer on a PC, see "6.3 Installation and Startup" for more information.
- Note 2. To change the mode again after the mode is confirmed, press RESET (SW2).
- Note 3. To acquire communication data in Audio mode, press the Start button on the CEC Viewer.



### 5.3 Player mode

FPB is operated as a BD Player. The FPB LED lighting is controlled through the TV remote control operation (Play, Fast forward, Fast Reverse, Pause).

### 5.3.1 Reproducible Functions

When the input is switched to BD Player using the key on the TV remote control or the button on the TV itself, LEDs 1 and LED2 on the FPB simultaneously light up for 2 seconds from the off state, and then go off again.

The following is a list of functions that can be reproduced in Audio mode.

| Function                | Operating Method *1    | FPB Operation                                                                                     |
|-------------------------|------------------------|---------------------------------------------------------------------------------------------------|
| Playback                | Play button *2         | LED1 and LED2 light up simultaneously.                                                            |
| Stop                    | Stop button            | LED1 and LED2 go off simultaneously.                                                              |
| Pause                   | Pause button           | LED1 and LED2 blink simultaneously.                                                               |
| Fast forward            | Fast-forward button *2 | <ol> <li>LED1 goes off and LED2 lights up when the<br/>Fast Forward button is pressed.</li> </ol> |
|                         |                        | ② After ① is executed, LED2 blinks when the Fast                                                  |
|                         |                        | Forward button is pressed.                                                                        |
|                         |                        | ③ After ② is executed, it returns to ① when the                                                   |
|                         |                        | Fast Forward button is pressed. *3                                                                |
|                         |                        | To cancel fast forwarding during fast forwarding, press the Playback button.                      |
| Fast Reverse            | Fast Reverse button *2 | <ol> <li>LED1 lights up and LED2 goes off when the<br/>Fast Reverse button is pressed.</li> </ol> |
|                         |                        | ② After ① is executed, LED1 blinks when the Fast-                                                 |
|                         |                        | Reverse button is pressed.                                                                        |
|                         |                        | ④ After ② is executed, it returns to ① when the<br>Fast Reverse button is pressed. *3             |
|                         |                        | To cancel fast reverse during fast reverse, press the Playback button.                            |
| Forward (By<br>chapter) | Next button            | LED2 blinks once and then enters playback.                                                        |
| Back (By chapter)       | Previous button        | LED1 blinks once and then enters playback.                                                        |
| Eject                   | *4                     | LED1 and LED2 go off simultaneously.                                                              |

#### Table 5-2 List of Reproducible Functions

Note1. Use the keys on the TV remote control or the buttons on the TV itself.

Note2. It does not stop at the end of the seek.

Note3. The fast forward/rewind speed has two levels (Low speed, High speed).

Note4. It can be operated if the TV remote control has an ejection function.



### 5.3.2 Connection Configuration

Figure 5-3 shows the connection configuration in Player mode.



#### Figure 5-3 Connection Configuration in Player Mode

Note: It is not used in the demo project. It is only used in development projects.

### 5.3.3 Start Method

The following procedure describes how to set Player mode.

- Connect the FPB to the PC with a USB cable. Start CEC Viewer (PC software). "Renesas Electronics" is displayed in the CEC Viewer message window.
- 2) If using a development project, load the project in the IDE and start debugging. (When using the demo project, there is no need to load the project in the IDE.) The name of the currently selected mode is blinking in the CEC Viewer message window. If it is not blinking, check the Serial Config settings.
- 3) Switch modes with SW1. Each time SW1 is short-pressed, it switches between Audio mode, Player mode, and Monitor mode (repeatedly).

The status of the FPB LEDs during mode selection is as follows.

| Mode         | LED1 | LED2 |
|--------------|------|------|
| Monitor mode | ON   | ON   |
| Audio mode   | OFF  | ON   |
| Player mode  | ON   | OFF  |



- 4) While "Player Mode" is blinking in the message window of the CEC Viewer, press SW1 for more than 3 seconds to confirm the Mode. The Player Mode displayed in the CEC Viewer message window changes to always on. When the mode is switched, the log displayed in the CEC Viewer is deleted.
- 5) Next, it switches to the HDMI connector number selection. Select the number of the HDMI connector on the TV to which the HDMI cable is to be connected. Each time SW1 is short-pressed, it switches between HDMI 2, HDMI 3, HDMI 4, HDMI 1 (repeatedly). The FPB LED lighting status during HDMI connector number selection is as follows.

| HDMI Connector Number | LED1 | LED2 |
|-----------------------|------|------|
| HDMI 1                | OFF  | ON   |
| HDMI 2                | ON   | OFF  |
| HDMI 3                | ON   | ON   |
| HDMI 4                | OFF  | OFF  |

And the currently selected HDMI connector number is displayed blinking in the message window of the CEC Viewer.

- 6) While the HDMI connector number is blinking in the message window of the CEC Viewer, press SW1 for at least 3 seconds to confirm the HDMI connector number. The HDMI connector number displayed in the message window of the CEC Viewer changes to always on.
- 7) "Player mode" is displayed in the message window of the CEC Viewer.
- 8) Connect the HDMI cable to the HDMI connector on the TV.
- Note 1. For details on how to install and launch CEC Viewer on a PC, see "6.3 Installation and Startup" for more information.
- Note 2. To change the mode again after the mode is confirmed, press RESET (SW2).
- Note 3. To acquire communication data in Player mode, press the Start button on the CEC Viewer.



### 6. CEC Viewer

This chapter describes the GUI (CEC Viewer), enabling monitoring of CEC/DDC signals and CEC control on a PC monitor connected to the FPB via USB.

### 6.1 Function

The functions of CEC Viewer are as follows:

- Monitoring CEC/DDC signals
- Recording and sending CEC commands with Preset Keys (20 keys)
- Saving and reading the log stored in the CSV file

### 6.2 Installation Modules

#### Table 6-1 List of Installation Modules

| File Name              | Contents                        |
|------------------------|---------------------------------|
| CEC_Viewer_windows.zip | Installation module for Windows |

#### 6.3 Installation and Startup

- 1) Unzip the installation module file in a folder of your choice.
- 2) Double-click CEC\_Viewer.vbs to launch the CEC Viewer.

#### Figure 6-1 Startup Files

| Name                                 | Size      | Туре                 |
|--------------------------------------|-----------|----------------------|
| 🚞 java                               |           | File folder          |
| 🚞 javafx-sdk-17.0.6                  |           | File folder          |
| mod                                  |           | File folder          |
| CEC_Viewer.jar                       | 193 KB    | JAR File             |
| CEC_Viewer                           | 1 KB      | VBScript Script File |
| CEC_Viewer-jar-with-dependencies.jar | 10,631 KB | JAR File             |
| C cecviewer.properties               | 1.KB      | PROPERTIES File      |
| 🔯 command                            | 8 KB      | Microsoft Excel CSV  |



### 6.4 File List

#### Table 6-2 Operating Environment

| File/Folder          | Contents                                                         |
|----------------------|------------------------------------------------------------------|
| CEC_Viewer.vbs       | CEC Viewer can be used by running this file.                     |
| command.csv          | This is a list data file of CEC commands (Op Code).              |
|                      | By editing this file, a new Op code can be added.                |
| cecviewer.properties | This is to save the settings of CEC Viewer and Preset Key Config |
|                      | contents.                                                        |
| CEC_Viewer-jar-with- | CEC Viewer dependency files                                      |
| dependencies.jar     |                                                                  |
| CEC_Viewer.jar       | CEC Viewer                                                       |
| java/                | java17 folder                                                    |
| javafx-sdk-17.0.6/   | javafx sdk folder                                                |
| mod/                 | Startup module folder                                            |



### 6.5 Command.csv

Command.csv is a file that contains CEC command information. You can add a new Op code by editing it in the editor.

Table 6-3 shows the CSV file formats for CEC Viewer.

#### Table 6-3 CSV File Formats

| Item               | Contents                                                                     |
|--------------------|------------------------------------------------------------------------------|
| Character encoding | UTF-8                                                                        |
| Newline code       | LF (0x0A)                                                                    |
| Field Format       | A string enclosed in double quotes (cannot contain double quotes and commas) |
| Delimiter          | Comma (spaces and tabs before and after the comma are ignored)               |

The command.csv file consists of 4 fields which are shown in Table 6-4.

#### Table 6-4 Command.csv Configuration

| Field | Field Name                       | Example                                           |
|-------|----------------------------------|---------------------------------------------------|
| 1     | Class Number (2 digits, Decimal) | "00"                                              |
| 2     | Class Name                       | "One Touch Play / Routing Control"                |
| 3     | By Code ((2 digits, Hexadecimal) | "82"                                              |
| 4     | By Code Name                     | " <active source=""> [Physical Address]"</active> |

#### Figure 6-2 Commnad.csv (Extract)

| 1 ~00~, ~One Touch Play / Routing Control^ | í, ~82~,                                | ~ <active source=""> [Physical Address]~↓</active>                |
|--------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|
| 2 7007, 70ne Touch Play7                   | . ~04~.                                 | ″ <image on="" view=""/> [None]″↓                                 |
| 3 "00" "One Touch Play"                    |                                         | "/Text View On> [None]".                                          |
|                                            | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Cleve Alex ONA Fuoliel .                                          |
| 4 ~01~, ~Routing Control~                  | , ~9D~,                                 | ″ <inactive source=""> [Physical Address]″↓</inactive>            |
| 5 "O1", "Routing Control"                  | , ~85~,                                 | ″ <request active="" source=""> [None]″↓</request>                |
| 6 "O1", "Routing Control"                  | , ″80″,                                 | " <routing change=""> [Original Address][New Address]"↓</routing> |
| 7 "O1", "Routing Control"                  | , ″81″,                                 | " <routing information=""> [[Physical Address]"↓</routing>        |
| 8 "O1", "Routing Control"                  | , ~86~,                                 | ″ <set path="" stream=""> [Physical Address]″↓</set>              |
| 9 ~02~, ~Standby~                          | , ~36~,                                 | ~ <standby> [None]~↓</standby>                                    |
| 10 ″03″, ″One Touch Record″                | , ″OB″,                                 | ″ <record off=""> [None]″↓</record>                               |
| 11 ″O3″, ″One Touch Record″                | , ″09″,                                 | ″ <record on=""> [Record Source]″↓</record>                       |
| 12 ″03″, ″One Touch Record″                | , ″OA″,                                 | ″ <record status=""> [Record Status Info]″↓</record>              |
| 13 ″O3″, ″One Touch Record″                | , ″OF″,                                 | ″ <record screen="" tv=""> [None]″↓</record>                      |
| 14 "O4", "Timer Programming"               | , ″33″,                                 | " <clear analogue="" timer=""> [Set AnalogueTimer]"↓</clear>      |
| 15 "O4", "Timer Programming"               | , ″99″,                                 | " <clear digital="" timer=""> [Set Digaital Timer]"↓</clear>      |

Note. When editing, make sure that the Class number is in ascending order and that the Op Code is not duplicated in the file.

The CEC Viewer can use the following Op code names except for the command.csv:

| By Code Name                                 | Contents                                                           |
|----------------------------------------------|--------------------------------------------------------------------|
| <logical address="" allocation=""></logical> | This is displayed when the Initiator and Destination are the same. |
| <polling message=""></polling>               | This is displayed when the CEC data is only in the Header Block.   |



### 6.6 Main Window

The main window is shown below.

#### Figure 6-3 Main Window

| C C   | EC Viewer ver1.0 |                                                    |                                                       |                              |                           |                |             | – 🗆 X       |
|-------|------------------|----------------------------------------------------|-------------------------------------------------------|------------------------------|---------------------------|----------------|-------------|-------------|
| File( | F) Monitor(M     | ) Setting( <u>S</u> ) Help( <u>H</u><br>Save Start | Serial View<br>Config Config                          | Bar                          | cut Keys                  |                | Messa(<br>↓ | ge Window   |
|       |                  | Re                                                 | enesa                                                 | as E                         | lect                      | oni            | CS          |             |
|       | PLAY<br>VOL UP   | STOP PAUSE<br>VOL DO MUTE                          | FAST FO         FAST RE           KEY14         KEY15 | FORWARD BACKW<br>KEY16 KEY17 | EJECT KEY9<br>KEY18 KEY10 | KEY10<br>KEY20 | SET         | Preset Keys |
| ſ     | Number 1         | ype Initiator                                      | Destination                                           | Op Code                      | Data                      | Interval (ms)  | Date & Time | CEC Error   |
|       |                  |                                                    |                                                       |                              |                           |                |             |             |
| Read  | dy               |                                                    |                                                       |                              |                           |                | Monitor     |             |

CEC/DDC Communication Data

#### [CEC / DDC Communication Data] \* 1, 2

| Number :        | Displays the order of the communication results. If you clear the log display, it will be numbered starting with Number 1.                                                                                                                                                                                         |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type :          | Displays the type of CEC or DDC communication.                                                                                                                                                                                                                                                                     |
| Initiator :     | Displays the name of the Initiator Address.                                                                                                                                                                                                                                                                        |
| Destination :   | Displays the name of the Destination Address.                                                                                                                                                                                                                                                                      |
| Op Code:        | Displays the name of the operation code and the operand configuration of the operation code.                                                                                                                                                                                                                       |
| Data:           | Displays the communication result of the frame.                                                                                                                                                                                                                                                                    |
|                 | Data is displayed in odd-numbered bytes, and End of Message (EOM) and<br>Acknowledge (ACK) are displayed in even-numbered bytes.<br>The "e" is displayed if there is an EOM, and the "-" is displayed if there is no EOM.<br>The "a" is displayed if there is an ACK, and the "n" is displayed if there is no ACK. |
| Interval (ms) : | Displays the interval time between CEC communications or DDC communications.                                                                                                                                                                                                                                       |
| Data & Time :   | Displays the date and time when the frame data was acquired.                                                                                                                                                                                                                                                       |
| CEC Error :     | Displays CEC Error.                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                    |

Note. The maximum number of lines in the log that can be displayed is 300.

Only communications that have an ACK response to the Header Block will be displayed in the CEC/DDC Communication Data.



### 6.7 File Menu

This section describes the File menu.

### Table 6-4 File

|              |                | <b>_</b> F | File      |          |                     | S                                                                                                                                                                            | elect All       |            |                |       |             |                    |     |          |   |
|--------------|----------------|------------|-----------|----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|----------------|-------|-------------|--------------------|-----|----------|---|
| P c          | C Viewer ve    | r1.0       |           |          | /                   |                                                                                                                                                                              |                 |            |                |       |             |                    | 4   |          | × |
| File(        | F) Nonito      | or(M) S    | Setting(S | S) Help( | 4)                  |                                                                                                                                                                              |                 |            |                |       |             |                    |     |          |   |
| New<br>Load  | (N)<br>(L) Loa | ad         | Save      | ota      | rt Serial<br>Config | View<br>Config                                                                                                                                                               |                 |            |                |       |             |                    |     |          |   |
| End(         | (3)<br>X)      |            |           |          | Ν                   | Ло                                                                                                                                                                           | ni              | to         | r N            | 0     | de          |                    |     |          |   |
|              | KEY1           | KE         | EV2       | KEY3     | KEY4                | KEY5                                                                                                                                                                         | KEY6            | KEY7       | KEY8           | KEY9  | KEY10       |                    |     |          |   |
| ~            | KEY11          | KE         | Y12       | KEY13    | KEY14               | KEY15                                                                                                                                                                        | KEV16           | KEY17      | KEY18          | KEY19 | KEV20       | SEI                |     |          |   |
| ~            | Number         | Туре       | lr lr     | nitiator | Destination         | < Polind in                                                                                                                                                                  | Op Code         | 101        | Dat            | a     | Interval (m | s) Date & Time     | c c | EC Error |   |
| V            | 21             | CEC        | TV        |          | DVD2                | <polling n<="" td=""><td>Aessage&gt; [No</td><td>ne]</td><td>08 en</td><td></td><td>31</td><td>17:48:26 2023/09/0</td><td>6</td><td></td><td></td></polling>                 | Aessage> [No    | ne]        | 08 en          |       | 31          | 17:48:26 2023/09/0 | 6   |          |   |
| V            | 22             | CEC        | TV        |          | DVR3                | <polling n<="" td=""><td>/lessage&gt; [Noi</td><td>ne]</td><td>09 en</td><td></td><td>48</td><td>17:48:26 2023/09/0</td><td>6</td><td></td><td></td></polling>               | /lessage> [Noi  | ne]        | 09 en          |       | 48          | 17:48:26 2023/09/0 | 6   |          |   |
| ~            | 23             | CEC        | TV        |          | DVR3                | <polling n<="" td=""><td>/lessage&gt; [Noi</td><td>ne]</td><td>09 en</td><td></td><td>33</td><td>17:48:26 2023/09/0</td><td>6</td><td></td><td></td></polling>               | /lessage> [Noi  | ne]        | 09 en          |       | 33          | 17:48:26 2023/09/0 | 6   |          |   |
| ~            | 24             | CEC        | TV        |          | TUNER4              | <polling n<="" td=""><td>Aessage&gt; [No</td><td>ne]</td><td>0A en</td><td></td><td>48</td><td>17:48:26 2023/09/0</td><td>6</td><td></td><td></td></polling>                 | Aessage> [No    | ne]        | 0A en          |       | 48          | 17:48:26 2023/09/0 | 6   |          |   |
| ~            | 25             | CEC        | TV        |          | TUNER4              | <polling n<="" td=""><td>/lessage&gt; [No</td><td>ne]</td><td>0A en</td><td></td><td>30</td><td>17:48:26 2023/09/0</td><td>6</td><td></td><td></td></polling>                | /lessage> [No   | ne]        | 0A en          |       | 30          | 17:48:26 2023/09/0 | 6   |          |   |
| 1            | 26             | CEC        | TV        |          | DVD3                | <polling n<="" td=""><td>/lessage&gt; [No</td><td>ne]</td><td>0B en</td><td></td><td>50</td><td>17:48:26 2023/09/0</td><td>6</td><td></td><td></td></polling>                | /lessage> [No   | ne]        | 0B en          |       | 50          | 17:48:26 2023/09/0 | 6   |          |   |
| ~            | 27             | CEC        | TV        |          | DVD3                | <polling n<="" td=""><td>/lessage&gt; [No</td><td>ne]</td><td>0B en</td><td></td><td>41</td><td>17:48:26 2023/09/0</td><td>6</td><td></td><td></td></polling>                | /lessage> [No   | ne]        | 0B en          |       | 41          | 17:48:26 2023/09/0 | 6   |          |   |
| ~            | 28             | CEC        | TV        |          | Reserved            | <polling n<="" td=""><td>Aessage&gt; [No</td><td>ne]</td><td>0C en</td><td></td><td>39</td><td>17:48:27 2023/09/0</td><td>6</td><td></td><td></td></polling>                 | Aessage> [No    | ne]        | 0C en          |       | 39          | 17:48:27 2023/09/0 | 6   |          |   |
| ~            | 29             | CEC        | TV        |          | Reserved            | <polling n<="" td=""><td>/lessage&gt; [No</td><td>ne]</td><td>0C en</td><td></td><td>48</td><td>17:48:27 2023/09/0</td><td>6</td><td></td><td></td></polling>                | /lessage> [No   | ne]        | 0C en          |       | 48          | 17:48:27 2023/09/0 | 6   |          |   |
| ~            | 30             | CEC        | TV        |          | Reserved            | <polling n<="" td=""><td>/lessage&gt; [No</td><td>ne]</td><td>0D en</td><td></td><td>28</td><td>17:48:27 2023/09/0</td><td>6</td><td></td><td></td></polling>                | /lessage> [No   | ne]        | 0D en          |       | 28          | 17:48:27 2023/09/0 | 6   |          |   |
| ~            | 31             | CEC        | TV        |          | Reserved            | <polling n<="" td=""><td>/lessage&gt; [No</td><td>ne]</td><td>0D en</td><td></td><td>53</td><td>17:48:27 2023/09/0</td><td>6</td><td></td><td></td></polling>                | /lessage> [No   | ne]        | 0D en          |       | 53          | 17:48:27 2023/09/0 | 6   |          |   |
| ~            | 32             | CEC        | TV        |          | Free Use            | <polling n<="" td=""><td>/lessage&gt; [No</td><td>ne]</td><td>0E en</td><td></td><td>31</td><td>17:48:27 2023/09/0</td><td>6</td><td></td><td></td></polling>                | /lessage> [No   | ne]        | 0E en          |       | 31          | 17:48:27 2023/09/0 | 6   |          |   |
| ~            | 33             | CEC        | TV        |          | Free Use            | <polling n<="" td=""><td>/lessage&gt; [No</td><td>ne]</td><td>0E en</td><td></td><td>48</td><td>17:48:27 2023/09/0</td><td>6</td><td></td><td></td></polling>                | /lessage> [No   | ne]        | 0E en          |       | 48          | 17:48:27 2023/09/0 | 6   |          |   |
| -            | 34             | CEC        | TV        |          | DVD1                | <give dev<="" td=""><td>vice Power Stat</td><td>us&gt; [None]</td><td>04 -a 8F ea</td><td></td><td>3814</td><td>17:48:31 2023/09/0</td><td>6</td><td></td><td></td></give>   | vice Power Stat | us> [None] | 04 -a 8F ea    |       | 3814        | 17:48:31 2023/09/0 | 6   |          |   |
| $\checkmark$ |                | ere        | DVD1      |          | TV                  | <report p<="" td=""><td>ower Status&gt;</td><td>Power Sta</td><td>40 -a 90 -a 01</td><td>ea</td><td>109</td><td>17:48:31 2023/09/0</td><td>6</td><td></td><td></td></report> | ower Status>    | Power Sta  | 40 -a 90 -a 01 | ea    | 109         | 17:48:31 2023/09/0 | 6   |          |   |
| <<br><       | 35             | CEC        | 0.10.     |          |                     |                                                                                                                                                                              |                 |            |                |       |             |                    |     |          |   |

Individual Selection

- [New] It can clear the log display while it is being displayed. And a confirmation screen will appear. The function is the same as the "New" of the Shortcut Key.
- [Load]<sup>\*</sup> It allows you to read the log data stored in a CSV file. The function is the same as the "Load" of the Shortcut Key.
- [Save] It allows you to save the current log data to a CSV file. The function is the same as the "Save" of the Shortcut Key. Outputs the rows selected by the individual selection checkbox to the left of the number in the Number column to a CSV file. You can select the checkbox at the top of the Number column to select all of them.
- [End] This is to exit the CEC Viewer. A confirmation screen will pop up after.
- Note. If log data exists in CEC / DDC Communication Data and you select Load, the log data saved in the CSV file will be added after the displayed log data.



### 6.8 Monitor

This section describes the Monitor menu.

### Figure 6-5 Monitor

|      |                   |         |         | Monit     | or                 |                                                                                                                                                                      |               |             |                |       |                     |                     |           |   |
|------|-------------------|---------|---------|-----------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|----------------|-------|---------------------|---------------------|-----------|---|
| CE   | ic Viener re      | 1.0     | Y       |           |                    |                                                                                                                                                                      |               |             |                |       |                     |                     | - 0       | > |
| ile( | Monito            | er(M) S | e ting( | S) Help(I | H)                 |                                                                                                                                                                      |               |             |                |       |                     |                     |           |   |
| Ne   | Start/St<br>w Loa | top(S)  | Save    | Sto       | P Serial<br>Config | View<br>Config                                                                                                                                                       |               |             |                |       |                     |                     |           |   |
|      |                   |         |         |           | Ν                  | 10                                                                                                                                                                   | ni            | to          | r N            | lo    | de                  |                     |           |   |
|      | KEY1              | KE      | Y2      | KEY3      | KEY4               | KEY5                                                                                                                                                                 | KEY6          | KEY7        | KEY8           | KEY9  | KEY10               |                     |           |   |
| ~    | KEY11             | KE      | Y12     | KEY13     | KEY14              | KEY15                                                                                                                                                                | KEY16         | KEY17       | KEY18          | KEY19 | KEY20               | SET                 |           |   |
| ~    | Number            | Туре    | h       | nitiator  | Destination        | < POIIING IV                                                                                                                                                         | Op Code       | nei         | Da<br>vo en    | ta    | Interval (ms)       | Date & Time         | CEC Error |   |
| ~    | 21                | CEC     | TV      |           | DVD2               | <polling n<="" td=""><td>1essage&gt; [No</td><td>nel</td><td>08 en</td><td></td><td>34</td><td>17:44:26 2023/09/06</td><td></td><td></td></polling>                  | 1essage> [No  | nel         | 08 en          |       | 34                  | 17:44:26 2023/09/06 |           |   |
| /    | 22                | CEC     | TV      |           | DVR3               | <polling message=""> [None]</polling>                                                                                                                                |               | 09 en 46    |                | 46    | 17:44:26 2023/09/06 |                     |           |   |
| /    | 23                | CEC     | TV      |           | DVR3               | <polling message=""> [None]</polling>                                                                                                                                |               | 09 en       |                | 32    | 17:44:26 2023/09/06 |                     |           |   |
| /    | 24                | CEC     | TV      |           | TUNER4             | <polling message=""> [None]</polling>                                                                                                                                |               | ne]         | 0A en          |       | 48                  | 17:44:26 2023/09/06 |           |   |
| /    | 25                | CEC     | TV      |           | TUNER4             | <polling n<="" td=""><td>lessage&gt; [No</td><td>ne]</td><td>0A en</td><td></td><td>33</td><td>17:44:26 2023/09/06</td><td></td><td></td></polling>                  | lessage> [No  | ne]         | 0A en          |       | 33                  | 17:44:26 2023/09/06 |           |   |
| /    | 26                | CEC     | TV      |           | DVD3               | <polling n<="" td=""><td>lessage&gt; [No</td><td>ne]</td><td>0B en</td><td></td><td>50</td><td>17:44:26 2023/09/06</td><td></td><td></td></polling>                  | lessage> [No  | ne]         | 0B en          |       | 50                  | 17:44:26 2023/09/06 |           |   |
| ~    | 27                | CEC     | TV      |           | DVD3               | <polling n<="" td=""><td>lessage&gt; [No</td><td>ne]</td><td>0B en</td><td></td><td>28</td><td>17:44:26 2023/09/06</td><td></td><td></td></polling>                  | lessage> [No  | ne]         | 0B en          |       | 28                  | 17:44:26 2023/09/06 |           |   |
| ~    | 28                | CEC     | TV      |           | Reserved           | <polling n<="" td=""><td>lessage&gt; [No</td><td>ne]</td><td>0C en</td><td></td><td>49</td><td>17:44:26 2023/09/06</td><td></td><td></td></polling>                  | lessage> [No  | ne]         | 0C en          |       | 49                  | 17:44:26 2023/09/06 |           |   |
| /    | 29                | CEC     | TV      |           | Reserved           | <polling n<="" td=""><td>lessage&gt; [No</td><td>ne]</td><td>0C en</td><td></td><td>33</td><td>17:44:26 2023/09/06</td><td></td><td></td></polling>                  | lessage> [No  | ne]         | 0C en          |       | 33                  | 17:44:26 2023/09/06 |           |   |
| /    | 30                | CEC     | TV      |           | Reserved           | <polling n<="" td=""><td>lessage&gt; [No</td><td>ne]</td><td colspan="2">0D en</td><td>47</td><td>17:44:27 2023/09/06</td><td></td><td></td></polling>               | lessage> [No  | ne]         | 0D en          |       | 47                  | 17:44:27 2023/09/06 |           |   |
| /    | 31                | CEC     | TV      |           | Reserved           | <polling n<="" td=""><td>lessage&gt; [No</td><td>ne]</td><td>0D en</td><td></td><td>32</td><td>17:44:27 2023/09/06</td><td></td><td></td></polling>                  | lessage> [No  | ne]         | 0D en          |       | 32                  | 17:44:27 2023/09/06 |           |   |
| /    | 32                | CEC     | TV      |           | Free Use           | <polling n<="" td=""><td>lessage&gt; [No</td><td>ne]</td><td>0E en</td><td></td><td>47</td><td>17:44:27 2023/09/06</td><td></td><td></td></polling>                  | lessage> [No  | ne]         | 0E en          |       | 47                  | 17:44:27 2023/09/06 |           |   |
| /    | 33                | CEC     | TV      |           | Free Use           | <polling n<="" td=""><td>lessage&gt; [No</td><td>ne]</td><td>0E en</td><td></td><td>32</td><td>17:44:27 2023/09/06</td><td></td><td></td></polling>                  | lessage> [No  | ne]         | 0E en          |       | 32                  | 17:44:27 2023/09/06 |           |   |
| ~    | 34                | CEC     | TV      |           | DVD1               | <give dev<="" td=""><td>ice Power Sta</td><td>tus&gt; [None]</td><td>04 -a 8F ea</td><td></td><td>3822</td><td>17:44:30 2023/09/06</td><td></td><td></td></give>     | ice Power Sta | tus> [None] | 04 -a 8F ea    |       | 3822                | 17:44:30 2023/09/06 |           |   |
| ~    | 35                | CEC     | DVD1    |           | TV                 | <report p<="" td=""><td>ower Status&gt;</td><td>[Power Sta</td><td>40 -a 90 -a 01</td><td>ea</td><td>112</td><td>17:44:31 2023/09/06</td><td></td><td></td></report> | ower Status>  | [Power Sta  | 40 -a 90 -a 01 | ea    | 112                 | 17:44:31 2023/09/06 |           |   |
| /    | 26                | CEC     | TV      |           | DVD1               | <give dev<="" td=""><td>ice Power Sta</td><td>tus&gt; [None]</td><td>04 -a 8F ea</td><td></td><td>4894</td><td>17:44:35 2022/09/06</td><td></td><td></td></give>     | ice Power Sta | tus> [None] | 04 -a 8F ea    |       | 4894                | 17:44:35 2022/09/06 |           |   |
| JN   |                   |         |         |           |                    |                                                                                                                                                                      |               |             |                |       |                     | Monitor M           | ode       |   |
|      | 1                 |         |         |           |                    |                                                                                                                                                                      |               |             |                |       |                     | 1                   |           |   |
|      | Statu             | s       |         |           |                    |                                                                                                                                                                      | Statu         | s Bar       |                |       |                     | Mode Indica         | tor       |   |

[Start / Stop]

When Start/Stop is selected, the Status Bar at the bottom of the window will change to green, and the CEC/DDC reception starts. The Status changes from Ready to RUN.

When monitoring CEC/DDC signals, select Start/Stop to enter the RUN state. If stop, select Start / Stop again.

This is the same as "Start" or "Stop" of the Shortcut Key. When you click "Start" of the Shortcut Key, it changes to "Stop", and when you click "Stop", it changes to "Start".



### 6.9 Settings

### Figure 6-6 Settings

| Setting                                                                                                                          |   |   |
|----------------------------------------------------------------------------------------------------------------------------------|---|---|
| CEC Viewer ver1.0                                                                                                                | - | × |
| File(F) Monitor(M) Setting(S) Help +)                                                                                            |   |   |
| New         Load         Serial Config(S)<br>View Config(V)         View<br>t rt         Serial<br>Config         View<br>Config |   |   |
| Renesas Electronics                                                                                                              |   |   |

### Figure 6-7 Serial Config

| COM Port : | COM6 | + |
|------------|------|---|
| Bitrate :  |      | - |
| Data Bit : |      | - |
| Parity :   |      | 7 |
| Stop Bit : |      | ~ |

#### [Serial Config]

It is used to configure the settings for serial communication.

| COM Port: | Select the COM Port to be used.<br>Be sure to restart CEC Viewer after changing the COM Port. |
|-----------|-----------------------------------------------------------------------------------------------|
| Bitrate:  | Fixed at 38400.                                                                               |
| Data Bit: | Fixed at 8-bit.                                                                               |
| Parity:   | Fixed to None.                                                                                |
| Stop Bit: | Fixed at 1-bit.                                                                               |



### Figure 6-8 View Config



### [View Config]

It is used to configure the settings for log display.

| CEC Polling data: | Select whether to show or hide the data. |
|-------------------|------------------------------------------|
| DDC data:         | Select whether to show or hide the data. |



### 6.10 Preset Key

You can set the Preset Key for CEC commands sending.

#### 6.10.1 Setting Method

1) Press the SET key.

#### Figure 6-9 Preset Key



2) The Preset Key Config screen appears. You can set the KEY in the following way.

#### Figure 6-10 Preset Key Config



#### **KEY Settings**:

Select the Initiator, Destination, and Op Code of the CEC data to be sent in the pull-down menu above. It is also possible to directly input in the KEY Input area.

- ① Select Initiator Address of the transmission source under "Initiator".
- 2 Select Destination Address of the transmission destination under "Destination".
- ③ Select the type of Op Code to be sent under "Class".
- ④ Select Op Code to be sent under "Op Code".
- <sup>(5)</sup> Place the cursor on the first byte of the KEY to be preset, then press Create Command. This will input Initiator, Destination, and Op Code.
- 6 If the command to be sent requires an operand, enter it directly in the KEY Input area.



- 3) Now set the Caption of the KEY.
- Example of changing the caption
  - ① Set the Caption of KEY1 to [DVD\_OFF] and set data to [04] [36].

#### Figure 6-11 Preset Key Config

|              | Initiat           | or      |              | Des    | stinatio | n  |    |       | CI | ass |    |    |       |        |        | Op Co | de |                            |
|--------------|-------------------|---------|--------------|--------|----------|----|----|-------|----|-----|----|----|-------|--------|--------|-------|----|----------------------------|
| 0: T         | V                 |         | -            | 4: DVD | 1        | .* | 02 | Stand | by |     |    | *  | 36: < | Standb | y> [No | ne]   |    |                            |
| C            | reate C           | omman   | d            |        |          |    |    |       |    |     |    |    |       |        |        |       |    |                            |
|              |                   |         |              |        |          |    |    |       |    |     |    |    |       |        |        |       |    |                            |
| KEY          | T - 10            | KEY     | 11 - 20      | 1      |          |    |    |       |    |     |    |    |       |        |        |       |    |                            |
| KEY          | 1 - 10<br>1       | KEY'    | 11 - 20<br>3 | 4      | 5        | 6  | 7  | 8     | 9  | 10  | 11 | 12 | 13    | 14     | 15     | 16    | 17 | Caption                    |
| KEY1         | 1 - 10<br>1<br>04 | 2<br>36 | 11 - 20<br>3 | 4      | 5        | 6  | 7  | 8     | 9  | 10  | 11 | 12 | 13    | 14     | 15     | 16    | 17 | Caption<br>DVD_OFF         |
| KEY1<br>KEY2 | 1 - 10<br>1<br>04 | 2<br>36 | 3            | 4      | 5        | 6  | 7  | 8     | 9  | 10  | 11 | 12 | 13    | 14     | 15     | 16    | 17 | Caption<br>DVD_OFF<br>KEY2 |

2 Press OK and the display of KEY1 changes to [DVD\_OFF].

#### Figure 6-12 Caption Display Change

|              | DVD_OFF | KEY2  | KEY3  | KEY4  | KEY5  | KEY6  | KEY7  | KEY8  | KEY9  | KEY10 | CET |
|--------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| $\checkmark$ | KEY11   | KEY12 | KEY13 | KEY14 | KEY15 | KEY16 | KEY17 | KEY18 | KEY19 | KEY20 | SEI |

#### 6.10.2 Usage

- 1) Press the Start of the Shortcut Key to enter the RUN state.
- Press the [DVD\_OFF] key, the output command is displayed in the CEC / DDC Communication Data area.

#### Figure 6-13 Communication Status Display

|   | Monitor Mode     |             |                 |                     |                                                                                                                                                                                                          |                   |               |                   |               |                      |                                    |           |
|---|------------------|-------------|-----------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-------------------|---------------|----------------------|------------------------------------|-----------|
| > | DVD_OFF<br>KEY11 | KEY2        | 2 KEY3          | KEY4<br>KEY14       | KEY5<br>KEY15                                                                                                                                                                                            | KEY6<br>KEY16     | KEY7<br>KEY17 | KEY8<br>KEY18     | KEY9<br>KEY19 | KEY10<br>KEY20       | SET                                |           |
|   | Number<br>1      | Type<br>CEC | Initiator<br>TV | Destination<br>DVD1 | <standby?< th=""><th>Op Code<br/>[None]</th><th>^</th><th>Da<br/>04 -a 36 ea</th><th>ta</th><th>Interval (ms)<br/>930</th><th>Date &amp; Time<br/>17:00:20 2023/09/08</th><th>CEC Error</th></standby?<> | Op Code<br>[None] | ^             | Da<br>04 -a 36 ea | ta            | Interval (ms)<br>930 | Date & Time<br>17:00:20 2023/09/08 | CEC Error |



### 6.10.3 Operation Conditions of the Preset Keys

The following operating conditions apply when using Preset Keys.

• A device (Sound Bar, BD Player) corresponding to the command set as a preset key is connected to the TV via HDMI.

#### 6.10.4 Preset Keys Configured

Some Preset Keys have been configured as typical commands in advance.

#### Figure 6-14 Preset Keys Configured

| ( | PLAY  | STOP   | PAUSE | FAST FO | FAST RE | FORWARD | BACKW | EJECT | KEY9  | KEY10 | CET |
|---|-------|--------|-------|---------|---------|---------|-------|-------|-------|-------|-----|
| V | VOLUP | VOL DO | MUTE  | KEY14   | KEY15   | KEY16   | KEY17 | KEY18 | KEY10 | KEY20 | SEI |

Note. If the word length set for CAPTION exceeds the display area, the CAPTION will be shown in abbreviation.

Table 6-5 List of Preset Keys Configured

| KEY<br>NUMBER | CAPTION      | Setting  | Summary                      |
|---------------|--------------|----------|------------------------------|
| 1             | PLAY         | 04 44 44 | Playback in Player           |
| 2             | STOP         | 04 44 45 | To stop the Player           |
| 3             | PAUSE        | 04 44 46 | To pause the Player          |
| 4             | FAST FORWARD | 04 44 49 | Fast forward in Player       |
| 5             | FAST REVERSE | 04 44 48 | Fast reverse in Player       |
| 6             | FORWARD      | 04 44 4B | Player forward (By chapter)  |
| 7             | BACKWARD     | 04 44 4C | Player backward (By chapter) |
| 8             | EJECT        | 04 42 04 | EJECT in Player              |
| 11            | FLIGHT UP    | 05 44 41 | Sound Bar Volume Up          |
| 12            | VOL DOWN     | 05 44 42 | Sound Bar Volume Down        |
| 13            | MUTE         | 05 44 43 | Mute Sound Bar               |



### 6.11 Message Window

The Message Window displays information about the FPB mode and received keystrokes.

#### Figure 6-15 An Example in Monitor Mode

# **Monitor Mode**

The following is a list of messages displayed in the Message Window.

#### Table 6-6 Display in the Message Window

| Selection Function | Message Window Display | Status                                      |
|--------------------|------------------------|---------------------------------------------|
| -                  | Renesas Electronics    | CEC Viewer Startup                          |
| HDMI Connector     | HDMI 1                 | - Blinking during selection                 |
| Number             |                        | - Change to always-on display when selected |
|                    | HDMI 2                 | Same as above                               |
|                    | HDMI 3                 | Same as above                               |
|                    | HDMI 4                 | Same as above                               |
| Monitor mode       | Monitor mode           | - Blinking during Mode selection            |
|                    |                        | - Change to always-on display when selected |
| Audio mode         | Audio mode             | - Blinking during Mode selection            |
|                    |                        | - Change to always-on display when selected |
|                    | VOLUME UP              | Volume Up                                   |
|                    | VOLUME DOWN            | Volume Down                                 |
|                    | MUTE                   | Mute / Unmute                               |
| Player mode        | Player mode            | - Blinking during Mode selection            |
|                    |                        | - Change to always-on display when selected |
|                    | PLAY                   | Playback                                    |
|                    | STOP                   | Stop                                        |
|                    | PAUSE                  | Pause                                       |
|                    | FAST FORWARD           | Fast forward                                |
|                    | FAST REVERSE           | Fast reverse                                |
|                    | FORWARD                | Forward (By chapter)                        |
|                    | BACKWARD               | Backward (By chapter)                       |
|                    | EJECT                  | Eject                                       |



### 7. Software Configurations

This chapter describes software configurations of the sample codes.

#### 7.1 Folder Structure

#### Table 7-1 Folder Structure

| Folder, File name                                                                                                        | Description                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
| /rl78g23-hdmi-cec-(Omitted)                                                                                              | Folder for the sample program            |  |  |
| cec_control.c                                                                                                            | CEC control layer program                |  |  |
| cec_control.h                                                                                                            | CEC control layer header file            |  |  |
| cec_define.h                                                                                                             | CEC definition header                    |  |  |
| cec_driver.c                                                                                                             | CEC communication processing program     |  |  |
| cec_driver.h                                                                                                             | CEC communication processing header file |  |  |
| cec_if_driver.c                                                                                                          | User I/F processing program              |  |  |
| cec_if_driver.h                                                                                                          | User I/F processing header file          |  |  |
| ddc_monitor.c <sup>*1</sup>                                                                                              | DDC Monitor program                      |  |  |
| ddc_monitor.h *1                                                                                                         | DDC Monitor header file                  |  |  |
| device.h                                                                                                                 | For hardware macro definition INCLUDE    |  |  |
| host_com.c *1                                                                                                            | Programs for PC communication            |  |  |
| host_com.h *1                                                                                                            | Header file for PC communication         |  |  |
| main.c                                                                                                                   | Main program                             |  |  |
| R7F100GL.h                                                                                                               | Hardware macro definition for RL78/G23   |  |  |
| std_define.h                                                                                                             | Standard definition header file          |  |  |
| /demo_mode                                                                                                               | Folder for the Demo Mode                 |  |  |
| bd_player.c *2                                                                                                           | Programs for Player Mode                 |  |  |
| bd_player.h <sup>*2</sup>                                                                                                | Header file for Player Mode              |  |  |
| sound_bar.c <sup>.*3</sup>                                                                                               | Programs for Audio Mode                  |  |  |
| sound_bar.h *3                                                                                                           | Header file for Audio Mode               |  |  |
| /src                                                                                                                     |                                          |  |  |
| /smc_gen                                                                                                                 | Smart Configurator generation folder     |  |  |
| /Config_IICA0 *1                                                                                                         |                                          |  |  |
| /Config_INTC                                                                                                             |                                          |  |  |
| /Config_PORT                                                                                                             |                                          |  |  |
| /Config_TAU0_0                                                                                                           |                                          |  |  |
| /Config TAU0 1                                                                                                           |                                          |  |  |
| /Config TAU0 3                                                                                                           |                                          |  |  |
| /Config UART0 Note 1 <sup>*4</sup>                                                                                       |                                          |  |  |
| /Config UART1 Note 1*5                                                                                                   |                                          |  |  |
| /general                                                                                                                 |                                          |  |  |
| /r bsp                                                                                                                   |                                          |  |  |
| /r config                                                                                                                |                                          |  |  |
| /r_pincfg                                                                                                                |                                          |  |  |
| /Config_UART0 Note 1 <sup>*4</sup><br>/Config_UART1 Note 1 <sup>*5</sup><br>/general<br>/r_bsp<br>/r_config<br>/r_pincfg |                                          |  |  |

Note 1. It exists only in projects that support DDC communication and communication with a PC. (rl78g23-hdmi-cec-demo, rl78g23-hdmi-cec-dev)

- Note 2. It exists only in projects that support Player mode. (rl78g23-hdmi-cec-demo, rl78g23-hdmi-cec-dev, rl78g23-hdmi-cec-dev-player)
- Note 3. It exists only in projects that support Audio mode. (rl78g23-hdmi-cec-demo, rl78g23-hdmi-cec-

dev, rl78g23-hdmi-cec-dev-audio)

Note 4. It exists only in the demo project. (rl78g23-hdmi-cec-demo)

Note 5. It exists only in development projects. (rl78g23-hdmi-cec-dev)



### 7.2 Drivers

### 7.2.1 Summary

This driver software allows users to control the transmission and reception of arbitrary data using the CEC line. By importing this driver software into the user program, it is possible to easily transmit and receive data despite of the CEC line control.

### 7.2.2 Software Hierarchy

To implement the link function using CEC, the driver software (driver layer) shown in Figure 7-1 is required. The functions (hierarchy) provided by this driver software are shown in Figure 7-1.

#### Figure 7-1 CEC Driver Software Hierarchy





### 7.2.3 Hardware Resources

This driver software uses the following hardware resources.

#### Table 7-2 Peripheral Functions and Usages

| Peripheral Function                    | Usage                                           |
|----------------------------------------|-------------------------------------------------|
| Interrupt Function (INTP1)             | CEC Reception                                   |
| Channel 1 of Timer Array Unit 0 (TAU0) | Pulse control of CEC transmission and reception |
| Channel 3 of Timer Array Unit 0 (TAU0) | CEC line monitor                                |
| Serial Interface IICA                  | DDC Reception                                   |
| P42                                    | CEC Transmission                                |
| P51                                    | CEC Reception                                   |

#### 7.2.4 CEC Specification

This section describes the availability of this driver software to the CEC Communication Specification (Version 1.4b).

 Table 7-3 CEC Specification Availability Table

| Specification No. | Contents                   | Availability  |
|-------------------|----------------------------|---------------|
| CEC5              | Signaling and Bit Timing   | Available     |
| CEC6.1.1          | EOM (End of Message)       | Available     |
| CEC6.1.2          | ACK (Acknowledge)          | Available     |
| CEC7.1            | Frame Re-transmissions     | Not Available |
| CEC7.2            | Flow Control               | Not Available |
| CEC7.3            | Frame Validation           | Available     |
| CEC7.4            | CEC Line Error Handling    | Available     |
| CEC8              | Protocol Extensions        | Not Available |
| CEC9              | CEC Arbitration            | Available     |
| CEC9.1            | Signal Free Time           | Available     |
| CEC9.2            | Message Time Constrain     | Not Available |
| CEC10.2.1         | Logical Address Allocation | Available     |
| CEC11             | Switch Requirements        | Not Available |
| CEC12             | High Level Protocol        | Not Available |
| CEC13             | CEC Feature Description    | Not Available |
| CEC14             | Device Status              | Not Available |

Note. The "Not Available" items above are not available in this driver software, because they require high-level control according to the judgement by Op codes.



### 7.2.5 Functional Overview

#### 7.2.5.1 Data Transfer Format

- Header / Data Block
   10 bits (Data 8 bits, EOM 1 bit, ACK 1 bit)
- Maximum Data Length
   16×10 bits (Header / Data Block)

#### 7.2.5.2 Transfer Support

- CEC Transmission and Reception
- Arbitration Detection

#### 7.2.5.3 Standard Functions

This section describes the standard functions of this driver software.

1) Arbitration Recovery Function

If the timing when one device transmits data on the CEC line overlaps with the communication start timing of the other device, an arbitration occurs. Then one of the two devices is determined to have lost in the arbitration, and the losing one must open the CEC line to the other one or shift to the data reception. By using this function, the next time the CEC line is opened, the data that could not be sent the last time due to arbitration loss can be sent again.

- Note 1. Monitoring is performed on the start bit and the initiator address section of the header.
- Note 2. If arbitration loss occurs in a device other than the Initiator address of the Header Block, it is determined to be a transmission error, and transmission is stopped at that point and retransmission is processed.

2) The CEC specification specifies a waiting time which is between the time when the self-device/the other device has transmitted data and the time when the next transmission can be executed on the CEC line, or between the time when the self-device has received data and the time when its next transmission can be executed. This is called the "Signal Free Time".

This function manages this specified time so that data can be transmitted and received in accordance with the specified time.

- < Signal Free Time>
- Period of 3 bits or more: When the same Initiator retransmits previously failed data.
- Period of 5 bits or more: When a new Initiator transmits (after reception completion).
- Period of 7 bits or more: When the same Initiator transmits continuously.
- 3) CEC Line Error Handling Function

The receiver (Destination) detects noise on the CEC line and notifies the transmitter (Initiator) that an error occurs in the current communication. This function is called "Error Handling" and is defined in the CEC specification. When a noise pulse is detected, the receiver outputs a low level to the initiator at a rate of 1.4 to 1.6 times the normal bit duration (3.6 ms in the driver software). In this driver software, "Error Handling" is defined as follows.

- The Start bit section is not applicable, data after header (address) section is applicable.
- The criterion for noise pulses is a pulse of less than 2.05 ms, which is the minimum time for a valid bit.
- The receiver (Destination) performs "Error Handling" regardless of whether or not it is logically addressed (even if it is a third device that does not participate in the communication).

When the transmitter (Initiator) detects a low level due to the "Error Handling" of the receiver (Destination), it stops retransmitting and retransmits the data.



### 7.2.5.4 Option Functions

This section describes the option functions of this driver software. These functions are extensions that are not included in the CEC specifications.

1) CEC Line Monitor Function

The CEC bus status can be monitored by periodically calling the CEC bus lock detection function "monitor\_cec\_line()" from the user program. Factors that may cause a CEC bus lock to be detected are as follows:

• The CEC line is broken, or it adheres to a low level

If a CEC line lock is detected, the driver software stops CEC communication and returns an error status to the user program. For more information, see "monitor\_cec\_line" in 7.2.12 Function Specifications.



### 7.2.6 File Structure

The file structure of this driver software is shown in Table 7-4.

| File Name    | Туре     | Contents                                    |
|--------------|----------|---------------------------------------------|
| cec_define.h | header   | CEC Definition Header                       |
| cec_driver.c | C Source | CEC Communication Processing                |
| cec_driver.h | header   | CEC Communication Macro Definitions         |
| cec_driver.c | C Source | User I/F Processing                         |
| cec_driver.h | header   | User I/F Macro Definitions                  |
| device.h     | header   | Device Macro Definitions (for User Include) |
| R7F100GL.h   | header   | Hardware Macro Definition for RL78/G23      |
| std define.h | header   | Standard Value Definition Header File       |

#### Table 7-4 List of C Source Files

#### 7.2.7 How to Import the Driver Software

Follow the steps below to import the driver software into your program.

- ① Change the definition value of the CEC definition header "cec\_define.h" to a value of your choice (e.g., the capacity of the CEC receive ring buffer).
- 2 Include "device.h", "cec\_driver.h", "cec\_if\_driver.h", and "std\_define.h" in the user program.

#### main.c



③ Add "cec\_if\_driver.c", "cec\_if\_driver.h", "cec\_driver.c", "cec\_driver.h", "cec\_define.h", "device.h", "R7F100GL.h", and "std\_define.h" to your project and then compile the codes.



### 7.2.8 Defining Types in the Driver Software

cec\_define.h

| Structure                                                    | Description                     |
|--------------------------------------------------------------|---------------------------------|
| /* CEC Transfer Data Structure*/                             |                                 |
| typedef struct {                                             | CEC Transmission Data Structure |
| uint8_t c_len;                                               | Data Length                     |
| uint8_t c_data[CEC_TXDAT_SIZE];                              | Transmission data               |
| } s_cec_tx_buf_t;                                            |                                 |
| /* CEC Receive Data Structure*/                              |                                 |
| typedef struct {                                             | CEC Receive data Structure      |
| uint8_t c_len;                                               | Data Length                     |
| uint8_t c_data[CEC_RXDAT_SIZE];                              | Reception data                  |
| ] s_cec_rx_buf_t;                                            |                                 |
| /* CEC Error Data Structure*/                                |                                 |
| typedef struct {                                             | CEC Error Data Structure        |
| uint8_t c_len;                                               | Data Length                     |
| uint8_t c_data[CEC_ERROR_SIZE];                              | Error Data                      |
| } s_cec_error_buf_t;                                         |                                 |
| /* CEC Status*/                                              |                                 |
| typedef union                                                | CEC Status Union                |
| {                                                            |                                 |
| uint8_t c_all;                                               |                                 |
| struct                                                       | Bit Allocation Structure        |
| {                                                            | Bits being transmitted          |
| uint8_t cec_tx_busy in the cec_transmitting */               | Bits being received             |
| uint8_t cec_rx_busy :1; /* now CEC receiving */              | Logical Allocation Bits         |
| uint8_t cec_log_adr_alc :1; /* now CEC logical allocation */ |                                 |
| } flag;                                                      |                                 |
| } e_cec_status_t;                                            |                                 |

### 7.2.9 User-Modifiable Definitions

cec\_define.h

| Definition Name Default |       | Contents                                                      |
|-------------------------|-------|---------------------------------------------------------------|
|                         | Value |                                                               |
| CEC_RXBUF_SIZE          | 5     | Number of buffers when CEC reception (Setting range: 1 - 255) |
| CEC_TX_RETRY            | 3     | Maximum number of retries for ACK errors when sending CEC.    |
|                         |       | (Setting range: 1 - 5)                                        |
| CEC_LINE_LOCK           | 200   | Number of CEC line lock detections. (Setting range: Max. 255) |
|                         |       | Set the Min. to be longer than the Low width of the CEC       |
|                         |       | communication.                                                |



### 7.2.10 List of User Variables

The following variables can be used for CEC communication by users.

cec\_if\_driver.c

| Type / Variable Name           | Contents                                                     |
|--------------------------------|--------------------------------------------------------------|
| uint8_t g_cec_tx_req_no        | CEC Transmission Requirements                                |
|                                | Set "2" for normal transmission on the user side and "1" for |
|                                | logical address allocation.                                  |
|                                | The driver clears "0" after transmission is completed.       |
| s_cec_tx_buf_t g_cec_tx_buffer | CEC Transmission Data Buffer                                 |
|                                | Set transmission data length and transmission data.          |

#### cec\_driver.c

| Type / Variable Name       | Contents                                          |
|----------------------------|---------------------------------------------------|
| uint8_t g_cec_error_status | CEC Error Status                                  |
|                            | The driver side is cleared only at initial setup. |
|                            | After that, it should be cleared by the user.     |
| uint8_t g_cec_dev_type     | CEC Device Type                                   |
|                            | The driver will set values according to modes.    |
|                            | Set "5" (Audio System) in Audio mode,             |
|                            | Set "4" (Playback Device) in Player mode.         |



### 7.2.11 User I/F Functions

Users may use the following functions CEC communication.

cec\_if\_driver.c

| Function Name         | Overview                                       |
|-----------------------|------------------------------------------------|
| init_cec_driver()     | CEC Driver Initialization Processing           |
| cec_driver_main()     | CEC Transmission Startup Monitoring Processing |
| monitor_cec_line()    | CEC Bus Clock Detection Processing             |
| trans_cec_rx_buffer() | I/F Processing for CEC Receive data            |
| send_cec_commond()    | CEC Command Transmission Processing            |
| stop_cec_driver()     | CEC Communication Termination Processing       |

### 7.2.12 Function Specifications

Specifications of the functions used by users are shown as follows.

| Function Name                                                                       | void init_cec_driver(void)                                                  |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Function                                                                            | To initialize the CEC Driver                                                |  |
| Description                                                                         | To call CEC's SFR Initialization Functions and RAM Initialization Functions |  |
| Example         Call it when the user is performing the initial setting or when CEC |                                                                             |  |
|                                                                                     | communication starts.                                                       |  |

| Function Name | void cec_driver_main(void)                                                               |  |
|---------------|------------------------------------------------------------------------------------------|--|
| Function      | CEC Transmission Startup Monitoring Processing                                           |  |
| Description   | The conditions for starting up CEC transmission are as follows.                          |  |
|               | $\cdot$ Not during signal free time. (Not in the state of waiting for transmission after |  |
|               | the end of transmission/reception)                                                       |  |
|               | <ul> <li>Not during CEC transmission/reception.</li> </ul>                               |  |
|               | <ul> <li>There is a transmission request from the user.</li> </ul>                       |  |
|               | (General transmission, logical address allocation)                                       |  |
|               | In order to prevent other interrupt processing after the transmit activation             |  |
|               | monitoring causes a delay in the transmission and prevents the user from                 |  |
|               | sending itself after others have already send, the transmit activation monitoring        |  |
|               | process prohibits all interrupt processing.                                              |  |
| Example       | When CEC communication status is available, call it in the main function.                |  |

| Function name | void monitor_cec_line(void)                                                     |  |
|---------------|---------------------------------------------------------------------------------|--|
| Function      | CEC line abnormality detection                                                  |  |
| Description   | To detect the CEC Line level. If it is a low level, the counter is incremented. |  |
|               | When the set count value is reached, it jumps to CEC initialization.            |  |
| Example       | Call at any time of the user's choice                                           |  |
|               | (However, the setting value must be set to a count value that is equal to or    |  |
|               | greater than the time that the CEC communication reaches the low level.))       |  |

| Function name                                                 | name uint8_t trans_cec_rx_buffer(s_cec_rx_buf_t * ptr)                                 |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| function                                                      | I/F processing for CEC receive data                                                    |  |
| argument                                                      | The head address of the destination where the user's received data is stored           |  |
| Return Values "1" with receive data, "0" with no receive data |                                                                                        |  |
| Description                                                   | Transfers the number of bytes received and data to the area specified by the argument. |  |
| Example Call at the user's discretion                         |                                                                                        |  |



| Function name | void send_cec_commond(uint8_t init_addr, uint8_t dest_addr, uint8_t opcode,<br>uint8_t * operand, uint8_t length) |                                                          |  |
|---------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
| Function      | Processing of                                                                                                     | f sending CEC commands                                   |  |
| Argument      | init_addr Initiator Logical Address                                                                               |                                                          |  |
|               | dest_addr                                                                                                         | Destination Logical address                              |  |
|               | Opcode                                                                                                            | CEC opcode to be sent                                    |  |
|               | operand                                                                                                           | Head address of the operand storage location to be sent. |  |
|               | length                                                                                                            | Length from Initiator to the last operand (in bytes)     |  |
| Explanation   | To send the CEC command.                                                                                          |                                                          |  |
|               | The operand argument must be the address of the area where the operands (u                                        |                                                          |  |
|               | to 16 bytes) are stored. If the operand does not exist, specify NULL.                                             |                                                          |  |
| Example       | Call at the user's discretion                                                                                     |                                                          |  |

| Function name | void stop_cec_driver(void)                                                       |  |
|---------------|----------------------------------------------------------------------------------|--|
| Function      | Termination of CEC communication                                                 |  |
| Explanation   | Terminate CEC communication                                                      |  |
|               | If you need to communicate again after this function call, call init_cec_driver. |  |
| Example       | Call at the user's discretion                                                    |  |

### 7.2.13 Error Status

The contents of the error status in CEC communication are as follows.

cec\_if\_driver.h

| Defination Name     | Value | Contents                                                       |
|---------------------|-------|----------------------------------------------------------------|
| CEC_NO_ERR          | 0     | No Errors                                                      |
| CEC_TX_NACK_ERR     | 1     | ACK error on transmission                                      |
|                     |       | (Normally, there is no ACK, but there is an ACK when           |
|                     |       | broadcast communication)                                       |
| CEC_TX_RETRYOUT_ERR | 2     | The specified number exceeds the retry transmissions           |
| CEC_TX_ALOST_ERR    | 3     | Arbitration loss on transmission                               |
| CEC_TX_HANDLING_ERR | 4     | Low level detected during high-level output when               |
|                     |       | transmitting                                                   |
|                     |       | (Detects low-level output of error handling on the follower    |
|                     |       | side)                                                          |
| CEC_TX_DBIT_ERR     | 5     | Bit error in transmission                                      |
|                     |       | (The data you are trying to send has not been sent)            |
| CEC_RX_STBIT_TM_ERR | 6     | Timing error in the start bit when receiving                   |
| CEC_RX_DBIT_TM_ERR  | 7     | Timing errors in receiving data (except error handling)        |
| CEC_RX_HANDLING_ERR | 8     | During the low-level output period of error handling at the    |
|                     |       | time of reception, the frame width of the data is shorter than |
|                     |       | the specified minimum time.                                    |
| CEC_RX_DT_OVER_ERR  | 9     | Received data exceeds the specified byte limit                 |



### 7.2.14 Operation Description

#### 7.2.14.1 CEC Transmission Operation

When there is a CEC transmission request from the user program (g\_cec\_tx\_req\_no is set to CEC\_LOGALC\_TXREQ (= 2) or CEC\_NORMAL\_TXREQ (= 1)), the Signal Free Time Management function adjusts the timing and starts the CEC transmission operation.

If the transmission is successful, the g\_cec\_tx\_req\_no is cleared and the user is notified that the transmission is complete.

If this flag is cleared, the user can make the next transmission request.

If the transmission is not completed normally, the transmission operation (retry operation) is performed again up to the specified number of times.

#### Figure 7-2 Signal Free Time after Transmission is Completed (When its own Logical Address is 0x01)



#### Figure 7-3 Signal Free Time after Reception is Completed (When its own Logical Address is 0x01)





### 7.2.14.2 Interrupt Timing Processing during CEC Transmission

The timer time set in the software is set by subtracting the delay time for interrupt processing.

1) Start bit (Transmission)

<Initiator Output Waveform>



|       | Interrupt     | Handling                                                                                    |  |  |
|-------|---------------|---------------------------------------------------------------------------------------------|--|--|
| 0     | Jources       |                                                                                             |  |  |
| (1)   | limer         | ●Low-level output                                                                           |  |  |
|       | Interrupt     | • Set the timer to 3.7 ms (for generating the timing of $(2)$ )                             |  |  |
|       | (Signal Free  |                                                                                             |  |  |
|       | Time only)    |                                                                                             |  |  |
| 2     | Timer         | ●High-level output                                                                          |  |  |
|       | Interrupt     | ●Set the timer to 0.4 ms <sup>*1</sup> (for generating the timing of ③)                     |  |  |
| 3     | Timer         | Level Detection of CEC-IN Port                                                              |  |  |
|       | Interrupt     | ✓ If the level is High, it is determined to be a normal start bit, and data                 |  |  |
|       |               | transmission continues. Set the timer to 0.4 ms <sup>*2</sup> (for generating the timing    |  |  |
|       |               | of ④)                                                                                       |  |  |
|       |               | ✓ If the level is Low, it is determined to be lost in arbitration, and the error            |  |  |
|       |               | status is set to CEC_TX_ALOST_ERR, switching to reception mode. Set the                     |  |  |
|       |               | timer to 1.9 ms <sup>*3.</sup>                                                              |  |  |
| Note1 | . The maximun | n A period $(3.9 \text{ ms})$ - Period A $(3.7 \text{ ms})$ + Check time $(0.2 \text{ ms})$ |  |  |

Note2. Start bit high-level time (0.8 ms) - Time set in 2 (0.4 ms)

Note3. Start bit error detection time at reception (6.0 ms) - Start bit low-level time (3.7 ms) - Time set in 2 (0.4 ms)

Caution. The Error Handling is not performed during the start bit period.



### 2) Logical 0 (Transmission)

< Output Waveform>



|    | Interrupt<br>Sources | Handling                                                                                                                                                                                                                                             |  |
|----|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1) | Timer                | •Low-level output                                                                                                                                                                                                                                    |  |
|    | Interrupt            | • Set the timer to 1.5 ms (timing generation of (2))                                                                                                                                                                                                 |  |
| 2  | Timer                | <ul> <li>High-level output</li> </ul>                                                                                                                                                                                                                |  |
|    | Interrupt            | ●Set the timer to 0.45 ms (for generating the timing of ③)                                                                                                                                                                                           |  |
| 3  | Timer                | Level Detection of CEC-IN Port                                                                                                                                                                                                                       |  |
|    | Interrupt            | If a low level is detected during high-level output, the follower determines that<br>the error handling process is low-level output and sets the error status to<br>CEC_TX_HNADLING_ERR. The data will be retransmitted after a period of 3<br>bits. |  |
|    |                      | $\bullet$ Set the timer to 0.45 ms (for generating the timing of $(4)$ )                                                                                                                                                                             |  |



- 3) Logical 1 (Transmission)
  - < Output Waveform>



|            | Interrupt<br>Sources | Handling                                                                                        |  |  |
|------------|----------------------|-------------------------------------------------------------------------------------------------|--|--|
| 1          | Timer                | ●Low-level output                                                                               |  |  |
|            | interrupt            | • Set the timer to 0.6 ms (for generating the timing of (2))                                    |  |  |
| (2)        | Timer                | ●High-level output                                                                              |  |  |
|            | Interrupt            | ● Set the timer to 0.45 ms (for generating the timing of ③)                                     |  |  |
| 3          | Timer                | Level Detection of CEC-IN Port                                                                  |  |  |
|            | Interrupt            | ✓ If the level is High, it is determined to be a normal bit. Set the timer to 1.35              |  |  |
|            | -                    | ms (for generating the timing of $(5)$ ).                                                       |  |  |
|            |                      | ✓ If the level is Low, it is not possible to determine whether it is an arbitration             |  |  |
|            |                      | loss or error handling by Follower, so recheck the port level in $(4)$ . Set the                |  |  |
|            |                      | timer to 0.9 ms (for generating the timing of $(4)$ ).                                          |  |  |
| <b>(4)</b> | Timer                | CEC-IN Port Ray Bell Detection                                                                  |  |  |
|            | Interrupt            | $\checkmark$ If the level is High, it is determined as an arbitration loss. If arbitration loss |  |  |
|            |                      | occurs during the Initiator address period of the Header Block.                                 |  |  |
|            |                      | CEC TX ALOST ERR is set in the error status and the operation switches                          |  |  |
|            |                      | to receiving mode. If arbitration loss occurs outside the Initiator address                     |  |  |
|            |                      | period of the Header Block, it is considered a transmission error, and                          |  |  |
|            |                      | CEC TX DBIT ERR is set in the error status. The data will be retransmitted                      |  |  |
|            |                      | after a period of 3 bits                                                                        |  |  |
|            |                      | $\checkmark$ If the level is I ow it is determined as error handling by the Follower and        |  |  |
|            |                      | CEC TX HNADI ING ERR is set in the error status. The data will be                               |  |  |
|            |                      | retransmitted after a period of 3 bits.                                                         |  |  |



(5)

#### 4) ACK Period

<Initiator Output Waveform>



Ì

|   | Interrupt<br>Sources | Handling                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|---|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1 | Timer                | ●Low-level output                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|   | Interrupt            | ● Set the timer to 0.6 ms (for generating the timing of ②)                                                                                                                                                                                                                                                                                                     |  |  |  |
| 2 | Timer                | ●High-level output                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|   | Interrupt            | ● Set the timer to 0.45 ms (for generating the timing of ③)                                                                                                                                                                                                                                                                                                    |  |  |  |
| 3 | Timer<br>Interrupt   | <ul> <li>CEC-IN Port Level Detection (for ACK detection)</li> <li>If the level is High, it is determined to be NACK. Set the timer to 1.35 ms (for generating the timing of 5).</li> </ul>                                                                                                                                                                     |  |  |  |
|   |                      | <ul> <li>✓ If the level is Low, it is not possible to determine whether it is ACK output or<br/>error handling, so recheck the port level in ④. Set the timer to 0.9 ms (for<br/>generating the timing of ④)</li> </ul>                                                                                                                                        |  |  |  |
| 4 | Timer                | CEC-IN Port Level Detection                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|   | Interrupt            | $\checkmark$ If the level is High, it is determined to be ACK.                                                                                                                                                                                                                                                                                                 |  |  |  |
|   |                      | ✓ If the level is Low, it is determined to be an error handling by the follower<br>and set the error status to CEC_TX_HNADLING_ERR. The data will be<br>retransmitted after a period of 3 bits.                                                                                                                                                                |  |  |  |
|   |                      | ● Set the timer to 0.45 ms (for generating the timing of ⑤)                                                                                                                                                                                                                                                                                                    |  |  |  |
| 5 | Timer<br>Interrupt   | <ul> <li>Check ACK/NACK If the destination address is BroadCast (0xF) and ACK, or if it is NACK without BroadCast (0xF), the data will be retransmitted after a period of 3 bits. </li> <li>When continuing the frame, set the timer time for the leading bit of the next byte.</li> <li>At the end of the frame, set the timer for 7 bits of time.</li> </ul> |  |  |  |



#### 7.2.14.3 Reception Operation

When data is received, it is sequentially stored in the ring buffer. Ring buffer control uses two pointers: a read pointer and a write pointer.

Even if the self-station's own logical address is not specified in the header address of the received data, all exchanges on the CEC line are received. Signal Free Time is managed, but ACK response is not executed.

## Figure 7-4 Signal Free Time after Reception Ends (When the Self-station's Own Logical Address is 0x01)



### 7.2.14.4 Interrupt Timing Handling when CEC Reception

#### 1) Start bit (Reception)



|   | Interrupt  | Handling                                                                                           |
|---|------------|----------------------------------------------------------------------------------------------------|
|   | Sources    |                                                                                                    |
| 1 | Edge       | ●Set the timer to 6.0 ms,                                                                          |
|   | Interrupts | If no edge is detected within this time, error handling is performed.                              |
| 2 | Edge       | Save the timer for Period A                                                                        |
|   | Interrupts |                                                                                                    |
| 3 | Edge       | Save the timer for Period B                                                                        |
|   | Interrupts | <ul> <li>Timing determination of Period A and Period B</li> </ul>                                  |
|   |            | If the case of timing errors in Period A or Period B, set the error status to CEC_RX_STBIT_TM_ERR. |



### 2) Logical 0 (Reception)



|   | Interrupt<br>Sources | Handling                                                                                                                                                                                                                                                                                                                                                                         |
|---|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Edge<br>Interrupts   | ●Set the timer to 1.05 ms                                                                                                                                                                                                                                                                                                                                                        |
| 2 | Timer<br>interrupt   | <ul> <li>CEC-IN Port Level Detection (for Logical 0 and Logical 1 determination)</li> <li>Determines that the High level is Logical 1 and the Low level is Logical 0.</li> <li>Set the timer to 3.6 ms.</li> </ul>                                                                                                                                                               |
| 3 | Edge<br>Interrupts   | <ul> <li>Save the timer duration for period A.</li> <li>Bit timing determination for Period A.</li> <li>If the case of timing errors in Period A, set the error status to CEC_RX_DBIT_TM_ERR.</li> </ul>                                                                                                                                                                         |
| 4 | Edge<br>Interrupts   | <ul> <li>Save the timer duration for period B</li> <li>Bit timing determination of Period B</li> <li>If Period B is shorter than the minimum time, set the error status to</li> <li>CEC_RX_HNADLING_ERR and perform the error handling processing (low-level output). In the case of a timing error in Period B, set the error status to</li> <li>CEC_RX_DBIT_TM_ERR.</li> </ul> |



### 3) Logical 1 (Reception)



|   | Interrupt  | Handling                                                                    |  |  |  |  |
|---|------------|-----------------------------------------------------------------------------|--|--|--|--|
|   | Sources    |                                                                             |  |  |  |  |
| 1 | Edge       | Set the timer to 1.05 ms                                                    |  |  |  |  |
|   | Interrupts |                                                                             |  |  |  |  |
| 2 | Edge       | <ul> <li>Save the timer duration for period A.</li> </ul>                   |  |  |  |  |
|   | Interrupts | Bit timing determination of Period A                                        |  |  |  |  |
|   | -          | In case of a timing error in Period A, set the error status to              |  |  |  |  |
|   |            | CEC_RX_DBIT_TM_ERR.                                                         |  |  |  |  |
| 3 | Timer      | •CEC-IN Port Level Detection (for Logical 0 and Logical 1 determination)    |  |  |  |  |
|   | interrupt  | Determines that the High level is Logical 1 and the Low level is Logical 0. |  |  |  |  |
|   |            | ●Set the timer to 3.6 ms                                                    |  |  |  |  |
| 4 | Edge       | Save the timer duration for period B                                        |  |  |  |  |
|   | Interrupts | <ul> <li>Bit timing determination for Period B</li> </ul>                   |  |  |  |  |
|   | -          | If Period B is shorter than the minimum time, set the error status to       |  |  |  |  |
|   |            | CEC_RX_HNADLING_ERR and perform the error handling processing (low-         |  |  |  |  |
|   |            | level output).                                                              |  |  |  |  |
|   |            | If there is a timing error in Period B, set the error status to             |  |  |  |  |
|   |            | CEC_RX_DBIT_TM_ERR.                                                         |  |  |  |  |



### 4) ACK Period

When ACK output is present.



|   | Interrupt | Handling                                                                 |  |  |  |
|---|-----------|--------------------------------------------------------------------------|--|--|--|
|   | Sources   |                                                                          |  |  |  |
| 1 | Edge      | ●Low-level output                                                        |  |  |  |
|   | Interrupt | Set the timer to 1.05 ms                                                 |  |  |  |
| 2 | Timer     | ●High-level output                                                       |  |  |  |
|   | Interrupt | ● If the frame continues, set the timer to 1.5 ms.                       |  |  |  |
|   |           | If the frame ends, set the timer based on the rules of Signal Free Time. |  |  |  |

#### When ACK output is absent.



<CEC Line Waveform (Initiator output waveform) >



|   | Interrupt<br>Sources | Handling                                                                 |  |  |  |
|---|----------------------|--------------------------------------------------------------------------|--|--|--|
| 1 | Edge                 | ●Set the timer to 1.05 ms                                                |  |  |  |
|   | Interrupt            |                                                                          |  |  |  |
| 2 | Timer                | er If the frame continues, set the timer to 1.5 ms.                      |  |  |  |
|   | Interrupt            | If the frame ends, set the timer based on the rules of Signal Free Time. |  |  |  |



### 7.3 Controllers

#### 7.3.1 Overview

This chapter describes the control layer that performs CEC control using the driver software described in "7.2 Driver".

The control software has the following modes:

- Monitor mode
- Sound Bar mode
- Player mode

For more information, see the overviews in each section.

#### 7.3.2 Software Layers

The functions (Control Layer) provided by this control software are shown in the figure below.

#### Figure 7-5 CEC Control Software Hierarchy





### 7.3.3 Flowchart

### 7.3.3.1 General Flow

The general flow when using this control software is as follows.





Note 1. It exists only in projects that support Mode selection, HDMI number selection, and communication with a PC. (rI78g23-hdmi-cec-demo, rI78g23-hdmi-cec-dev)



### 7.3.3.2 CEC Control Flow

The CEC control flow is as follows.

#### Figure 7-7 CEC Control Flow





### 7.3.4 Functions of Each Mode

To suit different applications, the control software offers three modes: Monitor mode, Audio mode, and Player mode. This section describes the CEC command communications for different operations in each mode. The operations are as follows.

#### Monitor Mode

The CEC Viewer attached to the sample codes is used to monitor the CEC / DDC signals on a PC monitor which is connected to the FPB via USB.

#### Audio Mode

The FPB operates as a Sound Bar, controlling the FPB LEDs in response to the TV remote control operations (Volume Up/Down, Mute).

#### Player Mode

The FPB operates as a BD Player, controlling the FPB LEDs in response to the TV remote control operations (Play, Fast-Forward, Fast-Reverse, Pause).

#### 7.3.4.1 Monitor Mode

The CEC Viewer attached to the sample codes is used to monitor the CEC / DDC signals on a PC monitor which is connected to the FPB via USB.



### 7.3.4.2 Audio Mode

Audio mode allows communication with the TV as a simulated audio system.

1) When "Volume +" button is pressed



Note. If the volume reaches its upper limit, it remains at the maximum value (100).

2) When "Volume -" button is pressed



Note. If it reaches the lower limit, it stays at the minimum value (0).

3) When "Mute button" is pressed

|   |                                                                                               | TV           | Audio             |
|---|-----------------------------------------------------------------------------------------------|--------------|-------------------|
| 1 | Press the "Mutes" button on the TV remote control.                                            | ① [Mute] Key |                   |
| 2 | Notify "Mute" to Audio System                                                                 | ② Notify     | y "Mute"<br>►     |
|   | Initiator: TVDestination: Audio SystemOpcode: User Control Pressed (0x44)Operand: Mute (0x43) |              | "Mute" Handling * |

Note. If the Audio System is muted, the mute will be lifted.



### 7.3.4.3 Player Mode

Player mode allows communication with the TV as a simulated Playback Device.

| 1 | ) | When | "Playback" | button | is | pressed |
|---|---|------|------------|--------|----|---------|
|   |   |      |            |        |    |         |

| <ol> <li>Press the "Playback" button on the TV</li> <li>[Playback] Key remote control.</li> </ol>                                                                                                         | TV Playback<br>Device                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| ② Notify "Playback" to Playback Device                                                                                                                                                                    | ② Notify "Play / Play<br>Forward"<br>►                                                            |
| Initiator : TV<br>Destination : Playback Device<br>Case 1)<br>Opcode : User Control Pressed (0x44)<br>Operand : Play (0x44)<br>Case 2)<br>Opcode : Play (0x41)<br>Operand : Play Forward (0x24)           |                                                                                                   |
| <ul> <li>Notify "Image View On" from Playback Device<br/>Initiator : Playback Device<br/>Destination : TV<br/>Opcode : Image View On (0x04)<br/>Operand : None</li> </ul>                                 | ③ Image View On<br>◀                                                                              |
| <ul> <li>Motify "Active Source" from Playback Device<br/>Initiator : Playback Device<br/>Destination : Broadcast<br/>Opcode : Active Source (0x82)<br/>Operand : Self-station Physical Address</li> </ul> | <ul> <li>④ Active Source<br/>(Broadcast)</li> <li>■</li> <li>"Playback"<br/>Handling *</li> </ul> |

Note. If the Playback Device is currently playing, the procedures from ③ will not be executed.



#### When "Fast Forward" button is pressed 2) Playback TV (1)Device [Fast Forward] ① Press the "Fast Forward" button Key on the TV remote control. 2 Notify 2 Notify "Fast Forward" to Playback Device "Fast Forward / Initiator : TV Skip Forward / **Destination : Playback Device** Fast Forward" Case 1) Opcode : User Control Pressed (0x44) Operand : Fast forward (0x49) Case 2) Opcode : Deck Control (0x42) Operand : Skip Forward/Wind (0x01) Case 3) Opcode : Play (0x41) Operand : Fast Forward Min Speed (0x05) or Fast Forward Medium Speed (0x06) "Fast Forward" Handling \*



#### 3) When "Fast Reverse" button is pressed



Note. If the Playback Device is currently in STOP status, "Fast Reverse" will not be executed.



#### 4) When "Stop" button is pressed



Note. If the Playback Device is currently in STOP status, "STOP" will not be executed.

#### 5) When "Pause" button is pressed



Note. If the Playback Device is currently in STOP status, "Pause" operation will not be executed. If the Playback Device is currently in PAUSE status, "Pause" will be released.



#### 6) When "EJECT" button is pressed



Note. If the Playback Device is currently in EJECT status, the tray storage process will be executed.

#### 7) When "Forward" button is pressed



Note. If the Playback Device is currently in STOP status, "Forward" operation will not be executed.

#### 8) If the "Backward" button is pressed

|   |                                                                                                                                                             | Т                | V Play<br>De                     | ′back<br>vice   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------|-----------------|
| 1 | Press the "Backward" button<br>on the TV remote control                                                                                                     | ① [Backward] Key |                                  |                 |
| 2 | Notify "Backward" to Playback Device<br>Initiator : TV<br>Destination : Playback Device<br>Opcode : User Control Pressed (0x44<br>Operand : Backward (0x4C) | )                | ② Notify "Backward" "Backward" H | ►<br>Handling * |

Note. If the Playback Device is currently in STOP status, "Backward" operation will not be executed.



### 7.3.5 Status Changing

### 7.3.5.1 Status Changing in Audio Mode

The following shows the state changing for each operation request in Audio Mode.

#### Table 7-5 State Changing in Audio Mode

| Status        | Volume+ Request             | Volume- Request                                    | Mute request                                  |
|---------------|-----------------------------|----------------------------------------------------|-----------------------------------------------|
| ① During      | $(1) \rightarrow (1)^{-*1}$ | $\textcircled{1} \rightarrow \textcircled{1}^{*2}$ | $\textcircled{1} \rightarrow \textcircled{2}$ |
| Audio Output  |                             |                                                    |                                               |
| 2 Muted state | ② → ① <sup>*1</sup>         | $\textcircled{2} \rightarrow \textcircled{1}^{*2}$ | $(2) \to (1)$                                 |

Note 1. Turn up the volume by one. (Upper limit: 100)

Note 2. Turn down the volume by one. (Lower limit: 0)

### 7.3.5.2 Status Changing in Player Mode

The following lists the status changing for each request in Player Mode.

 Table 7-6 Status Changing in Player Mode

| Status               | Stop<br>Request       | Replay<br>Request                             | Pause<br>Request      | Fast<br>Forward<br>Request | Fast<br>Reverse<br>Request | Forward<br>Request | Backward<br>Request | EJECT<br>request                              |
|----------------------|-----------------------|-----------------------------------------------|-----------------------|----------------------------|----------------------------|--------------------|---------------------|-----------------------------------------------|
| ① Paused             | -                     | $\textcircled{1} \rightarrow \textcircled{2}$ | -                     | -                          | -                          | -                  | -                   | $\textcircled{1} \rightarrow \textcircled{6}$ |
| 2 Playing            | $2 \rightarrow 1$     | -                                             | $2 \rightarrow 3$     | $2 \rightarrow 4$          | $2 \rightarrow 5$          | ② → ②<br>*1        |                     | $2 \rightarrow 6$                             |
| ③ Paused             | -                     | $(3 \rightarrow 2)$                           | $(3 \rightarrow 2)$   | $(3 \rightarrow 4)$        | $(3 \rightarrow 5)$        | (3) → (2)<br>*1    | (3) → (2)<br>*2     | $3 \rightarrow 6$                             |
| ④ Fast<br>Forwarding | $(4) \rightarrow (1)$ | $(4) \rightarrow (2)$                         | $(4) \rightarrow (3)$ | $(4) \xrightarrow{*3} (4)$ | $(4) \rightarrow (5)$      | (4) → (2)<br>*1    | ④→②<br>*2           | $4 \rightarrow 6$                             |
| 5 Fast<br>Reversing  | $(5) \rightarrow (1)$ | $(5) \rightarrow (2)$                         | $(5) \rightarrow (3)$ | $(5) \rightarrow (4)$      | $(5) \xrightarrow{*4} (5)$ | (5) → (2)<br>*1    | (5) → (2)<br>*2     | $(5) \rightarrow (6)$                         |
| 6 Ejecting           | -                     | $(6) \rightarrow (2)$                         | -                     | -                          | -                          | -                  | -                   | $(6) \rightarrow (1)$                         |

- : No change.

Note 1. Forward by chapter.

Note 2. Backward by chapter.

Note 3. This changes the fast forward speed. (Low speed  $\rightarrow$  High speed, High speed  $\rightarrow$  Low speed) Note 4. This changes the fast reverse speed. (Low speed  $\rightarrow$  High speed, High speed  $\rightarrow$  Low speed)



### 8. Sample Codes

The samples codes can be downloaded from Renesas Electronics website.

#### 9. References

- RL78/G23 User's Manual: Hardware Rev.1.21
- RL78/G23-64p Fast Prototyping Board User's Manuel Rev.1.10
- RL78/G23 I2C (Slave) for Multiple Slave Addresses Rev.1.01
- High-Definition Multimedia Interface Specification Version 1.4b

### Homepage

 Renesas Electronics Homepage <u>http://www.renesas.com/</u>



### **Revision History**

|      |           | Description |                      |  |  |
|------|-----------|-------------|----------------------|--|--|
| Rev. | Date      | Page        | Summary              |  |  |
| 1.00 | 2024.7.16 | -           | First Edition Issued |  |  |
|      |           |             |                      |  |  |



## General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

#### 1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

#### 2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

#### 6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

#### Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
   Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

#### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

### **Contact information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <a href="http://www.renesas.com/contact/">www.renesas.com/contact/</a>.