
 Application Notes

R20AN0652EJ0120 Rev.1.20 Page 1 of 101
Sep.25.2023

RL78/G15 Group and RL78/G16 Group
Sample program for flash memory reprogramming
Renesas Flash Sample Program Type 01
Introduction
This application note is intended to give users an understanding of the methods for using the Renesas Flash
Sample Program Type 01(RFSP Type 01) for RL78/G15 group and RL78/G16 group. And this application
note is intended for engineers who develop application systems using the RFSP Type 01.

Target devices
RL78/G15 Group
RL78/G16 Group

Table of contents

1 Overview .. 4
1.1 Outline ... 4
1.1.1 Purpose ... 4
1.2 Contents .. 4
1.3 Features .. 5
1.4 Operating environment .. 6
1.5 Points for Caution .. 7
1.6 C Compiler Definitions ... 8

2 System configuration ... 10
2.1 File Structure ... 10
2.1.1 Folder Structure .. 10
2.1.2 List of Files .. 11
2.2 Resources of RL78/G15, RL78/G16... 13
2.2.1 Memory Map ... 13
2.2.2 Block Images .. 14
2.2.3 List of Registers Related to Flash Memory Sequencer Control ... 15
2.3 Resources Used in RFSP Type 01 ... 16
2.3.1 Code Size and Stack Size which API Functions Use ... 16

3 API Functions of RFSP Type 01 ... 17
3.1 List of API Functions of RFSP Type 01 ... 17
3.1.1 API Functions Used in Common Flash Memory Control .. 17
3.1.2 API Functions for Code Flash Memory Control .. 17
3.1.3 API Functions for Data Flash Memory Control ... 17
3.1.4 Hook function .. 18
3.2 Data type definition .. 19
3.2.1 data type ... 19
3.2.2 Global variables .. 19
3.2.3 Enumerations .. 20
3.2.4 Macro definition .. 21
3.3 Specifications of API Functions ... 25
3.3.1 Specifications of API Functions Used in Common for Flash Memory Control 26

R20AN0652EJ0120
Rev.1.20

Sep.25.2023

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 2 of 101
Sep.25.2023

3.3.2 Specifications of API Functions for Code Flash Memory Control .. 32
3.3.3 Specifications of API Functions for Data Flash Memory Control ... 34
3.3.4 Specifications of Hook Functions ... 36

4 Flash Memory Sequencer Operation .. 38
4.1 Initial Setting of Operating Frequency ... 38
4.2 Self-Programming Mode and Target Area Setting .. 39
4.2.1 Flash Memory Self-Programming Mode Setting .. 39
4.3 Flash Memory Sequencer ... 40
4.3.1 Outline .. 40
4.3.2 Flash Memory Sequencer Commands ... 40
4.3.3 Procedures for Judging the End of Command Execution in the Flash Memory Sequencer 45
4.4 Example of Command Execution for Reprogramming of the Flash Memory Areas 46
4.4.1 Example of Command Execution for Reprogramming of the Code/Data Flash memory Areas 46

5 Sample Programs .. 47
5.1 File Structure ... 47
5.1.1 Folder configuration .. 47
5.1.2 List of Files .. 48
5.2 Data Type Definitions .. 50
5.2.1 Enumerations .. 50
5.3 Sample Program Functions ... 51
5.3.1 Sample Program for Controlling the Reprogramming of the Code Flash Memory 52
5.3.2 Sample Program for Controlling the Reprogramming of the Data Flash Memory.................................. 56
5.3.3 Sample Program Used in Common for Controlling the Flash Memory .. 60
5.4 Specifications of Sample Program Functions ... 61
5.4.1 Sample Program Functions for Controlling the Reprogramming of the Code Flash Memory 61
5.4.2 Sample Program Functions for Controlling the Reprogramming of the Data Flash Memory 63
5.4.3 Sample Program Functions Used in Common ... 65

6 Creating a Sample Project for RFSP Type 01 .. 66
6.1 Creating a Project in the case of Using CC-RL Compiler ... 66
6.1.1 Example of Creating a Sample Project .. 67
6.1.2 Example of Registration of Target Folders and the Target Files .. 70
6.1.3 Build Tool Settings .. 73
6.1.4 Debug Tool Settings ... 76
6.2 Creating a Project in the case of Using IAR Compiler .. 78
6.2.1 Example of Creating a Sample Project .. 79
6.2.2 Example of Registration of Target Folders and Target Files .. 81
6.2.3 Integrated Development Environment(IDE) Settings ... 84
6.2.4 Linker Configuration File(.icf) Settings ... 87
6.2.5 On-chip Debug Settings ... 89
6.3 Creating a Project in the case of Using LLVM Compiler ... 90
6.3.1 Example of Creating a Sample Project .. 90
6.3.2 Example of Registration of Target Folders and the Target Files .. 94
6.3.3 Build Tool Settings .. 98
6.3.4 Debug Tool Settings ... 100

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 3 of 101
Sep.25.2023

7 Revision History ... 101
7.1 Major Modifications in this Revision .. 101

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 4 of 101
Sep.25.2023

1 Overview

Renesas Flash Sample Program Type 01 (hereinafter referred to as "RFSP Type 01" in this document.) is
the sample program for reprogramming the data in flash memory of RL78/G15 and RL78/G16.

1.1 Outline
The functions of RFSP Type 01 are called from the user program to reprogram the code flash memory or
data flash memory.
In addition, please use this user's manual together with the user's manual of a target device.

1.1.1 Purpose
The purpose of this document is to describe information about RFSP Type 01.

1.2 Contents
The API functions of RFSP Type 01 are called from the user program to reprogram the code flash memory or
data flash memory.

The RFSP Type 01 package includes the following:

• This application notes.
• Sample program files of RFSP Type 01 for controlling for code flash memory incorporated in the

RL78/G15 and RL78/G16.
• Sample program files of RFSP Type 01 for controlling for data flash memory incorporated in the

RL78/G15 and RL78/G16.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 5 of 101
Sep.25.2023

1.3 Features

The RFSP Type 01 reprograms the flash memory according to the specified flow of command processing for
the flash memory control circuit. Each sample API function of RFSP Type 01 consists of a single sub-function
or two or more sub-functions, and the necessary processing is implemented by combinations of individual sub-
functions and user processing.

Figure 1-1 shows the flash memory control by the user application using the sample API functions of RFSP
Type 01.

RFSP Type 01 provides sample programs of the processing that is implemented by combinations of two or
more sample API functions and user programs. Refer to the sample programs when embedding the flash
memory control processing in the user application.

Figure 1-1 Flash Memory Control Using Sample API Functions of RFSP Type 01

Flash memory hardware

User program

User application

(RFSP Type 01 sample API functions are called)

Flash memory sequencer

(Hardware for controlling the flash memory)

Data Flash Memory Code flash memory

RFSP Type 01 sample API functions

(Flash memory sequencer is controlled)

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 6 of 101
Sep.25.2023

1.4 Operating environment
• Host Computer

The operation of RFSP Type 01 does not depend on the host computer but the appropriate environment
for the C compiler package, debugger and emulator must be prepared. (RFSP Type 01 was developed
and tested on Windows10 Pro.)

• C compiler package

Table 1-1 shows the target C compiler packages for RFSP Type 01.

Table 1-1 the target C Compiler Packages for RFSP Type 01

Package IDE (Integrated Development

Environment)

Manufacturer Version

CC-RL compiler CS+, e2 studio Renesas Electronics V1.10 or later

IAR compiler IAR Embedded WorkbenchⓇ for

Renesas RL78

IAR SystemsⓇ V4.21 or later

LLVM compiler e2 studio Open Source Software V10.0.0.202306 or later

Note. Integrated development environment and compiler must support the target device.

• Emulator

Table 1-2 shows the emulator on which the operation of RFSP Type 01 was confirmed.

Table 1-2 Emulator on which RFSP Type 01 Operation was Confirmed

Emulator Manufacturer

E2 Emulator Lite Renesas Electronics

• Target MCU

RL78/G15
RL78/G16

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 7 of 101
Sep.25.2023

1.5 Points for Caution
(1) Allocation of the user program for flash memory reprogramming operation

Allocate the user program for programming the code/data flash area to the code flash area. Self-
programming by fetching from the RAM is prohibited. Additionally, reprogramming the boot area and the
block for storing the user program for executing self-programming is prohibited.

(2) Prohibit the interrupts in self-programming mode
Prohibit an interrupt before setting the self-programming mode. To prohibit an interrupt, clear (0) the IE
flag by the DI instruction in the same way as in the normal operation mode.

(3) Setting the CPU operating frequency for the flash memory sequencer
When using the flash memory sequencer to reprogram the code/data flash memory, set the value
corresponding to the CPU operating frequency in the FSET4-0 bits of the FSSET register before
proceeding. Note that if reprogramming is attempted while the value corresponding to the CPU operating
frequency is not correct, operation is undefined and written data are not guaranteed. Even if the values in
the flash memory are as expected immediately after reprogramming, retaining the values for any
specified period is not guaranteed.

(4) Operation setting of high-speed on-chip oscillator
The high-speed on-chip oscillator should be kept operating before executing self-programming. If it is
stopped, it should be made to operate again (HIOSTOP = 0), and the flash self-programming code should
be re-executed after 30 us have elapsed.

(5) Restriction of execution of other operations during self-programming
Do not execute other settings or instructions which are not related to the self-programming procedure
during the self-programming execution flow

(6) User program operation during flash memory reprogramming operation
The CPU is stopped during reprogramming through self-programming. The code flash or data flash
memory cannot be accessed while it is being reprogrammed.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 8 of 101
Sep.25.2023

1.6 C Compiler Definitions

The definitions of the target compiler written in the header file (r_rfsp_compiler.h) for RFSP Type 01 are shown
below.
The definitions differ between compilers. The "r_rfsp_compiler.h" file is used to identify the current compiler
and the definitions for the target compiler are used.

• Definition of C compiler

- Definition of CC-RL compiler:

"__CCRL__" is defined
#define COMPILER_CC (1)

- IAR compiler:

” __IAR_SYSTEMS_ICC__” is defined
#define COMPILER_IAR (2)

- Definition of LLVM compiler:

"__llvm__" is defined
#define COMPILER_LLVM (3)

 <Descriptions in the r_rfsp_compiler.h file>

/* Compiler definition */
#define COMPILER_CC (1)
#define COMPILER_IAR (2)
#define COMPILER_LLVM (3)

#if defined (__llvm__)
 #define COMPILER COMPILER_LLVM
#elif defined (__CCRL__)
 #define COMPILER COMPILER_CC
#elif defined (__IAR_SYSTEMS_ICC__)
 #define COMPILER COMPILER_IAR
#else
 /* Unknown compiler error */
 #error "Non-supported compiler."
#endif

/* Compiler dependent definition */
#if (COMPILER_CC == COMPILER)
 #define R_RFSP_FAR_FUNC __far
 #define R_RFSP_NO_OPERATION __nop
 #define R_RFSP_DISABLE_INTERRUPT __DI
 #define R_RFSP_ENABLE_INTERRUPT __EI
 #define R_RFSP_GET_PSW_IE_STATE __get_psw
 #define R_RFSP_IS_PSW_IE_ENABLE(u08_psw_ie_state) (0u != ((u08_psw_ie_state) & 0x80u))
#elif (COMPILER_IAR == COMPILER)
 #define R_RFSP_FAR_FUNC __far_func
 #define R_RFSP_NO_OPERATION __no_operation
 #define R_RFSP_DISABLE_INTERRUPT __disable_interrupt
 #define R_RFSP_ENABLE_INTERRUPT __enable_interrupt
 #define R_RFSP_GET_PSW_IE_STATE __get_interrupt_state
 #define R_RFSP_IS_PSW_IE_ENABLE(u08_psw_ie_state) (0u != ((u08_psw_ie_state) & 0x80u))

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 9 of 101
Sep.25.2023

• C compiler options

The contents of the C compiler option setup which normal operation can be checking are shown below.

- [CC-RL(CS+)]

Major compile options:

-cpu=S2 -g -g_line -lang=c99

- [IAR(IAR Embedded Workbench)]

Major compile options:

--core s2 --calling_convention v2 --code_model far --data_model near -e -Ol --no_cse --no_unroll --no_inline

 --no_code_motion --no_tbaa --no_cross_call --no_scheduling --no_clustering --debug

- [LLVM(e2 studio)]

Major compile options:

-Og -ffunction-sections -fdata-sections -fdiagnostics-parseable-fixits -Wunused -Wuninitialized -Wall

-Wextra -Wmissing-declarations -Wconversion -Wpointer-arith -Wshadow -Waggregate-return -g -mcpu=s2

-mdisable-mda

#elif (COMPILER_LLVM == COMPILER)
 #define R_RFSP_FAR_FUNC __far
 #define R_RFSP_NO_OPERATION __nop
 #define R_RFSP_DISABLE_INTERRUPT __DI
 #define R_RFSP_ENABLE_INTERRUPT __EI
 #define R_RFSP_GET_PSW_IE_STATE (uint8_t)__builtin_rl78_pswie
 #define R_RFSP_IS_PSW_IE_ENABLE(u08_psw_ie_state) (0u != (u08_psw_ie_state))
#else
 /* Unknown compiler error */
 #error "Non-supported compiler."
#endif

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 10 of 101
Sep.25.2023

2 System configuration

2.1 File Structure

2.1.1 Folder Structure

This section is explained in the sample program example for RL78/G15. When using a device other than
RL78/G15, read G15 to the target device.

・Please read and change the folder name ("RL78_G15") of the sample of RL78/G15 into the folder name of
a target device.
The folder name in the case of using RL78/G16: "RL78_G16"

Figure 2-1 shows the folder structure of RFSP type 01.

Figure 2-1 Folder Structure of RFSP Type 01

: Folders of this product

Sample programs

RFSP Type 01
user-own files

RFSP Type 01
source program files

RFSP Type 01
include files

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 11 of 101
Sep.25.2023

2.1.2 List of Files

2.1.2.1 List of Source files

Table 2-1 shows the program source files in the “source\common\” folder.

Table 2-1 Program Source Files in the "source\common\" Folder

No Source File Name Description
1 r_rfsp_common_api.c This file contains the API functions for settings used in

common for flash memory control.
2 r_rfsp_common_control_api.c This file contains the API functions for command control

used in common for flash memory control.

Table 2-2 shows the program source file in the “source\codeflash\” folder.

Table 2-2 Program Source File in the "source\codeflash\" Folder

No Source File Name Description
1 r_rfsp_code_flash_api.c This file contains the API functions for code flash memory

control.

Table 2-3 shows the program source file in the “source\dataflash\” folder.

Table 2-3 Program Source File in the "source\dataflash\" Folder

No Source File Name Description
1 r_rfsp_data_flash_api.c This file contains the API functions for data flash memory

control.

Table 2-4 shows the program source file in the “userown\” folder.

Table 2-4 Program Source File in the "userown\" Folder

No Source File Name Description
1 r_rfsp_common_userown.c This file contains the hook functions for user processing to

be performed in RFSP Type 01

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 12 of 101
Sep.25.2023

2.1.2.2 List of Header File

Table 2-5 shows the program header files in the “include\rfsp\” folder.

Table 2-5 Program Header Files in the "include\rfsp\" Folder

No Header File Name Description
1 r_rfsp.h Common header file. This file needs to be included when

RFSP Type 01 is used.
2 r_rfsp_compiler.h This file describes the definitions that differ between

compilers used in RFSP Type 01
3 r_rfsp_device.h This file defines the hardware-specific macros used in

RFSP Type 01
4 r_rfsp_types.h This file defines the types of variables used in RFSP Type

01
5 r_typedefs.h This file defines the types of data used in RFSP Type 01

Table 2-6 shows the program header files in the “include\” folder.

Table 2-6 Program Header Files in the "include\" Folder

No Header File Name Description
1 r_rfsp_code_flash_api.h This file defines the prototype declarations of the API

functions for code flash memory control.
2 r_rfsp_common_api.h This file defines the prototype declarations of the API

functions for setting used in common for flash memory
control.

3 r_rfsp_common_control_api.h This file defines the prototype declarations of the API
functions for command control used in common for flash
memory control.

4 r_rfsp_common_userown.h This file defines the prototype declarations of the hook
functions for user processing to be performed in RFSP Type
01

5 r_rfsp_data_flash_api.h This file defines the prototype declarations of the API
functions for data flash memory control.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 13 of 101
Sep.25.2023

2.2 Resources of RL78/G15, RL78/G16

2.2.1 Memory Map

Table 2-7 shows the memory map (code flash memory (CF), data flash memory (DF), and RAM) of the
RL78/G15

Table 2-7 Memory Map for RL78/G15 (ROM, Data Flash, and RAM)

RL78/G15
Code Flash: CF

(1 block = 1Kbyte)

RAM

R5F120x8 (x=0,1,4,6) 8KB (0000H-1FFFH) 1KB (FFB00H-FFEFFH)

R5F120x7 (x=0,1,4,6) 4KB (0000H-0FFFH) 1KB (FFB00H-FFEFFH)

All RL78/G15 devices
Data Flash Memory : DF (1 block = 512byte)

1 Kbytes (9000H-93FFH)

Table 2-8 shows the memory map (code flash memory (CF), data flash memory (DF), and RAM) of the
RL78/G16

Table 2-8 Memory Map for RL78/G16 (ROM, Data Flash, and RAM)

RL78/G16
Code Flash: CF

(1 block = 1Kbyte)

RAM

R5F121xC (x=1,4,6,7,B) 32KB (0000H-7FFFH) 2KB (FF700H-FFEFFH)

R5F121xA (x=1,4,6,7,B) 16KB (0000H-3FFFH) 2KB (FF700H-FFEFFH)

All RL78/G16 devices
Data Flash Memory : DF (1 block = 512byte)

1 Kbytes (9000H-93FFH)

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 14 of 101
Sep.25.2023

2.2.2 Block Images

Figure 2-2 and Figure 2-3 shows the allocation of blocks in code flash memory (CF) and data flash memory
(DF) for RL78/G15. Refer to the user's manual of a target device for allocation of blocks for other devices.

R5F120x8 (Code flash memory: 8Kbytes) R5F120x7 (Code flash memory: 4Kbytes)

Figure 2-2 Blocks in the Code Flash Memory

Figure 2-3 Blocks in the Data Flash Memory

1FFFH CF: Block 07H

(1Kbyte)

1C00H

1BFFH CF: Block 06H

(1Kbyte)

1800H

17FFH CF: Block 05H

(1Kbyte)

1400H

13FFH CF: Block 04H

(1Kbyte)

1000H

0FFFH CF: Block 03H

(1Kbyte)

 0FFFH CF: Block 03H

(1Kbyte) 0C00H 0C00H

0BFFH CF: Block 02H

(1Kbyte)

 0BFFH CF: Block 02H

(1Kbyte) 0800H 0800H

07FFH CF: Block 01H

(1Kbyte)

 07FFH CF: Block 01H

(1Kbyte) 0400H 0400H

03FFH CF: Block 00H

(1Kbyte)

 03FFH CF: Block 00H

(1Kbyte) 0000H 0000H

93FFH DF: Block 01H

(512bytes) 9200H

91FFH DF: Block 00H

(512bytes) 9000H

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 15 of 101
Sep.25.2023

2.2.3 List of Registers Related to Flash Memory Sequencer Control

Table 2-9 shows the registers in the RL78/G15 and RL78/G16 used by RFSP Type 01.

Table 2-9 Registers in the RL78/G15 and RL78/G16 Used by RFSP Type 01

Base
Address Offset Register

Name Size Function name / Note
F0000H BEH FSSET 1byte Flash memory sequencer frequency setting register

C0H FLPMC 1byte Flash programming mode control register

C1H FSSQ 1byte Flash memory sequencer control register

C2H FLAPL 1byte Flash address pointer register L

C3H FLAPH 1byte Flash address pointer register H

C4H FLSEDL 1byte Flash end address pointer L

C5H FLSEDH 1byte Flash end address pointer H

C6H FSASTL 1byte Flash sequencer status register L

C7H FSASTH 1byte Flash sequencer status register H

C8H FLWLL 1byte Flash write buffer register LL

C9H FLWLH 1byte Flash write buffer register LH

CAH FLWHL 1byte Flash write buffer register HL

CBH FLWHH 1byte Flash write buffer register HH

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 16 of 101
Sep.25.2023

2.3 Resources Used in RFSP Type 01

2.3.1 Code Size and Stack Size which API Functions Use

Table 2-10 shows code size and stack size which API functions for RFSP Type 01 use.

Table 2-10 Code Size and Stack Sizes which API Functions for RFSP Type 01 Use

API Name
Code Size (Bytes) Stack Size (Bytes)

CC-RL IAR LLVM CC-RL IAR LLVM

R_RFSP_Init 16 21 16 4 4 4

R_RFSP_SetFlashMemoryMode 21 29 31 4 8 8

R_RFSP_CheckCFDFSeqEndStep1 13 24 16 4 6 4

R_RFSP_CheckCFDFSeqEndStep2 8 19 11 4 6 4

R_RFSP_GetSeqErrorStatus 8 8 11 4 4 6

R_RFSP_ForceReset 2 2 2 4 4 4

R_RFSP_EraseCodeFlashReq 23 33 33 4 4 4

R_RFSP_WriteCodeFlashReq 33 40 49 8 6 4

R_RFSP_EraseDataFlashReq 22 38 33 4 6 4

R_RFSP_WriteDataFlashReq 33 40 49 8 6 6

R_RFSP_HOOK_EnterCriticalSection 9 9 11 4 4 4

R_RFSP_HOOK_ExitCriticalSection 11 10 9 4 4 4

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 17 of 101
Sep.25.2023

3 API Functions of RFSP Type 01

3.1 List of API Functions of RFSP Type 01

3.1.1 API Functions Used in Common Flash Memory Control

Table 3-1 shows the API functions used in common for flash memory control in RFSP Type 01.

Table 3-1 API Functions Used in Common for Flash Memory Control in RFSP Type 01

 API function name summary

1 R_RFSP_Init Sets the frequency specified by the parameter in the flash
memory sequencer and initializes the RFSP Type 01.

2 R_RFSP_SetFlashMemoryMode Sets the flash self-programming mode specified in the
argument to the flash memory sequencer.

3 R_RFSP_CheckCFDFSeqEndStep1 Checks if the operation of the activated the flash memory
sequencer has been completed.

4 R_RFSP_CheckCFDFSeqEndStep2 Checks if the command operation has been completed after
the flash memory sequencer control register is cleared.

5 R_RFSP_GetSeqErrorStatus Acquires the information on errors that occurred during
command execution in the flash memory sequencer.

6 R_RFSP_ForceReset Generates an internal reset of the CPU.

3.1.2 API Functions for Code Flash Memory Control

Table 3-2 show the API functions for code flash memory control in RFSP Type 01.

Table 3-2 API Functions for Code Flash Memory Control in RFSP Type 01

 API function name summary

1 R_RFSP_EraseCodeFlashReq Activates the flash memory sequencer and begins the
erasure of the code flash memory (one block).

2 R_RFSP_WriteCodeFlashReq Activates the flash memory sequencer and begins the
programming of the code flash memory (4 bytes).

3.1.3 API Functions for Data Flash Memory Control

Table 3-3 show the API functions for data flash memory control in RFSP Type 01

Table 3-3 API Functions for Data Flash Memory Control in RFSP Type 01

 API function name summary

1 R_RFSP_EraseDataFlashReq Activates the flash memory sequencer and begins the
erasure of the data flash memory (one block).

2 R_RFSP_WriteDataFlashReq Activates the flash memory sequencer and begins the
programming of the data flash memory (4 bytes).

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 18 of 101
Sep.25.2023

3.1.4 Hook function

Table 3-4 show the hook functions in RFSP Type 01.

Table 3-4 Hook Functions in RFSP Type 01

 API function name summary

1 R_RFSP_HOOK_EnterCriticalSection Executes the instruction for disabling interrupts.

2 R_RFSP_HOOK_ExitCriticalSection Executes the instruction for enabling interrupts.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 19 of 101
Sep.25.2023

3.2 Data type definition

3.2.1 data type

Table 3-5 shows the data type definitions in RFSP Type 01.

Table 3-5 Data Type Definition in RFSP Type 01

Macro value Type Description

int8_t signed char 1-byte signed integer

uint8_t unsigned char 1-byte unsigned integer

int16_t signed short 2-byte signed integer

uint16_t unsigned short 2-byte unsigned integer

int32_t signed long 4-byte signed integer

uint32_t unsigned long 4-byte unsigned integer

rBool_t unsigned char Boolean value (false = 0, true = 1)

3.2.2 Global variables

The following shows the global variables used in RFSP Type 01:

sg_u08_psw_ie_state
Type/Name static uint8_t sg_u08_psw_ie_state

Default value 0x00 (R_RFSP_VALUE_U08_INIT_VARIABLE)

Description Variable for saving or restoring the state of the interrupt enable flag (IE) in PSW
 Interrupts are disabled: 0x00u

 interrupts are enabled: 0x80u
Definition file r_rfsp_common_userown.c

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 20 of 101
Sep.25.2023

3.2.3 Enumerations

• e_rfsp_flash_memory_mode (enumerated-type variable name: e_rfsp_flash_memory_mode_t)
Flash self-programming mode

Symbol Name Value Description

R_RFSP_ENUM_FLASH_MODE_NONPROGRAMMABLE 0x08 Non-programmable mode

R_RFSP_ENUM_FLASH_MODE_CODE_PROGRAMMING 0x02 Code flash memory programming
setting

R_RFSP_ENUM_FLASH_MODE_DATA_PROGRAMMING 0x22 Data flash memory programming
setting

• e_rfsp_ret (enumerated-type variable name: e_rfsp_ret_t)

Return value
Symbol Name Value Description

R_RFSP_ENUM_RET_STS_OK 0x00 Normal end

R_RFSP_ENUM_RET_STS_BUSY 0x01 Busy

R_RFSP_ENUM_RET_ERR_PARAMETER 0x10 Parameter error

R_RFSP_ENUM_RET_ERR_MODE_MISMATCHED 0x11 Mode mismatch error

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 21 of 101
Sep.25.2023

3.2.4 Macro definition

3.2.4.1 Macro Definitions for Setting the Global Data of RFSP

• Macro definitions for masking to obtain 16-bit and 8-bit data
The data bits exceeding the specified size are masked by ANDing with 0.

Symbol Name Value Description

R_RFSP_VALUE_U08_MASK1_8BIT 0xFFu 8-bit mask value

R_RFSP_VALUE_U16_MASK1_16BIT 0xFFFFu 16-bit mask value

• Macro definitions for shifting data by 16 bits and 8 bits
A 32-bit value is shifted by 16 bits or 8 bits, and a 16-bit value is shifted by 8 bits.

Symbol Name Value Description

R_RFSP_VALUE_U08_SHIFT_8BIT 8u Value for 8-bit shifting

R_RFSP_VALUE_U08_SHIFT_16BIT 16u Value for 16-bit shifting

• Macro definition for shifting an initial value
The initial value for a global variable is defined.

Symbol Name Value Description

R_RFSP_VALUE_U08_INIT_VARIABLE 0x00u The initial value for a global variable

3.2.4.2 Macro Definitions for Setting the Registers in the RL78/G15 and RL78/G16.

• Macro definitions 1 for FSSQ (flash memory sequencer control register)
The commands to be executed in the activated flash memory sequencer are defined.
[Bit 7] SQST: Bit for starting or stopping the sequencer.

The sequencer starts operation when SQST = 1.
[Bits 2 to 0] SQMD2 to SQMD0: Command for the flash memory sequencer
Target register definition: R_RFSP_REG_U08_FSSQ

Symbol Name Value Description

R_RFSP_VALUE_U08_FSSQ_WRITE 0x81u Write command for the flash memory

R_RFSP_VALUE_U08_FSSQ_ERASE 0x84u Erase command for the flash memory

R_RFSP_VALUE_U08_FSSQ_CLEAR 0x00u Value for clearing the settings for operation
of the flash memory sequencer

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 22 of 101
Sep.25.2023

• Macro definitions for FLPMC (flash programming mode control register)
The values used to control the transition between the self-programming mode and the non-programmable
mode are defined.
[Bit 5] SELDFL: Bit which selects the target area of flash programming. A code flash area is selected by

SELDFL=0, and a data flash area is selected by SELDFL=1.
[Bit 3] FWEDIS: Bit for enabling or disabling the erasure or programming of the flash memory by

software. FWEDIS should be set to 0 to erase or program the flash memory.
[Bit 1] FLSPM: Bit for specifying the flash memory control mode.

The flash memory programming mode is entered when FLSPM = 1.
Target register definition: R_RFSP_REG_U08_FLPMC

Symbol Name Value Description

R_RFSP_VALUE_U08_FLPMC_MODE_
NONPROGRAMMABLE

0x08u Flash memory sequencer not executed

R_RFSP_VALUE_U08_FLPMC_MODE_
CODE_FLASH_PROGRAMMING

0x02u Self-programming mode (code flash area
selection)

R_RFSP_VALUE_U08_FLPMC_MODE_
DATA_FLASH_PROGRAMMING

0x22u Self-programming mode (data flash area
selection)

• Macro definition for FSASTH (flash memory sequencer status register: upper 8 bits)
The end state of the flash memory sequencer is defined.
[Bit 6] SQEND: End state of the flash memory sequencer. SQEND = 1 indicates that the sequencer has

completed operation. This bit is cleared when the SQST bit is cleared.
Target register definition: R_RFSP_REG_U08_FSASTH

Symbol Name Value Description

R_RFSP_VALUE_U08_MASK1_FSASTH_SQEND 0x40u Value to be compared with the end state of
the flash memory sequencer

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 23 of 101
Sep.25.2023

• Macro definition for FSASTL (flash memory sequencer status register: lower 8 bits)
The value of the error status mask when the operation of the flash memory sequencer is finished is
defined.
[Bit 4] SEQER: Error status of the flash memory sequencer. SEQER =1 indicates a sequencer error.
[Bit 1] WRER: Error status of the write command. WRER = 1 indicates a write error.
[Bit 0] ERER: Error status of the block erase command. ERER = 1 indicates an erasure error.
Target register definition: R_RFSP_REG_U08_FSASTL

Symbol Name Value Description

R_RFSP_VALUE_U08_
MASK1_FSASTL_ERROR_FLAG

0x13u Error status mask value at the end of the
flash memory sequencer

• Macro definitions for FSSET (flash memory sequencer frequency setting register)
The range of operating frequencies of the flash memory sequencer and the correction value (-1) for
conversion of the FSSET register setting are defined.
[Bits 4 to 0] FSET4 to FSET0: The value of (operating frequency – 1) should be specified in these bits.

(Example: For 16 MHz, specify 16 – 1 = 15 (01111b).)
Target register definition: R_RFSP_REG_U08_FSSET

Symbol Name Value Description

R_RFSP_VALUE_U08_FREQUENCY_LOWER_LIMIT 1u Lowest allowable operating frequency
(1 MHz)

R_RFSP_VALUE_U08_FREQUENCY_UPPER_LIMIT 16u Highest allowable operating frequency
(16 MHz)

R_RFSP_VALUE_U08_FREQUENCY_ADJUST 1u Correction value (-1) for conversion of
the FSSET register setting

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 24 of 101
Sep.25.2023

• Macro definitions for FLAPH, FLAPL, FLSEDH, and FLSEDL (flash address pointer registers HIGH and
LOW)

(1) The start and end addresses of erasure (1 block = 1 Kbyte) for the code flash memory are defined.
FLAPH [Bits 4 to 0]: FLAP12 to FLAP8 specify the upper bits of the start address of a code flash memory
area.
FLAPL [Bits 7 to 0]: FLAP7 to FLAP0 specify the lower bits of the start address of a code flash memory
area.
FLSEDH [Bits 4 to 0]: EWA12 to EWA8 specify the upper bits of the end address of a code flash memory
area.
FLSEDL [Bits 7 to 2]: EWA7 to EWA2 specify the lower bits of the end address of a code flash memory
area.
Target register definitions: R_RFSP_REG_U08_FLAPH, R_RFSP_REG_U08_FLAPL,
R_RFSP_REG_U08_FLSEDH, and R_RFSP_REG_U08_FLSEDL

Symbol Name Value Description

R_RFSP_VALUE_U08_
CODE_FLASH_BLOCK_ADDR_LOW

0x00u Mask value for the lower bits of the start
address of a code flash block (8bit)

R_RFSP_VALUE_U08_
CODE_FLASH_BLOCK_ADDR_HIGH

0x1Fu Mask value for the upper bits of the start
address of a code flash block (8bit)

R_RFSP_VALUE_U08_
CODE_FLASH_BLOCK_ADDR_END_LOW

0xFCu Lower address of the end of a code flash
block (8bit)

R_RFSP_VALUE_U08_
CODE_FLASH_BLOCK_ADDR_END_HIGH

0x03u Upper address of the end of a code flash
block (8bit)

R_RFSP_VALUE_U08_
CODE_FLASH_SHIFT_HIGH_ADDR

2u Value for shifting the upper address bits to
calculate the offset of a code flash area
from the block number

(2) The start and end addresses of erasure and blank check (1 block = 256 bytes) for the data flash memory

are defined.
FLAPH [Bits 4 to 0]: FLAP12 to FLAP8 specify the upper bits of the start address of a data flash memory

area.
FLAPL [Bits 7 to 0]: FLAP7 to FLAP0 specify the lower bits of the start address of a data flash memory

area.
FLSEDH [Bits 4 to 0]: EWA12 to EWA8 specify the upper bits of the end address of a data flash memory

area.
FLSEDL [Bits 7 to 0]: EWA7 to EWA2 specify the lower bits of the end address of a data flash memory

area.
Target register definitions: R_RFSP_REG_U08_FLAPH, R_RFSP_REG_U08_FLAPL,
R_RFSP_REG_U08_FLSEDH, and R_RFSP_REG_U08_FLSEDL

Symbol Name Value Description

R_RFSP_VALUE_U08_
DATA_FLASH_BLOCK_ADDR_LOW

0x00u Mask value for the lower bits of the start
address of a data flash block (8bit)

R_RFSP_VALUE_U08_
DATA_FLASH_BLOCK_ADDR_HIGH

0x01u Mask value for the upper bits of the start
address of a data flash block (8bit)

R_RFSP_VALUE_U08_
DATA_FLASH_BLOCK_ADDR_END_LOW

0xFCu Lower address of the end of a data flash
block (8bit)

R_RFSP_VALUE_U08_
DATA_FLASH_BLOCK_ADDR_END_HIGH

0x01u Upper address of the end of a data flash
block (8bit)

R_RFSP_VALUE_U08_
DATA_FLASH_SHIFT_HIGH_ADDR

1u Value for shifting the upper address bits to
calculate the offset of a data flash area
from the block number

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 25 of 101
Sep.25.2023

3.3 Specifications of API Functions
This section describes the detailed specifications of the API functions of Renesas Flash Sample Program
(RFSP) Type 01.

There are some prerequisites for using the API functions of RFSP Type 01 to reprogram the flash memory. If
the prerequisites are not satisfied, execution of the API functions may result in indeterminate operation.

Prerequisites:

• Execute the R_ RFSP _Init() function once before starting the use of RFSP functions.
• The high-speed on-chip oscillator must be active while self-programming is in progress. Execute API

functions of RFSP Type 01 only while the high-speed on-chip oscillator is active.
• To control the data flash memory, execute API functions of RFSP Type 01 while access to the data flash

memory is enabled. For the method of enabling access to the data flash memory, refer to the user's
manual of the target RL78 microcontroller.

The following shows the format for describing the specifications of API functions.

Description format:

Information:

Syntax Syntax for calling this function from a C-language program

Reentrancy Reentrant or Non-reentrant

Parameters
(IN)

Input parameters for this function Parameter [Value, range, meaning of the
parameter, etc.]

Parameters
(IN/OUT)

Input/output parameters for this
function

Parameter [Value, range, meaning of the
parameter, etc.]

Parameters
(OUT)

Output parameters for this
function

Parameter [Value, range, meaning of the
parameter, etc.]

Return Value Type of the return value from this
function
(Enumerated type, pointer type,
etc.)

Enumerator (constant value) of the return
value: Value
[Meaning of the constant: Detailed description]

 Enumerator (constant value) of the return
value: Value
[Meaning of the constant: Detailed description]

Description Overview of function

Preconditions Overview of preconditions

Remarks Special notes on this function

Details of Specifications:

The operation of this function is described.

Note:

Conditions of usage or restrictions on this function are described.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 26 of 101
Sep.25.2023

3.3.1 Specifications of API Functions Used in Common for Flash Memory Control

This section describes the API functions used in common for flash memory control in RFSP Type 01.

3.3.1.1 R_RFSP_Init

Information:

Syntax R_RFSP_FAR_FUNC e_rfsp_ret_t R_RFSP_Init (unit8_t i_u08_cpu_freqency);

Reentrancy Non-reentrant

Parameters
(IN)

unit8_t i_u08_cpu_freqency CPU operating frequency [1 to 16 (MHz)]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfsp_ret_t R_RFSP_ENUM_RET_STS_OK : 0x00
[Normal end: The frequency is within the allowable
range.]

 R_RFSP_ENUM_RET_ERR_PARAMETER : 0x10
[Parameter error: The frequency is outside the
allowable range.]

Description Sets the frequency specified by the parameter in the flash memory sequencer and
initializes the RFSP Type 01.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.

Remarks Execute this function once before starting the use of RFSP functions.

Details of specifications:

• Whether the value of the parameter (CPU operating frequency) is within the range from 1 MHz to 32 MHz
is checked. When the value is within the range, the value of (specified CPU operating frequency – 1) is
set in the variable g_u08_cpu_frequency and a FSSET register.

Notes:
• The high-speed on-chip oscillator needs to be kept active while self-programming is in progress. Execute

this function while the high-speed on-chip oscillator is active.
* RFSP Type 01 does not activate or check the high-speed on-chip oscillator.

• For the parameter (i_u08_cpu_freqency), specify the integer obtained by rounding up the fraction of the
CPU operating frequency that is actually used in the microcontroller.

• (Example: When the CPU operates at 4.5 MHz, specify 5 in this initialization function.)
When the CPU operates at a frequency lower than 4 MHz, a value of 1 MHz, 2 MHz, or 3 MHz can be
used but a non-integer value such as 1.5 MHz cannot be used.
The frequency specified in the parameter (i_u08_cpu_freqency) should be the actual frequency at which
the CPU operates during flash memory reprogramming; it is not necessarily that the frequency of the
high-speed on-chip oscillator should be specified.
 If the specified frequency differs from the actual CPU operating frequency, the subsequent operation

is indeterminate. In this case, even if flash memory reprogramming is completed, the written data
value and data retention period may not be guaranteed.

* For the range of the CPU operating frequency, refer to the user's manual of the target RL78
microcontroller.

• If this function is executed while the sequencer is not in the non-programmable mode, the subsequent
operation is indeterminate.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 27 of 101
Sep.25.2023

3.3.1.2 R_RFSP_SetFlashMemoryMode

Information:

Syntax R_RFSP_FAR_FUNC e_rfsp_ret_t R_RFSP_SetFlashMemoryMode
(e_rfsp_flash_memory_mode_t i_e_pe_mode);

Reentrancy Non-reentrant

Parameters e_rfsp_flash_memory_mode_t Flash self-programming mode

(IN) i_e_pe_mode R_RFSP_ENUM_FLASH_MODE_NONPROGRAMMABLE :
0x08
[Non-programable Mode]
R_RFSP_ENUM_FLASH_MODE_CODE_PROGRAMMING :
0x02
[Self-programming mode: Code Flash area selection]
R_RFSP_ENUM_FLASH_MODE_DATA_PROGRAMMING :
0x22
[Self-programming mode: Data Flash area selection]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfsp_ret_t R_RFSP_ENUM_RET_STS_OK: 0x00 [Normal end]

 R_RFSP_ENUM_RET_ERR_MODE_MISMATCHED : 0x11
[Mode mismatch error]
(The flash memory sequencer is not placed in the specified
mode.)specified mode)

Description Sets the flash self-programming mode specified in the argument to the flash memory
sequencer.

Preconditions Execute this function while command execution is not in progress in the flash memory
sequencer.

Remarks -

Details of Specifications:

• The FLPMC register is set up according to the value of the parameter (i_e_pe_mode) to place the flash
memory sequencer in the specified flash memory control mode.

Notes:

• If the value specified by the parameter is not a flash memory control mode value, the operation is same
as that for the non-programmable mode.

• If this function is executed before the R_RFSP_Init function, the reprogrammed data are not guaranteed
even after the reprogramming processing by the RFSP is completed. To use RFSP Type 01, be sure to
execute the R_RFSP_Init() function once before starting the use of RFSP functions.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 28 of 101
Sep.25.2023

3.3.1.3 R_RFSP_CheckCFDFSeqEndStep1

Information:

Syntax R_RFSP_FAR_FUNC e_rfsp_ret_t R_RFSP_CheckCFDFSeqEndStep1 (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfsp_ret_t R_RFSP_ENUM_RET_STS_OK: 0x00 [Normal end]

 R_RFSP_ENUM_RET_STS_BUSY: 0x01
[Sequencer command execution is in progress.]

Description Checks if the operation of the activated the flash memory sequencer has been
completed.

Preconditions Execute this function after the flash memory sequencer has completed operation.

Remarks Execute this function again if R_RFSP_STS_BUSY is returned.
After confirming that R_RFSP_ENUM_RET_STS_OK has been returned from this
function, execute the R_RFSP_CheckCFDFSeqEndStep2() function.

Details of specifications:

• Whether the operation of the activated flash memory sequencer has been completed (SQEND (bit 6 of
FSASTH) = 1) is checked.

• When the operation of the flash memory sequencer has been completed, the flash memory sequencer
control register is cleared (FSSQ = 0x00) and R_RFSP_ENUM_RET_STS_OK is returned.
If the operation has not been completed, R_RFSP_ENUM_RET_STS_BUSY is returned.

Notes:

• Execute this function again if R_RFSP_STS_BUSY is returned.
• If execution of this function is attempted before the command for activating the flash memory sequencer

is started, this function is not executed correctly.
• After confirming that R_RFSP_ENUM_RET_STS_OK has been returned from this function, execute the

R_RFSP_CheckCFDFSeqEndStep2() function.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 29 of 101
Sep.25.2023

3.3.1.4 R_RFSP_CheckCFDFSeqEndStep2

Information:

Syntax R_RFSP_FAR_FUNC e_rfsp_ret_t R_RFSP_CheckCFDFSeqEndStep2 (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfsp_ret_t R_RFSP_ENUM_RET_STS_OK: 0x00
[Normal end: Sequencer operation has been
completed.]

 R_RFSP_ENUM_RET_STS_BUSY : 0x01
[Sequencer operation is in progress.]

Description Checks if the command operation has been completed after the flash memory
sequencer control register is cleared.

Preconditions Execute this function after confirming that R_RFSP_ENUM_RET_STS_OK has been
returned from the R_RFSP_CheckCFDFSeqEndStep1() function.

Remarks Execute this function again if R_RFSP_STS_BUSY is returned

Details of specifications:

• Whether the command operation in the flash memory sequencer has been completed (SQEND (bit 6 of
FSASTH) = 0) is checked after the flash memory sequencer control register is cleared (FSSQ = 0x00).

• When the command execution in the flash memory sequencer has been completed,
R_RFSP_ENUM_RET_STS_OK is returned.
If the operation has not been completed, R_RFSP_ENUM_RET_STS_BUSY is returned.

Notes:

• Execute this function again if R_RFSP_STS_BUSY is returned.
• If execution of this function is attempted before R_RFSP_ENUM_RET_STS_OK has been confirmed by

the R_RFSP_CheckCFDFSeqEndStep1() function, this function is not executed correctly.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 30 of 101
Sep.25.2023

3.3.1.5 R_RFSP_GetSeqErrorStatus

Information:

Syntax R_RFSP_FAR_FUNC void R_RFSP_GetSeqErrorStatus
(uint8_t __near * onp_u08_error_status);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

uint8_t __near
*onp_u08_error_status

Pointer to the variable for storing the information on
errors

Return Value N/A

Description Acquires the information on errors that occurred during command execution in the flash
memory sequencer.

Preconditions Execute this function after the flash memory sequencer has completed operation.

Remarks -

Details of specifications:

• The FSASTL register (8 bits) is read and the value is stored in the variable pointed to by the parameter
(onp_u08_error_status).

Error information to be acquired (three bits of the FSASTL register: bits 4, 1, and 0):
 Bit 7: (0) Reserved
 Bit 6: (0) Reserved
 Bit 5: (0) Reserved
 Bit 4: Flash memory sequencer error
 Bit 3: (0) Reserved
 Bit 2: (0) Reserved
 Bit 1: Write command error
 Bit 0: Erase command error

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 31 of 101
Sep.25.2023

3.3.1.6 R_RFSP_ForceReset

Information:

Syntax R_RFSP_FAR_FUNC void R_RFSP_ForceReset(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Generates an internal reset of the CPU.

Preconditions -

Remarks -

Details of specifications:

• The illegal instruction code (0xFF) is intentionally executed to generate an internal reset of the CPU.

Notes:

• As an internal reset is generated in the CPU, the code after this function is not executed.
• For the internal reset by the instruction code 0xFF (illegal instruction), refer to the user's manual of the

target RL78 microcontroller.
• A reset is not generated by this function during emulation by an on-chip debugging emulator.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 32 of 101
Sep.25.2023

3.3.2 Specifications of API Functions for Code Flash Memory Control

This section describes the API functions for code flash memory control in RFSP Type 01.

3.3.2.1 R_RFSP_EraseCodeFlashReq

Information:

Syntax R_RFSP_FAR_FUNC void R_RFSP_EraseCodeFlashReq
(uint8_t i_u08_block_number);

Reentrancy Non-reentrant

Parameters
(IN)

uint8_t
i_u08_block_number

Target block number for erasure [0 to 31]
Example: For RL78/G15, 0 to 7 (8 Kbytes max.)

For RL78/G16, 0 to 31 (32 Kbytes max.)

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the flash memory sequencer and begins the erasure of the code flash
memory (one block).

Preconditions Use this function in the self-programming mode (code flash area selection) while
command execution is not in progress in the flash memory sequencer.

Remarks Execute the R_RFSP_CheckCFDFSeqEndStep1() function after this function.

Details of specifications:

• The flash memory sequencer is activated and the address of one block (1 Kbyte) to be erased in the code
flash memory is set in the sequencer.
 The start address and end address of the target block (1 Kbyte) in the code flash memory are

calculated from the block number for erasure specified by the parameter (i_u08_block_number) and
set in the FLAPL and FLAPH registers and the FLSEDL and FLSEDH registers, respectively.

• R_RFSP_VALUE_U08_FSSQ_ERASE = 0x84 is set in the FSSQ register to start the erasure.
(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 4 (0b100), and the other bits are set to 0.)

Notes:

• The lower 5 bits of the 8-bit parameter (i_u08_block_number) are used; the upper 3 bits are not used.
The target block number must not exceed the number of blocks in the code flash memory implemented in
the device. If the specified number is outside the allowable range, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the self-programming mode (code flash area
selection), the subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the flash memory sequencer, the
subsequent operation is indeterminate.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 33 of 101
Sep.25.2023

3.3.2.2 R_RFSP_WriteCodeFlashReq

Information:

Syntax R_RFSP_FAR_FUNC void R_RFSP_WriteCodeFlashReq
(uint16_t i_u16_start_addr,
uint8_t __near * inp_u08_write_data);

Reentrancy Non-reentrant

Parameters
(IN)

uint16_t
i_u16_start_addr

Target start address for programming (4-byte
boundary)
[Address in the code flash area]

 uint8_t __near *
inp_u08_write_data

Pointer to the variable that stores write data
[Size of the write data pointed to is 4 bytes]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the flash memory sequencer and begins the programming of the code flash
memory (4 bytes).

Preconditions Use this function in the self-programming mode (code flash area selection) while
command execution is not in progress in the flash memory sequencer.

Remarks Execute the R_RFSP_CheckCFDFSeqEndStep1() function after this function.

Details of specifications:

• The flash memory sequencer is activated, and the programming start address in the code flash memory
and the write data (4 bytes) are set in the sequencer.
 The target start address in the code flash memory specified by the parameter i_u16_start_addr is set

in the FLAPL and FLAPH registers.
 The 4-byte value in the variable (data to be written to the code flash memory) pointed to by the

parameter inp_u08_write_data is set in the FLWLL, FLWLH, FLWHL and FLWHH registers.
• R_RFSP_VALUE_U08_FSSQ_WRITE = 0x81 is set in the FSSQ register to start programming.

(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

• The 13 bits of the 16-bit parameter i_u16_start_addr are used with the upper 1 bit and lower 2 bits
masked with ‘0’. The start address must be a 4-byte boundary address within the space of the code flash
memory implemented in the device. If the specified address is outside the allowable space or is not a 4-
byte boundary address, the subsequent operation is indeterminate.

• The parameter inp_u08_write_data is a pointer to the 8-bit input data. To repeat the function processing
with this pointer updated, note that the pointer needs to be updated in units of 4 bytes (in units of
programming of the code flash memory).

• If this function is executed while the sequencer is not in the self-programming mode, the subsequent
operation is indeterminate.

• If this function is executed while command execution is in progress in the flash memory sequencer, the
subsequent operation is indeterminate.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 34 of 101
Sep.25.2023

3.3.3 Specifications of API Functions for Data Flash Memory Control

This section describes the API functions for code flash memory control in RFSP Type 01.

3.3.3.1 R_RFSP_EraseDataFlashReq

Information:

Syntax R_RFSP_FAR_FUNC void R_RFSP_EraseDataFlashReq
(uint8_t i_u08_block_number);

Reentrancy Non-reentrant

Parameters
(IN)

uint8_t
i_u08_block_number

Target block number for erasure [0 to 1]
Example:
For RL78/G15, RL78/G16, 0 to 1 (1 Kbyte max.)

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the flash memory sequencer and begins the erasure of the data flash memory
(one block).

Preconditions Use this function in the self-programming mode (data flash area selection) while
command execution is not in progress in the flash memory sequencer.

Remarks Execute the R_RFSP_CheckCFDFSeqEndStep1() function after this function.

Details of specifications:

• The flash memory sequencer is activated and the address of one block (512 bytes) to be erased in the
data flash memory is set in the sequencer.
 The start address and end address of the target block (512 bytes) in the data flash memory are

calculated from the block number for erasure specified by the parameter (i_u08_block_number) and
set in the FLAPL and FLAPH registers and the FLSEDL and FLSEDH registers, respectively.

• R_RFSP_VALUE_U08_FSSQ_ERASE = 0x84 is set in the FSSQ register to start the erasure.
(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 4 (0b100), and the other bits are set to 0.)

Notes:

• The lower 1 bit of the 8-bit parameter (i_u08_block_number) are used; the upper 7 bits are not used. The
target block number must not exceed the number of blocks in the data flash memory implemented in the
device. If the specified number is outside the allowable range, the subsequent operation is indeterminate.

• If this function is executed while the sequencer is not in the self-programming mode (data flash area
selection), the subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the flash memory sequencer, the
subsequent operation is indeterminate.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 35 of 101
Sep.25.2023

3.3.3.2 R_RFSP_WriteDataFlashReq

Information:

Syntax R_RFSP_FAR_FUNC void R_RFSP_WriteDataFlashReq
(uint16_t i_u16_start_addr,
uint8_t __near * inp_u08_write_data);

Reentrancy Non-reentrant

Parameters
(IN)

uint16_t
i_u16_start_addr

Target start address for programming (4-byte
boundary) which considers that the programming
address 0x9000 is base address "0x0000”.
[Address in the data flash area: 0x0000-0x03FC]

 uint8_t __near *
inp_u08_write_data

Pointer to the variable that stores write data
[Size of the write data pointed to is 4 bytes]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the flash memory sequencer and begins the programming of the data flash
memory (4 bytes).

Preconditions Use this function in the self-programming mode (data flash area selection) while
command execution is not in progress in the flash memory sequencer.

Remarks Execute the R_RFSP_CheckCFDFSeqEndStep1() function after this function.

Details of specifications:

• The flash memory sequencer is activated, and the programming start address in the data flash memory
and the write data (4 bytes) are set in the sequencer.
 The target start address in the code flash memory specified by the parameter i_u16_start_addr is set

in the FLAPL and FLAPH registers.
 The 4-byte value in the variable (data to be written to the data flash memory) pointed to by the

parameter inp_u08_write_data is set in the FLWLL, FLWLH, FLWHL and FLWHH registers.
• R_RFSP_VALUE_U08_FSSQ_WRITE = 0x81 is set in the FSSQ register to start programming.

(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

• The 8 bits of the 16-bit parameter i_u16_start_addr are used with the upper 6 bit and lower 2 bits masked
with ‘0’. The start address must be a 4-byte boundary address within the space of the data flash memory
implemented in the device. If the specified address is outside the allowable space or is not a 4-byte
boundary address, the subsequent operation is indeterminate.

• The parameter inp_u08_write_data is a pointer to the 8-bit input data. To repeat the function processing
with this pointer updated, note that the pointer needs to be updated in units of 4 bytes (in units of
programming of the data flash memory).

• If this function is executed while the sequencer is not in the self-programming mode, the subsequent
operation is indeterminate.

• If this function is executed while command execution is in progress in the flash memory sequencer, the
subsequent operation is indeterminate.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 36 of 101
Sep.25.2023

3.3.4 Specifications of Hook Functions

This section describes the hook functions of RFSP Type 01.

3.3.4.1 R_RFSP_HOOK_EnterCriticalSection

Information:

Syntax R_RFSP_FAR_FUNC void R_RFSP_HOOK_EnterCriticalSection(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Executes the instruction for disabling interrupts.

Preconditions Execute this function before the processing that should be executed with interrupts
disabled.

Remarks -

Details of specifications:

• The interrupt disabled or enabled state is acquired and saved in the variable sg_u08_psw_ie_state that is
prepared to store the value of the interrupt enable flag (IE) of the PSW.

• The macro instruction for disabling interrupts (R_RFSP_DISABLE_INTERRUPT) is executed.

Note:

• Execute this function before the processing that should be executed with interrupts disabled (critical
section), and execute the R_RFSP_HOOK_ExitCriticalSection function after the critical section ends.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 37 of 101
Sep.25.2023

3.3.4.2 R_RFSP_HOOK_ExitCriticalSection

Information:

Syntax R_RFSP_FAR_FUNC void R_RFSP_HOOK_ExitCriticalSection(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Executes the instruction for enabling interrupts.

Preconditions Execute this function to enable interrupts after the processing executed with interrupts
disabled.

Remarks -

Details of specifications:

• According to the value of the variable sg_u08_psw_ie_state, which saves the interrupt enable flag (IE) of
the PSW, the macro instruction for enabling interrupts is executed.
Value of sg_u08_psw_ie_state:
 0x00 (bit 7 = 0: interrupts are disabled): Nothing is done.
 0x80 (bit 7 = 1: interrupts are enabled): The macro instruction for enabling interrupts

(R_RFSP_ENABLE_INTERRUPT) is executed and the interrupt enabled state (EI) is restored.

Note:

• Execute this function after the R_RFSP_HOOK_EnterCriticalSection is executed and the processing
executed with interrupts disabled (critical section) ends.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 38 of 101
Sep.25.2023

4 Flash Memory Sequencer Operation

Before operating the flash memory sequencer of the RL78/G15 or RL78/G16, the operating frequency of the
CPU must be set to the flash memory sequencer frequency setting register.

4.1 Initial Setting of Operating Frequency
The value (g_u08_cpu_frequency: integer value – 1) of the CPU operating frequency (1 MHz to 32 MHz)
specified by the arguments of R_RFSP_Init function is set in the FSET bits (bits 4 o 0) of the flash memory
sequencer frequency setting register (FSSET).

Specify the integer value obtained by rounding up the fraction part of the CPU operating frequency.
(Example: When the CPU operating frequency is 4.5 MHz, specify 5 in the initialization function.)

When the CPU operating frequency is lower than 4 MHz, a frequency of 1 MHz, 2 MHz, or 3 MHz can be
specified. A non-integer frequency such as 1.5 MHz cannot be used.

Target functions of this operation: R_RFSP_Init, R_RFSP_SetFlashMemoryMode

Operation Procedure:

・ To write to the flash memory sequencer frequency setting register (FSSET), set '0' to [bit7-5] and the CPU
operating frequency [1 to 16 (MHz)] value [integer value -1] to [bit4-0] corresponding to FSET.

Note: Before operating (such as reprogramming) the code flash memory or data flash memory by using the

flash memory sequencer, specify the CPU operating frequency in the FSET bits of the FSSET
register.
Note that the reprogramming operation is indeterminate and written data are not guaranteed if
reprogramming is attempted before the CPU operating frequency is specified correctly. (Even if
expected data are read from the flash memory immediately after reprogramming, the data retention
period cannot be guaranteed.)

FSSET register (After reset : 0x00):

7 6 5 4 3 2 1 0

0 0 0 FSET4 FSET3 FSET2 FSET1 FSET0

R R R R/W R/W R/W R/W R/W

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 39 of 101
Sep.25.2023

4.2 Self-Programming Mode and Target Area Setting
By setting RL78/G15 and RL78/G16 to self-programming mode, programming to each flash area (a code
flash memory or a data flash memory) is possible.

4.2.1 Flash Memory Self-Programming Mode Setting

The self-programming mode of flash memory is set by the flash programming mode control register (FLPMC register).

FLPMC register (After reset : 0x08):

7 6 5 4 3 2 1 0
0 0 SELDFL 0 FWEDIS 0 FLSPM 0

R R R/W R R/W R R/W R

- SELDFL [bit5] Selects the flash programming area.

SELDFL = 0 (after a reset) / 1 : Selects the cod e flash area / Selects the data flash area

- FWEDIS [bit3] Controls over enabling or disabling erasure and programming of the flash memory.

FWEDIS = 0 / 1 (after a reset) : [Write/Erase] Enable / [Write/Erase] Disable

- FLSPM [bit1] Selects flash programming mode.

FLSPM = 0 (after a reset) / 1 : Read mode (normal mode) / Flash self-programming mode

Operation Procedure:

- Self-programming mode (code flash area selection) state setting

Set the FLPMC register to 0x02

- Self-programming mode (data flash area selection) state setting

Set the FLPMC register to 0x22

- Flash memory non-programable state setting

Set the FLPMC register to 0x08

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 40 of 101
Sep.25.2023

4.3 Flash Memory Sequencer

4.3.1 Outline

In order to reprogram the code flash area or data flash area for RL78/G15 or RL78/G16, the flash memory
sequencer dedicated command needs to be executed.

4.3.2 Flash Memory Sequencer Commands

In order to reprogram the code flash area or data flash area of RL78/G15 or RL78/G16, the 1-word [4-byte]
writing command and the block erasure command are prepared. To issue a command, specify the desired
command number in the SQMD2 to SQMD0 bits (bits 2 to 0) of the flash memory sequencer control register
(FSSQ) and set the SQST bit (bit 7) to 1. Be sure to execute the command after understanding it by referring
to 1.5 Points for Caution

FSSQ register (After reset : 0x00):

7 6 5 4 3 2 1 0
SQST 0 0 0 0 SQMD2 SQMD1 SQMD0

R/W R R R R R/W R/W R/W

Table 4-1 shows the dedicated commands for flash memory sequencer.

Table 4-1 Dedicated Commands for Flash Memory Sequencer

SQMD2-0 Function of Dedicated Command

Description

0h Initial value (command unselected)
1h write

The data specified in the FLWHH, FLWHL, FLWLH, and FLWLL registers are written to
the flash memory address specified by the FLAPH and FLAPL registers.
- Programming unit (code flash area):

1 word (4byte) [When SELDFL bit is set to 0]
- Programming unit (data flash area):

1 word (4byte) [When setting SELDFL bit to 1]
4h Block erase

Data are erased from the blocks between the start address specified by the FLAPH and
FLAPL registers and the end address specified by the FLSEDH and FLSEDL registers.

Other
values

Setting prohibited

Note) An address in case the data flash area is specified by the writing command or the block erasure
command specifies the relative address which set the top address (0x9000) to 0x0000.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 41 of 101
Sep.25.2023

FLAPH/FLAPL register (flash address pointer registers)

- Target MCU:RL78/G15

FLAPH register (After reset: 0x00):

7 6 5 4 3 2 1 0
0 0 0 FLAP 12 FLAP 11 FLAP 10 FLAP 9 FLAP 8

R R R R/W R/W R/W R/W R/W

FLAPL register (After reset: 0x00):

7 6 5 4 3 2 1 0
FLAP 7 FLAP 6 FLAP 5 FLAP 4 FLAP 3 FLAP 2 FLAP 1 FLAP 0

R/W R/W R/W R/W R/W R/W R/W R/W

- Target MCU:RL78/G16

FLAPH register (After reset: 0x00):

7 6 5 4 3 2 1 0
0 FLAP 14 FLAP 13 FLAP 12 FLAP 11 FLAP 10 FLAP 9 FLAP 8

R R/W R/W R/W R/W R/W R/W R/W

FLAPL register (After reset: 0x00):

7 6 5 4 3 2 1 0
FLAP 7 FLAP 6 FLAP 5 FLAP 4 FLAP 3 FLAP 2 FLAP 1 FLAP 0

R/W R/W R/W R/W R/W R/W R/W R/W

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 42 of 101
Sep.25.2023

FLSEDH/FLSEDL registers (flash end address pointer registers)

- Target MCU:RL78/G15

FLSEDH register (After reset: 0x00):

7 6 5 4 3 2 1 0
0 0 0 EWA 12 EWA 11 EWA 10 EWA 9 EWA 8

R R R R/W R/W R/W R/W R/W

FLSEDL register (After reset: 0x0000):

7 6 5 4 3 2 1 0
EWA 7 EWA 6 EWA 5 EWA 4 EWA 3 EWA 2 0 0

R/W R/W R/W R/W R/W R/W R R

- Target MCU:RL78/G16

FLSEDH register (After reset: 0x00):

7 6 5 4 3 2 1 0
0 EWA14 EWA13 EWA 12 EWA 11 EWA 10 EWA 9 EWA 8

R R/W R/W R/W R/W R/W R/W R/W

FLSEDL register (After reset: 0x0000):

7 6 5 4 3 2 1 0
EWA 7 EWA 6 EWA 5 EWA 4 EWA 3 EWA 2 0 0

R/W R/W R/W R/W R/W R/W R R

FLWHH/ FLWHL/FLWLH/FLWLL registers (flash write buffer registers)

FLWHH register (After reset: 0x00):

15 14 13 12 11 10 9 8

FLW 31 FLW 30 FLW 29 FLW 28 FLW 27 FLW 26 FLW 25 FLW 24

R/W R/W R/W R/W R/W R/W R/W R/W

FLWHL register (After reset: 0x00):

7 6 5 4 3 2 1 0
FLW 23 FLW 22 FLW 21 FLW 20 FLW 19 FLW 18 FLW 17 FLW 16

R/W R/W R/W R/W R/W R/W R/W R/W

FLWLH register (After reset: 0x00):

15 14 13 12 11 10 9 8
FLW 15 FLW 14 FLW 13 FLW 12 FLW 11 FLW 10 FLW 9 FLW 8

R/W R/W R/W R/W R/W R/W R/W R/W

FLWLL register (After reset: 0x00):

7 6 5 4 3 2 1 0
FLW 7 FLW 6 FLW 5 FLW 4 FLW 3 FLW 2 FLW 1 FLW 0

R/W R/W R/W R/W R/W R/W R/W R/W

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 43 of 101
Sep.25.2023

4.3.2.1 Reprogramming the Code Flash Area

Code flash area reprogramming sets the flash programming mode to self-programming mode (code flash
area selection) and then executes flash memory sequencer commands. The specified address and data
required for each command execution must be set to the appropriate register in advance, and then the
command must be started.

Units of erasure and writing for reprogramming of the code flash area:

 Block erase unit: 1 Kbytes
 Write unit: 1 word (4 bytes)

Target functions of this operation: R_RFSP_EraseCodeFlashReq, R_RFSP_WriteCodeFlashReq

Operation Procedure:
Block erase and write commands for the code flash memory can be used.

• Set the target area to code flash memory and shift to self-programming mode. For the mode transition
procedure, see section 4.2.1 Flash Memory Self-Programming Mode Setting.
Set the FLPMC register to 0x02

• Specify the necessary data in the respective registers before executing a command.
(1) Block erase

FLAPH and FLAPL registers: Start block address of the code flash memory (Example: 0x0800)
FLSEDH and FLSEDL registers: End block address of the code flash memory(Example: 0x0BFF)

(2) Write: This command is executed in units of one word (4 bytes); specify a multiple of 4 as an address 
that is, set bits 1 and 0 to 0.
FLAPH and FLAPL registers: Start address of the target code flash memory area (Example: 0x0800)
FLSEDH and FLSEDL registers: Set to all 0s or specify nothing. (Example: 0x000000)
FLWHH, FLWHL, FLWLH and FLWLL registers: Specify the data to be written (1 word (4 bytes)).

• Specify the desired command number in the SQMD2 to SQMD0 bits (bits 2 to 0) of the FSSQ register
and set the SQST bit (bit 7) to 1.
Block erase: 0x84 Write: 0x81
Note) Because CPU stops while reprogramming the code flash memory by self-programming, the

user program is not executed. Therefore, be careful.
• Wait until command execution is completed in the flash memory sequencer. For the procedure for waiting

for the completion of command execution, see section 4.3.3 Procedures for Judging the End of Command
Execution in the Flash Memory Sequencer.

• Processing after command execution
To continue command processing:
Programming command or block erase command for code flash area reprogramming can be executed
with the data in the registers modified while the sequencer is set in the self-programming mode(code
flash area selection).
To complete command processing:
Transitions to a flash memory non-programable state. For the mode transition procedure, see section
4.2.1 Flash Memory Self-Programming Mode Setting.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 44 of 101
Sep.25.2023

4.3.2.2 Reprogramming the Data Flash Area

Data flash area reprogramming sets the flash programming mode to self-programming mode (data flash area
selection) and then executes flash memory sequencer commands. The specified address and data required
for each command execution must be set to the appropriate register in advance, and then the command
must be started.

Units of erasure and writing for reprogramming of the data flash area:

 Block erase unit: 512 bytes
 Write unit: 1 word (4 bytes)

Target functions of this operation: R_RFSP_EraseDataFlashReq , R_RFSP_WriteDataFlashReq

Operation Procedure:
Block erase and write commands for the data flash memory can be used.

• Set the target area to data flash memory and shift to self-programming mode. For the mode transition
procedure, see section 4.2.1 Flash Memory Self-Programming Mode Setting.
Set the FLPMC register to 0x22

• Specify the necessary data in the respective registers before executing a command.
(1) Block erase

FLAPH and FLAPL registers: Start block address of the data flash memory
(Example: In the case where 0x9000 is specified, because 0x9000 is a base address, set the relative
value 0x0000.)
FLSEDH and FLSEDL registers: End block address of the data flash memory

• (Example: In the case where 0x91FF is specified, because 0x9000 is a base address, set the relative
value 0x01FF.)

(2) Write: This command is executed in units of one word (4 bytes); specify a multiple of 4 as an address 
that is, set bits 1 and 0 to 0.
FLAPH and FLAPL registers: Start address of the target data flash memory
(Example: In the case where 0x9000 is specified, because 0x9000 is a base address, set the relative
value 0x0000.)
FLSEDH and FLSEDL registers: Set to all 0s or specify nothing. (Example: 0x000000)
FLWHH, FLWHL, FLWLH and FLWLL registers: Specify the data to be written (1 word (4 bytes))

• Specify the desired command number in the SQMD2 to SQMD0 bits (bits 2 to 0) of the FSSQ register
and set the SQST bit (bit 7) to 1.
Block erase: 0x84 Write: 0x81
Note) Because CPU stops while reprogramming the data flash memory by self-programming, the

user program is not executed. Therefore, be careful.
• Wait until command execution is completed in the flash memory sequencer. For the procedure for waiting

for the completion of command execution, see section 4.3.3 Procedures for Judging the End of Command
Execution in the Flash Memory Sequencer.

• Processing after command execution
To continue command processing:
Programming command or block erase command for data flash area reprogramming can be executed
with the data in the registers modified while the sequencer is set in the self-programming mode(data flash
area selection).
To complete command processing:
Transitions to a flash memory non-programable state. For the mode transition procedure, see section
4.2.1 Flash Memory Self-Programming Mode Setting.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 45 of 101
Sep.25.2023

4.3.3 Procedures for Judging the End of Command Execution in the Flash Memory Sequencer

To terminate command execution in the flash memory sequencer started in the RL78/G15 or RL78/G16, a
specific procedure for judging the end of command execution should be used.

Read the SQEND bit (bit 6) of the FSASTH register and confirm that it is set to 1 to judge the end of
command execution in flash memory sequencer. After this judgement, read the error bits (WRER (bit 1), and
ERER (bit 0)) of the FSASTL register to check whether an error has occurred in the execution of the
respective commands.

FSASTH register (After reset: 0x00):

7 6 5 4 3 2 1 0
0 SQEND 0 0 0 0 0 0

R R R R R R R R

FSASTL register (After reset: 0x00):

7 6 5 4 3 2 1 0
0 0 0 SEQER 0 0 WRER ERER

R R R R R R R R

Judgment Procedure:

(1) After starting the execution of a command in the code/data flash area, wait until the SQEND bit (bit 6) of
the FSASTH register is automatically set.

(2) After confirming that the SQEND bit (bit 6) has been set, clear the SQST bit (bit 7) of the FSSQ register.
(3) Wait until the SQEND bit (bit 6) of the FSASTH register is automatically cleared; the procedure ends

when the bit is cleared.

Figure 4-1 shows the flow of judging the end of command execution in the flash memory sequencer.

Figure 4-1 Flow of Judging the End of Command Execution in the Flash Memory Sequencer

 • It is a precondition that SQMD2-0 and the SQST bit of FSSQ
register were set, and the programming command or the block
erasure command was executed.

FSASTH SQEND = 1?
 • Judge whether command execution processing has finished.

• FSSQ register = 0x00 • Clear the flash memory sequencer command.

FSASTH SQEND = 0?
 • Judge whether the command has completed

• Check the SEQER, WRER and
ERER of the FSASTL register.

 • Check whether the error occurred

After executing
the command

completion

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 46 of 101
Sep.25.2023

4.4 Example of Command Execution for Reprogramming of the Flash Memory Areas

4.4.1 Example of Command Execution for Reprogramming of the Code/Data Flash memory Areas

Figure 4-2 shows the flow of command execution for reprogramming of code/data flash memory areas.

Figure 4-2 Flow of Command Execution for Reprogramming of Code/Data Flash Memory Areas

• The CPU operating frequency -1
is set to FSSET register

 4.1Initial Setting of Operating Frequency

• Set Self-programming mode and
target area

 4.2.1 Flash Memory Self-Programming Mode Setting

• Set the parameters necessary for
the erase/write command to the
target register

 4.3.2.1Reprogramming the Code Flash Area
4.3.2.2Reprogramming the Data Flash Area

• Execute flash memory sequencer
commands

 4.3.2Flash Memory Sequencer Command

• End processing of flash memory
sequencer commands

 4.3.3Procedures for Judging the End of Command Execution in the
Flash Memory Sequencer

Command continuation?

Yes No

• Shift to non-programable mode

 4.2.1 Flash Memory Self-Programming Mode Setting

Start

User processing

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 47 of 101
Sep.25.2023

5 Sample Programs

5.1 File Structure

5.1.1 Folder configuration

This section describes the sample programs provided together with RFSP Type 01. This section explains the
sample program for RL78/G15 as an example. When using other products of RL78/G15, replace "RL78/G15" with the
name of target product.

- Replace the folder name for the RL78/G15 sample ("RL78_G15") with the folder name for the target product.
The folder name in the case of using RL78/G16: "RL78_G16"

Figure 5-1 shows the structure of sample program folders.

Figure 5-1 Structure of Sample Program Folders

RFSP Type 01
source program files

RFSP Type 01
userown files

Sample programs

: Target folder

RFSP Type 01
include files

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 48 of 101
Sep.25.2023

5.1.2 List of Files

5.1.2.1 List of Source Files

Table 5-1 shows the program source file in the “sample\common\source\common\” folder.

Table 5-1 Program Source File in the “sample\common\source\common\” Folder

No. Source File Name Description
1 sample_control_common.c This file contains the functions used in common for

controlling the flash memory.

Table 5-2 shows the program source file in the “sample\common\source\dataflash\” folder.

Table 5-2 Program Source File in the “sample\common\source\dataflash\” Folder

No. Source File Name Description
1 sample_control_data_flash.c This file contains the functions for controlling the data

flash memory.

Table 5-3 shows the program source file in the “sample\common\source\codeflash\” folder.

Table 5-3 Program Source File in the “sample\common\source\codeflash\” Folder

No. Source File Name Description

1 sample_control_code_flash.c This file contains the functions for controlling the code
flash memory.

Table 5-4 shows the program source files of the main processing for controlling the code flash memory (CF),
data flash memory (DF) in the “sample\RL78_G15\” folder.

- Main processing for controlling the code flash memory (CF) :
 "sample\RL78_G15\CF\[compiler name]\source\" folder

- main processing for controlling the data flash memory (DF) :

 "sample\RL78_G15\DF\[compiler name]\source\" folder

Table 5-4 Program Source Files of the Main Processing

No. Source File Name Description

1 main.c (for code flash) Sample file of the main processing functions for controlling
the code flash memory

2 main.c (for data flash) Sample file of the main processing functions for controlling
the data flash memory

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 49 of 101
Sep.25.2023

5.1.2.2 List of Header File

Table 5-5 shows the program header files in the "sample\common\include\" folder.

Table 5-5 Program Header Files in the "sample\common\include\" Folder

No Header file name Summary

1 sample_control_common.h This file defines the prototype declarations of the sample
functions used in common for controlling the flash memory.

2 sample_control_data_flash.h This file defines the prototype declarations of the sample
functions for controlling the data flash memory.

3 sample_control_code_flash.h This file defines the prototype declarations of the sample
functions for controlling the code flash memory.

4 sample_defines.h This file defines the macros of the sample functions for
controlling the flash memory.

5 sample_types.h This file defines the enumerated-type return values for the
sample programs.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 50 of 101
Sep.25.2023

5.2 Data Type Definitions

5.2.1 Enumerations

 e_sample_ret (enumerated-type variable name: e_sample_ret_t)
Table 5-6 shows the results (normal end or error) of execution in the flash memory sequencer and
the status after execution.

Table 5-6 Results (Normal End or Error) of Execution in the Flash Memory Sequencer and Status
after Execution

Symbol Name Value Description

SAMPLE_ENUM_RET_STS_OK 0x00u Status (Normal end)

SAMPLE_ENUM_RET_ERR_PARAMETER 0x10u Parameter error

SAMPLE_ENUM_RET_ERR_CONFIGURATION 0x11u Configuration error

SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED 0x12u Mode mismatch error

SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA 0x13u Written data comparison error

SAMPLE_ENUM_RET_ERR_CFDF_SEQUENCER 0x20u Flash memory sequencer error

SAMPLE_ENUM_RET_ERR_ACT_ERASE 0x22u Erase operation error

SAMPLE_ENUM_RET_ERR_ACT_WRITE 0x23u Write operation error

SAMPLE_ENUM_RET_ERR_CMD_ERASE 0x30u Erase command error

SAMPLE_ENUM_RET_ERR_CMD_WRITE 0x31u Write command error

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 51 of 101
Sep.25.2023

5.3 Sample Program Functions

Table 5-7 Shows the list of sample program functions.

Table 5-7 List of Sample Program Functions

 API Name Outline
1 main Function

(for code flash)
Executes the main processing of the sample program for
controlling the reprogramming of the code flash memory.

2 Sample_CodeFlashControl Function Executes the processing for reprogramming the code flash
memory.

3 main Function
(for data flash)

Executes the main processing of the sample program for
controlling the reprogramming of the data flash memory.

4 Sample_DataFlashControl Function Executes the processing for reprogramming the data flash
memory.

5 Sample_CheckCFDFSeqEnd Function Waits for the completion of command execution in the flash
memory sequencer.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 52 of 101
Sep.25.2023

5.3.1 Sample Program for Controlling the Reprogramming of the Code Flash Memory

The sample program for controlling the reprogramming of the code flash memory in RFSP Type 01 erases
block 3 (0x0C00) in the code flash area and writes 16 words (64 bytes) data from the beginning of the block.

Operating conditions:

• CPU operating frequency: 16 MHz (The high-speed on-chip oscillator clock is used for the main system
clock.)

• Code flash memory address for erasure and programming: 0x0C00
• Block number for erasure: 0x03
• Size of write data: 16 words (64 bytes)

Figure 5-2 shows a flowchart of the main processing of the sample program for controlling the code flash
memory reprogramming in RFSP Type 01.

5.3.1.1 main Function

Figure 5-2 Flowchart of the Main Processing of the Sample Program for Controlling the Code Flash
Memory Reprogramming

• Set the write data in the buffer.

 Is HOCO activated?

Yes No
• Return value ← configuration error

 • Initialize RFSP Type 01 (specifies the operating frequency).

Is the frequency within

the range?

 • CPU operating frequency range of the RL78/G15 and RL78/G16:
1 MHz to 16 MHz
• Within range: Returns "normal end" (0x00).
Out of range: Returns "parameter error" (0x10). Yes No

• Return value ← parameter error

 • Processing for controlling the code flash memory reprogramming

• Return value ← Value returned from the function

main

Return

R_RFSP_Init

Sample_
CodeFlashControl

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 53 of 101
Sep.25.2023

5.3.1.2 Sample_CodeFlashControl Function

・The sequencer is set self-programming mode (code flash area selection) and execute block erasure.

Figure 5-3 Flowchart of Sample Processing for Controlling Code Flash Memory Reprogramming (1/3)

• Initialize the return value
(STS_OK).
• Initialize the error flag (= False).
• Set the reprogramming address in
the variable.

 • Clears interrupt sources and masks interrupts.

 • Set the self-programming mode.
Specifies the area to programming (code flash area).

Normal end? • Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

Yes No
• Error flag ← True
• Return value ← Mode mismatch

Error flag=False?

No Yes
 • Erasure processing

Normal end?

Yes No
• Error flag ← True
• Return value ← Erase error

Sample_
CodeFlashControl

R_RFSP_
SetFlashMemoryMode

Sample_
CheckCFDFSeqEnd

R_RFSP_
EraseCodeFlashReq

1

R_RFSP_
HOOK_EnterCriticalSection

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 54 of 101
Sep.25.2023

• Programming is executed.

Figure 5-4 Flowchart of Sample Processing for Controlling Code Flash Memory Reprogramming (2/3)

Error flag=False?

No Yes
• Initialize the counter (= 0). • Programming processing

Counter value < Length?

Yes No
 • Processing for controlling the code flash memory
 reprogramming

Normal end?

Yes No
• Increment the programming
address (+4).
• Increment the counter (+4).

• Error flag ← True
• Return value ← Write error

 .

1

2

R_RFSP_
WriteCodeFlashReq

Sample_

CheckCFDFSeqEnd

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 55 of 101
Sep.25.2023

• The sequencer in placed in the non-programmable mode and the verification check is executed through
reading by the CPU.

Figure 5-5 Flowchart of Sample Processing for Controlling Code Flash Memory Reprogramming (3/3)

 • Specifies the non-programmable mode.

Normal end? • Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

Yes No
• Error flag ← True
• Return value ← Mode mismatch

 • Release the interrupt mask.

Error flag = False?

No Yes
• Initialize the counter (= 0).

 • Verification check through reading by the CPU

Counter value < Length?

Yes No
• Read the written data.

Read data match?

Yes No
• Increment the read address (+1).
• Increment the counter (+1).

• Error flag ← True
• Return value
← Data comparison error

R_RFSP_
SetFlashMemoryMode

2

R_RFSP_
HOOK_ExitCriticalSection

Return

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 56 of 101
Sep.25.2023

5.3.2 Sample Program for Controlling the Reprogramming of the Data Flash Memory

The sample program for controlling the reprogramming of the data flash memory in RFSP Type 01 erases
block 0 (0x9000) in the code flash area and writes 16 words (64 bytes) data from the beginning of the block.

Operating conditions:

• CPU operating frequency: 16 MHz (The high-speed on-chip oscillator clock is used for the main system
clock.)

• Data flash memory address for erasure and programming: 0x9000
• Block number for erasure: 0x00
• Size of write data: 16 words (64 bytes)

Figure 5-6 shows a flowchart of the main processing of the sample program for controlling the data flash
memory reprogramming in RFSP Type 01.

5.3.2.1 main Function

Figure 5-6 Main Processing Execution Flow of Data Flash Program Control Sample

• Set the write data in the buffer.

Is HOCO activated?

Yes No
• Return value ← configuration error

 • Initialize RFSP Type 01 (specifies the operating frequency).

 Is the frequency within

the range?

 • CPU operating frequency range of the RL78/G15 and RL78/G16:
1 MHz to 16 MHz
• Within range: Returns "normal end" (0x00).
Out of range: Returns "parameter error" (0x10). Yes No

• Return value ← parameter error

 • Processing for controlling the data flash memory reprogramming

• Return value ← Value returned from the function

main

Return

R_RFSP_Init

Sample_
DataFlashControl

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 57 of 101
Sep.25.2023

5.3.2.2 Sample_DataFlashControl Function

・The sequencer is set self-programming mode (data flash area selection) and execute block erasure.

Figure 5-7 Flowchart of Sample Processing for Controlling Data Flash Memory Reprogramming (1/3)

• Initialize the return value
(STS_OK).
• Initialize the error flag (= False).
• Set the reprogramming address in
the variable.

 • Clears interrupt sources and masks interrupts.

 • Set the self-programming mode.
Specifies the area to programming (data flash area).

Normal end? • Correctly placed in the mode: 0x00

Mismatch with the specified mode: 0x11
Yes No
• Error flag ← True
• Return value ← Mode mismatch

Error flag=False?

No Yes
 • Erasure processing

Normal end?

Yes No
• Error flag ← True
• Return value ← Erase error r

Sample_
DataFlashControl

Sample_
CheckCFDFSeqEnd

1

R_RFSP_
HOOK_EnterCriticalSection

R_RFSP_
SetFlashMemoryMode

R_RFSP_
EraseDataFlashReq

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 58 of 101
Sep.25.2023

• Programming is executed.

Figure 5-8 Flowchart of Sample Processing for Controlling Data Flash Memory Reprogramming (2/3)

Error flag=False?

No Yes
• Initialize the counter (= 0). • Programming processing

Counter value < Length?

Yes No
 • Processing for controlling the data flash memory
 reprogramming

 Normal end?

Yes No
• Increment the programming
address (+4).
• Increment the counter (+4).

• Error flag ← True
• Return value ← Write error

1

2

Sample_
CheckCFDFSeqEnd

R_RFSP_
WriteDataFlashReq

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 59 of 101
Sep.25.2023

• The sequencer in placed in the non-programmable mode and the verification check is executed through
reading by the CPU.

Figure 5-9 Flowchart of Sample Processing for Controlling Data Flash Memory Reprogramming (3/3)

 • Specifies the non-programmable mode.

 Normal end? • Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

Yes No
• Error flag ← True
• Return value ← Mode mismatch

 • Release the interrupt mask.

Error flag = False?

No Yes
• Initialize the counter (= 0).

 • Verification check through reading by the CPU

Counter value < Length?

Yes No
• Read the written data.

Read data match?

Yes No
• Increment the read address (+1).
• Increment the counter (+1).

• Error flag ← True
• Return value
← Data comparison error

R_RFSP_
SetFlashMemoryMode

2

Return

R_RFSP_
HOOK_ExitCriticalSection

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 60 of 101
Sep.25.2023

5.3.3 Sample Program Used in Common for Controlling the Flash Memory

5.3.3.1 Sample_CheckCFDFSeqEnd Function

• The end of the operation of the activated flash memory sequencer is confirmed and the execution result is
returned.

Figure 5-10 Flowchart of Sample_CheckCFDFSeqEnd Function

• Initialize the return value
(STS_OK).

Is the sequencer busy?

Yes

No

Sequencer BUSY?

Yes No

Sequencer error?

Yes No
Return Value <-

ERR_CFDF_SEQUENCER

Sample_
CheckCFDFSeqEnd

R_RFSP_Check
CFDFSeqEndStep1

R_RFSP_Check
CFDFSeqEndStep2

R_RFSP
GetSeqErrorStatus

Return

Erase error?

Return value ← ERR_ACT_ERASE

Yes No

Write error?

Yes No

Return value ← ERR_ACT_WRITE Return value ← STS_OK

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 61 of 101
Sep.25.2023

5.4 Specifications of Sample Program Functions
This section describes the specifications of the functions in the sample programs for RFSP Type 01.

The sample programs for RFSP Type 01 are examples of basic processing for reprogramming the code flash
area, and data flash area. The functions in the sample programs can be used as reference for developing an
application program that reprograms these areas.

Please be sure to thoroughly check the operation of the developed application program.

5.4.1 Sample Program Functions for Controlling the Reprogramming of the Code Flash Memory

5.4.1.1 main

Information:

Syntax Int main(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t

SAMPLE_ENUM_RET_STS_OK : 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_PARAMETER : 0x10
[Parameter error]
SAMPLE_ENUM_RET_ERR_CONFIGURATION : 0x11
[Configuration error]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED : 0x12
[Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CMD_ERASE : 0x30
[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE : 0x31
[Write command error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA : 0x13
[Written data comparison error]

Description Executes the main processing of the sample program for controlling the reprogramming
of the code flash memory.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.

Remarks -

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 62 of 101
Sep.25.2023

5.4.1.2 Sample_CodeFlashControl

Information:

Syntax R_RFSP_FAR_FUNC e_sample_ret_t Sample_CodeFlashControl
(uint16_t i_u16_start_addrr,
uint16_t i_u16_write_data_length,
uint8_t __near * inp_u08_write_data);

Reentrancy Non-reentrant

Parameters
(IN)

uint16_t
i_u16_start_addr

Start address of the area to be reprogrammed

uint16_t
i_u16_write_data_length

Size of the reprogram data

uint8_t __near *
 inp_u08_write_data

Pointer to the reprogram data buffer

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t

SAMPLE_ENUM_RET_STS_OK : 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED : 0x12
[Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CMD_ERASE : 0x30
[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE : 0x31
[Write command error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA : 0x13
[Written data comparison error]

Description Executes the processing for reprogramming the code flash memory.
 The erase and write commands are executed in the self-programming mode (code
flash area selection).
 The written data are read in the non-programmable mode to check that the data have
been written correctly.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.

Remarks -

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 63 of 101
Sep.25.2023

5.4.2 Sample Program Functions for Controlling the Reprogramming of the Data Flash Memory

5.4.2.1 main

Information:

Syntax Int main(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t

SAMPLE_ENUM_RET_STS_OK : 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_PARAMETER : 0x10
[Parameter error]
SAMPLE_ENUM_RET_ERR_CONFIGURATION : 0x11
[Configuration error]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED : 0x12
[Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CMD_ERASE : 0x30
[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE : 0x31
[Write command error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA : 0x13
[Written data comparison error]

Description Executes the main processing of the sample program for controlling the reprogramming
of the data flash memory.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.

Remarks -

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 64 of 101
Sep.25.2023

5.4.2.2 Sample_DataFlashControl

Information:

Syntax R_RFSP_FAR_FUNC e_sample_ret_t Sample_DataFlashControl
(uint16_t i_u16_start_addrr,
uint16_t i_u16_write_data_length,
uint8_t __near * inp_u08_write_data);

Reentrancy Non-reentrant

Parameters
(IN)

uint16_t
i_u16_start_addr

Start address of the area to be reprogrammed

uint16_t
i_u16_write_data_length

Size of the reprogram data

uint8_t __near *
inp_u08_write_data

Pointer to the reprogram data buffer

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t

SAMPLE_ENUM_RET_STS_OK : 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED : 0x12
[Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CMD_ERASE : 0x30
[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE : 0x31
[Write command error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA : 0x13
[Written data comparison error]

Description Executes the processing for reprogramming the data flash memory.
 The erase and write commands are executed in the self-programming mode (data
flash area selection).
 The written data are read in the non-programmable mode to check that the data have
been written correctly.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.

Remarks -

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 65 of 101
Sep.25.2023

5.4.3 Sample Program Functions Used in Common

5.4.3.1 Sample_CheckCFDFSeqEnd

Information:

Syntax R_RFSP_FAR_FUNC e_sample_ret_t Sample_CheckCFDFSeqEnd(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t

SAMPLE_ENUM_RET_STS_OK : 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_CFDF_SEQUENCER : 0x20
[Flash memory sequencer error]
SAMPLE_ENUM_RET_ERR_ACT_ERASE : 0x22
[Erase operation error]
SAMPLE_ENUM_RET_ERR_ACT_WRITE : 0x23
[Write operation error]

Description Waits for the completion of command execution in the flash memory sequencer.

Preconditions Execute this function in the self-programming mode (code flash area selection) or self-
programming mode (data flash area selection) while the high-speed on-chip oscillator is
active.

Remarks -

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 66 of 101
Sep.25.2023

6 Creating a Sample Project for RFSP Type 01

RFSP Type 01 includes sample programs for a code flash memory area and a data flash memory area to
program. The compilers which can be used by RFSP Type 01 are CC-RL compiler, IAR compiler and LLVM
compiler. Users can create a sample project using the Integrated Development Environment(IDE)
corresponding to each compiler.

This section is explained in the sample program example for RL78/G15. When using a device other than
RL78/G15, read G15 to the target device. Section address settings must be changed by referring to the
user's manual for the target device.

Note : The target Integrated Development Environment(IDE) and the compiler are premised on using
the version for RL78/G15 and RL78/G16. Be sure to use them, after confirming that RL78/G15
or RL78/G16 are target products.

6.1 Creating a Project in the case of Using CC-RL Compiler
CS+ or e2 studio can be used for RENESAS CC-RL compiler as an IDE. RFSP Type 01 is registered and
built in the project created by the IDE. An example of creating a sample project in case each IDE is used is
shown. Because to understand CC-RL compiler and each IDE, it is necessary to refer to the user's manual of
each tool product.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 67 of 101
Sep.25.2023

6.1.1 Example of Creating a Sample Project

(1) An example of creating a sample project which used CS+ (IDE)
・The CS+ starts and from the [Project] menu, select [Create New Project...], the “Create Project” window

will open.

- Select the product of ”RL78/G15 (ROM: 8KB)” - “R5F12068(20pin)” as [Using microcontroller].
- Select "Application(CC-RL)" as [Kind of project].

- [Project name] is temporarily set to "RFSPRL78T01_PJ01".

- When you click the [Create] button, the new project is created.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 68 of 101
Sep.25.2023

(2) An example of creating a sample project which used e2 studio (IDE)

・The e2 studio starts and from the [File] menu, select [New] – [C/C++ Project], the “Templates for New

C/C++ Project” window will open.

・Select [Renesas CC-RL C Executable Project] displayed after selection in [Renesas RL78], and press

"Next" button.

・Input "project name" on “New Renesas CC-RL Executable Project" window, and press "next" button.

[Project name] is temporarily set to "RFSPRL78T01_PJ01".

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 69 of 101
Sep.25.2023

・Select the [Target Device] of [Device Settings], and select ”RL78 - G15 20pin - R5F12068”.
・It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check

mark to "Create Hardware Debug Configuration" by [Configurations]. And select "E2 Lite(RL78)”.
・Press "Finish" button.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 70 of 101
Sep.25.2023

6.1.2 Example of Registration of Target Folders and the Target Files

Using RFSP Type 01, when programming each area [(1) code flash memory, (2) data flash memory], the
example which registers necessary files is shown. Each folder of RFSP Type 01 source-program file is

"include", "source", "userown", and "sample". The target file in each folder is selected and registered by the

area programmed.
As other registration methods, after all the folders of "include", "source", "userown", and "sample" are

registered, unnecessary files and folders can be removed using the function of "Remove from Project"(CS+)

or [Resource Configuration] – [Exclude from Build] (e2 studio).

The registration tree screen of RFSP (CS+) The registration tree screen of RFSP (e2 studio)

・Registration of the latest I/O header file(iodefine.h) outputted to target products by IDE

"iodefine.h" is an I/O header file which CS+ or e2 studio outputs to target products. Replacing instead of
"iodefine.h" included in RFSP Type 01 is recommended. Registration of target folders and target files is

implemented. Then, a user replaces "iodefine.h" which IDE outputted with "iodefine.h" included in RFSP

Type 01.

The folder to which an I/O header file (iodefine.h) is outputted by IDE :

- CS+ : [Project name] Folder

- e2 studio : [Project name]/generate Folder

The folder with which a user replaces the "iodefine.h" file :

- The case of code flash programming : ”\[Project name]\sample\RL78_G15\CF\CCRL\include”

- The case of data flash programming : ”\[Project name]\sample\RL78_G15\DF\CCRL\include”

・Exclusion of the file automatically added by the function of IDE.

There are files added automatically in the created project. The same file as these exists also in the

"sample" folder of RFSP Type 01. Therefore, using the function of IDE, select those files from tree and
excludes from a project.

- CS+ : Click the right mouse button for the file of tree. And exclude target file using "Remove from Project"

function. Targets are "cstart.asm, hdwinit.asm, stkinit.asm, main.c, and iodefine.h" in [project name]
folder.

- e2 studio : Clicks the right mouse button for the file of tree. And, on the [Settings] screen displayed by the

"property", put a check mark to [Exclude resource from build] and exclude a target file (target folder).
(Exclusion of a folder is also possible)

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 71 of 101
Sep.25.2023

Target files are cstart.asm, hdwinit.asm, iodefine.h, and stkinit.asm in a [project name] / generate folder.
And [project name] .c ("RFSPRL78T01_PJ01.c") in a [project name] / src folder is a target.

(1) Registration of the folders and files of the target in the case of reprogramming code flash memory
The folders ("include", "source", "userown", "sample") and source program file which are included in

RFSP Type 01 to register are shown below.

in the “include” folder in the “userown” folder

in the “sample” folder

In the “source” folder

Transpose to "iodefine.h" outputted
by CS+ or e2 studio.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 72 of 101
Sep.25.2023

(2) Registration of the folders and files of the target in the case of reprogramming data flash memory
The folders ("include", "source", "userown", "sample") and source program file which are included in RFSP

Type 01 to register are shown below.

 in the “include” folder in the “userown” folder

In the “sample” folder

In the “source” folder

Transpose to "iodefine.h" outputted
by CS+ or e2 studio.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 73 of 101
Sep.25.2023

6.1.3 Build Tool Settings

Set IDE setting necessary to build RFSP Type 01 using CC-RL compiler.
CS+ : Click the right mouse button for “CC-RL(Build tool)” in a tree, and select "Property". And set each

setting of the build tool in the displayed window.

e2 studio : Click the right mouse button for the project(”RFSPRL78T01_PJ01“) in a tree, and select

"Property". And set each setting of the build tool in the displayed window.

6.1.3.1 Include Path Settings

・Setting of the include path on CS+ inputs path in “Common Options” tab. (Change by a target area)

- Input the Include directory path in the ” Path Edit” window displayed by selection of [Frequently Used
Options(for Compile)] - [Additional include paths].

(1) Code flash memory reprogramming
include\rfsp
include
sample\RL78_G15\CF\CCRL\include
sample\common\include

(2) Data flash memory reprogramming
include\rfsp
include
sample\RL78_G15\DF\CCRL\include
sample\common\include

・Setting of the include path on e2 studio inputs path in “Properties” window. (Change by a target area)

- Input the Include directory path in the window displayed by selection of ”C/C++” build [Setting] -

“Compiler” [Source].

(1) Code flash memory reprogramming
${ProjDirPath}\src\include\rfsp
${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_G15\CF\CCRL\include
${ProjDirPath}\src\sample\common\include

(2) Data flash memory reprogramming
${ProjDirPath}\src\include\rfsp
${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_G15\DF\CCRL\include
${ProjDirPath}\src\sample\common\include

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 74 of 101
Sep.25.2023

6.1.3.2 Device Item Settings

・Setting of the device Items on CS+ inputs in the “Link Options” tab. (Common in each area)

- Setting the [Device] items
Select "Yes (-OCDBG)" in [Set enable/disable on-chip debug by link option].
Note : The example of a setting on condition of on-chip debugging execution.

Input the "85" into [Option byte values for OCD]. (Example of permission of operation for on-chip
debugging)
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",

and "On-chip debug option byte" on the user's manual of a target device. And describe the
set value used with user application.

Select " Yes(Specify address range)(-OCDBG_MONITOR=<Address range>)" in [Set debug monitor
area]. Set "1E00-1FFF" to [Range of debug monitor area].
Note : The user needs to input the range of the area which the debugger uses with reference to

description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on a user's manual.

Select " Yes(-USER_OPT_BYTE)" in [Set user option byte].
Set ”EEFFF9” to [User option byte value]. (WDT stop, P125:RESET input, SPOR detection
voltage:2.16V/2.11V, 16MHz [The example for RL78/G15,RL78/G16])
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",

and "User option bytes" on the user's manual of a target device. And describe the set
value used with user application.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 75 of 101
Sep.25.2023

・Setting of the device Items on e2 studio inputs in the “Properties” window. (Common in each area)

- Select ”C/C++ Build” [Setting] - “Linker” [Device]. And set device items on the displayed screen.
Put in a check mark to [Secure memory area of OCD monitor(-debug_monitor)] in the screen.
Note : The example of a setting on condition of on-chip debugging execution.

Set "1E00-1FFF" to [Memory area(-debug_monitor=<start address>-<end address>)].
Note : The user needs to input the range of the area which the debugger uses with reference to

description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on a user's manual.

Put a check mark to [Set user option byte(-user_opt_byte)].
Set ”EEFFF9” to [User option byte value(-user_opt_byte=<value>)]. (WDT stop, P125:RESET input,
SPOR detection voltage:2.16V/2.11V, 16MHz [The example for RL78/G15,RL78/G16])
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",

and "User option bytes" on the user's manual of a target device. And describe the set
value used with user application.

Put a check mark to [Set enable /disable on-chip debug by link option(-ocdbg)].
Note : The example of a setting on condition of on-chip debugging execution.

Input the "85" into [On-chip debug control value(-ocdbg=<value>)]. (Example of permission of operation
for on-chip debugging)
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",

and "On-chip debug option byte" on the user's manual of a target device. And describe the
set value used with user application.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 76 of 101
Sep.25.2023

6.1.4 Debug Tool Settings

This section describes the contents of connection setting on a target board necessary to execute on-chip
debugging. As a debugging tool, it is a premise that E2 Lite is selected. Refer to the user's manual for each
IDE for the details of other debugging tool setting.

On CS+, right-click a mouse by "RL78 simulator (Debug Tool)" [initial setting] of a tree. And select the "RL78
E2 Lite" by "Using Debug Tool" displayed there. After that, right-click a mouse again, select "Property" and
the "RL78 E2 Lite Property" screen will be displayed. And select each tab, and perform debugging tool
setting.

On e2 studio, right-click a mouse in the target project of a tree. Selection of [Debug As] - [Debug
Configurations…] will display the "Debug Configurations" screen. On the tree of a screen, select the target
project ("RFSPRL78T01_PJ01 HardwareDebug") of [Renesas GDB Hardware Debugging]. And the
displayed "Debugger" tab performs debugging tool setting.

Note: The power is already supplied to the target board, or when power supply capacity is
insufficient, the emulator including E2 Lite may be unable to supply power to a target
board. Be sure to refer to "the user's manual and Additional Document for User's Manual
(Notes on Connection of RL78)" for the emulator for target devices, and use an emulator.

6.1.4.1 Setting of Connection with Target Board

・On CS+, set up the connection with target board(via E2 Lite) with "Connect Settings" tab. (Common in

each area)

- [Connection with Target Board] item
To let power supply(Supply voltage : 3.3V) from E2 Lite to a target board, it is necessary to set "Yes" to
[Power target from the emulator (MAX 200mA)].

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 77 of 101
Sep.25.2023

・On e2 studio, set up the connection with target board(via E2 Lite) with "Connect Settings" tab. (Common in
each area)

- [Connection with Target Board] item
To let power supply(Supply Voltage : 3.3V) from E2 Lite to a target board, it is necessary to set "Yes" to
[Power Target From The Emulator (MAX 200mA)].

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 78 of 101
Sep.25.2023

6.2 Creating a Project in the case of Using IAR Compiler
IAR Embedded Workbench can be used for IAR compiler as an IDE. RFSP Type 01 is registered and built in
the project created by the IDE. An example of creating a sample project in case each IDE is used is shown.
Because to understand IAR compiler and each IDE, it is necessary to refer to the user's manual of each tool
product.

IAR Systems, IAR Embedded Workbench, C-SPY, IAR, and the logotype of IAR Systems are
trademarks or registered trademarks owned by IAR Systems AB.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 79 of 101
Sep.25.2023

6.2.1 Example of Creating a Sample Project

(1) An example of creating a sample project which used IAR Embedded Workbench (IDE)
・IAR Embedded Workbench starts and from the [Project] menu, select [Create New Project...], the “Create

Project” window will open.

- Select the "C" as [project template].
- When you click the [OK] button, the “Save As” window will open.

- Create "RFSPRL78T01_PJ01" folder temporarily, and move into a folder.
- The Project File name is temporarily set to "RFSPRL78T01_PJ01".

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 80 of 101
Sep.25.2023

(2) Selection of a target device
On IAR Embedded Workbench, click the right mouse button for the project ("RFSPRL78T01_PJ01 -
Debug") in a tree. When an "option" is selected, the "Options for node [Project name]" window is
displayed.

- Input setting in the [General Option] - [Target] tab of "Option for node [Project name]" window.

- Press " "button of [Device]. And select "RL78 – G15" - "RL78 – R5F12068". Select "Far" as [code
model] and select "Near" as [data model].

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 81 of 101
Sep.25.2023

6.2.2 Example of Registration of Target Folders and Target Files

Using RFSP Type 01, when programming each area [(1) code flash memory, (2) data flash memory], the
example which registers necessary files is shown. Each folder of a RFSP Type 01 source-program file is

"include", "source", "userown", and "sample". The target file in each folder is selected and registered by the

area programmed.

Instead of registering a folder by IAR Embedded Workbench, select [Add Group] of the [Project] menu, and
add a group. The example into which I add the group of the same structure as the folder for RFSP Type 01,

and files are registered is shown. (Registering without making a group is also possible.)

The example which added the group of each area [(1)Code flash memory, (2)Data flash memory] is shown.

(The group name which changes with areas is shown by " ".)

(1)Code flash memory (2)Data flash memory

・Exclusion of the file automatically added by the function of IDE.

There are files added automatically in the created project. The same file as these exists also in the

"sample" folder of RFSP Type 01. Therefore, using the function of IDE, Select those files from tree and

excludes from a project.
- IAR Embedded Workbench : Clicks the right mouse button for the file of tree. And exclude the target

"main.c" file by "Remove" function.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 82 of 101
Sep.25.2023

(1) Registration of the groups and files of the target in the case of reprogramming code flash memory
The groups ("include", "source", "userown", "sample") and source program file which are included in

RFSP Type 01 to register are shown below.

in the “include” group in the “sample” group

in the “source” group

in the “userown” group

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 83 of 101
Sep.25.2023

(2) Registration of the groups and files of the target in the case of reprogramming data flash memory
The groups ("include", "source", "userown", "sample") and source program file which are included in

RFSP Type 01 to register are shown below.

in the “include” group in the “sample” group

in the “source” group

in the “userown” group

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 84 of 101
Sep.25.2023

6.2.3 Integrated Development Environment(IDE) Settings

Set IDE setting necessary in order to build RFSP Type 01 using IAR compiler.
IAR Embedded Workbench : Click the right mouse button for the project(”RFSPRL78T01_PJ01“) in a tree,

and select "Options". And set each setting of the “Category” in the displayed window.

6.2.3.1 Include Path Settings

・Setting of the include path on IAR Embedded Workbench selects "C/C++ Compiler" of "Category", and

inputs path in "Preprocessor" tab. (Change by a target area)

- Input the Include directory path in the ”Edit include Directories” window displayed by selection of

[Additional include directories: (one per line)].

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 85 of 101
Sep.25.2023

- The example of folder path settings
It is the example which placed each folder(”include”, ”source”, ”userown”, ”sample”) of the source
program file of RFSP Type 01 on “C:\Users\xxxxxxxx\Documents\IAR_Project\".

(1) Code flash memory reprogramming

C:\Users\xxxxxxxx\Documents\IAR_Project\RFSPRL78T01_PJ01\sample\RL78_G15\CF\IAR\include

C:\Users\xxxxxxxx\Documents\IAR_Project\RFSPRL78T01_PJ01\sample\common\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFSPRL78T01_PJ01\include

C:\Users\xxxxxxxx\Documents\IAR_Project\RFSPRL78T01_PJ01\include\rfsp

(2) Data flash memory reprogramming
C:\Users\xxxxxxxx\Documents\IAR_Project\RFSPRL78T01_PJ01\sample\RL78_G15\DF\IAR\include

C:\Users\xxxxxxxx\Documents\IAR_Project\RFSPRL78T01_PJ01\sample\common\include

C:\Users\xxxxxxxx\Documents\IAR_Project\RFSPRL78T01_PJ01\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFSPRL78T01_PJ01\include\rfsp

Note : About the path setting of include directories.
When the project is copied in the case appointed by the absolute path, the setup is needed
again. It is possible to appoint a relative path ($PROJ_DIR$) so that it can be used, even if
it copies the project.
Refer to each reference manual of IAR Embedded Workbench about how to appoint the
relative path.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 86 of 101
Sep.25.2023

6.2.3.2 Debugger settings

・Select ”E2 Lite/E2 On-Board” from [Driver] of [Debugger] – [Setup] tab on the assumption that on-chip

debugging is implemented.

Note : Refer to each reference manual of IAR Embedded Workbench about the other items to be
set.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 87 of 101
Sep.25.2023

6.2.4 Linker Configuration File(.icf) Settings

RFSP Type01 uses a link configuration file (*.icf) for the target device when building with IAR Embedded
Workbench.
To specify the link configuration file (*.icf) for the target device, select "Options" by right-clicking the mouse of

[Project] in the tree, and specify "$TOOLKIT_DIR$\config\lnkrxxxxxxx.icf" set in [Linker] - [Config] in the
displayed screen.

Example: R5F12068 (RL78/G15) specifies the "lnkr5f12068.icf" file.

Note) For details on what is described in the linker configuration file and how to write it, please refer to
each reference manual from [Help] in IAR Embedded Workbench.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 88 of 101
Sep.25.2023

6.2.4.1 Option Bytes Settings

The option bytes definition for RL78 is described in the linker configuration file (*. icf) attached to IAR
Embedded Workbench. (Ex.R5F12068 [RL78/G15]:“lnkr5f12068.icf”) The option byte value in RFSP Type01

is described in the "option_byte.c" file.

Note : Refer to each reference manual of IAR Embedded Workbench about the option bytes
setting method for Linker configuration file.

The example of defining the option bytes for a linker configuration file (*.icf) attached to IAR Embedded

Workbench.

The example of description of the option bytes value in "option_byte.c" file.

- Description of user option byte value:
The value of User option byte (000C0H-000C2H) in "option_byte.c" file is "0xEEFFF9".
(WDT stop, P125:RESET input, SPOR detection voltage:2.16V/2.11V, 16MHz [The example for
RL78/G15,RL78/G16])

The value of on-chip debug option byte(000C3H) in "option_byte.c" file is ”0x85”.
(The example of enable on-chip debug operation)

Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",
and "On-chip debug option byte" by the user's manual of a target device. And describe the
set value used with user application.

define block OPT_BYTE with size = 4 { R_OPT_BYTE,

 ro section .option_byte,

 ro section OPTBYTE };

 |

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 89 of 101
Sep.25.2023

6.2.5 On-chip Debug Settings
After executing building of a target project, connect E2 Lite, select [Download and Debug] from [Project]
menu, and start debugging.

6.2.5.1 Example of How to deal with Connection Errors

Explain the common examples of how to deal with an error which happened by connection in on-chip run

debug. This is the case when an ID code mismatch or power failure occurs.

Note : In cases where a target cannot be connected by other causes, please confirm each
reference manual from [Help] of IAR Embedded Workbench.

When selecting [Download and Debug] and starting debugging, an "E2 Lite Hardware setting" screen may be
displayed. The cause may be ID code mismatch or power setting error.

- In the case of the ID code mismatch:
"Cannot verify the ID code." etc. may be displayed as a message. In this case, put a check mark to
"Erase flash before next ID check" of the [ID code] in an "E2 Lite Hardware Setup" window, and
continue. And the flash memory is erased and debugger may be connected.

- In the case of power setting error:
Initial setting of "Power supply" is "Target". When supplying power supply from E2 Lite, select "3V" by
the pull-down menu for "Power supply".

Caution: Be sure not to set "3V"(supply power from E2 Lite) , when the power is supplied to the
target.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 90 of 101
Sep.25.2023

6.3 Creating a Project in the case of Using LLVM Compiler
e2 studio can be used for LLVM for RL78 compiler as an IDE. RFSP Type 01 is registered and built in the project
created by the IDE. An example of creating a sample project in case each IDE is used is shown. Because to
understand LLVM compiler and each IDE, it is necessary to refer to the user's manual of each tool product.

6.3.1 Example of Creating a Sample Project

(1) An example of creating a sample project which used e2 studio (IDE)

・The e2 studio starts and from the [File] menu, select [New] – [C/C++ Project], the “Templates for New

C/C++ Project” window will open.

・Select [LLVM for Renesas RL78 C Executable Project] displayed after selection in [Renesas RL78], and

press "Next" button.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 91 of 101
Sep.25.2023

・Input "project name" on "New LLVM for Renesas RL78 Executable Project" window, and press "next"

button. [Project name] is temporarily set to "RFSPRL78T01_PJ01".

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 92 of 101
Sep.25.2023

・Select the [Target Device] of [Device Settings], and select "RL78 - G15 20pin - R5F12068xSP".
・It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check

mark to "Create Hardware Debug Configuration" by [Configurations]. And select "E2 Lite(RL78)”.
・Press "Next" button.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 93 of 101
Sep.25.2023

・Put off a check mark from "Use Smart Configurator".
・Press "Next" button.

・Select "Disable multiplication code generation (-disable-mda)".

・Press "Finish" button.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 94 of 101
Sep.25.2023

6.3.2 Example of Registration of Target Folders and the Target Files

Using RFSP Type 01, when programming each area [(1) code flash memory, (2) data flash memory], the
example which registers necessary files is shown. Each folder of RFSP Type 01 source-program file is

"include", "source", "userown", and "sample". The target file in each folder is selected and registered by the

area programmed.
As other registration methods, after all the folders of "include", "source", "userown", and "sample" are

registered, unnecessary files and folders can be removed using the function of [Resource Configuration] –

[Exclude from Build].

c

The registration tree screen of RFSP (e2 studio)

・Registration of the latest I/O header files outputted to target products by e2 studio

"iodefine.h" and "iodefine_ext.h" are I/O header files which e2 studio outputs to target products. Replacing
instead of "iodefine.h" and "iodefine_ext.h" included in RFSP Type 01 is recommended. Registration of

target folders and target files are implemented. Then, a user replaces "iodefine.h" and "iodefine_ext.h"

which e2 studio outputted with "iodefine.h" and "iodefine_ext.h" included in RFSP Type 01.

・Registration of the vector table file outputted to target products by e2 studio

“interrupt_handlers.h”, “inthandler.c” and “vects.c” are files that contain vector tables that e2 studio outputs

for the target product. Since it depends on the product, please replace “interrupt_handlers.h”,
“inthandler.c”, and “vects.c” included in RFSP Type 01.

When these are replaced, change the option byte values in the “vects.c” file. Refer to “6.3.3.2 Device Item

Settings” for details on setting option byte values.

The folder to which “iodefine.h, iodefine_ext.h, “interrupt_handlers.h”, “inthandler.c” and “vects.c” files are

outputted by e2 studio :

- [Project name]/generate Folder

The folder with which a user replaces “iodefine.h”, “iodefine_ext.h” and “interrupt_handlers.h” files:

- The case of code flash programming : ”\[Project name]\sample\RL78_G15\CF\LLVM\include”

- The case of data flash programming : ”\[Project name]\sample\RL78_G15\DF\LLVM\include”

The folder with which a user replaces the “inthandler.c” and “vects.c” files:

- The case of code flash programming : “\[Project name]\sample\RL78_G15\CF\LLVM\source”

- The case of data flash programming : “\[Project name]\sample\RL78_G15\DF\LLVM\source”

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 95 of 101
Sep.25.2023

・Exclusion of the file automatically added by the function of e2 studio.

There are files added automatically in the created project. The same file as these exists also in the

"sample" folder of RFSP Type 01. Therefore, using the function of e2 studio, select those files from tree

and excludes from a project.
Clicks the right mouse button for the file of tree. And, on the [Settings] screen displayed by the "property",

put a check mark to [Exclude resource from build] and exclude a target file (target folder). (Exclusion of a

folder is also possible)
- Exclude(or delete) all the files in a [project name] / generate folder:

hwinit.c, interrupt_handlers.h, inthandler.c, iodefine_ext.h, iodefine.h, linker_script.ld, start.S,

typedefine.h, vects.c
- Exclude(or delete) a [project name].c files in a [project name] / src folder:

RFSPRL78T01_PJ01.c is a target.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 96 of 101
Sep.25.2023

(1) Registration of the folders and files of the target in the case of reprogramming code flash memory
The folders ("include", "source", "userown", "sample") and source program file which are included in

RFSP Type 01 to register are shown below.

in the “include” folder in the “userown” folder

in the “sample” folder

In the “source” folder

Transpose to “iodefine.h”, “iodefine_ext.h”,

“interrupt_handlers.h”, “inthandler.c” and “vects.c”

outputted by e2 studio.

* “vects.c” should change the option byte value.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 97 of 101
Sep.25.2023

(2) Registration of the folders and files of the target in the case of reprogramming data flash memory
The folders ("include", "source", "userown", "sample") and source program file which are included in RFSP

Type 01 to register are shown below.

 in the “include” folder in the “userown” folder

In the “sample” folder

In the “source” folder

Transpose to “iodefine.h”, “iodefine_ext.h”,

“interrupt_handlers.h”, “inthandler.c” and “vects.c”

outputted by e2 studio.

* “vects.c” should change the option byte value.

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 98 of 101
Sep.25.2023

6.3.3 Build Tool Settings

Set IDE setting necessary to build RFSP Type 01 using LLVM compiler.
e2 studio : Click the right mouse button for the project(”RFSPRL78T01_PJ01“) in a tree, and select

"Property". And set each setting of the build tool in the displayed window.

6.3.3.1 Include Path Settings

・Setting of the include path on e2 studio inputs path in “Properties” window. (Change by a target area)

- Input the Include directory path in the window displayed by selection of "C/C++" build [Setting] -

"Compiler" [Includes].

(1) Code flash memory reprogramming
${ProjDirPath}\src\include\rfsp
${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_G15\CF\LLVM\include
${ProjDirPath}\src\sample\common\include

(2) Data flash memory reprogramming
${ProjDirPath}\src\include\rfsp
${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_G15\DF\LLVM\include
${ProjDirPath}\src\sample\common\include

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 99 of 101
Sep.25.2023

6.3.3.2 Device Item Settings

The option byte value in RFSP Type01 is described in the "vects.c" file.

The example of description of the option bytes value in "vects.c" file.

- Description of user option byte value:
The value of User option byte (000C0H-000C2H) in "vects.c" file is "0xEEFFF9".
(WDT stop, P125:RESET input, SPOR detection voltage:2.16V/2.11V, 16MHz [The example for
RL78/G15,RL78/G16])

The value of on-chip debug option byte(000C3H) in "vects.c" file is "0x85".
(The example of enable on-chip debug operation)

Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",
and "On-chip debug option byte" by the user's manual of a target device. And describe the
set value used with user application.

6.3.3.3 Linker Script Path Settings
Setting of the linker script path on e2 studio inputs path in "Properties" window. (Change by a target area)

- Input the linker script path in the window displayed by selection of "C/C++" build [Setting] - "Linker"
[Source].

(1) Code flash memory reprogramming

${ProjDirPath}/src/sample/RL78_G15/CF/LLVM/source/linker_script_CF.ld

(2) Data flash memory reprogramming

${ProjDirPath}/src/sample/RL78_G15/DF/LLVM/source/linker_script_DF.ld

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 100 of 101
Sep.25.2023

6.3.4 Debug Tool Settings

This section describes the contents of connection setting on a target board necessary to execute on-chip
debugging. As a debugging tool, it is a premise that E2 Lite is selected. Refer to the user's manual for each
IDE for the details of other debugging tool setting.

On e2 studio, right-click a mouse in the target project of a tree. Selection of [Debug As] - [Debug
Configurations…] will display the "Debug Configurations" screen. On the tree of a screen, select the target
project ("RFSPRL78T01_PJ01 HardwareDebug") of [Renesas GDB Hardware Debugging]. And the
displayed "Debugger" tab performs debugging tool setting.

Note: The power is already supplied to the target board, or when power supply capacity is
insufficient, the emulator including E2 Lite may be unable to supply power to a target
board. Be sure to refer to "the user's manual and Additional Document for User's Manual
(Notes on Connection of RL78)" for the emulator for target devices, and use an emulator.

6.3.4.1 Setting of Connection with Target Board

・On e2 studio, set up the connection with target board(via E2 Lite) with "Connect Settings" tab. (Common in
each area)

- [Connection with Target Board] item
To let power supply(Supply Voltage : 3.3V) from E2 Lite to a target board, it is necessary to set "Yes" to
[Power Target From The Emulator (MAX 200mA)].

Renesas Flash Sample Program Type 01 R20AN0652EJ0120

R20AN0652EJ0120 Rev.1.20 Page 101 of 101
Sep.25.2023

7 Revision History

7.1 Major Modifications in this Revision

Rev. Date
Description

Page summary

1.00 May.30.22 - Newly created.

1.10 Apr.28.23 - RL78/G16 was added.

1.20 Sep.25.23 - LLVM compiler was added.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be

touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced

with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.)

and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input

level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other
Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious
property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military
equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising
from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other
Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.
(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	Introduction
	Target devices
	Table of contents
	1 Overview
	1.1 Outline
	1.1.1 Purpose

	1.2 Contents
	1.3 Features
	1.4 Operating environment
	1.5 Points for Caution
	1.6 C Compiler Definitions

	2 System configuration
	2.1 File Structure
	2.1.1 Folder Structure
	2.1.2 List of Files
	2.1.2.1 List of Source files
	2.1.2.2 List of Header File

	2.2 Resources of RL78/G15, RL78/G16
	2.2.1 Memory Map
	2.2.2 Block Images
	2.2.3 List of Registers Related to Flash Memory Sequencer Control

	2.3 Resources Used in RFSP Type 01
	2.3.1 Code Size and Stack Size which API Functions Use

	3 API Functions of RFSP Type 01
	3.1 List of API Functions of RFSP Type 01
	3.1.1 API Functions Used in Common Flash Memory Control
	3.1.2 API Functions for Code Flash Memory Control
	3.1.3 API Functions for Data Flash Memory Control
	3.1.4 Hook function

	3.2 Data type definition
	3.2.1 data type
	3.2.2 Global variables
	3.2.3 Enumerations
	3.2.4 Macro definition
	3.2.4.1 Macro Definitions for Setting the Global Data of RFSP
	3.2.4.2 Macro Definitions for Setting the Registers in the RL78/G15 and RL78/G16.

	3.3 Specifications of API Functions
	3.3.1 Specifications of API Functions Used in Common for Flash Memory Control
	3.3.1.1 R_RFSP_Init
	3.3.1.2 R_RFSP_SetFlashMemoryMode
	3.3.1.3 R_RFSP_CheckCFDFSeqEndStep1
	3.3.1.4 R_RFSP_CheckCFDFSeqEndStep2
	3.3.1.5 R_RFSP_GetSeqErrorStatus
	3.3.1.6 R_RFSP_ForceReset

	3.3.2 Specifications of API Functions for Code Flash Memory Control
	3.3.2.1 R_RFSP_EraseCodeFlashReq
	3.3.2.2 R_RFSP_WriteCodeFlashReq

	3.3.3 Specifications of API Functions for Data Flash Memory Control
	3.3.3.1 R_RFSP_EraseDataFlashReq
	3.3.3.2 R_RFSP_WriteDataFlashReq

	3.3.4 Specifications of Hook Functions
	3.3.4.1 R_RFSP_HOOK_EnterCriticalSection
	3.3.4.2 R_RFSP_HOOK_ExitCriticalSection

	4 Flash Memory Sequencer Operation
	4.1 Initial Setting of Operating Frequency
	4.2 Self-Programming Mode and Target Area Setting
	4.2.1 Flash Memory Self-Programming Mode Setting

	4.3 Flash Memory Sequencer
	4.3.1 Outline
	4.3.2 Flash Memory Sequencer Commands
	4.3.2.1 Reprogramming the Code Flash Area
	4.3.2.2 Reprogramming the Data Flash Area

	4.3.3 Procedures for Judging the End of Command Execution in the Flash Memory Sequencer

	4.4 Example of Command Execution for Reprogramming of the Flash Memory Areas
	4.4.1 Example of Command Execution for Reprogramming of the Code/Data Flash memory Areas

	5 Sample Programs
	5.1 File Structure
	5.1.1 Folder configuration
	5.1.2 List of Files
	5.1.2.1 List of Source Files
	5.1.2.2 List of Header File

	5.2 Data Type Definitions
	5.2.1 Enumerations

	5.3 Sample Program Functions
	5.3.1 Sample Program for Controlling the Reprogramming of the Code Flash Memory
	5.3.1.1 main Function
	5.3.1.2 Sample_CodeFlashControl Function

	5.3.2 Sample Program for Controlling the Reprogramming of the Data Flash Memory
	5.3.2.1 main Function
	5.3.2.2 Sample_DataFlashControl Function

	5.3.3 Sample Program Used in Common for Controlling the Flash Memory
	5.3.3.1 Sample_CheckCFDFSeqEnd Function

	5.4 Specifications of Sample Program Functions
	5.4.1 Sample Program Functions for Controlling the Reprogramming of the Code Flash Memory
	5.4.1.1 main
	5.4.1.2 Sample_CodeFlashControl

	5.4.2 Sample Program Functions for Controlling the Reprogramming of the Data Flash Memory
	5.4.2.1 main
	5.4.2.2 Sample_DataFlashControl

	5.4.3 Sample Program Functions Used in Common
	5.4.3.1 Sample_CheckCFDFSeqEnd

	6 Creating a Sample Project for RFSP Type 01
	6.1 Creating a Project in the case of Using CC-RL Compiler
	6.1.1 Example of Creating a Sample Project
	6.1.2 Example of Registration of Target Folders and the Target Files
	6.1.3 Build Tool Settings
	6.1.3.1 Include Path Settings
	6.1.3.2 Device Item Settings

	6.1.4 Debug Tool Settings
	6.1.4.1 Setting of Connection with Target Board

	6.2 Creating a Project in the case of Using IAR Compiler
	6.2.1 Example of Creating a Sample Project
	6.2.2 Example of Registration of Target Folders and Target Files
	6.2.3 Integrated Development Environment(IDE) Settings
	6.2.3.1 Include Path Settings
	6.2.3.2 Debugger settings

	6.2.4 Linker Configuration File(.icf) Settings
	6.2.4.1 Option Bytes Settings

	6.2.5 On-chip Debug Settings
	6.2.5.1 Example of How to deal with Connection Errors

	6.3 Creating a Project in the case of Using LLVM Compiler
	6.3.1 Example of Creating a Sample Project
	6.3.2 Example of Registration of Target Folders and the Target Files
	6.3.3 Build Tool Settings
	6.3.3.1 Include Path Settings
	6.3.3.2 Device Item Settings
	6.3.3.3 Linker Script Path Settings

	6.3.4 Debug Tool Settings
	6.3.4.1 Setting of Connection with Target Board

	7 Revision History
	7.1 Major Modifications in this Revision

	General Precautions in the Handling of Microprocessing Unit and MicrocontrollerUnit Products
	Notice

