
đ

á

H

8

5

0

/

U

2

B

2

4

a

d

R01AN7130EJ0100
2023.10.27

Page 1 of 82

Application Note

RH850/U2B Group

How to implement FreeRTOS

Introduction

This application note introduces how to implement FreeRTOS, and describes the procedure for

using sample programs.

Target Device

RH850/U2B Group Microcontrollers

Operation Confirmed Device

RH850/U2B-FCC (U2B24 mode) Microcontrollers

CAUTION

There is no guarantee to update in this document and software to reflect the latest

manual, errata, technical update and development environment. You are fully

responsible for the incorporation or any other use of the information of this

document in the design of your product or system, and please refer to latest manual,

errata, technical update and development environment.

Reference Document

RH850/U2B Group User’s Manual: Hardware (R01UH0923EJxxxx)

FreeRTOS official site: https://www.freertos.org

Abbreviations

Symbol Description

RTOS Real time operating system

API Application programming interface

ISR Interrupt Service Routine

MemMang Memory management

https://www.freertos.org/

R01AN7130EJ0100
2023.10.27

Page 2 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Table of Contents

Section 1 Overview ... 3

1.1 Overview of this application note .. 3

Section 2 How to port FreeRTOS ... 4

2.1 Preparation before installing FreeRTOS .. 4

2.1.1 Downloading FreeRTOS for Porting ... 4

2.1.2 Folder structure ... 5

2.1.3 Project organization ... 6

2.2 Make driver program and configuration of the FreeRTOS kernel .. 9

2.2.1 porting.c ... 9

2.2.2 portasm.asm .. 12

2.2.3 portmacro.h ... 15

2.2.4 contextop.h .. 16

2.2.5 FreeRTOSConfig.h .. 18

Section 3 Sample programs .. 20

3.1 Memory Management ... 21

3.1.1 Static memory.. 21

3.1.2 Dynamic memory .. 26

3.2 Task Management .. 33

3.2.1 Round Robin Scheduling ... 33

3.2.2 Preemption Scheduling ... 38

3.3 Queue Management ... 43

3.3.1 Queue operation .. 43

3.4 Resource Management .. 50

3.4.1 Binary Semaphores ... 50

3.4.2 Counting Semaphores ... 58

3.4.3 Mutexes ... 64

3.4.4 Gatekeeper Tasks ... 73

REVISION HISTORY .. 80

R01AN7130EJ0100
2023.10.27

Page 3 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Section 1 Overview

1.1 Overview of this application note

This application note explains how to implement FreeRTOS on RH850/U2B group products

and the operation of the sample programs using FreeRTOS attached to this application note.

Section 2 describes instruction on how to implement FreeRTOS on RH850/U2B group

products.

CAUTION

The driver program for using FreeRTOS described in Section 2.2 only implements

the minimum required to use FreeRTOS.

When creating an application using FreeRTOS, please carefully consider your

system configuration and consider and create driver program.

The driver program in the sample program has at least the following limitations:

・ Does not support multiple interrupts

・ Does not support FE level interrupts

Section 3 describes the sample programs attached to this application note to explain how to

use FreeRTOS. The operation of the sample programs has been confirmed in the environment

shown in Table 1-1.

Table 1-1 Operation confirmation environment

Category Item Description

Software IDE CS+ for CC V8.10.00 [06 Jun 2023]

FreeRTOS FreeRTOS 202212.01

Hardware Debug tool E2 Emulator (RTE0T00020KCE00000R)

Evaluation board RH850/U2B Piggyback Board BGA 468-pin
(Y-RH850-U2B-468PIN-PB-T1-V1)

Logic analyzer ZEROPLUS LAP-C Pro (16064M)

R01AN7130EJ0100
2023.10.27

Page 4 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Section 2 How to port FreeRTOS

This section describes how to download and setup the FreeRTOS source code, and how to use

the needed the hardware resources in RH850/U2B group products to implement FreeRTOS.

2.1 Preparation before installing FreeRTOS

2.1.1 Downloading FreeRTOS for Porting

The FreeRTOS kernel and other FreeRTOS libraries are distributed under the MIT open-source

license.

The latest version of FreeRTOS source code can be downloaded from the FreeRTOS official

website below.

https://www.freertos.org/a00104.html

This application note uses the "FreeRTOS 202212.01" shown in the red frame in Figure 2-1,

which contains sample programs for various products.

Figure 2-1 FreeRTOS Source download from FreeRTOS official website

https://www.freertos.org/a00104.html

R01AN7130EJ0100
2023.10.27

Page 5 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

2.1.2 Folder structure

The application note uses the "FreeRTOS 202212.01.zip" downloaded from FreeRTOS official

site to perform porting to project. Below describes this downloaded zip file description.

After downloading and unzipping, the folder “FreeRTOS 202212.01” will be created.

Figure 2-2 shows the folder structure, in which there are two main subfolders under

“FreeRTOSv202212.01” and “FreeRTOS” and “FreeRTOS-Plus”.

• The folder "FreeRTOS" contains the kernel source and its demo projects.

• The folder "FreeRTOS-Plus" contains components of FreeRTOS-Plus-TCP,

FreeRTOS-Plus-CLI, etc. and their demo projects.

Figure 2-2 The folder structure of “FreeRTOS 202212.01.zip”

The source code is in “FreeRTOS/Source”, this folder contains several files. There are 3 core

files in the red box in Figure 2-2: task.c, queue.c and list.c contain Task Management

functions for the RTOS scheduling system.

Another important folder is the "MemMang" folder located in "FreeRTOS/Source/portable".

This folder contains codes for managing memory when using FreeRTOS features.

FreeRTOSv202212.01 FreeRTOSv202212.01 FreeRTOSv202212.01

FreeRTOS FreeRTOS FreeRTOS

Demo Source Source

License include portable

Source portable ARMClang

Test .gitmodules ARMv8M

links_to_doc_pages_... CMakeLists.txt …

README.md croutine.c MemMang

FreeRTOS-Plus event_groups.c heap_1.c

tools list.c heap_2.c

.editorconfig manifest.yml heap_3.c

FreeRTOS+TCP queue.c heap_4.c

GitHub-FreeRTOS-Home sbom.spdx heap_5.c

History.txt stream_buffer.c ReadMe

lexicon.txt tasks.c …

manifest.yml timers.c

Quick_Start_Guide …

Upgrading-to-FreeRTOS

R01AN7130EJ0100
2023.10.27

Page 6 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

2.1.3 Project organization

This section describes the configuration of the sample project “CSP_Projects_U2B_RTOS”.

(1) platform\third-party

Figure 2-3 shows the folder structure of “platform\third-party” in the sample projects

“CSP_Projects_U2B_RTOS”. The folder “third-party” is import to the category “third-party” in

each CS+ projects.

The files contained in this folder are FreeRTOS related files. "Copy from" in Figure 2-3

indicates the downloaded FreeRTOS folder. Among these, the "(New create)" file is a file

created for the RH850/U2B product. For details about these files, refer to Section 2.2.

Figure 2-3 The folder structure of “platform\third-party” in sample projects

Folder structure of CSP_Projects_U2B_RTOS Copy from Description

CSP_Projects_U2B_RTOS - -

platform - -

third-party - -

FreeRTOS - -

core - -

include - -

atomic.h Source\include Atomic functions by disabling interrupts globally

croutine.h The macro implementation of the co-routine functionality

deprecated_definitions.h The correct portmacro.h file for the port being used

event_groups.h Definitions of event group function

FreeRTOS.h The generic headers required for the FreeRTOS port being used

list.h The list implementation used by the scheduler

message_buffer.h Message buffers build functionality on top of FreeRTOS stream buffers

mpu_prototypes.h Definitions the standard API functions

mpu_wrappers.h API functions to be called through a wrapper macro

portable.h Definitions of the portable layer API

projdefs.h The prototype definition that the task functions must conform

queue.h Definitions of queue function

semphr.h Definitions of semaphore function

StackMacros.h Include stack_macros.h

stack_macros.h Macros to check the current stack state only

stream_buffer.h Definitions of stream buffer function

task.h Definitions of task function

timers.h Definitions of software timer function

portable - -

MemMang - -

heap_4.c Source\portable\ The file added to use dynamic memory allocation

MemMang

Renesas_U2B24 (New create) -

portasm.asm Interrupt handlers related to switch context

porting.c Functions of stack initalize and scheduler

portmacro.h FreeRTOS correctly for the given hardware and compiler

contextop.h macro of context switching

croutine.c Source The FreeRTOS co-routine functionality

event_groups.c Event group functionality

list.c Scheduling management functions

queue.c Both queue and semaphore services

stream_buffer.c Stream buffer functionality

tasks.c Task services

timers.c Software timer functionality

R01AN7130EJ0100
2023.10.27

Page 7 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) platform\drivers

Figure 2-4 shows the folder structure of “platform\drivers” in the sample projects

“CSP_Projects_U2B_RTOS”. The folder “drivers” is import to the category “drivers” in each

CS+ projects.

The file of “U2B_Driver_Lib.lib” in the folder “library” contains the body of the function

whose prototype is declared in each header file included in the include folder.

The functions included in "library" are basic settings for U2B clock functions, port functions,

and peripheral functions, so the source code is not included in this application note. For details

on these setting methods, please refer to the user's manual of each product.

Figure 2-4 The folder structure of “platform\drivers” in sample projects

Folder structure of CSP_Projects_U2B_RTOS Description

CSP_Projects_U2B_RTOS -

platform -

drivers -

include -

U2B_clock.h Clock controller related functions

U2B_interrupt.h Interrupt controller related functions

U2B_OSTM.h OSTM related functions

U2B_pin.h Port related functions

U2B_RLIN3_UART.h RLIN3 of UART mode related functions

U2B_standby.h Standby controller related functions

U2B_TAUD.h TAUD related functions

U2x_general.h General functions such as register manipulations

U2x_typedef.h The typedef for driver software

library -

U2B_Driver_Lib.lib Library file for driver software

R01AN7130EJ0100
2023.10.27

Page 8 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) samples

Figure 2-5 shows the folder structure of “samples” in the sample projects

“CSP_Projects_U2B_RTOS”.

This folder contains the CS+ project folder of each sample program, and source files and

header files commonly used by each sample program.

Figure 2-5 The folder structure of “samples” in sample projects

(4) CS+ project folder of each sample program

Figure 2-6 shows the CS+ project folder of the sample program "6_Binary_Semaphores" as an

example of the folder structure of each sample project.

These .h file, .asm files, .c file, and config folder will be imported directly under the "files"

category of this CS+ project.

Figure 2-6 The folder structure of “sample/6_Binary_Semaphores”

Folder structure of CSP_Projects_U2B_RTOS Description

CSP_Projects_U2B_RTOS -

samples -

1_Static_Memory CS+ project folder for the sample program of Static Memory

2_Dynamic_Memory CS+ project folder for the sample program of Dynamic Memory

3_Round_Robin_Scheduling CS+ project folder for the sample program of Round Robin Scheduling

4_Preemption_Scheduling CS+ project folder for the sample program of Preemption Scheduling

5_Queue_Management CS+ project folder for the sample program of Queue Management

6_Binary_Semaphores CS+ project folder for the sample program of Binary Semaphores

7_Counting_Semaphores CS+ project folder for the sample program of Counting Semaphores

8_Mutexes CS+ project folder for the sample program of Mutexes

9_Gatekeeper Tasks CS+ project folder for the sample program of Gatekeeper Tasks

common The source and header files commonly used in each project

U2B_TAUD_App.c

U2B_TAUD_App.h

U2B_UART_App.c

U2B_UART_App.h

user_freeRTOS.c Functions called directly from the FreeRTOS kernel

RLIN3 setting functions called in the sample programs of 8. Mutexes and 9. Gatekeeper Tasks

TAUD setting functions called in the sample programs of 6.Binary_Semaphores and

7.Counting_Semaphores

Folder structure of each CS+ folder Description

CSP_Projects_U2B_RTOS -

samples -

6_Binary_Semaphores CS+ project folder for the sample program of Binary Semaphores

6_Binary Semaphores.mtpj CS+ project file for the sample program of Binary Semaphores

config

FreeRTOSConfig.h Application specific definitions

boot0.asm The vetor table and entry function of boot up

cstart.asm Start up functions

main.c main function of this sample program

user_interrupt.asm Functions that preprocesses C language functions that are processed at the time of an interrupt.

R01AN7130EJ0100
2023.10.27

Page 9 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

2.2 Make driver program and configuration of the FreeRTOS kernel

This section describes the files should be created when implementing FreeRTOS on

RH850/U2B product. Table 2-1 shows the list of files that needs to be created.

Table 2-1 The files need to be modified for MCU products to use

File name Location in sample projects Description

port.c CSP_Projects_U2B_RTOS\platform\third-
party\FreeRTOS\core\portable\Renesas_U2
B24

The files that need to be edited for
the RH850 architecture portasm.s

portmacro.h

contextop.h

FreeRTOSConfig.h CSP_Projects_U2B_RTOS\samples\(project
folder)\config

The application specific definitions
for FreeRTOS API

2.2.1 porting.c

This file implements following functions:

• Function pxPortInitialiseStack

• Function xPortStartScheduler

• Function vPortEndScheduler

Of these, the function vPortEndScheduler is not used in sample programs, so its explanation

will be omitted.

R01AN7130EJ0100
2023.10.27

Page 10 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(1) Function pxPortInitialiseStack

This function initializes the stack area at the address specified by the parameter pxTopOfStack

as shown in Table 2-2. To confirm operation, this sample program sets various general-

purpose registers to unique values other than 0.

This function has three parameters:

• StackType_t *pxTopOfStack:

Address of top of the stack for task.

• TaskFunction_t pxCode:

Pointer to the task entry function

• void *pvParameters:

The value that is passed as the parameter to the created task

This function returns the top address of the stack area after executing this function.

Table 2-2 Value of stack after initialization with function pxPortInitialiseStack

Address
Value after
initialization Description Address

Value after
initialization Description

&pxTopOfStack-0 0x01010101 Initial Value of R1 &pxTopOfStack-68 0x19191919 Initial Value of R19

&pxTopOfStack-4 0x02020202 Initial Value of R2 &pxTopOfStack-72 0x20202020 Initial Value of R20

&pxTopOfStack-8 0x04040404 Initial Value of R4 &pxTopOfStack-76 0x21212121 Initial Value of R21

&pxTopOfStack-12 0x05050505 Initial Value of R5 &pxTopOfStack-80 0x22222222 Initial Value of R22

&pxTopOfStack-16 pvParameters Initial Value of R6 &pxTopOfStack-84 0x23232323 Initial Value of R23

&pxTopOfStack-20 0x07070707 Initial Value of R7 &pxTopOfStack-88 0x24242424 Initial Value of R24

&pxTopOfStack-24 0x08080808 Initial Value of R8 &pxTopOfStack-92 0x25252525 Initial Value of R25

&pxTopOfStack-28 0x09090909 Initial Value of R9 &pxTopOfStack-96 0x26262626 Initial Value of R26

&pxTopOfStack-32 0x10101010 Initial Value of R10 &pxTopOfStack-100 0x27272727 Initial Value of R27

&pxTopOfStack-36 0x11111111 Initial Value of R11 &pxTopOfStack-104 0x28282828 Initial Value of R28

&pxTopOfStack-40 0x12121212 Initial Value of R12 &pxTopOfStack-108 0x29292929 Initial Value of R29

&pxTopOfStack-44 0x13131313 Initial Value of R13 &pxTopOfStack-112 0x30303030 Initial Value of R30

&pxTopOfStack-48 0x14141414 Initial Value of R14 &pxTopOfStack-116 pxCode Initial Value of R31

&pxTopOfStack-52 0x15151515 Initial Value of R15 &pxTopOfStack-120 pxCode Initial Value of EIPC

&pxTopOfStack-56 0x16161616 Initial Value of R16 &pxTopOfStack-124 0x03F38000 Initial Value of EIPSW

&pxTopOfStack-60 0x17171717 Initial Value of R17 &pxTopOfStack-128 0 *1

&pxTopOfStack-64 0x18181818 Initial Value of R18

Note 1. This value defined by portNO_CRITICAL_SECTION_NESTING in pormacro.h.

 These sample programs does not support nesting of the interrupt processing.

NOTE

In this sample program, interrupts are enabled at the start of each task by setting the

above value in PSW.

R01AN7130EJ0100
2023.10.27

Page 11 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Function xPortStartScheduler

This function executes the function prvSetupTimerInterrupt, which sets up OSTM0 and starts

operation, and the function vPortStart, which starts the operation of the first Task.

The function prvSetupTimerInterrupt sets and starts the tick interrupt, which is an interrupt that

switches tasks. This sample program uses OSTM0 in interval timer mode as a tick interrupt.

The tick interrupt interval is typically 1ms to 10ms. In this sample program, the tick interrupt

interval is set to 1ms.

About the function vPortStart, refer to Section 2.2.2.

Figure 2-7 shows the flowchart of the function xPortStartScheduler and the function

prvSetupTimerInterrupt.

Function xPortStartScheduler

Function prvSetupTimerInterrupt

Note. In the sample programs, OSTMn = OSTM0.

Figure 2-7 Flowchart of the function xPortStartScheduler and the function

prvSetupTimerInterrupt

start

Setup OSTMn Timer interrupt
[prvSetupTimerInterrupt]

Restore the context of the first Task that is going to run
[vPortStart]

return pdTRUE

start

Release OSTMn from standby mode
[STBC_ReleaseModuleStandby]

Configure INTOSTMnTINT interrupt
for tick interrupt

[INTC2_EI_Control]

Configure Timer OSTMn to create tick interrupt
- period: (OSTM_FREQUENCY / configTICK_RATE_HZ) - 1
- mode: interval timer mode

[OSTimer_Init]

Start OSTMn
[OSTimer_Start]

end

R01AN7130EJ0100
2023.10.27

Page 12 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

2.2.2 portasm.asm

The file portasm.asm contains the following functions:

• Function _Intfunc_INTOSTM0TINT

• Function _vPortStart

• Function _vPortYield

• Function _trap_0

(1) Function _Intfunc_INTOSTM0TINT

Function _Intfunc_INTOSTM0TINT is the interrupt handler for interrupt INTOSTM0TINT,

which is used as a tich interrupt.This function suspends the task that was being executed before

the interrupt occurred, determines the next task to execute, and executes that task. Figure 2-8

shows the flowchart of this function.

The macro portSAVE_CONTEXT is a macro that stores the context in the stack area, and the

macro portRESTORE_CONTEXT is the macro that restores the context from the stack area.

See Section 2.2.4 for more information on these macros.

To monitor the timing of task switching due to the INTOSTM0TINT interrupt, monitor port

P21_0 outputs high level near the start of this function, and P21_0 outputs low level near the

end of this function. As a result, the sample program does not retain the value of R10 before

and after switching tasks. If need to retain the value of R10, remove the output part to the

monitor port.

Figure 2-8 Flowchart of the function _Intfunc_INTOSTM0TINT

start

Save the context of the current Task
[portSAVE_CONTEXT]

end
(eiret)

Increment tick and check status of Task
[xTaskIncrementTick]

Select the next task to run
[vTaskSwitchContext]

Restore the context of the next Task
[portRESTORE_CONTEXT]

Output high level to monitor port P21_0

Output low level to monitor port P21_0

R01AN7130EJ0100
2023.10.27

Page 13 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Function _vPortStart

The function _vPortStart restores the context, and the first task run. This function is called by

the function xPortStartScheduler.

Figure 2-9 shows the flowchart of the function _vPortStart.

Figure 2-9 Flowchart of the function _vPortStart

start

end
(jmp [lp])

Disable interrupt
[di]

Restore the context of the next Task
[portRESTORE_CONTEXT]

Enable interrupt
[ei]

R01AN7130EJ0100
2023.10.27

Page 14 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) Function _vPortYield

The function _vPortYield is called when trap exception occurred. This function suspends the

task that was running before the trap exception occurred, determines the next task to execute,

and executes that task.

Figure 2-10 shows the flowchart of the function _vPortYield.

Figure 2-10 Flowchart of the function _vPortYield

(4) Function _trap_0

Function _trap_0 is a function to generate a trap exception.

start

Save the context of the current Task
[portSAVE_CONTEXT]

end
(eiret)

Select the next task to run
[vTaskSwitchContext]

Restore the context of the next Task
[portRESTORE_CONTEXT]

Disable interrupt
[di]

Enable interrupt
[ei]

R01AN7130EJ0100
2023.10.27

Page 15 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

2.2.3 portmacro.h

This file is a header file for the files port.asm and porting.c. In addition to prototype

declarations for functions in these files, there are macros to disable and enable interrupts, and

definitions used in FreeRTOS API functions.

R01AN7130EJ0100
2023.10.27

Page 16 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

2.2.4 contextop.h

This file contains the macro portSAVE_CONTEXT, which stores the context in the stack area,

and the macro portRESTORE_CONTEXT, which restores the context from the stack area.

(1) macro portSAVE_CONTEXT

Figure 2-11 shows the flowchart of macro portSAVE_CONTEXT.

This macro stores the values of the general-purpose registers, EIPC, EIPSW, and global

variable usCriticalNesting to the address in the minus direction from the stack area address

indicated by the stack pointer SP at the time this macro is called. Each value is stored in the

stack area in the order shown in Table 2-2.

Finally, this macro stores the value of the current stack pointer SP in the global variable

pxCurrentTCB.pxTopOfStack, which indicates the address of the current stack pointer.

Figure 2-11 Flowchart of the macro portSAVE_CONTEXT

start

Store R4 to R31 to stack area
[pushsp r4, r31]

end

Store EIPC to stack area

Store EIPSW to stack area

Store R1, R2 to stack area
[pushsp r1, r2]

Store usCriticalNesting value to stack area

Store R3(SP) value to
pxCurrentTCB.pxTopOfStack

R01AN7130EJ0100
2023.10.27

Page 17 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) macro portRESTORE_CONTEXT

Figure 2-12 shows the flowchart of macro portRESTORE_CONTEXT.

This macro obtains the value of the global variable usCriticalNesting, EIPSW, EIPC, and

general-purpose register values from the address in the stack area indicated by the obtained

stack pointer value to the address in the plus direction, and restores them to each register. Each

value is retrieved from the stack area in the order shown in Table 2-2.

Figure 2-12 Flowchart of the macro portRESTORE_CONTEXT

start

Restore R4 to R31 from stack area
[popsp r4, r31]

end

Restore EIPC from stack area

Restore EIPSW from stack area

Restore R1, R2 to stack area
[popsp r1, r2]

Restore usCriticalNesting value
from stack area

Get R3(SP) value from
pxCurrentTCB.pxTopOfStack

R01AN7130EJ0100
2023.10.27

Page 18 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

2.2.5 FreeRTOSConfig.h

FreeRTOS is customized through the FreeRTOSConfig.h file. Each FreeRTOS application

requires the FreeRTOSConfig.h header file. Table 2-3 below shows configuration information

for the sample program. For the contents of each definition, please refer to the FreeRTOS

official website.

Kernel > Developer Docs > FreeRTOSConfig.h: https://www.freertos.org/a00110.html

Table 2-3 Configuration parameters in FreeRTOS kernel (1/2)

Definition

Sample program

1
_

S
ta

ti
c

_

M
e
m

o
ry

2
_

D
y
n

a
m

ic
_

M
e
m

o
ry

3
_

R
o

u
n

d
_

R
o

b
in

_

S
c
h

e
d

u
li
n

g

4
_

P
re

e
m

p
ti

o
n

_

S
c
h

e
d

u
li
n

g

5
_

Q
u

e
u

e
_

M
a
n

a
g

e
m

e
n

t

6
_

B
in

a
ry

_

S
e
m

a
p

h
o

re
s

7
_

C
o

u
n

ti
n

g
_

S
e
m

a
p

h
o

re
s

8
_

M
u

te
x
e
s

9
_

G
a

te
k
e
e

p
e
r_

T
a
s
k
s

configUSE_COUNTING_SEMAPHORES 0 0 0 0 0 0 1 0 0

configSUPPORT_STATIC_ALLOCATION 1 0 0 0 0 0 0 0 0

configSUPPORT_DYNAMIC_ALLOCATION 0 1 1 1 1 1 1 1 1

configUSE_PREEMPTION 1

configUSE_IDLE_HOOK 1

configUSE_TICK_HOOK 0

configTICK_RATE_HZ (TickType_t) 1000

configMAX_PRIORITIES 4

configMINIMAL_STACK_SIZE (unsigned short) 128

configMAX_TASK_NAME_LEN 10

configUSE_TRACE_FACILITY 0

configUSE_16_BIT_TICKS 0

configIDLE_SHOULD_YIELD 0

configUSE_CO_ROUTINES 0

configUSE_MUTEXES 1

configCHECK_FOR_STACK_OVERFLOW 2

configUSE_RECURSIVE_MUTEXES 1

configQUEUE_REGISTRY_SIZE 0

configUSE_MALLOC_FAILED_HOOK 1

configUSE_QUEUE_SETS 0

configUSE_CO_ROUTINES 0

configMAX_CO_ROUTINE_PRIORITIES 2

configHEAP_CLEAR_MEMORY_ON_FREE 1

configUSE_TIMERS 1

configTIMER_TASK_PRIORITY configMAX_PRIORITIES - 1

configTIMER_QUEUE_LENGTH 5

configTIMER_TASK_STACK_DEPTH configMINIMAL_STACK_SIZE*2

https://www.freertos.org/a00110.html

R01AN7130EJ0100
2023.10.27

Page 19 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Table 2-3 Configuration parameters in FreeRTOS kernel (2/2)

Definition

Sample program

1
_

S
ta

ti
c

_

M
e
m

o
ry

2
_

D
y
n

a
m

ic
_

M
e
m

o
ry

3
_

R
o

u
n

d
_

R
o

b
in

_

S
c
h

e
d

u
li
n

g

4
_

P
re

e
m

p
ti

o
n

_

S
c
h

e
d

u
li
n

g

5
_

Q
u

e
u

e
_

M
a
n

a
g

e
m

e
n

t

6
_

B
in

a
ry

_

S
e
m

a
p

h
o

re
s

7
_

C
o

u
n

ti
n

g
_

S
e
m

a
p

h
o

re
s

8
_

M
u

te
x
e
s

9
_

G
a

te
k
e
e

p
e
r_

T
a
s
k
s

INCLUDE_vTaskPrioritySet 1

INCLUDE_uxTaskPriorityGet 1

INCLUDE_vTaskDelete 1

INCLUDE_vTaskCleanUpResources 0

INCLUDE_vTaskSuspend 1

INCLUDE_vTaskDelayUntil 1

INCLUDE_vTaskDelay 1

INCLUDE_eTaskGetState 1

configTOTAL_HEAP_SIZE (size_t) (8*1024)

configCPU_CLOCK_HZ (unsigned long) 400000000

R01AN7130EJ0100
2023.10.27

Page 20 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Section 3 Sample programs

This section describes sample programs. Table 3-1 shows the sample programs attached to this

application note.

The “Location” in Table 3-1 indicates the relative path from the folder

"CSP_Projects_U2B_RTOS" in the attached sample projects file.

Table 3-1 List of sample program

Title Location Refer to

Static memory in Memory
Management

samples/1_Static_Memory Section 3.1.1

Dynamic memory in Memory
Management

samples/2_Dynamic_Memory Section 3.1.2

 Scheduling in Task Management samples/3_Round_Robin_Scheduling Section 3.2.1

Preemption Scheduling in Task
Management

samples/4_Preemption_Scheduling Section 3.2.2

Queue Management samples/5_Queue_Management Section 3.3.1

Binary Semaphores in Interrupt
Management

samples/6_Binary_Semaphores Section 3.4.1

Counting Semaphores in Interrupt
Management

samples/7_Counting_Semaphores Section 3.4.2

Mutexes in Resource Management samples/8_Mutexes Section 3.4.3

Gatekeeper Tasks in Resource
Management

samples/9_Gatekeeper_Tasks Section 3.4.4

R01AN7130EJ0100
2023.10.27

Page 21 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.1 Memory Management

3.1.1 Static memory

3.1.1.1 Overview

This sample program demonstrates the steps to create two simple tasks using static memory.

Use the function xTaskCreateStatic to allocates memory for two tasks. Both tasks are created at

the same priority and execute an infinite loop.

3.1.1.2 Program

(1) API function

About description of the API functions of FreeRTOS used in this sample program, refer to the

FreeRTOS official site shown Table 3-2.

Table 3-2 API functions used in Static Memory program

Function name Description Link to FreeRTOS official site

xTaskCreateStatic Create a new task and add it to the list of
tasks that are ready to run. The RAM is
statically allocated at compile time.

https://www.freertos.org/xTaskCreat
eStatic.html

vTaskStartScheduler Starts the RTOS scheduler. https://www.freertos.org/a00132.ht
ml

https://www.freertos.org/xTaskCreateStatic.html
https://www.freertos.org/xTaskCreateStatic.html
https://www.freertos.org/a00132.html
https://www.freertos.org/a00132.html

R01AN7130EJ0100
2023.10.27

Page 22 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Main program (Function main in main.c)

The main function of this sample program uses the function xTaskCreateStatic to create two

tasks as Figure 3-1. The stack area and TCB area of the two tasks are allocated the variables

declared below as static variables. The size and assigned address of these variables are

determined at build time, so the stack area and TCB area of these tasks can be said to be static.

• static StackType_t Gx_Task1_stack[configMINIMAL_STACK_SIZE];

• static StaticTask_t Gx_Task1_TCB;

• static StackType_t Gx_Task2_stack[configMINIMAL_STACK_SIZE];

• static StaticTask_t Gx_Task2_TCB;

Figure 3-1 Flowchart of main of Static Memory program

start

Gear up system clock
[CLK_GearUp_SystemClocks]

Create "Task1"
stack: Gx_Task1_stack
TCB: Gx_Task1_TCB

priority: tskIDLE_PRIORITY+1
[xTaskCreateStatic]

Create "Task2"
stack: Gx_Task2_stack
TCB: Gx_Task2_TCB

priority: tskIDLE_PRIORITY+1
[xTaskCreateStatic]

Start Task scheduler
[vTaskStartScheduler]

Set P20 port ourput mode
[PIN_InitMonitorPort]

R01AN7130EJ0100
2023.10.27

Page 23 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) Main program for each task (Function Task1_main and Task2_main in main.c)

Figure 3-2 shows the main program flow for Task1 and Task2. After each task toggles the

monitor port, it sets arbitrary values in its own stack area and checks the set values.

Note 1. The monitor port of Task1 is P20_1.

 The monitor port of Task2 is P20_2.

Note 2. Task1 sets and checks 0x1111 1100, 0x1111 1101, 0x1111 1102, ... in its own stack area.

 Task2 sets and checks 0x2222 2200, 0x2222 2201, 0x2222 2202, ... in its own stack area.

Figure 3-2 Flowchart of each task of Static Memory program

start

Set value to stack area *2

Toggle monitor port *1

[PIN_ToggleMonitorPort]

Check value of stack area *2

R01AN7130EJ0100
2023.10.27

Page 24 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.1.1.3 Operation result

When this sample program runs, it can be seen that the stack areas for Task1 and Task2 are

allocated as variables Gx_Task1_stack and Gx_Task2_stack, respectively, and the TCB areas

for Task1 and Task2 are allocated as variables Gx_Task1_TCB and Gx_Task2_TCB in the

RAM area as Figure 3-3.

Figure 3-3 Memory allocation for Static Memory program

Figure 3-4 shows the memory map of Task1 and Task2 in this sample program.

The local variables variable_in_task1 and variable_in_task2 used in Task1 and Task2 are 312

bytes from 0xFE01 00C0 and 0xFE01 0310, respectively.

Figure 3-4 Memory allocation result for Static Memory program

Watch Value Type (Byte Size) Address

0xFE01049F

0xFE010250
0xFE01024F

0xFE010200
0xFE0101FF

0xFE010000

80 bytes

512 bytes

TCB of Task2
(Gx_Task2_TCB)

stack of Task2
(Gx_Task2_stack)

TCB of Task1
(Gx_Task1_TCB)

stack of Task1
(Gx_Task1_stack)

0xFE010450

0xFE01044F

0xFE010310

0xFE010447 variable_in_task2

312 bytes

80 bytes

512 bytes

0xFE0100C0

0xFE0101F7 variable_in_task1

312 bytes

R01AN7130EJ0100
2023.10.27

Page 25 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Figure 3-5 shows the operating waveforms of this sample program.

The meaning of each port are as follows.

• P20_0: Generation timing of the tick interrupt INTOSTM0TINT

• P20_1: Task1 toggles output level of this port before set and check into its

own stack area.

If the check result does not match, the output level of this port is

fixed.

• P20_2: Task2 toggles output level of this port before set and check into its

own stack area.

If the check result does not match, the output level of this port is

fixed.

If the values set in the stack areas of Task1 and Task2 are the expected values, the monitor port

will continue toggling. This indicates that the stack area value of each task is preserved even

when switching between Task1 and Task2 occurs.

Figure 3-5 Operation waveform of Static Memory program

Task2 is
Running

state

Task1 is
Running

state

R01AN7130EJ0100
2023.10.27

Page 26 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.1.2 Dynamic memory

3.1.2.1 Overview

To allocate memory dynamically, use the heap_4 for memory allocation, described in this

section.

The heap_4 uses a First Fit algorithm to allocate memory. The First Fit algorithm is an

algorithm that searches through the list of free spaces of memory, starting from the beginning

of the list, until it finds a free space that is large enough to accommodate the memory request

from the process.

The heap_4 combines adjacent free blocks of memory into a single larger block, which

minimizes the risk of memory fragmentation. The heap_4 should be used when the program

continuously creates/deletes tasks, Queues, etc.

Figure 3-6 Memory allocation image after deleting Task and creating Queue

Figure 3-6 shows how the heap_4 works, and memory is allocated and freed.

Step 1: The three tasks have been created.

Step 2: One of the tasks has been deleted. The large free space at the top of the array remains.

Step 3: The Queue has been created. As the heap_4 uses a First Fit algorithm, the system will

allocate RAM from the first free RAM block that is large enough to hold the Queue.

Step 4: The user allocates data. Since the user data is small enough, it fits in between the

Queue and the memory.

TCB

STACK

TCB

STACK

TCB

STACK

TCB

STACK

TCB

STACK

TCB

STACK

TCB

STACK

TCB

Queue

STACK

STACK

TCB

Queue

user data

TCB

Free space Free space Free space Free space

Free space
Free space

c
o
n
fi
g
T

O
T

A
L

_
H

E
A

P
_
S

IZ
E

Step 1 Step 2 Step 3 Step 4

R01AN7130EJ0100
2023.10.27

Page 27 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

This sample program demonstrates the steps to create three simple tasks using dynamic

memory. By using the function xTaskCreate in Table 3-3 it allocates memory for three tasks.

3.1.2.2 Program

(1) API function

About description of the API functions of FreeRTOS used in this sample program, refer to the

FreeRTOS official site shown Table 3-3.

Table 3-3 API functions used in Dynamic Memory program

Function name Description Link to FreeRTOS official site

xTaskCreate Create a new task and add it to the list of
tasks that are ready to run.

https://www.freertos.org/a00125.html

vTaskStartScheduler Starts the RTOS scheduler. https://www.freertos.org/a00132.html

vTaskDelete Remove a task from the RTOS kernels
management.

https://www.freertos.org/a00126.html

xQueueCreate Creates a new queue and returns a
handle by which the queue can be
referenced.

https://www.freertos.org/a00116.html

xQueueSend Post an item on a queue. The item is
queued by copy, not by reference.

https://www.freertos.org/a00117.html

xQueueReceive Receive an item from a queue. The item
is received by copy so a buffer of
adequate size must be provided.

https://www.freertos.org/a00118.html

https://www.freertos.org/a00125.html
https://www.freertos.org/a00132.html
https://www.freertos.org/a00126.html
https://www.freertos.org/a00116.html
https://www.freertos.org/a00117.html
https://www.freertos.org/a00118.html

R01AN7130EJ0100
2023.10.27

Page 28 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Main program (Function main in main.c)

The main function of this sample program uses the function xTaskCreate to create three tasks

as Figure 3-7. The function xTaskCreate creates stack areas and TCB areas for Task1, Task2,

and Task3 in the free space of the heap. Unlike function xTaskCreateStatic, the addresses of

each task's stack area and TCB area are determined after function xTaskCreate is executed.

Figure 3-7 Flowchart of main of Dynamic Memory program

start

Gear up system clock
[CLK_GearUp_SystemClocks]

Create "Task1"
stack depth: configMINIMAL_STACK_SIZE

priority: tskIDLE_PRIORITY+1
[xTaskCreate]

Create "Task2"
stack depth: configMINIMAL_STACK_SIZE

priority: tskIDLE_PRIORITY+1
[xTaskCreate]

Start Task scheduler
[vTaskStartScheduler]

Create "Task3"
stack depth: configMINIMAL_STACK_SIZE

priority: tskIDLE_PRIORITY+1
[xTaskCreate]

Set P20 port ourput mode
[PIN_InitMonitorPort]

R01AN7130EJ0100
2023.10.27

Page 29 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) Main program for Task2 (Function Task2_main in main.c)

Figure 3-8 shows the flowchat of the main function of Task2. When Task2 is executed for the

first time, Task2 deletes Task1 and creates Queue. After then, Task2 sends message to Queue

and receives the sent message from same Queue, and checks received message.

Note 1. TEST_SIZE is 66. This size depends on Task2's stack size.

Note 2. The monitor port of Task2 is P20_2.

Figure 3-8 Flowchart of Task2 of Dynamic Memory program

start

Is this Task called for
the first time?

No

Yes

Delete Task1
[vTaskDelete]

Create Queue
- depth: TEST_SIZE *1

- size: 32-bit
[xQueueCreate]

Send message to Queue
TEST_SIZE *1 times

[xQueueSend]

output high level to monitor port
[PIN_OutputHighMonitorPort]

output low level to monitor port
[PIN_OutputLowMonitorPort]

Receive message from Queue
TEST_SIZE *1 times

[xQueueSend]

Check recept message

R01AN7130EJ0100
2023.10.27

Page 30 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(4) Main program for Task1 and Task3 (Function Task1_main and Task3_main in main.c)

Figure 3-9 shows the main program flow for Task1 and Task3. After each task toggles the

monitor port, it sets arbitrary values in its own stack area and repeatedly checks the set values.

Note 1. The monitor port of Task1 is P20_1.

 The monitor port of Task3 is P20_3.

Note 2. Task1 sets and checks 0x1111 1100, 0x1111 1101, 0x1111 1102, ... in its own stack area.

 Task3 sets and checks 0x3333 3300, 0x3333 3301, 0x3333 3302, ... in its own stack area.

Figure 3-9 Flowchart of Task1 and Task3 of Dynamic Memory program

start

Set value to stack area *2

Toggle monitor port *1

[PIN_ToggleMonitorPort]

Check value of stack area *2

R01AN7130EJ0100
2023.10.27

Page 31 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.1.2.3 Operation result

By running this sample program, the RAM memory area will change to the following state over

time:

After creating three tasks

(A) in Figure 3-10 shows the address map after successfully creating three tasks.

After deleting Task1

(B) in Figure 3-10 shows that when the scheduling process starts, Task2 removed Task1 and

freed memory in TCB of Task1 and the stack of Task1.

After putting user data to Queue

(C) in Figure 3-10 shows the situation after creating a Queue and putting user data to Queue

by Task2. The block between the memory is allocated to the Queue and user data.

Figure 3-10 Memory allocation result for Dynamic Memory program

The address of each TCB and stack area can know the variable pxNewTCB in the function

xTaskCreate.

0xFE000ACF

0xFE000A80

0xFE000A73

0xFE000874

0xFE000867

0xFE000818

0xFE00080B

0xFE00060C

0xFE0005FF

0xFE0005B0

0xFE0005A3

0xFE0003A4

(A) After creating three Tasks

80 bytes

512 bytes

80 bytes

512 bytes

80 bytes

512 bytes

TCB of Task3

stack of Task3

TCB of Task2

stack of Task2

TCB of Task1

stack of Task1

(B) After creating three Tasks

0xFE000ACF

0xFE000A80

0xFE000A73

0xFE000874

0xFE000867

0xFE000818

0xFE00080B

0xFE00060C

0xFE0003A4

80 bytes

512 bytes

80 bytes

512 bytes

TCB of Task3

stack of Task3

TCB of Task2

stack of Task2

0xFE00060C

0xFE000ACF

0xFE000A80

0xFE000A73

0xFE000874

0xFE000867

0xFE000818

0xFE00080B

0xFE00060C

0xFE000368

0xFE0003AF

0xFE0004F3

(C) After putting user data to Queue

72 bytes

264 bytes

80 bytes

512 bytes

80 bytes

512 bytes

TCB of Task3

stack of Task3

TCB of Task2

stack of Task2

Queue

user data

R01AN7130EJ0100
2023.10.27

Page 32 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Figure 3-11 shows the operating waveforms of this sample program.

The meaning of each port are as follows.

• P20_0: Generation timing of the tick interrupt INTOSTM0TINT

• P20_1: Task1 toggles output level of this port before set and check into its

own stack area.

If Task1 is stopped, the output level of this port is fixed.

• P20_2: Task2 outputs high level to this port before sending message to

Queue.

Task2 outputs low level to this port before receiving message to

Queue.

If the check result does not match, the output level of this port is

fixed.

• P20_3: Task3 toggles output level of this port before set and check into its

own stack area.

If the check result does not match, the output level of this port is

fixed.

If the values set in the stack areas of Task1 and Task3 are the expected values, the monitor port

will continue toggling. This shows that the stack area value of each task is preserved even when

switching between Task1 and Task3 occurs.

Also, after Task2 starts for the first time, Task2 deletes Task1, so even if the next Tick interrupt

occurs, Task1 will not work.

After Task2 deletes Task1, it creates a Queue and sends and receives the Queue. If the received

message has the expected value, P20_2 continues toggling. All received messages are

temporarily held in the stack area within Task2, so the fact that P20_2 continues toggling

means that even if a switch between Task2 and Task3 occurs, the value of the stack area of

each task indicates that it is retained.

Figure 3-11 Operation waveform of Dynamic Memory program

R01AN7130EJ0100
2023.10.27

Page 33 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.2 Task Management

The most used algorithms in RTOS system are Round Robin Scheduling and Preemption

Scheduling. This section describes the operation of these two algorithms.

3.2.1 Round Robin Scheduling

3.2.1.1 Overview

Round Robin is a simple scheduling algorithm in which tasks with the same priority will run

alternately at regular intervals. These regular intervals are called time slices and are generated

by timer interrupts. This timer interrupt is called a tick interrupt.

The tick interrupt frequency is configured by the application-defined configTICK_RATE_HZ

compile-time configuration constant in FreeRTOSConfig.h.

This sample program generates Task1, Task2 with the same priority, and Task3 with a lower

priority than them, and check when each task enters the Running state.

Figure 3-12 shows the operation timing of this sample program. Since Task3 has a lower

priority than Tack1 and Task2, Task3 remains in Ready state until Task1 and Task2 complete

their processing. Task1 and Task2 alternately switch to Running state at the timing of a timer

interrupt.

This sample program uses INTOSTM0TINT as a tick interrupt, and the time slice is 1 ms.

Figure 3-12 Timing chart of Round Robin Scheduling program

Ready
state

Ready
state

Ready
state

Running
state

Running
state

Ready
state

Ready
state

Ready
state

Running
state

Running
state

Running
state

Timer interrupt signal
(INTOSTM0TINT)

Timer interrupt processing
(switching Task)

Task1
(Same priority as Task2)

Task2
(Same priority as Task1)

Task3
(Lower priority than Task1
and Task2)

Ready
state

time slice

R01AN7130EJ0100
2023.10.27

Page 34 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.2.1.2 Program

(1) API function

About description of the API functions of FreeRTOS used in this sample program, refer to the

FreeRTOS official site shown Table 3-4.

Table 3-4 API functions used in Round Robin Scheduling program

Function name Description Link to FreeRTOS official site

xTaskCreate Create a new task and add it to the list of
tasks that are ready to run.

https://www.freertos.org/a00125.html

vTaskStartScheduler Starts the RTOS scheduler. https://www.freertos.org/a00132.html

https://www.freertos.org/a00125.html
https://www.freertos.org/a00132.html

R01AN7130EJ0100
2023.10.27

Page 35 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Main program (Function main in main.c)

Figure 3-13 is the flowchart of the main program that creates Task1, Task2, and Task3.

After creating each task, the tick operation is started by setting and starting operation of

OSTM0 in the function vtaskstartScheduler.

Figure 3-13 Flowchart of main of Round Robin Scheduling program

start

Gear up system clock
[CLK_GearUp_SystemClocks]

Create "Task1"
stack depth: configMINIMAL_STACK_SIZE

priority: tskIDLE_PRIORITY+3
[xTaskCreate]

Create "Task2"
stack depth: configMINIMAL_STACK_SIZE

priority: tskIDLE_PRIORITY+3
[xTaskCreate]

Start Task scheduler
[vTaskStartScheduler]

Create "Task3"
stack depth: configMINIMAL_STACK_SIZE

priority: tskIDLE_PRIORITY+1
[xTaskCreate]

Set P20 port ourput mode
[PIN_InitMonitorPort]

R01AN7130EJ0100
2023.10.27

Page 36 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) Main program for each task (Function Task1_main, Task2_main, and Task3_main in main.c)

Figure 3-14 shows the flow of the main program of Task1, Task2, and Task3. These three

tasks differ in the ports they toggle. To observe that each task has become Running state, each

task toggles the output level of unique ports for each task.

Note 1. The monitor port of Task1 is P20_1.

 The monitor port of Task2 is P20_2.

 The monitor port of Task3 is P20_3.

Figure 3-14 Flowchart of each task of Round Robin Scheduling program

start

Toggle monitor port *1

[PIN_ToggleMonitorPort]

R01AN7130EJ0100
2023.10.27

Page 37 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.2.1.3 Operation result

Figure 3-15 shows the execution results of the sample program. The meaning of each port are

as follows.

• P20_0: Generation timing of the tick interrupt INTOSTM0TINT

• P20_1: Task1 operating state. The output level is toggle at the time of

Running state

• P20_2: Task2 operating state. The output level is toggle at the time of

Running state

• P20_3: Task3 operating state. The output level is toggle at the time of

Running state

Since Task1 and Task2 have the same priority, when a tick interrupt occurs at approximately

1ms intervals, Task1 and Task2 alternately transition to the execution state. Toggling the output

level of P20_1 indicates that Task1 is in the Running state, and toggling the output level of

P20_2 indicates that Task2 is in the Running state.

Task3 priority are less than Task1 and Task2 Task3 will never enter the Running state and the

output level of P20_3 will not toggle.

Figure 3-15 Operation waveform of Round Robin Scheduling program

Task2 is
Running state

Task1 is
Running state

R01AN7130EJ0100
2023.10.27

Page 38 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.2.2 Preemption Scheduling

3.2.2.1 Overview

Preemptive scheduling is the default scheduling algorithm in FreeRTOS. If multiple tasks exist,

the Task with the highest priority becomes the Running state. A Task with a lower priority will

not enter the Running state unless a Task with a higher priority enters the Blocked state or

Suspend state.

This sample program uses the function vTaskDelay to transition a high priority task to the

Blocked state, allowing lower priority tasks to operate.

Figure 3-16 shows the execution status of each task in preemption scheduling.

(1) After Task1 enters the Running state for the second time, Task1 executes the function

vTaskDelay at the end of processing to put itself in the Blocked state and request a task

switch.

(2) Task1, which has the highest priority, is in the Blocked state, so Task2, which has the next

highest priority, is in the Running state.

(3) Task2 executes the function vTaskDelay at the end of processing to put itself into a

Blocked state and request a task switch.

(4) Since Task1 and Task2 with the highest priority are in the Blocked state, Task3 with the

lowest priority is in the Running state.

(5) During the processing of Task3, Task1 returned from the suspended state, so Task1 goes

into the Running state at the next tick interrupt.

Figure 3-16 Timing chart of Preemption Scheduling program

Execute vTaskDelay

Execute vTaskDelay

Blocked
state

Ready
state

Running
state

Ready
state

Blocked
state

Ready
state

Running
state

Running
state

Running
state

Ready
state

Ready
state

Running
state

Timer interrupt signal
(INTOSTM0TINT)

Timer interrupt processing
(switching Task)

Task1
(High priority)

Task2
(Lower priority than Task1)

Task3
(Lower priority than Task2)

time slice

(1) (2) (3) (4) (5)

R01AN7130EJ0100
2023.10.27

Page 39 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.2.2.2 Program

(1) API function

About description of the API functions of FreeRTOS used in this sample program, refer to the

FreeRTOS official site shown Table 3-5.

Table 3-5 API functions used in Preemption Scheduling program

Function name Description Link to FreeRTOS official site

xTaskCreate Create a new task and add it to the list of
tasks that are ready to run.

https://www.freertos.org/a00125.html

vTaskStartScheduler Starts the RTOS scheduler. https://www.freertos.org/a00132.html

vTaskDelay Delay a task for a given number of ticks. https://www.freertos.org/a00127.html

https://www.freertos.org/a00125.html
https://www.freertos.org/a00132.html
https://www.freertos.org/a00127.html

R01AN7130EJ0100
2023.10.27

Page 40 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Main program (Function main in main.c)

Figure 3-17 is the flowchart of the main program that creates Task1, Task2, and Task3. The

difference from the Round Robin sample program is that each task has a different priority.

Figure 3-17 Flowchart of main of Preemption Scheduling program

start

Gear up system clock
[CLK_GearUp_SystemClocks]

Create "Task1"
stack depth: configMINIMAL_STACK_SIZE

priority: tskIDLE_PRIORITY+3
[xTaskCreate]

Create "Task2"
stack depth: configMINIMAL_STACK_SIZE

priority: tskIDLE_PRIORITY+2
[xTaskCreate]

Start Task scheduler
[vTaskStartScheduler]

Create "Task3"
stack depth: configMINIMAL_STACK_SIZE

priority: tskIDLE_PRIORITY+1
[xTaskCreate]

Set P20 port ourput mode
[PIN_InitMonitorPort]

R01AN7130EJ0100
2023.10.27

Page 41 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) Main program for Task1 and Task2 (Function Task1_main, Task2_main in main.c)

After toggling the port output for a certain period, Task1 and Task2 execute the function

vTaskDelay to transition itself to the Blocked state. The only difference between Task1 and

Task2 is the port they toggle and the duration of the Blocked state. Figure 3-18 is the

flowchart of the main program of Task1 and Task2.

Note 1. The monitor port of Task1 is P20_1.

 The monitor port of Task2 is P20_2.

Note 2. Blocked state period of Task1 is 3 ticks.

 Blocked state period of Task2 is 4 ticks.

Figure 3-18 Flowchart of Task1 and Task2 of Preemption Scheduling program

(4) Main program for Task3 (Function Task3_main in main.c)

To ensure that Task3 is in the Running state, Task3 repeatedly toggles the output level of

P20_3.

start

Loop until reaching 600μs time

Toggle monitor port *1

[PIN_ToggleMonitorPort]

end of loop

Enter Blocked state in X ticks *2

[vTaskDelay]

Output low level to monitor port *1

[PIN_OutputLowMonitorPort]

R01AN7130EJ0100
2023.10.27

Page 42 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.2.2.3 Operation result

Figure 3-19 shows the execution result of sample program for preemption scheduling. The

meaning of each port are as follows.

• P20_0: Generation timing of the tick interrupt INTOSTM0TINT

• P20_1: Task1 operating state. The output level is toggle at the time of

Running state

• P20_2: Task2 operating state. The output level is toggle at the time of

Running state

• P20_3: Task3 operating state. The output level is toggle at the time of

Running state

Task1 toggles the output level of P20_1 for 600µs. After that, P20_1 remains at the Low output

because Task1 remains in the Blocked state until the third tick interrupt occurs due to the

execution of the function vTaskDelay.

Since task 1 is in the blocked state, task 2, which has the next highest priority after task 1,

transitions to the running state. Similar to Task1, Task2 toggles the output level of P20_2 for

600and then becomes into a Blocked state until the fourth tick interrupt occurs.

Since both Task1 and Task2 are in Blocked state, Task3 transitions to Running state and

toggles the output level of P20_3.

Figure 3-19 Operation waveform of Preemption Scheduling program

Task2 is
Running state (600µs)

Task1 is
Running state (600µs)

Task1 is
Blocked state (3 ticks)

Task2 is
Blocked state (4 ticks)

Task3 is
Running state

R01AN7130EJ0100
2023.10.27

Page 43 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.3 Queue Management

3.3.1 Queue operation

3.3.1.1 Overview

This sample program creates one Queue and three tasks, Task1, Task2, and Task3. Task2 and

Task3 send data to the Queue, and Task1 receives data from the Queue.

The sample program creates Queue using function xQueueCreate. The Queue holds data items

of type uint32_t, which is an unsigned long type.

Task2 and Task3 send data to the Queue using function xQueueSend after a delay of 4 ticks.

This delay is used to ensure that Task3, which receives data from the Queue, is kept waiting

while the Queue is empty.

As shown Figure 3-20, Task1 transitions to the Blocked state when it requests to receive data

from the Queue using the function xQueueReceive. As soon as the data arrives in the Queue,

the Blocked state is released and Task1 can read the data in the Queue.

Figure 3-20 Timing chart of Queue program

Blocked
state

Blocked
state

Blocked
state

Blocked
state

Ready
state

Timer interrupt signal
(INTOSTM0TINT)

Task1
(1st priority)

Task2
(2nd priority)

Task3
(3rd priority)

Blocked
state

Ready
state

Blocked
state

xQueueReceive

vTaskDelay with 4 ticks

vTaskDelay with 4 ticks

...

xQueueSend

xQueueSend

Blocked
state

Blocked
state

Blocked
state

Running
state

Running
state

Running
state

Running
state

Running
state

Running
state

Running
state

...

...

...

Data arrival to Queue

1st 2nd 3rd 4th

R01AN7130EJ0100
2023.10.27

Page 44 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.3.1.2 Program

(1) API function

About description of the API functions of FreeRTOS used in this sample program, refer to the

FreeRTOS official site shown Table 3-6.

Table 3-6 API functions used in Queue program

Function name Description Link to FreeRTOS official site

xTaskCreate Create a new task and add it to the list of
tasks that are ready to run.

https://www.freertos.org/a00125.html

vTaskStartScheduler Starts the RTOS scheduler. https://www.freertos.org/a00132.html

xQueueCreate Creates a new queue and returns a
handle by which the queue can be
referenced.

https://www.freertos.org/a00116.html

xQueueSend Post an item on a queue. The item is
queued by copy, not by reference.

https://www.freertos.org/a00117.html

xQueueReceive Receive an item from a queue. The item
is received by copy so a buffer of
adequate size must be provided.

https://www.freertos.org/a00118.html

https://www.freertos.org/a00125.html
https://www.freertos.org/a00132.html
https://www.freertos.org/a00116.html
https://www.freertos.org/a00117.html
https://www.freertos.org/a00118.html

R01AN7130EJ0100
2023.10.27

Page 45 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Main program (Function main in main.c)

Figure 3-21 is the flowchart of the main program that creates one Queue and three tasks. The

Task that receives data from the Queue, Task1, has a higher priority than the two tasks that

send data to the Queue, Task2 and Task3.

Figure 3-21 Flowchart of main of Queue program

start

Gear up system clock
[CLK_GearUp_SystemClocks]

Create "Task1" for receiving data from
Queue

priority: tskIDLE_PRIORITY+3
[xTaskCreate]

Create "Task2" for sending data to Queue
priority: tskIDLE_PRIORITY+2

[xTaskCreate]

Start Task scheduler
[vTaskStartScheduler]

Create "Task3" for sending data to Queue
priority: tskIDLE_PRIORITY+1

[xTaskCreate]

Set P20 port ourput mode
[CLK_GearUp_SystemClocks]

Create Queue as "Gx_queue"
- length: 1
- size: 32-bit

[xQueueCreate]

R01AN7130EJ0100
2023.10.27

Page 46 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) Main program for Task1 (Function Task1_main in main.c)

Figure 3-22 is the flowchart of the main program of Task1. Task1 receives data from the

Queue and checks the received data. If the received data is the data sent by Task2, outputs

P20_2 to low level, and if the received data is the data sent by Task3, outputs P20_3 to low

level.

Figure 3-22 Flowchart of Task1 of Queue program

No

start

output high level to P20_1
[PIN_OutputHighMonitorPort]

Receive data from Queue
with portMAX_DELAY

[xQueueReceive]

Received data =
sent data by Task2?

output low level to P20_2
[PIN_OutputLowMonitorPort]

Yes

Received data =
sent data by Task3?

output low level to P20_3
[PIN_OutputLowMonitorPort]

output low level to P20_1
[PIN_OutputLowMonitorPort]

No

R01AN7130EJ0100
2023.10.27

Page 47 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(4) Main program for Task2 and Task3 (Function Task2_main and Task3_main in main.c)

Figure 3-23 is the flowchart of the main program of Task2 and Task3. After outputting high

level to P20_2 and P20_3 respectively, Task2 and Task3 execute the function vTaskDelay to

transition itself to the Blocked state. After returning from the Blocked state after 4 ticks, these

tasks send the data to the Queue.

Note 1. The monitor port of Task2 is P20_2.

 The monitor port of Task3 is P20_3.

Note 2. Task2 sends 0x5A5A5A5A to Queue.

 Task3 sends 0xA5A5A5A5 to Queue.

Figure 3-23 Flowchart of Task2 and Task3 of Queue program

start

output high level to monitor port *1

[PIN_OutputHighMonitorPort]

Enter Blocked state in 4 ticks
[vTaskDelay]

send data *2 to the Queue
[xQueueSend]

R01AN7130EJ0100
2023.10.27

Page 48 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.3.1.3 Operation result

Figure 3-24 shows the execution result of sample program for Queue operation. The meaning

of each port are as follows.

• P20_0: Generation timing of the tick interrupt INTOSTM0TINT

• P20_1: Task1 makes this port a high level output before executing the

function xQueueReceive.

Task1 makes this port to a low level after receiving Queue data.

• P20_2: Task2 makes this port a high level output before transition to Blocked

state.

When Task1 receives the Queue data sent by Task2, Task1 sets this

port to a low level.

• P20_3: Task3 makes this port a high level output before sending data to

Queue.

When Task1 receives the Queue data sent by Task3, Task1 sets this

port to a low level.

Figure 3-24 Operation waveform of Queue program

(A) (B)

(A)

(B)
(1) (2) (3)

(4) (7) (8)(5) (6) (9)

R01AN7130EJ0100
2023.10.27

Page 49 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(A) in Figure 3-24

(1) Task1 executes the function xQueueReceive after setting P20_1 to High level output. This

causes Task1 to transition to the Blocked state.

(2) Since Task1 is in the Blocked state, Task2, which has the next highest priority after

Task1, will be executed. Task2 executes the function vTaskDelay after outputing P20_2

to high level. This causes Task2 to transition to the Blocked state.

(3) Since Task1 an Task2 are in the Blocked state, Task3 will be executed. Task3 executes

the function vTaskDelay after outputing P20_3 to High level. This causes Task3 to

transition to the Blocked state.

(B) in Figure 3-24

(4) After the 4th INTOSTM0TINT occurs after Task2 goes to Blocked state, Task2

transitions to Running state and sends data to the Queue. Since the data has arrived in the

Queue, Task1 returns from the Blocked state. Task1 checks the received Queue data, and

since the data was the data sent by Task2, it outputs P20_2 to low level.

(5) Task1 sets P20_1 to low level, then to high level, and executes the function

xQueueReceive again. This causes Task1 to transition to the Blocked state.

(6) After the task switch processing from (5), Task2, which has the next highest priority,

becomes Running state. After Task2 outputs P20_2 to high level, it executes the function

vTaskDelay and transitions to Blocked state.

(7) After the 4th INTOSTM0TINT occurs after Task3 enters the Blocked state, Task3

transitions to the Running state and sends data to the Queue. Since the data has arrived in

the Queue, Task1 returns from the Blocked state. Task1 checks the received Queue data,

and since that data was the data sent by Task3, it outputs P20_3 to low level.

(8) Same as (5).

(9) After the task switch processing from (8), Task3, which has the next highest priority,

becomes Running. After Task3 outputs P20_3 to high level, it executes the function

vTaskDelay and transitions to Blocked state.

R01AN7130EJ0100
2023.10.27

Page 50 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4 Resource Management

3.4.1 Binary Semaphores

3.4.1.1 Overview

This sample program uses Binary Semaphore to synchronize Task and interrupt processing by

releasing a blocked Task using ISR. TAUD2 ch.0 is used as ISR.

Use the function xSemaphoreCreateBinary to create one Binary Semaphore and use the

function xTaskCreate to create one Task, Task1.

Task1 uses the function xSemaphoreTake to take a Semaphore with a timeout of 3 ticks. Also,

use the function xSemaphoreGive in the INTTAUD2I0 interrupt handler to release the Binary

Semaphore.

Figure 3-25 shows the case where no Semaphore is given because no TAUD2 ch.0 interrupt

occurs.

Figure 3-25 Timing chart of Binary Semaphore program when Semaphore is not

released

vTaskDelay
with 5 ticks

Blocked
state

Blocked
state

Timer interrupt signal
(INTOSTM0TINT)

Task1
(1st priority)

xSemaphoreTake

Running
state

Running
state

wait for 3 ticks

TAUD interrupt signal
(INTTAUD2I0)

(no occur)

R01AN7130EJ0100
2023.10.27

Page 51 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Figure 3-26 shows the case where Semaphore is given by TAUD2 ch.0 interrupt processing.

Figure 3-26 Timing chart of Binary Semaphore program when Semaphore is

released

There is a difference between Figure 3-25 and Figure 3-26, as shown by the red arrow in

these figure.

In case Figure 3-25, Task1 remains Blocked state until a timeout period of 3 ticks elapses

after the function xSemaphoreTake executes.

In case Figure 3-26, since Semaphore is released by the INTTAUD2I0 interrupt handler,

Task1 can take Semaphore and transition to Running state.

wait for 1.5 ticks

vTaskDelay
with 5 ticks

Blocked
state

Blocked
state

Timer interrupt signal
(INTOSTM0TINT)

Task1
(1st priority)

xSemaphoreTake
after TAUD2 start

Running
state

Running
state

TAUD interrupt
signal
(INTTAUD2I0)

Blocked
state

xSemaphoreTake

Running
state

Running
state

TAUD interrupt
processing

xSemaphoreGiveFromISR

R01AN7130EJ0100
2023.10.27

Page 52 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.1.2 Program

(1) API function

About description of the API functions of FreeRTOS used in this sample program, refer to the

FreeRTOS official site shown Table 3-7.

Table 3-7 API functions used in Binary Semaphore program

Function name Description Link to FreeRTOS official site

xTaskCreate Create a new task and add it to
the list of tasks that are ready to
run.

https://www.freertos.org/a00125.html

vTaskStartScheduler Starts the RTOS scheduler. https://www.freertos.org/a00132.html

xSemaphoreCreateBinary Creates a binary semaphore, and
returns a handle by which the
semaphore can be referenced.

https://www.freertos.org/xSemaphore
CreateBinary.html

xSemaphoreTake Macro to obtain a semaphore. https://www.freertos.org/a00122.html

xSemaphoreGiveFromISR Macro to release a semaphore.
This macro can be used from an
ISR.

https://www.freertos.org/a00124.html

https://www.freertos.org/a00125.html
https://www.freertos.org/a00132.html
https://www.freertos.org/xSemaphoreCreateBinary.html
https://www.freertos.org/xSemaphoreCreateBinary.html
https://www.freertos.org/a00122.html
https://www.freertos.org/a00124.html

R01AN7130EJ0100
2023.10.27

Page 53 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Main program (Function main in main.c)

Figure 3-27 is the flowchart of the main program that creates one Binary Semaphore and one

task. TAUD2 ch.0, which releases Semaphore, starts by Task1, so main function only performs

the initial settings for TAUD2 ch.0, and do not start it.

Figure 3-27 Flowchart of main of Binary Semaphore program

start

Gear up system clock
[CLK_GearUp_SystemClocks]

Create "Task1" for taking Semaphore
priority: tskIDLE_PRIORITY+1

[xTaskCreate]

Start Task scheduler
[vTaskStartScheduler]

Set P20 port ourput mode
[PIN_InitMonitorPort]

Create Binary Semaphore as
"Gx_tx_semaphore"

[xSemaphoreCreateBinary]

Configure TAUD2 ch.0
- mode: Interval timer function
- compare value: 1.5 ticks
- interrupt: release mask
- timer out pin: P22_0

[Config_TAUD]

R01AN7130EJ0100
2023.10.27

Page 54 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) Main program for Task1 (Function Task1_main in main.c)

Figure 3-28 is the flowchart of the main program of Task1. After setting P20_1 to high level

output, Task1 starts the TAUD2 counter if the number of executions of Task1's loop processing

is an even number. After that, Task1 requests to take the Semaphore regardless of the number

of executions of Task1's loop processing. After the Semaphore is given or the timeout period of

3 ticks has elapsed, sets P20_1 to low level output and then execute the function vTaskDelay

for 5 ticks.

Figure 3-28 Flowchart of Task1 of Binary Semaphore program

start

output high level to P20_1
[PIN_OutputHighMonitorPort]

Take Semaphore with timeout 3 ticks
[xSemaphoreTake]

output low level to P20_1
[PIN_OutputLowMonitorPort]

Enter Blocked state in 5 ticks
[vTaskDelay]

Increment the number of executions of
Task1's loop processing

Nothe number of
executions of Task1's
loop is even number?

Yes

Start counter of TAUD2

R01AN7130EJ0100
2023.10.27

Page 55 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(4) ISR processing (Function Intfunc_INTTAUD2I0 in main.c)

Figure 3-29 is the flowchart of the program for INTTAUD2I0 interrupt. This program outputs

the TAUD2O0 pin to low level after stopping the TAUD2 counter. Then take the Semaphore

and switches task using the portYIELD_FROM_ISR function.

Figure 3-29 Flowchart of ISR of Binary Semaphore program

start

Release Semaphore
[xSemaphoreGiveFromISR]

Switch task
[portYIELD_FROM_ISR]

Stop counter of TAUD2
[TAUD_StopCount]

Output low level to TAUD2O0 pin

R01AN7130EJ0100
2023.10.27

Page 56 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.1.3 Operation result

Figure 3-30 and Figure 3-31 show the operation result of this sample program. The meaning

of each port are as follows:

• P20_0: Generation timing of the tick interrupt INTOSTM0TINT

• P20_1: When Task1 is in a Blocked state to request Semaphore, this port is a

high level output.

When Task1 is in a Blocked state due to execute function

vTaskDelay, this port is a low level output.

(1) If the Semaphore is not released

Figure 3-30 shows the execution results of a sample program focusing on the timing when

INTTAUD2I0 does not occur.

Since INTTAUD2I0 is not raised, the function xSemaphoreGive is not executed and Task1 is in

Blocked state until the function xSemaphoreTake times out. This period is about 3ms from (1)

to (2) in Figure 3-30.

Figure 3-30 Operation waveform of Binary Semaphore program when Semaphore

is not released

(1) After setting P20_1 to high level output, Task1 requests the Semaphore take with the

timeout of 3 ticks by using the function xSemaphoreTake, and transitions to the Blocked

state. Since the initial state of Semaphore after creation is in an empty state, Task1 cannot

obtain the Semaphore at this time.

(2) After the third tick interrupt occurs from (1), Task1 returns from the Blocked state to the

Running state. After that, Task1 transitions to the Blocked state for 5 ticks using the

function vTaskDelay after setting P20_1 to low level output..

(3) After the fifth tick interrupt occurs from (2), Task1 returns from the Blocked state to the

Running state.

(1) (2) (3)

R01AN7130EJ0100
2023.10.27

Page 57 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) If the Semaphore is released

Figure 3-31 shows the execution results of a sample program focusing on the timing when

INTTAUD2I0 releases the Semaphore to Task1. The handling of the INTTAUD2I0 interrupt

that occurs 1.5 ticks after Task1 requests the Semaphore executes the function

xSemaphoreGive.

The difference with Figure 3-30 and Figure 3-31 is that in Figure 3-30 it takes 3 ticks

between (1) and (2), while in Figure 3-31 it takes 1.5ms between (3) and (4).

Figure 3-31 Operation waveform of Binary Semaphore program when Semaphore

is released

(3) After setting P20_1 to high level output, Task1 requests the Semaphore take with the

timeout of 3 ticks by using the function xSemaphoreTake, and transitions to the Blocked

state.

(4) When the INTTAUD2I0 interrupt occurs, the function xSemaphoreGive is executed in the

INTTAUD2I2 interrupt proessing. After that, Task1 transitions to Running state.

Task1 transitions to the Blocked state for 5 ticks using the function vTaskDelay after

making P20_1 a low level output.

(5) After the fifth tick interrupt occurs from (2), Task1 returns from the Blocked state to the

Running state and becomes the state shown in (1) of Figure 3-30.

(5)(3) (4)

R01AN7130EJ0100
2023.10.27

Page 58 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.2 Counting Semaphores

3.4.2.1 Overview

This sample program uses the Counting Semaphore that is incremented by the ISR to

synchronize the Task and interrupt processing by changing the flow of the Task when the value

of Counting Semaphore reaches a certain value. TAUD2 ch.0 is used as ISR.

Use the function xSemaphoreCreateBinary to create one Counting Semaphore and use the

function xTaskCreate to create one task, Task1.

When the INTTAUD2I0 interrupt occurs, increment the value of Counting Semaphore in the

INTTAUD2I0 interrupt handler.

Task1 uses the function uxSemaphoreGetCount to get the value of Counting Semaphore. If the

obtained value is less than or equal to 4, execute the function vTaskDelay for 1 tick. If it is 5 or

more, execute the function vTaskDelay for 5 ticks.

Task2 repeats the transition between the Running state and the Blocked state for 2 ticks.

Figure 3-32 shows the operation timing of this sample program. Counting Semaphore is

incremented by INTTAUD2I0 interrupt processing, and when the value of Counting

Semaphore becomes 4 or more, the period of Blocked state of Task1 changes to 5 ticks.

Figure 3-32 Timing chart of Counting Semaphore program

Blocked
state

Blocked
state

Timer interrupt signal
(INTOSTM0TINT)

Task1
(1st priority)

Running
state

1 tick delay due to count <= 4

TAUD interrupt signal
(INTTAUD2I0)

Running
state

TAUD interrupt
processing

value of Counting
Semaphore

3

Running
state

4

Running
state

5

Running
state

6

Running
state

7

Running
state

8

Blocked
state

Running
state

Blocked
state

Running
state

Running
state

9

Running
state

10

Running
state

5 tick delay due to count > 4

R01AN7130EJ0100
2023.10.27

Page 59 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.2.2 Program

(1) API function

About description of the API functions of FreeRTOS used in this sample program, refer to the

FreeRTOS official site shown Table 3-8.

Table 3-8 API functions used in Counting Semaphore program

Function name Description Link to FreeRTOS official site

xTaskCreate Create a new task and add it to
the list of tasks that are ready to
run.

https://www.freertos.org/a00125.html

vTaskStartScheduler Starts the RTOS scheduler. https://www.freertos.org/a00132.html

xSemaphoreCreateCounting Creates a counting semaphore
and returns a handle by which
the newly created semaphore
can be referenced.

https://www.freertos.org/CreateCounti
ng.html

xSemaphoreGiveFromISR Macro to release a semaphore.
This macro can be used from an
ISR.

https://www.freertos.org/a00124.html

uxSemaphoreGetCount Returns the count of a
semaphore.

https://www.freertos.org/uxSemaphor
eGetCount.html

https://www.freertos.org/a00125.html
https://www.freertos.org/a00132.html
https://www.freertos.org/CreateCounting.html
https://www.freertos.org/CreateCounting.html
https://www.freertos.org/a00124.html
https://www.freertos.org/uxSemaphoreGetCount.html
https://www.freertos.org/uxSemaphoreGetCount.html

R01AN7130EJ0100
2023.10.27

Page 60 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Main program (Function main in main.c)

Figure 3-33 is the flowchart of the main program that creates one Counting Semaphore and

one task. After creating the Counting Semaphore and task, start the TAUD2 ch.0 counter and

the scheduler.

Figure 3-33 Flowchart of main of Counting Semaphore program

start

Gear up system clock
[CLK_GearUp_SystemClocks]

Create "Task1" for taking Semaphore
priority: tskIDLE_PRIORITY+2

[xTaskCreate]

Start Task scheduler
[vTaskStartScheduler]

Set P20 port ourput mode
[PIN_InitMonitorPort]

Create Counting Semaphore as
"Gx_tx_semaphore"

[xSemaphoreCreateCounting]

Configure TAUD2 ch.0
- mode: Interval timer function
- compare value: 1.0 ticks
- interrupt: release mask
- timer out pin: P22_0

[Config_TAUD]

Start TAUD2 counter
[TAUD_StartCount]

R01AN7130EJ0100
2023.10.27

Page 61 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) Main program for Task1 (Function Task1_main in main.c)

Figure 3-34 is the flowchart of the main program for Task1. After setting P20_1 to high level

output, Task1 gets the value of Counting Semaphore, and changes the pulse pattern of P20_1

and the delay value of vTaskDelay according to the got value.

Figure 3-34 Flowchart of Task1 of Counting Semaphore program

start

output high level to P20_1
[PIN_OutputHighMonitorPort]

output low pulse to P20_1
[PIN_OutputLowMonitorPort,
PIN_OutputHighMonitorPort]

Novalue of Counting
Semaphore <= 4

Yes

Get value of Counting Semaphore
[uxSemaphoreGetCount]

Enter Blocked state in 1 tick
[vTaskDelay]

Enter Blocked state in 5 ticks
[vTaskDelay]

output low level to P20_1
[PIN_OutputLowMonitorPort]

R01AN7130EJ0100
2023.10.27

Page 62 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(4) ISR processing (Function Intfunc_INTTAUD2I0 in main.c)

Figure 3-35 is the flowchart of the program for the INTTAUD2I0 interrupt. This program

increments the value of Counting Semaphore, gets the value of Semaphore, and outputs it to the

port. Then switches Task using the portYIELD_FROM_ISR function.

Figure 3-35 Flowchart of ISR of Counting Semaphore program

start

Switch task
[portYIELD_FROM_ISR]

Increment Counting Semaphore
[xSemaphoreGiveFromISR]

Get value of Counting Semaphore
and

Output got value to P20_7-4

R01AN7130EJ0100
2023.10.27

Page 63 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.2.3 Operation result

Figure 3-36 shows the execution result of this sample program.

It can be seen that when the Count value is 5 or more, the waveform pattern of P20_1 output by

Task1 has changed.

Figure 3-36 Operation waveform of Counting Semaphore program

About Figure 3-36, The rising edge and falling edge of TAUD2O0 indicates the occurrence

timing of an INTTAUD2I0 interrupt. When the INTTAUD2I0 interrupt occurs, the value of

Counting Semaphore is incremented by 1.

(1) Task1 sets P20_1 to high level output, then uses the function uxSemaphoreGetCount to

get the value of Counting Semaphore and checks the obtained value. At this time, the

value of Counting Semaphore was 0, so after outputting a low pulse to P20_1, Task1

transitions to the Blocked state for 1 tick using the function vTaskDelay.

(2) After the first tick interrupt occurs from (1), Task1 returns from the Blocked state to the

Running state. After that, get the value of Counting Semaphore in the same way as in (1)

and check the obtained value. At this time, the value of Counting Semaphore was 1, so

after outputting a low pulse to P20_1, Task1 transitions to the Blocked state for 1 tick

using the function vTaskDelay.

(3) Get the value of Counting Semaphore in the same way as in (1) and check the obtained

value. As a result, the value of Counting Semaphore was 4, so after outputting a low level

to P20_1, Task1 transitions to the Blocked state for 5 ticks using the function vTaskDelay.

(1) (2) (3)

R01AN7130EJ0100
2023.10.27

Page 64 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.3 Mutexes

3.4.3.1 Overview

This sample program shows how two tasks can take exclusive control of a hardware resource

using Mutex.

Two tasks attempt to obtain the Mutex using the function xSemaphoreTake before using shared

hardware resources. If the Task obtained the shared hardware resources.

In this sample program, the shared hardware resource is RLIN30. Task that obtained the Mutex

uses RLIN30 to send messages specific to each task.

After the sending process is complete, use the function xSemaphoreGive to release the Mutex.

Figure 3-37 shows an image where two tasks use a shared resource exclusively using a

Mutex. Shared resources can only be accessed by the Task that has obtained the Mutex. After

using a shared resource, Task can release the Mutex and other tasks can obtain the Mutex.

(1) Obtain Mutex

(2) Task1 uses shared resource

(1) Return Mutex

Figure 3-37 Image of exclusive access using Mutex

Shared
Resource

Cannot access

Cannot access

Mutex Task1

Task2

Shared
Resource

Can access

Cannot access

Task1

Task2

Task1 obtained Mutex

Mutex

Shared
Resource

Cannot access

Cannot access

Mutex Task1

Task2

R01AN7130EJ0100
2023.10.27

Page 65 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.3.2 Program

(1) API function

About description of the API functions of FreeRTOS used in this sample program, refer to the

FreeRTOS official site shown Table 3-9.

Table 3-9 API functions used in Mutex program

Function name Description Link to FreeRTOS official site

xTaskCreate Create a new task and add it to the
list of tasks that are ready to run.

https://www.freertos.org/a00125.html

vTaskStartScheduler Starts the RTOS scheduler. https://www.freertos.org/a00132.html

xSemaphoreCreateMutex Creates a mutex, and returns a
handle by which the created mutex
can be referenced.

https://www.freertos.org/CreateMutex.
html

xSemaphoreTake Macro to obtain a semaphore. https://www.freertos.org/a00122.html

xSemaphoreGive Macro to release a semaphore. https://www.freertos.org/a00123.html

vTaskDelay Delay a task for a given number of
ticks.

https://www.freertos.org/a00127.html

https://www.freertos.org/a00125.html
https://www.freertos.org/a00132.html
https://www.freertos.org/CreateMutex.html
https://www.freertos.org/CreateMutex.html
https://www.freertos.org/a00122.html
https://www.freertos.org/a00123.html
https://www.freertos.org/a00127.html

R01AN7130EJ0100
2023.10.27

Page 66 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Main program (Function main in main.c)

Figure 3-38 is the flowchart of the main program that creates one Mutex and two tasks. Set

RLIN30 to UART mode within this program. Task1 and Task2 both execute the function

Tasks_main. However, the value of the parameter *pvParameters, which is the message sent by

RLIN30 with this function, is different between Task1 and Task2.

Figure 3-38 Flowchart of main of Mutex program

start

Gear up system clock
[CLK_GearUp_SystemClocks]

Create "Task1"
function: Tasks_main
parameter: "Task1 show the value"
priority: tskIDLE_PRIORITY+1

[xTaskCreate]

Create "Task2"
function: Tasks_main
parameter: "Task2 show the value"
priority: tskIDLE_PRIORITY+1

[xTaskCreate]

Start Task scheduler
[vTaskStartScheduler]

Create Mutex as "Gx_mutex"
[xSemaphoreCreateMutex]

Initial setting RLIN30 as UART
communication

- pin: P02_6 (RLIN30TX)
- clock: X1=20MHz

CLK_RLIN3=CLK_MOSC/4
- communication format

baudrate : 115,200bps
no parity, 1 stop bit, LSB fitst,
8-bit data length

[InitialSettingUART]

Set P20 port ourput mode
[PIN_InitMonitorPort]

R01AN7130EJ0100
2023.10.27

Page 67 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) Main program for Task1 and Task2 (Function Task1_main and Task2_main in main.c)

Figure 3-39 is the flowchart of the main program of each task.

When one task obtained the Mutex, it outputs a message to RLIN30, then releases the Mutex.

To check which Task is holding the Mutex, P20_1 will be output at high level while Task1 is

holding the Mutex, and P20_2 will be output at high level while Task2 is holding the Mutex.

Figure 3-39 Flowchart of each task of Mutex program

start

Take Mutex Gx_mutex
[xSemaphoreTake]

Increment the number of executions of this
loop processing

transmit message
[COM_printf]

Give Mutex Gx_mutex
[xSemaphoreGive]

output high level to delicated port
(P21_1=high: Task1 execute this program,
P21_2=high: Task2 execute this program)

output low level to delicated port
(P21_1=low: Task1 execute this program,
P21_2=low: Task2 execute this program)

Enter Blocked state in 1 ticks
[vTaskDelay]

R01AN7130EJ0100
2023.10.27

Page 68 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.3.3 Operation result

(1) In case of using Mutex for exclusive control

Figure 3-40 shows the message sent by RLIN30 as a result of running this sample program. It

can be seen that messages sent by Task1 and messages sent by Task2 are displayed alternately.

Figure 3-40 Operation log of Mutex program

R01AN7130EJ0100
2023.10.27

Page 69 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Figure 3-41 shows the output status of P20_1 and P20_2 when this sample program is

executed. The meaning of each port are as follows:

• P20_0: Generation timing of the tick interrupt INTOSTM0TINT

• P20_1: While Task1 holds Mutex and outputs a message on RLIN30, this

port is a high level output.

• P20_2: While Task2 holds Mutex and outputs a message on RLIN30, this

port is a high level output.

Since the high pulses of P20_1 and P20_2 appear alternately without overlapping, it can be

seen that Task1 and Task2 hold the Mutex alternately.

Figure 3-41 Operation waveform of Mutex program

Task1 holds Mutex Task2 holds Mutex Task1 holds Mutex Task2 holds Mutex

R01AN7130EJ0100
2023.10.27

Page 70 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) In case of not using Mutex for exclusive control

As shown in Figure 3-42, delete the Mutex take and give descriptions from the function

Tasks_main and try running a program in which two tasks execute one program without

exclusive control by Mutex.

In this sample program, if you comment out USE_MUTEX defined in main.c, the flow will be

Figure 3-42.

Figure 3-42 Flowchart of each task of Mutex program without using Mutex

start

Take Mutex Gx_mutex
[xSemaphoreTake]

Increment the number of executions of this
loop processing

transmit message
[COM_printf]

Give Mutex Gx_mutex
[xSemaphoreGive]

output high level to delicated port
(P21_1=high: Task1 execute this program,
P21_2=high: Task2 execute this program)

output low level to delicated port
(P21_1=low: Task1 execute this program,
P21_2=low: Task2 execute this program)

Enter Blocked state in 1 ticks
[vTaskDelay]

remove

remove

R01AN7130EJ0100
2023.10.27

Page 71 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Figure 3-43 shows the message sent by RLIN30 as a result of running the sample program

without exclusive control by Mutex. It can be seen that the messages sent by Task1 and the

messages sent by Task2 are mixed.

Figure 3-43 Operation log of Mutex program that does not use Mutex

NOTE

If the UART communication time is short compared to the Tich interrupt cycle, the

message will be displayed normally because the task will not be switched during the

processing of each task.

Depending on the following conditions, the message may be displayed correctly.

• UART baud rate

• Message length

• Value of vTaskDelay after sending message

• Tick interrupt cycle

• others

R01AN7130EJ0100
2023.10.27

Page 72 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Use waveforms to analyze the phenomenon where the messages sent by Task1 and the

messages sent by Task2 are mixed.

Figure 3-44 shows the output status of P20_1 and P20_2 when running the sample program

without exclusive control by Mutex. The high level output of P20_1 and P20_2 overlap

indicates that the task is switched while RLIN30 is sending a message.

Figure 3-44 Operation waveform of Mutex program that does not use Mutex

(1) Task1 starts sending message.

(2) After 1 tick has passed, the scheduler suspends the processing of Task1, and Task2 starts

sending message.

(3) After 1 tick has elapsed, the scheduler suspends the processing of Task2, and Task1

resumes sending message.

(4) After 1 tick has elapsed, the scheduler suspends the processing of Task1, and Task2

resumes sending message.

(5) After completing sending the message, Task1 will be in the Blocked state until the next

tick with vTaskDelay. At this time, Task2 transitions to Running state and resumes

sending message.

(6) When the next tick interrupt occurs, the scheduler suspends the processing of Task2, and

Task1 starts sending the next message.

(1) (5) (6)(2) (3) (4) (3)

Task1
outputs

message

Task2
outputs

message

Task1
outputs

message

Task2
outputs

message

Task1
outputs

message

Task2
outputs

message

R01AN7130EJ0100
2023.10.27

Page 73 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.4 Gatekeeper Tasks

3.4.4.1 Overview

This sample program shows how two tasks can use one hardware resource via a Gatekeeper

Task.

Only one task can use shared hardware resources. The only task that has the right to use shared

hardware resources is called the Gatekeeper Task. This sample program uses RLIN30 as a

shared hardware resource.

Queue is used to send/receive data between each task and Gatekeeper Task. Each task writes

messages to the Queue to send. The Gatekeeper Task monitors the Queue and transmits the

message on RLIN30 when a message arrives on the Queue.

Figure 3-45 shows two tasks sending messages via the Gatekeeper Task. RLIN30, which is a

shared resource, can only be accessed by Gatekeeper Task, so exclusive control by Mutex or

Semaphore is not required.

Figure 3-45 Image of messages transmission via Gatekeeper Task

transmitreceive

Task1

Task2

Shared
Resource
(RLIN30)

T
a

s
k
1

m
e

s
s
a

g
e

T
a

s
k
2

m
e

s
s
a

g
e

T
a

s
k
1

m
e

s
s
a

g
e

T
a

s
k
2

m
e

s
s
a

g
e

Queue

Gatekeeper Task

send

send

R01AN7130EJ0100
2023.10.27

Page 74 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.4.2 Program

(1) API function

About description of the API functions of FreeRTOS used in this sample program, refer to the

FreeRTOS official site shown Table 3-10.

Table 3-10 API functions used in Gatekeeper Task program

Function name Description Link to FreeRTOS official site

xQueueCreate Creates a new queue and returns a handle
by which the queue can be referenced.

https://www.freertos.org/a00116.h
tml

xTaskCreate Create a new task and add it to the list of
tasks that are ready to run.

https://www.freertos.org/a00125.h
tml

vTaskStartScheduler Starts the RTOS scheduler. https://www.freertos.org/a00132.h
tml

xQueueSendToBack Post an item to the back of a queue. https://www.freertos.org/xQueueS
endToBack.html

vTaskDelay Delay a task for a given number of ticks. https://www.freertos.org/a00127.h
tml

xQueueReceive Receive an item from a queue. https://www.freertos.org/a00118.h
tml

https://www.freertos.org/a00116.html
https://www.freertos.org/a00116.html
https://www.freertos.org/a00125.html
https://www.freertos.org/a00125.html
https://www.freertos.org/a00132.html
https://www.freertos.org/a00132.html
https://www.freertos.org/xQueueSendToBack.html
https://www.freertos.org/xQueueSendToBack.html
https://www.freertos.org/a00127.html
https://www.freertos.org/a00127.html
https://www.freertos.org/a00118.html
https://www.freertos.org/a00118.html

R01AN7130EJ0100
2023.10.27

Page 75 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(2) Main program (Function main in main.c)

Figure 3-46 is the flowchart of the main program that creates one Queue and three tasks.

Gatekeeper Task is created using the function xTaskCreate like Task1 and Task2.

Set RLIN30 to UART mode within this program.

Task1 and Task2 both execute the function Tasks_main. Gatekeeper Task executes the function

GatekeeperTask_main.

Figure 3-46 Flowchart of main of Gatekeeper Task program

start

Gear up system clock
[CLK_GearUp_SystemClocks]

Create "Task1"
function: Tasks_main
parameter: 0 (index of Gptr_message[])
priority: tskIDLE_PRIORITY+1

[xTaskCreate]

Create "Task2"
function: Tasks_main
parameter: 1 (index of Gptr_message[])

priority: tskIDLE_PRIORITY+1
[xTaskCreate]

Start Task scheduler
[vTaskStartScheduler]

Create Queue as "Gx_queue"
[xQueueCreate]

Initial setting RLIN30 as UART
communication

- pin: P02_6 (RLIN30TX)
- clock: X1=20MHz

CLK_RLIN3=CLK_MOSC/4
- communication format

baudrate : 115,200bps
no parity, 1 stop bit, LSB fitst,
8-bit data length

[InitialSettingUART]

Set P20 port ourput mode
[PIN_InitMonitorPort]

Create "Gatekeeper"
function: GatekeeperTask_main
parameter: NULL
priority: tskIDLE_PRIORITY+0

[xTaskCreate]

R01AN7130EJ0100
2023.10.27

Page 76 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(3) Main program for Task1 and Task2 (Function Task1_main and Task2_main in main.c)

Figure 3-47 is the flowchart of the main program of each task.

Each Task attempts to send a message to the Queue after setting its corresponding monitor port

to high level output. If the Queue is full, Task will wait until it is no longer full.

After finishing sending messages to the Queue, set the monitor port to low level output and

execute the function vTaskDelay to switch tasks.

Figure 3-47 Flowchart of each task of Gatekeeper Task program

start

Send message to the Queue
[xQueueSendToBack]

output high level to delicated port
(P21_1=high: Task1 execute this program,
P21_2=high: Task2 execute this program)

output low level to delicated port
(P21_1=low: Task1 execute this program,
P21_2=low: Task2 execute this program)

Enter Blocked state in 1 ticks
[vTaskDelay]

R01AN7130EJ0100
2023.10.27

Page 77 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

(4) Main program for Gatekeeper Task (Function GatekeeperTask_main in main.c)

Figure 3-48 is the flowchart of the Gatekeeper Task main program.

The Gatekeeper Task waits until a message arrives on the Queue.

When a message arrives at the Queue, Gatekeeper Task transmits the message via RLIN30 after

setting P20_3 to high level output.

After the transmission is complete, Gatekeeper Task sets P20_3 to low level output and wait for

the next message to arrive in the Queue.

Figure 3-48 Flowchart of Gatekeeper Task of Gatekeeper Task program

start

Wait for a message to arrive from Queue
[xQueueReceive]

output high level to P20_3
[PIN_OutputHighMonitorPort]

transmit message
[COM_printf]

output low level to P20_3
[PIN_OutputLowMonitorPort]

R01AN7130EJ0100
2023.10.27

Page 78 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

3.4.4.3 Operation result

Figure 3-49 shows the message sent by RLIN30 as a result of running this sample program. It

can be seen that messages sent by Task1 and messages sent by Task2 are displayed alternately.

Figure 3-49 Operation log of Gatekeeper Task program

R01AN7130EJ0100
2023.10.27

Page 79 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

Figure 3-50 shows the operation timing of each task when this sample program is executed.

P20_1 and P20_2 show the timing of sending messages to the Queue of Task1 and Task2,

respectively, and P20_3 shows the timing of transmitting messages using RLIN30 by

Gatekeeper Task.

The meaning of each port are as follows:

• P20_0: Generation timing of the tick interrupt INTOSTM0TINT

• P20_1: When Task1 tries to transmit message to Queue, this port is a high

level output.

When Task1 completed to transmit message to Queue, this port is a

low level output.

• P20_2: When Task2 tries to transmit message to Queue, this port is a high

level output.

When Task2 completed to transmit message to Queue, this port is a

low level output.

• P20_3: When Gatekeeper Task received transmit message from Queue, this

port is a high level output.

When Gatekeeper Task completed to transmit message by RLIN30,

this port is a low level output.

Figure 3-50 Operation waveform of Gatekeeper Task program

The continued high level output at (2) in P20_1, and at (1) and (4) in P20_2 indicates that when

the Queue becomes full, Task2 and Task1 are waiting until there is space in the Queue.

The negative edge of (3) and (5) in P20_3 indicates that the Gatekeeper Task has finished

transmitting one message. After this, the Gatekeeper Task will receive the messages from the

Queue, so there will be space in the Queue.

When the Queue become not full, Task2 sends a message to the Queue at timing (3), and Task1

sends a message to the Queue at timing (5).

(1) (2) (3) (4) (5)

R01AN7130EJ0100
2023.10.27

Page 80 of 82

đ

á

H

8

5

0

/

U

2

B

2

4

a

d

How to implement FreeRTOS RH850/U2B Group

REVISION HISTORY

Revision Description Date

Rev.1.00 New release 2023.10.27

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of

these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or

other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;

undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims

any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is

inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not

limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products

are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,

injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety

design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging

degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Contact information

For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property of their

respective owners.

© 2023 Renesas Electronics Corporation. All rights reserved.

http://www.renesas.com/
http://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on
the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the
products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation.

Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control

must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static

electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external

reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the

states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the

power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be

generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices

must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to power supply or GND via a resistor if

there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to

related specifications governing the device.

5. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when

the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

6. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

7. Power ON/OFF sequence

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power

supply

after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the

internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the

device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence

must be judged separately for each device and according to related specifications governing the device.

	RH850/U2B Group How to implement FreeRTOS
	Section 1 Overview
	1.1 Overview of this application note

	Section 2 How to port FreeRTOS
	2.1 Preparation before installing FreeRTOS
	2.1.1 Downloading FreeRTOS for Porting
	2.1.2 Folder structure
	2.1.3 Project organization
	(1) platform\third-party
	(2) platform\drivers
	(3) samples
	(4) CS+ project folder of each sample program

	2.2 Make driver program and configuration of the FreeRTOS kernel
	2.2.1 porting.c
	(1) Function pxPortInitialiseStack
	(2) Function xPortStartScheduler

	2.2.2 portasm.asm
	(1) Function _Intfunc_INTOSTM0TINT
	(2) Function _vPortStart
	(3) Function _vPortYield
	(4) Function _trap_0

	2.2.3 portmacro.h
	2.2.4 contextop.h
	(1) macro portSAVE_CONTEXT
	(2) macro portRESTORE_CONTEXT

	2.2.5 FreeRTOSConfig.h

	Section 3 Sample programs
	3.1 Memory Management
	3.1.1 Static memory
	3.1.1.1 Overview
	3.1.1.2 Program
	(1) API function
	(2) Main program (Function main in main.c)
	(3) Main program for each task (Function Task1_main and Task2_main in main.c)

	3.1.1.3 Operation result

	3.1.2 Dynamic memory
	3.1.2.1 Overview
	3.1.2.2 Program
	(1) API function
	(2) Main program (Function main in main.c)
	(3) Main program for Task2 (Function Task2_main in main.c)
	(4) Main program for Task1 and Task3 (Function Task1_main and Task3_main in main.c)

	3.1.2.3 Operation result

	3.2 Task Management
	3.2.1 Round Robin Scheduling
	3.2.1.1 Overview
	3.2.1.2 Program
	(1) API function
	(2) Main program (Function main in main.c)
	(3) Main program for each task (Function Task1_main, Task2_main, and Task3_main in main.c)

	3.2.1.3 Operation result

	3.2.2 Preemption Scheduling
	3.2.2.1 Overview
	3.2.2.2 Program
	(1) API function
	(2) Main program (Function main in main.c)
	(3) Main program for Task1 and Task2 (Function Task1_main, Task2_main in main.c)
	(4) Main program for Task3 (Function Task3_main in main.c)

	3.2.2.3 Operation result

	3.3 Queue Management
	3.3.1 Queue operation
	3.3.1.1 Overview
	3.3.1.2 Program
	(1) API function
	(2) Main program (Function main in main.c)
	(3) Main program for Task1 (Function Task1_main in main.c)
	(4) Main program for Task2 and Task3 (Function Task2_main and Task3_main in main.c)

	3.3.1.3 Operation result

	3.4 Resource Management
	3.4.1 Binary Semaphores
	3.4.1.1 Overview
	3.4.1.2 Program
	(1) API function
	(2) Main program (Function main in main.c)
	(3) Main program for Task1 (Function Task1_main in main.c)
	(4) ISR processing (Function Intfunc_INTTAUD2I0 in main.c)

	3.4.1.3 Operation result
	(1) If the Semaphore is not released
	(2) If the Semaphore is released

	3.4.2 Counting Semaphores
	3.4.2.1 Overview
	3.4.2.2 Program
	(1) API function
	(2) Main program (Function main in main.c)
	(3) Main program for Task1 (Function Task1_main in main.c)
	(4) ISR processing (Function Intfunc_INTTAUD2I0 in main.c)

	3.4.2.3 Operation result

	3.4.3 Mutexes
	3.4.3.1 Overview
	3.4.3.2 Program
	(1) API function
	(2) Main program (Function main in main.c)
	(3) Main program for Task1 and Task2 (Function Task1_main and Task2_main in main.c)

	3.4.3.3 Operation result
	(1) In case of using Mutex for exclusive control
	(2) In case of not using Mutex for exclusive control

	3.4.4 Gatekeeper Tasks
	3.4.4.1 Overview
	3.4.4.2 Program
	(1) API function
	(2) Main program (Function main in main.c)
	(3) Main program for Task1 and Task2 (Function Task1_main and Task2_main in main.c)
	(4) Main program for Gatekeeper Task (Function GatekeeperTask_main in main.c)

	3.4.4.3 Operation result

	REVISION HISTORY

