RE N ESAS Application Note

RH850/U2A-EVA Group
Startup Application Note

Introduction

This application note describes the Startup processing on RH850/U2A (hereinafter referred to as U2A)
series in the automotive single chip microcomputer by Renesas Electronics.

Aim of this document and software is to provide supplemental information for the function on RH850/U2A. It
is not intended to implement in the design for mass production.

There is no guarantee to update in this document and software to reflect the latest manual, errata, technical
update and development environment. You are fully responsible for the incorporation or any other use of the
information of this document in the design of your product or system, and please refer to latest manual, errata,
technical update and development environment.

Target device
e RHB850/U2A-EVA Group
» RHB850/U2A16
» RH850/U2A8
» RH850/U2A6

Target integrated development environment
CS+ (by Renesas Electronics Corporation)
Version : v.8.07.00

Device file : R7F702300.DVF
: R7F702301.DVF
: R7F702302.DVF

MULTI (by Green Hills Software)

Product : IDE for V800
Version : 2021.1.5(v 7.1.6)
Target : VB0OO/RH850

Device file : R7F702300.DVF
: R7F702301.DVF
: R7F702302.DVF

EXEC file : ExecG3G4_ V10500

In the case of MULTI, some directory names depend on the version, etc. of MULTI. If the version etc. is
different, please replace it accordingly.

Reference Document
RH850/U2A-EVA Group User’'s Manual: Hardware

The Hardware User’'s Manual provides information about functional and electrical behavior of the
device. At the release time of this application note the following manual version
available:RH850/U2A-EVA User’s Manual(Rev.1.20): RO1UH0864EJ0120

R0O1AN4751EJ0110 Rev.1.10 Page 1 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

Contents
L. OVBIVIBW ...ttt ettt 3
Ll N O O e 3
A O L TP P PP PPTPTT RSP 4
2 S - Y (8 o I = =1 F= L 0= N 1= OO PPESPR 4
P S 1< 1] o o IS 1o P PSP TP PPPPROPTPN 5
b R S T= Tox 1 o TS Y=Y 11T 1Y/ 11 1 o o PSRRI 7
2.3 SEAITUD PrOCESSING ...ceiiuttiiieitiite et eee ettt e ettt e e st e e sk et e e sk e et e sk b e e e e sbbe e e e s sbn et e s nbe et e s anbreeesannneee s 8
2.3.1 Definition of the conditional assembly control iINStrUCHIONSccceviviiiiiiieeee e 8
R B O V< - | I 1RO PP 10
2.3.3 ProCESS ROULINESoiiiiiiiiiieiiiiie ettt ettt e e e e e e e et e e e nnne e e e nnnns 12
2.3.4 Details Of EACH PrOCESScii ittt a e e e e e e e e e st eeeee e s 15
2.3.4.1 Power-On (RESET INtEITUPLS) ..ccceeei i, 15
2.3.4.2 INIIAliZING REGISTEIS.ttt ettt e e e 16
2.3.4.3 CloCK Gearup SetliNgS.....cccciiiiiieiei e 18
2.3.4.4 Module Standby SettiNgSccooiiiiiiiiiiie e 19
2.345 ENADING PEL~3 ... ettt ettt n e 20
2.3.4.6 INItIAlIZING RAM ATASooiiiiiiiei ittt ettt ettt e e et e e e nnbe e e e e naens 21
2.3.4.7 Timing Synchronization (PEO~PE3) ... 23
2.3.4.8 Setting Interrupt Handler AAArESSveviiiiiiieeiee e 24
2.3.4.9 Setting EaCh POINEr......ccooiiiie 25
2.3.4.00 SettiNg RAM ATCESooiiiiiiiiie ettt ettt et e e ettt e e e s bt e e et e e e e nnbe e e e e aanns 26
2.3.4.11 Setting COPIOCESSONcceeei e 27
2.3.4.12 Calling a Main Function of User APPlICAtION...........coiiiiiiiiiieeiiiee e 27
C J /1 1 R I PSPPSR 28
3.1 Startup RelAted FlES........oi i e 28
3.2 SEttNQ SECHOMNSuuuiiiiiiiiiii s 29
3.2.1 Section Setting MEthOcooiiiiiii e e 30
3.3 STAITUP PrOCESSING . .uuuuiiiiiii s 32
TR I8 A @ 1V =T - | 01 SO PRRR 32
3.3.2 PrOCESS ROULINESviiiiiitiie ettt ettt et e e et e e et e e s e e e e nnnes 34
3.3.3 Details Of EACH PrOCESSii ittt e e e e e e e e e e s et e eeeeeeen 37
3.3.3.1 Power-On (RESET INTEITUPLS).....cuuuiiiiiieeie ittt iee ettt e et e e e e e e e e nnbaeeeeaae e e e nnnnes 37
3.3.3.2 INItIAliZING REGISIEIS.eiiiiiiieie ettt et e et e et e e e e enees 38
3.3.3.3 ClOCK GRAIUP SELLINGS . .. uuteteteteeeiiititteee e e e e e ettt et e e e e e s bbbt e e e e e e e e aannbeeeeeaaeeaaannbeneeaaeeeaaanne 40
3.3.3.4 Module Standby SettiNgSoooiiiiiiiiiii e 41
3.3.3.5 ENADING PEL 3 .. ittt ettt ettt b e b nab e ab e b e ab e 42
3.3.3.6 INIIAliZING RAM AFASoieiiiiiiiei ittt ettt e et e e rn e e e st e e e e nnbee e e e nneeas 43
3.3.3.7 Timing Synchronization (PEO ™ 3)cou ettt e e 45
3.3.3.8 Setting Interrupt Handler AAArESSvvvii it a7
3.3.3.9 Initializing EACH POINTEISciiiiiiiiiiieee ettt e e e e e e e e anees 49
3.3.3.10 SEttiNG COPIOCESSON ...vviieiitiieeeiititeeeritete e e sttt e e e sbe e e e e abe e e e s asbe e e e e snbeeeeessbeeeeeanbeeeeaanbeeeeennnees 50
3.3.3.11 Calling a Main Function of User AppliCatioNcooiiiiiiiiiiae e 50
RO1AN4751EJ0110 Rev.1.10 Page 2 of 50

Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

1. Overview
Startup processing is the processing from Power-on till calling user applications.

This application note is for the startup processing in the integrated development environment, CS+ Note 1hy
Renesas Electronics Corporation and MULTI by Green Hills Software.

11 Note
RHB850/U2A series contains multi cores and number of CPU depend on the products.

RH850/U2A16 implement 4 CPUs and RH850/U2A8 and U2A6 implement 2 CPUs. CPU2 (PE2), CPU3
(PE3) are not implemented in RH850/U2A8 and U2A6.

This application note is for the startup processing on RH850/U2A16. In the case of RH850/U2A8 or U2A6,
CPU2 (PE2), CPU3 (PE3) processing is not applicable.

Note 1 Former known as CubeSuite+.

R0O1AN4751EJ0110 Rev.1.10 Page 3 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

2. CS+

This chapter describes each Startup processing in using CS+.

2.1 Startup Related Files
Table 2.1 indicates the list of relevant files to Startup.

Table 2.1 Startup Related File List in CS+

File Directory Description

1 boot.asm Project root / Startup routine for boot loader

2 cstart0O~3.asm Project root /PE0~ 3/ Startup routine for user applications (each PE)
3 vecttblo~3.asm | Project root /PEO~ 3/ Vector table (each PE)

4 main0~3.c Project root/PEO0~ 3/ Main processing (each PE)

In this project, PEO and PEL1 refer to vecttbl0.asm, and PE2 and PES3 refer to vecttbl2.asm. Vecttbll.asm
and vecttbl3.asm are unused. In the case of dividing the vector table referred by each PE, change the
reference address of the Reset Vector PEXx register.

RO1AN4751EJ0110 Rev.1.10 Page 4 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

2.2 Setting Sections
Table 2.2 and Table 2.3 indicates the examples of main sections related to Startup.

Table 2.2 Startup Related File List in CS+(Part.1)

| Project Section ‘ Allocate data

1 | Common Part RESET_PEO~3 RESET vector

2 (Main Project) EIINTTBL_PEO~3 | El level interrupt vector table for table reference method
3 text Program code (boot.asm)

4 | PEO .const Read only data

5 | (Sub Project) INIT_DSEC.const | Initialization table for sections with initial value

6 INIT_BSEC.const Initialization table for sections without initial value
7 text.cmn Passing data between boot.asm and cstat0.asm
8 text Program code (cstart0.asm/main0.c)

9 .data Data with initial value (ROM)

10 .data.R Data with initial value (RAM)

11 .bss Data without initial value

12 .stack.bss Stack

13 | PE1 .const Read only data

14 | (Sub Project) INIT_DSEC.const | Initialization table for sections with initial value

15 INIT_BSEC.const Initialization table for sections without initial value
16 text.cmn Passing data between boot.asm and cstatl.asm
17 text Program code (cstartl.asm/mainl.c)

18 .data Data with initial value (ROM)

19 .data.R Data with initial value (RAM)

20 .bss Data without initial value

21 .stack.bss Stack

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

Page 5 of 50
RENESAS

RH850/U2A-EVA Group

Startup Application Note

Table 2.3 Startup Related Sections in CS+ (Part 2)

| Project Section ‘ Allocate data

22 | PE2 .const Read only data

23 | (Sub Project) INIT_DSEC.const | Initialization table for sections with initial value
24 INIT_BSEC.const Initialization table for sections without initial value
25 text.cmn Passing data between boot.asm and cstat2.asm.
26 text Program code (cstart2.asm/main2.c)

27 .data Data with initial value (ROM)

28 .data.R Data with initial value (RAM)

29 .bss Data without initial value

30 .stack.bss Stack

31 | PES .const Read only data

32 | (Sub Project) INIT_DSEC.const | Initialization table for sections with initial value
33 INIT_BSEC.const Initialization table for sections without initial value
34 text.cmn Passing data between boot.asm and cstat3.asm.
35 text Program code (cstart3.asm/main3.c)

36 .data Data with initial value (ROM)

37 .data.R Data with initial value (RAM)

38 .bss Data without initial value

39 .stack.bss Stack

Depending on each device or project, the name may be different, some sections may not be needed, or
other sections may be needed. For details of the sections, refer to the user manuals of CS+ and devices.

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

Page 6 of 50

RENESAS

RH850/U2A-EVA Group Startup Application Note

2.2.1 Section Setting Method

The following describes a method of specifying or adding a section in a program in the assembly and C
languages.

+ Assembly language

.section SectionName SectionType (These spaces are essential.)
Section Name: Specify the name of section.

Section Type: Specify a relocation attribute.

-C language

.pragma section [Section Type] [Section Name]

Section Type: Specify the relocation attribute.

Section Name: Specify the name of section.

Main relocation attributes are indicated in Table 2.4 below. For the other relocation attributes, refer to the
user's manual for CS+.

Table 2.4 Main Relocation Attributes

Relocation Default section
attributes
1 Program code is located in .text section.
2 rO_disp32 .data The data with initial value is located in .data section.
3 const .const The read only data is located in .const section.
4 default - All the settings are cleared to return to the default section.

The created section can be referred with "xxx.relocation attributes".

For example, if the section name is newsection and relocation attribute is text, it will be newsection.text.

RO1AN4751EJ0110 Rev.1.10 Page 7 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

2.3 Startup Processing

2.3.1 Definition of the conditional assembly control instructions

Table 2.5 and Table 2.6 indicates the definition of the instructions for conditional assembly controls. These
instructions for conditional assembly controls are defined in boot.asm

Table 2.5 Definition List of the Conditional Assembly Control Instructions (Part.1)
De 0 ame alue De ptIo

1 ENABLE_PE1 BY_PEO Define PE1 as enable/disable. Enabling PE is to be
executed in PEO.

The default value is 1(Enable PE1).

0 Disables PE1
1 Enables PE1
2 ENABLE_PE2_BY_PEO Define PE2 as enable/disable. Enabling PE is to be

executed in PEO.
The default value is 1(Enable PE2).

0 Disables PE2
1 Enables PE2
3 ENABLE_PE3 _BY_PEO Define PE3 as enable/disable. Enabling PE is to be

executed in PEO.
The default value is 1(Enable PE3).

0 Disables PE3
1 Enables PE3
4 USE_TABLE_REFERENCE_METHOD As an interrupt vector method, define table reference

method as used/unused.

The default value is 1(Use a table reference method).

0 Does not use a table reference method as an
interrupt vectoring method.

1 Uses a table reference method as an interrupt
vectoring method.

5 ENABLE_CLOCK_GEARUP Define clock gearup as executed/unexecuted. Clock
gearup is to be executed in PEO.

The default value is 1(Clock gearup is executed).

0 Clock Gearup is not executed

Clock Gearup is executed

R0O1AN4751EJ0110 Rev.1.10 Page 8 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

Table 2.6 Definition List of the Conditional Assembly Control Instructions (Part.2)

6 ENABLE_MODULE_STANDBY_SET Define module standby settings as

executed/unexecuted (Enable/disable clock supply to
each function to be used)

The default value is O(Module standby setting is not

executed).
0 Module standby setting is not executed.
1 Module standby setting is executed.
RO1AN4751EJ0110 Rev.1.10 Page 9 of 50

Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

2.3.2 Overall Flow
Figure 2.1 and Figure 2.2 indicates the overall flow for the startup process in CS+Notel,

Start

L4

PowerOn
(RESET Intermupts)

Y

Register Initialization

Target CPU isPED
YES

Clock gear up Setiing*

r
Module standby Seting'*%

Y

Enabling PE1%Y

r
Enabling PE2V¥

k4

Enabling PE3"#7

r

Inifialization BAM areas

TF

1

%1 : Only if 1 is set to ENABLE_CLOCK_GEARUP.
%2 : Only if 1 is set to ENABLE_MODULE_STANDBY.
%3 : Only if 1 is set to ENABLE_PE1_BY_PEQ.

%4 : Only if 1 is set to ENABLE_PE2_BY_PEQ.
%5 : Only if 1 is set to ENABLE_PE3_BY_PEQ.

Figure 2.1 Overall Flow of Startup in CS+ (Part.1)

Notel |nitial state (initially stopped or active state) of initially stopped core is selected by debug tool. For the details of
debugging for initially stopped core, please refer to User’s manual and Additional documents for emulator, and User’s
manual and help for the emulator debugger.

R0O1AN4751EJ0110 Rev.1.10 Page 10 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

FED

FES

'

Timing Svochronization
betwesn PE] and PE1#

Timing Svnchronization
betwesn PEZ and PEJ ¥4

¥

¥

Timineg Eynchronization
batwzen FE] 2nd PRI

L

Timineg Eynchronization
bebwaen PE3 and PE(Q#Y

*3:
%4
X5
X6 :

Timing Svochronization
betwz=n FED and FE2#4

Timing Svnchronization

batween PE2 and PE1# 084

¥

Timineg Eynchronization
batween FE] and FEZ# ' 84

¥

k

Timins Svochmonization
between PED and PET#"

Timing Svnchmonization
between PED and PE3 0T

¥

Timinz Svnchronization
batween PEI and PEF® " #7

Timinz Svnchronization
betwaen FE3 and FEZ #4 &7

!

Satting Intermpt Handler ad dress' #*

Satting FAN area

L

S etting Coprocessor

'

Calling mein fenction of 2 wser application

Only if 1 is set to ENABLE_PE1_BY_PEO.

Only if 1 is set to ENABLE_PE2_BY_PEO.

Only if 1 is set to ENABLE_PE3_BY_PEO.
Only if 1 is set to USE_TABLE_REFERENCE_METHOD.

Figure 2.2 Overall Flow of Startup in CS+ (Part.2)

RO1AN4751EJ0110 Rev.1.10

Jan. 31. 2022

RENESAS

Page 11 of 50

RH850/U2A-EVA Group

Startup Application Note

2.3.3 Process Routines

Table 2.7, Table 2.8 and Table 2.9 indicates the routines where each process has been implemented.

Table 2.7 Process Implemented-Routine List in CS+ (Part.1)

Process Name

1 Power on (Reset
interrupts)

Routine Name

Implementation
files

vecttbl0.asm
vecttbll.asm
vecttbl2.asm

vecttbl3.asm

Notes

Implemented in the interrupt
vector table.

2 Register initialization __start boot.asm

3 Setting clock gearup _clock_gearup boot.asm To be processed only when the

running PE is PEO. (*1)

4 Setting module standby | _module_standby_set | boot.asm To be processed only when the
set running PE is PEQ %2

5 Enabling PE1~3 __start_PEO boot.asm To be processed only when the

running PE is PEQU*3) (%4) (%5)

6 Initializing RAM areas __hdwinit_PEO boot.asm To be processed with “__

o hdwinit_PEQ” when the running
_hdwinit_PE1 PE is PEO,
_hdwinit_PE2 with “__ hdwinit_PE1” when the
_hdwinit_PE3 running PE is PE1,
with “__ hdwinit_PE2” when the
running PE is PE2,
and with “__ hdwinit_PE3” when
the running PE is PE3. (¥3) (¥4) (%
5)

7 Timing __hdwinit_PEO boot.asm To be processed with
synchronization (PEO . hdwinit_PEO” when the running
~)|/3E3) (_hdwinit_PE1 PE is PEO,

_hdwinit_PE2 with “__ hdwinit_PE1” when the
_hdwinit_PE3 running PE is PE1,

with “__ hdwinit_PE2” when the
running PE is PE2,

and with “__ hdwinit_PE3” when
the running PE is PE3. (%3 (¢4) (%
5)

#1 : The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_CLOCK_GEARUP is 0, setting clock gearup will not be executed.
#2 : The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_MODULE_STANDBY_SET is 0, Setting module standby set will not

be processed.

#3 : The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_PE1_BY_PEOQ is 0, PE1 will not be processed.
#4 : The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_PE2_BY_PEOQ is 0, PE2 will not be processed.
#5 : The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_PE3_BY_PEOQ is 0, PE3 will not be processed.

RO1AN4751EJ0110 Rev.1.10

Jan. 31. 2022

RENESAS

Page 12 of 50

RH850/U2A-EVA Group

Startup Application Note

Table 2.8 Process Implemented-Routine List in CS+ (Part.2)

Process Name Routine Name Implementatio Notes
n files
8 Setting interrupt handler _init_eiint boot.asm
address
9 Setting each pointer __start_ pmO cstart0.asm To be processed with
start_pm1 cstartl.asm "_start_pm0” when the
— P) running PE is PEQO,
__start_ pm2 cstart2.asm with “__start_pm1” when the
__start_ pm3 cstart3.asm running PE is PE1,
with “__start pm2” when the
running PE is PE2,
and with “*__start_ pm3”
when the running PE is
PE3.(¥3) (¥4) (¥5)
10 | Initializing RAM areas __start_pm0O cstart0.asm To be processed with
start_pm1l cstartl.asm *_start_pm0” when the
— P ' running PE is PEQO,
__start_ pm2 cstart2.asm with “__start_pm1” when the
__start_pm3 cstart3.asm running PE is PE1,
with “__start pm2” when the
running PE is PE2,
and with “__start_ pm3”
when the running PE is PE3.
(¥3) (¥4) (¥5)
11 | Setting coprocessor __start_ pmO cstart0.asm To be processed with
start_pml cstartl.asm *_start_pm0” when the
— P) running PE is PEQO,
__start_pm2 cstart2.asm with “__start_pm1” when the
__start pm3 cstart3.asm running PE is PE1,
with “__start_ pm2” when the
running PE is PE2,
and with *__start_ pm3”
when the running PE is PE3.
(¥3) (¥4) (¥5)

#3 : The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_PE1_BY_PEOQ is 0, PE1 will not be processed.

#4 : The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_PE2_BY_PEOQ is 0, PE2 will not be processed.

5 : The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_PE3_BY_PEO is 0, PE3 will not be processed.

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

RENESAS

Page 13 of 50

RH850/U2A-EVA Group

Startup Application Note

Table 2.9 Process Implemented-Routine List in CS+(Part.3)

Process Name

12 Calling a main function of

user application

Routine Name

__start_pmO
__start_pml
__start_ pm2

__start_ pm3

Implementatio
n files

cstart0.asm
cstartl.asm
cstart2.asm

cstart3.asm

Notes

To be processed with
“ _start_ pm0” when the
running PE is PEO,

with “__start_pm1” when the
running PE is PE1,

with “__start_ pm2” when the
running PE is PE2,

and with “__start pm3”
when the running PE is
PE3.(%3) (¥4) (¥5)

%3 : The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_PE1_BY_PEO is 0, PE1 will not be processed.

4 : The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_PE2_BY_PEO is 0, PE2 will not be processed.

25 : The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_PE3_BY_PEO is 0, PE3 will not be processed.

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

RENESAS

Page 14 of 50

RH850/U2A-EVA Group Startup Application Note

2.3.4 Details of Each Process
This section describes the details of each process.

If nothing is specified here, the same process will be executed in either of PEO~PE3Note 1

2.34.1 Power-On (RESET Interrupts)
On powering on, Program Counter becomes RESET Vector address (RESET section).

It jumps from the RESET Vector to __start routine.

When device is powered on, PEO starts. In processing of PEO (ref. Section 3.3.4.5), if
ENABLE_PE1_BY_PEOis 1, PE1l is activated, ENABLE_PE2_BY_PEO is 1, PE2 is activated, and
ENABLE_PE3_BY_PEO is 1, PE3 is activated.

Figure 2.3 indicates program code examples.

.section "RESET", text : RESET Vector
.align 512
jr32 __start

Figure 2.3 Example Program Code for Power-On: RESET Interrupts in CS+

Note 1 To enable PEZ, set 1 to ENABLE_PE1_BY_PEO.
To enable PE2, set 1 to ENABLE_PE2_BY_PEO.
To enable PE3, set 1 to ENABLE_PE3 BY_PEQ.

R0O1AN4751EJ0110 Rev.1.10 Page 15 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

2.3.4.2 Initializing Registers
Table 2.10 and Table 2.11 indicates registers for initialization. Since the setting value is an example, please
initialize with an optimum value according to the system.

Table 2.10 Initialization Register List in CS+ (Part.1)

Resister type Resister Setting value Description
name example

1 Program registers ri~r31 0

2 Basic system registers EIPC 0

3 FEPC 0

4 CTPC 0

5 EIWR 0

6 FEWR 0

7 EBASE 0

8 INTBP 0

9 MEA 0

10 MEI 0

11 RBIP 0

12 PSW 0x00010020 ID=1: Prohibit receiving El

level exceptions.
CUO0=1: Enable FPU

13 FPU system registers FPSR 0x00220000 Value after Reset
14 FPEPC 0

15 FPST 0

16 FPCC 0

17 MPU function system MCA 0

18 registers MCS 0

19 MCR 0

20 MPLARNotel 0

21 MPUANotel 0

22 MPAT Notel 0

23 MPIDO 0

24 MPID1 0

25 MPID2 0

26 MPID3 0

27 MPID4 0

28 MPID5 0

Notel The registers of all the 32 MPU entries should be initialized. Set the index register MPIDX from 0 to 31, and
initialize the corresponding MPLA, MPUA, MPAT registers.

RO1AN4751EJ0110 Rev.1.10 Page 16 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

Table 2.11 Initialization Register List in CS+ (Part.2)

Resister type Resister name Setting Description
value
example

29 MPU function system MPID6 0

registers
30 MPID7
31 MCI
32 Cache operation function ICTAGL 0

registers
33 ICTAGH 0
34 ICDATL 0
35 ICDATH 0
36 ICERR 0
37 Virtualization support HVSB 0

function

system register

38 Guest Context Register GMEIPC 0
39 GMFEPC 0
40 GMEBASE 0
41 GMINTBP 0
42 GMEIWR 0
43 GMFEWR 0
44 GMMEA 0
45 GMMEI 0
Figure 2.4 indicates a program code example.
$nowarning
mov ro, rl
$warning
mov ro, r2
(Omitting the middle part)
Idsr ro, 0,0 ; SRO,0 EIPC
Idsr ro, 2,0 ; SR2,0 FEPC
Idsr ro, 16, 0 ; SR16,0 CTPC
(Omitting the middle part)
mov 0x00010020, r10
Idsr ri0, 5,0 ; SR5,0 PSW
(Omitting the rest)

Figure 2.4 Example Program Code for Register Initialization in CS+

RO1AN4751EJ0110 Rev.1.10 Page 17 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

2.3.4.3 Clock Gearup Settings

After starting PEO, change the system clock to PLL and execute clock gearup.

This process is to be executed only when all the following conditions are satisfied.

+ ENABLE_CLOCK_GEARUP is 1.

* The running PE is PEO(PEID bit0:2(PEID)=0

+ Main OSC and PLL are enabled (PLLS=0x00000003)

Figure 2.5 and Figure 2.6 indicate the program code examples for clock gearup as a reference.

.L.clock_gearup.0:
Idw Oxff980004[r0], r2
andi 0x3,r2,r2
cmp 0x3, r2

bnz .L.clock_gearup.0

mov OxA5A5A501, r2
st.w r2, 0xff980700[r0]

Id.w 0xff980120[r0], r2

ori 0x2,r2,r2
mov -0x6, r6
and re, r2

stw r2, 0xff980120[r0]

.L.clock_gearup.1:
Idw Oxff980128[r0], r2
andi 0x2, r2, r0
bz .L.clock_gearup.1
(Omitting the middle part)
Idw 0xff980100[r0], r2
mov -0x2, r6
and r6, r2
st.w r2, 0xff980100[r0]

.L.clock_gearup.4:
Id.w 0xff980108[r0], r2

; get PLLS

: set OXA5A5A501 in CLKKCPROT1 for
: set CLKKCPROT1

; get CLKD_PLLC

; set 2 in CLKD_PLLC.PLLCLKDCSID

; set CLKD_PLLC

; get CLKD_PLLS
; confirm that the value of CLKD_

; if the CLKD_PLLS.PLLCLKD

; get CKSC_CPUC
; set 0in CKSC_CPUC.CPUCLKSCSID

; set CKSC_CPUC

; get CKSC_CPUS

Figure 2.5 Example Program Code for Clock Gearup Settings(CS+)(Part.1)

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

Page 18 of 50
RENESAS

RH850/U2A-EVA Group Startup Application Note

andi 0x1, r2, r0 ; confirm that the value of CKSC_CPUS - - -

bnz L.clock_gearup.4 ; if the CKSC_CPUS.CPUCLKSACT is = * -
(Omitting the middle part)

Id.w 0xff980120[r0], r2 ; get CLKD_PLLC

ori 0x1,r2,r2 ;set1in PLLC.PLLCLKD.

mov -0x7, r6

and r6, r2

st.w r2, 0xff980120[r0] ; set CLKD_PLLC

.L.clock_gearup.7:

Id.w 0xff980128[r0], r2 ; get CLKD_PLLS
andi 0x2, r2, r0 ; confirm that the value of CLKD_
bz .L.clock_gearup.7 ; if the CLKD_PLLS.PLLCLKD
(Omitting the middle part)
mov O0xA5A5A500, r2 ; set OXA5A5A500 in CLKKCPROT1 for = = -
st.w r2, 0xffa80700[r0] ; set CLKKCPROT1

Figure 2.6 Example Program Code for Clock Gearup Settings(CS+)(Part.2)

2344 Module Standby Settings
Set the module standby registers of the function to be used.

This process is to be executed only when all the following conditions are satisfied.
- ENABLE_MODULE_STANDBY_SETis 1
* The running PE is PEO(PEID bit0:2(PEID)=0

Figure 2.7 indicates the program code examples for module standby register settings (enabling clock
supply) as a reference.

mov OxXA5A5A501, r2 ; set OXA5A5A501 in MSRKCPROT for = = -
st.w r2, 0xFF981710[r0] ; set MSRKCPROT

; RS-CANFD
st.w r0, OxFF981000[r0] ; set MSR_RSCFD (RS-CANFD8-15is - - -

mov 0xA5A5A500, r2 ; set OXA5A5A500 in MSRKCPROT for = - -
st.w r2, 0xFF981710[r0] ; set MSRKCPROT
Figure 2.7 Example Program Code for RS-CANFD module standby register settings(CS+)

R0O1AN4751EJ0110 Rev.1.10 Page 19 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

2.3.4.5

Enabling PE1~3

To enable PE1,PE2 or PE3, set corresponding PEXx bit of BOOTCTRL (PEL1 bit1(BC1), PE2 hit2(BC2), PE3
bit3(BC3)) to 1.

-+ To enable PE1, set 1 to ENABLE_PE1_BY_PEO.
-+ To enable PE2, set 1 to ENABLE_PE2_BY_PEO.
- To enable PE3, set 1 to ENABLE_PE3_BY_PEO.

+ The process PE is PEO(PEID bit0:2(PEID)=0

Figure 2.8 indicates a program code example.

ldw Oxfffb2000[r0], r10

ori 2,110, r11

stw rl1, Oxfffb2000[r0]
(Omitting the middle part)

Id.w 0xfffb2000[r0], r10

ori 4,r10,rll

st.w r11, Oxfffb2000[r0]
(Omitting the middle part)

Id.w 0xfffb2000[r0], r10

ori 8,r10, r11

stw rl1, Oxfffb2000[r0]

; get BOOTCTRL
:set1in BOOTCTRL.BC1 for enabled PE1
: set BOOTCTRL

; get BOOTCTRL
:set1in BOOTCTRL.BC2 for enabled PE2
: set BOOTCTRL

; get BOOTCTRL
:set1in BOOTCTRL.BC3 for enabled PE3
: set BOOTCTRL

Figure 2.8 Example Program Code for PE1~3 to be enabled in CS+

RO1AN4751EJ0110 Rev.1.10

Jan. 31. 2022

RENESAS

Page 20 of 50

RH850/U2A-EVA Group

Startup Application Note

2.3.4.6 Initializing RAM Areas
Initialize Local RAM and Cluster RAM.

In this project, to shorten the startup time, each PE executes initialization in the specified RAM address

areas.

The RAM initializing in PEO is as follows (U2A16, U2A8).

» Local RAM (CPUO0)
* Cluster RAM (Cluster0)
* Cluster RAM (Cluster2)

* Cluster RAM (Cluster3)(Retention RAM)

: OXFDC00000~ 0xFDCOFFFF (64KB)
: OXFEOO0000~ OXFEO3FFFF (256KB)
: OXFE400000~ OXFE47FFFF (512KB)

: OXFEB00000~ OXFEBOFFFF (64KB)

The RAM initializing in PEO is as follows (U2A6).

* Local RAM (CPUO0)
* Cluster RAM (Cluster0Q)

* Cluster RAM (Cluster3)(Retention RAM)

: OXFDCO00000~0xFDCOFFFF (64KB)
: OXFEOOO000~ OXFEO3FFFF (256KB)

: OXFE800000~ OXFE8OFFFF (64KB)

The RAM initializing in PE1 is as follows (U2A16, U2A8).

+ Local RAM (CPU1)
+ Cluster RAM (Cluster0Q)
+ Cluster RAM (Cluster2)

+ Cluster RAM (Cluster3)(Retention RAM)

: OXFDAOOOOO~0xFDAOFFFF (64KB)
: OXFEO40000~0xFEO7FFFF (256KB)
: OXFE480000~0xFE4FFFFF (512KB)

: OXFE810000~0xFE81FFFF (64KB)

The RAM initializing in PE1 is as follows (U2A6).

+ Local RAM (CPU1)
+ Cluster RAM (Cluster0Q)

+ Cluster RAM (Cluster3)(Retention RAM)

: OXFDAOOOOO~0xFDAOFFFF (64KB)
: OXFEO40000~0xFEO7FFFF (256KB)

: OXFE810000~0xFE81FFFF (64KB)

The RAM initializing in PE2 is as follows (U2A16).

+ Local RAM (CPU2)
+ Cluster RAM (Clusterl)
+ Cluster RAM (Cluster2)

+ Cluster RAM (Cluster3)(Retention RAM)

: OXFD800000~0xFD8OFFFF (64KB)
: OXFE100000~0xFE13FFFF (256KB)
: OXFE500000~0xFE57FFFF (512KB)

: OXFE820000~0XFE82FFFF (64KB)

The RAM initializing in PE3 is as follows (U2A16).

- Local RAM (CPU3)
* Cluster RAM (Clusterl)
* Cluster RAM (Cluster2)
* Cluster RAM (Cluster3)(Retention RAM)

: OXFD600000~0XxFDB60FFFF (64KB)
. OXFE140000~ 0XFE17FFFF (256KB)
. OXFE580000~ OXFE5FFFFF (512KB)
. OXFE830000~ 0XFE83FFFF (64KB)

When some PEs are not to be started, adjust the specified address in order to execute RAM initialization in

each starting PE equally.

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

Page 21 of 50
RENESAS

RH850/U2A-EVA Group

Startup Application Note

Figure 2.9 indicates a program code example.

; local ram address

LOCAL_RAM_CPUO_ADDR .set

LOCAL_RAM_CPUO END .set
(Omitting the middle part)

; cluster ram address

CLUSTER_RAMO_ADDRO .set

CLUSTER_RAMO_ENDO .set
(Omitting the middle part)

; clear Cluster RAMO

mov CLUSTER_RAMO_ADDRO, r6
mov CLUSTER_RAMO_ENDO, r7
jarl _zeroclr4, Ip

; clear Cluster RAM2

mov CLUSTER_RAM2_ADDRO, 6
mov CLUSTER_RAM2_ENDO, r7
jarl _zeroclr4, Ip

: clear Cluster RAM3

mov CLUSTER_RAM3_ADDRO, r6
mov CLUSTER_RAM3_ENDO, r7
jarl _zeroclrd, Ip

; clear Local RAM(CPUOQ)

mov LOCAL_RAM_CPUO_ADDR, r6
mov LOCAL_RAM_CPUO_END, r7
jarl _zeroclr4, Ip

(Omitting the middle part)

_zeroclr4:

br .L.zeroclr4.2
.L.zeroclr4.1:

st.w ro, [r6]

add 4,16
.L.zeroclr4.2:

cmp re, r7

bh .L.zeroclr4.1

0xFDCO00000
OxFDCOFFFF

OXFE000000
OXFEOQ3FFFF

Figure 2.9 RAM Example Program Code for Initializing the .data and .bss Sections in CS+(PEQ)

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

RENESAS

Page 22 of 50

RH850/U2A-EVA Group Startup Application Note

2.3.4.7 Timing Synchronization (PEO~PE3)
Proceeding PE waits so that other PEs can be processed further simultaneously.

This process is to be executed only when all the following conditions are satisfied
- ENABLE_PE1_BY_PEOis 1
- ENABLE_PE2_BY_PEO s 1
- ENABLE_PE3_BY_PEO s 1

Figure 2.10 indicates program code examples for the wait process of PEO.
CLUSTER_RAM2_ADDR .set OxFE400000
CRAM_ADDR .set CLUSTER_RAM2_ADDR

(Omitting the middle part)
mov CRAM_ADDR, r10

setl 0, [r10] ; BitO indicate PEO wait for PEx
; wait for PE1

.L.hdwinit_PEO.1:
tstl 1, [r10] ; Bitl indicate PE1 wait for PEO
bnz .L.hdwinit_PEO.2
snooze
br .L.hdwinit_PEO.1

.L.hdwinit_PEO.2:
; wait for PE2
.L.hdwinit_PEO.3:
tstl 2, [r10] ; Bit2 indicate PE2 wait for PEO
bnz .L.hdwinit_PEO0.4
snooze
br .L.hdwinit_PEO.3

.L.hdwinit_PEO0.4:
; wait for PE3
.L.hdwinit_PEO.5:
tstl 3, [r10] ; Bit3 indicate PE3 wait for PEO
bnz .L.hdwinit_PEO.6
snooze
br .L.hdwinit_PEO.5

.L.hdwinit_PEO.6:

Figure 2.10 Example Program Code for PEO Side in the Timing Synchronization (CS+).

R0O1AN4751EJ0110 Rev.1.10 Page 23 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

2.3.4.8 Setting Interrupt Handler Address
Set a base pointer address in the table reference method to INTBP.

The base pointer address to set is a starting address of EIINTTBL section.

Set the initial value of RBASE: (PEO,PE1: 0x00000000, PE2,PE3: 0x00800000)for a base address of the
Direct Vector Method, since "0" was set to PSW: bitl5 (EBV) through the register initialization (Section
3.3.4.2).

If "1" was set to PSW: bit15 (EBV), "0" which has been set to EBASE through the register initialization is to
be used.

This process is to be executed only when all the following conditions are satisfied.
. - USE_TABLE_REFERENCE_METHOD is 1.

Figure 2.11 indicates a program code example.

mov # SEIINTTBL_PEO, r10
Idsr rio, 4,1 ;set INTBP

Figure 2.11 Example Program Code for the Interrupt Handler Address Setting in CS+(PEO)

R0O1AN4751EJ0110 Rev.1.10 Page 24 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

2.3.4.9 Setting Each Pointer
Set Stack pointer, Global pointer, and Element pointer.

The value to be set to each pointer is as follows:

- Stack pointer

The address of _stacktop_pmO0, if the running PE is PEO(PEID bit0:2(PEID)=0)
The address of _stacktop_pmd1, if the running PE is PE1(PEID bit0:2(PEID)=1)
The address of _stacktop_pmz2, if the running PE is PE2(PEID bit0:2(PEID)=2)
The address of _stacktop_pma3, if the running PE is PE3(PEID bit0:2(PEID)=3)

Global pointer Notel
The starting address of __gp_data Note2
- Element pointer Not3

The starting address of __ep_data Note4

Figure 2.12 indicates a program code example in PEO.

STACKSIZE .set 0x200

.section ".stack.bss", bss

align 4
.ds (STACKSIZE)
align 4

_stacktop_pmaO:
(Omitting the middle part)

mov # _stacktop_pmO, sp ; set sp register
mov # gp_data, gp ; set gp register
mov # ep_data, ep ; set ep register

Figure 2.12 Example Program Code for each Pointer Setting in PEO

Notel T he processed in all PEs(PEO~PES3).

Noe2 gp data is label that be automatically generated by linker

Note3 To be processed in all PEsS(PEO~PE3).

Note4 ep data is label that be automatically generated by linker

RO1AN4751EJ0110 Rev.1.10

Jan. 31. 2022 RENESAS

Page 25 of 50

RH850/U2A-EVA Group Startup Application Note

2.3.4.10 Setting RAM Areas

__INITSCT_RH routine Note linjtializes the .data section (RAM section with initial value) and the .bss section
(RAM section without initial value).

Copying data from ROM to the .data section and clearing the .bss section to zero are executed by calling
the _ INITSCT_RH routine with setting the starting and end addresses of initialization table for RAM section
with initial value to parameter register (r6 and r7), and the starting and end addresses of initialization table for
RAM section without initial value to parameter register (r8 and r9).

The initialization table for RAM section with initial value needs to be located in the .INIT_DSEC.const
section. And the starting and end addresses of copy source ROM section and the starting address of copy
destination RAM section need to be set to the table.

The initialization table for RAM section without initial value needs to be located in the .INIT_BSEC.const
section. And the starting and end addresses of RAM section for clearing need to be set to the table.

Figure 2.13 indicates a program code example.

; when the section has the initial value
.section ".INIT_DSEC.const", const

align 4

.dw # s.data, # e.data, # s.data.R

: when the section without initial value

.section ".INIT_BSEC.const", const

align 4
.dw # s.bss,# e.bss
(Omitting the middle part)
mov # _s.INIT_DSEC.const, ré ; INIT_DSEC section begin address
mov # e.INIT_DSEC.const, r7 ; INIT_DSEC section end address
mov # s.INIT_BSEC.const, r8 ; INIT_BSEC begin address
mov # e.INIT_BSEC.const, r9 ; INIT_BSEC end address
jarl32 __INITSCT_RH, Ip ; initialize RAM area

Figure 2.13 Example Program Code for Initializing the .data and .bss Sections in CS+

Some RAMSs such as DTSRAM and MMCA RAM are initialized by RAM Initialization function of hardware.
For details of the RAM Initialization function, refer to the device's user's manual.

Notel |INITSCT_RH routine is provided by a compiler.

R0O1AN4751EJ0110 Rev.1.10 Page 26 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

2.3.4.11 Setting Coprocessor
Setting 1 to FEPSW bit16 (CUO) enables FPU.

If FPU is not needed, set 0 to PSW bit16 (CUO).

Figure 2.14 indicates a program code example.

stsr 5,r10,0 ; get PSW
movhi 0x0001, r0, r11 ; set 1 in PSW.CUO for enabling FPU
or rii, r10
Idsr rio, 3,0 ; set PSW via FEPSW
(Omitting the middle part)
feret ; apply PSW and PC

Figure 2.14 Example Program Code for Coprocessor Setting in CS+

2.3.4.12 Calling a Main Function of User Application

Program counter transitions to the user application’s main functions:
_main_pmoO, if the running PE is PEO(PEID bit0:2(PEID)=0).
_main_pmi1, if the running PE is PE1(PEID bit0:2(PEID)=1).
_main_pmz2, if the running PE is PE2(PEID bit0:2(PEID)=2).
_main_pma3, if the running PE is PE3(PEID bit0:2(PEID)=3).

Figure 2.15 indicates a program code example for calling a main function in the user application for PEO.

mov # main_pmO0, r10
Idsr rlo, 2,0 ; set _main_pmO0 address to PC via FEPC
feret ; apply PSW and PC

Figure 2.15 Example Program Code for Calling a Main Function of User Application in CS+(PEQ)

R0O1AN4751EJ0110 Rev.1.10 Page 27 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

3. MULTI

This chapter describes the Startup process in using MULTI as the integrated development environment.

3.1 Startup Related Files

Table 3.1 indicates the files related to startup.

File

startup.85041)

Table 3.1 Startup Related File List in MULTI

Directory

Project root/src/

Description

PEO/PE1 Startup Routine Call,

Vector Table

2 startup_PE0.850(%1) Project root/src/ PEO Startup Routine,
Vector Table

3 startup_PE1.8500%1) Project root/src/ PE1 Startup Routine,
Vector Table

4 startup2.850“d) Project root/src/ PE2/PE3 Startup Routine Call,
Vector Table

5 startup_PE2.8500%D) Project root/src/ PE2 Startup Routine,
Vector Table

6 startup_PE3.8500%D) Project root/src/ PES3 Startup Routine,
Vector Table

7 main.c Project root/src/ Main Routine

8 main_pe0.c*D Project root/src/ PEO Main Routine

9 main_pel.ct* Project root/src/ PE1 Main Routine

10 | main_pe2.c*D

Project root/src/

PE2 Main Routine

1

1 | main_pe3.c*D

Project root/src/

PE3 Main Routine

12 | section.ld®D

Project root/

Section Settings

*1: You can set a file name optionally.

When you change a file name, modify the project files as well.

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

RENESAS

Page 28 of 50

RH850/U2A-EVA Group

Startup Application Note

3.2 Setting Sections
Table 3.2 indicates examples of startup related sections.

Table 3.2 Startup Related Sections in MULTI

Section ‘ Allocated Data
1 .cintvect First of interrupt vector table of PEO/PE1
2 .coldboot Boot controller of PEO/PE1
3 .intvect PEO Interrupt vector table of PEO
4 .intvect PE1 Interrupt vector table of PEO
5 .rozdata Fixed data
6 .robase
7 .rosdata
8 .rodata
9 text
10 .ascet_const
11 .mytextO
12 fixaddr
13 fixtype
14 .secinfo
15 .syscall
16 .romdata Data with initial value (ROM)

17 .romsldata

18 .cintvect2 Reset vector table of PE2/PE3
19 .coldboot2 Boot controller of PE2/PE3

20 .intvect_PE2 Interrupt vector table of PE2

21 .intvect_PE3 Interrupt vector table of PE3

22 .romdata Data with initial value (ROM)
23 .data Data with initial value (RAM)

24 .bss Data without initial value (RAM)
25 .sdabase SDA (Small Data Area) base register
26 .stack Stack area

27 .heapbase Base address of heap area

28 .heap Heap area

Depending on each device or project, the name may be different, some sections may not be needed, or
other sections may be needed. For details of the sections, refer to the user manuals of MULTI and devices.

RO1AN4751EJ0110 Rev.1.10

Jan. 31. 2022

RENESAS

Page 29 of 50

RH850/U2A-EVA Group Startup Application Note

3.2.1 Section Setting Method

The following describes a method of specifying or adding a section in a program in the assembly and C
languages.

If a section is added, the section.Id is needed to be modified in addition to the following specifications.

- Assembly Language
.section Section Name [,”attribute”] [> location address]

Section Name: Specify the name of section.

Attribute: Specify an attribute.
Table 3.3 indicates specifiable attributes.
If you specify multiple attribute, specify them enclosing with double quotations.

e.g. “ab”
Location address: Specify the address where a section is to be located.

Table 3.3 List of Attributes Specifiable with .section

Attribute Description

1 a The section has the allocated memory which is not used for debugging or symbol
information.
2 b The section can have BSS semantics. Although normal data directives such as .word

and .byte are allowed in .bss section, all the values specified in these directives are to be
discarded by an assembler. Only the section size is recorded in ELF output file, and the
content of the section is omitted. When the section is downloaded to target, an area is
allocated for the section, but data is NOT downloaded to the section. Instead, the startup
code initializes all bytes in the section to zero.

w The section is writable.
4 z The section contains executable code.
R0O1AN4751EJ0110 Rev.1.10 Page 30 of 50

Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

- C Language

#pragma ghs section [Section Type="Section Name”]

Section Type : Specify a type of section to change the allocation.

Section Name : Specify a name of section.

Table 3.4 indicates the specifiable section type.

Table 3.4 List of Specifiable Section Type in the #pragma ghs Section

Section Type Program Section by Default ‘ Note
1 bss .bss
2 Data .data
3 text text
4 rodata .rodata
5 sbss .sbss
6 sdata .sdata
7 rosdata .rosdata
8 zbss .zbss
9 zdata .zdata
10 rozdata .rozdata

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

RENESAS

Page 31 of 50

RH850/U2A-EVA Group

Startup Application Note

3.3 Startup Processing
3.3.1 Overall Flow

Figure 3.1 and Figure 3.2 indicate the overall flow of the startup processing in MULT] Notel,

Start

¥

PowerOn

(RESET Interrupts)

L 4

Eegister Initialization

Target CPU isPED

YES

Clock gear up Setfing" "

r

Module standby Settiing' %

L 4

Enabling PE1%#Y

r

Enabling PE2W#¥

Y

Enabling PE3"7

r

Inifialization E.AM areas

()

<1 : Only if 1 is set to ENABLE_CLOCK_GEARUP.
22 : Only if 1 is set to ENABLE_MODULE_STANDBY_SET.
23 : Only if 1 is set to ENABLE_PE1_BY_PEO.
24 : Only if 1 is set to ENABLE_PE2_BY_PEO.
5 : Only if 1 is set to ENABLE_PE3_BY_PEO.

Figure 3.1 Overall Flow of Startup in MULTI (Part.1)

Notel |nitial state (initially stopped or active state) of initially stopped core is selected by debug tool. For the details of
debugging for initially stopped core, please refer to User’s manual and Additional documents for emulator, and User’s

manual and help for the emulator debugger.

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

RENESAS

Page 32 of 50

RH850/U2A-EVA Group

Startup Application Note

PED

PES

!

Timins &vnchronization
betwesn PED and PE1#!

Timins &vnchronization
betwesn PEZ and FE[#4

¥

¥

Timing Synchronization
betw 22n FE] and FEN#

L

Timing Synchronization
bt aen FES and FEO#T

*3:
%4
X5
X6 :

Timins &vnchronization
bebwz=n PED and FE2#4

Timins &vnchronization

between PE2 and PE]#1 k4

L 4

Timing Synchronization
batw sen FE] and FEZ# &'

k 4

h

Timins &vnchronization
betwesn PED and PE3#Y

Timins &vnchmonization
betwesn PE2 and PES w0’

L J

Timins Evnchronization
betwazn PEl and PEF® "7

Timins Evnchronization
betwesn PE3 and FEX #9807

!

Setting Intarmpt Handler address' "

Setting RAN arees

L A

Retting Coprocessor

'

Calline mein fenction of 2 wser application

Only if 1 is set to ENABLE_PE1_BY_PEO.

Only if 1 is set to ENABLE_PE2_BY_PEO.

Only if 1 is set to ENABLE_PE3_BY_PEO.

Only if 1 is set to USE_TABLE_REFERENCE_METHOD.

Figure 3.2 Overall Flow of Startup in MULTI (Part.2)

RO1AN4751EJ0110 Rev.1.10

Jan. 31. 2022

RENESAS

Page 33 of 50

RH850/U2A-EVA Group

Startup Application Note

3.3.2 Process Routines

Table 3.5, Table 3.6 and Table 3.7 indicates the routines where each process has been implemented.

Table 3.5 Process Implemented-Routine List in MULTI(Part.1)

Process Name Routine Name Implementation
Files
1 Power on (Reset - startup.850
interrupts)

startup2.850

The process of PEO and PE1
are implemented in vector
table of startup.850, the
process of PE2 and PE3 are
implemented in vector table
of startup2.850.

2 Initializing registers _RESET startup.850 The process of PEO and PE1
are implemented in
—RESET?2 startup2.850 startup.850, the process of
PE2 and PE3 are
implemented in startup2.850.
3 Clock gearup settings _clock_gearup startup.850 To be processed only when

running PE is PEO. (3%1)

4 Module standby settings | _module_standby_set | startup.850

To be processed only when
running PE is PEQ. (3%2)

5 Enabling PE1~3 __start PEO startup.850 To be processed only when
running PE is PEQ. (3%3) (3%
4) (°%%¢5)
6 Initializing RAM areas __start PEO startup.850 To be processed with
“_hdwinit_PEO” when the
__start PE1 startup2.850 running PE is PEO,
—start_PE2 with *_hdwinit_PE1” when
__start PE3 the running PE is PE1,

with “_hdwinit_ PE2” when
the running PE is PE2,

and with “_hdwinit_PE3”
when the running PE is PE3.
(5%3) (3¢4) (°%5)

*1 The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_CLOCK_GEARUP is 0, PE will not be processed.

*2 The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_ MODULE_STANDBY_SET is 0, PE will not be processed.

*3 The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_PE1_BY_PEOQ is 0, PE1 will not be processed.

*4 The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_PE2_BY_PEOQ is 0, PE2 will not be processed.

*5 The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_PE3 BY_PEOQ is 0, PE3 will not be processed.

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022 RENESAS

Page 34 of 50

RH850/U2A-EVA Group

Startup Application Note

Table 3.6 Process Implemented-Routine List in MULTI(Part.2)

Process Name Routine Name Implementation Notes
Files
7 Timing synchronization __start PEO startup.850 To be processed with
“_hdwinit_PEO” when the
__start PE1 startup2.850 running PE is PEO,
—start_PE2 with *_hdwinit_PE1” when the
__start_ PE3 running PE is PE1,
with “_hdwinit_PE2” when the
running PE is PE2,
and with “_hdwinit_PE3”
when the running PE is PE3.
(3%3) (*%4) (%%5)
8 Interrupt handler address | _init_eiint startup.850 The process of PEO and PE1
settings S are implemented in
_Init_eiint2 startup2.850 startup.850, and the process
of PE2 and PE3 are
implemented in startup2.850.
9 Initializing each pointer _RESET_PEO startup_PE0.850 To be processed with
“ RESET_PEO” when the
_RESET_PE1 startup_PE1.850 running PE is PEO,
_RESET_PE2 startup_PE2.850 with « RESET_PE1” when the
_RESET_PE3 startup_PE3.850 running PE is PE1,
with “© RESET_PEZ2” when the
running PE is PE2,
and with “*_ RESET_PE3”
when the running PE is PE3.
(3%3) (3¢4) (%%5)
10 | Setting Coprocessor _RESET_PEO startup_PEO0.850 To be processed with
“ RESET_PEO” when the
_RESET_PE1 startup_PE1.850 running PE is PEO,
_RESET_PE2 startup_PE2.850 with * RESET_PE1” when the
_RESET_PE3 startup_PE3.850 running PE is PE1,

with “* RESET_PEZ2” when the
running PE is PE2,

and with “* RESET_PE3”
when the running PE is PE3.
(3%3) (°%4) (°%5)

*3 The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_PE1 BY_PEO is 0, PE1 will not be processed.
*4 The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_PE2_BY_PEO is 0, PE2 will not be processed.
*5 The running PE is judged by PEID bit0:2(PEID).
However, in the case that ENABLE_PE3_BY_PEOQ is 0, PE3 will not be processed.

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

RENESAS

Page 35 of 50

RH850/U2A-EVA Group

Startup Application Note

11

Table 3.7 Process Implemented-Routine List in MULTI(Part.3)

Process Name

Calling a main function of
user application

Routine Name

_RESET_PEO
_RESET_PE1
_RESET_PE2
_RESET_PE3

Implementation

Files
startup_PEO0.850
startup_PE1.850
startup_PEZ2.850
startup_PE3.850

Notes

To be processed with
“_ RESET_PEOQ” when the
running PE is PEO,

with “* RESET_PE1” when the
running PE is PE1,

with “ RESET_PEZ2” when the
running PE is PE2,

and with “*_ RESET_PE3”
when the running PE is PE3.
(3%3) (*%4) (%%5)

*3 The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_PE1_BY_PEO is 0, PE1 will not be processed.

*4 The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_PE2_BY_PEO is 0, PE2 will not be processed.

*5 The running PE is judged by PEID bit0:2(PEID).

However, in the case that ENABLE_PE3_BY_PEO is 0, PE3 will not be processed.

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

RENESAS

Page 36 of 50

RH850/U2A-EVA Group Startup Application Note

3.3.3 Details of Each Process
This section describes the details of each process.

3.3.3.1 Power-On (RESET Interrupts)
On powering on, the program counter becomes RESET vector address(RESET section).

According to the setting of RESET vector, program counter transits to RESET section for PEO / PE1 and
transits to _ RESET2 section for PE2 / PE3.

When the device power on itself, PEO startup. On processing(reference) PEO, enable PE1 when
ENABLE_PE1 _BY_PEOis 1, enable PE2 when ENABLE_PE2_BY_PEOQ is 1, and enable PE3 when
ENABLE_PE3 BY PEOis 1.

Figure 3.3 Example Program Code for Power-On: RESET Interrupts of PEO/PEL in MULTI indicates
program code examples.

.global _RESETVECT
.global RESET
.offset 0x0000
#if (RESET_ENABLE > 0x00000000)
.extern _RESET
_RESETVECT:
jr _RESET -- jump to _RESET((startup routine)
#else
jr __unused_isr
#endif
Figure 3.3 Example Program Code for Power-On: RESET Interrupts of PEO/PEL in MULTI

R0O1AN4751EJ0110 Rev.1.10 Page 37 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

3.3.3.2 Initializing Registers

Table 3.8 and Table 3.9 indicates registers for initialization. Since the setting value is an example, please
initialize with optimum value depending on the system.

Table 3.8 Initialization Register List in MULTI(Part.1)

Register Type Register Name Setting Value Description
Examples

1 Program registers ri~r31 0

2 Basic system registers EIPC 0

3 FEPC 0

4 CTPC 0

5 EIWR 0

6 FEWR 0

7 EBASE 0

8 INTBP 0

9 MEA 0

10 MEI 0

11 RBIP 0

12 PSW 0x00010020 ID=1: Prohibit receiving El

level exceptions.
CUO0=1: Enable FPU

13 FPU system registers FPSR 0x00220000 Value after Reset
14 FPEPC 0

15 FPST 0

16 FPCC 0

17 MPU function system registers | MCA 0

18 MCS 0

19 MCR 0

20 MPLANotel 0

21 MPUANotel 0

22 MPAT Notel 0

23 MPIDO 0

24 MPID1 0

25 MPID2 0

26 MPID3 0

27 MPID4 0

28 MPID5 0

Notel The registers of all the 32 MPU entries should be initialized. Set the index register MPIDX from 0 to 31, and
initialize the corresponding MPLA, MPUA, MPAT registers.

RO1AN4751EJ0110 Rev.1.10 Page 38 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group Startup Application Note

Table 3.9 Initializing registers list in MULTI(Part.2)

Register Type Register Name Setting Value Description
Example
29 MP.U function system MPID6 0
registers

30 MPID7

31 MCI

32 Cache qperation function ICTAGL 0

registers

33 ICTAGH 0

34 ICDATL 0

35 ICDATH 0

36 ICERR 0

37 Virtualization support function | HVSB 0

system register

38 Guest Context Register GMEIPC 0
39 GMFEPC 0
40 GMEBASE 0
41 GMINTBP 0
42 GMEIWR 0
43 GMFEWR 0
44 GMMEA 0
45 GMMEI 0

Figure 3.4 indicates program code examples of initializing registers.

mov 10, rl
mov 10, r2

(Omitting the middle part)

l[dsr r0, 0,0 --SR0,0 EIPC
l[dsr r0, 2,0 --SR2,0 FEPC
ldsr 10, 16,0 -- SR16,0 CTPC

(Omitting the middle part)

mov 0x00010020, r10

ldsr r10,5,0 -- SR5,0 PSW
(Omitting the rest)

Figure 3.4 Example Program Code for Initializing Registers in MULTI

RO1AN4751EJ0110 Rev.1.10 Page 39 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

3.3.3.3

Clock Gearup Settings
After starting PEO, change the system clock as “PLL”, and execute clock gearup.

This process is to be executed only when all the following conditions are satisfied.
- ENABLE_CLOCK_GEARUP is 1.
+ The running PE is PEO(PEID bit0:2(PEID)=0)
+ Main OSC and PLL are enabled (PLLS=0x00000003)

Figure 3.5 and Figure 3.6 indicate setting method examples for clock gearup as a reference.

.L.clock_gearup.0:

Id.w
andi
cmp

bnz

mov
for

st.w

Id.w
ori
mov
and

st.w

0xffo80004[r0], r2
0x3, 12,12

0x3, r2
.L.clock_gearup.0

OXASAS5A501 , r2

r2, 0xff980700[r0]

0xff980120[r0], r2
0x2, r2, r2

-0x6, r6

re, r2

r2, 0xff980120[r0]

.L.clock_gearup.1:

Id.w
andi

bz

0xff980128[r0], r2
0x2, r2, r0

.L.clock_gearup.1

(Omitting the middle part)

Id.w

mov

and

st.w

0xff980100[r0], r2
-0x2, r6

r6, r2

r2, 0xffo80100[r0]

.L.clock_gearup.4:

Id.w

0xff980108[r0], r2

-- get PLLS

-- set 0XA5A5A501 in CLKKCPROT1

-- set CLKKCPROT1

-- get CLKD_PLLC

--set 2 in CLKD_PLLC.PLLCLKDCSID * - -

--set CLKD_PLLC

-- get CLKD_PLLS
-- confirm that the value of CLKD_

-- if the CLKD_PLLS.PLLCLKD

-- get CKSC_CPUC

--set 0in CKSC_CPUC.CPUCLKSC - - -

-- set CKSC_CPUC

-- get CKSC_CPUS

Figure 3.5 Example Program Code for Clock Gearup Settings in MULTI(Part.1)

RO1AN4751EJ0110 Rev.1.10

Jan. 31. 2022

RENESAS

Page 40 of 50

RH850/U2A-EVA Group

Startup Application Note

andi

bnz

0x1,r2,r0
.L.clock_gearup.4

is

(Omitting the middle part)

Id.w 0xff980120[r0], r2
ori 0x1, r2, r2

mov -0x7, r6

and ré, r2

st.w r2, 0xff980120[r0]

.L.clock_gearup.7:

Id.w 0xff980128[r0], r2
andi 0x2,r2, r0
bz .L.clock_gearup.7

(Omitting the middle part)
mov O0xA5A5A500, r2
st.w r2, 0xff980700][r0]

-- confirm that the value of CKSC_CPUS*- - -
-- if the CKSC_CPUS.CPUCLKSACT

-- get CLKD_PLLC
--set 1in CLKD_PLLC.PLLCLKD.

--set CLKD_PLLC

-- get CLKD_PLLS
-- confirm that the value of CLKD_

-- if the CLKD_PLLS.PLLCLKD

-- set OXABA5A500 in CLKKCPROT1 - - -
-- set CLKKCPROT1

Figure 3.6 Example Program Code for Clock Gearup Settings in MULTI(Part.2)

3.3.34 Module Standby Settings

Set the module standby registers depending on a function to be used. (Enable/disable clock supply to each

function to be used)

This process is to be executed only when all the following conditions are satisfied.

- ENABLE_MODULE_STANDBY_SET is 1

* The running PE is PEO(PEID bit0:2(PEID)=0

Figure 3.7 indicates the example of setting module standby registers for RS-CANFD as a reference.

mov O0xA5A5A501, r2
st.w r2, OxFF981710[r0]
-- RS-CANFD

st.w r0, OXxFF981000[r0]
mov 0xA5A5A500, r2
st.w r2, 0xFF981710[r0]

-- set 0XA5A5A501 in MSRKCPROT
-- set MSRKCPROT

-- set MSR_RSCFD (RS-CANFD8-15

-- set 0XA5A5A500 in MSRKCPROT - - -
-- set MSRKCPROT

Figure 3.7 Example Program Code for RS--CANFD Module Standby Register Settings in MULTI

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

Page 41 of 50

RENESAS

RH850/U2A-EVA Group Startup Application Note

3.3.35 Enabling PE1~3

To enable PE1,PE2 or PE3, set corresponding PEx bit of BOOTCTRL (PEL1 bit1(BC1), PE2 bit2(BC2), PE3

bit3(BC3)) to 1.
This process is to be executed only when all the following conditions are satisfied.

+ In the case of enabling PE1, ENABLE_PE1 BY PEOis 1.
- In the case of enabling PE2, ENABLE_PE2 BY_PEO is 1.
- In the case of enabling PE3, ENABLE_PE3 _BY_PEO is 1.
+ The running PE is PEO(PEID bit0:2(PEID)=0)

Figure 3.8 indicates program code examples for PE to be enabled in MULTI.

Id.w 0xfffb2000[r0], r10 -- get BOOTCTRL
ori 2,110, r11 --set1in BOOTCTRL.BC1 for
st.w r11, Oxfffb2000[r0] -- set BOOTCTRL

(Omitting the middle part)
Id.w 0xfffb2000[r0], r10 -- get BOOTCTRL
ori 4,r10,rl11 --set 1in BOOTCTRL.BC2 for
st.w r11, Oxfffb2000[r0] -- set BOOTCTRL

(Omitting the middle part)
Id.w 0xfffb2000[r0], r10 -- get BOOTCTRL
ori 4,r10,rl1 --set 1in BOOTCTRL.BC2 for
st.w r11, Oxfffb2000[r0] -- set BOOTCTRL

Figure 3.8 Example Program Code for PE1~3 to be enabled in MULTI

R0O1AN4751EJ0110 Rev.1.10
Jan. 31. 2022 RENESAS

Page 42 of 50

RH850/U2A-EVA Group Startup Application Note
3.3.3.6 Initializing RAM Areas
Initialize Local RAM and Cluster RAM.

In this project, to shorten the startup time, each PE executes initialization in the specified RAM address
areas

The RAM initializing in PEO is as follows (U2A16, U2A8).

* Local RAM (CPUO0) : OXFDC00000~ 0xFDCOFFFF (64KB)
* Cluster RAM (Cluster0) : OXFEOO0000~ OXFEO3FFFF (256KB)
* Cluster RAM (Cluster2) : OXFE400000~ OXFE47FFFF (512KB)

- Cluster RAM (Cluster3)(Retention RAM) : OXFE800000~ 0xFES8OFFFF (64KB)
The RAM initializing in PEO is as follows (U2A6).

* Local RAM (CPUO) : OXFDCO00000~0xFDCOFFFF (64KB)

* Cluster RAM (Cluster0) : OXFEO00000~ OxFEO3FFFF (256KB)

- Cluster RAM (Cluster3)(Retention RAM) : OXFE800000~ OxFES8OFFFF (64KB)
The RAM initializing in PE1 is as follows (U2A16, U2A8).

* Local RAM (CPUL1) : OXFDAOOOOO~0xFDAOFFFF (64KB)
* Cluster RAM (Cluster0) : OXFEO40000~0xFEO7FFFF (256KB)
* Cluster RAM (Cluster2) : OXFE480000~0xFE4FFFFF (512KB)

- Cluster RAM (Cluster3)(Retention RAM) : OXFE810000~0xFE81FFFF (64KB)
The RAM initializing in PE1 is as follows (U2A6).

* Local RAM (CPU1) : OXFDAO0000~0xFDAOFFFF (64KB)

* Cluster RAM (Cluster0) : OXFE040000~0xFEO7FFFF (256KB)

- Cluster RAM (Cluster3)(Retention RAM) : OXFE810000~0xFE81FFFF (64KB)
The RAM initializing in PE2 is as follows (U2A16).

* Local RAM (CPU2) : OXFD800000~0xFD8OFFFF (64KB)
* Cluster RAM (Clusterl) : OXFE100000~0xFE13FFFF (256KB)
* Cluster RAM (Cluster2) : OXFE500000~0xFE57FFFF (512KB)

+ Cluster RAM (Cluster3)(Retention RAM) : OXFE820000~0xFE82FFFF (64KB)
The RAM initializing in PE3 is as follows (U2A16).

* Local RAM (CPU3) : OxFD600000~ 0xFD60FFFF (64KB)
* Cluster RAM (Clusterl) : OXFE140000~0xFE17FFFF (256KB)
* Cluster RAM (Cluster2) : OXFE580000~ 0XFES5FFFFF (512KB)

* Cluster RAM (Cluster3)(Retention RAM) : OXFE830000~ OxFE83FFFF (64KB)

When some PEs are not to be started, adjust the specified address in order to execute RAM initialization in
each starting PE equally.

R0O1AN4751EJ0110 Rev.1.10 Page 43 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

Figure 3.9 indicates program code examples for RAM initialization in MULTI.

-- clear Cluster RAMO

mov OxFEO00000, r6
mov OXFEO3FFFF, r7
jarl _zeroclr, Ip

-- clear Cluster RAM2

mov OxFE400000, r6
mov OXFE47FFFF, r7
jarl _zeroclr, Ip

-- clear Cluster RAM3

mov OxFE800000, r6
mov OXFE8OFFFF, r7
jarl _zeroclr, Ip

-- clear Local RAM(CPUOQ)

mov 0xFDCO00000, r6
mov OXFDCOFFFF, r7
jarl _zeroclr, Ip

(Omitting the middle part)

_zeroclr4:

br .L.zeroclr4.2
.L.zeroclr4.1:

st.w ro, [r6]

add 4,16
.L.zeroclr4.2:

cmp re, r7

bh .L.zeroclr4.1

Figure 3.9 Program Code Examples for RAM initialization (for PEQ) in MULTI

RO1AN4751EJ0110 Rev.1.10

Jan. 31. 2022

RENESAS

Page 44 of 50

RH850/U2A-EVA Group Startup Application Note

3.3.3.7 Timing Synchronization (PE0O~3)

In order to synchronize each PE, before user application calling, each PE waits until other PEs have arrived
the same process.

After all PEs reach this process, each PE starts the processes simultaneously.

This process is to be executed only when all the following conditions are satisfied.
- In the case of enabling PE1, ENABLE_PE1 BY_PEOis 1.
- In the case of enabling PE2, ENABLE_PE2 BY_PEO s 1.
- In the case of enabling PE3, ENABLE_PE3_BY_PEO is 1.

R0O1AN4751EJ0110 Rev.1.10 Page 45 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

Figure 3.10 indicates program code examples for the wait process of PEO.

.L.hdwinit_PEO.O:

mov 0xFE400000, r10

setl 0, 0[r10]

-- wait for PE1
.L.hdwinit_PEO.1:

tstl 1, 0[r10]

bnz .L.hdwinit_PEO.2

snooze

br .L.hdwinit_PEO.1

.L.hdwinit_PEO.2:

-- wait for PE2
.L.hdwinit_PEO.3:

tstl 2, 0[r10]

bnz .L.hdwinit_PEO0.4
snooze
br .L.hdwinit_PEO0.3
.L.hdwinit_PEO0.4:

-- wait for PE3
.L.hdwinit_PEO.5:

tstl 3, 0[r10]

bnz .L.hdwinit_PEO.6
snooze
br .L.hdwinit_PEO0.5

.L.hdwinit_PEO.6:

-- Bit0 indicate PEO wait for PEx

-- Bitl indicate PE1 wait for PEO

-- Bit2 indicate PE2 wait for PEO

-- Bit3 indicate PE3 wait for PEO

Figure 3.10 Example Program Code for Timing Synchronization(PEO~3) in MULTI.

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

Page 46 of 50
RENESAS

RH850/U2A-EVA Group Startup Application Note

3.3.3.8 Setting Interrupt Handler Address
Set the base pointer address in table reference method to INTBP.

The base pointer address to be set is the first address of EIINTTBL section.

The base address in direct vector method is set PSW:bit15(EBV)=0 at initializing register, thus, the initial
value of RBASE (0x00000000 for PEO and PE1, 0x00800000 for PE2 and PE3) is to be used.

In the case that 1 is set to PSW:bit15(EBV), 0 set in EBASE at initializing register is to be used.

This process is to be executed only when all the following conditions are satisfied.
+ USE_TABLE_REFERENCE_METHOD is 1.

Figure 3.11 and Figure 3.12 indicate program code example for interrupt handler address settings in MULTI

#define IRQ_TABLE_START_PEO 0x00000000u
#define IRQ_TABLE_START_PE1 0x00000000u
#define IRQ_TABLE_START_PE2 0x00800000u
#define IRQ_TABLE_START_PE3 0x00800000u

stsr 0, r1o, 2 -- get PEID.PEID

cmp 0, r10

bnz .L.init_eiint.1 -- if PEID.PEID is not 0

mov IRQ_TABLE_START_PEO, r10

Idsr r10, 4, 1 -- set INTBP

br .L.init_eiint.4
.L.init_eiint.1:

cmp 1,r10

bnz .L.init_eiint.2 -- if PEID.PEID is not 1

mov IRQ_TABLE_START_PEL1, r10

[dsr r1o, 4,1 -- set INTBP

br .L.init_eiint.4

Figure 3.11 Example Program Code for Interrupt Handler Address Settings in MULTI

R0O1AN4751EJ0110 Rev.1.10 Page 47 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

-- if PEID.PEID is not 2

-- if PEID.PEID is not 3

.L.init_eiint.2:
cmp 2,110
bnz .L.init_eiint.3
mov IRQ_TABLE_START_PE2, r10
[dsr r1o, 4,1 -- set INTBP
br .L.init_eiint.4

.L.init_eiint.3:
cmp 3,r10
bnz .L.init_eiint.5
mov IRQ_TABLE_START_PE3, r10
Idsr r1o, 4,1 -- set INTBP
br .L.init_eiint.4

.L.init_eiint.4:

Figure 3.12 Example Program Code for Interrupt Handler Address Settings in MULTI

RO1AN4751EJ0110 Rev.1.10
Jan. 31. 2022

RENESAS

Page 48 of 50

RH850/U2A-EVA Group

Startup Application Note

3.3.3.9

Initializing Each Pointers

Set the global pointer, text pointer and stack pointers

The value set in each pointer are shown as follows.

- Global Pointer

The first address in.sdabase section.

- Text Pointer

The first address of.robase section.

- Stack Pointer

The end address of stack section.

Figure 3.13 indicates program code examples of initializing each pointer.

-- set global pointer
movhi hi(__ ghsbegin_sdabase),zero,gp
movea lo(___ghsbegin_sdabase),gp,gp

-- set text pointer
movhi hi(___ghsbegin_robase),zero,tp

movea lo(___ghsbegin_robase),tp,tp

-- set stack pointer

movhi hi(___ghsend_stack-4),zero,sp
movea lo(___ghsend_stack-4),sp,sp
mov -4,r1

and rl,sp

Figure 3.13 Example Program Code for Initializing Each Pointer in MULTI

RO1AN4751EJ0110 Rev.1.10

Jan. 31. 2022

RENESAS

Page 49 of 50

RH850/U2A-EVA Group Startup Application Note

3.3.3.10 Setting Coprocessor
Set 1 to FEPSW bit16(CUO) to enable FPU.

If FPU is not needed, set 0 to PSW bit16(CUOQ).

Figure 3.14 indicates a program code example for coprocessor settings.

-- enable FPU

stsr 5,r10,0 -- get PSW

movhi 0x0001, r0, r11 -- set 1 in PSW.CUO for enable FPU
or ri1, r10

[dsr r1o, 3,0 -- set PSW via FEPSW

Figure 3.14 Example Program Code for Coprocessor Settings in MULTI

3.3.3.11 Calling a Main Function of User Application
Program counter transitions to main in user application.

Figure 3.15 indicates an example program code for calling a main function of user application.

jr __start

Figure 3.15 Example Program Code for Calling a Main Function of User Application in MULTI

R0O1AN4751EJ0110 Rev.1.10 Page 50 of 50
Jan. 31. 2022 RENESAS

RH850/U2A-EVA Group

Startup Application Note

Revision History

Rev.

Date

Description

Page

Summary

0.50

2019.03.08

All
sections

Issued the 1st version.

0.60

2019.11.06

16, 17

Modified Table 3.10 and Table 3.11.
(Added SCBP register and modified the order of each register)

18, 19

Added the following conditions for Clock gear up Setting.

* Main OSC and PLL are enabled (OPBT11.STARTUPPL = 0)
Modified Figure 3.5 and Figure 3.6.

(Modified Example Program Code for Register Initialization in
CS+)

20

Modified Figure 3.8.
(Modified Example Program Code for PE1~3 to be enabled in
CS+)

22

Modified Figure 3.9.
(Modified Example Program Code for RAM Initializing the .data
and .bss Sections in CS+(PEQ))

26

Modified Figure 3.13.
(Modified Example Program Code for Initializing the .data
and .bss Sections in CS+)

27

Modified Figure 3.14.
(Modified Example Program Code for Coprocessor Setting in
CS+)

38, 39

Modified Table 4.8 and Table 4.9.
(Added SCBP register and modified the order of each register)

40, 41

Added the following conditions for Clock gear up Setting.

* Main OSC and PLL are enabled (OPBT11.STARTUPPL = 0)
Modified Figure 4.5 and Figure 4.6.

(Modified Example Program Code for Clock Gearup Settings in
MULTI)

42

Modified Figure 4.8.
(Modified Example Program Code for PE1~3 to be enabled in
MULTI)

50

Modified Figure 4.14.
(Modified Example Program Code for Calling a Main Function of
User Application in MULTI)

0.70

2020.03.20

16, 38

Modified Table 3.10 and Table 4.8.
(Removed CTBP register ,SCBP register and MPCFG register)

16, 38

Added notes to Table 3.10 and Table 4.8.
(MPLA, MPUA, MPAT registers)

1.00

2020.09.30

All section

Renumbered tables and figures to corresponding one.

17.39

Modified Table 2.11 and Table 3.9.
(Removed GMFEPSW, GMEIIC and GMFEIC registers)
(Added GMMEA and GMMEI registers)

18,40

2.3.4.3/3.3.4.3 Clock Gearup Settings
Modified the conditions under which the clock gearup is
performed.

1.01

2021.03.18

13

Added RH850/U2A8 as a target device.
Added a Section 1.1 Note.

2021.03.18

10,32

Added note for initially stopped core.

© 2022 Renesas Electronics Corporation. All rights reserved.

RENESAS

RH850/U2A-EVA Group Startup Application Note

1.10 2022.01.31 1,3 Added RH850/U2A6 as a target device.

18,19,40,41 | Modified Example Program Code for Clock Gearup Settings.
(Figure2.5, Figure 2.6, Figure 3.6 and Figure 3.7.)

19,41 Modified Example Program Code for RS-CANFD module
standby register settings. (Figure 2.7 and Figure 3.7)

21,43 Added RAM initialize area for U2A6 operation.

The initialization range of Cluster RAM (Cluster2, Cluster3) in
U2A16 PE3 is modified.

© 2022 Renesas Electronics Corporation. All rights reserved.

RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from
Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections
of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation.
Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control
must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static
electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the
states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the

power reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or
1/0 pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input

signal become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when

the input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vin (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to
problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might
differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as
characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

RENESAS

10.

11.
12.

(Notel)

(Note2)

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that
is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
WWw.renesas.com
Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2022 Renesas Electronics Corporation. All rights reserved.

RENESAS

https://www.renesas.com/
https://www.renesas.com/contact/

