RE NESAS Application Note

RH850/D1M2
D1M2(H) SDRB DDR2 SDRAM Arbiter Configuration

Introduction

This document provides a sample workflow, on how to create an arbiter configuration for the DDR2-SDRAM
Memory Controller (SDRB) based on a use case definition.

Together with this document, you will get a helper-sheet that provides configurable 13
parameters for most known use cases.

Arbiter Config

The official reference document for the SDRB is the D1x User's Manual: Hardware. Helper Sheet.xlsx

(Current version: Rev. 2.20 / January 2018). The content of this document is sample
data. Use on your own risk.

For further support, please contact device support.dix-eu@Im.renesas.com.

Target Device
All D1x-family devices with support for DDR2-SDRAM memory, which are RH850/D1M2 and RH850/D1M2H.

Contents

1. Introduction: What iS @rbitratiON?ccoiiiiiiiiiiiiiii e e e 2
1.1 Multiple masters share ONE MEMOIY FESOUICEuueuerreerererrreeerererrssseseessesesasesersreeerrereerererer.. 2
1.2 Real time and Dest effOrt MASTEIScooiiiiiii e 2
1.3 Limited BanTWIOLhoooiiiii ettt abes 2
O N o1 (= Vi o] T o] 41 (o] o] PO PT T PTPRR 3
1.5 Arbitration: Distribution of Limited bandWidth ... 3
2. BUS SITUCTUIE ..ttt ettt e e ettt e e e et e e e e et e e e e et e e e e et e e e e ean e aaeannns 4
P2 R [Lo 1Y/ To [UF= U o T 10 VA o [T LT =1 o] TP PP PR TP 5
2.2 Threshold CONFIQUIALIONiiiiiiiii ettt ettt e e ettt e e e et b e e e e aabae e e e nnneas 5
3. Creating an arbiter CONTIGUIATION..........uuuuiiiiiiiiiiiiieiiiii bbb abaeeneeenennnenes 7
I R 1 Tg o T T g (=] =T S PR PR PSR 7
3.2 General SYStem INFOMMALIONoii ittt e e s bt e e e sab et e e e nbbe e e e snbeeeeenneees 7
3.3 Video Output information (Port 0 R and POrt 1 R)........eeeiiiiiiiiiiiiiiee et 7
3.4 Video Input information (Port O W and POrt 1 W) ...ttt 7
3.5 Other master’s information (Port 2 R and POrt 2 W)ooiiiiiiiiii et 7
3.6 GPU information (Port 3 R and POt 3 W)ccoiiiiiiiiiiiie ittt e e 7
3.7 Priority generator INFOIMALIONcooiiiiiii ettt e e e sa b e e e e anb e e e e e snbeee e e nneees 7
4. Transfer of the arbiter configuration into the SYStem.ccooi i 8
REVISION HISTOIY ... 9
RO1AN4888EJ0102 Rev.1.20 Page 1 of 9

Aug.08.08 RENESAS

mailto:device_support.d1x-eu@lm.renesas.com

Cover

				Document Title				D1M2 SDRB Arbiter Configuration Sample

				Document Owner				Automotive Support (device_support.d1x-eu@lm.renesas.com) [MNI]

				Device Responsible

				Document Version				V1.2

				Document Change History

				Date		Version		Changed by		Change Description

				11/01/19		V1.0		Automotive Support (MNI)		initial creation

				30/01/19		V1.1		Automotive Support (MNI)		Updated sheets 'Usage' and 'Config'.
Added sheet 'Arbitration process'.
Improved descriptions and added more formatting.

				08/08/19		V1.2		Automotive Support (MNI)		Bundled to Application Note R01AN4888EJ0102

				Scope

				This document provides a sample workflow, on how to proceed from a use case definition to an SDRB arbiter configuration.
Official reference document for the SDRB is the D1x User's Manual: Hardware. (Current version: Rev. 2.20 / January 2018).
The content of this document is sample data. Use on your own risk.

				Disclaimer

				This document is supplied by Renesas Electronics Corporation and is only intended for use with Renesas products. No other uses are authorized. This document is owned by Renesas Electronics Corporation and is protected under all applicable laws, including copyright laws.

THIS DOCUMENT IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES REGARDING THIS DOCUMENT, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY DISCLAIMED.
TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Renesas reserves the right, without notice, to make changes to this document and to discontinue the availability of this document. By using this document, you agree to the additional terms and conditions found by accessing the following link:
http://www.renesas.com/disclaimer

Copyright (C) 2019 Renesas Electronics Corporation. All rights reserved.

Usage

				Usage

				The following sheet "Config" provides an interface to calculate sample configuration values for the SDRB DDR2-SDRAM arbiter.

				For more information, please also check the main document "Application Note R01AN4888EJ0102".

				Rather than using "MB/s", this sheet uses "requests/s" as base unit.

				On one hand, this unit is closer to actual architecture of the arbiter.

				On the other hand, this unit is independant of the total SDRAM Bandwidth

				Therefore, all information available needs to be transferred into "requests/s".

				1) CLOCK

				MEMCLK is supplied by PLL1 and is SDRBCLK/2.

				Therefore, it is usually 240MHz.

				-> Provide clock information of the bus system.

				2) VIDEO-I/F

				To calculate the timing-requirements for the Ports 0 and 1, infomration about the VO's and VI's are requried.

				-> Provide width, height and FPS of all VDCE I/F's that are in use.

				-> Set all VI and VO layers to active that are using the SDRAM for storage.

				-> Set BPP per layer, and if it is a sprite layer, set "sim-sprites" to a number higher than "0".

				3) GENERAL-I/F

				This is simplified, as the arbiter cannot tell apart, which "other" master is generating the request.

				-> Find the master with the tightest timing requirement

				-> Summarize all bandwidth requirements. You can treat read and write separately. Fill in the bigger number.

				-> Count all "other" masters that use the SDRAM. This number is required for the final timeslot calculation.

				4) GPU-I/F

				Nothing to configure. The GPU should simply subordinate tot he requests of other masters.

				By default, GPU's priority generator is not even enabled. This will clamp the GPU to Priority 0.

				5) Priority generator

				This sample sheet will only use Threshold 1 and 2 to recommend values.

				Threshold 0 is for customisation by the user. If it is not required, set to "(Threshold 1)+1".

				-> For priorized masters (VDCE and "Other") set Threshold 1 to "0"

				-> For priorized masters without customized initial priority level, set Threshold 0 to (Threshold 1+1).

				-> For priorized masters (VDCE and "Other") set Threshold 2 to "-MAX CYCLES"

				-> For priorized masters, enable Carry-Over. This prevents accumulation of delays.

				-> For less important masters ("Other"), set Active-to-Idle to 0. This prevents blocking of real-time masters. Due to already detailed timeslot calulation, the effect is not very strong.

				This way, the first escalation from 0 -> 2 happens right after the calculated timeslot is over.

				In addition, there is another "emergency" escalation from 2 -> 3.

				6) Customized priority

				Above setup excluded independent configuration of escalation level "1".

				If there is a master that you want to serve differently, as long as the system is not "under pressure", you can do so by changing "Threshold 0".

				Example:

				CPU is spending some the CPU time writing to SDRAM. You don't want this to delay other tasks that are also handled by the CPU.

				You cold achieve this by using the currently unused escalation level 1.

				Other masters will directly jump to "2", so duties are still served, but in case real-time masters are idling, the CPU is still priotized before serving the GPU.

				-> Set "Threshold 0" to another value between 8192 and (Threshold 1). I.e. set it to ("MAX-CYCLES"-50) to get to level 1 after 200ns.

				7) Bandwidth

				The scope of this sheet is not the estimation of the total system bandwidth.

				It cannot tell, if the configured use case can be handled by the system ressources available.

				Nevertheless, there is a bandwidth estimation column.

				The bandwidth estimations there are worst case and may be seen as an indicator, if the current use case is realistic.

				-> If the GPU bandwidth is red and negative, please check if your use case if feasible.

Arbitration process

Arbitration process

Please refer to the RH850/D1x User's Manual for the official documentation of the DDR2-SDRAM Arbiter.

Basic behaviour

Naming:
 PRIO0: Normal priority
 PRIO1: -unused-
 PRIO2: High priority
 PRIO3: Immediate priority
 (This naming is chosen based on the concept below and is not predefined ot fixed by HW or UM)

By default, each counter starts with a value that is higher than "Threshold 0".
This means, that the initial priority is PRIO0.

The start value CTSET is chosen such, that the number of cycles until the first escalation equals the "Max-Cycles" value of the calculation section.
This means, that as long as a request is 'in-time', it does not cross any threshold and does not experience priority escalation.

By default, "Threshold 0" and "Threshold 1" are configured to be as close as possible toe ach other.
Virtually, this means that a master will directly escalate from PRIO0 to PRIO2
So, PRIO1 is not used by this part of the concept.
It will be introduced later.

In addition, "Threshold 2" is configured to be another "Max-Cycles" apart from "Threshold 1".
This way, if a request is waiting twice as long as it should, it will escalate to maximum priority.

 Example:
 Start: CTSET is 100 and prio is PRIO0.
 After waiting for 100 cycles, we reach (Threshold 0 and) "Threshold 1": CTSET is 0 and prio goes to PRIO2.
 After waiting another 100 cycles, we reach "Threshold 2": CTSET is -100 and prio goes to PRIO3.

 See Figure 16.3:
 If counter goes below Threshold 0, Prio is 1.
 If further counter goes below Threshold 1, Prio is 2.
 [...]

Carry over function

For the counter behind CTSET, the counter value "zero" can be used as a reference point of the current service quality.
A value above zero tells the arbiter that the request was served in-time.
A negative value instead means the request was served to late.
If this would happen several times in a row, the delay may accumulate, causing an increasing backlog leading to underruns.
Therefore, by activating "carry-over", the final counter value of a previous request may influence the start value CTSET of the next request.

 Example:
 CTSET is 100.
 But the request was served after waiting for 110 cycles.
 This means that the counter counted to -10.
 With carry-over activated, this final counter value of "-10" is added to CTSET before start.
 So, the next request will start counting from (100-10=) 90, giving it a head-start of 10 cycles.

 See Figure 16.5:
 (2) If request finished in-time, counter can go to 0
 (4) If request finishes early and another request is already waiting, counter will start with higher value.
 (8) If request finishes late and another request is already waiting, counter wills start with a lower value.

This prevents accumulation of latencies.

Extended behaviour

Naming:
 PRIO0: Normal priority
 PRIO1: Custom/Medium priority
 PRIO2: High priority
 PRIO3: Immediate priority

The above two mechanisms already provide a stable setup for arbitration.
This part will focus on PRIO1, which was excluded from the explanations above.

The level PRIO1 and the "Threshold 0" are intended for custom setup by the user.
By default, PRIO1 is virtually skipped, as "Threshold 0" and "Threshold 1" are close together.
Threshold 0 = (Threshold 1) + 1

If you manually change "Threshold 0", you can achieve that certain masters experience an increased priority.
But still, this priority is low enough, not to interfere with the escalation steps of the video interface.

 Example:
 Your system is configured and stable.
 But you see, that you need faster response for the CPU connected to Port 3.
 If you would just change the start value of CTSET, you may also interfere with other components, as you just go ealier to PRIO2.
 But if you change "Threshold 0", you activate this masters for PRIO1.
 It will have higher priority than normal.
 But as soon as another master will need it, it can easily override PRIO1 by PRIO2.

You can set "Threshold 0" anywhere between CTSET and "Threshold 1".

Config

				SDRB Arbiter configuration of D1M2(H)

				This document serves as a sample tool to help understanding the SDRB Arbiter architecture.														User's Comment - Corner data regarding the current configuration:

				The content of this document is for evaluation purposes only.														Project: XXX / "Dual-Display with 16-bit DDR memory"
VO0: 800x480, 4 Layers, 18 Sprites on two layers
VO1: 800x480, 4 Layers, No Sprites
No VI

				Please fill-in the HIGHLIGHTED cells for a calculation of a sample arbiter setting

				Calculation of arbitration timeslots based on detailed use case information

						Width		Height		FPS																				Worst-case BW

				VDCE0 VO		800		480		60		Fill in those VO modules that you are using.
If you don't set it active below, the rows and their values here do not matter.						MEMBITS		16 bit		Use 16 or 32 bit								720.0 MB/s

				VDCE1 VO		800		480		60								MEMCLK		240 MHz		Usually 240 MHz								Total worst case SDRAM bandwidth available to the system assuming 75% efficiency.

				VDCE0 VI		800		480		30

				VDCE1 VI		800		480		30

		Port 0 R		Master		Active on
SDRAM		Layer
Width		Time to show
one line		Bits per
Pixel		Min Bursts		Max sprites
in single line		Max Bursts		Single Master		Multi Master
factor		Multi Master		Max-Cycles				Worst-case traffic

				VDCE0 Layer 0		1		480		34.7 µs/Line		32 bpp		16		-

Matthias Nippert: Matthias Nippert:
D1M2's VDCE doesn't support Sprites on Layer 0		17		2.04 µs/Burst		494.2% of Traffic		0.10 µs/Burst		25				59.1 MB/s

				VDCE0 Layer 1		1		256		34.7 µs/Line		32 bpp		9		10 sim-sprites		300		0.12 µs/Burst		8720.9% of Traffic		0.10 µs/Burst						33.2 MB/s

				VDCE1 Layer 0		1		480		34.7 µs/Line		32 bpp		16		-

Matthias Nippert: Matthias Nippert:
D1M2's VDCE doesn't support Sprites on Layer 0		17		2.04 µs/Burst		494.2% of Traffic		0.10 µs/Burst						59.1 MB/s

				VDCE1 Layer 3		1		256		34.7 µs/Line		32 bpp		9		0 sim-sprites		10		3.47 µs/Burst		290.7% of Traffic		0.10 µs/Burst						33.2 MB/s

				VDCE0 OIR

Matthias Nippert: Matthias Nippert:
This is the image-data read path of the warped image. This has the bandwidth requirements based on the display geometry.

NoOfSprites is 0.

This is automatically activated, if you active the VOWE at Port 1W below.		0		800		34.7 µs/Line		32 bpp		0				0		0.00 µs/Burst		0.0% of Traffic		0.00 µs/Burst						0.0 MB/s

		Port 0 and 1 serve the VDCE.

The VDCE is a real-time master. Therefore it is mandatory, that requests are served within a specific timeslot.
This calculation aims to calculate this timeslot.

The resulting CYCLE value is best used with the Carry-Over function. This ensures, that a single delayed request doesn't cause all subsequent requests to inherit the delay.				Layers or sprites that are actively using the SDRAM. If Layer is in other memory, set "Active" to "0". If just one sprite is in SDRAM, set active to "1" and "Max sprites" to one.

As this considers the worst case: Also include layers that are momentary active, like menus.		The width of a single layer may differ from the screen width						Minimum Number of Bursts required to fetch all bytes of a line with no sprites active		This is not the number of all visible sprites, but the max number sprites stored in SDRAM, that are simultaneously visible on a single line.
E.g. On line 125, sprites 1, 6 and 8 are visible, 1 and 6 are in SDRAM: "2 sprites are visible on this line". Evaluate for all lines and take max. value.		Maximum number of requests executed including sprites. This is a worst case assumption: Sprites occupy the full line-width in the worst possible alignment. +1 for safety margin.		If the layer were acting alone, this is the timeslot for one request		Layers share of this Ports Bandwidth calculated based on number of requests		Timeslot for one request with multiple active layers.

The lowest valid value will be used for the timeslot calculation and will be represented by max-cycles.		Timeslot in cycles based on lowest time value. As this value will be valid for all masters, this will give another safety margin.				Worst-case continous bandwidth, assuming that sprites of a single layer do not overlap.

Including 5% margin, as the average of the VO timing also considers phases of inactivity (blanking intervals).

		Port 1 R		Master		Active on
SDRAM		Layer
Width		Time to show
one line		Bits per
Pixel		Min Bursts		Max sprites
in single line		Max Bursts		Single Master		Multi Master
factor		Multi Master		Max-Cycles				Worst-case traffic

				VDCE0 Layer 2		1		800		34.7 µs/Line		32 bpp		26		8 sim-sprites		259		0.13 µs/Burst		8196.2% of Traffic		0.11 µs/Burst		27				96.0 MB/s

				VDCE0 Layer 3		1		800		34.7 µs/Line		32 bpp		26		0 sim-sprites		27		1.29 µs/Burst		854.4% of Traffic		0.11 µs/Burst						96.0 MB/s

				VDCE1 Layer 1		1		800		34.7 µs/Line		32 bpp		26		0 sim-sprites		27		1.29 µs/Burst		854.4% of Traffic		0.11 µs/Burst						96.0 MB/s

				VDCE1 Layer 2		1		32		34.7 µs/Line		32 bpp		2		0 sim-sprites		3		11.57 µs/Burst		94.9% of Traffic		0.11 µs/Burst						7.4 MB/s

				VDCE0 VOWE

Matthias Nippert: Matthias Nippert:
This is the display-list data read path of the VOWE. This is just used to read the command list and therefore has a negligible low bandwidth.		

Matthias Nippert: Matthias Nippert:
This is the image-data read path of the warped image. This has the bandwidth requirements based on the display geometry.

NoOfSprites is 0.

This is automatically activated, if you active the VOWE at Port 1W below.												

Matthias Nippert: Matthias Nippert:
D1M2's VDCE doesn't support Sprites on Layer 0		-

		Port 0 W				Active on
SDRAM		Layer
Width		Time to store
one line		Bits per
Pixel		Min Bursts				Max Bursts		Single Master						Max-Cycles				Worst-case traffic

				VDCE0 VI		0		480		69.4 µs/Line		32 bpp		0				0		0.00 µs/Burst						1				0.0 MB/s

		Port 1 W				Active on
SDRAM		Layer
Width		Time to store
one line		Bits per
Pixel		Min Bursts				Max Bursts		Single Master		Multi Master
factor		Multi Master		Max-Cycles				Worst-case traffic

				VDCE1 VI		0		480		69.4 µs/Line		32 bpp		0				0		0.00 µs/Burst		0.0% of Traffic		0.00 µs/Burst		1				0.0 MB/s

				VDCE0 VOWE

Matthias Nippert: Matthias Nippert:
VOWE takes VDCE0 Layer 0-3 as input and warps the image data.
This data is then written to memory.

Afterwards, the VDCE0 OIR Layer will read the data from memory and output it to display:

MEM -> VDCE0 L0-3 -> VOWE -> MEM -> OIR -> VO

Default:

MEM -> VDCE0 L0-3 -> VO												

Matthias Nippert: Matthias Nippert:
D1M2's VDCE doesn't support Sprites on Layer 0		0		800		34.7 µs/Line		32 bpp		0				0		0.00 µs/Burst		0.0% of Traffic		0.00 µs/Burst						0.0 MB/s

		Port 2 R+W		Master: Others		No of active 'other'
masters on SDRAM				Required
Reaction Time		Required
Bandwidth		Min Bursts for BW		Timeslot for BW				Combined Timeslot						Max-Cycles				Worst-case traffic

				CPU(time) + JCUA(BW)		2				180.0 µs		15.0 MB/s		122880		8.14 µs/Burst				8.14 µs/Burst				3.26 µs/Burst		782				15.0 MB/s

		Port 2 is expected to serve low-bandwidth best-effort masters.
These masters to not have a critical time window.
Instead of analysing the requirements of each master, this port will be configured based on general requirements.

Select both the master with highest BW and lowest reaction time.				Number of "other" masters actively using the SDRAM during runtime				Minimum required reaction time of all "other" masters using the SDRAM.
(e.g. Time to serve an Ethernet request.)

Default is 180µs, which has no impact. Keep at 180µs, if you just want to adapt the Bandwidth. -->		Minimum required bandwidth of all "other" masters using the SDRAM.
Treat read and write separately, fill in: MAX(read bw; write bw)

Default is 0.7 MB/s, which has no impact. Keep at 0.7 MB/s, if you just want to adapt the Reaction time. <--		Assuming the masters are using most efficient 64-bit/16-beat bursts of 128 Bytes, this is the number of requests, that needs to be served		This timeslot is required to serve the configured bandwidth				Based on the minimum of both reaction time and bandwidth, this is the timeslot we need				If several "other" masters have a request in queue, then the request with the requirements may still need to wait for arbitration. Therefore, reaction time is divided by no of active other masters. Including 20% safety margin.		Timeslot in cycles based both on reaction time and bandwidth requirements				Worst-case bandwidth is simply based on the bandwidth requirement

		Port 3 R+W		Master: GPU																						Max-Cycles				Available BW

																										8191				225.1 MB/s

		Port 3 serves the GPU. The GPU is regarded as best-effort master.
By design, it has the best bus-connection and this therefore able to catch up most delays caused by real-time masters.

In case above masters take up too much bandwidth, the GPU cannot simply overpower them, as this would violate the real-time requirement and may lead to information loss or over-/underruns.																								As explained in the first column, do not use this value for priority generation.

8191 is just the highest starting value.				Remaining bandwidth that is available to the GPU after subtracting all other BW's from the total available BW.

Worst-case!
Real bandwidth is likely to be higher!

				Priority Generator Configuration

		Register Idx		Port		I/F		Active		CTSET		Priority Level
Threshold 0		Priority Level
Threshold 1		Priority Level
Threshold 2		Carry-Over
(0: Off / 1: On)		Active-Idle Type
(0: Requests /
 1: Bytes)		Active-Idle
Threshold		First escalation
after total of		Second escalation
after total of		Third escalation
after total of

		0		0 R - VO		XC0_0		1		25		1		0		-25		1		0		8191		0.10 µs		0.10 µs		0.21 µs

		1		1 R - VO		XC0_1		1		27		1		0		-27		1		0		8191		0.11 µs		0.11 µs		0.23 µs

		2		2 R - Other		XC1		1		782		732		0		-782		1		0		0		0.21 µs		3.26 µs		6.52 µs

		3		3 R - GPU		XC3		0		8191		-8188		-8189		-8190		0		0		0		68.25 µs		68.25 µs		68.25 µs

		4		0 W - VI		XC0_0		1		1		1		0		-1		1		0		8191		0.00 µs		0.00 µs		0.01 µs

		5		1 W - VI		XC0_1		1		1		1		0		-1		1		0		8191		0.00 µs		0.00 µs		0.01 µs

		6		2 W - Other		XC1		1		782		732		0		-782		1		0		0		0.21 µs		3.26 µs		6.52 µs

		7		3 W - GPU		XC3		0		8191		-8188		-8189		-8190		0		0		0		68.25 µs		68.25 µs		68.25 µs

		Register Name								DBTMVAL0i
.CTSET + 0x2000		DBTHRES0i
.CTTHRES + 0x2000		DBTHRES1i
.CTTHRES + 0x2000		DBTHRES2i
.CTTHRES + 0x2000		DBLGVNTi
.LDMD		DBLGVNTi
.RGLMD		DBRQCTRi
.RQCTR

				When configuring the thresholds, ensure the correct proportions:

DBTMVAL0i.CTSET
 > DBTHRES0i.CTTHRES
 > DBTHRES1i.CTTHRES
 > DBTHRES2i.CTTHRES				If the priority generator is inactive, the settings on the right side are ineffective.
An inactive priority generator is clamped to priority level 0.		This is the start value of the counter [+8191 to -8192].
Value 0 is the underflow point, which is important for the carry over function. Therefore, the timeslot in cycles is chosen as positive offset from 0.

The values here are filled automatically, but you can override them by hand.		This level can be used for "hand-biasing" of the bus system.

Additional specification may be, that the turnaround time of single CPU accesses should always be "that" fast.

We can use this level just to achieve that.
But by having carry-over activated it will only affect the first request. All following requests will escalate slower.

Therefore, to speed up for multiple CPU requests, please modify the settings of Port 2.		For real-time masters, we want to make sure that latest on counter underflow (CNT<0), the master is able to catch up.

The GPU should only take what is left, so we set it to MAX. This doesn't matter here as the counter is set inactive anyway

This should alreday be quite stable.		In case of unexpected longer blocking of SDRAM (Long request + Refresh + Bank Switch + Preload + R/W Switch), we define the next stage based on the value also used for CTSET.
So, escalation is proportional to initial counter value.		For masters, where we see any kind of REAL TIME BANDWIDTH requirement, we enable carry over. This way, we don't need immediate priority escalation:

A single request may come later, but due to accumulation by the carry-over feature, the following are able to catch-up.		As we do not need byte-exact steering, "Requests" type is sufficient.		For the real-time masters, we do not need the active-idle switch, it is set to MAX.

For best-effort master, we want to re-evaluate after each request, if there is other work to do. This reduces the latency introduced by best-effort masters.

				Register Settings (based on RGL code)

				r_sdrb_arbiter_config_t config[] = {

				 /* ActiveToIdle */

				 /* EN, Start, Thresh0, Thresh1, Thresh2, Type, Thresh, ReloadType, Signed */

				 { 1, 0x2019, 0x2001, 0x2000, 0x1FE7, 0, 0x1FFF, 1, 0 }, /* Port 0 R - VO */

				 { 1, 0x201B, 0x2001, 0x2000, 0x1FE5, 0, 0x1FFF, 1, 0 }, /* Port 1 R - VO */

				 { 1, 0x230E, 0x22DC, 0x2000, 0x1CF2, 0, 0x0000, 1, 0 }, /* Port 2 R - Other */

				 { 0, 0x3FFF, 0x0004, 0x0003, 0x0002, 0, 0x0000, 0, 0 }, /* Port 3 R - GPU */

				 { 1, 0x2001, 0x2001, 0x2000, 0x1FFF, 0, 0x1FFF, 1, 0 }, /* Port 0 W - VI */

				 { 1, 0x2001, 0x2001, 0x2000, 0x1FFF, 0, 0x1FFF, 1, 0 }, /* Port 1 W - VI */

				 { 1, 0x230E, 0x22DC, 0x2000, 0x1CF2, 0, 0x0000, 1, 0 }, /* Port 2 W - Other */

				 { 0, 0x3FFF, 0x0004, 0x0003, 0x0002, 0, 0x0000, 0, 0 }, /* Port 3 W - GPU */

				};

				This structure is understood by the BSP function

				 static void loc_InitSDRBMemArbiter(void)

				in the file

				 C:\work\vlib\bsp\board\d1mx_mango\src\gfx\r_bsp_sys_gfx_d1m2.c

				The BSP is part of the RGL (Renesas Graphics Library) for RH850/D1x devices.

				To get a quotation for the RGL, please contact your sales representative.

				Register Settings (based on HeaderFile code)

				//Priority generator enable register (disable first before configuration)

				SDRB0DBLGQON0 = 0x00000000ul;

				SDRB0DBLGQON1 = 0x00000000ul;

				SDRB0DBLGQON2 = 0x00000000ul;

				SDRB0DBLGQON3 = 0x00000000ul;

				SDRB0DBLGQON4 = 0x00000000ul;

				SDRB0DBLGQON5 = 0x00000000ul;

				SDRB0DBLGQON6 = 0x00000000ul;

				SDRB0DBLGQON7 = 0x00000000ul;

				//Write Priority Generator Control Register

				SDRB0DBLGCNT0 = (SDRB0DBLGCNT0 & 0xFEFEFEFFul) | 0x01000100ul;

				SDRB0DBLGCNT1 = (SDRB0DBLGCNT1 & 0xFEFEFEFFul) | 0x01000100ul;

				SDRB0DBLGCNT2 = (SDRB0DBLGCNT2 & 0xFEFEFEFFul) | 0x01000100ul;

				SDRB0DBLGCNT3 = (SDRB0DBLGCNT3 & 0xFEFEFEFFul) | 0x01000000ul;

				SDRB0DBLGCNT4 = (SDRB0DBLGCNT4 & 0xFEFEFEFFul) | 0x01000100ul;

				SDRB0DBLGCNT5 = (SDRB0DBLGCNT5 & 0xFEFEFEFFul) | 0x01000100ul;

				SDRB0DBLGCNT6 = (SDRB0DBLGCNT6 & 0xFEFEFEFFul) | 0x01000100ul;

				SDRB0DBLGCNT7 = (SDRB0DBLGCNT7 & 0xFEFEFEFFul) | 0x01000000ul;

				//Write Initial value register

				SDRB0DBTMVAL00 = (SDRB0DBTMVAL00 & 0xFFFFC000ul) | 0x00002019ul;

				SDRB0DBTMVAL01 = (SDRB0DBTMVAL01 & 0xFFFFC000ul) | 0x0000201Bul;

				SDRB0DBTMVAL02 = (SDRB0DBTMVAL02 & 0xFFFFC000ul) | 0x0000230Eul;

				SDRB0DBTMVAL03 = (SDRB0DBTMVAL03 & 0xFFFFC000ul) | 0x00003FFFul;

				SDRB0DBTMVAL04 = (SDRB0DBTMVAL04 & 0xFFFFC000ul) | 0x00002001ul;

				SDRB0DBTMVAL05 = (SDRB0DBTMVAL05 & 0xFFFFC000ul) | 0x00002001ul;

				SDRB0DBTMVAL06 = (SDRB0DBTMVAL06 & 0xFFFFC000ul) | 0x0000230Eul;

				SDRB0DBTMVAL07 = (SDRB0DBTMVAL07 & 0xFFFFC000ul) | 0x00003FFFul;

				//Write state transition register

				SDRB0DBRQCTR0 = (SDRB0DBRQCTR0 & 0xFFFFC000ul) | 0x00001FFFul;

				SDRB0DBRQCTR1 = (SDRB0DBRQCTR1 & 0xFFFFC000ul) | 0x00001FFFul;

				SDRB0DBRQCTR2 = (SDRB0DBRQCTR2 & 0xFFFFC000ul) | 0x00000000ul;

				SDRB0DBRQCTR3 = (SDRB0DBRQCTR3 & 0xFFFFC000ul) | 0x00000000ul;

				SDRB0DBRQCTR4 = (SDRB0DBRQCTR4 & 0xFFFFC000ul) | 0x00001FFFul;

				SDRB0DBRQCTR5 = (SDRB0DBRQCTR5 & 0xFFFFC000ul) | 0x00001FFFul;

				SDRB0DBRQCTR6 = (SDRB0DBRQCTR6 & 0xFFFFC000ul) | 0x00000000ul;

				SDRB0DBRQCTR7 = (SDRB0DBRQCTR7 & 0xFFFFC000ul) | 0x00000000ul;

				//Write threshold register

				SDRB0DBTHRES00 = (SDRB0DBTHRES00 & 0xFFFFC000ul) | 0x00002001ul;

				SDRB0DBTHRES01 = (SDRB0DBTHRES01 & 0xFFFFC000ul) | 0x00002001ul;

				SDRB0DBTHRES02 = (SDRB0DBTHRES02 & 0xFFFFC000ul) | 0x000022DCul;

				SDRB0DBTHRES03 = (SDRB0DBTHRES03 & 0xFFFFC000ul) | 0x00000004ul;

				SDRB0DBTHRES04 = (SDRB0DBTHRES04 & 0xFFFFC000ul) | 0x00002001ul;

				SDRB0DBTHRES05 = (SDRB0DBTHRES05 & 0xFFFFC000ul) | 0x00002001ul;

				SDRB0DBTHRES06 = (SDRB0DBTHRES06 & 0xFFFFC000ul) | 0x000022DCul;

				SDRB0DBTHRES07 = (SDRB0DBTHRES07 & 0xFFFFC000ul) | 0x00000004ul;

				SDRB0DBTHRES10 = (SDRB0DBTHRES10 & 0xFFFFC000ul) | 0x00002000ul;

				SDRB0DBTHRES11 = (SDRB0DBTHRES11 & 0xFFFFC000ul) | 0x00002000ul;

				SDRB0DBTHRES12 = (SDRB0DBTHRES12 & 0xFFFFC000ul) | 0x00002000ul;

				SDRB0DBTHRES13 = (SDRB0DBTHRES13 & 0xFFFFC000ul) | 0x00000003ul;

				SDRB0DBTHRES14 = (SDRB0DBTHRES14 & 0xFFFFC000ul) | 0x00002000ul;

				SDRB0DBTHRES15 = (SDRB0DBTHRES15 & 0xFFFFC000ul) | 0x00002000ul;

				SDRB0DBTHRES16 = (SDRB0DBTHRES16 & 0xFFFFC000ul) | 0x00002000ul;

				SDRB0DBTHRES17 = (SDRB0DBTHRES17 & 0xFFFFC000ul) | 0x00000003ul;

				SDRB0DBTHRES20 = (SDRB0DBTHRES20 & 0xFFFFC000ul) | 0x00001FE7ul;

				SDRB0DBTHRES21 = (SDRB0DBTHRES21 & 0xFFFFC000ul) | 0x00001FE5ul;

				SDRB0DBTHRES22 = (SDRB0DBTHRES22 & 0xFFFFC000ul) | 0x00001CF2ul;

				SDRB0DBTHRES23 = (SDRB0DBTHRES23 & 0xFFFFC000ul) | 0x00000002ul;

				SDRB0DBTHRES24 = (SDRB0DBTHRES24 & 0xFFFFC000ul) | 0x00001FFFul;

				SDRB0DBTHRES25 = (SDRB0DBTHRES25 & 0xFFFFC000ul) | 0x00001FFFul;

				SDRB0DBTHRES26 = (SDRB0DBTHRES26 & 0xFFFFC000ul) | 0x00001CF2ul;

				SDRB0DBTHRES27 = (SDRB0DBTHRES27 & 0xFFFFC000ul) | 0x00000002ul;

				//Priority generator enable register

				SDRB0DBLGQON0 = 0x00000001ul;

				SDRB0DBLGQON1 = 0x00000001ul;

				SDRB0DBLGQON2 = 0x00000001ul;

				SDRB0DBLGQON3 = 0x00000000ul;

				SDRB0DBLGQON4 = 0x00000001ul;

				SDRB0DBLGQON5 = 0x00000001ul;

				SDRB0DBLGQON6 = 0x00000001ul;

				SDRB0DBLGQON7 = 0x00000000ul;

image1.png

Port 0 RIW request Port0

|
DBLGSTS0.CCT[13:0] A

Start value 0

i
i
!
PROLEVELO 0 | 1 | 2 | 3
PRIOLEVELT o | 1
I
i
i
i
i
i
i
i

Port 1

DBLGSTS1.CCT[13:0] A

Start value 1

Port 1 RIW request

Figure 16.3 Dynamic priority control principle

image2.png

Request flag
oBLGSTS RES |

QoS counter
DBLGSTSICCT[13:0]

Initial value

DBTMVALOI.CTSET[13:0]

QoS counter reload with carry-over function examples

Figure 16.5

r01an4888ed0102_D1M2_SDRB_DDR2_SDRAM_Arbiter_Configuration_Helper_Sheet.xlsx

RH850/D1M2 D1M2(H) SDRB DDR2 SDRAM Arbiter Configuration

1. Introduction: What is arbitration?

In general, arbitration is a procedure for multiple masters to get access to multiple slaves (N:M scheme).
Such procedure is needed when masters want to do parallel access, but the slaves are limited to only
support a single access at a time. The parallel requests must be serialized and handled one-after-another.
There are many different forms and algorithms of arbitration, that can be found on computer networks, CAN
buses, memory controllers or even in real live traffic either by Traffic Lights or by “Left yields to right.”

In this case, we will be talking about memory access arbitration, which is not a N:M scheme, but a N:1
scheme.

1.1 Multiple masters share one memory resource

On the usual MCU and SoC devices, there is usually one big “unified” memory that is shared among all
functional blocks of the chip. All the functional blocks of the chips can work in parallel without interference.
But as it comes to memory access, only one master can be served at a time.

As soon as more than one request hits the memory at the same time, some entity must decide whom to
serve first. This entity is called arbiter.

To make sure that all the requesting masters can continue their tasks even while waiting, they implement
data queues on their connection to the arbiter. This way, data can be requested in advance and processed
data can be written to memory without the masters waiting for any data access to be granted by the arbiter.

Also, the arbiter is aware of these data queues and, depending on the connected master, the target of the
arbiter is to prevent build-up of these queues. For a video input for example, the queue should never run full,
otherwise you’d lose data to be written to memory.

1.2 Real time and best effort masters
The masters in the system can be roughly categorized into “Real Time” and “Best Effort” masters.

A real time master needs a constant stream of data with specific bandwidth and latency. If the stream is
interrupted, this may cause either data corruption or visual effects that can be noticed by the user. For
example, if the data stream to the VO is interrupted, the user will see black artifacts on the display.

A best effort master will work as fast as it can given the current limitations of internal speed and external
bandwidth. The quality of the result does not rely on speed. In case there is an interruption, it will simply wait
or work slower. For example, if the GPU is interrupted, it will simply wait for next data.

Note: In case the GPU cannot finish in-time, this will not cause corruption of display output, as it draws into
an invisible back buffer. The application SW in turn may not be able to show this buffer on screen, but this
may only cause lagging (delayed display) rather than screen corruption.

1.3 Limited Bandwidth

The memory bandwidth of a system is limited as it is restricted by a physical connection. A 16-bit DDR
SDRAM for example can transmit a theoretical peak of 2 Byte * 480 MHz = 960 MB/s. The practically
available bandwidth is lower and is usually calculated with a margin of 75%, which results in 720 MB/s.

For example, if the real time master VO needs a fixed bandwidth of 500 MB/s, the remaining masters only
have 220 MB/s left. If the GPU would now also need an average bandwidth of 400 MB/s to finish the work,
this would not work out. It would either cause screen corruption or lagging as one or both of the masters may
not get their full bandwidth.

For the system design this means, that all bandwidth requirements should be estimated during device
selection:

e What resolution will my screen have?

e How many video-input and -output layers will be in use?

e Can | use sprites to reduce both memory space and bandwidth?
e What will the GPU do? Refresh every buffer every time?

e Will the GPU just copy images together or will it do more complex operations like rotation and
blending?

The more information is available, the better will be the requirements needed for MCU selection.

RO1AN4888EJ0102 Rev.1.20 Page 2 of 9
Aug.08.08 RENESAS

https://www.dict.cc/englisch-deutsch/Left.html
https://www.dict.cc/englisch-deutsch/yields.html
https://www.dict.cc/englisch-deutsch/to.html
https://www.dict.cc/englisch-deutsch/right..html

RH850/D1M2 D1M2(H) SDRB DDR2 SDRAM Arbiter Configuration

1.4 Arbitration principle

The default arbitration principle of an unconfigured arbiter is a fair distribution. But even “fair’ can be
expressed from different point of views. In this system, the arbiter will serve just one request from each
individual before serving the next one. This principle is also known as “round-robin arbitration”.

The apparent advantage of round-robin is, that theoretically any of N requesting masters may get 1/Nth of
the total bandwidth. But in case a single master needs more than 1/Nth of the total bandwidth, this principle
won’t work out.

Coming back to the example of Chapter 1.3, let's assume the VO needs 500 MB/s of the 720 MB/s that are
practically available. This is more than 50% of 720 MB/s. If another master is requesting data at the same
time, the round robin arbitration scheme will not give more than 360 MB/s to the VO: The VO will have
underruns, which will be visible to the user as screen corruption.

1.5 Arbitration: Distribution of Limited bandwidth

The SDRAM controller has an integrated priority generator. This generator can adjust the seemingly fair
scheme of the round robin arbitration. You can use it to give and take priority from certain masters but even
make sure that a low-priority master gains priority in case it is waiting too long.

The generator sits within the queues of the arbiter. By manipulating the priorities you can change the order
how the different queues are served.

RO1AN4888EJ0102 Rev.1.20 Page 3 of 9
Aug.08.08 RENESAS

RH850/D1M2

D1M2(H) SDRB DDR2 SDRAM Arbiter Configuration

2. Bus structure

The DDR2 memory controller is in the lower half of Figure 1 below. The controller has four ports
(connections) each split into read- and write-path. The arbiter sits below the four ports connecting it to the
actual DDR2-SDRAM PHY.

FPBUS

'

CPU Subsystem .
Y Graphics Subsystem
Cod . -
Pé?cessct)r DMA F.ZEE Video channel Video channel
Lacal emen U 1
RAM
| | bi L k
. p— ocD 64-bit XC masters | |
Cross-connect XC2 (64 bit)
o] [MLEB ETNB JCUA IJ : l|
master |[F master I'F slave I'F
h [h A L ¥ ¥ L J
r ¥ h 4 .)
I Cross-cannect XC1 (64 bit) | Spnte Eﬂglﬂ&
4 . 4 . 4 h A A T 'y r Y 7y
h y A ¥ k. r
- Yy A L A ¥
| xcGn | | xcGn | | xcGn | | xcGn | | 12884 | [128764 | I Crase-conmect K00 (64 b1) I
Retention Serial A A
RAM | | VRAMO | | VRAM1 | crach iF 1 1
" 128/54 128/64
64-bit XC memory slaves :Jk:I :,L:I
GPU2D
GPU
L J ¥ r ¥
[%cen][%cGn] [xcen] XCGN

DDR2-5DRAM Memory arbiter (128 bit)

A

b

DDRZ-SDRAM
MEMC

128-bit memory slave

Figure 1: D1IM2(H) bus architecture from UM chapter 14.2.3.6 (See UM for latest information)

RO1AN4888EJ0102 Rev.1.20

Aug.08.08

RENESAS

Page 4 of 9

RH850/D1M2 D1M2(H) SDRB DDR2 SDRAM Arbiter Configuration

2.1 Individual priority generators
From perspective of the arbiter, it must handle the following eight paths, as listed in Table 2.1 below.

Table 2.1: Ports of the DDR2-SDRAM arbiter

Register Port Bus Interface
Index

0 OR-VO XC0_0

1 1R-VO XC0_1

2 2R-Other - xC1

3 3R-GPU XC3

4 OW-VI - XC0_0

5 1W-VI XC0_1

6 2 W—Other - XC1

7 3W-GPU XC3

Each of the paths shown above has its own priority generator, therefore, these are the entities that can be
configured in their priority.

The generator of each path can generate four priorities ranging from PRIOO to PRIOS3. If a generator is
disabled, it will always output PRIOO. The arbiter will serve higher priorities first. In case a single master
currently has PRIOS, it will be served exclusively as long as his requests stay with PRIO3.

The generator itself is coupled to timers, that will measure the time when each individual request was placed
into on of the eight queues. The generator knows any time the age of each request that is currently waiting.
Instead of directly evaluating this counter, there are configurable thresholds for each port, that will translate
the age into the already known priorities PRIOO to PRIO3.

The thresholds of the timers are the parameters that can be used for arbiter configuration.

The timers are counting with a base clock of 240 MHz. These cycles will be used as time base for later
calculations with this document.

2.2 Threshold configuration

There are many different approaches to configure the counter values and thresholds, this document will do it
as follows.

2.2.1 Timer values

The timers count downwards and have a range from +8192 to -8192. There are specific mechanisms to
evaluate if a timer crossed zero while waiting for a request to be served. This information can be used to
calculate penalties or awards for the following requests.

Therefore, the start value of a timer will always be set in the range of [+8129 .. 0].

2.2.2 Priority levels

The initial start values and thresholds of all ports are chosen such that every memory access starts at lowest
priority PRIOO. So, in low load case, the arbiter will run in natural round-robin behavior.

In addition, this approach will not use the level PRIO1. The threshold0-1 will be kept next to the threshold1-2,
so that is has no effect, but PRIO1 is skipped directly for PRIO2.

The intention is, to have PRIO1 unused in case further tweaking by customer is required. Keeping PRIO1
and PRIO2 close together makes additional tweaking easier as there are fewer side effects if the value was
previously unused.

The threshold1-2 for PRIO2 is fixed to 0. As explained above, this means that threshold0O-1 is set to +1. To
control the interval between PRIOO and PRIOZ2, the start value of the counter can be modified. To control the
interval between PRIO2 and PRIO3, the threshold2-3 can be modified.

RO1AN4888EJ0102 Rev.1.20 Page 5 of 9
Aug.08.08 RENESAS

RH850/D1M2 D1M2(H) SDRB DDR2 SDRAM Arbiter Configuration

2.2.3 Time interval
Now, the time interval between the thresholds is calculated.

By knowing required bandwidths of each master as well as the bus architecture, it is possible to calculate the
number of requests each master needs in a certain timeframe.

For example:

The video output connected to SDRAM read port (index 0) runs with RGBA8888 at 800 x 480 @ 60 fps
(thus, the screen has a total height of 480 lines). Therefore, each line must complete within 1 / 60 Hz / 480
lines = 34,7 us. The bus architecture can deliver 128 Bytes per request. A line of 800 pixels consists of
800px x 32-bit = 3200 Bytes. This makes up a total of 3200 Bytes / 128 Bytes/request = 25 requests.

Finally, this means that one request must be served in 34.7 ps/line / 25 requests/line = 1.39 us on average.

This will be the basic unit to configure the thresholds for that specific port. If a request cannot be served
within the calculated average time, the priority should increase.

Therefore, for this example, we want the interval to be 1.39us. This must be converted into cycles of the
threshold time as mentioned in Chapter 2.1. 1.39 us * 240 MHz = 334 cycles.

The start value of the counter for SDRAM read port (index 0) must be +334.

If a request waits longer than 334 cycles, the priority will increase. In a multi-master system with several
requests waiting, it may even be possible to have several requests waiting on PRIO2. Therefore, as final
escalation stage, we will also configure PRIO3. For PRIO3, we will select the same number of cycles. This
means, if a request waits two times the time that is allowed to wait on average, it will receive highest priority.

If this delay would happen to every request of a specific master, we would violate the calculated 1.39us per
request. When the delays accumulate, the increasing backlog of unfinished request may finally cause
underruns. Therefore, we will activate the “carry-over” feature of the arbiter.

2.2.4 Carry-Over (“Priority Inheritance”)

The carry-over feature of the arbiter makes it possible to remember the delay of the previous transaction on
the same port by analyzing the timer value. If the timer is still above zero, the last request was served early,
if the timer is below zero, the last request was served late. The function can adjust the following request to
either catch-up the delay of the previous request or to decelerate due to the advance of the previous request.

The carry-over does it by adding the counter value to the start value of the next request.
For example:

If the previous request had a start value of +334 cycles, but finished after 300 cycles, it is still +34 cycles
ahead of its limit. Therefore, these +34 cycles will be added temporarily to the start value of the next request:
334 +34 = 368 cycles. This request now has 34 additional cycles before transition to PRIO2.

For more details, please also check the UM Chapter 16.5.6.

2.2.5 Custom level PRIO1

As explained above, that level PRIO1 is not used by this Application Note but is free for the user to configure.
The intention is to provide a tweaking mechanism that does not have complex side effects.

For Example:

You have the CPU writing data. It uses Port 2 of the SDRAM. You want to make sure, that the CPU runs
quickly and is not blocked unnecessarily by masters like the GPU, but you don’t consider the CPU to be a
“‘real time” master. It is clear that the VO is more important and should not be disturbed.

In this case, you could modify threshold0-1 to a higher value, so that CPU request can transition from PRIOO
to PRIO1. The effect would be, that the CPU can be served earlier without directly escalating to PRIO2.

It would even be served before requests of the VO, while these are on PRIOO. But as soon as any VO
request escalates to PRIO2, the CPU would be overruled again, and the VO is able to catch up.

This way, the custom level PRIO1 can be used to promote selected masters without risking system stability
and causing underruns of real-time masters.

RO1AN4888EJ0102 Rev.1.20 Page 6 of 9
Aug.08.08 RENESAS

RH850/D1M2 D1M2(H) SDRB DDR2 SDRAM Arbiter Configuration

3. Creating an arbiter configuration

Attached to this Application Note you will find an Excel Helper sheet. (Please check the cover page for an
embedded excel file.) This sheet is prepared to receive various parameters and information about the target
application. In general, it will do the same calculations as shown above, but in many places including more
parameters.

The sheet will also generate a worst-case traffic estimation. The result cannot be used to estimate average
GPU performance, this value is way below the average bandwidth, as it accumulates all peak bandwidths to
a single number.

The number is only to assess, if the system is still stable, if all peak loads accumulate at a single point of
time: The sum of the individual worst-case traffics should not exceed the total available worst-case
bandwidth.

3.1 Filling in the sheet

Any field that is intended to be modified is highlighted in yellow. For the upper part of the sheet there are only
numbers to be updated. For the lower part of the sheet starting on row 53: “Priority Generator Configuration”,
some cells may contain formulas or references. These are the default recommended values calculated by
the information above. Feel free to adjust these values if required.

Please also check out the “USAGE” tab inside the excel sheet as well as the comments next the each cell
that is to be filled in.

3.2 General System information

Please input data bus width and frequency of external SDRAM. Possible values are 16 or 32-bit for the data
bus. The frequency is usually 240 MHz, as it is bound to the CPU frequency.

Then input general information about connected screens and cameras: Resolution and frame rate. In case
you don’t use any VI or VO, leave the values untouched, they will be ignored by later settings.

3.3 Video Output information (Port 0 R and Port 1 R)

Please set a 1 into “active” for each layer that is in use AND is using SDRAM as memory. If the layer would
be using VRAM or Serial Flash or is not active at all, set it to 0. No need to fill further cells of a row that is
inactive.

Now, input the width and color format of the layers and in case of a sprite layer the maximum number of
sprites horizontally next to each other. As the video output works line-by-line, vertical dependencies are not
important.

3.4 Video Input information (Port 0 W and Port 1 W)

Please configure active, width and color format for your video inputs that capture into SDRAM. In case you
use the VOWE and write the intermediate data to SDRAM, also provide its details here. This will
automatically enable the VOWE read path in Port O R.

3.5 Other master’s information (Port 2 R and Port 2 W)

In case there are masters other than the Video masters or the GPU to use the SDRAM, they will be
configured here. (E.g. CPU, DMA, Ethernet, JPEG-Decoder) Please count all of them that will access the
SDRAM and input into “active” column. If any of the masters has a reaction time, chose the one with the
smallest allowed latency and input it to column “reaction time”. In the same way, chose the master that must
transfer most information from/to SDRAM and input it into “bandwidth”.

3.6 GPU information (Port 3 R and Port 3 W)

This sheet just needs information about those masters that have a “real time” requirement. Those masters
considered to be “best effort” will take the remaining resources. This also applies to the GPU, which of
course should work as fast as possible, but should not interrupt data streams of “real time” masters.

3.7 Priority generator information

With the information above, the Excel Sheet should already generate a good and stable arbiter configuration.
You can find it starting with row 55. By default, all priority generators are activated except those of the GPU.
By this measure, requests of the GPU are always bound to PRIOO and will never interfere with another
request, as so as that request escalates to higher priority.

RO1AN4888EJ0102 Rev.1.20 Page 7 of 9
Aug.08.08 RENESAS

RH850/D1M2 D1M2(H) SDRB DDR2 SDRAM Arbiter Configuration

4. Transfer of the arbiter configuration into the system.

In case you already have your own configuration function for the SDRAM, you may take the output rows 55
and below to write the registers on your own.
If you use the Renesas Graphics Library, you also have the possibility to hand this task to the BSP. Please

copy the variable starting on row 71 into your source code. During initialization, the BSP automatically calls
the function loc_InitSDRBMemArbiter (void). If you put it into this function, the new values will be set

during device start-up.

RO1AN4888EJ0102 Rev.1.20 Page 8 of 9
Aug.08.08 RENESAS

RH850/D1M2 D1M2(H) SDRB DDR2 SDRAM Arbiter Configuration
Revision History
Description
Rev. Date Page Summary
1.0 2019-01-11 - First draft of Excel Helper sheet (MNI)
1.1 2019-01-30 - First preview of Excel Helper sheet (MNI)
1.2 2019-08-08 - Creation of Application Note (MNI)

RO1AN4888EJ0102 Rev.1.20

Aug.08.08

RENESAS

Page 9 of 9

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.
12.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

© 2019 Renesas Electronics Corporation. All rights reserved.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
WWWw.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

https://www.renesas.com/
https://www.renesas.com/contact/

