
 APPLICATION NOTE

R20AN0505EJ0100 Rev.1.0 Page 1 of 28
Aug. 06, 2018

RH850 Family C Compiler Package (CC-RH)
PIC/PID Facilities

Introduction
This application note gives an outline of the compiler’s PIC/PID (position-independent code and data) facilities and
describes how to use them with the aid of some examples.

Target Revisions
CC-RH V1.07.00 and later

Contents

1. PIC/PID Facilities .. 3
1.1 Outline of the Facilities ... 3
1.2 Example of Usage ... 3

2. PIC Facility .. 4
2.1 Compiler Option .. 4
2.2 Section Used for the PIC Facility ... 4
2.3 Examples of the Use of the PIC Facility .. 5

2.3.1 Calling a PIC Function from a Non-PIC Function .. 5
2.3.2 Calling a PIC Function from a PIC Function .. 5
2.3.3 Calling a Non-PIC Function from a PIC Function .. 5

3. PIROD Facility... 6
3.1 Compiler Option .. 6
3.2 Section Used for the PIROD Facility ... 6
3.3 Example of the Use of the PIROD Facility .. 7

4. PID Facility .. 8
4.1 Compiler Option .. 8
4.2 Section Used for the PID Facility ... 8
4.3 Example of the Use of the PID Facility .. 9

5. Startup Routine .. 10
5.1 Initialization of Base Registers .. 10
5.2 Initializing the RAM Sections ... 11
5.3 Branch to the main Function ... 13

6. Examples of Application of the PIC/PID Facilities.. 14
6.1 Configuring Projects that Include Use of the PIC/PID Facilities .. 14

6.1.1 Structure of the CS+ Projects .. 14

R20AN0505EJ0100
Rev.1.0

Aug. 06, 2018

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 2 of 28
Aug. 06, 2018

6.1.2 Creating the Master Project ... 15
6.1.3 Starting the Application Program from the Master Program ... 15
6.1.4 Adding an Application Project ... 16
6.1.5 Reference to the Master Program from the Application Program 16

6.2 Making Interrupt and Exception Handlers Position-Independent .. 19

7. Points for Caution .. 21
7.1 Reference to Variables and Functions .. 21
7.2 Acquisition of Static Addresses .. 21
7.3 Use of GP-Relative and EP-Relative Sections .. 21
7.4 Use of Standard Libraries .. 22
7.5 Compiler Options .. 22

Appendix .. 23

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 3 of 28
Aug. 06, 2018

1. PIC/PID Facilities
The PIC/PID facilities enable the relocation of code and data and their execution and handling at desired addresses
without re-linkage even after their allocation addresses have been determined through previously completed linkage.

This application note describes how to use the PIC/PID facilities with an example where two types of program, referred
to as "application program" and "master program", are created. The application program is to be allocated and executed
at a desired address in memory through the PIC/PID facilities. The master program is used to execute the application
program.

1.1 Outline of the Facilities
The CC-RH compiler provides the following three facilities.

PIC (position-independent code) facility
This enables the allocation of code (functions) to desired addresses in memory and executed from there.

The "-pic" option generates a position-independent section for the allocation of the functions.

PIROD (position-independent read-only data) facility
This enables the allocation of constant data (const variables) to desired addresses in memory and referred to there.

The "-pirod" option generates a position-independent section for the allocation of constant data.

PID (position-independent data) facility
This enables the allocation of data (variables) to desired addresses in memory and referred to there.

The "-pid" option generates a position-independent section for the allocation of the data.

1.2 Example of Usage
When the PIC facility is used, an updated application program can be allocated to a desired address and executed from
there without affecting an earlier version of the application program that is already being executed.

Non-PIC shared routines such as standard library functions can also be called from the application program. In this
case, however, a project for the shared routines should be built before the application program, and the application
program should refer to the absolute addresses of the shared routines.

Figure 1-1 Example of PIC/PID Usage

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 4 of 28
Aug. 06, 2018

2. PIC Facility

2.1 Compiler Option
The compiler option "-pic" enables the PIC facility.

Note that this option should be specified together with the "-pirod" option.

In the CS+ IDE, select the [Common Options] tab → [PIC/PID] category → [Enable PIC and PIROD functions] →
[Yes(-pic -pirod)] to enable the PIC facility.

When the PIC facility is enabled in CS+, both the "-pic" and "-pirod" options are specified together.

Figure 2-1 Specifying the -pic and -pirod Options

2.2 Section Used for the PIC Facility
Specifying the "-pic" option changes the default name of the section where code is to be allocated from ".text" to
".pctext".

When a function is allocated to the .text section, a call (execution) of the function or reference to the function address is
in PC-relative mode or 32-bit r0 (address 0)-relative mode. As 32-bit r0-relative access is used, the code in the .text
section is not position-independent. In contrast, when a function is allocated to the .pctext section, access to the function
is always in PC-relative mode to ensure that the code is position-independent.

The section specification in the "-start" option (the option for specifying section addresses) should also be changed from
".text" to ".pctext". The address specified for the .pctext section with this option is used to determine the distance
between PC-relative sections and therefore does not have to be a runtime address.

Table 2-1 Section Used for the PIC Facility

Section Relocation
Attribute

Default Section
Name Access Mode

Alignment
Value

pctext .pctext 32-bit addresses relative to the PC 2

The section name can be changed by using the #pragma section directive.

In the following example, the section name is changed to "test.pctext".

#pragma section pctext "test"

void func(void) { // test.pctext

…

}

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 5 of 28
Aug. 06, 2018

2.3 Examples of the Use of the PIC Facility
2.3.1 Calling a PIC Function from a Non-PIC Function
For an example of calling a PIC function from a non-PIC function, see section 6.1.3.

2.3.2 Calling a PIC Function from a PIC Function
In C source code, a PIC function can be called by its name from a PIC function in the same way as for an ordinary
function.

C source example:

void func1(void) {

func2();

}

In the compiled code, PC-relative mode is used to call the function.

Result of compilation:

_func1:

 .stack _func1 = 4

 prepare 0x00000001, 0x00000000

 jarl _func2, r31

 dispose 0x00000000, 0x00000001, [r31]

2.3.3 Calling a Non-PIC Function from a PIC Function
In C source code, a non-PIC function can be called by its name from a PIC function in the same way as for an ordinary
function.

C source example:

#pragma section text // Section defined in the master program (non-PIC)

void nopic_func();

#pragma section default

void func1(){ // func1 is allocated to the .pctext section.

 nopic_func(); // Calls a non-PIC function.

}

The compiler generates the code for calling the absolute address of the non-PIC function in r0-relative mode. When the
application program calls a function in the master program, the application program refers to the symbol address file
(*.fsy) created for the master program to determine the address of the function. After execution of the non-PIC function,
execution is returned to the PIC function by using the r31 register (LP).

Result of compilation:

_func1:

.stack _func1 = 4

prepare 0x00000001, 0x00000000

mov #_nopic_func, r2 // Get absolute address of non-PIC function.

jarl [r2], r31

dispose 0x00000000, 0x00000001, [r31]

When the "-pic" option is specified, note that functions can only be defined in sections having the pctext attribute.

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 6 of 28
Aug. 06, 2018

3. PIROD Facility

3.1 Compiler Option
The compiler option "-pirod" enables the PIROD facility.

Note that this option should be specified together with the "-pic" option and cannot be specified together with "-Omap"
or "-Osmap" option.

Refer to section 2.1 for information regarding how to specify this option in the CS+ IDE.

3.2 Section Used for the PIROD Facility
Specifying the "-pirod" option changes the default name of the section where constant data are to be allocated from
".const" to ".pcconst32".

When constant data are allocated to the .const section, reference to constants or their addresses is in 32-bit r0 (address
0)-relative mode. Therefore, the constant data in the .const section are not position-independent. In contrast, access to
the data in the .pcconst32 section is always in PC-relative mode to ensure that the data are position-independent. Access
from the PIC to the PIROD is based on the relative addresses determined at linkage, so the distances between them
cannot be changed.

The section specification in the "-start" option (the option for specifying section addresses) should also be changed from
".const" to ".pcconst32". The address specified for the .pcconst32 section with this option is used to determine the
distance between PC-relative sections and therefore does not have to be a runtime address.

Table 3-1 Section Used for the PIROD Facility

Section Relocation
Attribute

Default Section
Name Access Mode

Alignment
Value

pcconst32 .pcconst32 32-bit addresses relative to the
__pc_data symbol 4

The section name can be changed by using the #pragma section directive.

In the following example, the section name is changed to "test.pcconst32".

#pragma section pcconst32 "test"

const int a = 1; // test.pcconst32

Instructions for reference to constant data can be shortened by changing the section for allocation to ".pcconst16" or
".pcconst23".

#pragma section pcconst16

const int a = 1; // .pcconst16

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 7 of 28
Aug. 06, 2018

3.3 Example of the Use of the PIROD Facility
In C source code, reference to a constant handled as PIROD can be by its name in the same way as for an ordinary
constant.

C source example:

const int a = 3;

int func() {

return a;

}

In the compiled code, PC-relative mode is used for reference to PIROD variables from PIC functions.

Result of compilation:

.public _a, 4

.public _func

.section ".pctext", pctext

func:

 .stack func = 0

 jarl .BB.LABEL.1_1, r2 ; Sets r2 to the runtime address of .LABEL.1_1.

.BB.LABEL.1_1:

 mov #.BB.LABEL.1_1-#__pc_data, r5 ; Relative address determined at

; linkage

 sub r5, r2

 movhi HIGHW1(#_a-#__pc_data), r2, r2 ; PC-relative reference to _a

 ld.w LOWW(#_a-#__pc_data)[r2], r10

 jmp [r31]

 .section ".pcconst32", pcconst32

 .align 4

a:

 .dw 0x00000003

__pc_data: Base symbol for PC-relative access, which is automatically generated by the linker.

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 8 of 28
Aug. 06, 2018

4. PID Facility

4.1 Compiler Option
The compiler option "-pid" enables the PID facility.

Note that this option cannot be specified together with the "-r4=none", "-Omap", or "-Osmap" option.

In the CS+ IDE, select the [Common Options] tab → [PIC/PID] category → [Enable PID function] → [Yes(-pid)] to
enable the PID facility.

Figure 4-1 Specifying the –pid Option

4.2 Section Used for the PID Facility
Specifying the "-pid" option changes the default names of the sections where variables are to be allocated from ".data"
and ".bss" to ".sdata32" and ".sbss32", respectively.

When variables are allocated to the .data or .bss section, reference to variables or their addresses is in 32-bit r0 (address
0)-relative mode. Therefore, the variables in the .data or .bss section are not position-independent. In contrast, access to
the variables in the .sdata32 or .sbss32 section is always in GP-relative mode to ensure that they are position-
independent.

Note that the .sdata32, .sbss32, .edata32, and .ebss32 sections are dedicated to the PID facility. By default, variables to
be handled as PID are allocated to the .sdata32 or .sbss32 section and reference to them is always in GP-relative mode.
When EP-relative access is specified by the #pragma section directive, variables are allocated to the .edata32 or .ebss32
section and referenced in EP-relative mode.

GP-relative sections and EP-relative sections other than those stated above can also be used for the PID facility. For the
available sections, refer to the CC-RH Compiler User's Manual.

The section specifications in the "-start" option (the option for specifying section addresses) should also be changed
from ".data" and ".bss" to ".sdata32" and ".sbss32", respectively. The addresses specified for the .sdata32 and .sbss32
sections with this option are used to determine the distances between the base symbols and the GP-relative or EP-
relative sections and therefore they do not have to be runtime addresses.

Table 4-1 Sections Used for the PID Facility by Default

Section
Relocation
Attribute

Default
Section
Name Variables to be Allocated Access Mode

Alignment
Value

sdata32 .sdata32 Initialized variables
32-bit addresses relative to r4 (GP) 4

sbss32 .sbss32 Uninitialized variables

The section names can be changed by using the #pragma section directive.

In the following example, the section names are changed to "test.sdata32" and "test.sbss32".

#pragma section sdata32 "test"

int a = 1; // test.sdata32

int b ; // test.sbss32

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 9 of 28
Aug. 06, 2018

4.3 Example of the Use of the PID Facility
In C source code, reference by a PIC function to a variable handled as PID can be by its name in the same way as for an
ordinary variable.

C source example:

int a = 1;

int func() {

 return a;

}

In the compiled code, GP-relative or EP-relative mode is used for reference to the PID variable.

Result of compilation:

.public _a, 4

.public _func1

_func1:

 .stack _func1 = 0

 movhi HIGHW1($_a), r4, r2 // GP-relative reference

 ld.w LOWW($_a)[r2], r10

 jmp [r31]

.section .sdata32, sdata32

.align 4

_a:

 .dw 0x00000001

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 10 of 28
Aug. 06, 2018

5. Startup Routine
When the PIC/PID facilities are enabled, the standard startup routine cannot be used. The following processes in the
startup routine require modification.

• Initialization of base registers
• Initialization of RAM sections
• Branching to the main function

Sample code for a startup routine is given in the appendix. The following describes the modifications to processing in
the sample code.

5.1 Initialization of Base Registers
When using the PID facility, determine the means of passing the information regarding how much a section is offset
from the start address of the RAM section specified at linkage (hereafter referred to as the RAM offset value) in
advance. For example, write the RAM offset value to a specific location in RAM or data flash memory*.

*: Since reference to the specific location has to be with an absolute address in this case, the PID or PIROD facility
cannot be used for the location.

When restarting the program without shutting off the power supply of the microcontroller, store the RAM offset value
in a specific register. Add the received RAM offset value to the base register values, and the resulting values are used as
the base addresses at runtime.

$ifdef __PID

 mov #_PID_offset, r28 ; Memory address for passing the RAM offset value

; The RAM offset value is stored in this address.

 ld.w 0[r28], r28 ; Stores the offset (RAM offset value) between

data

 ; allocation at linkage and data allocation at

runtime

 ; in the r28 register.

$endif

; When using both the GP and EP registers in the PIC

 mov #_stacktop, sp ; Sets up the SP register.

 mov #__gp_data, gp ; Sets up the GP register.

 mov #__ep_data, ep ; Sets up the EP register.

$ifdef __PID

 add r28, sp ; Prevents overlapping of data allocation areas and

; stack area when GP and EP base addresses are offset.

; This line can be omitted when overlapping never

occurs.

 add r28, gp

 add r28, ep

$endif

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 11 of 28
Aug. 06, 2018

5.2 Initializing the RAM Sections
The _INITSCT_RH() function cannot be used for initializing sections for which the PID facility is enabled because the
function receives and uses the section information tables. Therefore, the initial values should be directly copied from
ROM to RAM within the startup routine. Obtain the offset between the address of the code and constant data area at
linkage and that at runtime (hereafter referred to as the ROM offset value) in advance.

 jarl .pic_base, r29 ; Stores the address of the .pic_base label at runtime in r29.

.pic_base:

 mov #.pic_base, r10 ; Stores the address of the pic_base label at linkage in r10.

 sub r10, r29 ; The value (r29 – r10) is used as the ROM offset value.

Next, initialize the sections for the allocation of initialized data. To initialize a section, store the start and end addresses
of the source area for copying initial values and the destination address for copying in the r6, r7, and r8 registers,
respectively. (*1)

When using the PIROD facility, add the ROM offset value to the start address (r6 register value) and end address (r7
register value) of the source area for copying initial values. (*2)

When using the PID facility, add the RAM offset value to the destination address (r8 register value) where initial values
are to be copied. (*3)

 mov #__s.sdata32, r6 ; (*1) Stores the start address of the source area for copying.

 add r29, r6 ; (*2) Adds the ROM offset value.

 mov #__e.sdata32, r7 ; (*1) Stores the end address of the source area for copying.

 add r29, r7 ; (*2) Adds the ROM offset value.

 mov #__s.sdata32.R, r8 ; (*1) Stores the address of the destination area for copying.

 add r28, r8 ; (*3) Adds the RAM offset value.

As preparation for copying is complete at this point, call the copying routine.

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 12 of 28
Aug. 06, 2018

 jarl _copy4, lp

....

 ; r6: Source begins (4-byte aligned)

 ; r7: Source ends (r6 <= r7)

 ; r8: Destination begins (4-byte aligned)

 .align 2

copy4:

 sub r6, r7

.copy4.1:

 cmp 4, r7

 bl .copy4.2

 ld.w 0[r6], r10

 st.w r10, 0[r8]

 add 4, r6

 add 4, r8

 add -4, r7

 br .copy4.1

.copy4.2:

 cmp 2, r7

 bl .copy4.3

 ld.h 0[r6], r10

 st.h r10, 0[r8]

 add 2, r6

 add 2, r8

 add -2, r7

.copy4.3:

 cmp 0, r7

 bz .copy4.4

 ld.b 0[r6], r10

 st.b r10, 0[r8]

.copy4.4:

 jmp [lp]

Repeat these steps as many times as the number of sections that require initial values.

Next, initialize the sections for allocating uninitialized data with 0s. Store the start and end addresses of a target section
in the r6 and r7 registers, respectively. When using the PID facility, add the RAM offset value to the start address (r6
register value) and end address (r7 register value).

$ifdef __PID

 mov #__s.sbss32, r6

 mov #__e.sbss32, r7

 add r28, r6 ; Adds the RAM offset value.
 add r28, r7 ; Adds the RAM offset value.

$else

 mov #__s.sbss, r6

 mov #__e.sbss, r7

$endif

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 13 of 28
Aug. 06, 2018

Call the initialization routine to initialize the target section with 0s.

 jarl _clear4, lp

....

 ; r6: Destination begins (4-byte aligned)

 ; r7: Destination ends (r6 <= r7)

.align 2

_clear4:

 sub r6, r7

.clear4.1:

 cmp 4, r7

 bl .clear4.2

 st.w r0, 0[r6]

 add 4, r6

 add -4, r7

 br .clear4.1

.clear4.2:

 cmp 2, r7

 bl .clear4.3

 st.h r0, 0[r6]

 add 2, r6

 add -2, r7

.clear4.3:

 cmp 0, r7

 bz .clear4.4

 st.b r0, 0[r6]

.clear4.4:

 jmp [lp]

Repeat these steps as many times as the number of sections that require initialization.

5.3 Branch to the main Function
When using the PIC facility and branching to the main function with the FERET instruction, add the ROM offset value
to the value that is to be stored in the FEPC register.

 mov #_exit, lp ; lp <- #_exit

 mov #_main, r10

$ifdef __PIC

 add r29, lp ; Adds the ROM offset value.

 add r29, r10 ; Adds the ROM offset value.

$endif

 ldsr r10, 2, 0 ; FEPC <- #_main

 feret ; Sets up the PSW and PC to start execution in the user mode.

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 14 of 28
Aug. 06, 2018

6. Examples of Application of the PIC/PID Facilities
This section describes the method for creating CS+ projects using the PIC/PID facilities.

6.1 Configuring Projects that Include Use of the PIC/PID Facilities
The following describes how to create CS+ projects for calling an application program (PIC) from a master program
(non-PIC).

6.1.1 Structure of the CS+ Projects
After creating the master project (non-PIC) in the same way as when creating an ordinary CS+ project, add the
application project (PIC) as a subproject. The following description uses an example where an application program is
configured as a single project. This means that the distances between the base address and individual runtime addresses
in the application program are fixed.

The following shows the structure of projects in the CS+ project tree.

Figure 6-1 Structure of Projects

Master project
(non-PIC)

Application
project (PIC)

 Starting the application
program (section 6)

 Output of *.fsy (section 6)

 Specifying options for the
PIC/PID facilities (section 2)

 Allocating sections for the
PIC/PID facilities (section 2)

 Modifying the startup routine
(section 5)

 Input of *.fsy (section 6)

 Setting up the dependent
projects (section 6)

Necessary settings in individual projects

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 15 of 28
Aug. 06, 2018

6.1.2 Creating the Master Project
Start up the CS+ IDE, click on the [Start] button on the toolbar, and click on the [GO] button for [Create New Project]
in the [Start] panel to create a project.

6.1.3 Starting the Application Program from the Master Program
Start up the application program (PIC) from the master program by specifying the entry point for the PIC that was
allocated at runtime.

To use the PID facility, the RAM offset value should be passed to the application program and used to initialize the GP
and EP base registers (see section 5.1). The following description is based on the sample code given in the appendix.

The RAM offset value is stored at a specific address and passed to the application program through that address. Add "-
start=PID_OFFSET.bss/<address for passing the offset>" to the linker option settings to allocate PID_offset to the
address used for passing the offset.

Figure 6-2 Branch from the Master Program to the Application Program in the Sample Code Given
in the Appendix

C source example:

#pragma section PID_OFFSET

unsigned long PID_offset; // Location for storing the RAM offset value

#pragma section default

void main() {

void (*pic_entry)(void) = (void*)<entry point at runtime>;// Address of APPVECT

PID_offset = <RAM offset value at runtime>;

(*pic_entry)();

}

The <entry point at runtime> should contain a program that dynamically obtains the first address of the area where the
application program (PIC) is stored.

Entry point for PIC

Startup of PIC

Startup of non-PIC

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 16 of 28
Aug. 06, 2018

6.1.4 Adding an Application Project
Select the project node in the project tree and select [Add] → [Add New Subproject...] or [Add Subproject...] from the
context menu to add an application project.

To create a new application project, refer to sections 2 to 5 regarding setting up options and sections and edit the startup
routine.

6.1.5 Reference to the Master Program from the Application Program
(1) Reference to externally defined symbols in the master program

For reference to a function or variable in the master program from the application program, write the declaration of
the function or variable and the processing to refer to the function or variable in the application program. The
section where this declaration of the function or variable is allocated has to match the section where the function or
variable is defined in the master program. The processing (function) for reference in the application program should
be defined in a PIC section.

Example of C source code in the application program:

Building the application program requires information regarding externally defined symbols in the master program.
In building the master program, output the addresses of functions or variables for which you desire reference from
the application program to a symbol address file (*.fsy).

When building the master program, select the [Link Options] tab → [Section] category → [Section that outputs
external defined symbols to the file], click on the [...] button on the right side, and specify the name of the section to
which the externally defined symbols are to be allocated.

Figure 6-3 Dialog Box for Specifying the Section where Externally Defined Symbols are to be

Allocated

#pragma section text "comm"

extern void *nopic_func(void); // Non-PIC function

#pragma section pctext // To define the function as PIC, change

// the section relocation attribute back to that for PIC.

void pic_func(void) {

 nopic_func();

}

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 17 of 28
Aug. 06, 2018

Example of output to *.fsy:

Next, register the *.fsy file with the application project. Right-click on the [File] node in the project tree and select
[Add] to add the file.

Figure 6-4 Project Tree After the *.fsy File has been Added to the Application Project

Supplementary note: For reference to a standard library used by the master program

To refer to a standard library from the application program, refer to the link map file for the master program and
manually write the symbol names and addresses of the functions and variables in the *.fsy file.

;SECTION NAME = comm.text

.public _nopic_func

_nopic_func .equ 0xXXXXXXXX

Externally defined symbol name Allocated address

Generated

Added

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 18 of 28
Aug. 06, 2018

C source example:

For reference to library functions used by the master program from the application program, write dummy code
for referring to the functions as shown below so that the library functions are linked to the master program.

Example of link map file output:

Example of *.fsy contents:

(2) Setting up the dependent projects

Reference by the application program to the master program requires building of the master project and application
project in that order.

Figure 6-5 Order of Building Projects

(1)

(2)

 SYMBOL ADDR SIZE INFO COUNTS OPT
FILE = memcpy
 00002024 0000203b 18
 _memcpy
 00002024 0 none ,g

;SECTION NAME = text

 .public _memcpy

_memcpy .equ 0x00002024

#include <string.h>

void* const dummy_libcall[] = {&memcpy, &memcmp, &strcpy};

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 19 of 28
Aug. 06, 2018

In the CS+ IDE, the order of building projects can be controlled as desired. Select the [Project] menu → [Dependent
Projects Settings] and specify the order in the [Dependent Projects Settings] dialog box.

With the settings shown in the following figure, the app_proj project depends on the picpid_sample_proj project and
the projects are built in the order picpid_sample_proj then app_proj.

Figure 6-6 Setting up Dependent Projects

6.2 Making Interrupt and Exception Handlers Position-Independent
When the interrupt and exception handlers for the application program are made position-independent*, the address of
each handler is the sum of the address specified in the EBASE register (base address at runtime for the allocation of
handlers) and the offset for each exception or interrupt source. Specify the vector table address in the EBASE register
and set the EVB bit in the PSW to 1. The section for the interrupt and exception handlers should be aligned with a 512-
byte boundary.

*: The RESET vector cannot be position-independent. Instead of the RESET vector, specify the entry point to the
application program.

Example startup routine:

$ifdef __PIC

; Specifies the vector table address in EBASE.
 mov #__sAPPVECT, r10 ; Stores the entry point address of the PIC in r10.

 add r29, r10 ; Adds the ROM offset value.

 ldsr r10, 3, 1 ; EBASE <- r10
 stsr 5, r10, 0 ; r10 <- PSW

 mov 0x00008000, r11

 or r11, r10

 ldsr r10, 5, 0 ; Set PSW.EBV to 1.

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 20 of 28
Aug. 06, 2018

Example vector table:

;--

; Exception vector table

;--

 .section "APPVECT", pctext ; Entry point for the PIC

 .align 512

 jr32 __start ; Branches to the startup location of the PIC.

 .align 16

 jr32 _Dummy1 ; Interrupt or exception processing 1

 .align 16

 jr32 _Dummy2 ; Interrupt or exception processing 2

…

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 21 of 28
Aug. 06, 2018

7. Points for Caution
Note the following points when using the PIC/PID facilities.

7.1 Reference to Variables and Functions
There are some restrictions on the mode for reference to the functions or variables of the master program (non-PIC)
from the application program (PIC).

The following table shows the allowable combinations of referring and referred sides and modes of access between
functions and variables in the application program and between the application program and master program.

Table 7-1 Allowable Combinations of Reference and Access Mode between Variables and Functions

Referred Side
PIC
Functions

Non- PIC
Function

PIROD
Variable

Non-PIROD
Variable

PID
Variable*2

Non-PID
Variable

R
eferring Side

PIC
Function

PC-relative r0-relative PC-relative r0-relative GP- or EP-
relative

GP-, EP-, or
r0-relative

Non-PIC
Function

Not allowed*1 PC- or r0-
relative Not allowed*1 r0-relative GP- or EP-

relative
GP-, EP-, or
r0-relative

Notes: 1. When a non-PIC function is linked, no direct reference is possible because the linker cannot determine the
addresses of PIC functions or PIROD variables at runtime. However, reference through a pointer received at
runtime is possible.

 2. “PID variable” does not refer to all variables allocated to the GP-relative or EP-relative sections but only to
those variables that were compiled with the -pid option specified.

7.2 Acquisition of Static Addresses
Execution of code and access to data compiled with the PIC/PID facilities are at different addresses from those
determined at linkage. Therefore, the addresses of the code and data cannot be specified as the initializers of static
variables.

Attempting to compile the following code will lead to errors.

7.3 Use of GP-Relative and EP-Relative Sections
Data handled as PID and non-PID can both be allocated to the GP-relative and EP-relative sections. However, since the
GP and EP registers are shared between the two sets of data, if the GP or EP register value is changed due to use of the
PID facility, the addresses for reference to the non-PID are also changed. We recommend determining a coherent policy
on whether to use each of the GP and EP registers for PID or non-PID throughout the program.

const int c;
int d = 0;

// Specifying the address of a PIROD variable causes an error.
void* vp1 = &c;
// Assigning a literal to a PIROD variable causes an error.
const char* cp const = “string”;
// Specifying the address of a PID variable causes an error.
void* vp2 = &d;

void* vp1 = &c;

const char* cp const = "string";

void* vp2 = &d;

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 22 of 28
Aug. 06, 2018

7.4 Use of Standard Libraries
The standard libraries do not support the PIC/PID facilities. The libraries should be linked to the master program.

7.5 Compiler Options
To inter-link the application program and master program, the following compiler options should be set to the same
values for both programs.

Table 7-2 Options to be Set to the Same Values for the Application and Master Programs

Option Description
-Xenum_type Specifies in which integer type the enumeration type is handled.
-Xdbl_size Specifies the data size of the double and long double types.
-Xpack Performs the packing of structures.
-Xbit_order Specifies the order of bit-field members.
-Xreg_mode Specifies the register mode.
-Xreserve_r2 Reserves the r2 register.
-Xep Specifies how to handle the EP register.
-Xfloat Controls the generation of floating-point operation instructions.
-Xround Specifies the mode for rounding floating-point constants.

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 23 of 28
Aug. 06, 2018

Appendix
The following is sample code for the vector table and startup routine in the application program when the PIC/PID
facilities are used.

$ifdef __PIC
 .TEXT .macro
 .section .pctext, pctext
 .endm
$else
 .TEXT .macro
 .section .text, text
 .endm
$endif

$ifdef __PID
 .STACK_BSS .macro
 .section .stack.bss, sbss32
 .endm
$else
 .STACK_BSS .macro
 .section .stack.bss, bss
 .endm
$endif

;---
; System stack
;---
STACKSIZE .set 0x200

;--

; Exception vector table

;--

 .section "APPVECT", pctext ; Entry point for the PIC

 .align 512

 jr32 __start

 .align 16

 jr32 _Dummy1 ; Interrupt or exception processing 1

 .align 16

 jr32 _Dummy2 ; Interrupt or exception processing 2

…

;--

; Startup

;--

 .section ".pctext", pctext

 .align 2

__start: ; Startup location of the PIC

 jr32 __cstart

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 24 of 28
Aug. 06, 2018

 .STACK_BSS
 .align 4
 .ds (STACKSIZE)
 .align 4
_stacktop:

;---
; Startup
;---
 .TEXT
 .public __cstart
 .align 2
__cstart:

$ifdef __PIC
 jarl .pic_base, r29
.pic_base:
 mov #.pic_base, r10
 sub r10, r29
$endif

$ifdef __PID
 mov 0xfedf0000, r28 ; Memory address for passing the RAM offset
value.
 ld.w 0[r28], r28 ; Offset (RAM offset value) between data
allocation
 ; at linkage and data allocation at runtime.
$endif

 mov #_stacktop, sp ; Sets up the SP register.
 mov #__gp_data, gp ; Sets up the GP register.
 mov #__ep_data, ep ; Sets up the EP register.
$ifdef __PID
 add r28, sp
 add r28, gp
 add r28, ep
$endif

 ; Initialize the .sdata32 section
$ifdef __PID
 $ifdef __PIROD
 mov #__s.sdata32, r6
 add r29, r6
 mov #__e.sdata32, r7
 add r29, r7
 mov #__s.sdata32.R, r8
 add r28, r8

 $else
 mov #__s.sdata32, r6
 mov #__e.sdata32, r7
 mov #__s.sdata32.R, r8
 add r28, r8
 $endif
$else
 $ifdef __PIROD
 mov #__s.data, r6
 add r29, r6

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 25 of 28
Aug. 06, 2018

 mov #__e.data, r7
 add r29, r7
 mov #__s.data.R, r8
 $else
 mov #__s.data, r6
 mov #__e.data, r7
 mov #__s.data.R, r8
 $endif
$endif
 jarl _copy4, lp

 ; Initialize the .sbss32 section.
$ifdef __PID
 mov #__s.sbss32, r6
 mov #__e.sbss32, r7
 add r28, r6
 add r28, r7
$else
 mov #__s.bss, r6
 mov #__e.bss, r7
$endif
 jarl _clear4, lp

 ; Enable the FPU
$if 1 ; Disable this block when the FPU is not to be used.
 stsr 6, r10, 1 ; r10 <- PID
 shl 21, r10
 shr 30, r10
 bz .L1 ; Detects the FPU.
 stsr 5, r10, 0 ; r10 <- PSW
 movhi 0x0001, r0, r11
 or r11, r10
 ldsr r10, 5, 0 ; Enables the FPU.

 movhi 0x0002, r0, r11
 ldsr r11, 6, 0 ; Initializes the FPSR.
 ldsr r0, 7, 0 ; Initializes the FPEPC.
.L1:
$endif

 ; Set flags in PSW via FEPSW

 stsr 5, r10, 0 ; r10 <- PSW
 ;xori 0x0020, r10, r10 ; Enables interrupts.
 ;movhi 0x4000, r0, r11
 ;or r11, r10 ; Supervisor mode -> user mode
 ldsr r10, 3, 0 ; FEPSW <- r10
 mov #_exit, lp ; lp <- #_exit
 mov #_main, r10

$ifdef __PIC
 add r29, lp
 add r29, r10
$endif
 ldsr r10, 2, 0 ; FEPC <- #_main

 feret ; Sets up the PSW and PC to start execution in the user mode.

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 26 of 28
Aug. 06, 2018

_exit:
 br _exit ; End of program

;---
; Copy routine
;---
 ; r6: Source begins (4-byte aligned)
 ; r7: Source ends (r6 <= r7)
 ; r8: Destination begins (4-byte aligned)
 .align 2
_copy4:
 sub r6, r7
.copy4.1:
 cmp 4, r7
 bl .copy4.2
 ld.w 0[r6], r10
 st.w r10, 0[r8]
 add 4, r6
 add 4, r8
 add -4, r7
 br .copy4.1
.copy4.2:
 cmp 2, r7
 bl .copy4.3
 ld.h 0[r6], r10
 st.h r10, 0[r8]
 add 2, r6
 add 2, r8
 add -2, r7
.copy4.3:
 cmp 0, r7
 bz .copy4.4
 ld.b 0[r6], r10
 st.b r10, 0[r8]
.copy4.4:
 jmp [lp]

;---
; Clear routine
;---
 ; r6: Destination begins (4-byte aligned)
 ; r7: Destination ends (r6 <= r7)
 .align 2
_clear4:
 sub r6, r7
.clear4.1:
 cmp 4, r7
 bl .clear4.2
 st.w r0, 0[r6]
 add 4, r6
 add -4, r7
 br .clear4.1

.clear4.2:
 cmp 2, r7
 bl .clear4.3
 st.h r0, 0[r6]
 add 2, r6

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 27 of 28
Aug. 06, 2018

 add -2, r7
.clear4.3:
 cmp 0, r7
 bz .clear4.4
 st.b r0, 0[r6]
.clear4.4:
 jmp [lp]

;---
; Dummy section
;---
$ifdef __PID
 .section .sdata32, sdata32
.L.dummy.sdata32:
 .section .sbss32, sbss32
.L.dummy.sbss32:
$else
 .section .data, data
.L.dummy.data:
 .section .bss, bss
.L.dummy.bss:
$endif

$ifdef __PIROD
 .section .pcconst32, pcconst32
.L.dummy.pcconst32:
$else
 .section .const, const
.L.dummy.const:
$endif
;-------------------- End of startup module -------------------;

RH850 Family C Compiler Package (CC-RH) PIC/PID Facilities

R20AN0505EJ0100 Rev.1.0 Page 28 of 28
Aug. 06, 2018

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

1.00 Aug 06, 2018 - First edition issued

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

California Eastern Laboratories, Inc.
4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A.
Tel: +1-408-919-2500, Fax: +1-408-988-0279
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.1

(Rev.4.0-1 November 2017)

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
http://www.renesas.com/

	1. PIC/PID Facilities
	1.1 Outline of the Facilities
	1.2 Example of Usage

	2. PIC Facility
	2.1 Compiler Option
	2.2 Section Used for the PIC Facility
	2.3 Examples of the Use of the PIC Facility
	2.3.1 Calling a PIC Function from a Non-PIC Function
	2.3.2 Calling a PIC Function from a PIC Function
	2.3.3 Calling a Non-PIC Function from a PIC Function

	3. PIROD Facility
	3.1 Compiler Option
	3.2 Section Used for the PIROD Facility
	3.3 Example of the Use of the PIROD Facility

	4. PID Facility
	4.1 Compiler Option
	4.2 Section Used for the PID Facility
	4.3 Example of the Use of the PID Facility

	5. Startup Routine
	5.1 Initialization of Base Registers
	5.2 Initializing the RAM Sections
	5.3 Branch to the main Function

	6. Examples of Application of the PIC/PID Facilities
	6.1 Configuring Projects that Include Use of the PIC/PID Facilities
	6.1.1 Structure of the CS+ Projects
	6.1.2 Creating the Master Project
	6.1.3 Starting the Application Program from the Master Program
	6.1.4 Adding an Application Project
	6.1.5 Reference to the Master Program from the Application Program

	6.2 Making Interrupt and Exception Handlers Position-Independent

	7. Points for Caution
	7.1 Reference to Variables and Functions
	7.2 Acquisition of Static Addresses
	7.3 Use of GP-Relative and EP-Relative Sections
	7.4 Use of Standard Libraries
	7.5 Compiler Options

	Appendix

