

R01US0079ED0213
Jun 10, 2019 www.renesas.com

U
ser´s M

anual

32

RH850 Family
Data Flash Library, Type T01

Installer: RENESAS_FDL_RH850_T01E_V2.xx (xx>=10)

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

RENESAS MCU RH850 Family

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical
information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and
application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification,
copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;

home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication

equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other
Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious
property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military
equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising
from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other
Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General
Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the
ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of
the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products
have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless
designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing
safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event
of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.
Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of
the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each
Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate
the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or
losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use,
or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control
laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or
otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this
document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or
Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly
controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

How to use this document
(1) Purpose and Target Readers

This manual is designed to provide the user with an understanding of the functions and characteristics of
the Self-Programming Library. It is intended for users designing application systems incorporating the
library. A basic knowledge of embedded systems is necessary in order to use this manual. The manual
comprises an overview of the library, API description, usage notes and cautions.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur
within the body of the text, at the end of each section, and in the Cautions section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions.

Refer to the text of the manual for details.

(2) List of Abbreviations and Acronyms

Abbreviation Full form

Code Flash Embedded Flash where the application code or constant data is
stored.

Data Flash Embedded Flash where mainly the data of the EEPROM
emulation are stored.

Dual operation

Dual operation is the capability to access flash memory during
reprogramming of another flash memory range.
Dual operation is available between Code Flash and Data Flash.
Between different Code Flash macros dual operation depends
on the device implementation.

ECC Error Correction Code

EEL Abbreviation for a software library representing any EEPROM
emulation concept (see also EEPROM emulation)

EEPROM Electrically erasable programmable read-only memory

EEPROM emulation

In distinction to a real EEPROM, EEPROM emulation uses the
Flash memory (or a part of it) to emulate EEPROM behavior. To
gain a similar behavior some side parameters have to be taken
in account.

FCL Code Flash Library (Code Flash access layer)

FDL Data Flash Library (Data Flash access layer)

FHVE Software protection of flash memory against programming and
erasure. Not present in all devices.

Flash
Electrically erasable and programmable non-volatile memory.
The difference to ROM is, that this type of memory can be re-
programmed several times.

Flash block A flash block is the smallest erasable unit of the flash memory.

Power save mode
Device modes to consume less power than during normal
operation. In the device documentation also called “stand-by
modes”

RAM “Random access memory” - volatile memory with random access

ROM “Read only memory” - non-volatile memory. The content of that
memory cannot be changed.

All trademarks and registered trademarks are the property of their respective owners.

Table of Contents
Chapter 1 Introduction ... 6

Chapter 2 Architecture ... 8

2.1 Layered architecture .. 8

2.2 Pool definitions .. 9

2.3 Architecture related notes ... 9

Chapter 3 Functional specifications .. 10

3.1 Supported functions, commands and Flash operations 10

3.2 Request-response oriented dialog ... 11

3.3 Background operation ... 12

3.4 Flash access protection .. 13

3.5 Suspend / Resume mechanism .. 14

3.6 Stand-by and Wake-up functionality .. 17

3.7 Cancel mechanism ... 19

3.8 Loop supervision ... 21

3.9 Internal error ... 21

Chapter 4 User interface (API) ... 22

4.1 Pre-compilation configuration .. 22

4.2 Run-time configuration .. 24

4.3 Data types ... 25

4.3.1 Library specific simple type definitions ... 26

4.3.2 r_fdl_descriptor_t .. 26

4.3.3 r_fdl_request_t ... 27

4.3.4 r_fdl_command_t ... 28

4.3.5 r_fdl_accessType_t ... 29

4.3.6 r_fdl_status_t ... 29

4.4 Functions .. 31

4.4.1 Initialization .. 31

4.4.2 Flash operations .. 33

4.4.3 Operation control ... 36

4.4.4 Administration ... 44

4.5 Commands ... 45

4.5.1 R_FDL_CMD_ERASE ... 46

4.5.2 R_FDL_CMD_WRITE.. 48

4.5.3 R_FDL_CMD_BLANKCHECK .. 50

4.5.4 R_FDL_CMD_READ ... 53

4.5.5 R_FDL_CMD_PREPARE_ENV .. 56

Chapter 5 Library setup and usage ... 59

5.1 Obtaining the library .. 59

5.2 File structure .. 59

5.2.1 Overview ... 59

5.2.2 Delivery package directory structure and files 60

5.3 Library resources ... 61

5.3.1 Linker sections .. 61

5.3.2 Stack and data buffer .. 62

5.4 MISRA compliance ... 62

5.5 Sample application .. 62

5.6 Library configuration ... 63

5.7 Basic programming flow ... 64

5.8 R_FDL_Handler calls ... 65

Chapter 6 Cautions ... 66

Revision History ... 71

RH850 Family - Data Flash Library, Type T01 Introduction

R01US0079ED0213 6
User Manual

Chapter 1 Introduction

This user manual describes the internal structure, the functionality and the application programming
interface (API) of the Renesas RH850 Data Flash Access Library (FDL) Type 01, designed for RH850
flash devices based on a common flash technology.

The libraries are delivered in source code. However, it has to be considered carefully to do any changes,
as not intended behavior and programming faults might be the result.

The Renesas RH850 Data Flash Access Library Type 01 (from here on referred to as FDL) is provided for
the Green Hills, IAR and Renesas compiler environments. The library and application programs are
distributed using an installer tool allowing selecting the appropriate environment.
The IAR environment is supported for the Europe and America regions only.

The libraries are delivered together with device dependent application programs, showing the
implementation of the libraries and the usage of the library functions.

This manual is based on the assumption that the device will operate in supervisor mode.

Please ensure to always use the latest release of the library in order to take advantage of improvements
and bug fixes.

If you are located in Europe:
The Data Flash Access library, the latest version of this user manual and other device dependent
information can be downloaded from the following URL:
http://www.renesas.eu/update

If you require Flash library related support, please contact our European support team using the following
mail address:
application_support.flash-eu@lm.renesas.com

If you are located in other regions:
The FDL and this user manual always recommend use of the latest version.

Note:
Please read all chapters of this user manual carefully. Much attention has been put to proper description
of usage conditions and limitations. Anyhow, it can never be completely ensured that all incorrect ways of
integrating the library into the user application are explicitly forbidden. So, please follow the given
sequences and recommendations in this document exactly in order to make full use of the library
functionality and features and in order to avoid malfunctions caused by library misuse.

Flash Infrastructure
Besides the Code Flash, many devices of the RH850 microcontroller family are equipped with a separate
flash area — the Data Flash. This flash area is meant to be used exclusively for data. It cannot be used
for instruction execution (code fetching).

http://www.renesas.eu/update

RH850 Family - Data Flash Library, Type T01 Introduction

R01US0079ED0213 7
User Manual

Flash Granularity
The Data Flash of RH850 device is separated into blocks of 64 bytes. While erase operations can only be
performed on complete blocks, data writing can be done on a granularity of one word (4 bytes). Reading
from an erased flash word will return undefined data. The number of available Data Flash blocks varies
between the different RH850 devices. Please refer to the corresponding user's manual for the hardware
for detailed information.

RH850 Family - Data Flash Library, Type T01 Architecture

R01US0079ED0213 8
User Manual

Chapter 2 Architecture

This chapter introduces the basic software architecture of the FDL and provides the necessary
background for application designers to understand and effectively use the library. Please read this
chapter carefully before moving on to the details of the API description.

2.1 Layered architecture

This chapter describes as an example the layered architecture and functional blocks that may belong to
an EEPROM Emulation System (EES). Even though this manual describes the functional block FDL, a
short description of the other functional blocks and their relationship can be beneficial for the general
understanding.

As depicted in the figure above, the software architecture of the EEPROM Emulation System is built up of
several blocks:

• User Application: This functional block will use functions offered by the FDL and EEL. The user
shall take care for synchronization between EEL operations and possibly executed direct FDL
accesses by the application.

• EEPROM Emulation Library (EEL): This functional block represents an example of an EEPROM
emulation concept which offers all functions and commands that the “User Application” block can
use in order to handle its EEPROM data.

• Data Flash Access Library (FDL): The Data Flash Access Library is the subject of this manual.
It should offer an access interface to any user-defined flash area, the so called “FDL-pool”
(described in next chapter). Beside the initialization function, the FDL allows the execution of
access-commands like write/blank check as well as suspend-able erase command.

• Data Flash Hardware: This functional block represents the Flash Programming Hardware (the
flash sequencer) controlled by the FDL.

User Application

EEL

FDL

Data Flash Hardware

Code Flash

Figure 1: Symbolic relationship between the EES functional blocks

RH850 Family - Data Flash Library, Type T01 Architecture

R01US0079ED0213 9
User Manual

2.2 Pool definitions

The FDL pool defines the Flash blocks, the user application and a potential EEPROM emulation (EEL)
may use for FDL Flash access. The limits of the FDL pool are taken into consideration by any of the FDL
Flash access commands. The user can define the size of the FDL pool freely at project run-time during
library initialization.

The FDL pool provides the space for the EEL Pool which is allocated by the EEL inside the FDL pool. The
EEL Pool provides the Flash space for the EEL to store the emulation data and management information.

All FDL pool space not allocated by the EEL Pool is freely usable by the user application, so is called the
User Pool.

2.3 Architecture related notes

• All Data Flash related operations are executed by the FDL. Thus, the application cannot access
(erase, write ...) the Data Flash directly. An exception is reading the Flash contents. As the Flash
is mapped to the CPU address space, it can be directly read by the CPU. The FDL provides an
additional read operation that will take care of possible ECC (error correction code) errors to allow
error polling.

• The FDL allows accessing the Data Flash only.

• Parallel Flash operations (except reading by the CPU) on Data Flash and Code Flash are not
possible.

Figure 2: Pools overview

User Pool

EEL Pool

User Pool

Data Flash / FDL Pool

FDL Pool

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 10
User Manual

Chapter 3 Functional specifications

3.1 Supported functions, commands and Flash operations

For a better understanding of the flows and mechanisms required for an FDL usage, the basic functions
of the FDL are introduced in the following. The API of the FDL is thereby, on the one hand based on
functions used to manage the operation of the library itself, on the other hand it offers so-called
commands to access and control the content of the FDL pool.

The following table lists all functions that the library will support. Please refer to the chapter 4.4
“Functions” for detailed descriptions.

Table 1: FDL Functions

Function Description
R_FDL_Init Initialize the library and Flash hardware

R_FDL_Execute Initiate a Flash operation

R_FDL_Handler Control an initiated Flash operation and forward the
status.

R_FDL_SuspendRequest Request suspending an on-going Flash operation

R_FDL_ResumeRequest Resume a suspended Flash operation

R_FDL_CancelRequest Request cancelling an on-going Flash operation

R_FDL_StandBy Suspend an on-going Flash operation from an
asynchronous context

R_FDL_WakeUp Wake-up the FDL from stand-by state
R_FDL_GetVersionString Return a pointer to the library version string

Commands are used to manage the FDL pool. Commands are initiated via R_FDL_Execute and the
further progress is controlled by regular execution of R_FDL_Handler.
The following commands can be used to execute the following Flash operations:

Table 2: FDL commands and operations

Command Initiated Flash
operation Description

R_FDL_CMD_ERASE Flash erase Erase one or more Flash blocks

R_FDL_CMD_WRITE Flash write Write one or more Flash words

R_FDL_CMD_BLANKCHECK Flash blank
check

Blank Check one or more Flash words. Return the fail
address in case some Flash word is not blank

R_FDL_CMD_READ Flash data read
Read one or more Flash words to a buffer. Return a
possible ECC (Error correction code) error to the
application together with the address of the error

R_FDL_CMD_PREPARE_ENV - Prepare Flash environment

The following picture shows the basic flow of Flash operations as an example of erasing two Flash blocks.
While the Flash hardware can only erase or write one unit (erase one block, write one word), the FDL will
manage handling multiple units. Blank Check is executed on word basis but internally it is split in multiple
units at each multiple of 0x1000 bytes boundary.

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 11
User Manual

3.2 Request-response oriented dialog

The FDL utilizes request-response architecture in order to initiate the commands. This means any
"requester" (any tasks in the user application) has to fill a request structure and pass it by reference to the
Data Flash Access Library using R_FDL_Execute function. The FDL interprets the content of the request
variable, checks its plausibility and initiates the execution. The feedback is reflected immediately to the
requester via the status member (status_enu) of the same request structure. The completion of an
accepted request/command is done by calling R_FDL_Handler periodically as long as the request
remains "busy".

Figure 3: Flash erase sequence

Erase 1 block

R_FDL_Execute (Erase 2 blocks)
Start erase blk 1

R_FDL_BUSY

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_BUSY

Check (Ready)

Start erase blk 2

Erase next block

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_OK
Check (Ready)

...

...

User application FDL
Data Flash
programming
hardware

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 12
User Manual

Details on the request variable structure and its members are given later in section 4.3.3
“r_fdl_request_t”. Please also note that not all structure members are required for all commands. The
individual command descriptions in section 4.5 “Commands” provide the corresponding detailed
information.

3.3 Background operation

The flash technology provided by Renesas enables the application to write/erase the Data Flash in
parallel to the CPU execution. In order to satisfy the operation in concurrent or distributed systems, the
command execution is divided into two steps:

1. Initiation of the command execution using R_FDL_Execute

2. Processing of the requested command state by using R_FDL_Handler

This approach comes with one important advantage: Command processing can be done centrally at one
place in the target system (normally the idle-loop or the scheduler loop), while the status of the requests
can be polled locally within the requesting tasks.

Please note that R_FDL_Execute only initiates the command execution and returns immediately with the
request-status "busy" after execution of the first internal state (or an error in case the request cannot be
accepted).

The device flash hardware is responsible for executing the operation in the background. The device
hardware operation might be divided into multiple operations, each performed on a separate occasion,
depending on the number of blocks and data items. The first operation is conducted by calling the
R_FDL_Execute function. The second and subsequent operations are triggered by calling the
R_FDL_Handler function. Thus, there is a need to call the R_FDL_Handler function multiple times.
Processing is suspended from the time each separate operation is completed until the next one is
triggered. Therefore, as the time interval between R_FDL_Handler functions call increases, so does the
overall processing time.

An exception to this background operation is R_FDL_CMD_READ command that is executed
synchronously during R_FDL_Execute function.

Figure 4: Usage of the request structure

Application

bufAddr_u32
idx_u32
cnt_u16

accessType_enu

myRequest

status_enu

FDL

command_enu

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 13
User Manual

3.4 Flash access protection

The FDL Flash Access Protection shall protect Flash accesses to unintended addresses. The protection
distinguishes EEL-Pool Flash blocks from User-Pool blocks (refer to chapter 2.2 “Pool definitions” for
more information). An access as user application will be allowed to all configured Flash blocks outside
the EEL-Pool, while an access from EEL will be allowed to the EEL-Pool only.

Generally, on any Data Flash operation initiation, the access type must be defined in the operation
request structure variable. Setting this variable enables the access either to the EEL-Pool or to the Data
Flash blocks outside the EEL-Pool (User-Pool). If the variable is not initialized appropriately or if the
wrong pool shall be accessed, a protection error is returned.

Figure 5: Background operation

User application FDL

Data Flash
programming

hardware

R_FDL_Execute (Command*)

Start Flash operation
R_FDL_BUSY

R_FDL_Handler ()

R_FDL_BUSY

R_FDL_Handler ()

R_FDL_BUSY

Status check

Operation is ongoing

Status check

Operation is finished

Start Flash operation

Operation started

Status check

Operation is finished

R_FDL_Handler ()

R_FDL_OK

Other operations
may follow

Library is busy with a
Flash operation

* Possible asynchronous commands:
• R_FDL_CMD_ERASE
• R_FDL_CMD_WRITE
• R_FDL_CMD_BLANKCHECK

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 14
User Manual

3.5 Suspend / Resume mechanism

Some Data Flash operations can last a long time especially multiple erase and write. The user application
cannot always wait for the operation end because other operations have higher priority. So, from user
point of view current operation is suspend-able and can be resumed after finishing the other Flash
accesses.

From software point of view an on-going operation always ends in suspended state. In case the Flash
hardware has already finished an operation but its end result has not already been processed by the
library, the library returns the suspended status. The final operation result is returned after successful
resume request.

The FDL contains special functions to suspend and resume an ongoing operation. Please refer to chapter
4.4.3.1 “R_FDL_SuspendRequest”.

Suspend restrictions:

• Erase operation ► suspend ► Erase operation – is not possible
• Write operation ► suspend ► Erase/Write operation – is not possible
• Any operation ► suspend ► other operation ► suspend – is not possible

Suspend permissions:
• Blank Check operation ► suspend ► Erase/Write/Blank Check/Read operation – is possible
• Erase operation ► suspend ► Write/Blank Check/Read operation – is possible
• Write operation ► suspend ► Blank Check/Read – is possible

Figure 6: Flash Access Rights

User Pool

EEL Pool

User Pool

Data Flash / FDL Pool

User Application

EEL

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 15
User Manual

Notes:

• New Flash operations after suspending a Flash operation are only allowed on Flash areas not
affected by the suspended operation.

• It is recommended to avoid nesting as much as possible.

• When Erase processing is suspended and resumed, this is not considered as an additional erase with
respect to the specified Flash erase endurance.

Examples of Erase or Write Suspend-Resume flow:

Figure 7: Erase/Write Suspend Resume Flow

Erase 1 block
Or

Write 1 word

R_FDL_Execute (Erase/Write)
Start unit 1

R_FDL_BUSY

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

User application FDL
Data Flash
programming
hardware

Erase or Write next
unit (resumed)

Suspended

Idle

R_FDL_SuspendRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Suspend

R_FDL_Handler

R_FDL_SUSPENDED
Check (Suspended)

R_FDL_ResumeRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Resume

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_OK
Check (Ready)

...

...

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 16
User Manual

Blank check operation will not be interrupted by a suspend request unless the operation reaches a Flash
Macro boundary (any multiple of 0x1000 bytes) or it will be finished:

Figure 8: Suspend/Resume a blank check operation

Blank Check
0x3000 to 0x3FFF

R_FDL_Execute
(Blank Check 0x3000 to 0x4FFF)

Start Blankcheck
R_FDL_BUSY

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

User application FDL
Data Flash
programming
hardware

R_FDL_SuspendRequest

R_FDL_OK

R_FDL_ResumeRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

R_FDL_Handler

R_FDL_SUSPENDED
Check (Ready)

...

R_FDL_Handler

R_FDL_OK / _ERR_BLANKCHECK

Blank Check
0x4000 to 0x4FFF

Start Blankcheck

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

Idle

R_FDL_SuspendRequest

R_FDL_OK

R_FDL_ResumeRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

R_FDL_Handler

R_FDL_OK / _ERR_BLANKCHECK

Suspended

R_FDL_Handler

R_FDL_SUSPENDED
Check (Ready)

Suspended

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 17
User Manual

3.6 Stand-by and Wake-up functionality

Entering a device power save (stand-by) mode is not allowed, when a Data Flash operation is on-going.
Due to that, especially Data Flash Erase operation can delay entering a power save mode significantly. In
order to allow fast entering of such mode, the functions R_FDL_StandBy and R_FDL_WakeUp have been
introduced. The main functionality of the functions is to suspend a possibly on-going Data Flash Erase or
Write operation (R_FDL_StandBy) and resume it after waking up from power save mode
(R_FDL_WakeUp).

Once started, stand-by processing must always end in stand-by status. Calling the R_FDL_StandBy
does not necessarily immediately suspend any Data Flash operation, as suspend might be delayed by the
device internal hardware or might not be supported at all (only Erase and Write are suspend-able). In this
case, the R_FDL_StandBy function must be called repeatedly until the stand-by status is reached.

Blank Check and Read Data Flash operations are suspendable from software point of view, but the library
will wait for the operation to be finished by hardware while suspend is processed and the result will be
presented after resuming. This wait, however, is not that important because blank check and read
operations are much faster than erase or write.

Calling the R_FDL_WakeUp function may not immediately make the device resume operation from the
stand-by state (in which case R_FDL_BUSY will be returned). Unless an error is reported, call the
R_FDL_WakeUp function repeatedly until it returns R_FDL_OK.

Note that the behavior of stand-by and wake-up operations may differ between versions of the FDL.

<Using FDL V2.12 or an earlier version>

In case the FDL is in an idle state (no data flash operations in progress), the FDL will immediately enter
the stand-by state when the R_FDL_StandBy function is called. Calling the R_FDL_WakeUp function will
cause the FDL to return to its previous state (in this case the idle state).

<Using FDL V2.13 or a later version>

In case the FDL is in an idle state (no data flash operations in progress), the FDL will return
R_FDL_BUSY when the R_FDL_StandBy function is called. Call the R_FDL_StandBy function
repeatedly until the FDL enters the stand-by state. Calling the R_FDL_WakeUp function will cause the
FDL to return to its previous state (in this case the idle state).

The following pictures illustrate examples of the library’s behavior when a stand-by request is issued
during FDL operation:

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 18
User Manual

Figure 9: Stand-by processing on a Data Flash Erase operation

Erase
first block

Erase
second block

Erase
second block

Erase
second block
interrupted

User
application

Data Flash
programming

hardware

FDL

R_FDL_Execute(Erase 2 blocks)
R_FDL_BUSY

R_FDL_BUSY

R_FDL_BUSY

R_FDL_BUSY

R_FDL_BUSY

R_FDL_OK

R_FDL_OK

R_FDL_OK

R_FDL_Handler

R_FDL_Handler

R_FDL_Handler

R_FDL_Handler

R_FDL_Handler

R_FDL_StandBy

R_FDL_WakeUp

Start erase block

Start erase block

Check (Busy)

Check (Busy)

Check (Busy)

Check (Ready)

Suspend

Start erasing
Interrupted block

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 19
User Manual

3.7 Cancel mechanism

The Flash Erase, Write and Blank Check are long lasting operations. The user application cannot always
wait for the operation end. Under certain conditions, the user application cannot wait for the end of a long
lasting Flash operation. So, such operation should be cancel-able.

The FDL contains a special function to cancel the Erase, Write and the Blank Check operation. Please
refer to chapter 4.4.3.5 “R_FDL_CancelRequest”.

Examples of Erase, Write or Blank Check cancel flow:

Figure 10: Stand-by processing on a Data Flash Write operation

Write
first word

Write
second word

Write
third word

User
application

Data Flash
programming

hardware

FDL

R_FDL_Execute(Write 3 words)
R_FDL_BUSY

R_FDL_BUSY

R_FDL_BUSY

R_FDL_BUSY

R_FDL_OK

R_FDL_OK

R_FDL_OK

R_FDL_Handler

R_FDL_Handler

R_FDL_Handler

R_FDL_Handler

R_FDL_StandBy

R_FDL_WakeUp

Start Write byte

Start Write byte

Check (Busy)

Check (Busy)

Check (Ready)

Suspend

Continue the write
operation

Write
second word
interrupted

Write
second word

R_FDL_BUSY

R_FDL_Handler
Start Write byte

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 20
User Manual

Figure 11: Cancel a normal erase operation

Erase
...

Idle

R_FDL_CancelRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Cancel

R_FDL_Handler

R_FDL_CANCELLED
Check (Cancelled)

...

R_FDL_Execute (Erase)
Start erase

R_FDL_BUSY

User application FDL
Data Flash
programming
hardware

R_FDL_BUSY

R_FDL_Handler
Check (Busy)

Figure 12: Cancel an erase operation in suspended library state

Erase

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

Suspended

Idle

R_FDL_SuspendRequest

R_FDL_OK

R_FDL_Handler

R_FDL_BUSY
Suspend

R_FDL_Handler

R_FDL_SUSPENDED
Check (Suspended)

R_FDL_CancelRequest

R_FDL_OK

R_FDL_Handler

R_FDL_SUSPENDED
Cancel

R_FDL_Handler

R_FDL_CANCELLED
Check (Cancelled)

...

Start erase
R_FDL_BUSY

User application FDL
Data Flash
programming
hardware

R_FDL_Execute (Erase)

….………….

RH850 Family - Data Flash Library, Type T01 Functional specifications

R01US0079ED0213 21
User Manual

From software point of view an on-going or suspended erase/write/blank check operation always ends in
cancelled if request is accepted. If a cancel request is accepted, during an on-going write, erase or blank
check operation and a previous operation is already suspended, then both operations will be cancelled.

3.8 Loop supervision

All FDL commands except R_FDL_CMD_READ have internal polling loops to check for hardware status.
These loops are time supervised by FDL software to avoid locking the CPU in an infinite loop. If a
hardware error occurs the FDL will abort after a certain timeout and report R_FDL_ERR_INTERNAL on the
current command.

The timeout depends on the latency of the pooling loop but no later than 800 microseconds provided that
the device CPU is running at a frequency in the range permitted for FDL normal operation.

3.9 Internal error

When FDL detects abnormal behavior it will report command status R_FDL_ERR_INTERNAL. Further
commands are rejected with status R_FDL_ERR_REJECTED.

Following steps can be taken to recover after this error is encountered:

a. reinitialize the library (execute R_FDL_Init function then run R_FDL_CMD_PREPARE_ENV
command)

b. if a. fails again then reset the device and proceed to re-initialization

c. if b. fails again then replace the device

Please note that depending on the hardware error, Data Flash can remain in programming mode and in
such case only remedy b. and c. can be applied. Data flash may still be available for reading in
programming mode but data integrity is not guaranteed.

Erase

R_FDL_Handler

R_FDL_BUSY
Check (Busy)

...

Idle

R_FDL_SuspendRequest

R_FDL_OK

...

Start erase
R_FDL_BUSY

User application FDL
Data Flash
programming
hardware

R_FDL_Execute (Erase)

R_FDL_CancelRequest

R_FDL_OK

Cancel
R_FDL_BUSY

R_FDL_Handler

R_FDL_Handler

R_FDL_CANCELLED
Check (Cancelled)

Figure 13: Cancel an erase operation after the suspend request is accepted

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 22
User Manual

Chapter 4 User interface (API)

This chapter provides the formal description of the application programming interface of the Flash Data
Library Type T01 (FDL). It is strongly advised to read and understand the previous chapters presenting
the concepts and structures of the library before continuing with the API details.

4.1 Pre-compilation configuration

The pre-compilation configuration has a direct impact on the object file generated by the compiler. Hence
it is used for conditional compilation (e.g. solve device dependencies of the code).

The configuration is done in the module fdl_cfg.h. The user has to configure all parameters and
attributes by adapting the related constant definitions in that header-file.

The following configuration options are available:

1. Critical section

One configuration element is the critical section handling of the library. The command
R_FDL_CMD_PREPARE_ENV needs to activate the device internal special memory for a short time in
order to have access to certain data. This results in disabling the Code Flash. During that time, code
from Code Flash cannot be executed as well as data cannot be read. The library provides the
possibility to execute call-back routines in order for the user to handle the implications of disabling the
Code flash (for the impact on the application, please refer to Chapter 6 “Cautions”). The call-back
routines are executed at the begin and end of the critical section. The defines to set the call back
routines are described in the following:

FDL_CRITICAL_SECTION_BEGIN: Possibility to execute a call back routine at critical section start
(e.g. disable interrupts and exceptions)

FDL_CRITICAL_SECTION_END: Possibility to execute a call back routine at critical section end (e.g.
enable interrupts and exceptions)

Implementation in the sample application:

#define FDL_CRITICAL_SECTION_BEGIN FDL_User_CriticalSetionBegin();
#define FDL_CRITICAL_SECTION_END FDL_User_CriticalSetionEnd();

 Location of RAM code

During execution of command R_FDL_CMD_PREPARE_ENV when Code Flash is not available certain
FDL functions are executed from RAM. The RAM location used can be selected to be in a buffer
located within a special FDL section R_FDL_CODE_RAM or in a buffer located on stack. The
advantage of using the stack buffer is that RAM is reused instead of being permanently allocated.
However, if executing code from stack is not allowed by the security concept then a permanent buffer
has to be allocated within special section R_FDL_CODE_RAM.

The default option is to permanently allocate the buffer in special section unless
R_FDL_EXE_INIT_CODE_ON_STACK is defined.

 Disabling switching of the FCU firmware area (supported by V2.11 and later versions)

During execution of command R_FDL_CMD_PREPARE_ENV, Code Flash needs to be switched off
several times in order to read data from the firmware area and prepare FDL environment. There are
some devices that need less switching in order to perform this preparation. If the FDL is running on
such device then R_FDL_NO_BFA_SWITCH must be defined. When the FDL is built with this option
defined, do not define R_FDL_MIRROR_FCU_COPY or R_FDL_NO_FCU_COPY.

This is required for the F1K, F1KM, F1KH device group but not for other devices.

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 23
User Manual

 Compatibility mode

The library API changed from version V1.03 to version V2.00. For all differences between versions
V1.03 and V2.00, please refer to installer Release.txt file. One major change is adding a new
command R_FDL_CMD_PREPARE_ENV to prepare the flash environment, functionality handled by the
R_FDL_Init function in library version V1.03. By adding the new command, the library basic
reprogramming flow changed with direct impact on the user application code (updates are needed).
For users who do not want to update their application code, the library provides the possibility to be
complaint with the old reprogramming flow (used for library version V1.03), while keeping all the
updates made for the new version.

The compatibility mode can be enabled by defining R_FDL_LIB_V1_COMPATIBILITY symbol in
fdl_cfg.h configuration file.

If the compatibility mode is disabled, it is user’s responsibility to update its code according to the
reprogramming flow as described in chapter 5.7 “Basic programming flow”.

 Copying FCU firmware without switching the FCU firmware area (supported by V2.12 and later
versions)

When R_FDL_MIRROR_FCU_COPY is defined, the FDL does not switch between the user area and
FCU firmware area.

When the FDL is built with this option defined, do not define R_FDL_NO_BFA_SWITCH or
R_FDL_NO_FCU_COPY.

 Disabling copying of FCU firmware (supported by V2.12 and later versions)

When R_FDL_NO_FCU_COPY is defined, the FCU firmware transfer function is not executed.

This option is set and built for RH850/D1M1A, D1M1-V2, and D1S1.

When the FDL is built with this option defined, do not define R_FDL_NO_BFA_SWITCH or
R_FDL_MIRROR_FCU_COPY.

Note:
The pre-compilation definitions R_FDL_NO_FCU_COPY, R_FDL_MIRROR_FCU_COPY, and
R_FDL_NO_BFA_SWITCH supported by V2.12 and later versions of RH850 FDL Type01 are only
applicable to specific device groups.

The following table shows the correspondence between the definitions and device groups.

Pre-compilation definition
F1L/F1M/

F1H

D1L/
D1M1/D1M1H/
D1M2/D1M2H

D1M1A/
D1M1-V2/

D1S1

F1K/F1KM/
F1KH

Future
products

R_FDL_NO_BFA_SWITCH - - -  -

R_FDL_MIRROR_FCU_COPY - - - - 

R_FDL_NO_FCU_COPY - -  - -
Note: For the device groups supported by the version of the FDL you are using, see the support.txt file
that came with the FDL.

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 24
User Manual

4.2 Run-time configuration

The FDL configuration can be changed dynamically at runtime. It contains important FDL related
information (e.g. CPU frequency, number of blocks used by library) and EEL information (e.g. EEL pool
size and EEL starting block number).

The run-time configuration is stored in a descriptor structure (see r_fdl_descriptor_t), which is
declared in r_fdl_types.h, but defined in the user application and passed to the library by the function
R_FDL_Init.

The file fdl_descriptor.c shall show an example of the descriptor structure definition and filling, while
the fdl_descriptor.h shall show an example of the definitions required to fill in the structure.

In fact, the file fdl_descriptor.h might be modified according to the user applications needs and
might be added to the user application project together with the fdl_descriptor.c. The descriptor files
(.c and .h) are part of the library installation package.

The following settings should be configured by user:

1. CPU_FREQUENCY_MHZ: This defines the internal CPU frequency in MHz unit, rounded up to
the nearest integer, e.g. for 24.3 MHz set CPU_FREQUENCY_MHZ to 25. Please check the device
user’s manual for limit values.

2. FDL_POOL_SIZE: It defines the number of blocks to be accessed by the FDL for user access
and EEL access. Usually it is set to the total number of blocks physically available on the device.
For example, if the device is equipped with 32 KB of Data Flash and the block size is 64 bytes,
then FDL_POOL_SIZE can be any value up to 512.

3. EEL_POOL_START: It defines the starting block of the EEL-Pool. If FDL is used without EEL on
top, the value should be set to 0.

4. EEL_POOL_SIZE: It defines the number of blocks used for the EEL-Pool. If FDL is used without
EEL on top, the value should be set to 0.

FDL block size is always equal to the physical block size of Data Flash.

Example of descriptor when FDL is used alone:

/* default access code */
#define CPU_FREQUENCY_MHZ (80)
/* FDL pool will use 512 blocks * 64 bytes = 32KB, no EEL pool */
#define FDL_POOL_SIZE (512)
#define EEL_POOL_START (0)
#define EEL_POOL_SIZE (0)

Example of descriptor when EEL is used:

/* default access code */
#define CPU_FREQUENCY_MHZ (80)
/* FDL pool will use 32KB, EEL pool occupies fist 16 KB */
#define FDL_POOL_SIZE (512)
#define EEL_POOL_START (0)
#define EEL_POOL_SIZE (256)

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 25
User Manual

4.3 Data types

This section describes all data definitions used and offered by the FDL. In order to reduce the probability
of type mismatches in the user application, please make strict usage of the provided types.

Definitions are similar to those in the standard C99 stdint.h header, but please carefully check that there
are no size or endianness mismatches if you are using other definitions in your project.

Compiling V2.13 or a later version of the RH850 FDL Type 01
When you are using V2.13 or a later version of the RH850 FDL Type 01, it is assumed that all data
definitions will be compiled according to C99* or a later standard defined by the ISO.

If you select C99 or a later standard for the GHS compiler, Renesas compiler or IAR compiler you are
using, the compiler provides the “stdint.h” header file containing data definitions.

If you select a standard earlier than C99 or no standard, on the other hand, data definitions in
"r_typedefs.h” (equivalent to stdint.h) will be used.

*Note: The formal name of C99 is ISO/IEC 9899:1999.

Compiling V2.12 or an earlier version of the RH850 FDL Type 01
When you are using V2.12 or an earlier version of the RH850 FDL Type 01, change the directive
#include "r_typedefs.h", which is in the following two files, to #include "stdint.h".

• r_fdl_global.h

• r_fdl_user_if_init.c

<Example of a change>

#include "stdint.h"

/* #include "r_typedefs.h" */

Similarly, when using the attached sample files, change the directive #include "r_typedefs.h" to
#include "stdint.h".

The sample files for the RH850 FDL Type 01 are as follows.

• fdlapp_control.c

• fdlapp_main.c

• fdl_descriptor.c

• fdl_user.c

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 26
User Manual

4.3.1 Library specific simple type definitions

Type definitions in cases where C99 or a later standard is selected for the compiler:
See “stdint.h” provided with the compiler.

Type definitions (extracted from "r_typedefs.h") in cases where a standard earlier than C99 or no
standard is selected for the compiler:

Type
definition:

typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef signed short int16_t;
typedef unsigned short uint16_t;
typedef signed long int32_t;
typedef unsigned long uint32_t;
typedef unsigned char rBool;

Description: These simple types are used throughout the library API. All library specific simple type
definitions can be found in file r_typedefs.h, which is part of the library installation
package.

4.3.2 r_fdl_descriptor_t

Type
definition:

typedef struct R_FDL_DESCRIPTOR_T
{
 uint16_t cpuFrequencyMHz_u16;
 uint16_t fdlPoolSize_u16;
 uint16_t eelPoolStart_u16;
 uint16_t eelPoolSize_u16;
} r_fdl_descriptor_t;

Description: This type is the run-time configuration (see chapter 4.2 “Run-time configuration”). A
variable of this type is read during initialization phase then hardware and internal
variables are set according to the configuration.

Member /
Value:

Member / Value Description
cpuFrequencyMHz_u16 CPU frequency in MHz
fdlPoolSize_u16 FDL pool size in number of blocks

eelPoolStart_u16 Number of first block of the EEL pool
eelPoolSize_u16 Last block of the EEL pool

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 27
User Manual

4.3.3 r_fdl_request_t

Type
definition:

typedef volatile struct R_FDL_REQUEST_T
{
 r_fdl_command_t command_enu;
 uint32_t bufAddr_u32;
 uint32_t idx_u32;
 uint16_t cnt_u16;
 r_fdl_accessType_t accessType_enu;
 r_fdl_status_t status_enu;
} r_fdl_request_t;

Description: This structure is the central type for the request-response-oriented dialog for the
command execution (see section 3.2 “Request-response oriented dialog”). Not every
element of this structure is required for each command. However, all members of the
request variable must be initialized once before usage. Please refer to section 4.5
“Commands” for a more detailed description of the structure elements command-specific
usage.

For simplification, idx_u32 structure member is a virtual address that starts at 0x0 and
not at the address at which Data Flash is mentioned in the hardware user manual.

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 28
User Manual

Member /
Value:

Member / Value Description

command_enu

User command to execute:
• R_FDL_CMD_ERASE
• R_FDL_CMD_WRITE
• R_FDL_CMD_BLANKCHECK
• R_FDL_CMD_READ
• R_FDL_CMD_PREPARE_ENV

bufAddr_u32 Source/Destination buffer address for Write/Read
operations

idx_u32

Bidirectional:
• start block number when starting block based

commands (erase) or
• start word address when starting address based

commands (write, blank check, read) or
• failure address in case of blank check (1st not blank

Flash address) or read commands (1st read
address with ECC error)

cnt_u16
Number of blocks (64 bytes) to operate in case of erase
command. Number of words (4 bytes) to operate for all
the other commands.

accessType_enu
Data Flash access originator:
• R_FDL_ACCESS_USER or
• R_FDL_ACCESS_EEL

status_enu Status/Error codes returned by the library, see 4.3.6
"r_fdl_status_t"

4.3.4 r_fdl_command_t

Type
definition:

typedef enum R_FDL_COMMAND_T
{
 R_FDL_CMD_ERASE,
 R_FDL_CMD_WRITE,
 R_FDL_CMD_BLANKCHECK,
 R_FDL_CMD_READ,
 R_FDL_CMD_PREPARE_ENV
} r_fdl_command_t;

Description: User command to execute. This type is used within the structure r_fdl_request_t
(see section 4.3.3 "r_fdl_request_t") in order to specify which command shall be executed
via the function R_FDL_Execute. A detailed description of each command can be found
in section 4.5 “Commands”.

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 29
User Manual

Member /
Value:

Member / Value Description
R_FDL_CMD_ERASE Erase Data Flash block(s)

R_FDL_CMD_WRITE Write Data Flash word(s)

R_FDL_CMD_BLANKCHECK Blank check certain Data Flash area

R_FDL_CMD_READ Read from Data Flash and return data and possible
ECC errors

R_FDL_CMD_PREPARE_ENV Prepare Flash environment

4.3.5 r_fdl_accessType_t

Type
definition:

typedef enum R_FDL_ACCESS_TYPE_T
{
 R_FDL_ACCESS_NONE,
 R_FDL_ACCESS_USER,
 R_FDL_ACCESS_EEL
} r_fdl_accessType_t;

Description: In order to initiate a Data Flash operation, the access type to the Data Flash must be set
depending on the configured pool that will be accessed. The pool ranges are defined in
the FDL descriptor, passed to the R_FDL_Init function (please check Figure 6: Flash
Access Rights”).

After each operation the access right is reset to R_FDL_ACCESS_NONE to prevent
accidental access.

Member /
Value:

Member / Value Description
R_FDL_ACCESS_NONE FDL internal value. Not used by the application

R_FDL_ACCESS_USER Application wants to execute an FDL operation in the
User-pool Data Flash area

R_FDL_ACCESS_EEL Application wants to execute an FDL operation in the
EEL-pool Data Flash area

4.3.6 r_fdl_status_t

Type
definition:

typedef enum R_FDL_STATUS_T
{
 R_FDL_OK,
 R_FDL_BUSY,
 R_FDL_SUSPENDED,
 R_FDL_ERR_CONFIGURATION,

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 30
User Manual

 R_FDL_ERR_PARAMETER,
 R_FDL_ERR_PROTECTION,
 R_FDL_ERR_REJECTED,
 R_FDL_ERR_WRITE,
 R_FDL_ERR_ERASE,
 R_FDL_ERR_BLANKCHECK,
 R_FDL_ERR_COMMAND,
 R_FDL_ERR_ECC_SED,
 R_FDL_ERR_ECC_DED,
 R_FDL_ERR_INTERNAL,
 R_FDL_CANCELLED
} r_fdl_status_t;

Description: This enumeration type defines all possible status and error-codes that can be generated
by the FDL. Some error codes are command specific and are described in detail in
section 4.5 “Commands”.

Member /
Value:

Member / Value Description
R_FDL_OK FDL operation successfully finished

R_FDL_BUSY FDL operation is still ongoing

R_FDL_SUSPENDED Data Flash operation is suspended

R_FDL_ERR_CONFIGURATION The FDL configuration (descriptor) was wrong

R_FDL_ERR_PARAMETER An error was found in the given parameter(s)

R_FDL_ERR_PROTECTION FDL operation stopped due to hardware error, wrong
access rights or wrong conditions

R_FDL_ERR_REJECTED A flow error occurred (e.g. library not initialized, other
operation on-going)

R_FDL_ERR_WRITE Data Flash write error

R_FDL_ERR_ERASE Data Flash erase error

R_FDL_ERR_BLANKCHECK The blank check command was stopped because the
specified area is not blank

R_FDL_ERR_COMMAND Unknown command

R_FDL_ERR_ECC_SED Single bit error detected by ECC

R_FDL_ERR_ECC_DED Double bit error detected by ECC

R_FDL_ERR_INTERNAL The current FDL command stopped due to a library
internal error (e.g. hardware errors that should never
occur or library errors which were not expected and
might result from library data manipulation by the
application)

R_FDL_CANCELLED Data Flash operation is cancelled

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 31
User Manual

4.4 Functions

The API functions, grouped by their role in the interface:

Initialization:

• R_FDL_Init

Flash operations:

• R_FDL_Execute

• R_FDL_Handler

Operation control:

• R_FDL_SuspendRequest

• R_FDL_ResumeRequest

• R_FDL_StandBy

• R_FDL_WakeUp

• R_FDL_CancelRequest

Administration:

• R_FDL_GetVersionString

The following sub-chapters describe the Flash operations that can be initiated and controlled by the
library. The operations are initiated by a library function R_FDL_Execute and later on controlled by the
library function R_FDL_Handler.

All FDL interface functions are prototyped in the header file r_fdl.h.

4.4.1 Initialization

4.4.1.1 R_FDL_Init

Outline: Initialization of the Data Flash Access Library.

Interface: C Interface

r_fdl_status_t R_FDL_Init (const r_fdl_descriptor_t * descriptor_pstr);

Arguments: Parameters

Argument Type Access Description

descriptor_pstr r_fdl_descriptor_t * R FDL configuration descriptor (see
section 4.3.2 “r_fdl_descriptor_t”)

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 32
User Manual

 Return value

Type Description

r_fdl_status_t

• R_FDL_OK
Operation finished successfully.

• R_FDL_ERR_CONFIGURATION
Wrong parameters have been passed to the FDL:

• Descriptor address is NULL
• FDL-pool is zero
• EEL-pool ends beyond FDL-pool edge
• Specified CPU clock is outside limits for this device1

• R_FDL_ERR_INTERNAL1
Initialization failed due to various factors (insufficient stack
space, unknown hardware or software issues)

 1 compatibility mode enabled, please refer to chapter 4.1 “Pre-compilation configuration”
for details

Pre-
conditions:

Compatibility mode enabled:
Interrupt execution shall be disabled for a brief time during execution of this function. This
must either be done in advance by the user, or the user must properly configure provided
callback macro functions in fdl_cfg.h (see description and example below).

Compatibility mode disabled:
None

Post-
conditions: None

Description: This function is executed before any execution of FDL Flash operation.

Function checks the input parameters and initializes the hardware and software.

Note:
In case the compatibility mode is enabled, this function will temporarily disable Code
Flash. Please refer to Chapter 6 Cautions for limitations that must be considered.

Example:

const r_fdl_descriptor_t sampleApp_fdlConfig_enu =
{
 CPU_FREQUENCY_MHZ,
 FDL_POOL_SIZE,
 EEL_POOL_START,
 EEL_POOL_SIZE
};

r_fdl_status_t ret;

ret = R_FDL_Init (&sampleApp_fdlConfig_enu);

if (ret != R_FDL_OK)
{
 /* Error handler */
}

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 33
User Manual

Example: for setting the protected section with callbacks provided in the sample application

#define FDL_CRITICAL_SECTION_BEGIN FDL_User_CriticalSetionBegin();
#define FDL_CRITICAL_SECTION_END FDL_User_CriticalSetionEnd();

4.4.2 Flash operations

4.4.2.1 R_FDL_Execute

Outline: Initiate a Data Flash operation.

Interface: C Interface

void R_FDL_Execute (r_fdl_request_t * request_pstr);

Arguments: Parameters

Argument Type Access Description

request_pstr r_fdl_request_t * RW

This argument points to a
request structure defining the
command, command parameters
and also the execution results.
A more detailed description of
request structure can be found in
section 4.3.3 “r_fdl_request_t”.

 Return value

 Type Description
none

Pre-
conditions: R_FDL_Init must have been executed successfully.

Post-
conditions:

Call R_FDL_Handler until the Flash operation is finished. This is reported by the request
structure status return value (value changes from R_FDL_BUSY to a different value).

The user application must not modify members of the request structure while the
command is in operation.

Description: The execute function initiates all Flash modification operations. The operation type and
operation parameters are passed to the FDL by a request structure, the status and the
result of the operation are returned to the user application also by the same structure.
The required parameters as well as the possible return values depend on the operation to
be started.

This function only starts a hardware operation according to the command to be executed.
The command processing must be controlled and stepped forward by the handler
function R_FDL_Handler.

Possible commands, parameters and return values are described into chapter 4.5
“Commands”.

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 34
User Manual

Example: Erase blocks 0 to 3.

r_fdl_request_t myRequest;

myRequest.command_enu = R_FDL_CMD_ERASE;
myRequest.idx_u32 = 0;
myRequest.cnt_u16 = 4;
myRequest.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute (&myRequest);
while (myRequest.status_enu == R_FDL_BUSY)
{
 R_FDL_Handler ();
}

if (myRequest.status_enu != R_FDL_OK)
{
 /* Error handler */
}

Example: Write 8 bytes starting from addresses 0x10.

r_fdl_request_t myRequest;

uint32_t data[] = { 0x11223344, 0x55667788 };

myRequest.command_enu = R_FDL_CMD_WRITE;
myRequest.idx_u32 = 0x10;
myRequest.cnt_u16 = 2;
myRequest.bufAddr_u32 = (uint32_t)&data[0];
myRequest.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute (&myRequest);
while (myRequest.status_enu == R_FDL_BUSY)
{
 R_FDL_Handler ();
}

if (myRequest.status_enu != R_FDL_OK)
{
 /* Error handler */
}

Example: Blank Check addresses from 0x10 to 0x17.

r_fdl_request_t myRequest;

myRequest.command_enu = R_FDL_CMD_BLANKCHECK;
myRequest.idx_u32 = 0x10;
myRequest.cnt_u16 = 2;
myRequest.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute(&myRequest);

while (myRequest.status_enu == R_FDL_BUSY)
{
 R_FDL_Handler();
}

if (myRequest.status_enu != R_FDL_OK)
{
 /* Error handler */

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 35
User Manual

}

Example: Read two words starting from address 0x10.

r_fdl_request_t myRequest;

uint32_t data[2];

myRequest.command_enu = R_FDL_CMD_READ;
myRequest.idx_u32 = 0x10;
myRequest.cnt_u16 = 2;
myRequest.bufAddr_u32 = (uint32_t)&data[0];
myRequest.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute(&myRequest);

if (myRequest.status_enu != R_FDL_OK)
{
 /* Error handler */
}

Example: Prepare the Data Flash environment.

r_fdl_request_t myRequest;

myRequest.command_enu = R_FDL_CMD_PREPARE_ENV;

R_FDL_Execute(&myRequest);

while (myRequest.status_enu == R_FDL_BUSY)
{
 R_FDL_Handler();
}

if (myRequest.status_enu != R_FDL_OK)
{
 /* Error handler */
}

4.4.2.2 R_FDL_Handler

Outline: This function needs to be called repeatedly in order to drive pending commands and
observe their progress.

Interface: C Interface

void R_FDL_Handler (void);

Arguments: Parameters

 Argument Type Access Description
None

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 36
User Manual

 Return value

 Type Description
None

Pre-
conditions:

R_FDL_Init and R_FDL_Execute must have been executed successfully.

Execution of the R_FDL_CMD_PREPARE_ENV command in case of compatibility mode
disabled:
Interrupt execution shall be disabled for a brief time during execution of this function. This
must either be done in advance by the user application (for the complete duration of the
command execution), or the user must properly configure provided callback macro
functions in fdl_cfg.h.
See chapter 4.1 “Pre-compilation configuration”

Post-
conditions:

The status of a pending FDL command may be updated, i.e. the status_enu member of
the corresponding request structure is written.

Description: The function needs to be called regularly in order to drive pending commands and
observe their progress. Thereby, the command execution is performed state by state.
When a command execution is finished, the request status variable (structural element
status_enu of r_fdl_request_t) is updated with the status/error code of the
corresponding command execution.

Note:
When no command is being processed, R_FDL_Handler consumes few CPU cycles.

Example:

while (true)
{
 R_FDL_Handler();
 User_Task_A();
 User_Task_B();
 User_Task_C();
 User_Task_D();
}

4.4.3 Operation control

4.4.3.1 R_FDL_SuspendRequest

Outline: This function requests suspending a Flash operation in order to be able to do other Flash
operations.

Interface: C Interface

r_fdl_status_t R_FDL_SuspendRequest (void);

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 37
User Manual

Arguments: Parameters

 Argument Type Access Description
None

 Return value

Type Description

r_fdl_status_t

• R_FDL_OK
Operation finished successfully

• R_FDL_ERR_REJECTED
Wrong library handling flow:

• No operation is ongoing

• FDL is already in suspended state

• FDL is processing a cancel request

Pre-
conditions:

A Flash operation must have been started and not yet finished (request structure status
value is R_FDL_BUSY). The FDL must not be processing another suspend or a cancel
request.

Post-
conditions:

Call R_FDL_Handler until the library is suspended (status R_FDL_SUSPENDED)

If the function returned successfully, no further error check of the suspend procedure is
necessary, as a potential error is saved and restored on R_FDL_ResumeRequest.

The request structure used before suspend shall not be modified by the command(s)
issued during suspended state.

Description: This function requests suspending a Flash operation in order to be able to do other Flash
operations.

Example:

r_fdl_status_t srRes_enu;
r_fdl_request_t myReq_str_str;
uint32_t i;

/* Start Erase operation */
myReq_str_str.command_enu = R_FDL_CMD_ERASE;
myReq_str_str.idx_u32 = 0;
myReq_str_str.cnt_u16 = 4;
myReq_str_str.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute (&myReq_str_str);

/* Now call the handler some times */
i = 0;
while ((myReq_str_str.status_enu == R_FDL_BUSY) && (i < 10))
{
 R_FDL_Handler ();
 i++;
}

/* Suspend request and wait until suspended */
srRes_enu = R_FDL_SuspendRequest ();

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 38
User Manual

if (R_FDL_OK != srRes_enu)
{
 /* error handler */
 while (1)
 ;
}

while (R_FDL_SUSPENDED != myReq_str_str.status_enu)
{
 R_FDL_Handler ();
}

/* Now the FDL is suspended and we can handle other operations or read the Data
Flash ... */

/* Erase resume */
srRes_enu = R_FDL_ResumeRequest();

if (R_FDL_OK != srRes_enu)
{
 /* Error handler */
}

/* Finish the erase */
while (myReq_str_str.status_enu == R_FDL_SUSPENDED)
{
 R_FDL_Handler();
}
while (myReq_str_str.status_enu == R_FDL_BUSY)
{
 R_FDL_Handler();
}

if (R_FDL_OK != myReq_str_str.status_enu)
{
 /* Error handler */
}

4.4.3.2 R_FDL_ResumeRequest

Outline: This function requests to resume the FDL operation after suspending.

Interface: C Interface

r_fdl_status_t R_FDL_ResumeRequest (void);

Arguments: Parameters

 Argument Type Access Description
None

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 39
User Manual

 Return value

Type Description

r_fdl_status_t

• R_FDL_OK
Operation finished successfully

• R_FDL_ ERR_REJECTED
Wrong library handling flow:

• FDL is not in suspended state

• FDL is processing a cancel request

Pre-
conditions:

The library must be in suspended state. The FDL must not be processing a cancel
request.

Post-
conditions: Call R_FDL_Handler until the library operation is resumed.

Description: This function requests to resume the FDL operation after suspending. The resume is just
requested by this function. Resume handling is done by the R_FDL_Handler function.

Example: See R_FDL_SuspendRequest.

4.4.3.3 R_FDL_StandBy

Outline: This function suspends an ongoing flash operation.

Interface: C Interface

r_fdl_status_t R_FDL_StandBy (void);

Arguments: Parameters

 Argument Type Access Description
None

 Return value

Type Description

r_fdl_status_t

• R_FDL_OK
FDL operation finished successfully

• R_FDL_BUSY
The started Flash operation is still on-going

• R_FDL_ ERR_REJECTED
Flow error:

• Library is not initialized
• Library is already in stand-by mode

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 40
User Manual

Pre-
conditions:

R_FDL_Init must have been executed successfully.

FDL is not in stand-by mode.

Post-
conditions:

Repeat the execution of the R_FDL_StandBy function until the state indicated by the
function changes from R_FDL_BUSY.

Do not execute functions R_FDL_Execute, R_FDL_SuspendRequest,
R_FDL_ResumeRequest,R_FDL_CancelRequest or R_FDL_StandBy when FDL is in
stand-by state.

Description: This function suspends an ongoing flash operation and brings FDL into stand-by state.
The system can then change to special states (e.g. enter HALT mode, reduce clock
speed...).

Function does not necessarily immediately suspend any Flash operation, as suspend
might be delayed by the device internal hardware or might not be supported at all (only
Erase and Write are suspendable). So, the function R_FDL_StandBy tries to suspend
the Flash operation and returns R_FDL_BUSY as long as a Flash operation is on-going. If
suspend was not possible (e.g. blank check operation), R_FDL_BUSY is returned until the
operation is finished normally.

So, in order to be sure to have no Flash operation on-going, the function must be called
continuously until the function does no longer return R_FDL_BUSY or until a timeout
occurred.

After stand-by, it is mandatory to call R_FDL_WakeUp to resume normal FDL operation
again. The prescribed sequence in case of using R_FDL_StandBy/R_FDL_WakeUp is:

• any FDL command is in operation
• call R_FDL_StandBy until it does no longer return R_FDL_BUSY
• put device in power save (stand-by) mode
• device wake-up
• call R_FDL_WakeUp
• continue with initial FDL command

Note:
Please do not enter a power save mode which resets/alters the Flash hardware or
memory required for library operation - e.g. stack, library data or library operation related
data (such as request variable). This need to be considered, because resuming the
previous operation is not possible otherwise. The library is not able to detect such failure.
A possible power save mode is HALT.
If entering other modes, the FDL need to be re-initialized by R_FDL_Init.

Example:

r_fdl_status_t fdlRet_enu;
r_fdl_request_t myReq_str_str;

/* Start Erase operation */
myReq_str_str.command_enu = R_FDL_CMD_ERASE;
myReq_str_str.idx_u32 = 0;
myReq_str_str.cnt_u16 = 4;
myReq_str_str.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute (&myReq_str_str);

...

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 41
User Manual

do
{
 fdlRet = R_FDL_StandBy ();
}
while (R_FDL_BUSY == fdlRet);
if (R_FDL_OK != fdlRet)
{
 /* error handler */
}

...
/* device enters power save mode */
...

...
/* device recovers from power save mode */
...
do
{

fdlRet = R_FDL_WakeUp();
}
While(R_FDL_BUSY==fdlRet);
if (R_FDL_OK != fdlRet)
{
 /* error handler */
}

/* Finish erase command */

while (myReq_str_str.status_enu == R_FDL_BUSY)
{
 R_FDL_Handler ();
}

if (R_FDL_OK != myReq_str_str.status_enu)
{
 /* Error handler */
 while (1)
 ;
}

4.4.3.4 R_FDL_WakeUp

Outline: This function wakes up the library from stand-by state.

Interface: C Interface

r_fdl_status_t R_FDL_WakeUp (void);

Arguments: Parameters

 Argument Type Access Description
None

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 42
User Manual

 Return value

Type Description

r_fdl_status_t

• R_FDL_OK
Operation finished successfully

• R_FDL_BUSY
The started Flash operation is still on-going

• R_FDL_ ERR_REJECTED
Wrong library handling flow: FDL is not in stand-
by state

Pre-
conditions:

The library must be in stand-by mode.

The hardware conditions (CPU frequency, voltage, etc...) must be restored to the state
before issuing the stand-by request.

Post-
conditions:

While the FDL returns R_FDL_BUSY in response to a call of the R_FDL_WakeUp
function,call the R_FDL_WakeUp function repeatedly.

Description: The main purpose of this function is to wake up the library from the stand-by mode and
resume Flash hardware. For more information see chapter 3.6 “Stand-by and Wake-up
functionality”.

Example: See R_FDL_StandBy.

4.4.3.5 R_FDL_CancelRequest

Outline: This function requests cancelling an on-going or suspended Erase, Write or Blank check
Flash operation.

Interface: C Interface

r_fdl_status_t R_FDL_CancelRequest (void);

Arguments: Parameters

 Argument Type Access Description
None

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 43
User Manual

: Return value

Type Description

r_fdl_status_t

• R_FDL_OK
Operation finished successfully

• R_FDL_ERR_REJECTED
Wrong library handling flow:

• No operation is ongoing or suspended
• FDL is already processing another cancel

request
• R_FDL_ERR_INTERNAL

A library internal error occurred, which could not
happen in case of normal application execution

• R_FDL_ERR_PROTECTION
Code Flash or Data Flash is in programming
mode

Pre-
conditions:

A Flash operation must have been started and not yet finished (request structure status
value is R_FDL_BUSY) and/or suspended. The FDL must not be processing another
cancel request.

Post-
conditions: Call R_FDL_Handler until the library is cancelled (status R_FDL_CANCELLED)

Description: This function requests cancelling a Flash Erase, Write or Blank Check operation. For
more information see chapter 3.7 ”Cancel mechanism”.

Example:

/* Erase block 0,1,2 and 3 */
r_fdl_request_t myRequest ;
r_fdl_status_t srRes_enu ;
uint32_t i ;

myRequest.command_enu = R_FDL_CMD_ERASE
myRequest.idx_u32 = 0
myRequest.cnt_u16 = 4
myRequest.accessType_enu = R_FDL_ACCESS_USER;

R_FDL_Execute(&myRequest);

/* call the handler some time */
i= 0;
while ((myRequest.status_enu == R_FDL_BUSY) && (i<10))
{
 R_FDL_Handler ();
 i++;
}

/* Cancel request and wait until cancelled */
srRes_enu = R_FDL_CancelRequest () ;
if (R_FDL_OK != srRes_enu)
{
 /* Error treatment */
 ...
)

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 44
User Manual

while (R_FDL_CANCELLED != myRequest.status_enu)
{
 R_FDL_Handler ();
}

4.4.4 Administration

4.4.4.1 R_FDL_GetVersionString

Outline: This function returns the pointer to the null terminated library version string.

Interface: C Interface

(const uint8_t*) R_FDL_GetVersionString (void);

Arguments: Parameters

 Argument Type Access Description
None

 Return value

Type Description

const uint8_t *
The library version is a string value in the following
format: “DH850T01xxxxxYZabcD”
Please check function description below for details.

Pre-
conditions: None

Post-
conditions: None

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 45
User Manual

Description:

Example:

uint8_t * vstr = (uint8_t *)R_FDL_GetVersionString ();

4.5 Commands

The following sub-chapters describe the Flash operations that can be initiated and controlled by the
library.

In general, all FDL commands can be handled in the same way as illustrated in Figure 15:

1. The requester fills up the private request variable my_request (command definition).

2. The requester tries to initiate the command execution by R_FDL_Execute(&my_request).

3. The requester has to call R_FDL_Handler to proceed the FDL command execution as long the
request is being processed (i.e. my_request.status_enu == R_FDL_BUSY).

4. After finishing the command (i.e. my_request.status_enu != R_FDL_BUSY) the requester
has to analyse the status to detect potential errors.

Figure 14: Version string

D H850 T01 xxxxx Y Z abc D
Optional character, identifying
different engineering versions

Library version number a.bc

"E" for engineering version
"V" for normal version

Coded information about the
used memory/register model. If

no information is coded, the
library is a generic library valid
for all memory/register models.

Coded information about the supported compiler.
If no information is coded, the library is a source

code library valid for different compilers.

Library type T01=Type01

MCU series name H850=RH850

Flash Code/Data library S=Code / D=Data

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 46
User Manual

4.5.1 R_FDL_CMD_ERASE

The erase command can be used to erase a number of Flash blocks defined by a start block and the
number of blocks.

The members of the request structure given to R_FDL_Execute are described in the following table:

Table 3: Request structure usage for erase command

Structure member Value Description
command_enu R_FDL_CMD_ERASE Request a block erase operation

bufAddr_u32 - Not used

Figure 15: Generic command execution flow

start command execution

end of command execution

fill request variable
my_request

R_FDL_Execute
(&my_request)

R_FDL_Handler()

error handling

my_request.status_enu ?

<other>

R_FDL_BUSY

other user application
processing

1

2

3

4my_request.status_enu ?

<other>

R_FDL_OK

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 47
User Manual

Structure member Value Description

idx_u32 {uint32_t number}

Number of the first block to be erased. Flash
blocks are defined by the erase granularity
that is 64 bytes, e.g.:
block 0: 0x00 ... 0x3F
block 1: 0x40 ... 0x7F
...

cnt_u16 {uint16_t number} Numbers of blocks to erase

accessType_enu R_FDL_ACCESS_USER /
R_FDL_ACCESS_EEL

Selects the Flash pool in which the command
will be able to operate.

status_enu -

This is an output member. It contains the
status of the operation during and after the
execution. Possible values are described in
the next table.

The following table describes all possible status returns:
Table 4: Erase operation returned status

Status Background and Handling

R_FDL_BUSY

meaning Operation started successfully

reason No problems during execution

remedy
Call R_FDL_Handler until the Flash operation is finished,
reported by the request structure status return value

R_FDL_OK(1)
meaning Operation finished successfully
reason No problems during execution

remedy Nothing

R_FDL_SUSPENDED(1)

meaning An on-going Flash operation was successfully suspended

reason Suspend processing successfully finished

remedy Start another operation or resume the suspended
operation

R_FDL_CANCELLED(1)

meaning An on-going or suspended Flash operation was
successfully cancelled

reason Cancel processing successfully finished
remedy Start another operation

R_FDL_ERR_PARAMETER

meaning Current command is rejected

reason

Wrong command parameters:
• access is made outside of physically available Data

Flash
• command shall operate in User-pool but

accessType_enu is not R_FDL_ACCESS_USER
• command shall operate in EEL-pool but

accessType_enu is not R_FDL_ACCESS_EEL
• cnt_u16 is 0 or it is too big

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_PROTECTION meaning Current command is rejected

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 48
User Manual

Status Background and Handling

reason
• Activated device specific protection mechanisms

prevent Flash operations (availability depending on the
device, e.g. FHVE protection mechanism)

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_REJECTED(2)

meaning Current command is rejected

reason Another operation is ongoing

remedy Request again the command when the preceding
command has finished

R_FDL_ERR_ERASE(1)

meaning Affected Flash area could not be completely erased

reason
FDL was initialized with incorrect CPU frequency
Hardware defect

remedy
Re-initialize FDL with correct frequency
A Flash block respectively the complete Data Flash should
be considered as defect

R_FDL_ERR_INTERNAL

meaning A library internal error occurred, which could not happen in
case of normal application execution

reason

An error occurred that cannot be determined by the library,
such as caused by:
• FDL code or data sections destruction, wrong program

flow, Flash hardware modification
• Hardware defect

remedy Please refer to section 3.9 “Internal error“
(1) R_FDL_Execute will never set this status code
(2) R_FDL_Handler will never set this status code

4.5.2 R_FDL_CMD_WRITE

The write command can be used to write a number of data words located in the RAM into the Data Flash
at the location specified by the virtual target address.

Note:
It is not allowed to “overwrite” data, which means writing data to already partly or completely written Flash
area. Please always erase the targeted area before writing into it.

The members of the request structure given to R_FDL_Execute are described in the following table:

Table 5: Request structure usage for write command

Structure member Value Description
command_enu R_FDL_CMD_WRITE Request a write operation

bufAddr_u32 {uint32_t number} Address of the buffer containing the source
data to be written.

idx_u32 {uint32_t number} The virtual start address for writing in Data
Flash aligned to word size (4 bytes).

cnt_u16 {uint16_t number} Number of words to write.

accessType_enu R_FDL_ACCESS_USER /
R_FDL_ACCESS_EEL

Selects the Flash pool in which the command
will be able to operate.

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 49
User Manual

Structure member Value Description

status_enu -

This is an output member. It contains the
status of the operation during and after the
execution. Possible values are described in
the next table.

The following table describes all possible status returns:

Table 6: Write operation returned status

Status Background and Handling

R_FDL_BUSY

meaning Operation started successfully
reason No problems during execution

remedy
Call R_FDL_Handler until the Flash operation is finished,
reported by the request structure status return value

R_FDL_OK(1)

meaning Operation finished successfully

reason No problems during execution
remedy Nothing

R_FDL_SUSPENDED(1)

meaning An on-going Flash operation was successfully suspended

reason Suspend processing successfully finished

remedy Start another operation or resume the suspended
operation

R_FDL_CANCELLED(1)
meaning An on-going or suspended Flash operation was

successfully cancelled
reason Cancel processing successfully finished

remedy Start another operation

R_FDL_ERR_PARAMETER

meaning Current command is rejected

reason

Wrong command parameters:
• access is made outside of physically available Data

Flash
• command shall operate in User-pool but

accessType_enu is not R_FDL_ACCESS_USER
• command shall operate in EEL-pool but

accessType_enu is not R_FDL_ACCESS_EEL
• cnt_u16 is 0 or it is too big
• flash writing address is not aligned with granularity

(4 bytes)

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_PROTECTION

meaning Current command is rejected

reason
Other device specific protection mechanisms (e.g. security
unit like ICU or FHVE protection mechanisms) prevent
Flash operations.

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_REJECTED(2)
meaning Current command is rejected

reason Another operation is ongoing

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 50
User Manual

Status Background and Handling

remedy Request again the command when the preceding
command has finished

R_FDL_ERR_WRITE(1)

meaning Data could not be written correctly

reason

• User flow issue: write on not completely erased Flash
area

• FDL was initialized with incorrect CPU frequency
• Hardware defect

remedy

• Erase write area before writing
• Re-initialize FDL with correct frequency
• A Flash block respectively the complete Data Flash

should be considered as defect

R_FDL_ERR_INTERNAL

meaning A library internal error occurred, which could not happen in
case of normal application execution

reason

An error occurred that cannot be determined by the library,
such as caused by:
• FDL code or data sections destruction, wrong program

flow, Flash hardware modification
• Hardware defect

remedy Please refer to section 3.9 “Internal error“
(1) R_FDL_Execute will never set this status code
(2) R_FDL_Handler will never set this status code

4.5.3 R_FDL_CMD_BLANKCHECK

The blank check command can be used by the requester to check whether a specified amount of memory
starting from a specified address is written. This command will stop at the first memory location that is not
erased with status R_FDL_ERR_BLANKCHECK.

Notes:
1. On blank check fail, the cells are surely not blank. This might result from successfully written cells, but

also from interrupted execution of erase or write commands (resulting in partially written or erased
cells).

 On blank check pass, the cells are surely not written. This might result from successfully erased cells,
but also from interrupted execution of erase or write commands (resulting in partially written or erased
cells).

 On blank check pass, there is a theoretical chance that a further write command will end with write
error if the cells level is very near to the blank check level.

 Depending on the Flash operations use case (e.g. EEPROM emulation) it may be necessary to log
the Flash operations results in order to be sure that Flash cells are correctly written or erased. The
way of logging depends on the use case (e.g. as part of an EEPROM emulation concept)

 Internally blank check operation is split into smaller operations every time the operation crosses a
0x1000 bytes boundary. This means that time to suspend is not going to exceed the time to fully
perform a blank check on 0x1000 bytes.

The members of the request structure given to R_FDL_Execute are described in the following table:

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 51
User Manual

Table 7: Request structure usage for blank check command

Structure member Value Description
command_enu R_FDL_CMD_BLANKCHECK Request a blank check operation

bufAddr_u32 - Not used

idx_u32 {uint32_t number}

Input: The virtual start address for performing
blank check in data flash. Must be word (4
bytes) aligned.
Output: Fail address in case of blank check
error, unchanged if the operation finishes with
R_FDL_OK.

cnt_u16 {uint16_t number} Number of words (4 bytes) to check

accessType_enu R_FDL_ACCESS_USER /
R_FDL_ACCESS_EEL

Selects the Flash pool in which the command
will be able to operate.

status_enu -

This is an output member. It contains the
status of the operation during and after the
execution. Possible values are described in
the next table.

The following table describes all possible status returns:

Table 8: Blank check operation returned status

Status Background and Handling

R_FDL_BUSY

meaning Operation started successfully

reason No problems during execution

remedy Call R_FDL_Handler until the Flash operation is finished,
reported by the request structure status return value

R_FDL_OK(1)

meaning Operation finished successfully

reason No problems during execution

remedy Nothing

R_FDL_SUSPENDED(1)

meaning An on-going Flash operation was successfully suspended

reason Suspend processing successfully finished

remedy Start another operation or resume the suspended
operation

R_FDL_CANCELLED(1)

meaning An on-going or suspended Flash operation was
successfully cancelled

reason Cancel processing successfully finished

remedy Start another operation

R_FDL_ERR_PARAMETER meaning Current command is rejected

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 52
User Manual

Status Background and Handling

reason

Wrong command parameters:
• access is made outside of physically available Data

Flash
• command shall operate in User-pool but

accessType_enu is not R_FDL_ACCESS_USER
• command shall operate in EEL-pool but

accessType_enu is not R_FDL_ACCESS_EEL
• cnt_u16 is 0 or it is too big
• flash blank check address is not aligned with

granularity (4 bytes)

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_PROTECTION

meaning Current command is rejected

reason
Other device specific protection mechanisms (e.g. security
unit like ICU or FHVE protection mechanisms prevent
Flash operations)

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_REJECTED(2)

meaning Current command is rejected

reason Another operation is ongoing

remedy Request again the command when the preceding
command has finished

R_FDL_ERR_BLANKCHECK(1)

meaning Affected Flash area is not completely blank (See notes
above regarding interpretation of the check result!)

reason • (Partly) written Flash area is checked
• Not completely erased Flash area is checked

remedy

Remedy depends on the expected result of the Blank
Check:
• R_FDL_ERR_BLANKCHECK was the expected result:

Nothing to do, the Flash contains data
• R_FDL_OK was the expected result:

Perform a Flash Erase operation

R_FDL_ERR_INTERNAL

meaning A library internal error occurred, which could not happen in
case of normal application execution

reason

An error occurred that cannot be determined by the library,
such as caused by:
• FDL code or data sections destruction, wrong program

flow, Flash hardware modification
• Hardware defect

remedy Please refer to section 3.9 “Internal error“
(1) R_FDL_Execute will never set this status code
(2) R_FDL_Handler will never set this status code

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 53
User Manual

4.5.4 R_FDL_CMD_READ

The read operation will read a certain address range in the Data Flash and copy the data to the specified
target buffer.

Additionally, ECC errors in the read data will be signalled to the user application by the request structure
(error status and first error address). In case of single bit ECC error, the data read will be continued and
the 1st occurrence of the ECC error will be returned. In case of double bit error, the read operation is
stopped and the fail address is returned. In case of a previous single bit error detected, the fail address of
the single bit error is overwritten.

Read command execution is synchronous to execution of R_FDL_Execute function. Therefore this
command cannot be suspended and does not need to be processed by R_FDL_Handler function.

The members of the request structure given to R_FDL_Execute are described in the following table:

Table 9: Request structure usage for read command

Structure member Value Description
command_enu R_FDL_CMD_READ Request a read operation

bufAddr_u32 {uint32_t number}
Data destination buffer address in RAM.
Note: The buffer must be 32-bit aligned!

idx_u32 {uint32_t number} Data Flash virtual address from where to
read. Must be word (4 bytes) aligned.

cnt_u16 {uint16_t number} Numbers of words (4 bytes) to read

accessType_enu R_FDL_ACCESS_USER /
R_FDL_ACCESS_EEL

Selects the Flash pool in which the command
will be able to operate.

status_enu -

This is an output member. It contains the
status of the operation during and after the
execution. Possible values are described in
the next table.

The following table describes all possible status returns:

Table 10: Read operation returned status

Status Background and Handling

R_FDL_OK

meaning Operation finished successfully

reason No problems during execution

remedy Nothing

R_FDL_ERR_PARAMETER meaning Current command is rejected

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 54
User Manual

Status Background and Handling

reason

Wrong command parameters:
• access is made outside of physically available Data

Flash
• command shall operate in User-pool but

accessType_enu is not R_FDL_ACCESS_USER
• command shall operate in EEL-pool but

accessType_enu is not R_FDL_ACCESS_EEL
• cnt_u16 is 0 or it is too big
• flash read address is not 4-byte aligned
• buffer address is 0x0 or not 4-byte aligned

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_PROTECTION

meaning Current command is rejected

reason
Other device specific protection mechanisms (e.g. security
unit like ICU or FHVE protection mechanisms prevent
Flash operations.

remedy Refrain from further Flash operations and investigate in the
root cause

R_FDL_ERR_REJECTED

meaning Current command is rejected

reason Another operation is ongoing

remedy Request again the command when the preceding
command has finished

R_FDL_ERR_ECC_SED

meaning

The read operation detected single bit ECC error(s) in the
read data. Single bit errors are automatically corrected by
the ECC logic.
The address of the first error occurrence is returned in the
request structure.

reason
• Not completely written or erase Flash
• Cell level degradation by time
• Hardware defect

remedy

Remedy depends on the use case:
• In case of reading possibly not completely written

Flash is intended, reaction depends on the usage
concept

• In case of successfully written Flash is expected, try to
refresh the data (Erase the Flash and write the data
again) or refrain from further Flash operations and
investigate in the root cause of the error

R_FDL_ERR_ECC_DED

meaning
The read operation detected a double bit ECC error in the
read data. This error cannot be corrected by the ECC logic.
The read operation will stop at the failing address and the
fail address is returned.

reason • Not completely written or erase Flash
• Hardware defect

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 55
User Manual

Status Background and Handling

remedy

Remedy depends on the use case:
• In case of reading possibly not completely written

Flash is intended, reaction depends on the usage
concept.

• In case of successfully written Flash is expected,
refrain from further Flash operations and investigate in
the root cause of the error.

R_FDL_ERR_INTERNAL

meaning A library internal error occurred, which could not happen in
case of normal application execution

reason

An error occurred that cannot be determined by the library,
such as caused by:
• FDL code or data sections destruction, wrong program

flow, Flash hardware modification
• Hardware defect

remedy Please refer to section 3.9 “Internal error“

The following figure shows the handling of ECC error registers during read command execution:

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 56
User Manual

The user shall take into consideration that the following registers are modified:

1. DFERSTC register is written to clear any errors in DFFSTERSTR

2. DFERRINT register is backed up and cleared

3. DFERRINT register is restored

4.5.5 R_FDL_CMD_PREPARE_ENV

The prepare environment command is used to copy used firmware code to the RAM. After copy process
is finished, the command will perform calculations and setting of FACI frequency. This command resets
the FCU and initializes the hardware registers to default values.

Note, however, that library’s internal functions will not be copied to RAM when the RH850/F1K, F1KM,
F1KH, D1M1A, D1M1-V2, or D1S1 is in use.

R_FDL_CMD_READ Start

Single bit error

Read ECC errors

Clear ECC errors
Backup ECC interrupt status
Disable ECC interrupt status

Read data from Data Flash into
destination buffer

Double bit error

Last read address ?

Clear ECC errors
Restore ECC interrupt status

Y

N

Save address that
provoked the ECC error

N

N

R_FDL_CMD_READ End

Y

Y

Save address that
provoked the ECC error

1

2

1

3

Figure 16: Handling of ECC error registers during read command

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 57
User Manual

Note:
The Code Flash might become inaccessible during command execution. Please refer to Chapter 6
Cautions for limitations that must be considered.

If the compatibility mode (refer to chapter 4.1 “Pre-compilation configuration” for details) is disabled, the
command shall be executed after the R_FDL_Init and before any other command.

If the compatibility mode (refer to chapter 4.1 “Pre-compilation configuration” for details) is enabled, the
command may not be executed since it is part of the R_FDL_Init function. In this case, if the command
is still executed then the library will return the status R_FDL_ERR_REJECTED.

Table 11: Request structure usage for prepare environment command

Structure member Value Description
command_enu R_FDL_CMD_PREPARE_ENV Prepare Flash environment
bufAddr_u32 - Not used

idx_u32 - Not used

cnt_u16 - Not used
accessType_enu - Not used

status_enu -

This is an output member. It
contains the status of the
operation during and after the
execution. Possible values are
described in the next table.

The following table describes all possible status returns:
Table 12: Prepare environment operation returned status

Status Background and Handling

R_FDL_BUSY

meaning Operation started successfully

reason No problems during execution

remedy
Call R_FDL_Handler until the Flash operation is
finished, reported by the request structure status return
value

R_FDL_OK(1)

meaning Operation finished successfully

reason No problems during execution
remedy Nothing

R_FDL_ERR_CONFIGURATION(1)

meaning Current command is rejected

reason

Wrong parameters have been passed to the FDL by
descriptor:

• frequency outside the allowed range
• FDL pool size value is higher than physical Data

Flash size

remedy Refrain from further Flash operations and investigate in
the root cause

R_FDL_ERR_REJECTED(2)
meaning Current command is rejected

reason Another operation is ongoing

RH850 Family - Data Flash Library, Type T01 User interface (API)

R01US0079ED0213 58
User Manual

Status Background and Handling

remedy Request again the command when the preceding
command has finished

R_FDL_ERR_PROTECTION

meaning Flash hardware operation protected

reason
Other device specific protection mechanisms (e.g.
security unit like ICU or FHVE protection mechanisms)
prevent Flash operations.

remedy Refrain from further Flash operations and investigate in
the root cause

R_FDL_ERR_INTERNAL(1)

meaning A library internal error occurred, which could not happen
in case of normal application execution

reason

An error occurred that cannot be determined by the
library, such as caused by:
• FDL code or data sections destruction, wrong

program flow, Flash hardware modification
• Hardware defect

remedy Please refer to section 3.9 “Internal error“
(1) R_FDL_Execute will never set this status code
(2) R_FDL_Handler will never set this status code

RH850 Family - Data Flash Library, Type T01 Library setup and usage

R01US0079ED0213 59
User Manual

Chapter 5 Library setup and usage

This chapter contains important information about how to put the FDL into operation and how to integrate
it into your application. Please read this chapter carefully — and also especially Chapter 6 “Cautions” —
in order to avoid problems and malfunction of the library. Before integrating the library into your project,
however, please make sure that you have read and understood how the FDL works and which basic
concepts are used (see Chapter 2 “Architecture” and Chapter 3 “Functional specifications”).

5.1 Obtaining the library

The FDL is provided by means of an installer via the Renesas homepage at

http://www.renesas.eu/update

Please follow the instructions of the installer carefully. Please ensure to always work on the latest version
of the library.

5.2 File structure

The library is delivered as a complete compilable sample project which contains the FDL and in addition
an application sample to show the library implementation and usage in the target application.

The delivery package contains dedicated directories for the library, containing the source and the header
files.

5.2.1 Overview

The following picture contains the library and the application related files:

Figure 17: File structure of library and sample application

Libray

r_fdl_... .a/lib

FAL_...c

FAL_...c

r_fdl_... .c

Precompiled
Library

Source Code
Library

User

fdl_descriptor.c

FAL_...c

FAL_...c

main.c

Descriptors
Passed to the

library

Source Code
Application

r_fdl.h

fdl_cfg.h

Library Files – Fix, may not be touched by the user

Library pre-compile configuration (Only on souce code delivery) – File name fix, File content user configurable

Application (User) Code – Completely in the hand of the user

Library
Configuration

API declaration

fdl_descriptor.h

Library

Library Source Code

c

r_fdl_... .c

http://www.renesas.eu/update

RH850 Family - Data Flash Library, Type T01 Library setup and usage

R01US0079ED0213 60
User Manual

The library must be configured for compilation. The file fdl_cfg.h contains defines for that. As it is
included by the library source files, the file contents may be modified by the user, but the file name may
not.

These files reflect an example, how the library descriptor variable can be built up and passed to the
function R_FDL_Init for run-time configuration. The structure of the descriptor is defined in
r_fdl_types.h which needs to be included in the user application. The value definition should be done
in the file fdl_descriptor.h. The constant variable definition and value assignment should be done in
the file fdl_descriptor.c. If adding the files r_fdl_ descriptor.c/h to the application, only the
file fdl_descriptor.h needs to be adapted by the user, while fdl_descriptor.c may remain
unchanged. For usage please refer to chapter 4.2 “Run-time configuration”.

5.2.2 Delivery package directory structure and files

The following table contains all files installed by the library installer:

• Files in red belong to the build environment, controlling the compile, link and target build process

• Files in blue belong to the sample application

• Files in green are description files only

• Files in black belong to the FDL

Table 13: File structure of the FDL package

File Description
<installation_folder>/FDL
Release.txt Library package release notes

support.txt List of supported devices
<installation_folder>/FDL /<compiler>/<device_name>
Build.bat Batch file to build the FDL sample application

Clean.bat Batch file to clean the FDL sample application
Makefile Make file that controls the build and clean process

<installation_folder>/FDL /<compiler>/<device_name>/Sample(1)
dr7f70xxxx_startup.850(3) <for GHS compiler>

Device and compiler specific start-up code cstart.asm <for REC compiler>

cstartup.s <for IAR compiler>

dr7f70xxxx.ld(3) <for GHS compiler>

Compiler specific linker directives
dr7f70xxxx.dir(3) <for REC compiler>

layout.icf
lnkr7f70xxxxxafp.icf(3)

<for IAR compiler>

dr7f70xxxx.dvf.h (3)
dr7f70xxxx_irq.h(3)

<for GHS compiler>
Definitions of IO registers, interrupt and exceptions
vector table, for RH850 devices.
<for GHS compiler>: Use dr7f70xxxx.dvf.h(3) or
dr7f70xxxx_0.h(3), and io_macros_v2.h.

<for REC compiler>: Use "boot.asm" or
"vecttbl.asm".

iodefine.h
boot.asm

<for REC compiler>

ior7f70xxxxxafp.h(2) (3) <for IAR compiler>

app.h

Sample application code fdlapp_control.c

fdlapp_main.c
target.h Initialization code for target microcontroller

RH850 Family - Data Flash Library, Type T01 Library setup and usage

R01US0079ED0213 61
User Manual

File Description
fdl_cfg.h FDL pre-compilation definitions
fdl_descriptor.c

FDL descriptor used in the sample application
fdl_descriptor.h

fdl_user.c User defined code for handling interrupts and library
pre-initialization fdl_user.h

<installation_folder>/FDL /<compiler>/FDL
r_fdl.h FDL API definitions
r_fdl_types.h User interface type definitions, error and status

codes

<installation_folder>/FDL /<compiler>/FDL/lib
r_typedefs.h C types used by FDL library

r_fdl_mem_map.h Section mapping definitions

r_fdl_env.h Internal FDL definitions
r_fdl_global.h Global variables and settings

r_fdl_hw_access.c

FDL main source code r_fdl_user_if.c
r_fdl_user_if_init.c
(1) File names are dependent on the chosen device. Shown filenames are valid for F1L devices.
(2) This file is not included in the library installer.
 Please obtain this file from IAR development environment.
 e.g.) C:\Program Files\IAR Systems\Embedded Workbench 7.3\rh850\inc
(3) xxxx is a number (e.g. dr7f701007).
(4) The make.exe file which is run from the batch files that come with the RH850 data flash library (FDL)

Type01 is an external tool, and requires downloading from a Web site that distributes make.exe. As
stated in Release.txt, GNU Make was used to confirm operation of the sample application. If you wish
to use a GNU Make environment, download make.exe from the Web site of GNU Make and install it.
Execute the batch files after that.

5.3 Library resources

5.3.1 Linker sections

The following sections are related to the Data Flash Access Library and need to be defined in the linker
file (please see sample linker directive file for an example):

Data sections:

• R_FDL_DATA - This section contains all FDL internal variables. It can be located either in internal
or external RAM.

Code sections:

• R_FDL_CONST - This section contains library internal constant data. It can be located anywhere in
the code flash.

• R_FDL_TEXT - FDL code section containing the library code. It can be located anywhere in the
code flash.

RAM code sections (optional, if R_FDL_EXE_INIT_CODE_ON_STACK is not defined, see 4.1 “Pre-
compilation configuration”):

RH850 Family - Data Flash Library, Type T01 Library setup and usage

R01US0079ED0213 62
User Manual

• R_FDL_CODERAM - FDL code to be executed from RAM when Code Flash is not available during
environment preparation. It can be located in any internal RAM. If initialization is done from stack
buffer this section is empty otherwise it has a size of 256 bytes.

5.3.2 Stack and data buffer

The FDL utilizes the same stack as specified in the user application. It is the developer’s duty to reserve
enough stack for the operation of both, user application and FDL. With source code library it is not
possible to give an exact value for stack consumption. However, an estimate value for the FDL library is:
384 bytes for GHS compiler and 416 bytes for Renesas compiler when stack is used for code RAM
execution during R_FDL_Init function. If reserved section R_FDL_CodeRam is used, then stack
consumption is reduced with 252 bytes.

The data buffer used by the FDL refers to the RAM area in which data is located that is to be written into
the data flash. This buffer needs to be allocated and managed by the user.

Note:
In order to allocate the stack and data buffer to a user-specified address, please utilize the link directives
of your framework.

5.4 MISRA compliance

The FDL code has been tested regarding MISRATM compliance.

The used tool is the QA CTM Source Code Analyzer which tests against the MISRA CTM 2004 standard
rules.

Note:
"MISRA" and “MISRA C” is a registered trademark of HORIBA MIRA Ltd, held on behalf of the MISRA
Consortium. “QA C” is a registered trademark of Programming Research Ltd.

All MISRA related rules have been enabled. Remaining findings are commented in the code while the
QAC checker machine is set to silent mode in the concerning code lines.

5.5 Sample application

It is very important to have theoretic background about the Data Flash and the FDL in order to
successfully implement the library into the user application. Therefore it is important to read this user
manual in advance. The best way, after initial reading of the user manual, will be testing the FDL
application sample.

After a first compile run, it will be worth playing around with the library in the debugger. By that you will get
a feeling for the source code files and the working mechanism of the library. After this exercise it might be
easier to understand and follow the recommendations and considerations of this document.

Note:
Before the first compile run, the compiler path must be configured in the “Makefile” of the sample
application: set the variable COMPILER_INSTALL_DIR to the correct compiler directory.

RH850 Family - Data Flash Library, Type T01 Library setup and usage

R01US0079ED0213 63
User Manual

5.6 Library configuration

Before using the Data Flash Access library, the library has to be configured and adapted to a certain
degree in order to fit the requirements of the user application. For information about configuration settings
and handling, please refer to chapter 4.2 “Run-time configuration”.

RH850 Family - Data Flash Library, Type T01 Library setup and usage

R01US0079ED0213 64
User Manual

5.7 Basic programming flow

The following flow chart shows the basic reprogramming flow for a certain Data Flash range.

Figure 18: Basic programming flow

Reprogramming start

FDL_Init

Reprogramming end
(Success)

R_FDL_Execute
(&req)

R_FDL_BUSY ==
req.status_enu

N

Y

R_FDL_Handler

User code
execution

Configure request structure
req… (R_FDL_CMD_ERASE)

R_FDL_Execute
(&req)

R_FDL_BUSY ==
req.status_enu

N

Y

R_FDL_Handler

User code
execution

Configure request structure
req… (R_FDL_CMD_WRITE)

All data written?

Y

N

R_FDL_OK ==
req.status_enu

Y

N

R_FDL_OK ==
req.status_enu

Y

N

Reprogramming end
(Error handler)

Reprogramming end
(Error handler)

Flash
Erase

flow

Flash
Write
flow

R_FDL_Execute
(&req)

Configure request structure req…
(R_FDL_CMD_PREPARE_ENV)

R_FDL_BUSY ==
req.status_enu

N

Y

R_FDL_Handler

User code
execution

R_FDL_OK ==
req.status_enu

N

Reprogramming end
(Error handler)

Flash
Init

flow

Y

RH850 Family - Data Flash Library, Type T01 Library setup and usage

R01US0079ED0213 65
User Manual

Error treatment of the FDL functions themselves is not detailed in the flow charts for simplification
reasons.

For details on enabling or disabling access to the Data Flash, refer to the user's manual for the hardware.
An example is given by the sample application, file sample_app_main.c, functions FDL_Open and
FDL_Close.

Note:
If the compatibility mode is enabled (refer to chapter 4.1 “Pre-compilation configuration” for details) then
execution of command R_FDL_CMD_PREPARE_ENV is not required in the programming flow.

5.8 R_FDL_Handler calls

Once initiated FDL operations need to be driven forward by successive handler calls. The frequency of
these handler calls does have an impact on the FDL operation performance and needs to be adapted to
the target application.

In the following, different approaches for calling the R_FDL_Handler are compared with respect to their
advantages and disadvantages:

• Calling R_FDL_Handler repeatedly after starting an operation execution: This approach is also
utilized in most of the code examples you can find in this manual. Typically realized in a loop waiting
for the operation status not to be busy anymore, this approach results in the best FDL operation
performance. However, the CPU is fully loaded and blocked for other tasks as long as the FDL
operation is being executed.

• Calling R_FDL_Handler in a timed task: By calling the R_FDL_Handler periodically, FDL
commands can be driven forward while other tasks are processed by the CPU. The period between
the status check calls can have significant impact on the FDL operation performance. Shorter calling
intervals result in better FDL performance, but also increase the CPU load by the FDL. Due to this
trade-off, a general advice for the calling interval cannot be given. It needs to be analysed and
tailored individually for each target application.

• Calling R_FDL_Handler in the idle task: If it is ensured that the idle task is called often enough, this
method might result in a good FDL performance, as the handler can be called continuously. However,
this approach is not deterministic in case of a high CPU load by the application itself.

Due to the individual requirements of each application, a general advice for selecting a strategy to call the
R_FDL_Handler cannot be given. Please also consider that mixtures of the above-mentioned
approaches can be meaningful depending on the target scenario.

Note:

When evaluating concepts for calling the R_FDL_Handler, please be aware that all FDL functions are
not re-entrant. That means it is not allowed to call an FDL function from interrupt service routines while
another FDL function is already running.

RH850 Family - Data Flash Library, Type T01 Cautions

R01US0079ED0213 66
User Manual

Chapter 6 Cautions

Before starting the development of an application using the FDL, please carefully read and understand
the following cautions:

1. CPU operating frequency configuration:

Correct frequency configuration is essential for Flash programming quality and stability. Wrong
configuration could lead to Flash operation fail.

The limits for CPU frequency are device dependent. Please consult the device user’s manual for
correct range.

If the CPU frequency is a fractional value, round up the value to the nearest integer.

If you are using an RH850/F1KM-S4 or RH850/F1KH-D8, the operating frequency of the flash
sequencer controlled by the FDL is 1/8 of the CPU operating frequency (CPU clock at up to 240
MHz) by default.

fPCLK = 1/8 fCPUCLK_H (with CKDIVMD= 1 and CPU operating frequency of up to 240 MHz)

When the option byte setting of the RH850/F1KM-S4 or RH850/F1KH-D8 is CKDIVMD=0 (up to
120 MHz), however, the operating frequency of the flash sequencer controlled by the FDL must be
changed to 1/4 of the CPU operating frequency.

fPCLK = 1/4 fCPUCLK_H (with CKDIVMD=0 so max. CPU operating frequency is 120 MHz)

If you are using V2.13 or a later version of the FDL, you can change the operating frequency of the
flash sequencer to support CPU operating frequencies up to 120 MHz.

To change the operating frequency of the flash sequencer, enable the line of source code that
halves the denominator of the frequency ratio within the R_FDL_FCUFct_SetFrequency function in
the “r_fdl_hw_access.c” file that comes with the FDL.

Specifically, change “#if 0” to “#if 1” on the line following the comments after the “Changing
CKDIVMD” keyword.

<Keyword>

 /**
 * SAMPLE: Changing CKDIVMD
 **/
 |

*V2.12 and earlier versions of the FDL do not support the CKDIVMD=0 (up to 120 MHz) setting.

2. CPU mode:

The initialization command R_FDL_CMD_PREPARE_ENV must be executed in CPU supervisor mode.
Please consult the device user’s manual for details.

3. Function re-entrancy:

All functions are not re-entrant. So, re-entrant calls of any FDL function must be avoided.

#if 1

 fDivider = fDivider / 2u;

#endif

#if 0

 fDivider = fDivider / 2u;

#endif

Change “#if 0” to “#if 1” in cases where you wish to use
the RH850/F1KM-S4 or RH850/F1KH-D8 with the
CKDIVMD=0 (up to 120 MHz) setting.

RH850 Family - Data Flash Library, Type T01 Cautions

R01US0079ED0213 67
User Manual

4. Task switch, context change, synchronization between functions:

Each function depends on global available information and is able to modify this information. In
order to avoid synchronization problems, it is necessary that at any time only one FDL or FCL
function is executed. So, it is not allowed to start an FDL or FCL function, then switch to another
task context and execute another FDL or FCL function while the last one has not finished.

 Entering power save (stand-by) mode:

Entering power save mode is not allowed at all during on-going Data Flash operations. Use
R_FDL_StandBy or wait until operations are no longer busy.

 Different power save (stand-by) modes:

Please do not enter a power save mode which resets/alters the Flash hardware or memory
required for library operation - e.g. stack, library data or library operation related data (such as
request variable). This need to be considered, because resuming the previous operation is not
possible otherwise. The library is not able to detect such failure. A possible power save mode is
HALT.
If entering other modes, the FDL need to be re-initialized by R_FDL_Init.

7. Initialization:

The FDL library initialization by means of calling R_FDL_Init must be performed before calling
most of the library functions. Exception is R_FDL_GetVersionString function that can be
called anytime.

 Critical section*1 handling:

If the compatibility mode is enabled (refer to chapter 4.1 “Pre-compilation configuration” for
details), the R_FDL_Init function temporarily disables Code Flash. If compatibility mode is
disabled, execution of command R_FDL_CMD_PREPARE_ENV *2 temporarily disables Code Flash.
During this time, since the Code Flash is not available, the library is executing code from internal
RAM (allocated space on stack). Please ensure that:

• Code execution is done from other locations (e.g. internal RAM).

• No access to Code Flash is allowed, e.g. by jump to interrupt/exception functions, direct
Code Flash Read/Execution from the CPU, DMA accesses to Code Flash. The user can
configure the provided callback macro functions in fdl_cfg.h. , in order to handle e.g.
interrupt & exception disable, DMA,... .The sample application provides examples on how
to disable and restore interrupts and exceptions using the callback routines.

*1: For macro definitions related to critical sections, refer to 1, Critical section.

*2: While compatibility mode is enabled (as described in 4, Compatibility mode), calling the R_FDL_Init
function temporarily disables the code flash memory.

9. Interrupted flash operations:

In case of Flash modification operation (Erase / Write) interruption, the electrical conditions of the
affected Flash range (Flash block on erase, Flash write unit on Write) get undefined. It is
impossible to give a statement on the read value after the interruption. Furthermore, the resulting
read value is not reliable; the electrical margin for the specified data retention may not be given.
In such case, erase and re-write the affected Flash block(s) to ensure data integrity and retention.

10. Write operation:

Before executing a write operation, please make sure the given address range is erased.

RH850 Family - Data Flash Library, Type T01 Cautions

R01US0079ED0213 68
User Manual

11. Reading Data Flash:

Data Flash on RH850 devices is based on a complementary read concept. Concept wise, reading
erased Data Flash will show undefined data with a tendency to the previously written data.
Additionally, most probably ECC errors are signalled.
In case of reading the Data Flash directly by the CPU/DMA (not using the R_FDL_CMD_READ
command), such ECC errors will result in ECC error interrupts/exceptions if the device is
configured accordingly.

DMA transfers from Data Flash are permitted, but need to be synchronized with the FDL.

During command execution Data Flash is not available. Any direct read during command
execution will result in invalid read data; therefore it must be avoided.

The command R_FDL_CMD_BLANK_CHECK can be utilized to avoid reading blank Flash areas.

 Dual operation / Parallel execution of FDL and FCL on a target device:

• Both Flash libraries share the same Flash programming environment as resource. Thus,
execution of any command must be synchronized on application level. It is not allowed to
execute FDL and FCL functions or commands at the same time.

• Cancel and suspend/resume operations are not allowed as the effect is not evaluated.

• Standby is allowed but both instances have to consider that wakeup is required before
continuing. Neither FDL nor FCL functions may be called before R_FDL_WakeUp execution.

13. Reusing the request command:

Do not change the content of the request structure while an FDL command is operating because
the library will not work correctly and/or data loss can occur. Multiple requests, each using
different request structures, do not have these adverse effects.

 Workload and supervision:

It is recommended to supervise the FDL operations and functions execution by timeout
supervision (e.g. timer, counter, watchdog, etc.). In addition, the user of the library should
evaluate the time necessary to perform a certain operation and divide long lasting operations to
meet real-time system specifications.

 Suspend and stand-by restrictions:

Suspend restrictions:

• Erase operation ► suspend ► Erase operation – is not possible

• Write operation ► suspend ► Erase/Write operation – is not possible

• Any operation ► suspend ► other operation ► suspend – is not possible

Suspend permissions:

• Blank Check operation ► suspend ► Erase/Write/Blank Check/Read operation – is possible

• Erase operation ► suspend ► Write/Blank Check/Read operation – is possible

• Write operation ► suspend ► Blank Check/Read – is possible

New Flash operations after suspending a Flash operation are only allowed on Flash areas not
affected by the suspended operation.

Standby restrictions:

• Any operation ► stand-by ► only wake-up is possible

It is recommended to avoid nesting as much as possible.

RH850 Family - Data Flash Library, Type T01 Cautions

R01US0079ED0213 69
User Manual

 Stand-by:

Do not continue FDL functions execution or start execution of any other function than
R_FDL_GetVersionString, R_FDL_WakeUp or R_FDL_Init when the library is in stand-by
mode.

 Data alignment:

Data Flash blocks are aligned to 64 bytes and Data Flash words are aligned to 4 bytes.

While the source buffer of the command R_FDL_CMD_WRITE can be unaligned, the destination
buffer of the command R_FDL_CMD_READ must be 32-bit aligned.

 Pre-compilation options:

The user must not use any pre-compilation configuration options that are not documented in this
manual.

 Supported devices:

Please refer to the installer readme file to understand which device families are supported by the
FDL.

 Data Flash – Secure Erase:

Based on the complementary read, the data flash has a tendency to show the previously written
data even after a successful erase operation. To destroy the data in a secure way, the following
flow is recommended:

• Erase the intended area

• Write a fixed pattern e.g. 0x00000000 to the complete area

• Erase the same area again

Using this flow, it is ensured that the read of the erased area will have a tendency towards the
pattern, in the above example towards 0x00000000, and not to the previous, meaningful data.

 Cancel suspended operation:

If a cancel request is accepted, during an on-going write, erase, or blank check operation and a
previous operation is already suspended, then both operations will be cancelled.

 Only one library instance:

More than one FDL instance can exist on a single device but only one library instance shall be
executed at any given time.

 Access protection check violation:

The library performs access protection checks before starting any Flash operation. On violation of
this check the library returns R_FDL_ERR_INTERNAL and remains in an undefined state. Re-
initialization of the library is required.

The conditions described above will not occur in case of correct library handling, but only in case
of library misuse.

 Protection error during resume request handling:

During a resume request handling for a suspended operation, the error
R_FDL_ERR_PROTECTION may appear. In this case, refrain from further Flash operations and
investigate in the root cause (ongoing Data or Code Flash operation) and re-initialize the library in
order to continue the reprogramming flow.

The conditions described above will not occur in case of correct library handling, but only in case
of library misuse.

RH850 Family - Data Flash Library, Type T01 Cautions

R01US0079ED0213 70
User Manual

 Areas to be accessed when a pre-compilation definition is specified:

Access by the FDL is to specific areas in accord with the pre-compilation definition setting during
initialization processing.

When you execute the R_FDL_CMD_PREPARE_ENV command of R_FDL_Execute, permit reading
from the following areas.

Pre-compilation definition
supported by FDL V2.12 and later

versions
Areas to be accessed

R_FDL_NO_BFA_SWITCH 0x01030000 to 0x0103029F

R_FDL_MIRROR_FCU_COPY 0x01030000 to 0x0103029F, 0x01037000 to 0x01037FFF

R_FDL_NO_FCU_COPY 0x00010000 to 0x0001029F

None 0x00010000 to 0x0001029F, 0x00017000 to 0x00017FFF

RH850 Family - Data Flash Library, Type T01 Revision History

R01US0079ED0213 71
User Manual

Revision History

Chapter Page Description

Rev. 1.03:
Initial released document version

3.1
3.5
3.7
4.1
4.2
4.3.2
4.3.3
4.3.4
4.3.6
4.4.1.1
4.4.2.1
4.4.3.1
4.4.3.2
4.4.3.5
4.5.1
4.5.2
4.5.3
4.5.5
5.2.2
5.7
6

14
19
22
25
26
27
28
29
30
32
34
37
39
43
46
48
50
55
59
62
65

Rev. 2.00:
Added cancel request and prepare environment command
Removed immediate resume figure
Added cancel mechanism handling
Removed Device family and added compatibility mode
Removed authentication ID
Removed authentication ID
Added R_FDL_CMD_PREPARE_ENV
Added R_FDL_CMD_PREPARE_ENV
Added R_FDL_CANCELLED status
Updated description
Added example for R_FDL_CMD_PREPARE_ENV
Updated return values
Updated return values
Added new interface function: R_FDL_CancelRequest
Added R_FDL_CANCELLED status
Added R_FDL_CANCELLED status
Added R_FDL_CANCELLED status
Added new command: R_FDL_CMD_PREPARE_ENV
Added IAR related files and r_fdl_user_if_init.c
Updated reprogramming flow figure
Added new cautions

All
All
All
-
-
-
-
-
1
2.1
2.3
3.5
3.8,3.9
4.1
4.2
4.3.3

1
2
-
-
3
6,7
8
9
14
21
22,23
24
27

Rev. 2.11:
Minor description corrections and wording update
Document formatting update
Updated cross-references
Updated title and installer name
Updated Notice text
Deleted Regional information page
Deleted Preface page
Updated How to use this document page
Updated location specific text and Flash Granularity
Updated 2.1 Layered architecture
Updated 2.3 Architecture related notes
Updated 3.5 Suspend / Resume mechanism
Added new chapter 3.8 and 3.9
Added new static configuration options
Updated 4.2 Run-time configuration
Updated Member /Value for 4.3.3 r_fdl_request_t

RH850 Family - Data Flash Library, Type T01 Revision History

R01US0079ED0213 72
User Manual

Chapter Page Description
4.4.2.2
4.4.3.3
4.5.1
4.5.2
4.5.3

4.5.4

4.5.5
5.2.1
5.2.2
5.3.1
5.3.2
6

35
39
47
49
49
51
52
53,54

57
58
59,60
60
61
64-66

Updated Preconditions for 4.4.2.2 R_FDL_Handler
Updated 4.4.3.3 R_FDL_StandBy
Updated Table 4 for R_FDL_ERR_ERASE and R_FDL_ERR_INTERNAL
Updated Table 6 for R_FDL_ERR_WRITE and R_FDL_ERR_INTERNAL
Added new note to R_FDL_BLANKCHECK command
Updated Table 8 for R_FDL_ERR_BLANKCHECK and R_FDL_ERR_INTERNAL
Updated 4.5.4 R_FDL_CMD_READ
Updated Table 10 for R_FDL_ERR_PARAMETER and R_FDL_ERR_ECC_SED
and R_FDL_ERR_ECC_DED and R_FDL_ERR_INTERNAL

Updated Table 12 for R_FDL_ERR_INTERNAL
Updated Figure 17: File structure of library and sample application
Updated Table 13: File structure of the FDL package
Updated sections
Updated stack resources
Updated cautions

4.1
4.3
4.4.3.5
4.5.5
5.2.2
6

22,23
25
42
56
59,60
64,67

Rev. 2.12:
Updated 4.1 Pre-compile configuration
Updated 4.3 Data Types
Added R_FDL_ERR_INTERNAL to Return value
Updated 4.5.5 R_FDL_CMD_PREPARE_ENV
Updated Table 13: File structure of the FDL package
Updated No.1 of Chapter 6 Cautions and added No.25

3.6
4.1
4.3
4.3.1
4.4.3.3
4.4.3.4
4.5.5
5.4
6

17
23
25
26
41
42
56
62
66,67

Rev. 2.13:
Updated 3.6 Stand-by and Wake-up functionality
Updated note for 4.1 Pre-compilation configuration
Updated 4.3 Data types
Updated 4.3.1 Library specific simple type definitions
Updated Example of 4.4.3.3 R_FDL_StandBy
Updated 4.4.3.4 R_FDL_WakeUp
Updated 4.5.5 R_FDL_CMD_PREPARE_ENV
Updated 5.4 MISRA compliance
Updated No.1 and No.8 of Chapter 6 Cautions

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2019 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

http://www.renesas.com
http://www.renesas.com/

RH850 Family User’s Manual: Data Flash Library Type T01

Publication Date: Rev.1.00 Nov 11, 2013
 Rev.2.13 Jun 10, 2019

Published by: Renesas Electronics Corporation

R01US0079ED0213

Data Flash Library Type T01

	Cover
	Notice
	How to use this document
	Table of Contents
	Chapter 1 Introduction
	Chapter 2 Architecture
	2.1 Layered architecture
	2.2 Pool definitions
	2.3 Architecture related notes

	Chapter 3 Functional specifications
	3.1 Supported functions, commands and Flash operations
	3.2 Request-response oriented dialog
	3.3 Background operation
	3.4 Flash access protection
	3.5 Suspend / Resume mechanism
	3.6 Stand-by and Wake-up functionality
	3.7 Cancel mechanism
	3.8 Loop supervision
	3.9 Internal error

	Chapter 4 User interface (API)
	4.1 Pre-compilation configuration
	4.2 Run-time configuration
	4.3 Data types
	4.3.1 Library specific simple type definitions
	4.3.2 r_fdl_descriptor_t
	4.3.3 r_fdl_request_t
	4.3.4 r_fdl_command_t
	4.3.5 r_fdl_accessType_t
	4.3.6 r_fdl_status_t

	4.4 Functions
	4.4.1 Initialization
	4.4.1.1 R_FDL_Init

	4.4.2 Flash operations
	4.4.2.1 R_FDL_Execute
	4.4.2.2 R_FDL_Handler

	4.4.3 Operation control
	4.4.3.1 R_FDL_SuspendRequest
	4.4.3.2 R_FDL_ResumeRequest
	4.4.3.3 R_FDL_StandBy
	4.4.3.4 R_FDL_WakeUp
	4.4.3.5 R_FDL_CancelRequest

	4.4.4 Administration
	4.4.4.1 R_FDL_GetVersionString

	4.5 Commands
	4.5.1 R_FDL_CMD_ERASE
	4.5.2 R_FDL_CMD_WRITE
	4.5.3 R_FDL_CMD_BLANKCHECK
	4.5.4 R_FDL_CMD_READ
	4.5.5 R_FDL_CMD_PREPARE_ENV

	Chapter 5 Library setup and usage
	5.1 Obtaining the library
	5.2 File structure
	5.2.1 Overview
	5.2.2 Delivery package directory structure and files

	5.3 Library resources
	5.3.1 Linker sections
	5.3.2 Stack and data buffer

	5.4 MISRA compliance
	5.5 Sample application
	5.6 Library configuration
	5.7 Basic programming flow
	5.8 R_FDL_Handler calls

	Chapter 6 Cautions
	Revision History
	Sales Office
	Colophon
	Back Cover

