

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

APPLICATION NOTE

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 1 of 90

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

Introduction
You can use the I2C bus interface of the H8/3664 to reprogram the contents of the on-chip flash memory.

Target Device
H8/300H Tiny Series H8/3664 CPU

Contents

1. Specifications.. 2

2. Detailed Specifications.. 3

3. Description of Software... 11

4. Hierarchy of Modules .. 18

5. Flowcharts... 19

6. Description of Software... 38

7. Hierarchy of Modules .. 44

8. Flowcharts... 45

9. Header File List ... 64

10. Program Listing... 66

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 2 of 90

1. Specifications
• The I2C bus of the H8/3664 is used to reprogram the contents of the on-chip flash memory. The transfer source

(H8/3664) sends the contents of a user program in its on-chip flash memory (addresses H'1000 to H'7FFF) in blocks
of 128 + 2 (CRC) bytes over the I2C bus when the transmission switch is turned on. The transfer destination
(H8/3664) erases the data from addresses H'1000 to H'7FFF in its on-chip flash memory when the reception switch
is turned on . The destination sequentially programs the data sent from the source over the I2C bus from address
H'1000 in its on-chip flash memory.

• If the transmission switch and the reception switch are not turned on within the specified length of time (about five
seconds), the user program is executed. The sample user program in this task lights an LED.

• In this task, one master device (H8/3664) and one slave device (H8/3664) are connected to the I2C bus. Figure 1
shows an example of connecting two H8/3664 microcomputers.

• The address of the slave H8/3664 is H'1000000 and the clock frequency for transfer is 400 kHz.
• The source H8/3664 sends CRC values with the data and the destination H8/3664 performs the same CRC error

checking procedure to check for an error.

SCL SCL

SDA SDA

VCC VCCVCC VCC

P54P152
Reception

switch

1
Transmission

switch

Destination
(H8/3664F master

device)

Source
(H8/3664F slave

device)

User program
(H'1000 to H'7FFF)

Flash memory Flash memory

Data

Reprogram

Output clock signal

2 kΩ
(example)

Figure 1 Reprogramming the On-Chip Flash Memory Using the I2C Bus

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 3 of 90

2. Detailed Specifications
The basic formats for transmission requests and data when using the I2C bus are shown in Figure 2.

S SLA A CMDR/W

1 7 1 1 18 1

1 1

PA

S SLA A DATA(1) DATA(131)A A

1 7 1 1 1 18 1

1 1 1

P

1

1

A DATA(2)

8 8

Transmission request
(from the destination to the source)

Data (from the source to the destination)

Number of
transmission bits
Number of
transmission frames

Number of
transmission bits
Number of
transmission frames

Legend:
S: Start condition
SLA: MPU slave address
R/W: Direction of transmission
A: Acknowledge
CMD: Transmission request
 command (H'A5)
DATA: Transmission data (flash

memory data)
P: Stop condition

R/W

Figure 2 I2C Bus Interface Format

2.1 Description of the Registers
The following registers are specifically for the on-chip flash memory:

• Flash memory control register 1 (FLMCR1)
• Flash memory control register 2 (FLMCR2)
• Block specification register (EBR1)
• Flash memory power control register (FLPWCR)
• Flash memory enable register (FENR)

• Flash memory control register 1 (FLMCR1)
FLMCR1 sets flash memory to the program mode, program verification mode, erase mode, or erase verification
mode.

Bit Bit name Initial value R/W Description
7 ― 0 ― Reserved. 0 is already read.
6 SWE 0 R/W Sets the software programming enable mode.

When you set this bit to 1, you can program or erase the flash
memory. When this bit is 0, you cannot set the other bits of
this register and the bits of EBR1.

5 ESU 0 R/W Sets the erase preparation mode.
When you set this bit to 1, the flash memory enters the erase
preparation mode. When you clear this bit, the preparation
mode is cancelled. Set this bit to 1 before you set the E bit of
FLMCR1 to 1.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 4 of 90

Bit Bit name Initial value R/W Description
4 PSU 0 R/W Sets the program preparation mode.

When you set this bit to 1, the flash memory enters the
programming preparation mode. When you clear this bit, the
preparation state is cancelled. Set this bit before you set the P
bit of FLMCR1.

3 EV 0 R/W Sets the erase verification mode.
When you set this bit to 1, the flash memory enters the erase
verification mode. When you clear this bit, the erase
verification mode is cancelled.

2 PV 0 R/W Sets the programming verification mode.
When you set this bit to 1, the flash memory enters the
programming verification mode. When you clear this bit, the
programming verification mode is cancelled.

1 E 0 R/W Sets the erase mode.
When you set this bit to 1 when SWE is 1 and ESU is 1, the
flash memory enters the erase mode. When you clear this bit,
the erase mode is cancelled.

0 P 0 R/W Sets the programming mode.
When you set this bit to 1, when SWE is 1 and PSU is 1, the
flash memory enters the programming mode. When you clear
this bit, the write mode is cancelled.

• Flash memory control register 2 (FLMCR2)
FLMCR2 indicates the status of flash memory during programming or erasure. FLMCR2 is a read-only register. Do
not write anything in this register.

Bit Bit name Initial value R/W Description
7 FLER 0 R This bit is set when an error is detected while programming or

erasing the flash memory.
6 to 0 ― 0 ― Reserved. 0 is always read.

• Block specification register 1 (EBR1)
This register specifies the blocks to be erased in the flash memory. When the SWE bit of FLMCR1 is cleared to 0,
EBR1 is initialized to H'00. Do not set two or more bits of this register to 1 simultaneously. If you do, EBR1 is
automatically cleared to 0.

Bit Bit name Initial value R/W Description
7 to 5 ― 0 ― Reserved. 0 is always read.
4 EB4 0 R/W 28 kbytes of area between H'1000 and H'7FFF are erased

when this bit is set to 1.
3 EB3 0 R/W One kbyte of area between H'0C00 and H'0FFF is erased

when this bit is set to 1.
2 EB2 0 R/W One kbyte of area between H'0800 and H'0BFF is erased

when this bit is set to 1.
1 EB1 0 R/W One kbyte of area between H'0400 and H'07FF is erased

when this bit is set to 1.
0 EB0 0 R/W One kbyte of area between H'0000 and H'03FF is erased

when this bit is set to 1.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 5 of 90

• Flash memory power control register (FLPWCR)
Use this register to determine whether to set the flash memory to the low power consumption mode when the
microcomputer enters the sub-active mode. Although some power circuits stop in the low power consumption
mode, data can be read in the sub-active mode.

Bit Bit name Initial value R/W Description
7 PDWND 0 R/W Disables or enables power down mode

When the microcomputer enters the sub-active mode when
this bit is cleared to 0, the flash memory enters the low power
consumption mode. When the microcomputer enters the sub-
active mode when this bit is set to 1, the flash memory
operates in the normal mode.

6 to 0 ― 0 ― Reserved. 0 is always read.

• Flash memory enable register (FENR)
FENR controls the CPU's access to the control registers of flash memory including FLMCR1, FLMCR2, EBR1, and
FLPWCR.

Bit Bit name Initial value R/W Description
7 FLSHE 0 R/W Enables or disables access to flash memory control registers.

When you set this bit to 1, the CPU can access the flash
memory control registers. When you clear this bit to 0, the
CPU cannot access the control registers.

6 to 0 ― 0 ― Reserved. 0 is always read.

2.2 Programming and Erasing the Flash Memory in the User Mode
In the user mode, you can erase and reprogram the desired blocks in the on-chip flash memory on-board by branching
to the user-prepared erase/programming program. To do so, you need to set the conditions for branching to the user-
prepared program and prepare the methods for sending new data to the flash memory. In some cases, you need to
externally load an erase/programming program or a program for calling the erase/programming program in the flash
memory beforehand. Since the flash memory cannot be read while programming or erase operation is underway, you
need to transfer the erase/programming program to the on-chip RAM and execute it from there like in the boot mode.
When you create an erase/programming program, you need to follow the instructions in section 2.3,
Erase/Programming Program.

2.3 Erase/Programming Program
The CPU programs or erases the flash memory using software. Flash memory enters the programming mode, program
verification mode, erase mode, or erase verification mode as specified in FLMCR1. The write control program in the
boot mode or the erase/programming program in the user mode uses these modes to perform programming or erasing.
To program the flash memory, see section 2.4, Procedure for Programming and Program Verification. For erasing the
flash memory, see section 2.5, Procedure for Erase and Erase Verification.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 6 of 90

2.4 Procedure for Programming and Program Verification
1. You can program new data in the blocks in which the data are already erased. Do not overwrite new data in the

areas that contain data.
2. You can program in 128-byte blocks at a time. Even if you want to program data of less than 128 bytes, you need to

transfer 128 bytes of data to flash memory. Set the data to H'FF for unnecessary addresses.
3. Secure 128 bytes of programming data area, 128 bytes of reprogramming data area, and 128 bytes of additional

programming data area in RAM. Refer to Table 1 for data programming operation and Table 2 for the operation of
reprogramming additional data.

4. You need to consecutively transfer blocks of data in units of 128 bytes from the reprogramming data area or the
additional programming data area in the RAM to flash memory. The program address and the 128-byte data are
latched in the flash memory. Set the lower eight bits of the start address of the destination flash memory to H'00 or
H'80.

5. The programming operation takes place during the length of time indicated by the P bit. For programming time, see
Table 3.

6. The watchdog timer must be set to prevent excessive programming caused by a program runaway. etc. Set the
overflow cycle to about 6.6 ms.

7. As dummy write to the verification address, write one byte of H'FF in the address with lower two bits set to b'00.
You can read the verification data as a longword from the address of dummy write.
The number of repeating the programming and program verification in sequence for the same bit must be less
than 1000.

Table 1 Operation for Reprogramming Data

Program data Verification data Reprogram-
ming data

Remarks

0 0 1 Programming completion bit
0 1 0 Reprogramming bit
1 0 1 —
1 1 1 The applicable flash memory area remains

erased.

Table 2 Operation for Additional Programming Data

Reprogram-
ming data

Verification
data

Additional
programming
data

Remarks

0 0 1 Additional programming bit.
0 1 0 Additional programming is not performed.
1 0 1 Additional programming is not performed.
1 1 1 Additional programming is not performed.

Table 3 Programming Time

Number of
Programs
(n)

Programming
time

Additional
programming
time

Remarks

1 to 6 30 10
7 to 1,000 200 ―

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 7 of 90

2.5 Procedure for Erase and Erase Verification
1. You do not need to perform preprogram (clear all the data to 0 to be erased) before you erase the flash memory.
2. You can erase data in blocks. Use block specification register 1 (EBR1) to select one block to be erased. You can

only erase one block at a time even if you want to erase multiple blocks.
3. The length of erase time is set in the E bit.
4. The watchdog timer is set to prevent excessive programming caused by a program runaway, etc. Set the overflow

cycle to about 19.8 ms.
5. As a dummy write to the verification address, write one byte of H'FF in the address with lower two bits set to b'00.

You can read the verification data as a longword from the address of dummy write.
If the read data is not erased, set the erase mode again and repeat the erase and erase verification sequence. The
number of repeating sequence must be less than 1000 times.

2.6 Interrupts during Programming or Erasing Flash Memory
Disable all interrupts including NMIs while writing or erasing flash memory or executing the boot program for the
following reasons:

1. If an interrupt occurs during a programming or erase operation, the operation is not guaranteed to follow the normal
programming/erase algorithm.

2. If an interrupt exception is started before vector addresses are written or during a programming or erase operation,
the CPU operates abnormally since it cannot fetch interrupt vectors correctly.

3. If an interrupt occurs during the execution of the boot program, the boot mode sequence cannot be executed
normally.

2.7 Communications Protocol
This section describes the communications protocol for reprogramming the contents of the on-chip flash memory.
Figure 3 shows the communications protocol. The master (destination) sends a data transmission request. The slave
(source) receives the data transmission request and sends 128-byte data. This sequence is repeated for H'1000 to
H'107F (first transmission), for H'1080 to H'10FF (second transmission), and for up to H'7F80 to H'7FFF (224th
transmission). If a communication error (such as CRC mismatch) occurs, the communication and programming
processing is terminated. You can return the master and the slave to the initial state by using RESET when the
procedure ends normally or if a communication error occurs.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 8 of 90

Destination (master) Source (slave)

Turn on the reception switch.

Turn on the transmission switch.

Copy the I2C
communication and flash

memory erase/write
programs in RAM.

Erase H'1000 to
H'7FFF in flash

memory.

1st transmission data
(contents of flash memory:

H'1000 to H'107F)

2nd transmission data
(contents of internal flash

memory: H'1080 to H'10FF)

Write H'1000 to
H'107F in flash

memory.

Write H'1080 to
H'10FF in flash

memory.

Write H'7F80 to
H'7FFF in flash

memory.

CRC

CRC

CRC

End programming to the
flash memory.

Data transmission request
(1 byte)

Data transmission request
(1 byte)

2nd data transmission
(128 bytes + CRC)

Data transmission request
(1 byte)

224th data transmission
(128 bytes + CRC)

1st data transmission
(128 bytes + CRC)

Omitted

224th transmission data
(contents of internal flash

memory: H'7F80 to H'7FFF)

End data transmission.

Figure 3 Communications Protocol (Procedure)

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 9 of 90

2.8 Programs to be used and memory map
This section describes the programs that are used to program the contents of the flash memory. Addresses H'0400 to
H'0BFF in the flash memory contain the I2C communications program and the flash memory erase/programming
program. In the source microcomputer, the programs are executed at these locations. In the destination
microcomputer, the I2C communications program and the flash memory erase/programming program are copied to
RAM (H'F780 to H'FC7F) and executed in RAM.
User interrupt vectors: The vector table is stored between H'1000 and H'10FF to correspond to the changes of user

interrupt processing.
Exclusive use of RAM: Most of the RAM areas are locked when you start programming the contents of the flash

memory. When the contents of the flash memory are not being programmed, the user
programs can freely use the RAM areas.

Use of the E10T: When you use the E10T emulator to operate a non-H8/3664F devices as an H8/3664F emulator
and program the I2C communications program and the flash memory erase/programming
program in its flash memory, Addresses from H'7000 to H'7FFF are used as the emulator work
area as shown in the figure below. In this task, this work area used by the emulator is also
programmed.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 10 of 90

H'0000

H'0400

H'0800

H'0C00

H'1000
H'1100

H'7000

H'7FFF

H'F780
H'F880
H'F980
H'FA80
H'FB80
H'FC80
H'FD80
H'FE80
H'FF80
H'FFFF

Flash
memory
(EB0)

Flash
memory
(EB1)

Flash
memory
(EB2)

Flash
memory
(EB3)

Flash
memory
(EB4)

RAM

Vector table

Main module

Free area

User vector table

User program area

Stack area
Internal registers

Flash memory write
work area

Emulator work area
(when E10T is used)

I2C (master)
communications program

and flash memory
erase/write program

I2C (slave)
communications program

I2C (master)
communications program

and flash memory
erase/write program

Copy the programs to RAM.

Areas to be erased
or written in this

document (H'1000
to H'7FFF)

Figure 4 Programs Used (Memory Map)

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 11 of 90

3. Description of Software

3.1 Modules
• Table 4 is a list of modules used (parameters and return values).

Table 4 Modules

Module (function) name Parameter Return value Description
INIT (assembly language) None None Sets the stack pointer (sets R7

to H'FF80), sets CCR (disables
interrupts), and jumps to the
main module.

main None None Main module
flprg_cpy None None Copies the data between

0x0400 and 0x08FF to the area
between 0xF780 and 0xFC7F.

jump_prog (assembly
language)

R0 (address of the jump
destination)

None Jumps to R0.

wait limit (wait length) None Executes a wait statement.
_SL_TRANS (assembly
language)

None None Enables transmission and
reception of data in the slave
mode.

SL_RECV_DATA
(assembly language)

R4 (address for storing the
received data)
R5 (number of received
bytes)

R0L (result of
reception)

Receives data in the slave
mode.

SL_SEND_DATA
(assembly language)

R4 (address for storing the
data to be sent)
R5 (number of sent bytes)

R0L (result of
transmission)

Sends data in the slave mode.

CAL_CRC16 (assembly
language)

R4 (address for storing the
received data)

R0 (result of
CRC)

Performs CRC.

_IIC_TEST (assembly
language)

None None Erases or writes flash memory.

FL_ER_BLK (assembly
language)

R0H (specifies the block to
be erased)

R0L (result of
erase)

Erases data from flash memory.

BLK1_ERASE (assembly
language)

ER6 (address of the
FLMCR register)
ER5 (address of the EBR
register)

R0L (result of
erase)

Erases the target block in flash
memory.

FERASEVF (assembly
language)

ER6 (address of the
FLMCR register)

R0L (result of
verification)

Verifies the erase in flash
memory.

FERASE (assembly
language)

ER6 (address of the
FLMCR register)
ER5 (address of the EBR
register)

None Erases the target block in flash
memory.

FL_WAIT (assembly
language)

R0 (wait length) None Executes a wait statement.

MA_SEND_DATA
(assembly language)

R4 (address for storing the
data to be sent)
R5 (number of sent bytes)

R0L (result of
transmission)

Sends data in the master mode.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 12 of 90

Module (function) name Parameter Return value Description
MA_RECV_DATA
(assembly language)

R4 (address for storing the
received data)
R5 (number of received
bytes)

R0L (result of
reception)

Receives data in the master
mode.

FWRITE128 (assembly
language)

None R0L (result of
write)

Writes desired 128 bytes in
flash memory.

FWRITEVF (assembly
language)

ER6 (address of the
FLMCR register)

R0L (result of
verification)

Verifies the write in flash
memory.

FWRITE (assembly
language)

ER6 (address of the
FLMCR register)
ER2 (write start address)
ER3 (time set by the P bit)

None Writes flash memory.

Note: To reference the modules written in assembly language in a C program, delete the beginning
underscore (_). For example, if you want to reference the _SL_TRNS module written in assembly
language in a C program, specify "SL_TRNS".

3.2 Files
• Table 5 is a list of files used and the function of each file.

Table 5 Files

File name Description
dbdct.c Initializes the uninitialized areas.
u_vect.src Defines the register for interrupts.
fl_equ.h Defines registers and bits, and sets constants.
iic_ram.h Sets the RAM areas for erase and write processing.
init.src Performs the startup processing and jumps to the main module.
FLWR.c Starts the main module, copies data, jumps to the specified addresses, and executes wait

statements.
IIC_SL.src Sends and receives data in the slave mode.
IIC_MA.src Sends and receives data in the master mode and performs CRC.
fl_erwr.src Erases and programs flash memory.
u_vect.src Generates interrupts.
LED.c User program

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 13 of 90

• Table 6 is a list of constants used.

Table 6 Constants

Defined name Value Description
WLOOP1 1*MHZ/400

(= 2)
Number of times a wait statement is executed (wait time: 1 µs)

WLOOP2 2*MHZ/400
(= 5)

Number of times a wait statement is executed (wait time: 2 µs)

WLOOP4 4*MHZ/400
(= 11)

Number of times a wait statement is executed (wait time: 4 µs)

WLOOP5 5*MHZ/400
(= 13)

Number of times a wait statement is executed (wait time: 5 µs)

WLOOP10 10*MHZ/400
(= 27)

Number of times a wait statement is executed(wait time: 10 µs)

WLOOP20 20*MHZ/400
(= 55)

Number of times a wait statement is executed (wait time: 20 µs)

WLOOP50 50*MHZ/400
(= 137)

Number of times a wait statement is executed (wait time: 50 µs)

WLOOP100 100*MHZ/400
(= 275)

Number of times a wait statement is executed (wait time: 100 µs)

TIME10 10*MHZ/400
(= 27)

Number of times a wait statement is executed (wait time: 10 µs)

TIME30 30*MHZ/400
(= 82)

Number of times a wait statement is executed (wait time: 20 µs)

TIME200 200*MHZ/400
(= 550)

Number of times a wait statement is executed (wait time: 200 µs)

TIME10000 10000*MHZ/400
(= 27500)

Number of times a wait statement is executed (wait time: 10 ms)

MAXWT 1000 Maximum number of flash memory writes
MAXET 100 Maximum number of flash memory erases
OW_COUNT 6 Number of rewrites

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 14 of 90

• Table 7 shows how RAM is used in this task.

Table 7 RAM

Label Description Address Used by:
W_BUF Write data buffer (128 bytes) H'FC80 _IIC_TEST,_SL_TRNS,

FWRITE128,FWRITEVF
BUFF Rewrite data buffer (128 bytes) H'FD00 FWRITE128,FWRITEVF
OWBUFF Additional write data buffer (128 bytes) H'FD80 _SL_TRNS,FWRITE128,

FWRITEVF
COUNT Number of writes/erases H'FE00 FWRITE128,BLK_ERASE
W_ADR Write start address H'FE02 _IIC_TEST,FWRITEVF,

FWRITE
W_ADR_ED Write end address H'FE04 _IIC_TEST
ET_COUNT Maximum number of flash memory erases H'FE08 FL_ER_BLK,BLK1_ERASE
WT_COUNT Maximum number of flash memory writes H'FE0A FWRITE128,_IIC_TEST
EVF_ST Erase start address H'FE0C FL_ER_BLK,FERASEVF
EVF_ED Erase end address H'FE0E FL_ER_BLK,FERASEVF
BLK_NO Block to be erased H'FE10 FL_ER_BLK,FERASE
VF_RET Result of write verification H'FE11 FWRITE128
IIC_SBUF Address for storing the data to be sent H'FE14 _IIC_TEST

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 15 of 90

• Table 8 shows the registers in RAM used.

Table 8 Registers in RAM

Register Description Available
action

Set value

ICDR Stores the data to be sent or received data. Store and
reference

―

MLS Sets data transmission beginning with the MSB. Set 0
WAIT Sets continuous transmission of data and

acknowledge bits.
Set 0

CKS2
to
CKS0

Sets the transmission clock frequency to 400 kHz
when these bits are set together with the IICX bit of
STCR.

Set CKS2 = 0
CSK1 = 0
CSK0 = 1

ICMR

BC2
to
BC0

Sets the number of bits in the data to be transferred
next in the I2C bus format to 9 bits per frame.

Set BC2 = 0
BC1 = 0
BC0 = 0

ICE Controls the access to ICMR, ICDR, SAR and SARX
registers, and selects whether to activate the I2C bus
(SCL/SDA pins are used as ports) or deactivate the
I2C bus (SCL/SDA pins are driven by the bus).

Set 0/1

IEIC Disables interrupt requests over the I2C bus. Set 0/1
MST Uses the I2C bus in the master mode. Set 0/1
TRS Uses the I2C bus in the transmission mode. Set 0/1
ACKE Cancels consecutive transmission when the

acknowledge bit is set to 1.
Set 0/1

BBSY Checks whether the I2C bus is occupied or released
and issues the start or stop condition when this bit is
set together with the SCP bit.

Set and
reference

0/1

IRIC Detects the start condition, determines the end of
data transmission, and detects that the acknowledge
bit is set to 1.

Set 0/1

ICCR

SCP Issues the start or stop condition when this bit is set
together with the BBSY bit.

Set 0/1

ESTP Flag for detecting the abnormal stop condition
(enabled in the slave mode)

None ―

STOP Flag for detecting the normal stop condition (enabled
in the slave mode)

None ―

IRTR Flag for consecutive transmission or reception
interrupt requests

None ―

AASX Flag for acknowledging the second slave address None ―
AL Flag for the lost arbitration None ―
AAS Flag for acknowledging the slave address None ―
ADZ Flag for acknowledging the general call address None ―

ICSR

ACKB Stores the acknowledge data sent from EEPROM. Reference ―
IICRST Resets the IIC control module. Set 0TSCR
IICX Selects the transmission rate. Set 0

FLMCR1 SWE Enables writing or erasing flash memory when SWE
is set to 1.

Set 0/1

ESU Sets the erase preparation mode when ESU is set to
1 and cancels the mode when ESU is cleared to 0.

Set 0/1

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 16 of 90

Register Description Available
action

Set value

PSU Sets the write preparation mode when PSU is set to
1 and cancels the mode when PSU is cleared to 0.

Set 0/1

EV Sets the erase verification mode when EV is set to 1
and cancels the mode when EV is cleared to 0.

Set 0/1

PV Sets the write verification mode when PV is set to 1
and cancels the mode when PV is cleared to 0.

Set 0/1

E Sets the erase mode when SWE, ESU, and E are
set to 1 and cancels the mode when E is cleared to
0.

Set 0/1

P Sets the write mode when SWE, PSU, and P are set
to 1 and cancels the mode when P is cleared to 0.

Set 0/1

EBR1 EB4 to
EB0

Sets 28 kbytes between H'1000 and H'7FFF as the
blocks to be erased in flash memory.

Set EB4 to EB0 =
H'10

FENR FLSHE Enables the FLMCR1 and EBR1 registers. Set 0/1
B6WI Validates the value of TCWE only when the value is

written when B6WI is cleared to 0. When the value of
TCWE is read, B6WI is fixed to 1.

Set 0/1

TCWE Validates the value written in the TCWD register
when TCWE is set to 1.

Set 1

B4WI Validates the value of TCSRWE only when the value
is written when B4WI is cleared to 0. When the value
of TCSRWE is read, B4WI is fixed to 1.

Set 0/1

TCSRWE Validates the values of the WDON and WRST bits
when TCSRWE is set to 1.

Set 1

B2WI Validates the value of WDON only when the value is
written when B2WI is cleared to 0. When the value of
WDON is read, B2WI is fixed to 1.

Set 0/1

TCWE Counts up TCWD when WDON is set to 1. Stops
TCWD when WDON is cleared to 0.

Set 0/1

B0WI Validates the value of WRST only when the value is
written when B0WI is cleared to 0. When the value of
WRST is read, B0WI is fixed to 1.

Set 0/1

TCSRWD

TCSRWE Resets the watchdog timer. Set 1
TMWD CKS3

to
CKS0

Selects the clock signal to be input to TCWD.
CKS 3 to CKS 0 = H'8: Internal clock signal (φ)/64
CKS 3 to CKS 0 = H'D: Internal clock signal (φ)/2048

Set CKS3 to
CKS0 =
H'8 or H'D

TCWD 8-bit count register that can be read and written Set 166 or
100

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 17 of 90

3.3 Defining sections
• Table 9 shows the sections defined in this task.

Table 9 Defined Sections

Address Section Description
H'0000 V0 Vector address for such as RESET
H'0010 V1 Vector address for such as TRAP
H'002E V2 Vector address for such as SCI
H'0040 PM Program area
H'0400 PF_1 Program area
H'0900 PF_2 Program area
H'1000 UV User vector table area
H'1100 P User program area

C$DSEC Initialized data area (defined in DBSCT.C)
C$BSEC Uninitiaized data area (defined in DBSCT.C)
D Initialized data area

H'FE80 B Uninitiaized data area
R Initialized data area

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 18 of 90

4. Hierarchy of Modules
The hierarchy of modules are shown in Figure 5.

INIT main

SL_TRNS CAL_CRC16

SL_RECV_DATA

wait
wait

CRC calculation

SL_SEND_DATA

flprg_cpy

Jump_prog _IIC_TEST FL_ER_BLK

MA_RECV_DATA

BLK1_ERASE

FERASEVF

FERASE

MA_SEND_DATA

FWEITE128

CAL_CRC16

FWRITEVF

FWRITE

u_main u_wait

Stack setting Main module

Transmission/reception
in the slave mode

Reception in the
slave mode

Transmission in the
slave mode

Flash memory
erase/write

Data erase in flash
memory

Reception in master
mode

Transmission in
master mode

Data write in flash
memory

Data erase in flash
memory

Flash memory erase

CRC calculation

Erase verification in
flash memory

Data copy

Jump to program
FL_WAIT

Wait

FL_WAIT

Wait

FL_WAIT

Wait

FL_WAIT

Wait

Write verification

Flash memory write

FL_WAIT

Wait

FL_WAIT

Wait

User-created module Wait

Figure 5 Hierarchy of Modules

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 19 of 90

5. Flowcharts

No

Yes

No

Yes
No

Yes

No

Yes

INIT

Jump to main.

main

rts

i < 500?

SL_TRNS

sw_d1 = 0x20?

flprg_cpy

u_main

sw_d1 = sw_d2?

sw_d1 = 0x10?

Set the stack pointer to H'FF80.

Set PCR5 to 0x00.

Set PDR8 to 0x00.

wait (parameter: 10000)

Set PDR8 to 0x10.

Increment i.

wait (parameter: 10000)

jump_prog (parameter: 0xF780)

Set the result of ((PDR5 &
0x20)|(PDR1 & 0x10)) in swd1.

Set the result of ((PDR5 &
0x20)|(PDR1 & 0x10)) in swd2.

Set PCR1 to 0x00.

Set PDR8 to 0x00.

Set PCR8 to 0x10.

Clear i to 0.

Set the I bit to 1 and reject
serial interrupts.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 20 of 90

Yes

No

flprg_cpy

rts

ptr <
0x0900?

Set ptr to 0x04000.

jump_prog (parameter: R0)

Jump to R0.

Write *ptr in *r_ptr.

Increment ptr.

Increment r_ptr.

Set r_ptr to 0xF780.

Note: Use a compiler to set the beginning of _IIC_TEST to 0x0400, use flprg_cpy to write the copy after
0xF780, and use jump_prog to execute the copy.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 21 of 90

Yes

Nocnt <
limit?

rts

wait (parameter: limit)

Clear cnt to 0.

Increment cnt.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 22 of 90

No

Yes

No

Yes

No

No

Yes

Yes

Yes

No

SL_RECV_DATA

CAL_CRC16

SL_SEND_DATA

R0L = 0?

R0L = 0?

_SL_TRNS

Set the write source address to 0x1000.

Set the SAR register to 0x80.

Is the write
destination address equal to

0xFD00?

Is received
data equal to 0xA5?

Is the write source
address equal to or greater

than 0x8000?

Set the TSCR register to 0xFC.

Store the result of CRC in 0xFD00.

Set R5 (number of received bytes) to 1.

Set R5 (number of sent bytes) to 131.

Increment the write destination address by 2.

Increment the write source address by 2.

Store the write source data in the
write destination data buffer.

Set the receive data storage
address to 0xFC80.

Set the receive data storage
address to 0xFD80.

Set the send data storage address
to 0xFC80.

Set the write destination address to 0xFC80.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 23 of 90

Yes

No

Yes

No

No

Yes

No

Yes

Yes

No

SL_RECV_DATA

IRIC = 0?

R5 ≤ E5?

R5 ≤ E5?

rts

IRIC = 0?

Set the ICCR register to 0x84.

Set the ICMR register to 0x08.

Clear E5 to 0.

Fetch received data.

Is received data
equal to 0x80?

Clear the IRIC bit of the ICCR register.

Clear the IRIC bit of the ICCR register.

Clear the ACKB bit of the ICSR register.

Fetch the received data.

Set R0L to 1.

Clear the IRIC bit of the ICCR register.

R5 ← R5 − 1

Increment the receive data
storage address.

Clear the ACKB bit of the ICSR register.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 24 of 90

No

rts

Yes

No

Yes

No

1-1

Yes

No

Yes

No

1-1

Yes

No

Yes

SL_SEND_DATA

R0 = 40?

ACKB = 0?

ACKB = 0?

IRIC = 0?

AND the value of the ICCR register
and 0xFE, OR the result and 0x04, and

store the result in the ICCR register.

OR the value of the ICCR register
and 0x10 and store the result in the

ICCR register.

Clear the IRIC bit of the ICCR register.

Store the data to be sent in ICDR.

Clear the IRIC bit of the ICCR register.

Set E5 to 1.

Store the data to be sent in ICDR.

Increment the send data address.

Clear R0L to 0.

Clear R0 to 0.

Increment R0.

Set R0L to 1.

Set the ICDR register as R1L.

Clear the TRS bit of the ICCR register.

Clear the IRIC bit of the ICCR register.

R5 ≤ E5?

IRIC = 0?

E5 ← E5 + 1

AND the value of the ICCR register
and 0xFA and store the result in the

ICCR register.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 25 of 90

Yes

No

Yes

No

Yes

No

rts

CAL_CRC16

E0 = 8?

E1 = 0?

Clear E5 to 0.

Set E1 to 128.

Clear R1H to 0.

Left-shift R1 by 8 bits.

Clear E0 to 0.

Left-shift E5 by 1 bit.

Left-shift R1 by 1 bit.

Increment E0.

Store the result of CRC in R0.

Left-shift E5 by 1 bit.

Increment the receive
data address.

XOR the value of E5 and 0x1021
and store the result in E5.

Store the received data in R1L.

R1 xor E5
> 0?

E1 ← E1 − 1

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 26 of 90

No

No

Yes

Yes

No

No

Yes

CAL_CRC16

MA_SEND_DATA

_IIC_TEST

FL_ER_BLK

Yes

R0L = 0?

MA_RECV_DATA

2-3

2-1

2-2

Yes

No

Yes

No

No

Yes
R2 < R3?

FWRITE128

R0L = 0?

R1 = R0? 2-2

2-4

2-1

2-2

2-3

2-4

Store the value of the FENR register
in R6 and set the FLSHE bit.

Set R0H to 0x10.

Set the write start address to
0x1000.

Set the write end address to
0x8000.

Set MAXWT as the maximum
number of writes.

Set R5 to 1.

Set R1 to 30.

Set R5 to 131.

Set the receive data storage
address to 0xFC80.

Set the receive data storage
address to 0xFC80. Store the value of the FENR

register in R6 and clear the
FLSHE bit.

Set the send data storage
address to 0xFE14 and store
the data to be sent in 0xA5.

Set the data at 0xFD00 in
R1.

Increment the write start
address by 128 and store the

address in R2.

Store the write end
address in R3.

R0L = 0?

R1 = 0?

R0L = 0?

R1 ← R1 − 1

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 27 of 90

Yes

Yes

No

No

Yes

No

BLK1_ERASE

FR_ER_BLK

rts

R0L = 0?

rts

R0H
= 0x08?

R0H
= 0x10?

Set R1 to 0x0C00.

Set R1 to 0x1000.

Set R2 to 0x8000.

Set R0L to 1.

Set R2 to 0x1000.

Set R0H as the block to
be erased.

Set R1 as the start
address to be erased.

Set R2 as the end
address to be erased.

Set the address of EBR1
(0xFF93) in R5.

Set the address of
FLMCR1 (0xFF90) in R6.

Set MAXET as the
maximum number of erases.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 28 of 90

No

Yes

rts rts

COUNT ← COUNT + 1

No

FL_WAIT FL_WAIT

Yes

BLK1_ERASE

FERASE

FL_WAIT

FERASEVF

R0L = 0?

FERASEVF

No

Yes
R0L = 0?

Set the SWE bit of the
FLMCR1 register.

Set R0 to WLOOP1.

Clear COUNT.

COUNT =
MAXET?

Clear the SWE bit of the
FLMCR1 register.

Clear the SWE bit of the
FLMCR1 register.

Set R0 to WLOOP100. Set R0 to WLOOP100.

Set R0L to 1. Clear R0L to 0.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 29 of 90

No

Yes

No

FL_WAIT

Yes

rtsrts

FL_WAIT

Set the verification start
address as the address to

be verified.

FL_WAIT

FERASEVF

FL_WAIT

Set the EV bit of the
FLMCR register.

Write dummy data (0xFFFF)
at the address to be verified.

Increment the verification
start address.

Clear the EV bit of the
FLMCR register.

Set R0 to WLOOP4.

Set R0L to 1. Clear R0L to 0.

Set R0 to WLOOP4.

Clear the EV bit of the
FLMCR register.

Is verification
data equal to

0xFFFF?

Is this the last
address to be

verified?

Set R0 to WLOOP20.

Set R0 to WLOOP2.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 30 of 90

Yes

No

FL_WAIT

FL_WAIT

FL_WAIT

rts

FERASE

R0 ← R0 − 1

R0 ≠ 0?

Write 0x5A in the timer
control/status register.

Write 0xF4 in the timer
control/status register.

Set the ESU bit of the FLMCR1
register.

Clear the ESU bit of the
FLMCR1 register.

Write 0x53 in the timer
control/status register.

Clear the EBR1 register bit
corresponding to the bit number

for the block to be erased.

Set the value of the bit for the block
to be erased in the EBR1 register.

Set the count register to 100.

Set R0 to WLOOP100.

Set R0 to TIME10000.

Set R0 to WLOOP10.

Set R0 to WLOOP10.

Clear the E bit of the FLMCR1 register.

Set the E bit of the FLMCR1 register.

Set φ/2048 as the input clock
signal for the count register.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 31 of 90

Yes

No

FL_WAIT

rts

R0 ← R0 − 1

R0 ≠ 0?

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 32 of 90

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

3-1

3-1

MA_SEND_DATA

rts

R5 ≤ E5?

ACKB = 0?

ACKB = 0?

BBSY = 0?

IRIC = 0?

IRIC = 0?

Set the ICCR register to 0x89.

Set the ICMR register to 0x08.

Set the TSCR register to 0xFC.

Set the ICDR register to 0x80.

Clear the IRIC bit of the ICCR register.

Clear E5 to 0.

Store the data to be sent in ICDR.

Increment the send data address.

Increment E5.

Clear R0L to 0. Set R0L to 1.

Clear the IRIC bit of the ICCR register.

OR the value of the ICCR register and 0x30
and store the result in the ICCR register.

AND the value of the ICCR register and
0xFE, OR the result and 0x04, and
store the result in the ICCR register.

IRIC = 0?

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 33 of 90

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

rts

R5 ≤ E5?

R5 = R6?

IRIC = 0?

IRIC = 0?

IRIC = 0?

IRIC = 0?

MA_RECV_DATA

R5 ← R5 − 1

Store the value of R5 in R6.

Clear the TRS bit of the ICCR register.

Set the WAIT bit of the ICMR register.

Fetch the received data.

Clear the IRIC bit of the ICCR register.

Clear the IRIC bit of the ICCR register.

Set E5 to 1.

Fetch the received data.
Set the ACKB bit of the ICSR register.

Set the TRS bit of the ICCR register.

Clear the IRIC bit of the ICCR register.

Clear the WAIT bit of the ICMR register.

Fetch the received data.

Clear the IRIC bit of the ICCR register.

Set R0L to 1.

AND the value of the ICCR register
and 0xFA and store the result in the

ICCR register.

Clear the IRIC bit of the ICCR register.

Increment the receive data address.

Clear the IRIC bit of the ICCR register.

Clear the ACKB bit of the ICSR register.

R5 ≤ E5?

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 34 of 90

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

4-2

4-1

4-2

4-24-1

4-2

4-1

4-1

FL_WAITFL_WAIT

FWRITEVF

FWRITE

FWRITEVF

FWRITE

FWRITE

FL_WAIT

FWRITEVF

rts rts

FWRITE128

R0L = 0?

R0L = 2?

R0L = 0?

R0L = 2?

VF_RET = 2?

VF_RET = 0?

Transfer 128 bytes of write
data to the rewrite data buffer.

Set the SWE bit of the
FLMCR1 register.

Set BUFF as the write
address.

Set BUFF as the write
address.

Store the result of
verification in VF_RET.

Set OWBUFF as the write
address.

Set R0 to WLOOP1.

Clear COUNT.

Set R3 to TIME200.

Increment COUNT.

Set R0 to WLOOP100. Set R0 to WLOOP100.

Set R0L to 1. Clear R0L to 0.

Set R3 to TIME30.

Set R3 to TIME10.

Increment COUNT.

COUNT =
OW_COUNT?

COUNT =
WT_COUNT?

Clear the SWE bit of the
FLMCR1 register.

Clear the SWE bit of the
FLMCR1 register.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 35 of 90

Yes

No

No

Yes

Yes

No

No

Yes

FL_WAIT

FL_WAIT

FL_WAIT

FL_WAIT

rtsrts

FWRITEVF

R0 ≠ 0?

E0 = 0xFFFF?

Set BUFF as the rewrite address.

Set the PV bit of the FLMCR1 register.

Set W_BUF as the write address.

Set R0 to WLOOP4.

Set R0 to WLOOP2.

Set R0 to WLOOP2.

Set R0L to 1.

Set BUFF as the rewrite address.

Store rewrite data in E0.

Clear R0L to 0.

Clear the PV bit of the FLMCR1 register.

Clear the PV bit of the FLMCR1 register.

Set R0 to WLOOP2.

Set R0L to 2.

Set W_ADR as the flash
memory write address.

Set OWBUFF as the additional
write address.

Write dummy data (0xFFFF) in
flash memory. Is the write address

equal to W_BUF +
128?

Is the rewrite address
equal to BUFF +

128?

Increment the additional write
address by 2.

Increment the rewrite address
by 2.

Increment the flash memory
write address.

Increment the rewrite data
address.

Increment the write data
address.

OR the inverse of flash memory
data and write data, and store

the result in R0.

OR flash memory data and
rewrite data, and write the result
in the additional write data buffer.

OR the inverse of flash memory
data and write data, and write the
result in the rewrite data buffer.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 36 of 90

Yes

No

Yes

No

FL_WAIT

FL_WAIT

FL_WAIT

rts

FWRITE

R3 ← R3 − 1

E0 ← E0 − 1

R0 ≠ 0?

E0 ≠ 0?

Set E0 to 128.

Write the data of the write
source address to the write

destination address.

Increment the write source
address.

Increment the write destination
address.

Set the count register to 166.

Set R0 to WLOOP50.

Set the P bit of the FLMCR1 register.

Clear the P bit of the FLMCR1 register.

Set R0 to WLOOP5.

Set R0 to WLOOP5.

Write 0x5A in the timer
control/status register.

Write 0xF4 in the timer
control/status register.

Set the PSU bit of the FLMCR1
register.

Clear the PSU bit of the
FLMCR1 register.

Write 0x53 in the timer
control/status register.

Set φ/64 as the input clock
signal for the count register.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 37 of 90

Trap instructions #1 to #4

Jump to INIT.

Break condition interrupt Sleep instruction interrupt

IRQ #1 to #4 interrupt WKP interrupt

Overflow interrupt Timer (W, V) interrupt

I2C interrupt

SCI interrupt

A/D conversion interrupt

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 38 of 90

6. Description of Software

6.1 Modules
• Table 10 explains the modules used (parameters and return values).

Table 10 Modules

Module (function)
name

Parameter Return value Description

INIT (assembly
language)

None None Sets the stack pointer (sets R7 to
H'FF80), sets CCR (disables
interrupts), and jumps to the main
module.

main None None Main module
flprg_cpy None None Copies the data between 0x0400 and

0x08FF to the area between 0xF780
and 0xFC7F.

jump_prog
(assembly language)

R0 None The program jumps to R0.

wait limit (wait length) None Executes a wait statement.
_SL_TRANS
(assembly language)

None None Enables transmission and reception of
data in the slave mode.

SL_RECV_DATA
(assembly language)

R4 (address for storing the
received data)
R5 (number of received
bytes)

R0L (result of
reception)

Receives data in the slave mode.

SL_SEND_DATA
(assembly language)

R4 (address for storing the
data to be sent)
R5 (number of sent bytes)

ROL (result
of
transmission)

Sends data in the slave mode.

CAL_CRC16
(assembly language)

R4 (address for storing the
received data)

R0 (result of
CRC)

Performs CRC.

_IIC_TEST
(assembly language)

None None Erases or writes flash memory.

FL_ER_BLK
(assembly language)

R0H (specifies the block to
be erased)

R0L (result of
erasing)

Erases data from flash memory.

BLK1_ERASE
(assembly language)

ER6 (address of the
FLMCR register)
ER5 (address of the EBR
register)

R0L (result of
erasing)

Erases the target block in flash
memory.

FERASEVF
(assembly language)

ER6 (address of the
FLMCR register)

R0L (result of
verification)

Verifies the erase in flash memory.

FERASE (assembly
language)

ER6 (address of the
FLMCR register)
ER5 (address of the EBR
register)

R0L (result of
erasing)

Erases the target block in flash
memory.

FL_WAIT (assembly
language)

R0 (wait length) None Executes a wait statement.

MA_SEND_DATA
(assembly language)

R4 (address for storing the
data to be sent)
R5 (number of sent bytes)

R0L (result of
transmission)

Sends data in the master mode.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 39 of 90

Module (function)
name

Parameter Return value Description

MA_RECV_DATA
(assembly language)

R4 (address for storing the
received data)
R5 (number of received
bytes)

R0L (result of
reception)

Receives data in the master mode.

FWRITE128
(assembly language)

None R0L (result of
writing)

Writes desired 128 bytes in flash
memory.

FWRITEVF
(assembly language)

ER6 (address of the
FLMCR register)

R0L (result of
verification)

Verifies the write in flash memory.

FWRITE (assembly
language)

ER6 (address of the
FLMCR register)
ER2 (write start address)
ER3 (time set by the P bit)

None Writes flash memory.

Note: To reference the modules written in assembly language in a C program, delete the beginning
underscore (_). For example, if you want to reference the _SL_TRNS module written in assembly
language in a C program, specify "SL_TRNS".

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 40 of 90

• Table 11 is a list of constants used.

Table 11 Constants

Defined name Value Description
WLOOP1 1*MHZ/400

(= 2)
Number of times a wait statement is executed (wait time: 1 µs)

WLOOP2 2*MHZ/400
(= 5)

Number of times a wait statement is executed (wait time: 2 µs)

WLOOP4 4*MHZ/400
(= 11)

Number of times a wait statement is executed (wait time: 4 µs)

WLOOP5 5*MHZ/400
(= 13)

Number of times a wait statement is executed (wait time: 5 µs)

WLOOP10 10*MHZ/400
(= 27)

Number of times a wait statement is executed (wait time: 10 µs)

WLOOP20 20*MHZ/400
(= 55)

Number of times a wait statement is executed (wait time: 20 µs)

WLOOP50 50*MHZ/400
(= 137)

Number of times a wait statement is executed (wait time: 4 µs)

WLOOP100 100*MHZ/400
(= 275)

Number of times a wait statement is executed (wait time: 5 µs)

TIME10 10*MHZ/400
(= 27)

Number of times a wait statement is executed (wait time: 10 µs)

TIME30 30*MHZ/400
(= 82)

Number of times a wait statement is executed (wait time: 20 µs)

TIME200 200*MHZ/400
(= 550)

Number of times a wait statement is executed (wait time: 200
µs)

TIME10000 10000*MHZ/400
(= 27500)

Number of times a wait statement is executed (wait time: 10 ms)

MAXWT 1000 Maximum number of flash memory writes
MAXET 100 Maximum number of flash memory erases
OW_COUNT 6 Number of rewrites

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 41 of 90

• Table 12 shows how RAM is used.

Table 12 RAM

Label Description Address Used by:
W_BUF Write data buffer (128 bytes) H'FC80 _IIC_TEST,_SL_TRNS,

FWRITE128,FWRITEVF
BUFF Rewrite data buffer (128 bytes) H'FD00 FWRITE128,FWRITEVF
OWBUFF Additional write data buffer (128 bytes) H'FD80 _SL_TRNS,FWRITE128,

FWRITEVF
COUNT Number of writes/erases H'FE00 FWRITE128,BLK_ERASE
W_ADR Write start address H'FE02 _IIC_TEST,FWRITEVF,

FWRITE
W_ADR_ED Write end address H'FE04 _IIC_TEST
ET_COUNT Maximum number of flash memory erases H'FE08 FL_ER_BLK,BLK1_ERASE
WT_COUNT Maximum number of flash memory writes H'FE0A FWRITE128,_IIC_TEST
EVF_ST Erase start address H'FE0C FL_ER_BLK,FERASEVF
EVF_ED Erase end address H'FE0E FL_ER_BLK,FERASEVF
BLK_NO Block to be erased H'FE10 FL_ER_BLK,FERASE
VF_RET Result of write verification H'FE11 FWRITE128
IIC_SBUF Address for storing the data to be sent H'FE14 _IIC_TEST

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 42 of 90

• Table 13 shows the registers in RAM.

Table 13 Registers in RAM

Register Description Available
action

Set value

ICDR Stores the data to be sent or received. Store and
reference

―

MLS Sets data transmission beginning with the MSB. Set 0
WAIT Sets continuous transmission of data and

acknowledge bits.
Set 0

CKS2
to
CKS0

Sets the transmission clock frequency to 400 kHz
when these bits are set together with the IICX bit of
STCR.

Set CKS2 = 0
CSK1 = 0
CSK0 = 1

ICMR

BC2
to
BC0

Sets the number of bits in the data to be transferred
next in the I2C bus format to 9 bits per frame.

Set BC2 = 0
BC1 = 0
BC0 = 0

ICE Controls the access to ICMR, ICDR, SAR and SARX
registers, and selects whether to activate the I2C bus
(SCL/SDA pins are used as ports) or deactivate the
I2C bus (SCL/SDA pins are driven by the bus).

Set 0/1

IEIC Disables interrupt requests over the I2C bus. Set 0/1
MST Uses the I2C bus in the master mode. Set 0/1
TRS Uses the I2C bus in the transmission mode. Set 0/1
ACKE Cancels consecutive transmission when the

acknowledge bit is set to 1.
Set 0/1

BBSY Checks whether the I2C bus is occupied or released
and issues the start or stop condition when this bit is
set together with the SCP bit.

Set and
reference

0/1

IRIC Detects the start condition, determines the end of
data transmission, and detects that the acknowledge
bit is set to 1.

Set 0/1

ICCR

SCP Issues the start or stop condition when this bit is set
together with the BBSY bit.

Set 0/1

ESTP Flag for detecting the abnormal stop condition
(enabled in the slave mode)

None ―

STOP Flag for detecting the normal stop condition (enabled
in the slave mode)

None ―

IRTR Flag for continuous transmission or reception
interrupt requests

None ―

AASX Flag for acknowledging the second slave address None ―
AL Flag for the lost arbitration None ―
AAS Flag for acknowledging the slave address None ―
ADZ Flag for acknowledging the general call address None ―

ICSR

ACKB Stores the acknowledge data sent from EEPROM. Reference ―
IICRST Resets the IIC control module. Set 0TSCR
IICX Selects the transmission rate. Set 0

FLMCR1 SWE Enables writing or erasing flash memory when SWE
is set to 1.

Set 0/1

ESU Sets the erase preparation mode when ESU is set to
1 and cancels the mode when ESU is cleared to 0.

Set 0/1

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 43 of 90

Register Description Available
action

Set value

PSU Sets the write preparation mode when PSU is set to
1 and cancels the mode when PSU is cleared to 0.

Set 0/1

EV Sets the erase verification mode when EV is set to 1
and cancels the mode when EV is cleared to 0.

Set 0/1

PV Sets the write verification mode when PV is set to 1
and cancels the mode when PV is cleared to 0.

Set 0/1

E Sets the erase mode when SWE, ESU, and E are
set to 1 and cancels the mode when E is cleared to
0.

Set 0/1

P Sets the write mode when SWE, PSU, and P are set
to 1 and cancels the mode when P is cleared to 0.

Set 0/1

EBR1 EB4 to
EB0

Sets 28 kbytes between H'1000 and H'7FFF as the
blocks to be erased in flash memory.

Set EB4 to EB0 =
H'10

FENR FLSHE Enables the FLMCR1 and EBR1 registers. Set 0/1
B6WI Validates the value of TCWE only when the value is

written when B6WI is cleared to 0. When the value of
TCWE is read, B6WI is fixed to 1.

Set 0/1

TCWE Validates the value written in the TCWD register
when TCWE is set to 1.

Set 1

B4WI Validates the value of TCSRWE only when the value
is written when B4WI is cleared to 0. When the value
of TCSRWE is read, B4WI is fixed to 1.

Set 0/1

TCSRWE Validates the values of the WDON and WRST bits
when TCSRWE is set to 1.

Set 1

B2WI Validates the value of WDON only when the value is
written when B2WI is cleared to 0. When the value of
WDON is read, B2WI is fixed to 1.

Set 0/1

TCWE Counts up TCWD when WDON is set to 1. Stops
TCWD when WDON is cleared to 0.

Set 0/1

B0WI Validates the value of WRST only when the value is
written when B0WI is cleared to 0. When the value of
WRST is read, B0WI is fixed to 1.

Set 0/1

TCSRWD

TCSRWE Resets the watch dog timer. Set 1
TMWD CKS3 to

CKS0
Selects the clock signal to be input to TCWD.
CKS 3 to CKS 0 = H'8: internal clock signal (φ)/64
CKS 3 to CKS 0 = H'D: internal clock signal (φ)/2048

Set CKS3 to
CKS0 =
H'8 or H'D

TCWD 8-bit count register that can be read and written Set 166 or
100

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 44 of 90

7. Hierarchy of Modules
• Figure 6 shows the hierarchy of modules.

SL_TRNS CAL_CRC16

SL_RECV_DATA

CRC calculation

wait
wait

SL_SEND_DATA

flprg_cpy

Jump_prog _IIC_TEST FL_ER_BLK

MA_RECV_DATA

BLK1_ERASE

FERASEVF

FERASE

MA_SEND_DATA

FWEITE128

CAL_CRC16

FWRITEVF

FWRITE

u_main

INIT main

Init_SCI

Serial settings

Stack setting Main module

Transmission/reception
in the slave mode

Reception in the
slave mode

Transmission in the
slave mode

Flash memory
erase/write

Flash memory data
erase

Reception in the
master mode

Transmission in the
master mode

Data write in flash
memory

Flash memory data
erase

Flash memory erase

CRC calculation

Erase verification in
flash memory

Data copy

Jump to program
FL_WAIT

Wait

FL_WAIT

Wait

FL_WAIT

Wait

FL_WAIT

Wait

Write verification

Flash memory write

FL_WAIT

Wait

FL_WAIT

Wait

User-created module

Figure 6 Hierarchy of Modules

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 45 of 90

8. Flowcharts

Yes

No

No

Yes
No

Yes

INIT

Jump to main.

main

rts

i < 3000?

SL_TRNS

Init_sci

No

Yes

sw_d1 = 0x20?

flprg_cpy

u_main

sw_d1 = sw_d2?

sw_d1 = 0x10?

Set the stack pointer to H'FF80.

Set PCR5 to 0x00.

Set PDR8 to 0x00.

wait (parameter: 10000)

Set PDR8 to 0x10.

Increment i.

wait (parameter: 10000)

jump_prog (parameter: 0xF780)

Set the result of ((PDR5 &
0x20)|(PDR1 & 0x10)) in swd1.

Set the result of ((PDR5 &
0x20)|(PDR1 & 0x10)) in swd2.

Set PCR1 to 0x00.

Set PDR8 to 0x00.

Set PCR8 to 0x10.

Clear i to 0.

Set the I bit to 1 and reject
serial interrupts.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 46 of 90

Yes

No

flprg_cpy

rts

ptr <
0x0900?

Set ptr to 0x04000.

jump_prog (parameter: R0)

Jump to R0.

Write *ptr in *r_ptr.

Increment ptr.

Increment r_ptr.

Set r_ptr to 0xF780.

Note: Use a compiler to set the beginning of _IIC_TEST to 0x0400, use flprg_cpy to write the copy after
0xF780, and use jump_prog to execute the copy.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 47 of 90

Yes

Nocnt <
limit?

rts

wait (parameter: limit)

Clear cnt to 0.

Increment cnt.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 48 of 90

No

Yes

SL_RECV_DATA

CAL_CRC16

No

YesR0L = 0?

_SL_TRNS

Set the write source address to 0x1000.

Is the write
destination address equal to

0xFD00?

No

Yes

Is the write source
address equal to or greater

than 0x8000?

Store the result of CRC in 0xFD00.

Set R5 (number of received bytes) to 1.

Increment the write destination address by 2.

Increment the write source address by 2.

Store the write source data in the
write destination data buffer.

Set the receive data storage
address to 0xFC80.

Set the receive data storage
address to 0xFD80.

Store the write source address in R0.

Right-shift R0H by 4 bits, add 0x30
to it, and store the result in TDR.

Yes

No

SL_SEND_DATA

R0L = 0?

Set R5 (number of receive bytes) to 131.

Set the receive data storage
address to 0xFC80.

Set the write destination address to 0xFC80.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 49 of 90

Yes

No

No

Yes

No

Yes

Yes

No

SL_RECV_DATA

Yes

No

IRIC = 0?

R5 ≤ E5?

R5 ≤ E5?

rts

IRIC = 0?

Set the ICCR register to 0x84.

Set the SAR register to 0xA0.

Set the ICMR register to 0x08.

Write the value of R6 in R5.

Clear E5 to 0.

Fetch the received data.

R5 = R6?

Clear the IRIC bit of the ICCR register.

Clear the IRIC bit of the ICCR register.

Clear the ACKB bit of the ICSR register.

Fetch the received data.

Set R0L to 1.

Clear the IRIC bit of the ICCR register.

R5 ← R5 − 1

Increment the receive data
storage address.

Set the TSCR register to 0xFC.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 50 of 90

No

rts

Yes

No

Yes

No

1-1

Yes

No

Yes

No

1-1

Yes

No

Yes

SL_SEND_DATA

R0 = 100?

ACKB = 0?

ACKB = 0?

IRIC = 0?

AND the value of the ICCR register
and 0xFE, OR the result and 0x04, and

store the result in the ICCR register.

OR the value of the ICCR register
and 0x10 and store the result in the

ICCR register.

Clear the IRIC bit of the ICCR register.

Store the data to be sent in ICDR.

Clear the IRIC bit of the ICCR register.

Set E5 to 1.

Store the data to be sent in ICDR.

Increment the send data address.

Clear R0L to 0.

Clear R0 to 0.

Increment R0.

Set R0L to 1.

Set the ICDR register as R1L.

Clear the TRS bit of the ICCR register.

Clear the IRIC bit of the ICCR register.

R5 ≤ E5?

IRIC = 0?

E5 ← E5 + 1

AND the value of the ICCR register
and 0xFA and store the result in the

ICCR register.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 51 of 90

Yes

No

Yes

No

Yes

No

rts

CAL_CRC16

E0 = 8?

E1 = 0?

Clear E5 to 0.

Set E1 to 128.

Clear R1H to 0.

Left-shift R1 by 8 bits.

Clear E0 to 0.

Left-shift E5 by 1 bit.

Left-shift R1 by 1 bit.

Increment E0.

Store the result of CRC in R0.

Left-shift E5 by 1 bit.

Increment the receive
data address.

XOR the value of E5 and 0x1021
and store the result in E5.

Store the received data in R1L.

R1 xor E5
> 0?

E1 ← E1 − 1

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 52 of 90

No

No

Yes

Yes

No

No

Yes

MA_SEND_DATA

_IIC_TEST

FL_ER_BLK

Yes

R0L = 0?

MA_RECV_DATA

2-3

2-1

2-2

CAL_CRC16

Store the value of the FENR register
in R6 and set the FLSHE bit.

Set R0H to 0x10.

Set PDR1 to 0x06.

Set PCR1 to 0xFF.

Set the write start address to
0x1000.

Set the write end address to
0x8000.

Set MAXWT as the maximum
number of writes.

Set R5 to 1.

Set R1 to 30.

Set R5 to 131.

Set the receive data storage
address to 0xFC80.

Set the receive data storage
address to 0xFC80.

Set the send data storage
address to 0xFE14 and store
the data to be sent in 0xA5.

No

Yes

No

R2 < R3?

FWRITE128

Set PDR1 to 0xE1.

R0L = 0?

Yes

No
R1 = R0? 2-2

2-4

Set the data at 0xFD00 in
R1.

Increment the write start
address by 128 and store the

address in R2.

Store the write end
address in R3.

R0L = 0?

R1 = 0?

R0L = 0?

R1 ← R1 − 1

2-5

2-6

2-7

2-8

2-1

2-3

2-2

2-4

2-5

2-6

2-7

2-8

Set PDR1 to 0xE7.

Set PDR1 to 0xF4.

Set PDR1 to 0x71.

Set PDR1 to 0xF1.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 53 of 90

Yes

Yes

No

No

Yes

No

BLK1_ERASE

FR_ER_BLK

rts

R0L = 0?

rts

R0H
= 0x08?

R0H
= 0x10?

Set R1 to 0x0800.

Set R1 to 0x1000.

Set R2 to 0x8000.

Set R0L to 1.

Set R2 to 0x0C00.

Set R0H as the block to
be erased.

Set R1 as the start
address to be erased.

Set R2 as the end
address to be erased.

Set the address of EBR1
(0xFF93) in R5.

Set the address of
FLMCR1 (0xFF90) in R6.

Set MAXET as the
maximum number of erases.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 54 of 90

No

Yes

rts rts

COUNT ← COUNT + 1

Yes

FL_WAIT FL_WAIT

No

BLK1_ERASE

FERASE

FL_WAIT

FERASEVF

R0L = 0?

FERASEVF

No

Yes
R0L = 0?

Set the SWE bit of the
FLMCR register.

Set R0 to WLOOP1.

Clear COUNT.

COUNT
< 100?

Clear the SWE bit of the
FLMCR register.

Clear the SWE bit of the
FLMCR register.

Set R0 to WLOOP100. Set R0 to WLOOP100.

Set R0L to 1. Clear R0L to 0.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 55 of 90

No

Yes

No

FL_WAIT

Yes

rtsrts

FL_WAIT

Set the verification start
address as the address to

be verified.

FL_WAIT

FERASEVF

FL_WAIT

Set the EV bit of the
FLMCR register.

Increment the verification
start address.

Clear the EV bit of the
FLMCR register.

Set R0 to WLOOP4.

Set R0L to 1. Clear R0L to 0.

Set R0 to WLOOP4.

Clear the EV bit of the
FLMCR register.

Is verification
data equal to

0xFFFF?

Is this the last
address to be

verified?

Set R0 to WLOOP20.

Set R0 to WLOOP2.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 56 of 90

FERASE

Write 0x5A in the timer
control/status register.

Write 0xF4 in the timer
control/status register.

Set the EBR register bit
corresponding to the bit number for

the block to be erased.

Set the count register to 100.

Yes

No

FL_WAIT

FL_WAIT

FL_WAIT

rts

R0 ← R0 − 1

R0 ≠ 0?

Set the ESU bit of the
FLMCR register.

Clear the ESU bit of the
FLMCR register.

Write 0x53 in the timer
control/status register.

Clear the EBR register bit
corresponding to the bit number

for the block to be erased.

Set R0 to WLOOP100.

Set R0 to TIME10000.

Set R0 to WLOOP10.

Set R0 to WLOOP10.

Clear the E bit of the FLMCR register.

Set the E bit of the FLMCR register.

Set φ/2048 as the input clock
signal for the count register.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 57 of 90

Yes

No

FL_WAIT

rts

R0 ← R0 − 1

R0 ≠ 0?

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 58 of 90

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

3-1

3-1

MA_SEND_DATA

rts

R5 ≤ E5?

ACKB = 0?

ACKB = 0?

BBSY = 0?

IRIC = 0?

IRIC = 0?

Set the ICCR register to 0x89.

Set the ICMR register to 0x08.

Set the TSCR register to 0xFC.

Set the ICDR register to 0xA0.

Clear the IRIC bit of the ICCR register.

Clear E5 to 0.

Store the data to be sent in ICDR.

Increment the send data address.

Set E5 to 1.

Clear R0L to 0. Set R0L to 1.

Clear the IRIC bit of the ICCR register.

OR the value of the ICCR register and 0x30
and store the result in the ICCR register.

AND the value of the ICCR register and
0xFE, OR the result and 0x04, and
store the result in the ICCR register.

IRIC = 0?

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 59 of 90

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

rts

R5 ≤ E5?

R5 = R6?

IRIC = 0?

IRIC = 0?

IRIC = 0?

IRIC = 0?

MA_RECV_DATA

Subtract 1 from R5.

Store the value of R5 in R6.

Clear the TRS bit of the ICCR register.

Set the WAIT bit of the ICMR register.

Fetch the received data.

Clear the IRIC bit of the ICCR register.

Clear the IRIC bit of the ICCR register.

Set E5 to 1.

Fetch the received data.
Set the ACKB bit of the ICSR register.

Set the TRS bit of the ICCR register.

Clear the IRIC bit of the ICCR register.

Clear the WAIT bit of the ICMR register.

Fetch the received data.

Clear the IRIC bit of the ICCR register.

Set R0L to 1.

AND the value of the ICCR register
and 0xFA and store the result in the

ICCR register.

Clear the IRIC bit of the ICCR register.

Increment the receive data address.

Clear the IRIC bit of the ICCR register.

Clear the ACKB bit of the ICSR register.

R5 ≤ E5?

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 60 of 90

No

Yes

No

Yes

Yes

No

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

4-2

4-1

4-2

4-24-1

4-2

4-1

4-1

FL_WAITFL_WAIT

FWRITEVF

FWRITE

FWRITEVF

FWRITE

FWRITE

FL_WAIT

FWRITEVF

rts rts

FWRITE128

R0L = 0?

R0L = 2?

R0L = 0?

R0L = 2?

R0L = 2?

R0L = 0?

Transfer 128 bytes of write
data to the rewrite data buffer.

Set the SWE bit of the
FLMCR register.

Set BUFF as the write
address.

Set BUFF as the write
address.

Store the result of
verification in VF_RET.

Set OWBUFF as the write
address.

Set R0 to WLOOP1.

Clear COUNT.

Set R3 to TIME200.

Increment COUNT.

Set R0 to WLOOP100. Set R0 to WLOOP100.

Set R0L to 1. Clear R0L to 0.

Set R3 to TIME30.

Set R3 to TIME10.

Increment COUNT.

COUNT =
OW_COUNT?

COUNT =
WT_COUNT?

Clear the SWE bit of the
FLMCR register.

Clear the SWE bit of the
FLMCR register.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 61 of 90

Yes

No

No

Yes

Yes

No

No

Yes

FL_WAIT

FL_WAIT

FL_WAIT

FL_WAIT

rtsrts

R0 ≠ 0?

E0 = 0xFFFF?

Set the PV bit of the FLMCR register.

FWRITEVF

Set BUFF as the rewrite address.

Set W_BUF as the write address.

Set R0 to WLOOP4.

Set R0 to WLOOP2.

Set R0 to WLOOP2.

Set the NG flag.

Set BUFF as the rewrite address.

Store rewrite data in E0.

Clear R0L to 0.

Clear the PV bit of the FLMCR register.

Clear the PV bit of the FLMCR register.

Set R0 to WLOOP2.

Set R0L to 2.

Set OWBUFF as the additional
write address.

Write dummy data (0xFFFF) in
flash memory. Is the write address

equal to W_BUF +
128?

Is the rewrite address
equal to BUFF +

128?

Increment the flash memory
write address.

Increment the rewrite data
address.

Increment the flash memory
write data address by 2.

OR flash memory data and
rewrite data, and write the result
in the additional write data buffer.

Increment the additional write
address by 2.

Increment the rewrite address
by 2.

OR flash memory data and
write data, and store the result

in R0.

OR the inverse of flash memory
data and write data, and write the
result in the rewrite data buffer.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 62 of 90

Yes

No

Yes

No

FL_WAIT

FL_WAIT

FL_WAIT

rts

FWRITE

R3 ← R3 − 1

E0 ← E0 − 1

R0 ≠ 0?

E0 ≠ 0?

Set E0 to 128.

Write the data of the write
source address to the write

destination address.

Increment the write source
address.

Increment the write destination
address.

Set the count register to 166.

Set R0 to WLOOP50.

Set the P bit of the FLMCR register.

Clear the P bit of the FLMCR register.

Set R0 to WLOOP5.

Set R0 to WLOOP5.

Write 0x5A in the timer
control/status register.

Write 0xF4 in the timer
control/status register.

Set the PSU bit of the FLMCR
register.

Clear the PSU bit of the
FLMCR register.

Write 0x53 in the timer
control/status register.

Set φ/64 as the input clock
signal for the count register.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 63 of 90

Trap instructions #1 to #4 Break condition interrupt Sleep instruction interrupt

IRQ #1 to #4 interrupt WKP interrupt

Overflow interrupt Timer (W, V) interrupt

IIC interrupt A/D conversion interrupt

Jump to INIT.

SCI3 interrupt

Jump to _Int_SCI3.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 64 of 90

9. Header File List

File: Fl_equ.h

;***

; FLASH ER/WR EQU 2001.07.09

;

;***

PDR1 .EQU H'FFD4 ; 7segLED Data

PCR1 .EQU H'FFE4 ; port direction

TDR .EQU H'FFAB ; SCI OUT

;***

; H8/3664F IIC REG

;***

ICCR .EQU H'FFC4 ;

ICSR .EQU H'FFC5 ;

ICDR .EQU H'FFC6 ;

ICMR .EQU H'FFC7 ;

SAR .EQU H'FFC7 ;

TSCR .EQU H'FFFC ;

;

TRS .BEQU 4,ICCR ;

ACKE .BEQU 3,ICCR ;

BBSY .BEQU 2,ICCR ;

IRIC .BEQU 1,ICCR ;

ACKB .BEQU 0,ICSR ;

WAIT .BEQU 6,ICMR ;

;

;***

;DEVICE_CODE .EQU H'A0 ;/* EEPROM DEVICE CODE:1010 */

DEVICE_CODE .EQU H'80 ;/* MPU DEVICE CODE:1000 */

SLAVE_ADRS .EQU H'00 ;/* SLAVE ADRS:0 */

IIC_DATA_W .EQU H'00 ;/* WRITE_DATA */

IIC_DATA_R .EQU H'01 ;/* READ_DATA */

;

;***

; H8/3664F FLASH REG

;***

FLMCR1 .EQU H'FF90 ; FLASH MEMORY CONTROL REGISTER 1

 SWE: .EQU 6

 ESU: .EQU 5

 PSU: .EQU 4

 EV: .EQU 3

 PV: .EQU 2

 E: .EQU 1

 P: .EQU 0

FLMCR2 .EQU H'FF91 ; FLASH MEMORY CONTROL REGISTER 2

 FLER: .EQU 7

EBR1 .EQU H'FF93 ; OBJECT BLOCK DESIGNATED REGISTER 1

FENR .EQU H'FF9B ; FLASH MEMORY ENABLE REGISTER

 FLSHE: .EQU 7

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 65 of 90

TCSRWD .EQU H'FFC0

TCWD .EQU H'FFC1

TMWD .EQU H'FFC2

;***

; WAIT TIME

;***

;

MHZ .EQU 11*100 ; 16MHZ

;

WLOOP1 .EQU 1*MHZ/400 ; ROOP WAIT TIME

WLOOP2 .EQU 2*MHZ/400

WLOOP4 .EQU 4*MHZ/400

WLOOP5 .EQU 5*MHZ/400

WLOOP6 .EQU 6*MHZ/400

WLOOP10 .EQU 10*MHZ/400

WLOOP20 .EQU 20*MHZ/400

WLOOP30 .EQU 30*MHZ/400

WLOOP50 .EQU 50*MHZ/400

WLOOP100 .EQU 100*MHZ/400

TIME10 .EQU 10*MHZ/400 ; WRITE WAIT TIME

TIME30 .EQU 30*MHZ/400 ; WRITE WAIT TIME

TIME200 .EQU 200*MHZ/400 ; WRITE WAIT TIME

TIME10000 .EQU 10000*MHZ/400 ; ERASE WAIT TIME

;***

; Constants

;***

MAXWT .EQU 1000 ; MAX WRITE COUNT

MAXET .EQU 100 ; MAX ERASE COUNT

OW_COUNT .EQU 6 ; OVER WRITE COUNT

OK .EQU H'0 ; OK FLAG

NG .EQU H'1 ; ERR FLAG

WNG .EQU H'2 ; WRITE ERR

File: lic_ram.h

; 2001.07.05

;//RAM area for the H8S/3664F erase/write program//

;

W_BUF .EQU H'FC80 ;.B128 WRITE DATA AREA

BUFF .EQU H'FD00 ;.B128 RETRY WRITE DATA AREA

OWBUFF .EQU H'FD80 ;.B128 OVER WRITE DATA ARIA

COUNT .EQU H'FE00 ;.W1 W_COUNT,E_COUNT

W_ADR .EQU H'FE02 ;.W1 WRITE ADDRESS AREA

W_ADR_ED .EQU H'FE04 ;.W1 WRITE ADDRESS AREA

ET_COUNT .EQU H'FE08 ;.W1 MAX E_COUNT

WT_COUNT .EQU H'FE0A ;.W1 MAX W_COUNT

EVF_ST .EQU H'FE0C ;.W1 ERASE VERIFY START ADDRESS

EVF_ED .EQU H'FE0E ;.W1 ERASE VERIFY END ADDRESS

BLK_NO .EQU H'FE10 ;.B1 ERASE BIT NUMBER

VF_RET .EQU H'FE11 ;.B1 VERIFY CHECK

IIC_SBUF .EQU H'FE14 ;.B12 IIC SEND BUF

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 66 of 90

10. Program Listing

File: INIT.SRC

 .EXPORT _INIT

 .EXPORT _jump_prog

 .IMPORT _main

;

 .SECTION PM,CODE

_INIT:

 MOV.W #H'FF80,R7

 LDC.B #B'10000000,CCR

 JMP @_main

;

;/* Assembler routine */

;

_jump_prog:

 JSR @R0

;

 .END

File: FLWR.c

/**/

/* */

/* FILE :FLWR.c */

/* DATE :Thr, Aug 09, 2001 */

/* DESCRIPTION :Main Program */

/* CPU TYPE :H8/3664F */

/* */

/* This file is generated by Renesas Project Generator (Ver.1.2). */

/* */

/**/

#include "machine.h"

#define PDR5 *(volatile unsigned char *)0xFFD8

#define PMR5 *(volatile unsigned char *)0xFFE1

#define PCR5 *(volatile unsigned char *)0xFFE8

#define PDR8 *(volatile unsigned char *)0xFFDB

#define PCR8 *(volatile unsigned char *)0xFFEB

#define PCR1 *(volatile unsigned char *)0xFFE4 /* 7segLED Data */

#define PDR1 *(volatile unsigned char *)0xFFD4 /* 7segLED Data */

/*;**/

/*; Function Definitions */

/*;**/

extern void INIT(void);

extern void jump_prog(unsigned short);

extern void SL_TRNS (void);

extern void u_main (void);

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 67 of 90

void flprg_cpy (void);

void main (void);

void wait (unsigned int limit);

#ifdef __cplusplus

extern "C" {

#endif

void abort(void);

#ifdef __cplusplus

}

#endif

#pragma section M /* P */

/*;**/

/*; Main Program */

/*;**/

void main(void)

{

 int i;

 unsigned char sw_d1,sw_d2;

 PCR5 = 0x00; /* Port 5 input */

 PCR1 = 0x00; /* Port 1 input */

 PDR8 = 0x00; /* Port 84 low */

 PCR8 = 0x10; /* Port 84 output */

 i = 0;

 while (i < 500) { /* Wait for 5 seconds. */

 PDR8 = 0x00;

 wait(10000);

 PDR8 = 0x10;

 wait(10000);

 sw_d1 = ((PDR5 & 0x20) | (PDR1 & 0x10));

 sw_d2 = ((PDR5 & 0x20) | (PDR1 & 0x10));

 if (sw_d1 == sw_d2) {

 if (sw_d1 == 0x10) {

 SL_TRNS(); /* IIC trns */

 }

 if (sw_d1 == 0x20) {

 flprg_cpy();

 jump_prog(0xf780); /* IIC recv & FLASH_WR */

 }

 }

 i++;

 }

 u_main();

}

/*;**/

/*; Program Copy (ROM:0400-08FF -> RAM:F780-FB7F) */

/*;**/

void flprg_cpy(void) {

 unsigned short *ptr,*r_ptr;

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 68 of 90

 ptr=(unsigned short*)0x0400;

 r_ptr=(unsigned short*)0xf780;

 while(ptr < (unsigned short*)0x900) {

 *r_ptr++ = *ptr++;

 }

}

void wait(unsigned int limit) {

 unsigned int cnt;

 cnt = 0;

 while (cnt < limit) {

 cnt++;

 }

}

void abort(void)

{

}

File: IIC_SL.src

;***

; IIC_SL_SUB Ver1.0 2001.07.16

;

;***

 .INCLUDE "IIC_RAM.H"

 .INCLUDE "FL_EQU.H" ; FLASH ER/WR EQU

;

 .IMPORT CAL_CRC16

 .EXPORT SL_TRNS

;

 .SECTION PF_2

 .DISPSIZE FBR=16

;

;***

; SL_TRNS

;***

_SL_TRNS:

 MOV.W #H'1000,R3 ; ptr = 0x1000

;

 MOV.B #DEVICE_CODE|SLAVE_ADRS,R1L

 MOV.B R1L,@SAR

;

 MOV.B #H'FC,R1L

 MOV.B R1L,@TSCR

;

SL_TRNS10

 MOV.W #W_BUF,R1

SL_TRNS20

 MOV.W @R3,R0 ; *ptr

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 69 of 90

 MOV.W R0,@R1 ; -> W_BUF[n]

 ADD.W #2,R3 ; ptr++

 ADD.W #2,R1 ; W_BUF[n++]

 CMP.W #W_BUF+128,R ;

 BNE SL_TRNS20 ; 128 < R1

;

 MOV.W #W_BUF,R4

 JSR @CAL_CRC16 ; cal crc16

 MOV.W #W_BUF+128,R4

 MOV.W R0,@R4 ; crc set

;

 MOV.W #OWBUFF,R4

 MOV.W #1,R5

 BSR SL_RECV_DATA ; recv ok ?

 BEQ SL_TRNS_ERR

;

 MOV.B @OWBUFF,R0L

 CMP.B #H'A5,R0L ; recv_data = send_req ?

 BNE SL_TRNS_ERR

;

 MOV.W #W_BUF,R4

 MOV.W #131,R5

 BSR SL_SEND_DATA

 CMP.B #0,R0L ; return = 0 NG

 BEQ SL_TRNS_ERR

;

 CMP.W #H'8000,R3 ;

 BGT SL_TRNS10 ; H'8000 < R3

SL_TRNS_OK

 BRA SL_TRNS_OK

;

SL_TRNS_ERR

 BRA SL_TRNS_ERR

;***

; IIC SL_SEND_DATA

; INPUT : R4: Address for storing the data to be sent (unsigned char *)

; INPUT : R5: Number of sent bytes (unsigned short)

; OUTPUT : R0L = 1: Success, R0L = 0: Failure

; WORK : R1, E5

;***

SL_SEND_DATA:

 MOV.B @ICCR,R1L

 OR.B #H'10,R1L

 MOV.B R1L,@ICCR ;/* Send data in the slave mode (MST = 0, TRS = 1). */

;

 MOV.B @ICCR,R1L

 AND.B #H'FE,R1L

 OR.B #H'04,R1L

 MOV.B R1L,@ICCR ;/* Generate a start condition. */

;

 BCLR.B IRIC

;

 MOV.B @R4,R1L

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 70 of 90

 MOV.B R1L,@ICDR ;/* Set transmission data. */

;

 BCLR.B IRIC

SL_SEND_D30

 BTST.B IRIC ;/* Is transmission completed? */

 BEQ SL_SEND_D30

;

 BTST.B ACKB

 BNE SL_SEND_NG ;/* Is an ACK sent? */

;

 MOV.W #1,E5 ; cnt = 1;

SL_SEND_D40

 CMP.W R5,E5 ; no <= cnt

 BCC SL_SEND_D60 ; R5 <= E5 (C=1)

; ; no > cnt

 MOV.B @R4,R1L ;ICDR = *ptr /* Set n data items. */

 MOV.B R1L,@ICDR ;

 BCLR.B IRIC

 ADD.W #1,R4 ;ptr++

SL_SEND_D50

 BTST.B IRIC ;/* Are n data items sent? */

 BEQ SL_SEND_D50

;

 BTST.B ACKB

 BNE SL_SEND_NG ;/* Is an ACK sent? */

;

 ADD.W #1,E5 ; cnt++

 BRA SL_SEND_D40

;

SL_SEND_D60

 MOV.W #0,R0 ; dummy wait

SL_SEND_D70 ;

 ADD.W #1,R0 ;

 CMP.W #40,R0 ;

 BNE SL_SEND_D70 ;

;

 MOV.B #1,R0L ; return(1)

SL_SEND_D90

 BCLR TRS ; ICCR.TRS = 0;

 MOV.B @ICDR,R1L ; dummy = ICDR;

;

 MOV.B @ICCR,R1L ;

 AND.B #H'FA,R1L ;

 MOV.B R1L,@ICCR ; ICCR &= 0xfa;

;

 RTS

;

SL_SEND_NG

 MOV.B #0,R0L ; return(0)

 BRA SL_SEND_D90

;***

; IIC SL_RECV_DATA

; INPUT : R4: Address for storing the received data (unsigned char *)

; INPUT : R5: Number of received bytes (unsigned short)

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 71 of 90

; OUTPUT : R0L = 1: Success

; WORK : R1, E5, R6

;***

SL_RECV_DATA:

 MOV.B #H'84,R1L ;/* ICE=1(P57,P56->SCL,SDA), */

 MOV.B R1L,@ICCR

 MOV.B #H'08,R1L

 MOV.B R1L,@ICMR

;

 BCLR.B ACKB

;

SL_RECV_D10

 BTST.B IRIC ;/* Is reception completed? */

 BEQ SL_RECV_D10

;

 MOV.W #0,E5

SL_RECV_D20

 CMP.W R5,E5 ; no < 0

 BCC SL_RECV_D60 ; R5 <= E5 (C=1)

; ; no > 1

 MOV.B @ICDR,R1L

 MOV.B R1L,@R4 ;/* Fetch received data. */

 BCLR.B IRIC

SL_RECV_D40

 BTST.B IRIC ;/* Is reception completed? */

 BEQ SL_RECV_D40

;

 MOV.B @R4,R1L

 CMP.B #DEVICE_CODE|SLAVE_ADRS,R1L

 BEQ SL_RECV_D50

;

 ADD.W #1,R4 ; ptr++

SL_RECV_D50

 SUB.W #1,R5

 CMP.W R5,E5 ; no <= 1

 BCC SL_RECV_D60 ; R5 <= E5 (C=1)

;

 BCLR.B IRIC

;

 BRA SL_RECV_D20

;

SL_RECV_D60

 BCLR.B ACKB

 MOV.B @ICDR,R1L

 MOV.B R1L,@R4 ;/* Fetch received data. */

 BCLR.B IRIC

;

 MOV.B #1,R0L

 RTS

;***

 .END

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 72 of 90

File: IIC_MA.src

;***

; IIC_MA_SUB Ver1.0 2001.07.05

;

;***

 .INCLUDE "IIC_RAM.H"

 .INCLUDE "FL_EQU.H" ; FLASH ER/WR EQU

;

 .EXPORT _IIC_TEST

 .EXPORT CAL_CRC16

;***

; IIC TEST 2001.07.05

;

;***

 .SECTION PF_1

 .DISPSIZE FBR=16

;***

_IIC_TEST:

;=============Turn on flash memory enable register.==================

 MOV.W #FENR,R6

 BSET.B #FLSHE,@R6 ; Set the FLSHE bit.

;==

;============Turn on flash memory control register 1.================

; MOV.W #FLMCR1,R0

; BSET.B #SWE,@R0 ; Set the SWE bit.

;==

;

 MOV.B #H'10,R0H ; EB4 set

 BSR FL_ER_BLK ; BLOCK ERASE

 CMP.B #OK,R0L ;

 BNE FL_ER_ERR

;

 MOV.W #H'1000,R0

 MOV.W R0,@W_ADR ; Write beginning address

 MOV.W #H'8000,R0

 MOV.W R0,@W_ADR_ED ; Write ending address

 MOV.W #MAXWT,R0 ; Set the maximum number of writes.

 MOV.W R0,@WT_COUNT

;

; MOV.W #10,R3 ; loop cnt

IIC_TEST00

;

FL_TEST20

 MOV.W #IIC_SBUF,R4 ; input:R4(buf_adrs)

 MOV.B #H'A5,R1L ;

 MOV.B R1L,@R4 ; IIC_BUF[0]=H'A5

 MOV.W #1,R5 ; input:R5(cnt)

 BSR MA_SEND_DATA ; /* Send */

 BEQ IIC_SEND_ERR

;

 MOV.W #30,R1

IIC_TEST10

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 73 of 90

 SUB.W #1,R1

 BNE IIC_TEST10 ; wait

;

 MOV.W #W_BUF,R4 ; input:R4(buf_adrs)

 MOV.W #131,R5 ; input:R5(cnt)

 BSR MA_RECV_DATA ; /* Receive */

 BEQ IIC_RECV_ERR

;

 MOV.W #W_BUF,R4 ; input:R4(buf_adrs)

 BSR CAL_CRC16 ;

 MOV.W #W_BUF+128,R4 ; input:R4(crc_adrs)

 MOV.W @R4,R1

 CMP.W R1,R0

 BNE IIC_RECV_ERR

;

 BSR FWRITE128 ; Write flash memory (in units of 128 bytes).

 CMP.B #OK,R0L

 BNE FL_WR_ERR

;

 MOV.W @W_ADR_ED,R3 ; Write ending address

 MOV.W @W_ADR,R2 ; Write beginning address

 ADD.W #128,R2 ; Increment the address by 128.

 MOV.W R2,@W_ADR ;

 CMP.W R2,R3 ;

 BHI FL_TEST20 ; R3(END) > R2 (unsigned)

;

;***

; IIC_TEST END

;***

;

IIC_TEST_OK

IIC_SEND_ERR

IIC_RECV_ERR

FL_ER_ERR

FL_WR_ERR

;==============Turn off flash memory enable register.=================

 MOV.W #FENR,R6

 BCLR.B #FLSHE,@R6 ; Set the FLSHE bit.

;===

ERR_LOOP

 BRA ERR_LOOP

;***

; IIC MA_SEND_DATA

; INPUT : R4: Address for storing the data to be sent (unsigned char *)

; INPUT : R5: Number of sent bytes (unsigned short)

; OUTPUT : R0L = 1: Success, R0L = 0: Failure

; WORK : R1, E5

;***

MA_SEND_DATA:

 MOV.B #H'89,R1L ;/* ICE=1(P57,P56->SCL,SDA), */

 MOV.B R1L,@ICCR

 MOV.B #H'08,R1L

 MOV.B R1L,@ICMR

 MOV.B #H'FC,R1L

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 74 of 90

 MOV.B R1L,@TSCR

MA_SEND_D10

 BTST.B BBSY ;/* Is the bus busy? */

 BNE MA_SEND_D10

;

 MOV.B @ICCR,R1L

 OR.B #H'30,R1L

 MOV.B R1L,@ICCR ;/* Send data in the master mode (MST = 1, TRS = 1). */

;

 MOV.B @ICCR,R1L

 AND.B #H'FE,R1L

 OR.B #H'04,R1L

 MOV.B R1L,@ICCR ;/* Generate a start condition. */

MA_SEND_D20

 BTST.B IRIC ;/* Is transmission successful? */

 BEQ MA_SEND_D20

;

 MOV.B #DEVICE_CODE|SLAVE_ADRS|IIC_DATA_W,R1L

 MOV.B R1L,@ICDR ;/* Set the start slave address. */

;

 BCLR.B IRIC

MA_SEND_D30

 BTST.B IRIC ;/* Is transmission completed? */

 BEQ MA_SEND_D30

;

 BTST.B ACKB

 BNE MA_SEND_NG ;/* Is an ACK sent? */

;

 MOV.W #0,E5 ; cnt = 0;

MA_SEND_D40

 CMP.W R5,E5 ; no <= cnt

 BCC MA_SEND_D60 ; R5 <= E5 (C=1)

; ; no > cnt

 MOV.B @R4,R1L ;ICDR = *ptr /* Set n data items. */

 MOV.B R1L,@ICDR ;

 BCLR.B IRIC

 ADD.W #1,R4 ;ptr++

MA_SEND_D50

 BTST.B IRIC ;/* Are n data items sent? */

 BEQ MA_SEND_D50

;

 BTST.B ACKB

 BNE MA_SEND_NG ;/* Is an ACK sent? */

;

 ADD.W #1,E5 ; cnt++

 BRA MA_SEND_D40

;

MA_SEND_D60

 MOV.B #1,R0L ; return(1)

MA_SEND_D90

 RTS

MA_SEND_NG

 MOV.B #0,R0L ; return(0)

 BRA MA_SEND_D90

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 75 of 90

;***

; IIC MA_RECV_DATA

; INPUT : R4: Address for storing the received data (unsigned char *)

; INPUT : R5: Number of received bytes (unsigned short)

; OUTPUT : R0L = 1: Success

; WORK : R1, E5, R6

;***

MA_RECV_DATA:

 MOV.W R5,R6

;

 BCLR.B TRS ;/* Receive data in the master mode. */

 BSET.B WAIT

 BCLR.B ACKB

;

 MOV.B @ICDR,R1L ;/* Read dummy data. */

 MOV.B R1L,@R4 ;/* Fetch the received data. */

;

 BCLR.B IRIC

MA_RECV_D10

 BTST.B IRIC ;/* Is reception completed? */

 BEQ MA_RECV_D10

;

 BCLR.B IRIC

MA_RECV_D20

 MOV.W #1,E5

 CMP.W R5,E5 ; no <= 1

 BCC MA_RECV_D60 ; R5 <= E5 (C=1)

; ; no > 1

MA_RECV_D30

 BTST.B IRIC ;/* Is reception completed? */

 BEQ MA_RECV_D30

;

 MOV.B @ICDR,R1L

 MOV.B R1L,@R4 ;/* Fetch the received data. */

 BCLR.B IRIC

MA_RECV_D40

 BTST.B IRIC ;/* Is reception completed? */

 BEQ MA_RECV_D40

;

 CMP.W R5,R6 ;

 BEQ MA_RECV_D50

;

 ADD.W #1,R4 ; ptr++

MA_RECV_D50

 SUB.W #1,R5

 CMP.W R5,E5 ; no <= 1

 BCC MA_RECV_D60 ; R5 <= E5 (C=1)

;

 BCLR.B IRIC

;

 BRA MA_RECV_D20

;

MA_RECV_D60

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 76 of 90

 BSET.B ACKB

 BSET.B TRS

 BCLR.B IRIC

MA_RECV_D70

 BTST.B IRIC ;/* Is reception completed? */

 BEQ MA_RECV_D70

;

 BCLR.B WAIT

 MOV.B @ICDR,R1L

 MOV.B R1L,@R4 ;/* Fetch the received data. */

 BCLR.B IRIC

;

 MOV.B @ICCR,R1L ;

 AND.B #H'FA,R1L ;

 MOV.B R1L,@ICCR ; ICCR & 0xfa

;

 MOV.B #1,R0L

 RTS

;***

; CAL_CRC16

; INPUT : R4: Address for storing the received data (unsigned char *)

; WORK : E0(k),R0(0x1021),E1(cnt),R1(data),R2(work),E5(crc)

;***

CAL_CRC16:

 MOV.W #H'1021,R0

 MOV.W #0,E5 ; crc = 0;

 MOV.W #128,E1 ; cnt = 128

 MOV.B #0,R1H

CAL_CRC10

 MOV.B @R4,R1L ; data = *ptr

 ADD.W #1,R4 ; ptr++

 SHLL.W R1 ; data << 1 (1)

 SHLL.W R1 ; data << 1 (2)

 SHLL.W R1 ; data << 1 (3)

 SHLL.W R1 ; data << 1 (4)

 SHLL.W R1 ; data << 1 (5)

 SHLL.W R1 ; data << 1 (6)

 SHLL.W R1 ; data << 1 (7)

 SHLL.W R1 ; data << 1 (8)

;

 MOV.W #0,E0 ; k= 0;

CAL_CRC20

 MOV.W R1,R2

 XOR.W E5,R2 ; crc ^ data

 BPL CAL_CRC30

 SHLL.W E5 ; crc << 1

 XOR.W R0,E5 ; 0x1021 ^ crc

 BRA CAL_CRC40

CAL_CRC30

 SHLL.W E5 ; crc << 1

CAL_CRC40

 SHLL.W R1 ; data >> 1

 ADD.W #1,E0 ; k++

 CMP.W #8,E0

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 77 of 90

 BNE CAL_CRC20

;

 SUB.W #1,E1 ; cnt--;

 BNE CAL_CRC10

;

 MOV.W E5,R0 ; return(crc)

 RTS

;***

;***

 .INCLUDE "FL_ERWR.SRC" ; FLASH ER/WR SUB

;***

;***

 .END

File: fl_erwr.src

;***

; FL_ERWR Ver1.0 2001.07.05

;

;***

;***

; FL_ER_BLK

; INPUT : R0H: Specifies the block to be erased (H'01, H'02, H'04,

 H'08, H'10) (EB0, EB1, EB2, EB3, EB4).

; OUTPUT: R0L: Indicates success or failure.

;***

FL_ER_BLK:

; CMP.B #H'01,R0H

; BNE FL_ER_B10

; MOV.W #H'0000,R1 ; EB0(01) 0000:03FF+1

; MOV.W #H'0400,R2

; BRA FL_ER_B50

FL_ER_B10

; CMP.B #H'02,R0H

; BNE FL_ER_B20

; MOV.W #H'0400,R1 ; EB1(02) 0400:07FF+1

; MOV.W #H'0800,R2

; BRA FL_ER_B50

FL_ER_B20

; CMP.B #H'04,R0H

; BNE FL_ER_B30

; MOV.W #H'0800,R1 ; EB2(04) 0800:0BFF+1

; MOV.W #H'0C00,R2

; BRA FL_ER_B50

FL_ER_B30

 CMP.B #H'08,R0H

 BNE FL_ER_B40

 MOV.W #H'0C00,R1 ; EB3(08) 0C00:0FFF+1

 MOV.W #H'1000,R2

 BRA FL_ER_B50

FL_ER_B40

 CMP.B #H'10,R0H

 BNE FL_ER_BERR ; EB4(10) 1000:7FFF+1

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 78 of 90

 MOV.W #H'1000,R1

 MOV.W #H'8000,R2

;

FL_ER_B50

 MOV.B R0H,@BLK_NO ; Block to be erased

 MOV.W R1,@EVF_ST ; Set the beginning address of the block to be erased.

 MOV.W R2,@EVF_ED ; Set the ending address of the block to be erased.

 MOV.W #MAXET,R5 ; Set the maximum number of erases.

 MOV.W R5,@ET_COUNT

 MOV.W #EBR1,R5 ; Set the EBR1 address.

 MOV.W #FLMCR1,R6 ; Set the FLMCR address.

;

 BSR BLK1_ERASE ; Erase the target block.

 CMP.B #OK,R0L ;

 BNE FL_ER_BERR ; Erase error

 RTS

;

FL_ER_BERR

 MOV.B #NG,R0L ; Erase block error

 RTS

;

; **

; * Name : Routine for writing the desired 128 bytes in flash memory *

; * Function: Writes and verifies 128 bytes. *

; * Input : @W_ADR : Write address *

; * @W_BUF : Write data (128 bytes) *

; * @WT_COUNT: Maximum number of writes *

; * Output : R0L : Result flag (H'00 for success, H'01 for failure) *

; **

FWRITE128 .EQU $

 MOV.W #128,R4

 MOV.W #W_BUF,R5

 MOV.W #BUFF,R6

 EEPMOV.W ; Transfer a block from W_BUF to BUFF.

;

 MOV.W #FLMCR1,R6 ; Pointer to the flash memory control register

;

 BSET.B #SWE,@R6 ; Set the SWE bit.

 MOV.W #WLOOP1,R0 ; At least 1 µs
 BSR FL_WAIT

;

 XOR.W R0,R0 ; Clear the write counter.

 MOV.W R0,@COUNT

;

;====== Initial verification =====================

 BSR FWRITEVF ; Initial program verification

 CMP.B #OK,R0L

 BEQ FWRTE40 ; Initial verification is completed.

;

 CMP.B #WNG,R0L

 BEQ FWRTE30 ; Write error

;

;====== Initial write (with additional write) ====

FWRTE15 MOV.W #BUFF,R2 ; Rewrite data

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 79 of 90

 MOV.W #TIME30,R3 ; Issue the P pulse (30 µs).
 BSR FWRITE ; Write data.

 BSR FWRITEVF ; Write verification

 MOV.B R0L,@VF_RET

 MOV.W #OWBUFF,R2 ; Additional write data

 MOV.W #TIME10,R3 ; Issue the P pulse (10 µs).
 BSR FWRITE ; Write additional data.

 MOV.B @VF_RET,R0L

 CMP.B #OK,R0L

 BEQ FWRTE40 ; Writing is completed.

;

 CMP.B #WNG,R0L

 BEQ FWRTE30 ; Write error

;

 MOV.W @COUNT,R0 ; Write counter @COUNT + 1

 INC.W #1,R0

 MOV.W R0,@COUNT

 CMP.W #OW_COUNT,R0

 BNE FWRTE15 ; Determine the number of additional writes.

;

;====== Normal write (without additional write) ==

FWRTE20 MOV.W #BUFF,R2 ; Rewrite data

 MOV.W #TIME200,R3 ; Issue the P pulse (200 µs).
 BSR FWRITE ; Write data.

 BSR FWRITEVF ; Write verification

 CMP.B #OK,R0L

 BEQ FWRTE40 ; Writing is completed.

;

 CMP.B #WNG,R0L

 BEQ FWRTE30 ; Write error

;

 MOV.W @COUNT,R0 ; Write counter @COUNT + 1

 INC.W #1,R0

 MOV.W R0,@COUNT

 MOV.W @WT_COUNT,E0

 CMP.W E0,R0

 BNE FWRTE20 ; Determine the maximum number of writes.

;

;------- Abnormal termination ------------------

FWRTE30

 BCLR.B #SWE,@R6 ; Clear the SWE bit.

 MOV.W #WLOOP100,R0 ; At least 100 µs
 BSR FL_WAIT

;

 MOV.B #NG,R0L ; Set the NG (failure) flag.

 RTS

;

;------- Normal termination --------------------

FWRTE40

 BCLR.B #SWE,@R6 ; Clear the SWE bit.

 MOV.W #WLOOP100,R0 ; At least 100 µs
 BSR FL_WAIT

;

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 80 of 90

 MOV.B #OK,R0L ; Set the OK (success) flag.

 RTS

;

; **

; * Name : Write verification routine *

; * Function: Verifies the specified address and creates rewrite data. *

; * Input : ER6 : Address of the FLMCR register *

; * @W_ADR : Write address *

; * @W_BUF : Write data (128 bytes) *

; * @BUF : Rewrite data (128 bytes) *

; * Output : @BUF : Rewrite data (128 bytes) *

; * @OWBUFF: Additional write data (128 bytes) *

; * R0L : Verification result (H'00 for success, H'01 for *

; * failure, H'02 for minor error) *

; **

FWRITEVF .EQU $

 MOV.W #H'FFFF,R5 ; Dummy write data for address latch

 MOV.W #BUFF,R1 ; Rewrite data buffer

 MOV.W #W_BUF,R2 ; Write data buffer

 MOV.W @W_ADR,R4 ; Flash memory write address

;======== Additional write data buffer ===========

 MOV.W #OWBUFF,R3 ; Additional write data buffer

;===

;

 BSET.B #PV,@R6 ; Set the PV bit.

 MOV.W #WLOOP4,R0 ; At least 4 µs
 BSR FL_WAIT

;

FWVF20

 MOV.W R5,@R4 ; Write dummy data in the latch.

 MOV.W #WLOOP2,R0 ; At least 2 µs
 BSR FL_WAIT

;

 MOV.W @R4+,R0 ; Flash memory data

;======== Creating additional write data =========

 MOV.W @R1,E0 ; Initial write (up to 6 times)

 OR.W R0,E0 ; Valid: @COUNT = 0, 1, 2, 3, 4, 5

 MOV.W E0,@R3 ; Invalid: @COUNT = 6 to 999

 ADD.W #2,R3

;===

 NOT.W R0

 MOV.W @R2,E0

 OR.W R0,E0 ; Inverse data OR write data

 MOV.W E0,@R1 ; Set rewrite data.

 ADD.W #2,R1

 MOV.W @R2+,E0

 AND.W E0,R0 ; A write error has occurred when read data is 0

 BNE FWVF70 ; and write data is 1.

;

 CMP.W #W_BUF+128,R2

 BNE FWVF20 ; Verify 128 bytes.

;

 BCLR.B #PV,@R6 ; Clear the PV bit.

 MOV.W #WLOOP2,R0 ; At least 2 µs

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 81 of 90

 BSR FL_WAIT

;

 MOV.B #NG,R0L ; Set the NG (failure) flag.

 MOV.W #BUFF,R1 ; Rewrite data beginning address

FWVF50 MOV.W @ER1+,E0

 CMP.W R5,E0 ; Are all 128 bytes of rewrite data FF?

 BNE FWVF60 ; If not H'FF, a verification error has occurred.

;

 CMP.W #BUFF+128,R1

 BNE FWVF50 ; Check 128 bytes.

;

 MOV.B #OK,R0L ; Set the OK (success) flag.

FWVF60

 RTS

;

;------- FLASH ROM ERR -----------------------

FWVF70

 BCLR.B #PV,@R6 ; Clear the PV bit.

 MOV.W #WLOOP2,R0 ; At least 2 µs
 BSR FL_WAIT

;

 MOV.B #WNG,R0L ; Set the WNG (minor error) flag.

 RTS

;

; **

; * Name : Write routine *

; * Function: Writes data at the specified address. *

; * Input : E6 : Address of the FLMCR register *

; * @W_ADR: Write address *

; * ER2 : Write beginning address (rewrite data or additional *

; * write data) *

; * ER3 : Time set by the P bit (10 µs, 30 µs, or 200 µs) *
; * Output : None. *

; **

FWRITE .EQU $

 MOV.W @W_ADR,R1 ; Write address

;

 MOV.W #128,E0

FWRT10 MOV.B @R2+,R0L ; Rewrite data (in bytes)

 MOV.B R0L,@R1 ; Write dummy data (in bytes).

 ADD.W #1,R1

 DEC.W #1,E0

 BNE FWRT10 ; Repeat 128 bytes.

; (Initialize WDT.)

 MOV.B #H'5A,R0H ;

 MOV.B R0H,@TCSRWD ; TCSRWD = H'5A

 MOV.B #H'F8,R0H ;

 MOV.B R0H,@TMWD ; TMWD = H'F8(φ/64)
 MOV.B #166,R0H ;

 MOV.B R0H,@TCWD ; TCWD = 166:(256-99)*4µs=360µs
 MOV.B #H'F4,R0H ;

 MOV.B R0H,@TCSRWD ; TCSRWD = H'F4 WDT On

;

 BSET.B #PSU,@R6 ; Set the PSU bit.

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 82 of 90

 MOV.W #WLOOP50,R0 ; At least 50 µs
 BSR FL_WAIT

;

;======= Issuing the Write pulse =================

 BSET.B #P,@R6 ; Set the PSU bit (write).

FWRT40 DEC.W #1,R3 ; Write time: 10 µs, 30 µs, or 200 µs
 BNE FWRT40:16

;===

 BCLR.B #P,@R6 ; Clear the PSU bit.

 MOV.W #WLOOP5,R0 ; 5µs
 BSR FL_WAIT

;

 BCLR.B #PSU,@R6 ; Clear the PSU bit.

 MOV.W #WLOOP5,R0 ; At least 5 µs
 BSR FL_WAIT

;

 MOV.B #H'53,R0H ;

 MOV.B R0H,@TCSRWD ; TCSRWD = H'53 WDT Off

 RTS

;

; **

; * Name : Flash memory single block erase routine *

; * Function: Erases the specified block in flash memory. *

; * Input : ER6 : Address of the FLMCR register *

; * ER5 : Address of the EBR register *

; * @EVF_ST : Erase beginning address *

; * @EVF_ED : Erase ending address *

; * @BLK_NO : Bit number for the block to be erased *

; * @ET_COUNT: Maximum number of erases *

; * Output : R0L : Result flag (H'00 for success, H'01 for failure) *

; **

BLK1_ERASE .EQU $

 BSET.B #SWE,@R6 ; Set the SWE bit.

 MOV.W #WLOOP1,R0 ; At least 1 µs
 BSR FL_WAIT

;

 XOR.W R0,R0 ; Clear the erase counter.

 MOV.W R0,@COUNT

;

;======= Initial verification ====================

 BSR FERASEVF ; Initial erase verification

 CMP.B #OK,R0L

 BEQ BLK1_40 ; Initial verification is completed.

;

;======= Erase and verification ==================

BLK1_20 BSR FERASE ; Erase data.

 BSR FERASEVF ; Erase verification

 CMP.B #OK,R0L

 BEQ BLK1_40 ; Erasure is completed.

;

 MOV.W @COUNT,R0 ; Erase counter: @COUNT + 1

 INC.W #1,R0

 MOV.W R0,@COUNT

 MOV.W @ET_COUNT,E0

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 83 of 90

 CMP.W E0,R0

 BNE BLK1_20 ; Determine the maximum number of erases.

;------- Abnormal termination ------------------

BLK1_30

 BCLR.B #SWE,@R6 ; Clear the SWE bit.

 MOV.W #WLOOP100,R0 ; At least 100 µs
 BSR FL_WAIT

;

 MOV.B #NG,R0L ; Set the NG (failure) flag.

 RTS

;

;------- Normal termination --------------------

BLK1_40

 BCLR.B #SWE,@R6 ; Clear the SWE bit.

 MOV.W #WLOOP100,R0 ; At least 100 µs
 BSR FL_WAIT

;

 MOV.B #OK,R0L ; Set the OK (success) flag.

 RTS

;

; **

; * Name : Erase verification routine *

; * Function: Verifies the erasure of the specified block. *

; * Input : ER6 : Address of the FLMCR register *

; * @EVF_ST: Verification beginning address *

; * @EVF_ED: Verification ending address *

; * Output : R0L : Verification result (H'00 for success, H'01 for failure)*

; **

FERASEVF .EQU $

 MOV.W @EVF_ST,R1

 MOV.W @EVF_ED,R2

 MOV.W #H'FFFF,E0 ; Write dummy data to check that the target data is

erased.

 BSET.B #EV,@R6 ; Set the EV bit.

 MOV.W #WLOOP20,R0 ; At least 20 µs
 BSR FL_WAIT

;

VRF30

 MOV.W E0,@R1 ; Write dummy data in the address latch.

 MOV.W #WLOOP2,R0 ; At least 2 µs
 BSR FL_WAIT

;

 MOV.W @R1+,R0

 CMP.W E0,R0 ; Verification

 BNE VRF60 ; End when the data is not erased from the target address.

 CMP.W R1,R2

 BNE VRF30

;

 BCLR.B #EV,@R6 ; Clear the EV bit.

 MOV.W #WLOOP4,R0 ; At least 4 µs
 BSR FL_WAIT

;

 MOV.B #OK,R0L ; Set the OK (success) flag.

 RTS

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 84 of 90

;

;------- FERASEVF ERR ------------------------

VRF60

 BCLR.B #EV,@R6 ; Clear the EV bit.

 MOV.W #WLOOP4,R0 ; At least 4 µs
 BSR FL_WAIT

;

 MOV.B #NG,R0L ; Set the NG (failure) flag.

 RTS

;

; **

; * Name : Erase routine *

; * Function: Erases the specified block. *

; * Input : ER6 : Address of the FLMCR register *

; * ER5 : Address of the EBR register *

; * @BLK_NO: Bit number for the target block *

; * Output : None. *

; **

FERASE .EQU $

; Initialize WDT.

 MOV.B #H'5A,R0H ;

 MOV.B R0H,@TCSRWD ; TCSRWD = H'5A

 MOV.B #H'Fd,R0H ;

 MOV.B R0H,@TMWD ; TMWD = H'Fd(φ/2048)
 MOV.B #100,R0H ;

 MOV.B R0H,@TCWD ; TCWD = 100:(256-166)*0.128ms=20ms

 MOV.B #H'F4,R0H ;

 MOV.B R0H,@TCSRWD ; TCSRWD = H'F4 WDT On

;

 MOV.B @BLK_NO,R0H

 MOV.B R0H,@R5 ; Set the bit of the target block in EBR.

 BSET.B #ESU,@R6 ; Set the ESU bit.

 MOV.W #WLOOP100,R0 ; At least 100 µs
 BSR FL_WAIT

;

 MOV.L #TIME10000,ER0 ; 10mS

;======= Issue the Erase pulse. ==================

 BSET.B #E,@R6 ; Set the E bit (erase).

FERS20 DEC.W #1,R0 ; Erase time: 10 ms

 BNE FERS20:16

;===

 BCLR.B #E,@R6 ; Clear the E bit.

 MOV.W #WLOOP10,R0 ; At least 10 µs
 BSR FL_WAIT

;

 BCLR.B #ESU,@R6 ; Clear the ESU bit.

 MOV.W #WLOOP10,R0 ; At least 10 µs
 BSR FL_WAIT

;

 MOV.B #H'53,R0H ;

 MOV.B R0H,@TCSRWD ; TCSRWD = H'53 WDT Off

 MOV.B #0,R0H

 MOV.B R0H,@R5 ; Clear the target block in EBR.

 RTS

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 85 of 90

;

;==========Wait subroutine========================

FL_WAIT DEC.W #1,R0

 BNE FL_WAIT

 RTS

;===

File: vect.src

;**/

; Vector Table */

;**/

 .IMPORT _INIT

 .IMPORT VTRAP0,VTRAP1,VTRAP2,VTRAP3

 .IMPORT VBRAK,VSLEP

 .IMPORT VIRQ0,VIRQ1,VIRQ2,VIRQ3

 .IMPORT VWKP,VOVRF

 .IMPORT VTMRW,VTMRV

 .IMPORT VSCI3,VIIC,VADC

;

 .SECTION V0,CODE,LOCATE=H'0000

;**/

; adrs

;**/

 .DATA.W _INIT ; 00 RESET VECTER ADDRESS

;

 .SECTION V1,CODE,LOCATE=H'0010

 .DATA.W VTRAP0 ; 10 TRAP#0

 .DATA.W VTRAP1 ; 12 TRAP#1

 .DATA.W VTRAP2 ; 14 TRAP#2

 .DATA.W VTRAP3 ; 16 TRAP#3

 .DATA.W VBRAK ; 18 BREAK

 .DATA.W VSLEP ; 1A SLEEP

 .DATA.W VIRQ0 ; 1C IRQ0

 .DATA.W VIRQ1 ; 1E IRQ1

 .DATA.W VIRQ2 ; 20 IRQ2

 .DATA.W VIRQ3 ; 22 IRQ3

 .DATA.W VWKP ; 24 WKP

 .DATA.W VOVRF ; 26 OVER FLOW

;

 .SECTION V2,CODE,LOCATE=H'002A

 .DATA.W VTMRW ; 2A TIMER W

 .DATA.W VTMRV ; 2C TIMER V

 .DATA.W VSCI3 ; 2E SCI3_RX/TX/ERR

 .DATA.W VIIC ; 30 IIC

 .DATA.W VADC ; 32 ADC

;**/

 .END

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 86 of 90

File: u_vect.src

;**/

; User Vector Table */

;**/

 .IMPORT _INIT

 .EXPORT VTRAP0,VTRAP1,VTRAP2,VTRAP3

 .EXPORT VBRAK,VSLEP

 .EXPORT VIRQ0,VIRQ1,VIRQ2,VIRQ3

 .EXPORT VWKP,VOVRF

 .EXPORT VTMRW,VTMRV

 .EXPORT VSCI3,VIIC,VADC

;

 .SECTION UV,CODE,LOCATE=H'1000

;**/

; Jump to user_program

;**/

VTRAP0:

 JMP @_INIT

VTRAP1:

 JMP @_INIT

VTRAP2:

 JMP @_INIT

VTRAP3:

 JMP @_INIT

VBRAK:

 JMP @_INIT

VSLEP:

 JMP @_INIT

VIRQ0:

 JMP @_INIT

VIRQ1:

 JMP @_INIT

VIRQ2:

 JMP @_INIT

VIRQ3:

 JMP @_INIT

VWKP:

 JMP @_INIT

VOVRF:

 JMP @_INIT

VTMRW:

 JMP @_INIT

VTMRV:

 JMP @_INIT

VSCI3:

 JMP @_INIT

VIIC:

 JMP @_INIT

VADC:

 JMP @_INIT

;**/

 .END

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 87 of 90

File: LED.c (user program (example))

/**/

/* */

/* FILE :LED.c */

/* DATE :Tue, Jul 31, 2001 */

/* DESCRIPTION :Main Program */

/* CPU TYPE :H8/3664N */

/* */

/* LED Test */

/* */

/**/

#include "machine.h"

#define PDR5 *(volatile unsigned char *)0xFFD8

#define PMR5 *(volatile unsigned char *)0xFFE1

#define PCR5 *(volatile unsigned char *)0xFFE8

#define PDR8 *(volatile unsigned char *)0xFFDB

#define PCR8 *(volatile unsigned char *)0xFFEB

unsigned int cnt1;

unsigned int cnt2;

/*;**/

/*; Function Definitions */

/*;**/

void u_main (void);

void u_wait (void);

#pragma section /* P */

/*;**/

/*; Main Program */

/*;**/

void u_main (void) {

 PDR5 = 0x00;

 PDR8 = 0x00;

 PMR5 = 0x00;

 PCR5 = 0x10;

 PCR8 = 0x10;

 while (1) {

 u_wait();

 PDR5 = 0x10;

 u_wait();

 PDR5 = 0x00;

 u_wait();

 PDR8 = 0x10;

 u_wait();

 PDR8 = 0x00;

 }

}

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 88 of 90

/*;**/

/*; Sub Program */

/*;**/

void u_wait(void) {

 cnt1 = 0;

 cnt2 = 0;

 while (cnt2 < 1000) {

 while (cnt1 < 300) {

 cnt1++;

 }

 cnt2++;

 cnt1 = 0;

 }

}

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 89 of 90

Revision Record
Description

Rev. Date Page Summary
1.00 Dec.20.03 — First edition issued

H8/300H Tiny Series
Reprogramming the On-Chip Flash Memory Using the I2C Bus

REJ06B0217-0100Z/Rev.1.00 December 2003 Page 90 of 90

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Introduction
	Specifications
	Detailed Specifications
	Description of the Registers
	Programming and Erasing the Flash Memory in the User Mode
	Erase/Programming Program
	Procedure for Programming and Program Verification
	Procedure for Erase and Erase Verification
	Interrupts during Programming or Erasing Flash Memory
	Communications Protocol
	Programs to be used and memory map

	Description of Software
	Modules
	Files
	Defining sections

	Hierarchy of Modules
	Flowcharts
	Description of Software
	Modules

	Hierarchy of Modules
	Flowcharts
	Header File List
	Program Listing
	Revision Record

