REN ESAS Application Note

Renesas RA Family
RA6 MCU Advanced Secure Bootloader Design using
MCUboot and Code Flash Dualbank Mode

Introduction

MCUDboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader,
defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy
software updates. MCUboot is an independent operating system and hardware and relies on hardware
porting layers from the operating system it works with. The Renesas Flexible Software Package (FSP)
integrates an MCUboot port starting from FSP v3.0.0. Users can benefit from using the FSP MCUboot
Module to create a Root of Trust (RoT) for the system and perform secure booting and fail-safe application
updates.

MCUboot is maintained by Linaro on the GitHub mcu-tools page https://github.com/mcu-tools/mcuboot.
There is a \docs folder that holds the documentation for MCUboot in .md file format. This application note
refers to the above-mentioned documents wherever possible and is intended to provide additional
information that is related to using the Renesas FSP MCUboot Module.

For RA Family RA6M4, RA6MS5, and RAGE1 MCU Groups, the internal code flash has a dual bank feature,
which can be used to simplify and accelerate firmware updates. This dual bank feature is supported from
FSP v3.6.0. This application note demonstrates secure bootloader design using this dual bank feature for a
Non-TrustZone environment based on RA6M4.

Example projects using the EK-RA6M4 evaluation kit are provided in this application project. Users can
review the flash layout for RAGE1 and RA5M5 and port the application to RAG6E1 and RA6M5.In addition,
steps for how to master an application to use with the bootloader and how to update to a new application are
provided. Users can follow these steps to recreate the reference bootloader and link the example application
projects included in this application project to use the bootloader.

If you are interested in a secure bootloader design using the MCUboot module with RA6 internal flash in
linear mode, reference application project R11AN0497 (Search | Renesas Electronics Corporation).

Required Resources
Development tools and software

e The e? studio IDE v2024-07
e Renesas Flexible Software Package (FSP) v5.5.0
e SEGGER J-link® USB driver

The above three software components: the FSP, J-Link USB drivers, and e? studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

e Python v3.9 or later- https://www.python.org/downloads/
e Renesas Flash Programming (RFP) v3.16.00 or later
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-qui

Hardware

EK-RA6M4, Evaluation Kit for RA6M4 MCU Group http://www.renesas.com/ra/ek-ra6m4
Workstation running Windows® 10

Two USB device cables (type-A male to micro-B male)

One USB to TTL Serial 3.3-V UART Converter

Prerequisites and Intended Audience

Users of this application project should have some experience with the Renesas e? studio. Users should
read the MCUboot Port section of the FSP User’s Manual as well as the MCU Hardware User’s manual

R11ANO570EU0141 Rev.1.41 Page 1 of 56
Mar.13.25 RENESAS

https://github.com/mcu-tools/mcuboot
https://www.renesas.com/us/en/search?keywords=R11AN0497EU
http://www.renesas.com/fsp
https://www.python.org/downloads/
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
http://www.renesas.com/ra/ek-ra6m4

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Flash Memory section prior to working with this application project. Users should also have some
knowledge of cryptography. Prior knowledge of Python usage is also helpful.

The intended audience includes product developers, product manufacturers, product support, or end users
who are involved with designing application systems involving the usage of a secure bootloader.

Using this Application Note

Section 1. Code Flash Dual Bank Feature is an overview of the code flash dual bank feature of RA6M4 and
RAB6M5 MCUs. Users who are familiar with the MCU dual bank features can skip this section.

Section 2. Using the Code Flash Dual Bank Feature with MCUboot Overview covers the general flow of
architecting a system using the FSP MCUboot module. For example, the memory configuration for a code
flash dual bank-based bootloader using MCUboot is introduced in this section.

Section 3. Guidelines for Using the Example Projects Included covers the introduction to the example
projects included in this application project. Users should review this section to understand how to use the
example projects.

Section 4. Creating the Bootloader Project using Code Flash Dual Bank Mode covers the steps to create a
secure bootloader using the code flash dual bank feature and MCUboot module. Users who will customize
the bootloader should review this section to understand how the bootloader is structured.

Section 5.Configuring and Signing an Application Project provides the steps to configure and sign an
application to use the bootloader created in section 4. Creating the Bootloader Project using Code Flash
Dual Bank Mode. The included example projects are used in this section.

Section 6. Booting the Primary Application and Updating to a New Image provides instructions on how to
debug and boot the primary application project and update to a new image. Users who will use the dual bank
feature for the first time should review this section as it includes information about:

e Debugging and booting the primary application
¢ Downloading a new image using the primary image downloader
e Booting the new image

Section 7. Production Support Considerations covers the production support of provisioning the new MCU
with the bootloaders and the initial application.

Section 8. Compile and Exercise the Included Example Bootloader and Application Projects provides
instructions on how to run the included example projects. Users who are familiar with bootloader design
using MCUboot can go to this section for a quick evaluation of the included example projects.

R11ANO570EU0141 Rev.1.41 Page 2 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Contents

1. Code Flash Dual Bank Feature.............ooooiiiiii i 5
1.1 RA6M4 and RAGE1 MCU Group Code Flash Configuration.............ccooiiieiiiiiiiiiiiieciee e 5
1.2 RABM5 MCU Group Code Flash Configurationo.c.eeeiiiiiiiiiie e 8
1.3 OptioN-SettiNg MEMIOIYciiiiiiiie ettt e bb et e e s bt e sbb et e e abbee e e annnee s 11
1.3.1 Code FIash BanK MOeoiiiiiiiie ettt ettt st e e e at e e e sttt e e annne e e e snseeaeannneeens 12
1.3.2 Startup BanK SEIECHONooiiii e e e a e a e e e e e aa e 12
LG TG T = 7= 0| QS A1 T o PR 13
1.3.4 Code Flash BIOCK Prot@CIONttt e e e e e e e e e e 14
2. Using the Code Flash Dual Bank Feature with MCUboot Overviewccccccceeeeieeeeeeennnen. 15
2.1 MCUDOOt FUNCHONAITIES OVEIVIEWeveiiiiiiiiee ettt ettt ettt e e et e e e st ee e s snbeeeeeanbaeeeens 15
2.2 Using MCUboot for Code Flash Dual Bank Mode............cooiiiiiiiiiiiiiiiiiee e 15
2.21 Use Direct XIP Firmware Update MOAEoooii e e e 15
2.2.2 Memory Configuration Overview with Dual Bank and MCUDOOLccceeiiiiiiiiiiiii e, 16
2.3 Designing Bootloader and Initial Primary Application OVEIrvIiEWcccooiiiiieiiiiiiiiiiieee e 16
2.4 Migrating an Existing Code Flash Linear Mode MCUboot Based System.............ccccovvveevieeiiiiiiieennnn. 17
3. Guidelines for Using the Example Projects Included..............cccviiiiiiiiiiiiie 17
3.1 Example Projects With BOOIOQET..............uuuiiiiiiiiiiiiiiiiee e e eeeeeeeeeseeesenensnsssnnnrnnes 17
3.2 Example Projects without BOOIOAET..............uuuiiiiiiiiiiiiiiiiii e eeeeeeesenenensnenenenees 18
4. Creating the Bootloader Project using Code Flash Dual Bank Modeccooeeeiieeieeennee.. 18
4.1 Include the MCUboot Module in the Bootloader Projectcooooiiiiiiiieiiiicieeeee e 18
4.2 Configure the Memory Configuration and Authentication Methodcccccoiiiii i, 22
4.3 Configure the MbedTLS Crypto Only Module and the Flash Driver............cccccoveeieeiiiiiciiieeee e 24
T 3 S X (o I (g 1= = oo | A 70T [SRR SS 26
4.5 Compile the Bootloader ProjecCt. ..ot 27
4.6 Configure the Python Signing ENVIFONMENTcooiiiiiiiii s 27
4.7 Prepare for ProducCtion SUPPOIT..........uviiiiiiiiiiiiiee et e e e e e e e e s st e e e e e e s s nnrneeees 28
5. Configuring and Signing an Application Project ... 31
5.1 Configure the Application Project to Use the Bootloaderccooieiiiiiiiiini 31
5.2 Signing the AppPliCation IMAGE........oiio it e e e e e e e e e e e e st e reeeaaeeeeaanes 32
5.3 Preparation for ProdUCtion SUPPOIt..........uuiiiiiii it e e e e et e e e e e e searsreeeeaeeaeaanes 34
6. Booting the Primary Application and Updating to a New Imageccccooiiiiiiiiiiiiiieiieeennn 35
6.1 Prepare @ SECONAArY IMAQJEuuuiiiii it e et e e e e e e s e e e e e e e s et abeeeeaaeessantsreeeaaeeaaannns 35
6.2 SEtUP the HAIAWAIEcci ittt e e e e e e e e e e e e e e et st e eeeeeeeesnntsseeeeaeeanaanes 38
6.3 Erase the MU ...ttt e e et e e ettt e e e e ate e e e e sbe e e e e bt e e e e annbeeeeanneeeeeannes 38
6.3.1 Use the Renesas Flash Programmer...........cooiiiiiiiii e 39
6.3.2 Use the SEGGER J-FIASh LItc.eoe i 40
R11ANO570EUO0141 Rev.1.41 Page 3 of 56

Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

6.3.3 Use Renesas Device Partition Managercooiiiiiiiiiiei e 41
6.4 Start the DebUG SESSIONeeeieiiiie e e e e e e a e e e e s e e e e e e e e e aanes 43
6.5 Program the New Application Using the Primary Application Downloader..............cccccuvvveveininiennrnnnnnnns 45
6.6 BOOt the NEW APPIICATIONuuiiiiiiiiiiiiiiiiie ittt e s e e e e e tets s tsestststssssssssssssssnsnsnsnnnnnsnnes 47
7. Production Support Considerationscoooiiiiiiiiiie e 48
7.1 Protect the Bootloader Using Flash BIOCK ProtecCtionccccuvviiiiiiiiiiiiiiiiiiiiiiiiiiiieiiveieieeveievnenenens 48
7.2 Provision the Bootloaders and the Initial Application t0 MCUcccoiiiiiiieiiiccee e 50
8. Compile and Exercise the Included Example Bootloader and Application Projects................. 53
8.1 Using USB as the Download INtErfacCeccoceiiiiciiiiiiii e et a e e e 53
8.2 Using the UART as the Download INtErfacec.uuveiiiiiiiiiieeiee et e e 53
S = 1= =Y o = R 54
10. WeDSIte @and SUPPOIT 55
REVISION HISTOIYot e e e e e e e e e e e e e e e e e e e st e eaaeas 56
R11ANO570EUO0141 Rev.1.41 Page 4 of 56

Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

1. Code Flash Dual Bank Feature

For the RA6M4, RA6E1, and RA6MS5 MCU groups, the internal flash memory can operate in linear mode or
dual bank mode. In linear mode, the code flash memory is used as one area. In dual-bank mode, the code
flash memory is divided into two areas. In code flash dual bank mode, the bank swap function can be used to
boot into a new application for a system that includes a bootloader.

1.1 RA6M4 and RA6E1 MCU Group Code Flash Configuration

Using the 1-MByte product as an example, the code flash memory in linear mode for RA6M4 includes the
blocks shown in Figure 1. RA6M4 and RAGE1 Code Flash Memory in Linear Mode.

Address

0x000F_FFFF ™

Block 37
(32 Kbytes)

0x000F_8000

0x0001_FFFF

Block 9
(32 Kbytes) > User area: 1 Mbytes
0x0001_8000
0x0001_7FFF
Block 8

(32 Kbytes)
0x0001_0000

0x0000_FFFF
0x0000_E000 Block 7 (8 Kbytes)

0x0000_3FFF
0x0000_2000

0x0000_1FFF
0x0000_0000 Block 0 (8 Kbytes)

Block 1 (8 Kbytes)

/

Figure 1. RA6M4 and RAGE1 Code Flash Memory in Linear Mode
Upper Bank Address in Code Flash Linear Mode

In code linear mode, the upper bank starting address is half of the code flash size. For example, for the 1-
MByte RA6M4 and RAG6E1 MCU used in this example project, the starting address of the upper bank
address is 0x80000. The upper bank linear mode address is used when downloading the upper bank
bootloader using MCUboot in code flash dual bank mode.

R11ANO570EU0141 Rev.1.41 Page 5 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Using the 1-MByte product as an example, the code flash memory in dual bank mode includes the blocks
shown in Figure 2. RA6M4 and RA6E1 Code Flash Memory in Dual Bank Mode. The default configuration is
highlighted in the red box.

Address

0x0027_FFFF ™ ™
Block 91
(32 Kbytes)
0x0027_8000

Bank 1 when the

Ox1021_FFFF BANKSEL BANKSWP[2:0]
Block 79 bits are 111b
(32 Kbytes)

Bank 0 when the
0x0021_8000 BANKSEL BANKSWP[2:0]
0x0021_7FFF bits are 000b

Block 78
(32 Kbytes)
0x0021_0000
0x0020_FFFF
0x0020_ E000 Block 77 (8 Kbytes)
Ox0020_3FFF
0x0020 2000 Block 71 (8 Kbytes)
Ox0020_1FFF
0x0020_ 0000 Binck 7 (3 Kbyles) _/
User area: 1 Mbytes
Reserved area ~ except reserved area
Ox0007_FFFF =
Block 21
(32 Kbytes)
0x0007_8000
0x0001_FFFF
BAMNKSEL BANKSWP[2:0]
Block 3 bits are 111b
(32 Kbytes)
dan 2
0x0001_8000 BAMKSEL BANKSWP[2:0]
0x0001_7FFF bits are 000b
Block 8
(32 Kbytes)
0x0001_0000
%f{%%%%—'éggg Block 7 (8 Kbytes)
Ox0000_3FFF
EI}-;DDEID__ 2000 Block 1 (8 Kbytes)
Ox0000_1FFF
0x0000_ D000 Block 0 (8 Kbytes) W, W,
Figure 2. RA6M4 and RAGE1 Code Flash Memory in Dual Bank Mode

R11ANO570EUO0141 Rev.1.41

Mar.13.25

RENESAS

Page 6 of 56

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Table 1. RA6M4 and RAGE1 Code Flash is a summary of the code flash blocks in linear and dual bank
mode. The upper bank address in dual bank mode is 0x200000 regardless of the code flash size. This
address should be used with the application image downloader.

Table 1. RA6M4 and RAG6E1 Code Flash

Code Flash Range Address

Product Linear Dual

1-Mbyte product 0x0000_0000 to 0xO00F _FFFF | Lower side bank:
0x0000_0000 to 0x0007_FFFF
Upper side bank:
0x0020_0000 to 0x0027_FFFF
768-Kbytes product | 0x0000_0000 to 0x000B_FFFF | Lower side bank:
0x0000_0000 to 0x0005_FFFF
Upper side bank:
0x0020_0000 to 0x0025 FFFF
512 Kbytes product | 0x0000_0000 to 0x0007_FFFF | Lower side bank:
0x0000_0000 to 0x0003_FFFF
Upper side bank:
0x0020_0000 to 0x0023_FFFF

Figure 3. RA6M4 and RAGE1 Code Flash Block Structure is the code flash block structure for the RA6M4
and RABE1. The code flash erasing minimum unit is the code flash block size. The block numbering scheme
is used in the block protection design.

1 MB product : 0x0027_FFFF
768 KB product : 0x0025_FFFF
512 KB product : 0x0023_FFFF TMB product - BlockdT (32 KB)

768 KB product : Block87 (32 KB)

1 MB product : 0x0027_8000) .

768 KB groduct © 0xD025-8000 512 KB product : Block83 (32 KB)
512 KB product : 0x0023_8000

Block79 (32 KB)
0x0021_8000

Block78 (32 KB)
0x0021_0000

Dx0020_E000

Block77 (8 KB)

0%0020_2000 Block7 1 (& KB)
0x0020_0000 Block70 (8 KB)
1 MB product : 0x000F_FFFF 1 MB product : 0x0007_FFFF
768 KB product : 0x000B_FFFF 768 KB product : 0x0005_FFFF
512 KB product : 0x0007_FFFF TMB product : Block37 (32KB) 512 KB product : 0x0003_FFFF T MB product : Block21 (32 KB)
) 768 KB product : Block29 (32KB) 768 KB product : Block17 (32 KB)
1 MB product : 0x000F_8000 : ; 1 MB product : 0x0007_8000) .
768 KB product - 0x000B_8000 512 KB product : Block21 (32KB}) 768 KB product - 0x0005_8000 512 KB product : Block13 (32 KB)
512 KB product : 0x0007_8000 512 KB product : 0x0003_8000
Blockd (32KB) Block3 (32KB)
0x0001_ 8000 0x0001_8000
Blocks (32KB) Block8 (32KB)
0x0001_0000 0x0D001_0000
0x0000_E000 Block7 (8KB) 0x0000_E000 Block? (8KB)
0x0000_2000 Block1 (8KB) 0x0000_2000 Block1 (BKE)
0x0000_0000 Blockd (8KB) 0x0000_0000 Block0 (8KB)
Linear mode Dual mode

Figure 3. RA6M4 and RAGE1 Code Flash Block Structure

R11ANO570EU0141 Rev.1.41 Page 7 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

1.2 RAG6MS5 MCU Group Code Flash Configuration

Using the 2-MByte product as an example, the code flash memory in linear mode for the RA6MS includes the
blocks shown in Figure 4. RA6M5 Code Flash Memory in Linear Mode.

Address
0X001F_FFFF ~
Block 69
(32 Kbytes)
0x001F_8000
0x0001_FFFF
Block 9
(32 Kbytes) >‘ User area: 2 Mbytes
0x0001_8000
0x0001_7FFF
Block 8
(32 Kbytes)
0x0001_0000
0x0000_FFFF
0x0000_E000 Block 7 (8 Kbytes)
0x0000_3FFF
0x0000_2000 Block 1(8 Kbytes)
0x0000_1FFF
0x0000_0000 Block 0 (8 Kbytes) .

Figure 4. RA6M5 Code Flash Memory in Linear Mode
Upper Bank Address in Code Flash Linear Mode

In code linear mode, the upper bank starting address is half of the code flash size. For example, for the 2-
MByte RA6M5 MCUs, the starting address of the upper bank address is 0x100000. The upper bank linear
mode address is used when downloading the upper bank bootloader when using MCUboot in code flash
dual bank mode.

Using the 2-MByte product as an example, the code flash memory for the RA6MS5 in dual bank mode
includes the blocks shown in Figure 5. RA6M5 Code Flash Memory in Dual Bank Mode. The default
configuration is highlighted in the red box.

R11ANO570EU0141 Rev.1.41 Page 8 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Address
0x002F_FFFF ™ ™
Block 107
(32 Kbytes)
0x002F_8000
Bank 1 when the
0x0021_FFFF BANKSEL.BANKSWP[2:0]
Block 79 . bits are 111b
32 Kbytes
(yies) Bank 0 when the
0x0021_8000 BANKSEL BANKSWP[2:0]
0x0021_7FFF bits are 000b
Block 78
(32 Kbytes)
0x0021_0000
0x0020_FFFF
0x0020_E000 Block 77 (8 Kbytes)
0x0020_3FFF
0x0020_2000 Block 71 (8 Kbytes)
0x0020_1FFF
0x0020_0000 Block 70 (8 Kbytes) _/
User area: 2 Mbytes
e ~ except reserved area
0x000F_FFFF ™~
Block 37
(32 Kbytes)

0x000F_8000

0x0001 FFFF Bank 0 when the
- BANKSEL.BANKSWP[2:0
Block 9 bits are 111b
(32 Kbytes) \

Bank 1 when the
0x0001_8000 BANKSEL.BANKSWP[2:0]
0x0001_7FFF bits are 000b

Block 8
(32 Kbytes)

0x0001_0000

0x0000_FFFF
0x0000_E000 Block 7 (8 Kbytes)

0x0000_3FFF

0x0000_ 2000 Block 1 (8 Kbytes)
0x0000_1FFF
0x0000_0000 Block 0 (8 Kbytes) _/ Y,

Figure 5. RA6M5 Code Flash Memory in Dual Bank Mode

R11ANO570EU0141 Rev.1.41 Page 9 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Table 2. RA6M5 Code Flash is a summary of the code flash blocks in linear and dual bank mode for the
RAG6M5. The upper bank address in dual bank mode is 0x200000, regardless of the code flash size. This
address should be used with the application image downloader.

Table 2. RA6M5 Code Flash

Code Flash Range Address
Product Linear Dual

2-Mbytes product | 0x0000_0000 to 0x001F_FFFF | Lower side bank:
0x0000_0000 to 0x000F_FFFF
Upper side bank:

0x0020_0000 to 0x002F _FFFF
1-MByte product | 0x0000_0000 to 0xXO00F_FFFF | Lower side bank:

0x0000_0000 to 0x0007_FFFF
Upper side bank:
0x0020_0000 to 0x0027_FFFF

Figure 6. RA6M5 Code Flash Block Structure is the code flash block structure for RA6M5. The code flash

erase minimum unit is the code flash block size. The block numbering scheme is used in the block protection
design.

2MB product : 0xD02F_FFFF
1.5MB product : 0x002B_FFFF

1MB product : 0x0027_FFFF ZMB product : Block107 (32KB)
SMB product - 0X002F_8000 1.5MB product : Block39 (32KB)

1.5MB product - 0x002B_3000 1MB product : Block91 (32KB)
1MB product : 0x0027_8000

Block79 (32KB)
0x0021_8000

Block78 (32KB)
0x0021_0000

0x0020_E000 Block77 (8KB)
0x0020_2000 Block71 (8KB)
0x0020_0000 Block70 (8KB)

2MB product : 0x001F_FFFF

2MB product : 0x0D00F_FFFF
1.5MB product : 0x0017_FFFF

1.5MB product : 0x000B_FFFF

1MB product : 0x000F_FFFF 2B product : BIockGd (32KB) 1MB product - 0x0007_FFFF ZMB product . Blocka? (32KB)
1.5MB product - 0x0017_8000 product : Block37 (32KB) 1.5MB product : 0x000B_8000 product : Block21 (32KB)

1MB product : 0x000F_8000 1MB preduct : 0x0007_8000

Blockd (32KB) Blockd (32KB)
0x0001_8000 0x0001_8000

Blocks (32KB) Blocks (32KB)

0x0001_0000 0x0001_0000

0X0000_E000 Block7 (8KB) 0X0000_E000 Block7 (8KB)

0x0000_2000 Black1 (8KB) 0x0000_2000 Block1 (8KB)

0x0000_0000 Block0 (8KB) 0x0000_0000 Block0 (8KB)
Linear mode

Dual mode

Figure 6. RAG6M5 Code Flash Block Structure

R11ANO570EUO0141 Rev.1.41

Page 10 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

1.3 Option-Setting Memory

The description in this section applies to both RA6M4 and RA6M5. The Option-Setting Memory of the
RA6M4 and RA6MS5 MCUs determines the state of the MCU after a reset. Several property settings that
relate to the code flash mode are described in this section.

Address

axelee_A2CC

axalaa_A2Ce

axalea_Az94

axalea_A298

oxalee_AZE4

axalaa_A288

exelee_A26C

axalea_A268

axelee_Azac

exelea_A24a

exelea_A214

exelea_azle

Bx@lee_A2ed

exelea_Azea

exelee ALlEC

Bxeled_AlEe

exelea_AlCC

Bx@lee_AlCe

axelee_Al94

Bxe1ee_A199

Bx8lee_Als4

Bx8lee_Alse

exelee_Al3E

axelea_Al34

Bx@las_Alld

axelea_Alle

Bxelesa_aled

exelee_Alee

to

to

to

to

to

to

to

to

exalee_A2FF

exelee_A2CB

exelee_AZBF

ex@lee_a293

exelee_A28F

exelee_A283

axalea_A27F

Bx@188_A2Z6B

exe188_A25F

exelee_A24B

axelee_A23F

axelee_azl3

axelee_A2eF

exelee_Aze3

ex@lea_AlFF

Bx@lee_AlEB

Bx@lee_A1DF

@xelea_AlCB

@xeled_ALBF

axalea_Al193

exelea_AlEF

@xelea_Als3

exelee_Al7F

exaled_Al137

@xeles_Al133

exe1ee_A113

exeles_AleF

axelee_Ale3

Reserved area

Block Protect Setting Register
Select (BPS_SEL)

Reserved area

Bank Select Register Select
(BANKSEL_SEL)

Reserved area

Option Function Select Register 1
Select (OFS1_SEL)

Reserved area

Permanent Block Protect Sefting
Register Secure (PBPS_SEC)

Reserved area

Block Protect Setting Register
Secure (BPS_SEC)

Reserved area

Bank Select Register Secure
(BANKSEL_SEC)

Reserved area

Option Function Select Register 1
Secure (OFS1_SEC)

Secure region

Reserved area

Permanent Block Protect Sefting
Register (PBPS)

Reserved area

Block Protect Setting Register
(BPS)

Reserved area

Bank Select Register (BANKSEL)

Reserved area

Option Function Select Register 1
(OFST1)

Reserved area

Startup Area Setting Register
(SAS)

Reserved area

—— Secure region

Dual Mode Select Register
(DUALSEL)

Reserved area

Option Function Select Register 0
(OFS0)

|/

Figure 7. Option-Setting Memory

R11ANO570EUO0141 Rev.1.41
Mar.13.25

RENESAS

Page 11 of 56

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

1.3.1 Code Flash Bank Mode

The register that configures the code flash bank mode is in the Option-Setting Memory of the MCU. As
shown in Figure 7. Option-Setting Memory, the Dual Mode Select dual bank select register DUALSEL is
located at 0x0100A110.

The DUALSEL register defines whether the code flash is in linear or dual bank mode. For a blank MCU, the
code flash is in linear mode. The user application can change this configuration. With current FSP support,
this register is set up at compile time by configuring the property under the BSP tab (refer to Figure 35.
Enable Flash Dual Bank Mode).

6.2.2 DUALSEL : Dual Mode Select Register

address: 0x0100_A110

Bit position: 3 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
e S
Value after reset: User setting”!
Bit position: 15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
Bit field: — ‘ — ‘ — ‘ — ‘ — ‘ — ‘ — ‘ — — ‘ — ‘ — ‘ — ‘ — ‘ BANKMD[2:0] ‘
Value after reset: User setting”!
Bit Symbol Function RIW
2:0 BANKMD[2:0] Bank Mode Select R

000: Dual mode
11 1: Linear mode
Others: Setting prohibited

31:3 — When read, these bits return the written value. The write value should be 1. R

Note 1. The value in a blank product is OxFFFF_FFFF. It is set to the value written by your application

BANKMD[2:0] bit (Bank Mode Select)
The BANKMDJ[2:0] bits select bank mode of the dual bank function of the code flash memory

Figure 8. Register Configuration for Code Flash Dual Bank Mode

1.3.2 Startup Bank Selection

The description in this section applies to RA6E1, RA6M4, and RA6M5 Family MCUs. Bank 0 is the lower
bank for a blank RA6M4 or RA6M5 MCU as defined by the Bank Select registers shown in Figure 9. Bank 0
is Default at Address 0x00000000.

R11ANO570EU0141 Rev.1.41 Page 12 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

6.2.5 BANKSEL, BANKSEL_SEC, BANKSEL_SEL : Bank Select Register

Address: BANKSEL: 0x0100_A190
BANKSEL_SEC: 0x0100_A210
BANKSEL_SEL: 0x0100_A290

Bit position: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 7 16
Bitfield: | — ‘ — ‘ — ‘ — ‘ — ‘ — ‘ — ‘ — — ‘ — ‘ — ‘ — ‘ BLCKSWP[3:0] ‘
Value after reset: User setting”!
Bit position: 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Bitfield | — ‘ — ‘ - ‘ - ‘ - ‘ — ‘ — ‘ - — ‘ - ‘ - ‘ — ‘ - ‘ BANKSWP[2.0] ‘
Value after reset: User setting™!
Bit Symbol Function RW
2.0 BANKSWP[2:0] Startup Bank Switch RW

This setting is valid in dual mode.

000: Start address of BankO is 0x0020_0000 and Bnak1 is 0x0000_0000 in dual mode
111: Start address of Bank0 is 0x0000_0000 and Bnak1 is 0x0020_0000 in dual mode
Others: Setting prohibited

153 — ‘When read, these bits return the written value. The write value should be 1 RW

19:16 BLCKSWP[3:0] Block Swap Select RW
When all bits are set to 1, the block swap is disabled. When at least one bit is set to 0, block
swap is enabled and the corresponding blocks of code flash memory are swapped.

This setting is valid in linear mode.

31:20 — When read, these bits return the written value. The write value should be 1 RW

Note 1. The value in a blank product is 0xFFFF_FFFF. It is set fo the value written by your application

Figure 9. Bank 0 is Default at Address 0x00000000

Only secure developers can program BANKSEL_SEC and BANKSEL_SEL registers. BANKSEL_SEC
register is for secure developers, and BANKSEL register is for non-secure developers.

BANKSEL_SEL controls whether the BANKSEL or BANKSEL_SEC setting is applied. When BANKSEL_SEL
is OXFFFFFFF8, the setting in BANKSEL is used. When BANKSEL_SEL is OXFFFFFFFF, the setting in
BANKSEL_SEC is used. For Non-TrustZone based Flat projects, BANKSEL_SEL selects the corresponding
bits in the BANKSEL_SEC register.

1.3.3 Bank Swap
Startup bank selection provides a way to safely update the program by selecting a bank area to be started in
dual mode during a reset.

0x0027_FFFF 0x0027_FFFF

Bank 1 Bank 0

0x0020_0000

0x0020_0000

0x0007_FFFF 0x0007_FFFF
Bank 0 Y p Bank 1

0x0000_0000 0x0000_0000
BANKSWP[2:0] BANKSWP[2:0]
bits are 111b bits are 000b

Figure 10. Example of Startup Bank Selection (For Products with 1 Mbyte of Code Flash Memory)

R11ANO570EU0141 Rev.1.41 Page 13 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Bank selection can be changed at runtime through the FSP API. The BANKSWP bits in the BANKSEL
register can be changed at the application level. The FSP flash driver provides the

R _FLASH HP BankSwap () API to facilitate this action. This APl is automatically called from the FSP
MCUboot module. The swap takes effect after the next reset.

1.3.4 Code Flash Block Protection

The RA6M4 and RA6M5 MCUs implement a security function to protect the code flash against illicit
tampering with or reading out of data in flash memory. The registers that define this security function reside
in the Option-Setting Memory. The code flash memory can be temporarily or permanently protected from
programming/erasure operation.

The registers that support the temporary code flash block protection reside in the Option-Setting Memory:

address:

BPS: 0x0100_A1CO0, 0x0100_A1C4, 0xD100_A1C8
BPS_SEC: 0x0100_A240, 0x0100_A244, 0xD100_A248
BPS_SEL: 0x0100_A2C0, 0x0100_A2C4, 0xD100_A2C3

Bit position: 31 0

Bit field:

Value after reset: User setting™!

Note 1. The value in a blank product is OxFFFFFFFF_ It is set to the value written by your application

Figure 11. Registers Related to Temporary Code Flash Block Protection

The BPS_SEL register is the security attribution register; it controls whether the BPS or BPS_SEC setting is
applied. When the bit of PBS_SEL is set to 0, the corresponding bit of the Secure register BPS_SEC is
applied.

Only secure developers can program the BPS_SEC and BPS_SEL registers. The BPS_SEC register is for
secure developers, and the BPS register is for non-secure developers. For Non-TrustZone based Flat
projects, BPS_SEL selects the corresponding bits in the BPS_SEC register. The BPS and BPS_SEC
registers invalidate the programming and erasure to the code flash memory. When a BPS/BPS_SEC bit is 0,
the programming and erasure to the corresponding block are invalid.

These registers can be set by configuring the BSP stack in the RA configurator, as shown in Figure 84.
Temporary Protection of the Lower Bank Bootloader Area and Figure 85. Temporary Protection of the Upper
Bank Bootloader Area.

The registers that support the permanent code flash block protection reside in the Option-Setting Memory:

Address: PBPS: 0x0100_A1ED, 0x0100_A1E4, 0x0100_A1E8
PBPS_SEC: 0x0100_A260, 0x0100_A264, 0x0100_A268

Bit position: 31 0

Bit field:

Value after reset: User setting”’

Note 1. The value in a blank product is 0xFFFFFFFF. It is set to the value written by your application.

Figure 12. Registers Related with Permanent Code Flash Block Protection

The BPS_SEL also controls whether the PBPS or PBPS_SEC setting is applied. When the bit of PBS_SEL
is set to 0, the corresponding bit of the Secure register PBPS_SEC is applied.

Only secure developers can program the PBPS_SEC register. The PBPS_SEC register is for secure
developers, and the PBPS register is for non-secure developers. For Non-TrustZone based Flat projects,
BPS_SEL selects the corresponding bits in the PBPS_SEC register. The PBPS and PBPS_SEC registers
invalidate the programming and erasure to the code flash memory. When a PBPS/PBPS_SEC bit is 0, the
programming and erasure to the corresponding block are invalid.

R11ANO570EU0141 Rev.1.41 Page 14 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

The PBPS and PBPS_SEC registers invalidate writes to bits of BPS and BPS_SEC registers. The bit of this
register can be set to 0 when the corresponding bit of BPS and BPS_SEC is set to 0. When the bit of the
PBPS or PBPS_SEC register is set to 0, writing the corresponding bit of the BPS and BPS_SEC register is
invalid. Once the bit of this register is set to 0, it is impossible to change the bit to 1.Setting of these registers
can be achieved by configuring the BSP Properties in the RA configurator, as shown in Figure 86.
Permanent Protection of the Lower Bank Bootloader Area and Figure 87. Permanent Protection of the Upper
Bank Bootloader Area.

2. Using the Code Flash Dual Bank Feature with MCUboot Overview

MCUboot evolved out of the Apache Mynewt bootloader, which was created by runtime.io. MCUboot was
then acquired by JuulLabs in November 2018. The MCUboot github repo was later migrated from JuulLabs
to the mcu-tools github project. In 2020, MCUboot was moved under the Linaro Community Project umbrella
as an open-source project.

2.1 MCUboot Functionalities Overview

MCUboot handles the firmware authenticity check after start-up and the firmware switch part of the firmware
update process. Downloading the new version of the firmware is out of scope for MCUboot. Typically,
downloading the new version of the firmware is functionality that is provided by the application project itself.
This application project provides an example of downloading a new image using the XModem protocol from
the application project.

The functionality of MCUboot during booting and updating follows the process below:

The bootloader starts when the CPU is released from reset. If there are images in the Secondary App
memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader authenticates the Secondary image.

2. Upon successful authentication, the bootloader switches to the new image based on the update method
selected. Available update methods supported by FSP are overwrite, swap, and direct XIP.

3. The bootloader boots the new image.

If there is no new image in the Secondary App memory region, the bootloader authenticates the Primary
applications and boots the Primary image.

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. If authentication is to be performed, the available methods
are RSA or ECDSA. The firmware image is authenticated by hash (SHA-256) and digital signature validation.
The public key used for digital signature validation can be built into the bootloader image or provisioned into
the MCU during manufacturing. In the examples included in this application project, the public key is built into
the bootloader images.

There is a signing tool included with MCUboot: imgtool . py. This tool provides services for creating Root
keys, key management, and signing and packaging an image with version controls. Read the MCUboot
documentation to understand and use these operations.

2.2 Using MCUboot for Code Flash Dual Bank Mode

The FSP supports overwrite, swap, and direct XIP (execute-in-place) update mode. For flash dual bank
mode, only direct XIP mode is supported. The benefits of using code flash dual bank mode in a system
including a bootloader are concurrent download of new image and faster switching to the new image, in
addition to the safety features provided by the MCUboot module as explained in section 2.2.1 Use Direct XIP
Firmware Update Mode.

2.2.1 Use Direct XIP Firmware Update Mode

When using direct XIP mode with code flash in linear mode, the active image slot alternates with each
firmware update. If this update method is used, then two firmware update images must be generated: one of
them is linked to be executed from the primary slot memory region, and the other is linked to be executed
from the secondary slot. Direct XIP is supported in FSP versions 3.6.0 and later.

R11ANO570EU0141 Rev.1.41 Page 15 of 56
Mar.13.25 RENESAS

https://github.com/mcu-tools/mcuboot
https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

e Advantages:
e Faster boot time, as there is no overwrite or swap of application images needed.
e Fail-safe and resistant to power-cut failures.
o Disadvantages:
e Added application-level complexity to determine which firmware image needs to be downloaded.
o Encrypted image support is not available.

For an overview and usage of other update modes, refer to R11AN0497 and the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

When using direct XIP mode with code flash in dual bank mode, both primary and secondary images are
linked to be executed from the primary slot memory region.

Note: For Direct XIP mode, downgrade prevention is supported from the MCUboot side. When using flash
dual bank mode, the update image needs to have a version number higher than the current primary
image.

2.2.2 Memory Configuration Overview with Dual Bank and MCUboot

The FSP MCUboot module with Flash Dual Bank mode needs a bootloader for both the lower bank and the
upper bank, as shown in Figure 13. Memory Architecture Using Flash Dual Bank Mode and MCUboot. In
addition, the memory allocation for the bootloader and application image must be identical.

Upper Bank

Application Upper
Bank
Bootloader Upper
Bank
Application Lower
Bank
Bootloader Lower
Bank

Lower Bank

Figure 13. Memory Architecture Using Flash Dual Bank Mode and MCUboot

2.3 Designing Bootloader and Initial Primary Application Overview

A bootloader is typically designed with the initial primary application. The following general guidelines apply
to designing the bootloader and the initial primary application:

e Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader
and the application. The bootloader memory usage is influenced by the application image update mode,
signature type, and whether to validate the Primary Image as well as the cryptographic library used.

e Develop the initial primary application, perform the memory usage analysis, and compare with the
bootloader memory allocation for consistency and adjust as needed.

o Determine the bootloader configurations in terms of image authentication and new image update mode.
This may result in an adjustment of the memory-allocated definition in the bootloader project.

e Sign the application image. The signing command is output to the <bootloader
project>\Debug\>bootloader project>.bld file. The application image can use a Build Variable
to access this .b1d file. The IDE tools use the signing command to sign the application and generate a
binary file for downloading to the MCU.

o Test the bootloader and the initial primary application.

The above guidelines are demonstrated in the walk-through sections in this application note.

R11ANO570EU0141 Rev.1.41 Page 16 of 56
Mar.13.25 RENESAS

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

2.4 Migrating an Existing Code Flash Linear Mode MCUboot Based System

Users can follow the general steps below to migrate an MCUboot-based application system from code flash
linear mode to code flash dual bank mode:

1. Updates for the bootloader project:
A. Update the code flash mode from linear mode to dual mode in the BSP tab, as shown in Figure
35. Enable Flash Dual Bank Mode.
B. Update the application image code flash memory allocation if needed. See section 4.2 Configure
the Memory Configuration and Authentication Method for details.

2. Updates for the application projects:

A. For image downloader implementation, the image download address needs to be updated. Refer
to the \src\header.h in the example application project to understand where the updates need to
happen.

B. For development purposes, the debug configuration for the primary application needs to be
updated. Refer to the debug configuration for the app primary usb project under the
\example projects with bootloader folder to perform the update.

C. For production support, the scripts to generate the . srec file using the signed image need to be
updated. Refer to section 5.3 Preparation for Production Support to understand the updates
needed.

3. Guidelines for Using the Example Projects Included

Unzip ra6-dual-bank-flash-mcuboot.zip to unpack the example projects included in this application
project.

ra6-advanced-mcuboot-flash-dual-bank
example_projects_with_bootloader

Name

example_projects_with_bootloader app_primary_uart
example_projects_without_bootloader | app_primary_usb
app_secondary_uart

app_secondary_usb

ra_mcuboot_rabm4_dualbank

example_projects_without_bootloader >

app_primary_uart
app_primary_usb

Figure 14. Example Projects Included

3.1 Example Projects with Bootloader

Folder \example projects with bootloader includes a bootloader, which supports the flash dual
bank feature, as well as example applications using USB or UART as the communication channel to
download new application images which are configured to use the bootloader included in this folder. Users
with experience working with MCUboot module can follow section 8. Compile and Exercise the Included
Example Bootloader and Application Projects to directly exercise these example projects. The corresponding
subfolders are:

e ra mcuboot raém4 dualbank: Bootloader, which enables dual bank and direct XIP update mode.

e app primary usb: Primary application, which is configured to work with the bootloader and
implements XModem over USB VCOM to download a new application image. FreeRTOS is used with
two threads, one thread blinks the three LEDs on EK-RA6M4 while the other thread downloads the new
application image concurrently.

e app secondary usb: Secondary application, which implements the same functionality as
app_primary usb except only the blue and green LEDs are blinked.

R11ANO570EU0141 Rev.1.41 Page 17 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

e app primary uart: Primary application, which is configured to work with the bootloader and
implements XModem over UART to download a new application image. FreeRTOS is used with two
threads, one thread blinks the three LEDs on EK-RA6M4 while the other thread downloads the new
application image concurrently.

e app secondary uart: Secondary application, which implements the same functionality as
app primary uart except only the blue and green LEDs are blinked.

3.2 Example Projects without Bootloader

Folder \example projects without bootloader includes standalone example projects that a user
can configure to use the bootloader project, following section 5. Configuring and Signing an Application
Project. Note that these application projects do not run correctly if the flash dual bank mode is not enabled
because the image downloader routine included assumes the location of the new image is in the upper bank
of the RA6M4 code flash. The subfolders are:

e app primary usb: Same functionality as
\example projects with bootloader\app primary usb, except itis not configured to work
with the bootloader.

e app primary uart: Same functionality as
\example projects with bootloader\app primary uart, exceptitis not configured to work
with the bootloader.

A user can also use a customized application project that implements image downloading and follow section
5. Configuring and Signing an Application Project to use the bootloader.

4. Creating the Bootloader Project using Code Flash Dual Bank Mode

This section demonstrates the creation process of the bootloader project utilizing MCUboot and the Flash
Dual Bank Mode with the RA6M4 running in Non-TrustZone mode.

4.1 Include the MCUboot Module in the Bootloader Project

The following steps will guide you on starting the bootloader project creation and include the MCUboot
module in the project:

1. Launch e? studio and start a new C/C++ Project. Click File > New > C/C++ Project.

8 workspace - ¢? studio

dit Source Refactor Navigate Search Project Renesas Views Run Window Help
Alt+Shift+N > Renesas C/C++ Project >

Open File... [c%] Makefile Project with Existing Code
-4 Open Projects from File System... @IC/C++ Project I ‘Create anewCor C++ project'
Recent Files > 1 Project...

Figure 15. Start a New Project

R11ANO570EU0141 Rev.1.41 Page 18 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and

Code Flash Dualbank Mode

2. Choose Renesas RA->Renesas RA C/C++ Project. Click Next.

Q New C/C++ Project

Templates for New C/C++ Project

Renesas RA C/C++ Project
S Create an executable or static library C/C++ project for
Renesas RA.
<

@ TN TN

Finish

Cancel

Figure 16. Choose Renesas RA C/C++ Project

3. Provide the project name ra_mcuboot_raém4 _dualbank in the next screen. Click Next.
4. Inthe next screen, choose EK-RA6M4 for Board and click Next.

Board: EK-RAGM4A
Device: R7FABMAAFICFE

Figure 17. Select the Board

5. When the following screen appears, select Flat (Non-TrustZone) Project.

e Renesas RA C/C++ Project

Renesas RA C/C++ Project

Project Type Selection

Project Type Selection

® Flat (Non-TrustZone) Project
® Renesas RA device project without TrustZone separation
® All code, data and peripheral settings will be configured in
this project
& Renesas RA device will remain in secure mode
& EDMAC RAM buffers will automatically be placed in non-
secure RAM

() TrustZone Secure Project

& Renesas RA device project for TrustZone secure execution

& All code, data and peripherals placed in this project will be
initialized as secure

& Secure project settings such as TrustZone partitions, linker
maps and a list of secure peripherals will be passed to a
selected non-secure project

& After initialization, a call to the non-secure startup handler
will be made

(O TrustZone Non-secure Project

Renesas RA device project for TrustZone non-secure execution
* All code, data and peripherals placed in this project will be
initialized as non-secure

Must be associated with a secure project or smart bundle
Non-secure startup handler will be called after secure code
initialization

< Back

Cancel

Figure 18. Choose Flat Project as Project Type

R11ANO570EUO0141
Mar.13.25

Rev.1.41

RENESAS

Page 19 of 56

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and

Code Flash Dualbank Mode
6. Choose Executable for Build Artifact Selection and No RTOS. Click Next.

Q Renesas RA C/C++ Project

] X
Renesas RA C/C++ Project
Build Artifact and RTOS Selection

Build Artifact Selection

RTOS Selection
@ Executable No RTOS ~
® Project builds to an executable filg

O static Library
& Project builds to a static library file

O Executable Using an RA Static Library
& Project builds to an executable file
Project uses an existing RA static library project

Cancel

Figure 19. Choose to Build Executable and No RTOS

7. Choose Bare Metal — Minimal for the Project Template in the next screen and click Finish to establish
the initial project.

Project Template Selection

® s¢ Bare Metal - Blinky
=4

Bare metal FSP project that includes BSP and will blink LEDs if available. This project will initialize clocks, pins, stacks, and
the C runtime environment.

Figure 20. Choose the Project Template
8. When the following prompt opens, click Open Perspective.

®

Open the FSP Configuration perspective?

[]Remember my decision

Open Perspective No

Figure 21. Choose Open the FSP Configuration Perspective

The project is then created, and the bootloader project configuration is displayed.
9. Select the Pins tab and uncheck Generate data for RA6M4 EK.

Select Pin Configuration

_J;I‘ Export to CSV file Z‘ Configure Pin Driver Warnings
I RA6M4 EKI v Manage configurations..

@hnerate data: | g_bsp_pin_cfg

Figure 22. Uncheck Generate data for RA6M4 EK Pin Configuration

R11ANO570EUO0141 Rev.1.41
Mar.13.25

Re Page 20 of 56
RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Use the pull-down menu to switch from RA6M4 EK to R7TFA6M4AF3CFB.pincfg for the Select Pin
Configuration option, then select the Generate data check box and enter g_bsp_pin_cfg. Note that
here we choose to use this configuration, which has fewer peripherals/pins configured since the
bootloader does not use the extra peripheral or GPIO pins configured in the RA6M4 EK configuration.
This also reduces some memory usage for the bootloader project.

Select Pin Configuration _J;" Export to CSV file Z| Configure Pin Driver Warnings

I R7FABMAAF3CFB.pincfg I v Manage configurations... enerate data: | g_bsp_pin_cfg

Figure 23. Select g_bsp_pin_cfg and Generate data g_bsp_pin_cfg

10. Once the project is created, click the Stacks tab on the RA configurator. Add New Stack -> Bootloader
-> MCUboot.

& New st

Al >
Analog >
Audio >
Bootloader > 4 MCUboot |
CapTouch > 4 MCUboot Image Utilities ‘
Connectivity >
DSP >
Input >

Figure 24. Add the MCUboot Port

11. Next, configure the General properties of MCUboot. We will resolve the errors in the configurator in the
following steps.
For the MCUboot module, configure the Update Mode to Direct XIP and Number of Images Per
Application to 1.

HAL/Common Stacks

47 g_ioport I/O Port rf> MCUboot
(r_ioport)

@ (i)

<
BSP Clocks Pins | Interrupts | Event Links | € Stacks | Components
s | B console | Properties % | & Smart Browser | L} Smart Manual G Memaory

’t

Property Value
v Common
~ General

Custom mcuboot_config.h
Upgrade Mode Direct XIP
Validate Primary Image Enabled
Downgrade Prevention (Overwrite Only) Disabled
Number of Images Per Application 1

Figure 25. General Configuration for MCUboot Module

R11ANO570EU0141 Rev.1.41 Page 21 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and

Code Flash Dualbank Mode

The properties configured are:

Custom mcuboot_config.h: The default mcuboot config.h file contains the MCUboot Module
configuration that the user selected from the RA configurator. The user can create a custom version of
this file to achieve additional bootloader functionalities available in MCUboot.

Upgrade Mode: This property configures the application image upgrade method. The available options
are Overwrite Only, Overwrite Only Fast, Swap, and Direct XIP. Only Direct XIP is supported for flash
dual bank operation.

Validate Primary Image: When enabled, the bootloader will perform a hash or signature verification,
depending on the verification method chosen, in addition to the MCUboot magic number-based sanity
check. When disabled, only a sanity check is performed based on the MCUboot magic number.
Number of Images Per Application: This property allows the user to choose one image for Non-
TrustZone-based applications and two images for TrustZone-based applications. Set this property to 1.
Downgrade Prevention (Overwrite Only): This property applies to Overwrite upgrade mode only.
When this property is Enabled, a new firmware with a lower version number will not overwrite the
existing application.

Note: For Direct XIP mode, download grade prevention is supported from the MCUboot side. When using

flash dual bank mode, the update image needs to have a version number higher than the current
primary image.

4.2 Configure the Memory Configuration and Authentication Method

Configure the Signing Options and Flash Layout of the MCUboot module. For the EK-RA6M4, the default
memory for the code flash dual bank mode is shown in Figure 26. MCUboot Dual Bank Memory Map. This
default memory map is used for the example bootloader design.

Dual Mode Linear Mode
RAGM code s
OFS register 0x100A100 0x100A100

Secondary app (linked for

rimary app address;
Bank 1 — ° v e) 0x210000 0x90000....

No OFS > Bootloader (linked for 0x0)
L 0x200000 ..0x80000___

Primary app (linked for
primary app address)

0x10000 0x10000

Bank0 _

Has OFS—‘—» Bootloader (linked for 0x0)
0x0 0x0

Figure 26. MCUboot Dual Bank Memory Map

From the configurator point of view, there is no need to update any of the properties for the Flash Layout as it
already matches with the memory map shown in Figure 26. MCUboot Dual Bank Memory Map.

R11ANO570EU0141 Rev.1.41 Page 22 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and

Code Flash Dualbank Mode

HAL/Common Stacks
Threads

v 5_ HAL/Common : “+ MCUbeot
o -

< >

(i)

Objects
<

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components
o0 Problems & Console | [Properties X | @ Smart Browser | & Smart Manual | [1 Memory

MCUboot

Settings Property Value
~ Common
APl Info
General
~ Signing and Encryption Options
TrustZone

Signature Type
Boot Record
Python python
Encryption Scheme Encryption Disabled
~ Flash Layout
TrustZone Signature Type ECDSA P-256

Bootloader Flash Area Size (Bytes) 0x10000 Boot Record None
Image 1 Header Size (Bytes) 0x200 Custom

Image 1 Flash Area Size (Bytes) 0x70000 Python RSA 2048
Scratch Flash Area Size (Bytes) 0x0 Encryption Scheme '3.5.'5.]3922

Figure 27. Configure the Flash Layout and Signing Options

Explanation of the Above Configurations:

Bootloader Flash Area: Size of the flash area allocated for the bootloader, with a boundary of 0x8000

since 0x8000 is the minimum erase size for RA6M4 code flash.

Image 1 Header Size: Size of the code flash reserved for the application image header. It must meet

minimum VTOR alignment requirements based on the number of interrupts implemented on the RA6M4.

For the RA6M4, this property should be set to a minimum of 0x200 to support all interrupts.

Image 1 Flash Area Size: Size of application image 1, including the header and trailer. For the RAG6M4,

this size needs to be on a boundary of 0x8000, which is the smallest flash erase size.

Scratch Flash Area Size: This property is only needed for Swap mode. This property is not used for the

flash dual bank bootloader design.

Signature Type: Signing algorithm selection. The choices are:

o NONE: Select this option for bootloaders that do not support signature verification.

o ECDSA P-256: Select this option for this example bootloader design.

e RSA 2048 and RSA 3072: Typically this option is not used as the time used in the authentication is
much longer than the ECDSA P-256.

e Application images using MCUboot must be signed to work with MCUboot. At a minimum, this
involves adding a hash and an MCUboot-specific constant value in the image trailer.

Custom: Use the default -—confirm for this bootloader design. Switching to a new image is always

confirmed, and the new image will be booted after a subsequent system reset. Reverting the image with

Direct XIP is not supported with the current FSP version.

Encryption Scheme: Encryption is disabled in this example implementation.

R11ANO570EU0141 Rev.1.41 Page 23 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and

Code Flash Dualbank Mode

4.3 Configure the MbedTLS Crypto Only Module and the Flash Driver
The following steps will guide you to configure the MbedTLS module and the flash driver:

1. Right-click on Add Crypto Stack and select the MbedTLS (Crypto Only) module.

@ MCUboot

6]

a

@# MCUboot Port for RA (rm_mcuboot_port)

@ €]

4 MCUboot logging

a

", Add Requires a crypto
stack

% Add Requires Flash %7 Add External Memory
Implementation

(Optional)

I New > I @ MCUboot Custom Crypto (Protected Mode)

& MCUboot TinyCrypt (S/W Only)

|% MbedTLS (Crypto Only) |

Figure 28. Select MbedTLS Crypto Only Module

2. Click on Add Requires Flash stack and select Flash (r_flash_hp) stack.
| 1
. Add Requires Flash % Add External Memory
Implementation
(Optional)
| New > 4 Fash(flashhp) |
!
Figure 29. Add the Flash Driver
3. Next, set the Code Flash Programming to Enabled. As Data Flash Programming is not used in the

bootloader, select Disabled for the Data Flash Programming to reduce the bootloader memory

footprint.

g_flashO Flash (r_flash_hp)

Settings Property Value
~ Common
APlnfo Parameter Checking Default (BSP)
Code Flash Programming Enable Enabled
Data Flash Programming Enable Disabled
~ Module g_flash0 Flash (r_flash_hp)
Name g_flash0
[Data Flash Background Operation Disabled l
Callback NULL
Flash Ready Interrupt Priority Disabled
Flash Error Interrupt Priority Disabled

Figure 30. Configure the Flash Driver

R11ANO570EUO0141 Rev.1.41

Mar.13.25

RENESAS

Page 24 of 56

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

4. Configure the following properties of the MbedTLS (Crypto Only) module:

L4

|BSP|Clocks|Pins||n‘[errup‘[s|Event Link5| @ Stacks | Components
ns ‘&;’ Smart Manual | B console E Properties X Q Smart Browse

S (Crypto Only)
1 Property Value
B w General
4 MBEDTLS_PSA_CRYPTO_DRIVERS Undefine
MBEDTLS_DEPRECATED_WARNING Undefine
MBEDTLS_DEPRECATED_REMOVED Define
MBEDTLS_CHECK_RETURN_WARNING Undefine
MBEDTLS_ERROR_STRERROR_DUMMY Define
MBEDTLS_MEMORY_DEBUG Undefine
MBEDTLS_MEMORY_BACKTRACE Undefine
MBEDTLS_PSA_CRYPTO_CLIENT Undefine
MBEDTLS_PSA_CRYPTO_SPM Undefine
MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS Undefine
MBEDTLS_SELF_TEST Undefine
l MBEDTLS_THREADING_ALT Undefine I
| G_PTHREAD Undefine
MBEDTLS_USE_PSA_CRYPTO Undefine
MBEDTLS_VERSION_FEATURES Define
MBEDTLS_ERROR_C Define
| MBEDTLS_MEMORY_BUFFER_ALLOC_C Define |
MBEDTLS_PSA_CRYPTO_C Define
MBEDTLS_PSA_CRYPTO_SE_C Undefine
MBEDTLS_THREADING_C Undefine I
MBEDTLS_TIMING_C Undefine
MBEDTLS_VERSION_C Define
MBEDTLS_MEMORY_ALIGN_MULTIPLE Undefine

Figure 31. Configure the MbedTLS (Crypto Only) Module

5. Disable RSA to save some memory usage.

<

BSP|C|0C|G ‘ Pins||nterrupts|Event Links| € Stacks Components
ns |[3;’ Smart Manual | &l Console E Properties Q Smart Brov

S (Crypto Only)
: Property Value
~ Public Key Cryptography (PKC)
> DHM
> ECC
~ RSA
MBEDTLS_PK_RSA_ALT_SUPPORT Undefine
MBEDTLS_RSA_NO_CRT Define
MBEDTLS_RSA_C Undefine I
MBEDTLS_RSA_GEN_KEY_MIN_BITS Undefine
MBEDTLS_RSA_GEN_KEY_MIN_BITS value 1024

Figure 32. Disable RSA

R11ANO570EU0141 Rev.1.41 Page 25 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

6. Set up the Stack and Heap used by the bootloader based on the authentication mode. Set the following
values in the BSP tab:

~ RA Common
Main stack size (bytes) 0x1000
Heap size (bytes) 0x400

Figure 33. Configure the BSP Stack and Heap Usage

7. Add the Example Production Key module. DO NOT use the example key for production support. Users
can reference R11AN0567 section “Using Custom Signing Key and Encryption Key” for a method to
create customized user signing key.

g 5. Add [Optional] Add & Add ASMN.1 parser if
Example Keys using TinyCrypt or
Custom Crypto
l Mew > < MCUboot Example Keys (NOT FOR PRODUCTION)

Figure 34. Add the Example Production Key module
8. Enable the Dual Bank Mode under the BSP tab.

Summary Clocks | Pins | Interrupts | Event Links | Stacks | Components

12! Problems |} Smart Manual B Console | [Properties > & Smart Browser G Memory

EK-RA6M4
Settings Property Value
package_pins 144
~ RABM4

series 6
~ RABM4 Family
Security
OFSO0 register settings
OFS1_SEL register settings
OFS1 register settings
Block Protection Settings (BPS)
Permanent Block Protection Settings (PBPS)
Clocks
Enable inline BSP IRQ functions Enabled
Startup C-Cache Line Size 32 Bytes
| Dual Bank Mode Enabled |
Main Oscillator Wait Time 8163 cycles

Figure 35. Enable Flash Dual Bank Mode
4.4 Add the Boot Code

Save configuration.xml and click Generate Project Content. Then, expand the Developer
Assistance->HAL/Common->MCUboot->Quick Setup and drag Call Quick Setup to the top of the
hal entry.c of the bootloader project.

Add the following function call to the top of the hal entry () function:

mcuboot quick setup();

R11ANO570EU0141 Rev.1.41 Page 26 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

4.5 Compile the Bootloader Project
In the RA configurator, click Generate Project Content, then compile the project.

Extracting support files...
12:09:80 **** Incremental Build of configuration Debug for project ra_mcuboot_raémd_dualbank ****
make -r -j16 all
arm-none-eabi-size --format=berkeley "ra_mcuboot_rabmd dualbank.elf"
text data bss dec hex filename
58732 5] 6684 65416 188 ra_mcuboot_raétm4_dualbank.elf

12:99:82 Build Finished. @ errors, @ warnings. (took 1s.699ms)

Figure 36. Compile the Bootloader ra_mcuboot_raém4_dualbank

There are warnings from third-party code.

4.6 Configure the Python Signing Environment

Signing the application image can be done using a post-build step in e? studio, using the image signing tool
imgtool.py, which is included with MCUboot. This tool is integrated as a post-build tool in 2 studio to sign
the application image. If this is NOT the first time you have used the Python script signing tool on your
computer, you can skip to section 5. Configuring and Signing an Application Project.

If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work. Navigate to the ra_mcuboot_raém4_dualbank > ra > mcu-
tools > MCUboot folder in the Project Explorer, right-click and select Command Prompt. This will open a
command window with the path set to the \mcu-tools\MCUboot folder.

(2) Developer Assistance

~ |- ra_mcuboot_rabm4_dualbank Open in New Window
47 Binaries Show In Alt+Shift+W >
m Includes
v 2 & Copy Ctrl+C
(= arm Paste Ctrl+V
(= board ¥ Delete Delete
b= e Source >

v [mcu-tools

- Move...
(= MCUboot Ove

2 ra_gen Rename... F2
B src | -
(= Debug mport...
(= ra_cfg 1 Export...
(& script Build Project Ctrl+B
508 configuration.xml

Refresh F5

=| RTFA6M4AF3CFB.pincfg
Y| ra_cfg.bxt Index 2
=| ra_mcuboot_rabmd_dualba

. Build Targets >
(2) Developer Assistance . .
Resource Configurations >
Team >
Compare With >
Restore from Local Hi“‘i Open Command Prompt
B C/C++ Project Settings Ctrl+Alt+P
Renesas C/C++ Project Settings >

%" Run C/C++ Code Analysis
B System Explorer

Ii Command Prompt I

V| Validate

Figure 37. Open the Command Prompt

We recommend upgrading pip prior to installing the dependencies. Enter the following command to update
pip:
python -m pip install --upgrade pip

Next, in the command window, enter the following command line to install all the MCUboot dependencies:

pip3 install --user -r scripts/requirements.txt

This will verify and install any dependencies that are required.

R11ANO570EU0141 Rev.1.41 Page 27 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Review the Signing Command

The signing command for the application image will be automatically generated when the bootloader is
compiled. In the Project Explorer, open the

ra_mcuboot raé6md4 dualbank\Debug\ra mcuboot raé6m4 dualbank.bld file. The signing
command is under the section 

Figure 38. Signing Command in the .bld File

4.7 Prepare for Production Support

For production support, generate a . srec file of the bootloader to be loaded to the upper bank. This can be
done by configuring a custom Builder within e? studio for the bootloader project.

This application project includes a bat file, process bootloader.bat, which runs a script using
srec_cat.exe to generate a .srec file, ra_ mcuboot raém4 dualbank offset.srec, which offsets the
bootloader offset to the RA6M4 flash linear mode upper bank address at 0x80000.

Note that for MCUs with different code flash sizes, the upper bank address needs to be updated accordingly.
As explained in sections 1.1 RA6M4 and RA6E1 MCU Group Code Flash Configuration and section 1.2
RA6M5 MCU Group Code Flash Configuration, this address is at half of the code flash size.

Since the option-setting memory is located outside of the bank range, this process also truncates the
bootloader to the bank size, which is 0x80000.

srec_cat Debug\ra mcuboot raé6m4 dualbank.srec -crop 0 0x80000 -offset 0x80000 -o
ra mcuboot raé6m4 dualbank offset.srec

Figure 39. Process the Bootloader to Load to the Upper Bank: process_bootloader.bat
Follow the steps below to configure the custom Builder in the bootloader project just created:

1. Unzip r11an0570eu0140-ra6-advanced-mcuboot-flash-dual-bank.zip and copy
\ra mcuboot raémé4 dualbank\process bootloader.bat aswell as srec_cat.exe, located in
the same folder, to the project root folder of the bootloader project just created.

R11ANO570EU0141 Rev.1.41 Page 28 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

2. Right-click on the bootloader project, open the Properties page, and navigate to Builders page. Click
New to start creating the customized Builder.

Q Properties for ra_mcuboot_rabm4_dualbank] pe
‘ | | Builders oo 8
CDﬂfiE\UfE the builders for the project:
C/C++ Build |s1t DDSC Builder New...
C/C++ General EPCDT Builder
Git @Scanner Configuration Builder (g
Project Natures st DDSC Bundle Builder Edit..
Project References Q4 Process Bootloader —
Renesas QF SEHIONG
Run/Debug Settings
Task Tags (ife
Validation =
Down
@

Figure 40. Create a New Custom Builder Entry

3. Select Program in the next screen, then click OK:

Choose an external tool type to create:

IQPrugraml

@ =] o=

Figure 41. Select the Type of the Builder as Program

R11ANO570EU0141 Rev.1.41 Page 29 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

4. Next, provide the new Builder name Process Bootloader and click Browse Workspace to select
process bootloader.bat file as the Location of the Builder. Also, click Browse Workspace to set
the Working Directory, as shown below. Then, click Apply.

ﬁ Edit Configuration O X

Edit launch configuration properties

Create a configuration that will run a program during builds

Name: IProcess Bootloader I |

_ " Refresh | I Environment | (=% Build Options

Location:

‘ ${workspace_loc:/ra_mcuboot_rabmd4_dualbank/process_bootloader.bat} |

Browse Workspace... | Browse File System... Variables...

Working Directory:

I S{workspace_iuc:fra_mcuboot_r36m4_dualbank|

Browse Workspace... | Browse File System... Variables...

Arguments:

Variables... I

Note: Enclose an argument containing spaces using double-quotes ().

Show Command Line Revert Apply

N\

—~

Figure 42. Configure the Custom Builder
5. Click OK, then Apply and Close on the next screen.

a Properties for ra_mcuboot_raém4_dualbank O >
‘ type filter text | Builders - ~ &
Resource . : .
Configure the builders for the project:
T/C s Build 514 DDSC Builder New..
C/C++ General @CDT Builder
o y . . Import...
Git @Scanner Configuration Builder
Project Natures s DDSC Bundle Builder Edit.
Project References Process Bootloader
Remove
Renesas QF
Run/Debug Settings
Task Tags Up
Validation
Down
@
Figure 43. Custom Builder
R11AN0570EU0141 Rev.1.41 Page 30 of 56

Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

6. Recompile the bootloader project and notice that ra mcuboot raém4 dualbank offset.srecis
created under the bootloader project root directory.

v 1= ra_mcuboot_rabm4_dualbank [Debug]
f;;? Binaries
m Includes
3 ra
= ra_gen
2 src
(= Debug
(= ra_cfg
L script
¢ configuration.xml
process_bootloader.bat |
R7/FABM4AF3CFB.pincfg
@ cfgtxt
ra_mcuboot_rabm4_dualbank_offset.srec I
ra_mcuboot rabm4_dualbank Debug_Flat.launch

o1y srec_cat.exe
(?) Developer Assistance |

Figure 44. Rebuild the Bootloader with the Custom Builder
5. Configuring and Signing an Application Project

Developing an initial application to use a bootloader starts with developing and testing the application and
the bootloader independently. Using the bootloader with an existing application or developing a new
application to use the bootloader involves the following common steps:

¢ Adjust the memory map of the bootloader to allow the application and bootloader to fit the available MCU
memory area.

e Configure the application to use the bootloader.

e Sign the application image.

o Developing an application to use a bootloader typically requires the application to have the capability to
download a new application. This application project demonstrates how to download a new application
using the USB and UART interfaces as examples. Users typically have custom methods to download
new application images.

5.1 Configure the Application Project to Use the Bootloader

Users can follow the FSP User’s Manual section, Tutorial: Your First RA MCU Project — Blinky, to establish a
new project. This application note uses the included example project as the initial application project and
guides the user through the procedures to configure the example project to use the bootloader established in
section 4. Creating the Bootloader Project using Code Flash Dual Bank Mode.

Note that the steps described in this section can be applied to other existing application projects to configure
the application project to use the bootloader. Be sure to consider the size of the application project. When
using the bootloader with a different application project, the Image 1 Flash Area Size property should be
adjusted accordingly.

Import the desired application projects under folder \example projects without bootloader to the
workspace where the bootloader is created. For example, if the intended firmware update channel is USB,
import app _primary usb into the workspace.

Note: In this section’s illustrations, the USB interface is used. The procedure for using the UART interface is
similar to using USB.

Right-click on the application project folder app primary usb in the Project Explorer and select
Properties. Select C/C++ Build > Build Variables, click Add and set the Variable name to
BootloaderDataFile, and check the Apply to all configurations box. Change the Type to File and enter
the path to the .b1d file for the bootloader project ra_mcuboot_raém4_dualbank:

R11ANO570EU0141 Rev.1.41 Page 31 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

e Set s{workspace loc:ra mcuboot raémé4 dualbank}/Debug/ra mcuboot raémd4 dualbank.bld for

the value.
Resource
Builders
v C/C++ Build Configuration: |Debug [Active] ~ | Manage Configurations...

Build Variables

Environment

Logging
Add..

Settings &

Tool Chain Editor Variable name: | BootloaderDataFile v Edit...
C/C++ General
Git [~1 Apply to all configurations Delete
Project Natures Type:
Project References Value: | 6m4,duaIbank}/Debud/ra,m[uhootﬁraSm{dualhankhld] Browse
Renesas QE
Run/Debug Settings
Task Tags
Validation

E ing external builder

{VARY}, internal builder may

['Restore Defaults Apply

Figure 45. Configure the Build Variable to Use the Bootloader
Click OK, then Apply and Apply and Close in the next screen.
5.2 Signing the Application Image

Note: If you rebuild the bootloader project after changing any of the signing and signature Properties of the
MCUboot module, you will need to Generate Project Content again to bring in the updated .b1d file.

When using Direct XIP mode, each application can define a version number. This is achieved by defining an
Environment Variable: MCUBOOT_IMAGE_VERSION.

For applications that support signature verification, the signing key can be configured using the Environment
Variable MCUBOOT_IMAGE_SIGNING_KEY. If there is no signature verification, then it is not necessary to
set Environment Variable MCUBOOT_IMAGE_SIGNING_KEY.

Open the Properties page of the project app primary usb, under Environment, click Add and configure
MCUBOOT_IMAGE_VERSION.

type filter text Envir t - - §
Resource
Builders
~ C/C++ Build Configuration: Debug [Active] | | Manage Configurations.
Build Variables
Lagr.ging Environment variables to set Add.
Settings - —
Tool Chain Editor Variable Value Origin Select...
C/C++ General AMS_KEEP_FILE il USER: PREFS
Git AMS_LICENSE_PATH 30 USER: PREFS Edit...
Project Natures ﬁ Delete
Project References
Renesas QE Name: IMCUBOOT,IMAGE,VERSION l Undefine
Run/Debug Settings valve: [100] | Variables
Task Tags
Validation dd to all configurations
Cancel
@ Append variables to native environment
(O Replace native environment with specified one
Restore Defaults Apply
Figure 46. Configure the Application Version
R11ANO570EUO0141 Rev.1.41 Page 32 of 56

Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Similarly, add the new variable for MCUBOOT_IMAGE_SIGNING_KEY.

type filter text Environment v §
Resource
Builders

~ C/C++ Build Configuration: |Debug [Active] ~ | Manage Configurations...

Build Variables
Environment}

Logging Environment variables to set Add...

Settings -

Tool Chain Editor Variable Value Origin Select.
C/C++ General AMS_KEEP_FILE 50 USER: PREFS
Git AMS_LICENSE_PATH $0 USER: PREFS Edit..
Project Natures Q Delete
Project References
Renesas QF Name: IMCUBOOT_IMAGE_SIGNING_KEY I Undefine
Run/Debug Settings Value: lIbank}/ra/mcu—to0Is/MCUboot/root—ec—p256.pem] Variables
Task Tags
Validation dd to all configurations

[

(® Append variables to native environment

(O Replace native environment with specified one

Restore Defaults Apply

@ Apply and Close Cancel

Figure 47. Configure the Private Signing Key
Note that the private key used for signing the application image is indicated in the signing command.

S{workspace loc:ra mcuboot raémé4 dualbank}/ra/mcu-tools/MCUboot/root-ec-p256.pem
is used for the example bootloaders. This key is used for testing purposes only. For real-world use case and
production support, users MUST change this to the private key of their choice.

Figure 48. Configure the Application Image version number and Signing Key is the result of the above
configuration. Click Apply and Close.

type filter text Environment R =]

Resource
Builders
~ C/C++ Build Configuration: |Debug [Active] ~ | Manage Configurations...

Build Variables

Environment

Logging Environment variables to set Add...
Settings
Tool Chain Editor Variable Value Origin Select.
C/C++ General AMS_KEEP_FILE il USER: PREFS
Git AMS_LICENSE_PATH S0 USER: PREFS Edit...
Project Natures CWD C:\Usersy \fsp_git\ra-solutions-rvc\application_projects\r11an0570\example_proj. BUILD SYSTEM Delete
Project References GCC_VERSION 13.2.1 BUILD SYSTEM
Renesas QF MCUBOOT_IMAGE_SIGNING_KEY ${workspace_locra_mcuboot_rabmé4_dualbank}/ra/mcu-tools/MCUboot/root-ec-p256.pem USER: CONFIG Undefine
Run/Debug Settings MCUBOOT_IMAGE_VERSION 1.0.0 USER: CONFIG
Task Tags PATH CA\Program Files (x86)\Arm GNU Toolchain arm-none-eabi\13.2 Rel1\bin\;${renesas.build.utilsPa. BUILD SYSTEM
Validation PWD CAUsers\ \fsp_git\ra-solutions-rvc\application_projects\r11an0570\example_proj.. BUILD SYSTEM
TCINSTALL C:\Program Files (x86)\Arm GNU Toolchain arm-none-eabi\13.2 Rel1\ BUILD SYSTEM
TC_VERSION 13.2.1.arm-13-7 BUILD SYSTEM
< >
(@ Append variables to native environment
(O Replace native environment with specified one
Restore Defaults Apply

® Apply and Close Cancel

Figure 48. Configure the Application Image version number and Signing Key

To be able to recompile the project whenever the Environment Variables are updated, it is recommended to
add a Pre-build step to always delete the . e1f£ file, as shown in Figure 49. Configure the Pre-build
Command, so the application project is always recompiled.

R11ANO570EU0141 Rev.1.41 Page 33 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

type filter text Settings o -~ 8
Resource
Ll
Builders
~ C/C++ Build Configuration: |Debug [Active] ~ | Manage Configurations...
Build Variables
Environment
Logaing 2 Tool Settings | &2 Toolchain] # Build Steps Build Artifact | lm$ Binary Parsers| € Error Parsers
Settings D
Tool Chain Editor re-build steps
C/C++ General Command(s):
Git | rm £ stProjNamej elf | -]
Project Natures Description:

Project References
Renesas QE |

Figure 49. Configure the Pre-build Command

At this point, a user can click Generate Project Content and compile the newly created application project
and ensure that \Debug\app primary usb.bin.signed is generated.

5.3 Preparation for Production Support

For production support, a . srec file based on the signed application image needs to be generated.
This . srec file offsets the application to the start address of the primary application, 0x10000 based on
Figure 26. MCUboot Dual Bank Memory Map.

srec_cat Debug\app primary usb.bin.signed -binary -offset 0x10000 -o
app primary usb singed offset.srec

Figure 50. Create app_primary_usb_signed_offset.srec

Follow steps similar to section 4.7 Prepare for Production Support to add the custom Builder and compile
the primary application:

1. Copy \example projects with bootloader\app primary usb\srec cat.exe and
process_signed binary primary.bat to the root of project app primary usb.

2. Follow section 4.7 Prepare for Production Support to create the new Builder. The finished configuration
should look like Figure 51. Configure the Custom Builder for the Primary Application.

R11ANO570EU0141 Rev.1.41 Page 34 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Q Edit Configuration O X
Edit launch configuration properties Q
Create a configuration that will run a program during builds .;H.

Name: I Process Signed Binary Primary ‘

E- Refresh | [Environment | (=3 Build Options

Location:

I ${workspace_loc:/app_primary_usb/process_signed_binary_primary.bat} l |

Browse Workspace... = Browse File System... Variables...

Working Directory:

Il ${workspace_loc:/app_primary_usb} l |

|Brows= Workspace...| Browse File System... Variables...

Arguments:

Variables...

Note: Enclose an argument containing spaces using double-quotes ().

Show Command Line Revert Apply

‘? oK Cancel

3. Click Generate Project Content and compile the app primary usb project. Ensure that

Figure 51. Configure the Custom Builder for the Primary Application

app primary usb signed offset.srec is generated under the root of the app primary usb

project.

v £ app_primary_ush
;ff Binaries
[al! Includes
S ra
[ra_gen
IS src
= Debug
= ra_cfg
(= script
app_primary_ush_signed_offset.srec I

app_primary_usb.elf jlink
app_primary_usb.elf launch
configuration.xml
process_signed_binary_primary.bat
R7FABMA4AFICFB.pincfg

ra_cfg.bet

srec_cat.exe

(7) Developer Assistance

) [(] 58 o [efe

Figure 52. Signed Primary Image Offset to the Primary Slot

6. Booting the Primary Application and Updating to a New Image

To update the application, the primary application needs to provide an image downloader. A new image will
also need to be prepared to test the image downloader function.

6.1 Prepare a Secondary Image

In this project, a secondary image is created to test the downloading functionality of the primary application.
The new application can be created by either modifying the existing application or creating a new application
project. If a new application project is used, the user needs to establish the linkage to the bootloader by

R11ANO570EUO0141 Rev.1.41

Mar.13.25

RENESAS

Page 35 of 56

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

following section 5. Configuring and Signing an Application Project. The newly created application project
must also provide a method to download the new application to the upper bank.

In this application project, we will import the initial application project to the same workspace, rename the
new project, and perform minor updates.

Right-click in the white space in the Project Explorer area and select Import and choose Rename & Import
Existing C/C++ Project into Workspace.

& import [m] X
Select
. - B
Rename and Import and Existing C/C++ Project into the workspace H

Select an import wizard:

type filter text ‘

L"f Existing Projects into Workspace ~
(] File System
E:J Preferences
() Projects from Folder or Archive
l'@ Rename & Import Existing C/C++ Project into Workspace l
" Renesas CS+ Project for CA78KOR/CAT8K0
@ Renesas CS+ Project for CC-RX, CC-RL and CC-RH
" Sample Projects on Renesas Website
= C/C++
= Git
(= IAR Embedded Workbench
= Install
(= Oomph
(= Run/Debug

@ < Back Finish Cancel

Figure 53. Import the Initial Application

Once the Import window opens, name the project app secondary usb, check Select root directory, and
click Browse:

8 Impont o x

Rename & Import Project =
Select a directory to search for existing Edlipse projects

Project name: lapp,se(onﬂary,usd I

[use default location

default

Import from:

(@ Select root directory: v

() Select archive file:

Projects:

Options
[keep build configuration output folders

@ < Back ext s Cancel

Figure 54. Name the New Application

Browse into the Workspace folder and select app primary usb.

R11ANO570EU0141 Rev.1.41 Page 36 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

a Import

Rename & Import Project

Select a directory to search for existing Eclipse projects.

Project name: | app_secondary_usb
Use default location
Create Directory for Project
default

Import from:

X

(@ Select root directory: :tsiwwlhuulibootloader\appipﬂmaryiusd -

O Select archive file:

Projects:

I app_primary_usb

<

Options
[Keep build configuration output folders

("?\(l

< Back

Figure 55. Select Initial Primary Application

Click Finish. The new application project will be created with the following attributes:

o When importing the primary application, the Build Variable and Environment Variables are

automatically imported.

The custom Builder “Process Signed Binary Primary” is also imported. For a clean project, a user must

manually remove this Builder and the corresponding support files from the secondary project.

Unlike in normal XIP Mode operation, the linker script symbol XIP_SECONDARY_SLOT_IMAGE must

be undefined in Dual Bank mode. By default, XIP_SECONDARY_SLOT_IMAGE is undefined in the

linker script symbol, so no action needs to be taken here.

Change the Environment variable for the Secondary Image version, shown in Figure 56. Change
MCUBOOT_IMAGE_VERSION Variable.

type filter text

Resource
Builders
w C/C++ Build
Build Variables
Logging
Settings
Tool Chain Editor
C/C++ General
Git
Project Natures
Project References
Renesas QE
Run/Debug Settings
Task Tags
Validation

Configuration: |Debug [Active]

Environment variables to set

| Manage Configurations.

Add.

Variable

AMS_KEEP_FILE
AMS_LICENSE_PATH

cwD

GCC_VERSION
MCUBOOT_IMAGE SIG...
MCUBOOT IMAGE VER...

& cditvariable

Value: | 1.1.0

Name: MCUBOOT_IMAGE_VERSION

Select.
Delete

Undefine

Restore Defaults Apply

Apply and Close Cancel

Figure 56.

Change MCUBOOT_IMAGE_VERSION Variable

R11ANO570EUO0141 Rev.1.41
Mar.13.25

RENESAS

Page 37 of 56

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Update Existing Application to a New Application
To demonstrate the application update, update the application to blink the blue and green LED only.

Perform the following code updates in blinky thread entry.c:

Change below section of code in blinky thread_entry:
/* Update all board LEDs */
for (uint32 t i = 0; i < leds.led count; i++)
{
/* Get pin to toggle */
uint32 t pin = leds.p_ leds[i];

/* Write to this pin */
R_BSP PinWrite((bsp_io_port pin t) pin, pin_level);

To:
/* update the blue led */
R BSP PinWrite(leds.p leds[0], pin level);

/* update the green led */
R BSP PinWrite(leds.p leds[1l], pin level);

Figure 57. Update the LED Control
Save the updated source file, click Generate Project Content, and then compile the new project.

If you create a new application project and would like to debug the new project with the bootloader, follow the
instructions in section 5. Configuring and Signing an Application Project. When debugging an update image
with the bootloader, you can treat the update image as the primary application.

6.2 Set Up the Hardware
If using app primary usb as the initial application project:

e Connect J10 (USB Debug) using a USB micro to B cable from the EK-RA6M4 to the development PC to
provide power and debug connection using the onboard debugger.

e USB FS device mode jumper setting: Connect pins 2 and 3 on J12, and connect jumper J15.

e Connect J11 (USB FS) using a USB micro to B cable from the EK-RA6M4 to the development PC to
provide USB Device connection.

If using app primary uart as the initial application project:

e Connect J10 using a USB micro to B cable from the EK-RA6M4 to the development PC to provide power
and debug connection using the onboard debugger.

e Connect the three pins in Table 3. Connection through the UART Interface on the UART to USB
converter to the EK-RA6M4.

Table 3. Connection through the UART Interface

UART to USB Converter | RA6M4
RX P101 (TX)
TX P100 (RX)
GND GND

6.3 Erase the MCU

When MCUboot is used in flash dual bank mode, the code flash mode needs to start in linear mode. Erasing
the MCU Option-Setting Memory settings will configure the code flash mode to linear mode. Erasing the
entire MCU memory is recommended. The MCU can be erased through a variety of methods. A user can

R11ANO570EU0141 Rev.1.41 Page 38 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

erase the MCU flash using the Renesas Device Partition Manager, Renesas Flash Programmer, or third-
party tools like JFlash Lite.

Note: If the MCU is in code flash dual bank mode, make sure to restore to linear mode prior to proceeding
to the rest of the application note sections. The rest of the operations assume the device starts in
code flash linear mode. They will not work if the device is already in code flash dual bank mode.

6.3.1 Use the Renesas Flash Programmer

The Renesas Flash Programmer (RFP) can detect the flash mode when a new RFP project is created.

Note: Prior to connecting with the RFP, power cycle the development board.

Connect the EK-RA6M4 to the PC through J10 USB Debug. Launch RFP and create a new RFP project.
Click File -> New Project.

; File]| Target Device Help
i [I New Project..l
Open Project...

c
(7]

]Fh‘

Save Project

Figure 58. Create a New RFP Project

Configure the Microcontroller selection as well as the Tool used for communication. Then, click Connect.

Bé Create New Project — =

Project Information

Microcontroller: v

Project Name: Inew_rfpproject I |

Project Folder: |C: ‘a_dual_bank_boot | Browse...

Communication

Toal: Interface: 2 wire UART

Tool Details... MNum: AutoSelect

Figure 59. Configure the New Project

Once the connection is successfully established, the user can open the Block Settings page to check the
Code Flash configurations.

If the RA6M4 flash is in code flash linear mode, Blocks Settings are presented as in Figure 60. Flash in
Linear Mode.

File Target Device Help

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code User Keys

Region Start End Size Erase PV
= R7FAEM4AFICFB
Code Flash 1 (x00000000 OxOOOFFFFF 1.0M
Data Flash 1 008000000 (x08001FFF 8K
Config Area x0100A100 (xD10DA2FF 512

Figure 60. Flash in Linear Mode

If the RA6M4 flash is in flash dual bank mode, Block Settings are presented as in Figure 61. Flash in Dual
Bank Mode.

R11ANO570EU0141 Rev.1.41 Page 39 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

File Target Device Help

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code
Region Start End Size Select

= R7FAGM4AF3ICFB

Code Fash 1 (0x00000000 < 0007FFFF

Code Fash 2 (000200000 Ox0027FFFF

Data Flash 1 (008000000 0x0B001FFF

Conrfig Area 1 0x0100A100 Oc0100A2FF

+|
£

+
@

Figure 61. Flash in Dual Bank Mode

Whether the MCU is in flash dual bank mode or flash linear mode, the Initialize Device command can erase
the entire flash, including the Config Area, and thus return the MCU to code flash linear mode.

File | Target Device I Help

Operati Read Device Information 2sh Opt

Read Memory...
Pri Read Flash Options

| I Initialize Device I |
DLM Transition...

Figure 62. Initialize Device Command

If the Initialize Device is successful, the message in Figure 63. Initialize Device Succeeded will be
presented in the status window.

Signature:
Device: RTFABM4AF3CFB
Boot Firmware Version: V1625
Device Unique ID: 4E4B2971B78F4B533536363456114329
Device Code: 01
Current state: 55D
SECDEG Key Injection: No
NONSECDBG Key Injection: No
RMA Key Injection: No

Erasing the target device

Disconnecting the tool
Operation completed.

Figure 63. Initialize Device Succeeded

6.3.2 Use the SEGGER J-Flash Lite

J-Flash Lite is a free, simple graphical user interface that allows downloading into flash memory of target
systems. J-Flash Lite is part of the J-Link Software and Documentation package that is installed when the J-
Link software & documentation pack is installed.

To use J-Flash Lite, connect the USB Debug port J10 to the PC and launch J-Flash Lite. Select the Device
and debug Interface and communication speed.

H SEGGER J-Flash Lite V7.98b - X
Device Interface

Figure 64. Launch the J-Flash Lite

Click OK. In the next screen, select Erase Chip.

R11ANO570EU0141 Rev.1.41 Page 40 of 56
Mar.13.25 RENESAS

https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and

Code Flash Dualbank Mode

File Help

Target
Device

SEGGER J-Flash Lite V7.98b

Interface Speed

[R7FAGNMAF

[swp |

(4000 kiz

Data File (bin / hex [/ mot [srec/ ...)

Log

Program Device

Erase Chip

Erasing...
Done.

Connecting te J-Link...
Connecting te target...

Ready

Figure 65. Erase the MCU using J-Flash Lite

Note that when using Segger J-Flash Lite 7.98b or earlier, the Erase operation needs to be performed twice
if the device is already in dual bank mode. This may be fixed in later J-Flash Lite versions.

6.3.3 Use Renesas Device Partition Manager
Power cycle the evaluation board EK-RA6M4 after a debug session to use the Renesas Device Partition
Manager. Within e? studio, navigate to Run -> Renesas Debug Tools -> Renesas Device Partition
Manager. Select J-Link as the connection method and select the action Initialize device back to factory

default.
Click Run. The MCU will be erased.

R11ANO570EUO0141 Rev.1.41
Mar.13.25

RENESAS

Page 41 of 56

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Q Renesas Device Partition Manager [m]

Device Family}} Renesas RA ~

Action
Read current device information Change debug state

Set TrustZone secure / non-secure boundaries

nitialize device back to factory default

Target MCU connection: I J-Link &2 I
Connection Type: SCl 7
Emulator Connection: Serial No 7
Serial No/IP Address: |:|
Debugger supply voltage (V): 0

Connection Speed (bps for SCI, Hz for SWD): 9600
Debug state to change to: Secure Software Development
Memory partition sizes

[[JUse Renesas Partition Data file

Browse...
Code Flash Secure (KB) 512
Code Flash NSC (KB) 0
Data Flash Secure (KB) 0
SRAM Secure (KB) 256
SRAM NSC (KB) 0
[1Command line tool:
C:\Users\ \.eclipse\com.renesas.platform_275918369\DebugComp\RA\Devic |Browse...
~
Connecting...
Loading library : SUCCESSFUL!
Establishing connection : SUCCESSFUL!
Checking the device's TrustZone type : SUCCESSFUL!
CONNECTED.
Initializing device and rolling back DLM state to SSD...
SUCCESSFUL!
Disconnecting...
DISCONNECTED.
—————————— SUMMARY OF RESULT----------
Connection : SUCCESSFUL!
Device initialization : SUCCESSFUL!
————————————— END SUMMARY-------------
‘;?) Import Export Run Close

Figure 66. Erase the MCU using Renesas Device Partition Manager

R11ANO570EUO0141 Rev.1.41

Mar.13.25

RENESAS

Page 42 of 56

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

6.4 Start the Debug Session
Follow the steps below to start the debug session:

1. Disable flash content caching from the Debugger setting.
Right-click on project app_primary_usb -> Debug As -> Debug Configurations, navigate to
Debugger -> Debug Tool Settings, and uncheck Allow caching of flash contents. Otherwise, when
debugging bootloader applications, the memory window may show wrong information.

=] Main E B Startup 1 common 'E'.; Source

Debug hardware: |J-Link ARM ~ | Target Device: | RTFAGM4AF

GDB Settings Connection Settings

v 10 A
Use Default 10 Filename Yes v
1O Filename ${support_area_loc}

~ General Debug

Reset After Reload Yes v
v Memory

Endian Little Endian v
~ Break

Use Flash Breakpoints Yes v

Allow Simulation No v
~ Flash

Flash Bus Type
Flash Memory Type
WorkRam Start
WorkRam End

Erase on-chip program flash before download Yes v
Erase on-chip data flash before download Yes v
Use CFI-Flash Yes v
CFl Start 0x0
CFl End 0x0

v Semihosting
Semihosting breakpoint address

~ RTOS

RTOS Integration in Debug View No v

RTOS Debugging - Large Number of Threads. No v
~ System

[Allow caching of flash contents No] v

~ Time Measurement

Run Break Time Measurement Yes v

Count Every Core Cycle Yes v

Operating Frequency [MHz]

Figure 67. Disable Flash Content Caching

R11ANO570EU0141 Rev.1.41 Page 43 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

2. Configure the load image and symbols properties.
Open the Debug Configurations: app_primary_usb -> Debug As -> Debug Configurations.
Make sure app_primary_usb Debug_Flat is selected and select the Startup tab.

Click Add..., then Workspace, navigate to the ra_mcuboot_raém4_dualbank project, and select the
ra_mcuboot_rabm4_dualbank.elf file from the debug folder. Click OK.

{8 2dd download module = [

Specify download module name:

| ra_mcuboot_rabmd_dualbank\Debuf'ra_mcuboot_ra E-m4_u:|ua|bank.elf}

Variables... Search Project... Workspace... File System...

Figure 68. Add the Bootloader Project to Debug Configuration

3. Change the Load type of the Program Binaries for the app_primary_usb project to Symbols only by
clicking on the cell for Load type and selecting Symbols only from the drop-down menu.

Load image and symbols

Filename Load type Offset (hex) On connect
Program Binary [app_primary_ush.elf] Symbaols onl Yes
ra_mcuboot_rabm<d_dualbank.elf [C:ha_d... I Image and Symbaols ID Yes

Figure 69. Select to load Symbols only for the Application Project

4. Follow similar steps to add the signed primary image and the upper bank bootloader. Choose Image
only as the Load type for the upper bank bootloader and choose Raw Binary as the Load type for the
primary application image.

Load image and symbols

Filename Load type Offset (hex] On connect Add
Program Binary [app_primary_usb.elf] Symbols only Yes
app_primary_ush.bin.signed [C:\Users\a30... Raw Binary 10000 Yes Edit...
ra_mcuboot_rabmd_dualbank.elf [C:\Users... Image only 20000 Yes T
ra_mcuboot_rabmd_dualbank.elf [C:\Users... Image and Symbols 0 ez
Maove up
Mawe down
Figure 70. Add the Signed Primary Image and Upper Bank Bootloader
5. Click Debug. The debugger should hit the reset handler in the bootloader.
| 4 @@eEal34 SystemInit();
* Call user application. */
BeBaad3a main();
= while (1)
1
'* Infinite Loop. */
Beaaad3e H
Figure 71. Start the Application Execution
R11ANO570EUO0141 Rev.1.41 Page 44 of 56

Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

6. Choose Remember my decision and click Switch if prompted to switch the perspective.

ﬁ Confirm Perspective Switch *

% This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective supports application debugging by providing views for
displaying the debug stack, variables and breakpoints.

Switch to this perspective?

Remember my decision

o w

Figure 72. Switch the Perspective

7. Click Resume " to run the project.
The program should now be paused inmain atthe hal entry () call in the bootloader.

/* generated main source file - do not edit */
#include "hal_data.h”
= int main(void)

5 geeaelzc | hal_entry ()3
6 BBReA132 return 8;

}

Figure 73. Start the Application Execution

8. Click U™ to run again.

The red, blue, and green LEDs on the EK-RA6M4 should now be blinking while the blinky application is
running.

6.5 Program the New Application Using the Primary Application Downloader
Follow the steps below to program the new application created in section 6.1 Prepare a Secondary Image:

1. Open Tera Term and choose the USB Serial Port (COM number may be different for your setup). Then
click OK.

Tera Term: New connection X
O TCPHIP myhost.example.com
History
Telnet 22
5SH 88H2
Other
AUTO
@® Serial Port: | COM7: USB Serial Port [COM7) vI
Cancel Help

Figure 74. Open the COM Port

Note: When using the UART interface, select the Serial Terminal and set the Speed to 115200. Skip this
step if using the USB interface.

R11ANO570EU0141 Rev.1.41 Page 45 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Tera Term: Serial port setup and connection ®
Port: COM7? v i
New setting
Data: 8 bit w Cancel
Parity: none w
Stop bits: 1 bit ~ Help
Flow control: none w

Figure 75. Configure the Baud Rate if using UART Interface

The menu in Figure 76. Tera Term Menu will be displayed on the Tera Term.

Pleacse select from helow menu options:

1 — Display image slot info
2.— Download and boot the new image (HModem)
b

Figure 76. Tera Term Menu

2. Select option 1 to print the image slot information.

>1

e e

* Primary Image Slot =

EaEaRaZadadad B B T o g . . T T oz o s .z r 3 o 3 3

Image version: 1.8 (Rev: B, Build: 8>
Primary image start addre BxBA168080
Header size: AxB8280 (512 bytes>
Protected TLU size: AxB888 (@ bytes>

Image size: AxBBBBB2B4 (45748 hytes)

EaBa a3 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3.3 3.3

* Secondary Image Slot =

< o e e e

Image version: 255.255 (Rev: 65535, Build: -1>

Secondary image start address: xh02100008

i BxFFFF (65535 bhytes)>

BxFFFF (65535 bytes)
BxFFFFFFFF (-1 hytes)

Figure 77. Print the Image Slot Information

3. Select option 2 to download the secondary image using the primary image downloader.

1 — Display image slot info
2 — Download and hoot the new image (XModem?
»2

Blank checking the secondary slot...

NS Secondary slot hlank

Start Nmodem transfer...

Syztem will awntomatically reset after successful download...

Figure 78. Choose Option 2 to Download the New Image using XModem

R11ANO570EU0141 Rev.1.41 Page 46 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

4. Open the Transfer interface of the Tera Term.

W COMS - Tera Term VT
Edit Setup Control Window Help

BB9F6C (408812 hytes>

New connection... Alt+N
Duplicate session Alt+D
Cygwin connection Alt+G
Log...

Pause Logging FFFFFF (-1 bytes>

Comment to Log..

Show Leg dialog...

Stop Logging (Q)
Send file... w image (XModem>

SSH SCP... XMODEM > Receive...

Change directory... YMODEM >
Replav Loa... ZMODEM >

Figure 79. Start Transfer from Tera Term

5. Choose \app_secondary_usb\Debug\app_secondary_usb.bin.signed, then click Open.

¥ Tera Term: XMODEM Send
Look in: Debug v & T i [EERg
Name h Date modified Type
ra 9/23/2024 10:29 AM File folder
ra_gen 9/23/2024 10:29 AM File folder
src 9/23/2024 10:29 AM File folder
[app_secondary_usb.bin.signed] 9/23/2024 10:29 AM SIGNED File
app_secondary_usb.elf 9/23/2024 10:29 AM ELF File
app_secondary_usb.elf.in 9/23/2024 10:29 AM IN File
[app_secondary_usb.map 9/23/2024 10:29 AM Linker Address Map

Figure 80. Choose the Signed Secondary Image

The secondary image is then downloaded and programmed to the upper bank.

Tera Term: XMODEM Send X

Filename: |app_secondary_usb.b|

Protocol: XMODEM [checksum]
Packeti: 837
Bytes transferred: 107136
Elapsed time: 0:00

III 81.7%

Figure 81. Download the New Image via XModem

6.6 Boot the New Application
The system will automatically reboot after the new image is downloaded.

Rezsetting the system

Please select from bhelow menu options:

TR Display image slot info
g2 — Download and boot the new image (XModem?

Figure 82. The New Image is Booted

R11ANO570EU0141 Rev.1.41 Page 47 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Select option 1 to read the swapped memory layout.

>1
* Primary Image Slot =

Image version: 1.1 <Rev: B, Build: &>
Primary image start address: BxPa1 8888
Header size: BxB200 (512 hbytes?
Protected TLU size: BxPAB (B bytes>

Image size: BxB0AB?F74 (40828 hytes>

MMM

% Secondary Image Slot =
el m m m m o m o o T o p n o a o n o o o o o 3

Image version: 1.8 <(Rev: B, Build: &>
Secondary image start address: Bx8821 8888
Header size: BxB288 (512 bytes)
Protected TLU size: BxB088 <@ bhytes>

Image size: BxB0BBB2B4 (45748 hytes)

Figure 83. The Slot Layout After New Image is Booted

Note that even though the secondary image is booted, it cannot be debugged as the symbol downloaded to
the debugger is for the primary image.

Also, if you want to perform further updates, the new image must have a version higher than the current
image in the primary slot.

7. Production Support Considerations

This section describes one possible production flow. Users may adapt this procedure to their own needs
wherever possible.

7.1 Protect the Bootloader Using Flash Block Protection

The secure bootloader protects the Root of Trust of the system. It should be protected from alteration by the
application. Based on Figure 36. Compile the Bootloader ra_mcuboot_raém4_dualbank; the bootloader is
located in the first 64-KB region. Based on Figure 3. RA6M4 and RAGE1 Code Flash Block Structure, the
blocks that need to be protected are blocks 0 to 7 for the lower bank and 70 to 77 for the upper bank.

Users can set up these blocks to be temporarily protected in the ra mcuboot raém4 dualbank project
under the BSP tab. If these blocks are protected temporarily, the block protection setting can be reset by
performing the MCU erase operations described in section 6.3 Erase the MCU.

Summary Clocks | Pins | Interrupts | Event Links | Stacks| Components

2 Problems | LI} Smart Manual | B Console |] Properties > | @ Smart Browser| [] Memory % Debug

EK-RA6M4
Settings Property Value
package_pins 144
v RA6M4

series 6

v RA6M4 Family
Security
OFS0 register settings
OFS1_SEL register settings
OFS1 register settings

w Block Protection Settings (BPS)

~ BPSOD

Flash Block 0

Flash Block 1

Flash Block 2

Flash Block 3

Flash Block 4

Flash Block 5

Flash Block 6

Flash Block 7

Flash Block 8

Flash Block 9

SRS (SINISINISIS{N]S

Figure 84. Temporary Protection of the Lower Bank Bootloader Area

R11ANO570EU0141 Rev.1.41 Page 48 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Summary Clocks Pins | Interrupts | Event Links | Stacks | Components

& Problems |LL} Smart Manual | B Console | Properties 1@ smart Browser 0 Memory | 4§ Debug

EK-RAG6M4
Settings Property Value
package_pins 144
v RAEM4
series 6
+ RABM4 Family
Security

OFS0 register settings
OFS1_SEL register settings
OFS1 register settings
w Block Protection Settings (BPS)
BPSO
BPS1
v BPS2
Flash Block 70 (Dual Mode Only,
Flash Block 71 (Dual Mode Only,
Flash Block 72 (Dual Mode Only’
Flash Block 73 (Dual Mode Only,
Flash Block 74 (Dual Mode Only;
Flash Block 75 (Dual Maode Only;
Flash Block 76 (Dual Mode Only,
Flash Block 77 (Dual Mode Only’
Flash Block 78 (Dual Mode Only,
Flash Block 79 (Dual Mode Only;

O ONREENRERE

)
)
)
)
)
)
)
)
)
)

Figure 85. Temporary Protection of the Upper Bank Bootloader Area

Users can set up these blocks to be permanently protected in the ra_mcuboot ra6m4 dualbank project
under the BSP tab.

Note: If these blocks are protected permanently, these areas cannot be erased and reprogrammed through
the lifetime of the MCU. Users need to be very cautious when setting up permanent protection. The
MCU erase operations described in section 6.3 Erase the MCU will not be able to erase these blocks.

Summary Clocks | Pins | Interrupts | Event Links | Stacks | Components

.| Problems |2} Smart Manual | B Console |[C] Properties > |@ Smart Browser| [J Memory | %& Debug

EK-RA6M4
Settings Property Value
v RABM4
series 6
v RABM4 Family
Security

OFS0 register settings
OFS1_SEL register settings
OFS1 register settings
Block Protection Settings (BPS)
~ Permanent Block Protection Settings (PBPS)

v PBPSD
Flash Block 0
Flash Block 1
Flash Block 2
Flash Block 3
Flash Block 4
Flash Block 5
Flash Block 6
Flash Block 7
Flash Block 8 O
Flash Block 9 O

Figure 86. Permanent Protection of the Lower Bank Bootloader Area

R11ANO570EU0141 Rev.1.41 Page 49 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

Summary Clocks | Pins | Interrupts | Event Links Stacks | Components

i Problems | L&) Smart Manual | B Console | [Properties > | & Smart Browser| [J Memory| %% Debug

EK-RAG6M4
Settings Property Value
package_pins 144
v RAGM4

series 6
~ RAGM4 Family

Security

OFS0 register settings

OFS1_SEL register settings

OFS1 register settings

Block Protection Settings (BPS)

w Permanent Block Protection Settings (PBPS)
PBPSO
PBPS1

~ PBPS2
Flash Block 70 (Dual Mode Only)
Flash Block 71 (Dual Mode Only)
Flash Block 72 (Dual Mode Only)
Flash Block 73 (Dual Mode Only)
Flash Block 74 (Dual Mode Only)
Flash Block 75 (Dual Mode Only)
Flash Block 76 (Dual Mode Only)
Flash Block 77 (Dual Mode Only)
Flash Block 78 (Dual Mode Only)
Flash Block 79 (Dual Mode Only)

UORENEEREE

Figure 87. Permanent Protection of the Upper Bank Bootloader Area

The included example bootloader does not include the block settings to enable block protection. Users can
enable them prior to field deployment.

7.2 Provision the Bootloaders and the Initial Application to MCU

Users can combine the . srec files generated from the above sections into one . srec file and program it to
the MCU during production.

The three images to be combined are:

e Bootloader for the Lower Bank: ra mcuboot raé6m4 dualbank.srec
e Bootloader for the Upper Bank: ra mcuboot ra6tm4 dualbank offset.srec
o Application for the Lower Bank: app primary usb signed offset.srec

The following command assumes the user executes from the location of the srec_cat.exe and have all
three input files exist under the same folder as the srec cat.exe. Use the following command to generate
one combined . srec from the above three . srec files:

srec_cat ra mcuboot raém4 dualbank.srec ra mcuboot raé6m4 dualbank offset.srec
app_primary usb signed offset.srec -o combined.srec
To download combined.srec, users can use RFP or J-Flash Lite, as shown in Figure 88. Load
combined.srec file using J-Flash Lite and Figure 91. Selecting combined.srec file and execute the command.

Note: Prior to download combined. srec, users need to erase the MCU first, follow the instructions in
section 6.3 Erase the MCU.

R11ANO570EU0141 Rev.1.41 Page 50 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

e Download (*. srec) file using J-Flash Lite.

H SEGGER J-Flash Lite V7.98b - X
File Help

Target

Device Interface Speed

[R7FAGMaAF | [swo | [4000 kz

Data File (bin / hex / mot [srec/ ...)

bfmcubootﬁduaIbank\combinefsrenicombined.srec|] Erase Chip

Selected file: C:\Users\trung.tran-quoc\Documents\RVC_TASK_24 2H\migrat
Data file contains 5 memory ranges:
#B: @x00000008 - @xDBBOE483 (58580 Bytes)
#1: @x00010008 - @xBBEBE483 (517252 Bytes)
#2: @x0100A108 - @xBlBEA113 (28 Bytes)
#3: Gw8leBAl34 - @xBlBeAL37 (4 Bytes)
#4: Gx0l00A208 - @xBLBOA2CF (288 Bytes)

Log

< >

Ready

Figure 88. Load combined.srec file using J-Flash Lite
e Download (*. srec) file using Renesas Flash Programmer (RFP).

Launch RFP and create a new RFP project. Click File > New Project.

| File | Target Device Help
New Project...
Open Project...

s Connect Settings Unique Code

Save Project

Figure 89. Create a New RFP Project

Configure the Microcontroller selection as well as the Tool used for communication. Then, click Connect.

s Create New Project - X

Project Information

Microcontroller: RA v

Project Name [Va _mcuboot_duabank

Project Folder: Browse

Communication
S e —

Tool Detais Num: AutoSelect
=

Figure 90. Configure the New Project

Select a program file and execute the command.

R11ANO570EU0141 Rev.1.41 Page 51 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

File Target Device Help
Operation Operation Settings Block Seftings Connect Settings Unique Code
Project Information
Current Project: ra_mcuboot_dualbank mpj
Microcontroller RA

Program Files

\r11an0570_mcuboot_dualbank \combine_srecfcombined srec]
CRC-32: B1802DDB Add/Remove Files...

Command
Erase >> Program >> Verfy

Start

Figure 91. Selecting combined.srec file and execute the command

If the download (* . srec) file is successful, the message in Figure 92. Download combined.srec file

succeeded will be presented in the status window.

[Confie Area 1] 0x01004100 = 0x0100A11F size : 32
[Confie Area 1] 0x01004130 = 0x0100A413F size : 16
[Confie Area 1] 0x01004200 - 0x0100A42CF size : 208
Verifying data
[Code Flash 1] 000000000 - 0x0000E4FF size: 6578 K
[Code Flash 1] 000010000 - 0x0008E4FF size : 6053 K
[Confie Area 1] 0x0100A100 - 0xD100ATIF size: 32
[Confie Area 1] 0x0100A130 - 0xD100A13F size: 16
[Config Area 1] 0x01004200 - 0x0100A42CF size : 208
Setting the tareet device

Disconnecting the tool
IOperation completed.

Clear status and message

Figure 92. Download combined.srec file succeeded

Once the device is deployed to the field, the application update can be achieved using the image downloader

implemented in the application project.

R11ANO570EU0141 Rev.1.41
Mar.13.25 RENESAS

Page 52 of 56

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

8. Compile and Exercise the Included Example Bootloader and Application
Projects

8.1 Using USB as the Download Interface

For the USB interface, three projects are needed:

e ra mcuboot raém4 dualbank

e app primary usb
e app secondary usb

Users can follow the steps below to run the example projects in the folder \ra6-dual-bank-flash-
mcuboot\example projects with bootloader

1. Follow the instructions in section 6.2 Set Up the Hardware to set up the hardware.

2. Import the above-mentioned three projects to a Workspace.

3. Openthe configuration.xml file from project ra mcuboot raé6m4 dualbank
4. Click Generate Project Content.

5. Compile the project ra mcuboot raém4 dualbank

6. Openthe configuration.xml file from project app primary usb.

7. Click Generate Project Content.

8. Compile the app primary usb.

9. Openthe configuration.xml file from project app secondary usb.

10. Click Generate Project Content.

11. Compile the app secondary usb project.

12. Erase the entire chip following instructions in section 6.3 Erase the MCU.

13. Debug the application from project app primary usb in the e? studio environment.
14. Resume the program execution twice. All three LEDs should be blinking.

15. Stop the debug session and power cycle the EK-RA6M4.

16. Open Tera Term with the enumerated COM port (USB Serial Device).

17. Use Tera Term to send the \app secondary usb\Debug\app secondary usb.bin.signedto

the MCU following the instructions in section 6.6 Boot the New Application. This will take about 30
seconds.

18. The system will be reset automatically after the download.

19. Blue and green LEDs should be blinking.

20. Enter menu item 1 to confirm the image with version 1.1.0 is located in the primary slot (lower bank) and
the image with version 1.0.0 is located in the secondary slot (upper bank).

8.2 Using the UART as the Download Interface
For the UART interface, three projects are needed:

e ra mcuboot raém4 dualbank
® app primary uart
® app secondary uart

Users can follow the steps below to run the example projects in the folder \ra6-dual-bank-flash-
mcuboot\example projects with bootloader

Follow the instructions in section 6.2 Set Up the Hardware to set the hardware.

Import the above-mentioned three projects to a workspace.

Open the configuration.xml file from project ra mcuboot raém4 dualbank.
. Click Generate Project Content.

Compile the project ra mcuboot raé6m4 dualbank

Open the configuration.xml file from project app primary uart.

Click Generate Project Content.

Compile app primary uart.

ONOO O W=

R11ANO570EU0141 Rev.1.41 Page 53 of 56
Mar.13.25 RENESAS

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and

Code Flash Dualbank Mode

10.
11.
12.
13.
14.
15.
16.
17.

18.
19.
20.

Open the configuration.xml file from project app secondary uart.

Click Generate Project Content.

Compile the app secondary uart project.

Erase the entire chip following the instructions in section 6.3 Erase the MCU.

Debug the application from project app primary uart in the e? studio environment.

Resume the program execution twice. All three LEDs should be blinking.

Stop the debug session and power cycle the EK-RA6MA4.

Open the Tera Term with the enumerated COM port and set up the baud rate as 115200.

Use Tera Term to send the \app secondary uart\Debug\app secondary uart.bin.signed to
the MCU by following section 6.6 Boot the New Application. This will take about 50 seconds.

The system will reset automatically after the download.

Blue and green LEDs should be blinking.

Enter menu item 1 to confirm the image with version 1.1.0 is located in the primary slot (lower bank) and
the image with version 1.0.0 is located in the secondary slot (upper bank).

References

Renesas RA Family MCU Securing Data at Rest using Security MPU Application Project (R11AN0416)
Renesas RA Family RA6 Series MCU Basic Secure Bootloader Design using MCUboot with Code Flash
Linear Mode Application Project (R11AN0497)

Renesas RA Family RA2 Series MCU Secure Bootloader Design using MCUboot Application Project
(R11AN0516)

Renesas RA Family RA6 Series MCU Advanced Secure Bootloader Design using MCUboot with
Encrypted Image and QSPI (R11AN0567)

R11ANO570EU0141 Rev.1.41 Page 54 of 56
Mar.13.25 RENESAS

https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

10. Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M4 Resources renesas.com/ra/ek-rabm4
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
R11AN0570EU0141 Rev.1.41 Page 55 of 56

Mar.13.25 RENESAS

https://www.renesas.com/ra/ek-ra6m4
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and

Code Flash Dualbank Mode

Revision History

Description

Rev. Date Page Summary

1.00 Mar.21.22 - First release document

1.10 Nov.11.22 - Updated Operation Flow based on e2studio 2022-10 or later.
Used FSP v4.0.0. Document title changed from “RA6 Secure
Bootloader Update using MCUboot and Flash Dual Bank” to
“RA6 Secure Firmware Update using MCUboot and Flash
Dual Bank”

1.11 Nov.23.22 - Corrected typo, added Figure 56 and included RAGE1.

1.20 Feb.28.24 - Minor documentation updates and migrate to FSP v5.0.0

1.30 May.17.24 - Added bat files.

1.40 Oct.01.24 - Update to FSP v5.5.0

1.41 Mar.13.25 - Correct description about code flash programming unit and

block protect setting

R11ANO570EUO0141 Rev.1.41

Mar.13.25

Re Page 56 of 56
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VL
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Code Flash Dual Bank Feature
	1.1 RA6M4 and RA6E1 MCU Group Code Flash Configuration
	1.2 RA6M5 MCU Group Code Flash Configuration
	1.3 Option-Setting Memory
	1.3.1 Code Flash Bank Mode
	1.3.2 Startup Bank Selection
	1.3.3 Bank Swap
	1.3.4 Code Flash Block Protection

	2. Using the Code Flash Dual Bank Feature with MCUboot Overview
	2.1 MCUboot Functionalities Overview
	2.2 Using MCUboot for Code Flash Dual Bank Mode
	2.2.1 Use Direct XIP Firmware Update Mode
	2.2.2 Memory Configuration Overview with Dual Bank and MCUboot

	2.3 Designing Bootloader and Initial Primary Application Overview
	2.4 Migrating an Existing Code Flash Linear Mode MCUboot Based System

	3. Guidelines for Using the Example Projects Included
	3.1 Example Projects with Bootloader
	3.2 Example Projects without Bootloader

	4. Creating the Bootloader Project using Code Flash Dual Bank Mode
	4.1 Include the MCUboot Module in the Bootloader Project
	4.2 Configure the Memory Configuration and Authentication Method
	4.3 Configure the MbedTLS Crypto Only Module and the Flash Driver
	4.4 Add the Boot Code
	4.5 Compile the Bootloader Project
	4.6 Configure the Python Signing Environment
	4.7 Prepare for Production Support

	5. Configuring and Signing an Application Project
	5.1 Configure the Application Project to Use the Bootloader
	5.2 Signing the Application Image
	5.3 Preparation for Production Support

	6. Booting the Primary Application and Updating to a New Image
	6.1 Prepare a Secondary Image
	6.2 Set Up the Hardware
	6.3 Erase the MCU
	6.3.1 Use the Renesas Flash Programmer
	6.3.2 Use the SEGGER J-Flash Lite
	6.3.3 Use Renesas Device Partition Manager

	6.4 Start the Debug Session
	6.5 Program the New Application Using the Primary Application Downloader
	6.6 Boot the New Application

	7. Production Support Considerations
	7.1 Protect the Bootloader Using Flash Block Protection
	7.2 Provision the Bootloaders and the Initial Application to MCU

	8. Compile and Exercise the Included Example Bootloader and Application Projects
	8.1 Using USB as the Download Interface
	8.2 Using the UART as the Download Interface

	9. References
	10. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

