REN ESAS Application Note

RA Family RO1ANG974EJ0100

IEC 60730/60335 Self Test Library for RA MCU 09
(CM33 Class-C) un-30.

Introduction

Today, as automatic electronic controls systems continue to expand into many diverse applications, the requirement of
reliability and safety are becoming an ever increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires manufactures to
design automatic electronic controls that ensure safe and reliable operation of their products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.
Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.
Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards
Examples: Automatic burner controls and thermal cut-outs for closed.

This Application Note provides guidelines of how to use flexible sample software routines to assist with compliance
with IEC60730 class C safety standards. These routines have been certified by VDE Test and Certification Institute
GmbH and a copy of the Test Certificate is available in the download package for this Application Note.

The software routines provided are to be used after reset and also during the program execution. This document and the
accompanying sample code provide an example of how to do this.

R0O1AN6974EJ0100 Rev.1.00 Page 1 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Target

o Device:
- Renesas RA Family (Arm® Cortex®-M33) * See Table a for series and groups.

¢ Development environment (one of the following):
<RA6M4>
- GNU-GCC ARM Embedded 10.3.1.20210824 / 2 studio 2020-10

The term "RA MCU" used in this document refers to the following products.
Table a : RA MCU Self-Test Function List

CPU Core Arm® Cortex®-M33
Series RA6
Group RA6M4
< CPU O
u;;) ROM O
Z | RAM O
@ | Clock @)
. Independent Watchdog Timer (IWDT) O

Support for Arm® TrustZone®

This self-test library is assumed to be executed in the "secure area" (hereinafter referred to as "Safety Part") in Arm®
TrustZone®.The code of the self-test library is generated by "TrustZone Secure Project”" of RA Project Generator

(PG)*.

In addition, the "TrustZone Non-Secure Project”" of RA Project Generator (*) creates the final code, including a sample
program that runs in the "non-secure area" (hereafter referred to as the Non-Safety Part).

*: For more information on RA Project Generator, see the RA FSP (Flexible Software Package) documentation.
See the links below for more information on the RA Arm® TrustZone® tool.

https://www.renesas.com/jp/ja/document/apn/ra-arm-trustzone-tooling-primer.

R0O1AN6974EJ0100 Rev.1.00 Page 2 of 106

https://www.renesas.com/jp/ja/document/apn/ra-arm-trustzone-tooling-primer

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Self-test library overview

The self-test library consists of instruction decoding, CPU registers, internal memory, watchdog timer, and
monitoring functions for the system clock.

As described below, the anomaly monitoring process provides an application program interface (API) for each module
that monitors. Use each function according to the purpose.

The self-test library functions are divided into modules according to IEC60730Class-C. The anomaly monitoring
process can be performed standalone by selecting each test function in turn.

In addition, we adopted a method that separates the inside of the Arm TrustZone compatible microcomputer into a
safe part (secure area) and a non-safe part (non-secure area).
It is assumed that this self-test library will be implemented in the safe part (secure area).

R0O1AN6974EJ0100 Rev.1.00 Page 3 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

The RA6 series (with Arm® Cortex®-M33) self-test library implemet funtions of the following main self-testing.

e Instruction decoding
Verify that the corresponding instruction of Arm Cortex-M33 works properly according to the specifications.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H — H2.18.5 equivalence class test”.

CPU Register

Test the CPU registers listed in "Table 1.1 CPU Test target(Overview)T 7 —! BRRITLB RO A, "
The internal data path is verified during the normal operation test of the above registers.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H - Table H.11.12.7 1.CPU".

e Invariable memory

Test the internal Flash memory of the MCU.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H — H2.19.4.2 CRC — double word”

e Variable memory
Test Internal SRAM

The RAM test uses the WALKPAT algorithm and the Extended March C-algorithm.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H-H.2.19.7 walkpat memory test”

e System Clock

Test the operation and frequency of the system clock based on the reference clock source (this test requires an
independent internal or external reference clock).
See “IEC Reference - IEC 60730-1:2013+A1:2015+A2:2020 Annex H — H2.18.10.1 Frequency monitoring”

e CPU./Program Counter(PC)

In order to confirm that the program is executing the sequence within the specified time, it is confirmed using the
built-in watchdog timer that operates with a clock independent of the CPU.

See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H — H2.18.10.3 independent time-slot and
logicalmonitoring”

R0O1AN6974EJ0100 Rev.1.00 Page 4 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

About S / W mapping of self-test library and test sample software

This program creates two projects, TrustZone Secure project and TrustZone non-secure project, as shown below, and
allocates the programs to Non-safety part and Safety Part.

This self-test library need to be placed in the Safety part.

®Non safety part(Non-Secure)
HMUser Application
M initialize process for Non-Safety part at Power-On(P-ON) startup.

& Safety part(Secure)
HInitialize process for Safety part at Power-On(P-ON) startup.
Hinitial settings related to self-test library (periodic timer (AGTS5), interrupt, etc.)
B Each self-test at P-ON startup (CPU, RAM, ROM, Clock test, etc.)
M Periodical self-tests (CPU, RAM, ROM test,etc.)

Call area from Non-

Non safety part safety part Safety part

(Non-secure callable) Initialize process for Safety
part at P-ON startup

Initialoze process for Non-
Safety part

Self Tests at P-ON startup
+ CPU Register Test

+ CPU Instruction Test

+ ROM Test

* RAM Test

Iy T AL

Initial settings related to
periodical self-test (timer
interrupt settings, etc.)

User Application %

) Periodical Selt Tests
- CPU RegisterTest
+ CPU Instruction Test
- ROM Test
* RAM Test

Figure a (Ex.) Image of placement of self-test library processing in non-safety section and safe section

* When calling the function of the safety part from the non-safety part, see "Renesas RA Family RA Arm ® Trust
Zone ® Tooling Primer"
[Reference URL] :

https://www.renesas.com/jp/ja/document/apn/ra-arm-trustzone-tooling-primer?language=en&r=1353811

R0O1AN6974EJ0100 Rev.1.00 Page 5 of 106

https://www.renesas.com/jp/ja/document/apn/ra-arm-trustzone-tooling-primer?language=en&r=1353811

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Table of Contents

P =T £ PP PP TP O PPPPPPPPPPPR 8
1o CPU 8
1.1.1 CPU instruction test and CPU register test ... 8
L =] O = 1 (] PP ST PP RPN 21
(O I T O o U IS Yo =T A SRR 22
1.2 RO e 61
(V0 B O {0 12 Y T To 11 T SRS 61
1.2.2 MUIE CRECKSUM ...ttt ettt et re et e e bt sa e e et e e e nbe e e st e e e anneesaneena 61
(VR T O S O o 1177 T = Y SR 62
PG T L 1 66
1.3.1 RAM BIOCK CONfIGUIALION.......eiiiiiiiiiei et 66
1.3.2 RESEIVEA Al ... ettt e e et e e e e e e ar e e e s e s et e s e n e e e e e rre e e e 67
1.3.3 RAM TeSt AlGOTTNIM ... et bb e e e 69
1.3.4 RAM SOFWAIE APottt sttt ettt et et e e sne e e e e 72
R O [Yo PSP PP PP PPPPPPPPRI 77
1.4.1 Main Clock Frequency Monitoring BY CACooei i a e e 77
1.4.2 Oscillation Stop Detection of Main CIOCK............oooiiiiii e e 77
1.4.3 CLOCK SOFtWAIE APottt e e sae e s e e e sanee e 78
1.5 Independent Watchdog Timer (IWDT)......coouiiiiii e 81
1.5.1 IWDT SOMWAIE APttt bttt bt b e be e ae e eaeeenee e 82
2. EXAMPIE USAQE.....uu it a it e aanan 84
2 P e 85
2 It B o 1= @ Lo B PSP P PP PRP PPN 85
I =T 4 o T | PP PRTPPPR 85
2.1.3 Preparation for CPU teStING..........uviiiiiii ittt e e e e e e e e e e e e e e e e s nanneees 85
2 £ (@ 1Y PR 87
2.2.1 Reference CRC Value Calculation in AQVANCEceiiiiiiiiiiiiii e 87
2.2.2 Setting for the support Multi-CheCkSUMo 96
2.2.3 POWET-OMN ...ttt ettt a etk E Rttt b e ea et b et nar e e e n e e n e e nes 97
A S = 1 o T | PSP OTPPPR 97
220G T ¥ | 98
P R B o 11T ol o PP OTPPPR 98
2.3.2 PEIIOAIC ...ttt e ar e e e e e e 98
S O [Tor PSPPI PPPPPPPPR 99
2.5 Independent Watchdog Timer (IWDT)......couuiuiiiiiereee e 101
2.5.1 OFSO0 Register Setting Example (IWDT Related)oooeeeiiiiiiiiiiiiee e 101
2.5.2 Example of registering and writing an NMI interrupt callback function..............ccccconiiiininnn 103
AT o FST 1 (3= a o IR TU] Yo i (O 105
Reference DOCUMENTSuiiiiiiiiie e 105
RO1AN6974EJ0100 Rev.1.00 Page 6 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

REVISION HISIOIYeeii e e e e e e e e e e e e e e e e e eaaeeees 106

R0O1AN6974EJ0100 Rev.1.00 Page 7 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1. Tests
1.1 CPU

The objective of the CPU test is to detect random permanent faults from CPU core.
Main functions of CPU Test are described below.

@CPU instruction test)

@CPU register test

1.1.1 CPU instruction test and CPU register test

Table 1.16 describes the outline of each test of the CPU test performed by this self-test library.
The related registers and instruction codes are tested by executing of each test, and by checking the execution results,
CPU fault can be detect.

Test targets(Overview) are CPU instructions and registers listed in Table 1.1.

Table 1.1 CPU Test target(Overview)

Test target Arm® Cortex®-M33(CM33)
Instruction Profile ARMvE-M
Mainline
Instruction set Cortex-M33
Instruction Set
DSP SIMD only
FSP Single and double
precision instructions
Register General purpose registers RO —RI12 4
Stack Pointer SP(R13) v
Link Register LR(R14) v/
Program Counter PC(R15) /
Single-precision Floating-point Registers S0 - S31 v/
Floating-point Status Control Register FPSCR v/
Application Program Status Register APSR J/
RO1AN6974EJ0100 Rev.1.00 Page 8 of 106

Jun.30.2023 RENESAS

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

The list of the Armv8-M registers and their test support status is listed in the below "Table 1.2 - Table 1.3".

See the "Arm®v8-M Architecture Reference Manual" (Reference Document [2]) for detailed information on each

register.

[Notation]

N4 : To be tested

(blank) : Not to be tested
N/A : Not applicapable

Table 1.2 Armv8-M Registers Tested/Not Tested by CPU Test (1 of 2)

No. Component Register Description Tcestje?eks)%l
1 Special and APSR Application Program Status Register v
general-purpose BASEPRI Base Priority Mask Register
registers CONTROL Control Register
EPSR Execution Program Status Register
FAULTMASK Fault Mask Register
FPSCR Floating-point Status and Control Register v
IPSR Interrupt Program Status Register
LO_BRANCH_INFO Loop and branch tracking information N/A
LR(R14) Link Register v
MSPLIM Main Stack Pointer Limit Register
PC(R15) Program Counter v
PRIMASK Exception Mask Register
PSPLIM Process Stack Pointer Limit Register
Rn (RO - R12) General-Purpose Register n v
SP (R13) Current Stack Pointer Register v
SP Stack Pointer (Non-secure)
S0 - S31 Single-precision Floating-point Registers v
VPR Vector Predication Status and Control NIA
Reqgister

XPSR Combined Program Status Registers

RO1AN6974EJ0100 Rev.1.00

Jun.30.2023

RENESAS

Page 9 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
Table 1.3 Armv8-M Registers Tested/Not Tested by CPU Test (2 of 2)
Tested by
No. Component Register
CPU test
2 Payloads All registers
3 Instrumentation Macrocell All registers
4 Data Watchpoint and Trace All registers
5 Flash Patch and Breakpoint All registers
6 Performance Monitoring Unit All registers N/A
e N L I
8 Implementation Control Block All registers
SysTick Timer All registers
10 | Nested Vectored Interrupt Controller All registers
11 | System Control Block All registers
12 | Memory Protection Unit All registers
13 | Security Attribution Unit All registers
14 | Debug Control Block All registers
15 | Software Interrupt Generation All registers
16 Relia'bility, Avai!ability and Serviceability Extension Fault Status Register All registers
(Registers starting at address OXEOOOEF04)
17 | Floating-Point Extension All registers
18 | Cache Maintenance Operations All registers
19 | Debug Identification Block All registers
20 | Implementation Control Block (NS alias) All registers
21 | SysTick Timer (NS alias) All registers
22 | Nested Vectored Interrupt Controller (NS alias) All registers
23 | System Control Block (NS alias) All registers
24 | Memory Protection Unit (NS alias) All registers
25 | Debug Control Block (NS alias) All registers
26 | Software Interrupt Generation (NS alias) All registers
7 Reliability, Availability and Serviceability Extension Fault Status Register (NS Al registers
Alias)
28 | Floating-Point Extension (NS alias) All registers
29 | Cache Maintenance Operations (NS alias) All registers
30 | Debug Identification Block (NS alias) All registers
31 | Trace Port Interface Unit All registers

R0O1AN6974EJ0100 Rev.1.00

Page 10 of 106

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

The list of the Armv8-M instructions and their test support status is listed in the below "Table 1.4 - Table 1.13".
See the "Arm® Cortex®-M33 Devices Generic User Guide " (Reference Document [1]) for detailed information on
each instructons.

Note that the main purpose is not to test individual instructions, but to detect random permanent failure of the CPU

core.

[Notation]
v : To be tested
(blank) : Not to be tested
N/A : Not applicapable
Table 1.4 Armv8-M Instructions Tested/Not Tested by CPU Test (1 of 10)
No. Instruction Testad by No. Instruction Testad by
CPU test CPU test
1| ADC (immediate) * 21 | BIC (immediate) *
2 ADC (register) 4 22 | Bic (register) 4
3 | ADD (SP plus immediate) v 23 | BKPT
4 | ADD (SP plus register) * 24 | BL v
5 | ADD (immediate) * 25 | BLX, BLXNS v
6 | ADD (immediate, to PC) * 26 | BX, BXNS v
7 | ADD (register) v 27 | cBNZ, CBZ v
8 | ADR v 28 | cpP, CDP2
9 | AND (immediate) * 29 | cINC N/A
10 | AND (register) v 30 | cinv N/A
11 | ASR (immediate) v 31 | CLREX v
12 | ASR (register) * 32 | cLRM N/A
13 | ASRL (immediate) N/A 33 | cLz v
14 | ASRL (register) N/A 34 | CMN (immediate) *
15 | ASRS (immediate) * 35 | CMN (register) 4
16 | ASRS (register) 4 36 | CMP (immediate) *
17 1B v 37 | CMP (register) v
18 | BF, BFX, BFL, BFLX, BFCSEL N/A 38 | CNEG N/A
19 | BFC v 39 | cps
20 | gF v 40 | cspB N/A

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 11 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
Table 1.5 Armv8-M Instructions Tested/Not Tested by CPU Test (2 of 10)
No Instruction Tested by No. Instruction Tested by
CPU test CPU test

41 | csEL N/A 71 | Lbc, LDC2 (literal) N/A
42 | csET N/A 72 | DM, LDMIA, LDMFD 4
43 | CSETM N/A 73 | LDMDB, LDMEA v
44 | csINC N/A 74 | LDR (immediate) v
45 | csINv N/A 75 | LDR (literal) *
46 | cSNEG N/A 76 | LDR (register) 4
47 | cx1 N/A 77 | LDRB (immediate) v
48 | cx1D N/A 78 | LDRB (literal) *
49 | cx2 N/A 79 | LDRB (register) *
50 | cx2p N/A 80 | LDRBT 4
51 | cx3 N/A 81 | LDRD (immediate) v
52 | cx3D N/A 82 | LDROD (literal) *
53 | pBG 83 | LDREX v
54 | pmB 84 | LDREXB v
55 | psB 85 | LDREXH v
56 | EOR (immediate) * 86 | LDRH (immediate) v
57 | EOR (register) v 87 | LDRH (literal) v
58 | EsB N/A 88 | LDRH (register) *
59 | FLDMDBX, FLDMIAX 89 | LDRHT v
60 | FSTMDBX, FSTMIAX 90 | LDRSB (immediate) *
61 | 1sB 91 | LDRSB (literal) v
62 | |1 v 92 | LDRSB (register) 4
63 | LcTP N/A 93 | LDRSBT v
64 | LDA v 94 | LDRSH (immediate) v
65 | LDAB v 95 | LDRSH (literal) *
66 | LDAEX v 96 | LDRSH (register) v
67 | LDAEXB v 97 | LDRSHT v
68 | LDAEXH v 98 | LDRT v
69 | LDAH v 9 | LE LETP N/A
70 | LpC, LDC2 (immediate) N/A 100 | LsL (immediate) v

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 12 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
Table 1.6 Armv8-M Instructions Tested/Not Tested by CPU Test (3 of 10)
No. Instruction Tested by No. Instruction Tested by
CPU test CPU test
101 | LSL (register) * 131 | PKHBT, PKHTB v
102 | LSLL (immediate) N/A 132 | pPLD (literal)
103 | LSLL (register) N/A 133 | PLD, PLDW (immediate)
104 | LsSLS (immediate) * 134 | pLD, PLDW (register)
105 | LsLs (register) 4 135 | pL (immediate, literal)
106 | Lsr (immediate) 4 136 | pLi (register)
107 | Lsr (register) * 137 | pop (multiple registers) 4
108 | LSRL (immediate) N/A 138 | POP (single register) v
109 | | SRS (immediate) * 139 | pssBB N/A
110 | Lsrs (register) v 140 | pysH (multiple registers) 4
111 | MCR, MCR2 141 | PUSH (single register) v
112 | MCRR, MCRR2 142 | QADD v
13 | mLA v 143 | QADD16 4
114 | mLs v 144 | QADDS v
115 | MOV (immediate) v 145 | QAsx v
116 | MOV (register) * 146 | QDADD v
"7 ?:le(;\igtxz\éi?ted register) i 147 QDSUB d
118 | MOVT v 148 | QsAx v
119 | MRC, MRC2 149 | asuB v
120 | MRRC, MRRC2 150 | QsuB16 v
121 | MRs v 151 | QsuBs v
122 | MSR (register) v 152 | RBIT v
123 | muL v 153 | REV v
124 | MVN (immediate) * 154 | REV16 v
125 | MVN (register) v 155 | REVSH v
126 | NOP 156 | ROR (immediate) v
127 | ORN (immediate) * 157 | ROR (register) *
128 | ORN (register) v 158 | RORS (immediate) *
129 | ORR (immediate) * 159 | RORS (register) 4
130 | ORR (register) 4 160 | RRX 4

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 13 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
Table 1.7 Armv8-M Instructions Tested/Not Tested by CPU Test (4 of 10)
No. Instruction Tested by No. Instruction Tested by
CPU test CPU test

161 | RRXS v 191 | SMUAD, SMUADX v
162 | RSB (immediate) 192 gmg:ﬁf_ SMULBT, SMULTS, 4
163 | RSB (register) * 193 | smuLL v
164 | saADD16 v 194 | smMuLwB, SMULWT v
165 | sADDs v 195 | sMusD, SMUSDX v
166 | sasx v 196 | SQRSHR (register) N/A
167 | SBC (immediate) * 197 | SQRSHRL (register) N/A
168 | SBC (register) v 198 | sQSHL (immediate) N/A
169 | sBFx v 199 | SQSHLL (immediate) N/A
170 | spiv v 200 | SRSHR (immediate) N/A
171 | sEL v 201 | SRSHRL (immediate) N/A
172 | sgv 202 | gsAT v
173 | sG 203 | sSAT16 v
174 | SHADD16 v 204 | ssAX v
175 | SHADDS v 205 | ssBB N/A
176 | sHASX v 206 | ssuB16 v
177 | sHsAX v 207 | ssuBs v
178 | sHsUB16 v 208 | sTC, STC2 N/A
179 | sHsuBs v 209 | sTL v
w I | e /
181 | SMLAD, SMLADX v 211 | sTLEX v
182 | sMmLAL v 212 | sTLEXB v
0 | WRSSNT | /|29 | snem /
184 | SMLALD, SMLALDX v 214 | STLH v
185 | SMLAWB, SMLAWT v 215 | sTM, STMIA, STMEA v
186 | sMLSD, SMLSDX v 216 | STMDB, STMFD v
187 | SMLSLD, SMLSLDX v 217 | STR (immediate) v
188 | SMMLA, SMMLAR v 218 | STR (register) v
189 | sMMLS, SMMLSR v 219 | STRB (immediate) v
190 | sMmuUL, SMMULR v 220 | STRB (register) v

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 14 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
Table 1.8 Armv8-M Instructions Tested/Not Tested by CPU Test (5 of 10)
No. Instruction Tested by No. Instruction Tested by
CPU test CPU test
221 | STRBT v 251 | UBEx v
222 | STRD (immediate) v 252 | UDF
223 | STREX v 253 | ypiv v
224 | STREXB v 254 | UHADD16 v
225 | STREXH v 255 | UHADDS v
226 | STRH (immediate) v 256 | yHASX v
227 | STRH (register) v 257 | UHSAX v
228 | STRHT v 258 | UHSUB16 4
229 | STRT v 259 | yHsuUBS v
230 | suB (SP minus immediate) 4 260 | ymAAL 4
231 | SUB (SP minus register) * 261 | UMLAL 4
232 | sSUB (immediate) v 262 | ymuLL v
233 | SUB (immediate, from PC) * 263 | UQADD16 v
234 | SUB (register) * 264 | UQADDS v
235 | sve 265 | yQAsx v
236 | SXTAB v 266 | UQRSHL (register) N/A
237 | SXTAB16 v 267 | UQRSHLL (register) N/A
238 | SXTAH v 268 | yqsax v
239 | sxTB v 269 | UQSHL (immediate) N/A
240 | sxTB16 v 270 | UQSHLL (immediate) N/A
241 | sXTH v 271 | yQsuB16 v
242 | BB, TBH v 272 | yqsuBs v
243 | TEQ (immediate) * 273 | URSHR (immediate) N/A
244 | TEQ (register) v 274 | URSHRL (immediate) N/A
245 | TST (immediate) * 275 | ysaADs v
246 | TST (register) v 276 | USADAS v
247 | TT, TTT, TTA, TTAT 277 | USAT v
248 | UADD16 v 278 | UsAT16 v
249 | yADDS v 279 | ysax v
250 | yasx v 280 | usuB16 v

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 15 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
Table 1.9 Armv8-M Instructions Tested/Not Tested by CPU Test (6 of 10)
Tested by Tested by
No. Instruction No. Instruction
CPU test CPU test

281 | ysuBs v 301 | vAND N/A
282 | UxTAB v 302 | vBIC (immediate) N/A
283 | UXTAB16 v 303 | VBIC (register) N/A
284 | UXTAH v 304 | vBRSR N/A
285 | uxTB v 305 | vCADD (floating-point) N/A
286 | uxTB16 v 306 | vCADD N/A
287 | UXTH v 307 | vcLs N/A
288 | yABAV N/A 308 | voLz N/A
289 | VABD (floating-point) N/A 309 | VCMLA (floating-point) N/A
290 | vaBD N/A 310 | VCMP (floating-point) N/A
291 | VABS (floating-point) N/A 311 | VCMP (vector) N/A
292 | VABS (vector) N/A 312 | vemp v
293 | vABS v 313 | veMPE v
294 | vaDC N/A 314 | vCMUL (floating-point) N/A
295 | VADD (floating-point) N/A 315 | veTP N/A
296 | vADD (vector) N/A 316 :)/lg\cfilié:e;\lr\:zesri]n(;?:-t;lree-cision) N/A
A
298 | vADDLV N/A 318 ;’::;X;Zeg’:’)ii;‘ floating-point v
299 | vADDV N/A 319 ;/r(]:c:/iﬁt(ebgeet\r/\)/een floating-point N/A
300 | VAND (immediate) N/A 320 ;’gl’;lé:e]}lvgzs:gsg‘gﬁ)a”d haif- N/A

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 16 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
Table 1.10 Armv8-M Instructions Tested/Not Tested by CPU Test (7 of 10)
Tested by Tested by
No. Instruction No. Instruction
CPU test CPU test
321 VCVT (floating-point to v/ 346 VFNMA v/
integer)
322 VCVT (from floating-point to N/A 347 VENMS v/
integer)
323 VCVT (integer to floating- / 348 VHADD N/A
point)
324 | vevTA v 349 | VHCADD N/A
325 | vevTB 350 | vHsuB N/A
326 | vevTM v 351 | VIDUP, VIWDUP N/A
327 | VCVTN v 352 VINS N/A
328 | yvevTP v 353 | vLD2 N/A
329 | ycVTR v 354 | vLD4 N/A
330 | vevTT 355 | vLDM 4
331 | vex1 (vector) N/A 356 | VLDR (System Register) N/A
332 | vext N/A 357 | VLDR v
333 | vcx2 (vector) N/A 358 | VLDRB, VLDRH, VLDRW N/A
334 | vexe N/A 359 VLDRB, VLDRH, VLDRW, N/A
VLDRD (vector)
335 | vCX3 (vector) N/A 360 | vLLDM
336 | vexs N/A 361 | vLSTM
337 | vDDUP, VDWDUP N/A 362 | VMAX, VMAXA N/A
338 | vDIv 4 363 | VMAXNM 4
poin
340 | VEOR N/A 365 VMAXNMV, VMAXNMAV N/A
(floating-point)
341 VFMA (vector by scalar plus N/A 366 VMAXY VMAXAV N/A
vector, floating-point) ’
342 | VFMA v 367 | VMIN, VMINA N/A
343 | VFMA, VFMS (floating-point) N/A 368 | VMINNM v
344 VFMAS (vector by vector N/A 369 VMINNM, VMINNMA (floating- N/A
plus scalar, floating-point) point)
345 | VEMS v 370 | VMINNMV, VMINNMAV N/A
(floating-point)

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 17 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Table 1.11 Armv8-M Instructions Tested/Not Tested by CPU Test (8 of 10)

Tested by Tested by
No. Instruction No. Instruction
CPU test CPU test
371 VMINY. VMINAY N/A 386 VMOV (general-purpose N/A
’ register to vector lane)
VMOV (half of doubleword
372 VMLA (vector by scalar plus N/A 387 register to single general- N/A
vector) .
purpose register)
373 | VMLA v 388 | VMOV (immediate) (vector) N/A
374 | VMLADAV N/A 389 | VMOV (immediate) v
375 | VMLALDAV N/A 390 | VMOV (register) (vector) N/A
376 | VMLALV N/A 391 | VMOV (register) v
VMOV (single general-purpose
377 VMLAS (vector by vector N/A 392 register to half of doubleword N/A
plus scalar) .
register)
VMOV (two 32-bit vector lanes
378 | VMLAV N/A 393 | totwo general-purpose N/A
registers)
VMOV (two general-purpose
379 | vMmLS 4 394 registers to two 32-bit vector N/A
lanes)
380 | VMLSDAV N/A 395 VMOV (vector lane to general- N/A
purpose register)
381 | vMLSLDAV N/A 396 | vmovL N/A
VMOV (between general-
382 purpose register and half- N/A 397 | VMOVN N/A

precision register)
VMOV (between general-
383 purpose register and single- 4 398 | vMovXx N/A
precision register)
VMOV (between two
384 general-purpose registers N/A 399 | VMRS v
and a doubleword register)
VMOV (between two

385 general-purpose registers v/ 400 | yMSR v/
and two single-precision
registers)
RO1AN6974EJ0100 Rev.1.00 Page 18 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
Table 1.12 Armv8-M Instructions Tested/Not Tested by CPU Test (9 of 10)
Tested by Tested by
No. Instruction No. Instruction
CPU test CPU test

401 | VMUL (floating-point) N/A 431 | vQDMLSDH, VQRDMLSDH N/A
402 | yMUL (vector) N/A 432 | vQDMULH, VQRDMULH N/A
403 | vmuL v 433 | vaDMULL N/A
404 | VMULH, VRMULH N/A 434 | vaMOVN N/A
405 | VMULL (integer) N/A 435 | vQMOVUN N/A
406 | vMULL (polynomial) N/A 436 | vONEG N/A
407 | VMVN (immediate) N/A 437 | vQRSHL N/A
408 | VMVN (register) N/A 438 | VQRSHRN N/A
409 | VNEG (floating-point) N/A 439 | VQRSHRUN N/A
410 | VNEG (vector) N/A 440 | vQSHL, VQSHLU N/A
411 | yNEG v 441 | VvQSHRN N/A
412 | yNMLA v 442 | yQSHRUN N/A
413 | yNMLS v 443 | yasuB N/A
414 | yNMUL v 444 | VREV16 N/A
415 | VORN (immediate) N/A 445 | VREV32 N/A
416 | vORN N/A 446 | yREVG4 N/A
417 | VORR (immediate) N/A 447 | VRHADD N/A
418 | VORR N/A 448 | VRINT (floating-point) N/A
419 | vPNOT N/A 449 | VRINTA 4
420 | vpopP v 450 | VRINTM v
421 | vPSEL N/A 451 | VRINTN 4
422 | ypsT N/A 452 | yRINTP v
423 | VPT (floating-point) N/A 453 | VRINTR v
424 | ypt N/A 454 | \RINTX v
425 | vPUSH v 455 | VRINTZ v
426 | vaABS N/A 456 | VRMLALDAVH N/A
427 | vQADD N/A 457 | VRMLALVH N/A
428 | yQDMLADH, VQRDMLADH N/A 458 | VRMLSLDAVH N/A

VQDMLAH, VQRDMLAH
429 (vector by scalar plus N/A 459 | VRSHL N/A

vector)

VQDMLASH, VQRDMLASH
430 (vector by vector plus N/A 460 | VRSHR N/A

scalar)

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 19 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Table 1.13 Armv8-M Instructions Tested/Not Tested by CPU Test (10 of 10)

Tested by Tested by
No. Instruction No. Instruction

CPU test CPU test
461 | VRSHRN N/A 474 | ysT4 N/A
462 | ysBC N/A 475 | ysTM™m v
463 | VSCCLRM N/A 476 | vsSTR (System Register) N/A
465 | vSHL N/A 478 | VSTRB, VSTRH, VSTRW N/A
466 N/A 479 | VSTRB, VSTRH, VSTRW, N/A

VSHLC VSTRD (vector)
467 | vSHLL N/A 480 | vsSUB (floating-point) N/A
468 | ysHR N/A 481 | vSUB (vector) N/A
469 | ySHRN N/A 482 | ysuB Ve
470 | ysLi N/A 483 | WFE
471 | vsQRT v 484 | wr
472 | ysRI N/A 485 | wLs, DLS, WLSTP, DLSTP N/A
473 | ysT2 N/A 486 | YIELD
RO1AN6974EJ0100 Rev.1.00 Page 20 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.1.2 Test Error
The CPU test will jump to this function if an error is detected.
This error handling function is the struction of closed loop and should not be return.

All the test functions follow the rules of register preservation following a C function call. Therefore the user can call
these functions like any normal C function without any additional responsibilities for saving register values beforehand.

extern void CPU_Test ErrorHandler(void);

R0O1AN6974EJ0100 Rev.1.00 Page 21 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.1.3 CPU Software API

The software API source files related to CPU testing are shown in Table 1.14.

When the CPU Test API is executed, the related CPU registers and instructions codes are tested.
A CPU fault can be detected by checking the execution result output to the argument.

It need to set the configuration of CPU tests before compiling your code. The CPU test configuration directive and each
CPU test is shown in Table 1.15 and Table 1.16.

For details, refer to “2.1.3 Preparation for CPU testing”.

Table 1.14 Source files of CPU Software API

File Name
r_cpu_diag_config.h Definition of CPU Test Directive.
cpu_test.c CPU test implementation part
r_cpu_diag_0.asm Definition of CPU Test core function.
r_cpu_diag_1.asm Note:
r_cpu_diag_2.asm Please note that some tests consist of multiple files
r_cpu_diag_3.asm liker cpu_diag 7 l.asm,r cpu diag 7 2.asm.

r_cpu_diag_4.asm
r_cpu_diag_5.asm
r_cpu_diag_6.asm
r_cpu_diag_7_1.asm
r_cpu_diag_7_2.asm
r_cpu_diag_7_3.asm
r_cpu_diag_8.asm
r_cpu_diag_9.asm
r_cpu_diag_10.asm
r_cpu_diag_11.asm
r_cpu_diag_12.asm
r_cpu_diag_13.asm
r_cpu_diag_14 1.asm
r_cpu_diag_14_2.asm
r_cpu_diag_15 1.asm
r_cpu_diag_15 2.asm
r_cpu_diag_15_3.asm
r cpu_diag_15 4.asm
r cpu_diag_15 5.asm
r_cpu_diag_15_6.asm
r_cpu_diag_16.asm
r_cpu_diag_0.h Declaration of CPU Test core function.

r_cpu_diag_1.h
r_cpu_diag_2.h
r_cpu_diag_3.h
r_cpu_diag_4.h
r_cpu_diag_5.h
r_cpu_diag_6.h
r_cpu_diag_7_1.h
r_cpu_diag 7 _2.h
r_cpu_diag_7_3.h
r_cpu_diag_8.h

R0O1AN6974EJ0100 Rev.1.00 Page 22 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_9.h
r_cpu_diag_10.h
r_cpu_diag_11.h
r_cpu_diag_12.h
r_cpu_diag_13.h
r_cpu_diag_14 1.h
r_cpu_diag_14_2.h
r_cpu_diag_15_1.h
r_cpu_diag_15 2.h
r_cpu_diag_15_3.h
r_cpu_diag_15_4.h
r_cpu_diag_15 5.h
r_cpu_diag_15_6.h
r_cpu_diag_16.h

r_cpu_diag.c Definition of CPU Test API function.
r_cpu_diag.h Declaration of CPU Test API function.
r_cpu_diag.inc Definition of Assembler macro.
RO1AN6974EJ0100 Rev.1.00 Page 23 of 106

Jun.30.2023 RENESAS

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Table 1.15 Directives for Software Configuration for CPU Test

File Name

BUILD R_CPU_DIAG 0

When set to “1”, the CPU test function
constructed.

:R_CPU_Diag0 is

BUILD R_CPU DIAG 1

When set to “1”, the CPU test function
constructed.

:R _CPU Diagl is

BUILD R_CPU DIAG 2

When set to “1”, the CPU test function
constructed.

:R_CPU Diag? is

BUILD R_CPU_DIAG 3

When set to “1”, the CPU test function
constructed.

:R_CPU_Diag3 is

BUILD R _CPU DIAG 4 [*I

When set to “1”, the CPU test function
is constructed.

:R_CPU Diag4 1

BUILD R _CPU DIAG 4 21

When set to “1”, the CPU test function
is constructed.

:R_CPU Diag4 2

BUILD R_CPU_DIAG 5

When set to “1”, the CPU test function
constructed.

:R_CPU_Diag5 is

BUILD R_CPU DIAG 6

When set to “1”, the CPU test function
constructed.

:R_CPU_Diagb is

BUILD R _CPU DIAG 7 11

When set to “1”, the CPU test function
is constructed.

:R_CPU Diag7 1

BUILD R_CPU DIAG 7 2

When set to “1”, the CPU test function
is constructed.

:R_CPU_Diag7 2

BUILD R _CPU DIAG 7 3!

When set to “1”, the CPU test function
is constructed.

:R_CPU Diag7 3

BUILD R_CPU DIAG 8

When set to “1”, the CPU test function
constructed.

:R_CPU Diag8 is

BUILD R_CPU_DIAG 9

When set to “1”, the CPU test function
constructed.

:R_CPU_Diag9 is

BUILD R_CPU _DIAG 10

When set to “1”, the CPU test function
constructed.

:R_CPU Diagl0 is

BUILD R _CPU DIAG 11

When set to “1”, the CPU test function
constructed.

:R_CPU Diagll is

BUILD R_CPU_DIAG 12

When set to “1”, the CPU test function
constructed.

:R_CPU_Diagl2 is

BUILD R _CPU DIAG 13

When set to “1”, the CPU test function
constructed.

:R _CPU Diagl3is

BUILD R_CPU DIAG 14 11

When set to “1”, the CPU test function
is constructed.

:R_CPU Diagl4 1

BUILD R_CPU DIAG 14 2

When set to “1”, the CPU test function
is constructed.

:R_CPU Diagl4 2

BUILD R_CPU DIAG 15 1

When set to “1”, the CPU test function
is constructed.

:R_CPU Diagl5 1

BUILD R_CPU DIAG 15 21

When set to “1”, the CPU test function
is constructed.

:R_CPU Diagl5 2

BUILD _R_CPU DIAG 15 3!

When set to “1”, the CPU test function
is constructed.

:R_CPU_Diagl5 3

BUILD R_CPU DIAG 15 4

When set to “1”, the CPU test function
is constructed.

:R_CPU Diagl5 4

BUILD R_CPU DIAG 15 51

When set to “1”, the CPU test function
is constructed.

:R_CPU Diagl5 5

BUILD _R_CPU DIAG 15 6!

When set to “1”, the CPU test function
is constructed.

:R_CPU_Diagl5 6

BUILD R_CPU DIAG 16!

When set to “1”, the CPU test function
constructed.

:R_CPU_Diagl6 is

*1

See Table 1.16.

Please note that some tests have multiple directives like BUILD R CPU DIAG 7 1, BUILD R CPU DIAG 7 2.

RO1AN6974EJ0100 Rev.1.00

Jun.30.2023

RENESAS

Page 24 of 106

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Table 1.16 CPU Test Target

TestNo | index ™ Function name " Objective of the Test
0 0 R _CPU_Diag0 Four basic arithmetic operations (add, sub, mul and div)
1 1 R_CPU_Diagl Sign/Zero extension operations
2 2 R _CPU_Diag2 Branch, logical, comparison and conditional operations
3 3 R _CPU_Diag3 Bit manipulation and data transfer
4 4 R CPU Diag4 1 Memory access (Load/Store) without exclusive
5 R CPU Diag4 2
5 6 R_CPU Diag5 Memory access (Load/Store) with exclusive and privileged
6 7 R _CPU_Diagb6 System related
7 8 R _CPU _Diag7 1 Registers RO - R12, MSP(R13), LR(R14), and APSR
9 R CPU Diag7 2
10 R_CPU Diag7 3
8 11 R _CPU_Diag8 Multiply-accumulate and multiply-subtract operations (MAC
and MSB)
9 12 R CPU Diag9 Combined arithmetic operations
10 13 R _CPU Diagl0 Saturating and rounding operations
11 14 R_CPU Diagll Floating-point four basic arithmetic, absolute value and
comparison operations
12 15 R _CPU _Diagl?2 Floating-point multiply-accumulate and multiply-subtract
operation
13 16 R _CPU Diagl3 Floating-point rounding and data type conversion
14 17 R _CPU Diagl4 1 Floating-point memory access and data transfer
18 R_CPU_Diagl4 2
15 19 R _CPU Diagl5 1 Registers SO - S31 and FPSCR
20 R _CPU Diagl5 2
21 R _CPU Diagl5 3
22 RﬁCPUﬁDlag 1 574
23 R _CPU Diagl5 5
R _CPU Diagl5 6
24
16 25 R_CPU_Diagl6 CPU register test using WALKPAT

*1) Test is required for all indexes when the test spans over multiple indexes.

*2) See Table 1.15 for software configuration directives for code generation of each function.

RO1AN6974EJ0100 Rev.1.00

Jun.30.2023

Page 25 of 106
RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B cpu_test.c File

Syntax

void CPU _Test ClassC(void)

Description

Perform the CPU tests in the following order :

1. Saves the current stack limit register.
SaveMspPt = _ get MSPLIM();
SavePspPt = _ get PSPLIM();

2. Disable the CPU stack pointer monitoring function.
__set_MSPLIM(Q);
__set_PSPLIM(Q);

3. Pass parameters and call function R_CPU Diag.

4. Check the value of the argument "result".
5. Ifthe result is OK, return to 3. above. (tothe following test)
When all the CPU tests are completed, go to 6 below.

If an error is detected, the external function CPU_Test ErrorHandler will be called.
See Individual Tests for more information.

6. The stack limit register saved in above "1" is restored and this function is terminated.
7. CPU_Test PC

8. Finished the function when all tests have been performed.
If all tests was not performed, the external function CPU_Test ErrorHandler is called.

Input Parameters

NONE N/A

Output Parameters

Forced FAIL Option
When set to 0, the function fails forcibly.
. 0 : Enabled
const uint32_t
forceFail 1 : Disabled

The default value is fixed at "1" (Disabled).
* If you want to test the forced FAIL, change the value to fixed at "0".

Return Values

NONE N/A

R0O1AN6974EJ0100 Rev.1.00 Page 26 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Syntax

void CPU_Test_PC(void)

Description

This function tests the program counter (PC) register.

This checks that the PC is working reliably.

The function returns the inverted value of the specified parameter so that it can verify that the function was actually
executed. This return value is checked for correctness.

If an error is detected, the external function CPU_Test ErrorHandler is called.

Input Parameters

NONE | N/A
Output Parameters
NONE | N/A
Return Values
NONE | N/A
RO1AN6974EJ0100 Rev.1.00 Page 27 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_cpu_diag.c File

Syntax

void R_CPU_Diag(uint32_t index, const uint32_t forceFail, int32_t *result)

Description

Use the index argument to execute the test function that corresponds to the CPU test number.

See Table 1.16 for the argument index, test number, and test function.

1. Set "resultTemp" to the initial value.

When the test function is performed, the test result is saved in "resultTemp".
2. It check if the value of the argument "Index" is valid.

If it is invalid, it exit the process after setting "FAIL(=0)" in the test result.

1)

3. Perform the function of the corresponding CPU test according to the value of the argument “index”.
Set the test result to "* result" and exit the function.

Input Parameters

CPU Test No(Refer to Table 1.16)

uint32_ t index o .
- Returns FAIL when argument value is invalid.

Forced FAIL Option
const uint32_t When set to 0, the function fails forcibly.
forceFail 0 : Enabled

Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters

int32_t *result | Test result (0 : FAIL/ 1 : PASS)
Return Values
NONE | N/A
RO1AN6974EJ0100 Rev.1.00 Page 28 of 106

Jun.30.2023 RENESAS

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Syntax

uint32_t R_CPU_Diag_GetVersion(void)

Description

This function returns version information of CPU Test software

Version is defined in the "r_cpu_diag.h" file.

Input Parameters

NONE

N/A

Output Parameters

uint32_t version

CPU Test Software version
(0xXXXXYYYY > XXXX:Major, YYYY: Minor)

Return Values

uint32_t

0xXXXXYYYY > XXXX:Major, YYYY: Minor

Syntax

static void norm_null(const uint32_t forceFail, int32_t *result)

Description

Set the test result to PASS.

This function is a dummy function of the CPU test function excluded from compilation by the directive.

Input Parameters

const uint32_t
forceFail

Forced FAIL Option

When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result

Pointer to store Test result

Output Parameters

int32_t *result

Test result (1 : PASS)

Return Values

NONE

N/A

RO1AN6974EJ0100 Rev.1.00

Jun.30.2023

RENESAS

Page 29 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_cpu_diag_0.asm File

Syntax

void R_CPU_Diag@(const uint32_t forceFail, int32_t *result)

Description

1 Addition instructions test
Execute each instruction of ADCS (register), ADDS (register), SADD16, SADD8, UADD16, UADDS8, SHADDI16,
SHADDS and check the match with the expected value of local signatur and global signature.

2 Subtraction instructions test
Execute each instruction of SBCS (register), SUBS (immediate), RSBS (immediate), SSUB16, SSUBS, USUBI16,
USUBS, SHSUB16, SHSUBS and check the match with the expected value of local signatur and global signature.

3.Multiplication instructions test
Execute each instruction of MULS, SMULL, SMULWB, SMMULR, SMULTB, UMULL and check the match
with the expected value of local signatur and global signature.

4 Division instructions test
Execute each instruction of SDIV, UDIV and check the match with the expected value of local signatur and global
signature.

5 Addition and subtraction for stack pointer test

Execute each instruction of SUB (SP minus immediate), ADD (SP plus immediate), SUB.W (SP minus immediate),
ADD.W (SP plus immediate) and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to 0, the function fails forcibly.
forceFail 0 : Enabled

Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters

int32_t *result Test result (0 : FAIL /1 : PASS)
Return Values
NONE N/A
R0O1AN6974EJ0100 Rev.1.00 Page 30 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_cpu_diag_1.asm File

Syntax

void R_CPU_Diagl(const uint32_t forceFail, int32_t *result)

Description

1 Sign extension
Execute each instruction of SXTAB T1, SXTAB16 T1, SXTAH T1, SXTB T1, SXTB16 T1, SXTH T1 and check
the match with the expected value of local signatur and global signature.

2 Zero extension
Execute each instruction of UXTAB T1, UXTAB16 T1, UXTAH T1, UXTB T1, UXTB16 T1, UXTH T1 and
check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to 0, the function fails forcibly.
forceFail 0 - Enabled
Others : Disabled
int32_t *result Pointer to store Test result
Output Parameters
int32_t *result | Test result (0 : FAIL/ 1 : PASS)
Return Values
NONE | N/A
RO1AN6974EJ0100 Rev.1.00 Page 31 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_cpu_diag_2.asm File

Syntax

void R_CPU_Diag2(const uint32_t forceFail, int32_t *result)

Description

1 Branch
Execute each instruction of ADR T1, ADR T3, BEQ T1,B T2, BL T1, BLX T1, BX T1,CBZ T1, IT EQ T1, TBB
T1, TBH T1 and check the match with the expected value of local signatur and global signature.

2 Logical test
Execute each instruction of TEQ T1, TST T1 and check the match with the expected value of local signatur and
global signature.

3 Logical operation
Execute each instruction of ANDS T1, ORRS T1, ORNS T1, EORS T1, MVNS T1 and check the match with the
expected value of local signatur and global signature.

4 Comparison
Execute each instruction of CMN T1, CMP T1 and check the match with the expected value of local signatur and
global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) . Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 32 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_cpu_diag_3.asm File

Syntax

void R_CPU_Diag3(const uint32_t forceFail, int32_t *result)

Description

1 Bit manipulation

Execute each instruction of ASR (immediate) T3, ASRS (register) T1, BFC T1, BFI T1, BICS (register) T1, LSL
(immediate) T3, LSLS (register) T1, LSR (immediate) T3, LSRS (register) T1, ROR (immediate) T3, RORS
(register) T1, RRX T3, RRXS T3, CLZ T1, RBIT T1,SBFX T1, UBFX T1 and check the match with the expected
value of local signatur and global signature.

2 Data manipulation
Execute each instruction of REV T1, REV16 T1, REVSH T1, SEL T1, PKHBT T1 and check the match with the
expected value of local signatur and global signature.

3 Data transfer
Execute each instruction of MOVS (immediate) T1, MOVT T1, MRS T1, MSR (register) T1 and check the match
with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to 0, the function fails forcibly.
forceFail) - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result ‘Test result (@ : FAIL / 1 : PASS)

Return Values

NONE ‘ N/A
RO1AN6974EJ0100 Rev.1.00 Page 33 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_cpu_diag_4 1.asm File

Syntax

void R_CPU_Diag4_1(const uint32_t forceFail, int32_t *result)

Description

1 LDR and STR
Execute each instruction of
LDR (immediate) T2, STR (immediate) T2 ,
LDR (immediate) T3, STR (immediate) T3 ,
LDR (immediate) T4, STR (immediate) T4, (post-indexed) ,
LDR (immediate) T4, STR (immediate) T4, (negative immediate) ,
LDR (immediate) T4, STR (immediate) T4, (pre-indexed) ,
LDR (register) T2, STR (register) T2
and check the match with the expected value of local signatur and global signature.

2 LDRH and STRH
Execute each instruction of
LDRH (immediate) T1, STRH (immediate) T1 ,
LDRSH (register) T1, STRH (register) T1,
LDRSH (immediate) T1, STRH (immediate) T2 ,
LDRSH (immediate) T2, STRH (immediate) T3, (post-indexed) ,
LDRSH (immediate) T2, STRH (immediate) T3, (negative immediate) ,
LDRSH (immediate) T2, STRH (immediate) T3, (pre-indexed) ,
LDRSH (register) T2, STRH (register) T2
and check the match with the expected value of local signatur and global signature.

3 LDRB and STRB
Execute each instruction of
LDRSB (register) T1, STRB (register) T1 ,
LDRB (immediate) T1, STRB (immediate) T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option

const uint32_ t When set to @, the function fails forcibly.
forceFail 0 : Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result Test result (@ : FAIL / 1 : PASS)

Return Values

NONE N/A

RO1AN6974EJ0100 Rev.1.00 Page 34 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_cpu_diag_4 2.asm File

Syntax

void R_CPU_Diag4 2(const uint32_t forceFail, int32_t *result)

Description

4 LDRD and STRD
Execute each instruction of
LDRD (immediate) T1, STRD (immediate) T1, (post-indexed) ,
LDRD (immediate) T1, STRD (immediate) T1, (immediate) ,
LDRD (immediate) T1, STRD (immediate) T1, (pre-indexed)
and check the match with the expected value of local signatur and global signature.

5 LDM and STM
Execute each instruction of
LDM and STM ,
LDM T3, STMDB T2,
LDM T2, STM T2,
LDMDB T1, STM T2
and check the match with the expected value of local signatur and global signature.

6 LDA and STL
Execute each instruction of
LDA T1,STL TI,
LDAH TI1, STLHTI ,
LDAB T1, STLB T1
and check the match with the expected value of local signatur and global signature.

7 LDRH / LDRSB (literal)
Execute each instruction of
LDRH (literal) T1 ,
LDRSB (literal) T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) . Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 35 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_cpu_diag_5.asm File

Syntax

void R_CPU_Diag5(const uint32_t forceFail, int32_t *result)

Description

1 LDAEX and STLEX
Execute each instruction of
LDAEX T1, STLEX T1,
LDAEXH T1, STLEXH T1,
LDAEXB T1, STLEXB T1
and check the match with the expected value of local signatur and global signature.

2 LDREX and STREX
Execute each instruction of
LDREX T1, STREX T1,
LDREXH T1, STREXH T1 ,
LDREXB T1, STREXB T1
and check the match with the expected value of local signatur and global signature.

3 LDRT and STRT
Execute each instruction of
LDRT T1, STRT T1,
LDRHT T1, STRAT T1,
LDRSHT T1, STRAT T1,
LDRBT T1, STRBT T1,
LDRSBT T1, STRBT T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32 t When set to @, the function fails forcibly.
forceFail 9 - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 36 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_cpu_diag_6.asm File

Syntax

void R_CPU_Diag6(const uint32_t forceFail, int32_t *result)

Description

1 PUSH and POP
After executing the PUSH instruction using R4, R5, R6, R7, R8, R9, execute the POP instruction and check the
match with the expected value in each register of R4 and R7, RS and RS8, and R6 and R9.

2 Other (miscelaneous) operations
Execute each instruction of CLREX T1 and check the match with the expected value of local signatur and global
signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) . Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 37 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_7 1.asm File

Syntax

void R_CPU_Diag7_1(const uint32_t forceFail, int32_t *result)

Description

1 Detecting “0” fixed fault for status and control registers

After writing "1" to the corresponding bit of the APSR register using R4 and R5, execute reading and check the
match between each register of R4 and RS and the expected value. (Confirm that it is not fixed to "0")

2 Detecting “1” fixed fault for status and control registers

After writing "0" to the corresponding bit of the APSR register using R4 and R5, execute reading and confirm the
match between each resist of R4 and RS and the expected value. (Confirm that "1" is not fixed)

3 Detecting “0” fixed fault for general purpose registers

After writing ALL "1" to RO to R12 and LR (R14), execute reading and check that the registers of RO to R12 and LR
(R14) match the expected value. (Confirm that it is not fixed to "0")

4 Detecting “1” fixed fault for general purpose registers

After writing ALL "0" to RO to R12 and LR (R14), execute reading and check that the registers of RO to R12 and LR
(R14) match the expected value. (Confirm that "1" is not fixed)

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) . Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 38 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_7 2.asm File

Syntax

void R_CPU_Diag7_2(const uint32_t forceFail, int32_t *result)

Description

5 Detecting coupling fault for general purpose registers between any two bits
Perform the following tests for the R0-R12 and R14 registers.
—Nearest neighbor coupling(Test pattern : 0x55555555)
—Next nearest neighbor coupling(Test pattern : 0x33333333)
—4-fold neighbor coupling(Test pattern : 0x0f0f0{0f)
— 8-fold neighbor coupling(Test pattern : 0x00ff00f¥)
—16-fold neighbor coupling(Test pattern : 0x0000£fff)
The procedure is as follows
1.Set each of the above test patterns to RO, write to R1, and check if it matches RO.
2. If they match, change the register written in 1 above in the order of R2 to R14 and perform.
3. Set each of the above test patterns to R14, write to RO, and confirm that it matches RO.
4. If they match, perform the following test pattern.
5. When all is completed, move to the following test.

6 Detecting coupling fault for general purpose registers between any two registers
—Detecting R7, RS, R9, R10, R11, R12, LR(R14) coupling fault (Using A's pattern)
—Detecting R0, R1, R2, R3, R4, RS, R6 coupling fault (Using B's pattern)

The procedure is as follows.

1.Set test patterns for RO to R6, write RO to R7, R1 to RS, ..., R6 to R14,

and confirm the each values of RO and R7, R1 and RS, ..., R6 and R14 is matched.
2. Set test patterns for R7 to R14, write R8 to R0, R9 to R1, ..., R7 to R6,

and confirm the each values of R8 and R0, R9 and R1, ..., R7 and R6 is matched.
3. Complete the test.
*Note that R13 (SP) is excluded from this test.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) . Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 39 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r cpu diag 7 3.asm File

Syntax

void R_CPU_Diag7_3(const uint32_t forceFail, int32_t *result)

Description

7 Detecting "0" fixed fault for MSP(R13)
After writing "Oxfffffffc" to the SP (R13) register using R5, execute reading and confirm that R5 and SP (R13) match
the expected value. (Confirm that not fixed to "0")

8 Detecting 1" fixed fault for MSP(R13)
After writing "0x00000000" to the SP (R13) register using R5, execute reading and confirm that R5 and SP (R13)
match the expected value. (Confirm that not fixed to "1")

9 Detecting coupling fault for MSP(R13) between any two bits
Perform the following tests for R13(SP)
—Nearest neighbor coupling(Test pattern : 0x55555554)
—Next nearest neighbor coupling(Test pattern : 0x33333330)
—4-fold neighbor coupling(Test pattern : 0x0f0f0f0c)
—8-fold neighbor coupling(Test pattern : 0x00ff00fc)
—16-fold neighbor coupling(Test pattern : 0x0000fffc)

The procedure is as follows.
1. Set each of the above test patterns to RS, write to R13 (SP), and confirm that it matches RS.
2. If they match, carry out the next test pattern.
3. When all is completed, move to the following test

10 Detecting coupling fault between MSP(R13) to other general purpose registers
—Detecting SP, R2 coupling fault
—Detecting SP, R3 coupling fault

The procedure is as follows.
1. Set test patterns for R6 and R7, write R6 to SP (R13) and R7 to R2, and check that the values of R6 and SP
(R13) and R7 and R2 match.
2. Set test patterns for R6 and R7, write R7 to SP (R13) and R6 to R3, and check that the values of R7 and SP
(R13) and R6 and R3 match.
3. Finish the test.

Bit0 and 1 of R13 (SP) are fixed to "0".
If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail 0 - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 40 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_8.asm File

Syntax

void R_CPU_Diag8(const uint32_t forceFail, int32_t *result)

Description

1 Multiply accumulate (MAC)
Execute each instruction of
MLA T1, SMLAL T1, SMLALBB T1, SMLALD T1, UMAAL T1, UMLAL T1, SMMLA T1, SMLADX T1,
SMLATT T1, SMLAWB T1
and check the match with the expected value of local signatur and global signature.

2 Multiply subtract (MSB)
Execute each instruction of
MLS T1, SMLSLD T1, SMMLSR T1, SMLSD T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32 t When set to @, the function fails forcibly.
forceFail 9 - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 41 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_9.asm File

Syntax

void R_CPU_Diag9(const uint32_t forceFail, int32_t *result)

Description

1 Addition and subtraction

Execute each instruction of

SASX T1, SSAX T1, UASX T1, USAX T1

and check the match with the expected value of local signatur and global signature.
2 Addition and halving

Execute each instruction of

UHADDI16 T1, UHADDS T1

and check the match with the expected value of local signatur and global signature.
3 Subtraction and halving

Execute each instruction of

UHSUBI16 T1, UHSUB8 T1

and check the match with the expected value of local signatur and global signature.
4 Addition, subtraction and halving

Execute each instruction of

SHASX T1, SHSAX T1, UHASX T1, UHSAX T1

and check the match with the expected value of local signatur and global signature.
5 Dual multiplication

Execute each instruction of

SMUAD T1, SMUSDX T1

and check the match with the expected value of local signatur and global signature.
6 Absolute difference

Execute each instruction of
USAD8 T1, USADAS T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) . Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 42 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_10.asm File

Syntax

void R_CPU_Diagl@(const uint32_t forceFail, int32_t *result)

Description

1 Saturating

Execute each instruction of
SSAT T1, SSAT16 T1, USAT T1, USATI16 T1

and check the match with the expected value of local signatur and global signature.

2 Saturate addition

Execute each instruction of
QADD T1, QADDI16 T1, QADDS8 T1, UQADDI16 T1, UQADDS8 T1, QDADD T1

and check the match with the expected value of local signatur and global signature.

3 Saturate subtraction

Execute each instruction of
QSUB T1, QSUBI16 T1, QSUB8 T1, QDSUB T1, UQSUB16 T1, UQSUB8 T1

and check the match with the expected value of local signatur and global signature.

4 Saturate addition and subtraction

Execute each instruction of
QASX TI, QSAX T1, UQASX T1, UQSAX T1

and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set

FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) . Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)
Return Values
NONE | N/A

R0O1AN6974EJ0100 Rev.1.00

Page 43 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_11.asm File

Syntax

void R_CPU_Diaglil(const uint32_t forceFail, int32_t *result)

Description

1 Four basic arithmetic instructions test
Execute each instruction of
VADD T2, VSUB T2, VMUL T2, VNMUL T2, VDIV Tl

and check the match with the expected value of local signatur and global signature.

2 Absolute, compare, negative, minimum and maximum instructions test

Execute each instruction of

VABS T2, VCMP T1, VCMPE T1, VNEG T2, VMAXNM T2, VMINNM T2

and check the match with the expected value of local signatur and global signature.
3 Conditional select instructions test

Execute each instruction of

3-1 VSELGE T1, VSELGT T1, VSELEQ T1, VSELVS T1

and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) . Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 44 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_12.asm File

Syntax

void R_CPU_Diagl2(const uint32_t forceFail, int32_t *result)

Description

1 Multiply accumulate (MAC)

Execute each instruction of

VMLA T2, VNMLA T1, VFMA T2, VFNMA T1

and check the match with the expected value of local signatur and global signature.
2 Multiply subtract (MSB)

Execute each instruction of

VMLS T2, VNMLS T1, VFMS T2, VFNMS T1

and check the match with the expected value of local signatur and global signature.
3 Square root

Execute each instruction of

VSQRT (minus) T1, VSQRT (zero) T1, VSQRT (plus) T1

and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) . Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

ONONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 45 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_13.asm File

Syntax

void R_CPU_Diagl3(const uint32_t forceFail, int32_t *result)

Description

1 Floating-point rounding
Execute each instruction of

VRINTA T1, VRINTM T1, VRINTN T1, VRINTP T1, VRINTR (RN mode) T1, VRINTR (RP mode) T1
VRINTR (RM mode) T1, VRINTR (RZ mode) T1, VRINTX T1, VRINTZ T1
and check the match with the expected value of local signatur and global signature.

2 Floating-point conversion
Execute each instruction of

VCVT (between float and fix) F32 to S32, T1 <fbits = 31>,

VCVT (between float and fix) F32 to U32, T1<fbits = 16>,

VCVT (between float and fix) S32 to F32, T1<fbits = 24>,

VCVT (between float and fix) U32 to F32, T1<fbits = 8>,

VCVT (float to int) F32 to S32, T1,

VCVT (float to int) F32 to U32, T1,

VCVT (int to float), T1,

VCVTA T1, VCVIM T1, VCVIN T1, VCVTP T1, VCVTP T1

and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32 t When set to @, the function fails forcibly.
forceFail 9 - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result |Test result (@ : FAIL / 1 : PASS)

Return Values

NONE | N/A

RO1AN6974EJ0100 Rev.1.00 Page 46 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_14_1.asm File

Syntax

void R_CPU_Diagl4_1(const uint32_t forceFail, int32_t *result)

Description
1 VPOP T2 and VPUSH T2

Perform the following tests.
—Verify VPOP after VPUSH using single register
The procedure is as follows.
1. Set the value in the R4 and RS registers and write the data to the S1 and SO registers.
2. Save the S1 register to the stack with the VPUSH instruction.
3. Use the VPOP instruction to return from the stack to the SO register.
4. Check the match between the expected value of the SO and S1 registers via RS and R4.

—Verify VPOP after VPUSH using multiple registers
The procedure is as follows.
1. Set data from S4 to S7 and from SO to S4
2. Save the S4 to S7 registers to the stack with the VPUSH instruction.
3. Use the VPOP instruction to return from the stack to the SO to S4 registers.
4. Confirm the match with the expected value in each register of SO and S4, S1 and S5, S2 and S6, S3 and S7 via
R4-R7.

2 VLDR/VLDM T2 and VSTR/VSTM T2
Perform the following tests.
—Verify VLDR after VSTR using single register
The procedure is as follows.
1. Write data to S1 and SO registers
2. Store the S1 register on the stack with the VSTR instruction.
3. Load from stack to SO register with VLDR instruction
4. Check the match with the expected value of the SO and S1 registers via R4 and RS.

—Verify VLDM after VSTM using multiple registers
The procedure is as follows.
1. Set data in S4 to S7 and SO to S4
2. Store the S4 to S7 registers on the stack with the VSTM instruction.
3. Load from the stack to the SO to S4 registers with the VLDR instruction.
4. Confirm the match with the expected value in each register of SO and S4, S1 and S5, S2 and S6, S3 and S7
via R4-R7.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32 t When set to @, the function fails forcibly.
forceFail) . Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

R0O1AN6974EJ0100 Rev.1.00 Page 47 of 106

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

int32_t *result

| Test result (@ : FAIL / 1 :

PASS)

Return Values

NONE

| N/A

RO1AN6974EJ0100 Rev.1.00

Jun.30.2023

RENESAS

Page 48 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

r_cpu_diag_14_2.asm File

Syntax

void R_CPU_Diagl4 2(const uint32_t forceFail, int32_t *result)

Description

3.VMOV
Perform the following tests.
—VMOYV (general-purpose register to single-precision register)
The procedure is as follows.
1. Set data for SO and R4 respectively
2. perform “VMOV S0, R4”
3. Check the match with the expected value in each register of SO and R4 via RS.
—VMOV (single-precision register to general-purpose register)
The procedure is as follows.
1. Set data in SO (= R5) and R4 respectively
2. perform “VMOV R4, S0”
3. Check the match with the expected value in each register of SO and R4 via RS.
—VMOYV (two general-purpose register to two single-precision register)
The procedure is as follows.

1. Set data for SO, S1, RS, R4 respectively
2. perform “VMOV S0, S1, R4, R5”
3. Confirm the match with the expected value in each register of SO and R4 and S1 and RS via Ré.
—VMOYV (two single-precision register to two general-purpose register)
The procedure is as follows.
1. Set data in SO (= R6) and S1 (= R7) respectively
2. perform “VMOV R4, RS, S0, S1”
3. Confirm the match with the expected value in each register of SO and R4, S1 and RS via R6, R7.
—VMOYV (an immediate constant into the destination floating-point register)
The procedure is as follows.
1. Set data in SO (= R6) and R4 respectively
* R4 is set to the floating point format of # 9(expected value in below step "2.")
2. perform "VMOV.F32 S0, # 9"
3. Check the match with the expected value in each register of SO and R4 via RS.
—VMOYV (a single-precision register to another single-precision register)
The procedure is as follows.
1. Set data in SO (= R6) and S1 (= R4) respectively

2. perform "VMOV.F32 S0, S1"
3. Confirm the match with the expected value in each register of SO and S1 via R5 and R4.

4 VMRS
Perform the following tests.

— VMRS (FPSCR to general-purpose register with {FPSCRN,Z,C, V} ={1,1,1,1})
The procedure is as follows.

1. Set the data to R4 and RS (= FPSCR) respectively (setting value that {FPSCR N, Z, C, V} = {1, 1, 1, 1})

2. Execute "VMRS R4, FPSCR"
3. Confirm the match with the expected value in each register of R5 and FPSCR via R4 and R5.

R0O1AN6974EJ0100 Rev.1.00 Page 49 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

— VMRS (FPSCR to general-purpose register with {FPSCR N, Z, C, V} = {0, 0, 0, 0})
The procedure is as follows.
1. Set data in R4 and RS (= FPSCR) respectively
(Setting value that {FPSCR N, Z, C, V} = {0, 0, 0, 0})
2. Execute "VMRS R4, FPSCR"
3. Confirm the match with the expected value in each register of R5 and FPSCR via R4 and R5.
— VMRS (FPSCR to APSR with {FPSCRN,Z,C,V}={1,1,1,1})

The procedure is as follows.

1. Set data in R4 (= APSR) and RS (= FPSCR) respectively
(Setting value that {FPSCR N, Z, C, V} = {1, 1,1, 1})
2. Execute "VMRS APSR nzcv, FPSCR"
3. Confirm the match with the expected value in each register of APSR and FPSCR via R4 and RS.
* Check the values of the N, Z, C, and V flags of APSR and FPSCR to match.
— VMRS (FPSCR to APSR with {FPSCR N, Z, C, V} = {0, 0, 0, 0})

The procedure is as follows.

1. Set data in R4 (= APSR) and R5 (= FPSCR) respectively
(Setting value that {FPSCR N, Z, C, V} = {0, 0, 0, 0})
2. Execute "VMRS APSR nzcv, FPSCR"
3. Confirm the match with the expected value in each register of APSR and FPSCR via R4 and RS.
* Check the values of the N, Z, C, and V flags of APSR and FPSCR to match.

5 VMSR
Perform the following tests.

—VMSR (general-purpose register to FPSCR with {APSRN, Z,C,V}={1,1,1,1})
The procedure is as follows.

1. Set data in R5 (= FPSCR) and R4 respectively
(Setting value that {FPSCR N, Z, C, V} = {1, 1,1, 1})
2. Execute "VMSR FPSCR, R4"
3. Confirm that R5 and R4 match via R5 and R4
* Check the values of the N, Z, C, and V flags of FPSCR to match

—VMSR (general-purpose register to FPSCR with {FPSCR N, Z, C, V} = {0, 0, 0, 0})
The procedure is as follows.

1. Set data in RS (= FPSCR) and R4 respectively
(Setting value that {FPSCR N, Z, C, V} = {0, 0, 0, 0})
2. Execute "VMSR FPSCR, R4"
3. Confirm that R5 and R4 match via R5 and R4
* Check the values of the N, Z, C, and V flags of FPSCR to match

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option

const uint32_t When set to @, the function fails forcibly.

forceFail
0 : Enabled
RO1AN6974EJ0100 Rev.1.00 Page 50 of 106
Jun.30.2023

RENESAS

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Others : Disabled

int32_t *result

Pointer to store Test result

Output Parameters

int32_t *result

| Test result (@ : FAIL / 1 :

PASS)

Return Values

NONE

| n/A

RO1AN6974EJ0100 Rev.1.00

Jun.30.2023

RENESAS

Page 51 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

M r_cpu_diag 15_1.asm File

Syntax

void R_CPU_Diagl5 1(const uint32_t forceFail, int32_t *result)

Description

1. Detecting “0” fixed fault for FPU status and control registers
After writing "1"(=0xf7c0009f) to the corresponding bit of the FPSCR registerusing R7 and R8 and read it, and
check the match with the expected value. (Confirm not fixed to "0")

2 Detecting “1” fixed fault for FPU status and control registers

After writing "0" to the corresponding bit of the FPSCR register using R7 and R8 (0x00000000) and read it, and
check the match with the expected value. (Confirm not fixed to "1")
3 Detecting “0” fixed fault for single-precision registers

After writing "Oxffffffff" to each register of the single precision register (S0-S31) using R7 and RS, and read it, and
check the match with the expected value. (Confirm not fixed to "0")

4. Detecting “1” fixed fault for single-precision registers
After writing "0x00000000" for each register to the single precision register (S0-S31) using R7 and R8, read it and
check the match with the expected value. (Confirm that it is not fixed to "0")

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail 0 - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result ‘Test result (@ : FAIL / 1 : PASS)
Return Values
NONE ‘ N/A
RO1AN6974EJ0100 Rev.1.00 Page 52 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

M r_cpu_diag 15_2.asm File

Syntax

void R_CPU_Diagl5 2(const uint32_t forceFail, int32_t *result)

Description

5 Detecting coupling fault for single-precision registers between any two bits
Perform the following tests.

—Nearest neighbor coupling(Test pattern : 0x55555555)
—Next nearest neighbor coupling(Test pattern : 0x33333333)

The procedure is as follows.

1. Set each of the above test patterns on R7

2. Write a test pattern to each register of the single precision register (S0-S31) by use R7 and R8 toand then read
it.

3. Check the match between each register of R7 and R8 and the expected value.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result ‘Test result (@ : FAIL / 1 : PASS)
Return Values
NONE ‘ N/A
RO1AN6974EJ0100 Rev.1.00 Page 53 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

M r_cpu_diag 15_3.asm File

Syntax

void R_CPU_Diagl5 3(const uint32_t forceFail, int32_t *result)

Description

5 Detecting coupling fault for single-precision registers between any two bits
Perform the following tests.

—4-fold neighbor coupling(Test pattern : 0x0f0f0f0f)
—8-fold neighbor coupling(Test pattern : 0x00ff00ff)

The procedure is as follows.
1. Set each of the above test patterns on R7
2. Write a test pattern to each register of the single precision register (S0-S31) by use R7 and R8 and then read it.
3. Check the match between each register of R7 and R8 and the expected value.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result ‘Test result (@ : FAIL / 1 : PASS)
Return Values
NONE ‘ N/A
RO1AN6974EJ0100 Rev.1.00 Page 54 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

M r_cpu_diag 15_4.asm File

Syntax

void R_CPU_Diagl5 4(const uint32_t forceFail, int32_t *result)

Description

5 Detecting coupling fault for single-precision registers between any two bits
Perform the following test.

—16-fold neighbor coupling(Test pattern : 0x0000ffff)

The procedure is as following.
1. Set each of the above test patterns on R7
2. Write a test pattern to each register of the single precision register (S0-S31) by use R7 and R8 and then read it.
3. Check the match between each register of R7 and R8 and the expected value.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result ‘Test result (@ : FAIL / 1 : PASS)
Return Values
NONE ‘ N/A
RO1AN6974EJ0100 Rev.1.00 Page 55 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

M r_cpu_diag 15_5.asm File

Syntax

void R_CPU_Diagl5 5(const uint32_t forceFail, int32_t *result)

Description

6. Detecting coupling fault for single-precision registers between any two registers
Perform the following test.
—Detecting S16, S17, S18, S19, S20, S21, S22, S23 coupling fault (Using A's pattern)
[A’s pattern]
R4 =0x55555555
RS =0xAAAAAAAA
R6 =0x00000000
R7 = 0xFFFFFFFF
R8 =0x33333333
R9 =0xCCCCCCCC
R10 = 0x5555AAAA
R11 = 0xAAAASSSS

The procedure is as following.
1. Set test patterns from R4 to R11, transfer R4 to SO, RS to S1, ..., R11 to S7.
2. Transfer SO to S16, S1 to S17, ..., S7 to S23
3. Read S16 to S23 via R12 and confirm that the transfer sources R4 to R11 match the expected value.

—Detecting S24, S25, S26, S27, S28, S29, S30, S31 coupling fault(Using B's pattern)
[B’s pattern]

R4 = 0xFFFF0000

R5 =0x0000FFFF

R6 =0x3333CCCC

R7 =0xCCCC3333

R8 =0xFFAAS533

R9 = 0x3355AAFF

R10 = 0xFEDCBAY8

R11 = 0x76543210

The procedure is as following.
1. Set test patterns from R4 to R11, transfer R4 to S9, RS to S10, ..., R11 to S8.
2. Transfer S9 to S24, S10 to S25, ..., S8 to S31
3. Read S24 to S31 via R12 and confirm that the transfer sources R4 to R11 match the expected value.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

R0O1AN6974EJ0100 Rev.1.00 Page 56 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

int32_t *result ‘Test result (@ : FAIL / 1 : PASS)
Return Values
NONE ‘ N/A
RO1AN6974EJ0100 Rev.1.00 Page 57 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

M r_cpu_diag 15_6.asm File

Syntax

void R_CPU_Diagl5 _6(const uint32_t forceFail, int32_t *result)

Description

6. Detecting coupling fault for single-precision registers between any two registers

Perform the following test.
—Detecting S0, S1, S2, S3, S4, S5, S6, S7 coupling fault (Using C's pattern)
[C’s pattern]

R4 = 0x44444444
R5 =0x99999999
R6 =0x00000000
R7 = 0xFFFFFFFF
R8 =0x22222222
R9 =0xBBBBBBBB
R10 = 0x4444BBBB
R11 = 0xBBBB4444

The procedure is as following.
1. Set test patterns from R4 to R11, transfer R4 to S18, ..., R9 to S23, R10 to S16., R11 to S17
2. Transfer S8 to SO, ..., S23 to S5, S16 to S6, S17to S7
3. Read SO to S7 via R12 and confirm that the transfer sources(R4 to R11) match the expected value.

—Detecting S8, S9, S10, S11, S12, S13, S14, S15 coupling fault(Using D's pattern)
[D’s pattern]

R4 =0xEEEE1111

RS =0x1111EEEE

R6 =0x2222DDDD

R7 =0xDDDD2222

R8 =0xEEBB6622

R9 =0x2266BBEE

R10 = 0xBA9SFEDC

R11 = 0x32107654

The procedure is as following.
1. Set test patterns from R4 to R11, transfer R4 to S27, ..., R8 to S31, R9 to S24, R10 to S25, R11 to S26
2. Transfer S27 to S8, ..., S31 to S12, S24 to S13, S25 to S14, S26 to S15
3. Read S8 to S15 via R12 and confirm that the transfer source (R4 to R11) matches the expected value.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail) - Enabled

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

R0O1AN6974EJ0100 Rev.1.00 Page 58 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

int32_t *result ‘Test result (@ : FAIL / 1 : PASS)
Return Values
NONE ‘ N/A
RO1AN6974EJ0100 Rev.1.00 Page 59 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_cpu_diag 16.asm 2 71 JL

Syntax

void R_CPU_Diagl6(const uint32_t forceFail, int32_t *result)

Description

CPU register test process with the WALKPAT algorithm to the General-Purpose Registers (R0-12, R14).
(see 1.3.3(2)WALKPAT about the WALKPAT algorithm)

the test result is saved in "resultTemp" (0 : FAIL / 1 : PASS)

The test patterns used are the following (See “r_ramdiag_config.inc”):
@ Test patterns

pattern0 : 00000000000000000000000000000000 (0x00000000)
patternOn : 11111111111111111111111111111111 (0xFFFFFFFF)
patternl : 00000000000000001111111111111111 (0xO000FFFF)
patternln : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0xO0FFOOFF)
pattern2n : 11111111000000001111111100000000 (0xFFOOFFO00)
pattern3 : 00001111000011110000111100001111 (0xOFOFOFOF)
pattern3n : 11110000111100001111000011110000 (0xFOFOFOFO0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 :01010101010101010101010101010101 (0x55555555)

pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Input Parameters

Forced FAIL Option
const uint32_t When set to @, the function fails forcibly.
forceFail 0 : Enabled
Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters

int32_t *result ‘Test result (@ : FAIL / 1 : PASS)
Return Values
NONE ‘ N/A
RO1AN6974EJ0100 Rev.1.00 Page 60 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.2 ROM

This section describes the ROM/Flash memory test using CRC calculator.. (Reference: IEC 60730-1:2013 + A1 :
2015+A42:2020 Annex H— H2.19.4.2 CRC — Double Word)

CRC is a fault/error control technique which generates a single word or checksum to represent the contents of memory.
A CRC checksum is the remainder of a binary division with no bit carry (XOR used instead of subtraction) of the
message bit stream, by a predefined (short) bit stream of length n + 1. which represents the coefficients of a polynomial
with degree n. Before the division, n zeros are appended to the message stream. CRCs are often used because they are
simple to implement in binary hardware and are easy to analyze mathematically.

The ROM test can be achieved by generating a CRC value for the contents of the ROM and saving it.

During the memory self-test, the same CRC algorithm is used to generate another CRC value, which is compared with
the saved CRC value. The technique recognizes all one-bit errors and a high percentage of multi-bit errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with other CRC
values produced by other CRC generators. This proves difficult because there are a number of factors that can change
the resulting CRC value even if the basic CRC algorithm is the same. This includes the combination of the order that
the data is supplied to the algorithm, the assumed bit order in any look-up table used and the required order of the bits
of the actual CRC value. This complication has arisen because big- and little-endian systems were developed to work
together that employed serial data transfers where bit order became important. Also, some debuggers implement a
software break on ROM, in which case the contents of ROM may be rewritten during debugging.

The method of calculating the reference CRC value depends on the toolchain used. For the detailed procedure, refer to
Section 2.2 ROM in 2.Example Usage

1.2.1 CRC32 Algorithm

The RA MCU includes a CRC module that includes support for the CRC32. This software set the CRC module to
produce a 32-bit CRC32.

Polynomial = 0x04C11DB7 (x32 + x20 + x23 + x2 + x!10 + x12 + x" + x10 + x8 + x" + x5+ x* + x2 + x + 1)
Width = 32 bits

Initial value = OXFFFFFFFF

XOR with h’FFFFFFFF is performed on the output CRC

1.2.2 Multi Checksum

In the ROM test, the ROM area to be tested is divided into 64K bytes as shown in Figure 1.1, and the CRC is calculated
and stored in a specific area.

Because of this sample software is a product with a code flash memory of 1MB, it is stored at addresses OxFFFCO to
O0xFFFFF when building.

In addition, the self-test library divides the process into 64 Kbytes each, and after performing the CRC calculation
process, it checks for a match with the CRC value stored in the above specified area to determine the ROM test result.

By editing "RA_SelfTests.c" in the sample project, you can change the enable setting for split processing.
(For details, refer to "2.2.2 Setting for the support Multi-checksum".)

The sample project targets the code FLASH area, excluding the checksum storage area.

R0O1AN6974EJ0100 Rev.1.00 Page 61 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Compare the CRC value of this area with “Checksum_1"

— 64K bytes
Compare the CRC value of this area with “Checksum_2"

— 64K bytes
Compare the CRC value of this area with “Checksum_3"

— 64K bytes
Compare the CRC value of this area with “Checksum_15"

— 64K bytes
Compare the CRC value of this area with “Checksum_16"
Checksum_1 Checksum_2 “ee Checksum_8 — 64K bytes
Checksum_9 Checksum_10 “ee Checksum_16

Figure 1.1 Code FLASH block diagram on ROM test

1.2.3 CRC Software API

The functions in the reminder of this section are used to calculate a CRC value and verify its correctness against a value
stored in ROM.

All software is written in ANSI C. The renesas.h header file includes definition of RA MCU registers.

Table 1.17 CRC Software APl Source Files

File Name
crc.h Defining ROM test API functions
crc_verify.h Defining ROM test API functions
crc.c Implementation part of ROM test
CRC_Verify.c Implementation part of ROM test
RO1AN6974EJ0100 Rev.1.00 Page 62 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
B CRC_Verify.c File

Syntax

bool t CRC_Verify(const uint32_t ui32_ NewCRCValue, const uint32 t ui32_AddrRefCRC)

Description

This function compares a new CRC value with a reference CRC by supplying address where reference CRC is
stored.

Input Parameters

const uint32_t Value of calculated new CRC value.

ui32_ NewCRCValue

const uint32_t Address where 32 bit reference CRC value is stored.
ui32_AddrRefCRC

Output Parameters

NONE | N/A

Return Values

bool_t | 1 : True = Passed, 0 : False = Failed
B crc.c File

Syntax

void CRC_Init(void)

Description

Initializes the CRC module. This function must be called before any of the other CRC functions can be.

Input Parameters

NONE EA
Output Parameters

NONE | N/A
Return Values

NONE | /A

R0O1AN6974EJ0100 Rev.1.00 Page 63 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Syntax

uint32_t CRC_Calculate(const uint32_t* pui32 Data, uint32_t ui32_lLength)

Description

This function calculates the CRC of a single specified memory area.

Input Parameters

const uint32_t* Pointer to start of memory to be tested.
pui32_Data

uint32_t ui32_Length Length of the data in long words.

Output Parameters

NONE | N/A
Return Values
Uint32_t | The 32-bit calculated CRC32 value.

The following functions are used when the memory area cannot simply be specified by a start address and length. They
provide a way of adding memory areas in ranges/sections. This can also be used if function CRC_Calculate takes too
long in a single function call.

B crc.c File

Syntax

void CRC_Start(void)

Description

Prepare the module is for starting to receive data. Call this once prior to using function CRC_AddRange.

Input Parameters

NONE | /A
Output Parameters
NONE EA
Return Values
NONE | N/A
RO1AN6974EJ0100 Rev.1.00 Page 64 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Syntax

void CRC_AddRange(const uint32_t* pui32_Data, uint32_t ui32_Length)

Description

Use this function rather than CRC_Calculate to calculate the CRC on data made up of more than one address
range. Call CRC_Start first then CRC_AddRange for each address range required and then call CRC_Result to get
the CRC value.

Input Parameters

const uint32_t* Pointer to start of memory range to be tested.
pui32 Data

uint32_t ui32_Length | Length of the data in long words.

Output Parameters

NONE | N/A
Return Values

NONE | N/A
Syntax

uint32_t CRC_Result(void)

Description

Calculates the CRC value for all the memory ranges added using function CRC_AddRange since CRC_Start was
called.

Input Parameters

NONE | N/A
Output Parameters
NONE | /A
Return Values
uint32_t | The calculated CRC32 value.
R0O1AN6974EJ0100 Rev.1.00 Page 65 of 106

Jun.30.2023 RENESAS

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.3

RAM

This section describes the RAM test and the two test algorithms used.

The objective of the RAM test is to detect random permanent faults from MCU built-in SRAM.

Key features of the RAM Test are as follows,
® Whole memory check including stack(s).

Block-wise implementation of the test

[]
® Supports two test algorithms (Extended March C-, WALKPAT)
[]

Supports two test types (Destructive / Non-destructive testing)

1.3.1

RAM Block Configuration

Target of the RAM Test is RAM block in the RAM area.
RAM area and RAM block under test are configured by directives described in Table 1.20.

Figure 1.2 RAM Block Configuration (example)

shows how the RAM area 0 is divided by n block. Directives are indicated by italics.

(BUTSize0 * 4) bytes

RAM area RAM block
startAddress0 pr—————————————
Block number 0
(MUTSize0 * 4) bytes< RAM#HZ0
Block number 1
\

-

startAddressN
(MUTSizeN * 4) bytes Jl' AreaN

' N = NUMBER_OF _AREA - 1

[
Block number x

Block number y

Reserved area

‘_r/-| RramResult1 } 4 bytes
|y RramResult2 4 bytes

Block number z

i Block number n 2

h 4

RramBuffer (BUTSize0 * 4) bytes

2 n = numberOfBUTO - 1

Figure 1.2 RAM Block Configuration (example)

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 66 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.3.2 Reserved Area
For the RAM test, the user must allocate the following reserved areas to RAM blocks in the Secure area.
1.Buffer (RramBuffer)

In non-destructive test, data value in the RAM block under test is temporarilly saved to this buffer. The user
shall reserve a specific RAM block for this buffer.

2.Test result variable (RramResultl)
3.Test result variable (RramResult2)
The test result variable is allocated to two different RAM blocks within the Secure area.

By storing copies of test results in two different blocks, a fault can be detected even if one of the variables cannot be
stored in the faulting block.

Reserved areas are pre-defined in this software.

Specifically, the files "fsp.1d", "RA_SelfTests.c", and "r_ram_diag config.h" define the items related to the reserved
area (data save buffer, result variables).

The parts of each definition in this sample software is described below.

@ Definition parts in the "fsp.1d" file.(blue text)

|tz RAM S = ORIGIN(RAM);
.ram_test buffers :
{
.= ORIGIN(RAM);
.= ALIGN(4);
__RramBuffer start=.;
KEEP(*(RAM_TEST BUFFER¥))
__RramBuffer stop = .;
} >RAM

R0O1AN6974EJ0100 Rev.1.00 Page 67 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

@ Definition parts in the " RA_Self Tests.c " file.(blue text)

/--> For RAM test of Class-C

Number of bytes to test each time the RAM periodic test is run.//*NOTE: The periodic RAM test requires a safe buffer of the same size as
the test size.*/

#tdefine RAM_TEST_BUFFER_SIZE RAM_BUFFER_SIZE

The periodic RAM (including Stack) tests requires a buffer. Locate it in its own section after(higher address than) the stacks./

/-->chg : Moved RramBuffer[], RramResultl, RramResult2 to Secure erea.

\volatile uint32_t RramBuffer[RAM_TEST_BUFFER_SIZE] __ attribute__((section("RAM_TEST_BUFFER")));

\volatile uint32_t RAM_Test_dummy1[RAM_TEST_BUFFER_SIZE-1] __attribute__((section("RAM_TEST_BUFFER")));
\volatile uint32_t RramResult1 __attribute__ ((section("RAM_TEST_BUFFER")));

\volatile uint32_t RAM_Test_dummy2[RAM_TEST_BUFFER_SIZE-1] __attribute__((section("RAM_TEST_BUFFER")));
\volatile uint32_t RramResult2 __attribute__ ((section("RAM_TEST_BUFFER")));

/<--chg : Moved RramBuffer[], RramResultl, RramResult2 to Secure erea.

/<-- For RAM test of Class-C

@ Definition parts in the " r_ram_diag_config.h " file.(blue text)

* RAM test buffer size (Expressed in double words) */
* Note: Set the maximum RAM block size of all RAM areas */
#define RAM_BUFFER_SIZE (BUTSize0)

It is possible to check the location of the "reserved area" with the MAP file generated after build.

@ Applicapable parts for the generated MAP file of secure project("RA6M4_sec.map')

.ram_test_buffers

0x20000000 0x300

0x20000000 .= ORIGIN (RAM)
0x20000000 .= ALIGN (0x4)
0x20000000 __RramBuffer_start=.

(RAM_TEST_BUFFER)
RAM_TEST_BUFFER
0x20000000 0x300 ./SelfTestLib/src/RA_SelfTests.o

0x20000000 RramBuffer IIEEssm) RAM Buffer for temporarilly saved data : RamBuffer[]

0x20000100 RAM_Test_dummy1

0x200001 fc RramResult] EEse) result variables : RramResult]
0x20000200 RAM_Test_dummy?2

0x200002fc RramResult2 — result variables : RramResult2
0x20000300 __RramBuffer_stop =.

(Note) The address to be placed depends on the definition contents of the 1d file to be used.

R0O1AN6974EJ0100 Rev.1.00 Page 68 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.3.3 RAM Test Algorithm

(1) Extended March C-

Extended March C- is one of the March test algorithms used for RAM testing.
The algorithm is represented in Figure 1.3.

{8(W0);M(r0,w1,r1);M(r1,w0);4(r0,w1);4(r1,w0);8(r0)}

Notatio {}: Seaquence M : increasing addressing
() : March element U : decreasing addressing
WX : write X § :either Mor U
rx : read x

Figure 1.3 Extended March C- Algorithm

R0O1AN6974EJ0100 Rev.1.00

Page 69 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

(2) WALKPAT

WALKPAT (stands for Walking Pattern) is one of the test algorithms used for RAM testing.
The algorithm is represented in Figure 1.4.

Write 0 in all cells;

For i=0 to n-1

{

complement cell[i];
Forj=0ton-1,j!=1

{
read cell[j];
}
read cell[i];
complement cell[i];
}
Write 1 in all cells;
For i=0 to n-1
{
complement cell[i];
Forj=0ton-1,j!=i
{
read cell[j];
}
read cell[i];
complement cell[i];
}

Figure 1.4 WALKPAT Algorithm

R0O1AN6974EJ0100 Rev.1.00 Page 70 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

(3) Algorithm Characteristics

Table 1.7 shows characteristics of two test algorithms available for the RAM Test.

Table 1.18 RAM Test Algorithm MO %5tE (RAM Test Algorithm Characteristics)

Fault models and complexity Extended March C- WALKPAT
Address Faults (AF) v v
Stuck At faults (SAF) v v
Transactional Faults (TF) v v
Coupling Faults (CF) v v
Stuck-Open Faults (SOF) v N/A
Data Retention Faults (DRF) V4 N/A
Sense Amplifier Recovery Faults (SARF) N/A v
Complexity 11n v/ 2n?

n = the number of addressing cells of the memory

The following algorithm descriptions are related to 1-bit word memory, but they can be applied to m-bit memories.
m-bit memories can be dealt with by repeating each algorithm for a number of times determined by:

[log2 m] +1

Since m=32bit for this software, the algorithm will be repeated 6 times and the following 6 different patterns are

applied.

#1
#2
#3
#4
#5
#6

:00000000000000000000000000000000
:000000000000000011 1111 1111111111
:00000000111111110000000011111111
:00001111000011110000111100001111
:00110011001100110011001100110011
:01010101010101010101010101010101

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 71 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.3.4 RAM Software API
The software API source files related to RAM testing are shown in Table 1.8.

When RAM Test API is executed, specified one RAM block of RAM area is tested. A RAM fault can be detected by
checking the execution result output to the argument.

Before compiling the code, it is necessary to change the RAM block under test and reservation area (see 1.3.2).

Table 1.20 shows directive for configuration. The directive can be found in the r ram_diag config.h.

Table 1.19RAM Y7 7 APl Y—RXT 71l

File Name
r_ram_diag_config.h Definition of RAM Test Directive.
r_ram_diag_config.inc Definition of RAM Test execution pattern.
r_ram_diag.c Definition of RAM Test API function.
r_ram_diag.h Declaration of RAM Test API function.
r_ram_marchc.asm Definition of Extended March C- algorithm function.
r_ram_marchc.h Declaration of Extended March C- algorithm function.
r_ram_walpat.asm Definition of WALKPAT algorithm function.
r_ram_walpat.h Declaration of WALKPAT algorithm function.

Table 1.20 Directives for Software Configuration for RAM Test

TALIT4T%
NUMBER OF AREA Number of RAM area under test (1-8).

Shall be set to 1 except for the following case.

- multiple RAM areas under test are sporadically allocated

- there are multiple RAM blocks under test and each block size is not the same

startAddressN *! Start address to the RAM area under test
MUTSizeN *! Size of RAM area under test (N) in double word.
numberOfBUTN *! Number of RAM blocks under test.

BUTSizeN ! Size of RAM block under test (N) in double word.

Calculted by BUTSizeN = MUTSizeN / numberOfBUTN

RAM_BUFFER SIZE Size of buffer (RramBuffer) under test in double word.

*1:N=0~ (NUMBER_OF_AREA -1)

R0O1AN6974EJ0100 Rev.1.00 Page 72 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_ram_diag.c Z77AJL

Syntax

void R_RAM_Diag(uint32_t area, uint32_t index, uint32_t algorithm, uint32_t
destructive)

Description

This function verifies RAM.
Test result can be checked by the return value in result variable.
If Test result is PASS :
RramResult]l =1 and RramResult2 =1

If Test result is FAIL :
Other than above

Perform the RAM tests in the following order :

1. Itcheck if the RAM block is a valid area by the arguments "area" and "index".

2. Use the macro functions (R_ RAM_BLK SADR, R RAM BLK EADR) to calculate the start and end
addresses of the RAM block under test. (The calculated start address and end address are saved in sAdr and
eAdr.)

3. The function of the corresponding algorithm is called by the argument "algorithm".

For Extended March C- (algorithm = RAM_ALG_MARCHC): R RAM Diag MarchC () function
For WALKPAT(algorithm = RAM_ALG WALPAT): R RAM Diag Walpat () function
Note:
The argument "destructive" selects whether the data is destructive or non-destructive.
(In the case of the destruction test, the RAM block is cleared to "0" after the test.)

4. Return to the called function.

Input Parameters

uint32_t area Number of RAM area
Shall be smaller than the directive NUMBER OF AREA.
Returns 0 (FAIL) when the value is invalid.

uint32_t index RAM block index of RAM area set in "area"

RAM block index starts with 0.

Shall be smaller than the directive numberOfBUTN. (See Table.1.9)
Returns 0 (FAIL) when the value is invalid.

uint32_t algorithm Specify the algorithm.
0(RAM_ALG MARCHC): Extended March C-
I(RAM_ALG_WALPAT): WALKPAT

*WALKPAT when the value is other than 0. i

uint32_t destructive Specify type of the Memory test

0: Non-destructive test
1: Destructive test

Non-destructive test when invalid value is set.
RAM block is cleared to 0 after destructive test.

Notice:
RAM block is always cleared to 0 when the block with buffer, regardless of
test type.
RO1AN6974EJ0100 Rev.1.00 Page 73 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Output Parameters

NONE | /A
Return Values

NONE | /A

Syntax

uint32_t R_RAM_Diag_GetVersion(void)

Description

This function returns version information of RAM Test software
Version is defined in the "r_cpu_diag.h" file.

Input Parameters

NONE N/A

Output Parameters

CPU Test Software version

uint32_t version . .
- (0xXXXXYYYY > XXXX:Major, YYYY: Minor)

Return Values

uint32_t 0xXXXXYYYY 2> XXXX:Major, YYYY: Minor

R0O1AN6974EJ0100 Rev.1.00 Page 74 of 106

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_ram_marchc.asm 2 71 JL

Syntax

void R_RAM_Diag MarchC(uint32_t start, uint32_t end, uint32_t destructive)

Description

pattern0
patternOn
patternl
patternln
pattern2
pattern2n
pattern3
pattern3n
pattern4
pattern4n
pattern5
pattern5n

The test results are stored below.
- RramResultl (0 : FAIL/ 1 : PASS)
- RramResult2 (0 : FAIL/ 1 : PASS)

The test patterns used are the following (See “r_ramdiag_config.inc”):
@ Test patterns

: 00000000000000000000000000000000 (0x00000000)
c11111111111111111111111111111111 (OXxFFFFFFFF)
: 00000000000000001111111111111111 (0xO000FFFF)
2 11111111111111110000000000000000 (0xFFFF0000)
:00000000111111110000000011111111 (0xO0FFOOFF)
:11111111000000001111111100000000 (0xFFOOFF00)
:00001111000011110000111100001111 (0xOFOFOFOF)
:11110000111100001111000011110000 (0xFOFOFOFO)
:00110011001100110011001100110011 (0x33333333)
:11001100110011001100110011001100 (0xCCCCCCCC)
:01010101010101010101010101010101 (0x55555555)
:10101010101010101010101010101010 (0xAAAAAAAA)

Performs RAM test processing by the "Extended March C-"algorithm for the RAM block specified by the arguments
start and end. (See 1.3.3(1))
In the case of non-destructive test, the current data of the test area is saved in the specified RamBuffer area.

Input Parameters

uint32_t start Start address of the block under test
uint32_t end End address of the block under test
Specify type of the Memory test
uint32_t .
- 0: Non-destructive test
destructive

1: Destructive test

Output Parameters

RramResultl 0:FAIL/1 :PASS

RramResult2 0:FAIL/1 :PASS

Return Values

NONE

N/A

R0O1AN6974EJ0100 Rev.1.00

Page 75 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

B r_ram_walpat.asm 2 71 JL

Syntax

void R_RAM_Diag walpat(uint32_t start, uint32_t end, uint32_t destructive)

Description

start and end. (See 1.3.3(2))

The test results are stored below.
- RramResultl (0 : FAIL/ 1 : PASS)
- RramResult2 (0 : FAIL/ 1 : PASS)

The test patterns used are the following (See “r_ramdiag_config.inc”):
@ Test patterns

pattern0 : 00000000000000000000000000000000 (0x00000000)
patternOn : 11111111111111111111111111111111 (OxFFFFFFFF)
patternl : 00000000000000001111111111111111 (0xO000FFFF)
patternln : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0xO0FFOOFF)
pattern2n : 11111111000000001111111100000000 (0xFFOOFF00)
pattern3 : 00001111000011110000111100001111 (0xOFOFOFOF)
pattern3n : 11110000111100001111000011110000 (0xFOFOFOFO0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 :01010101010101010101010101010101 (0x55555555)

pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Performs RAM test processing by the "Extended March C-"algorithm for the RAM block specified by the arguments

In the case of non-destructive test, the current data of the test area is saved in the specified RamBuffer area.

Input Parameters

uint32_t start Start address of the block under test

uint32_t end End address of the block under test

Specify type of the Memory test
uint32_t peetly P v

destructive 0: Non-destructive test

1: Destructive test

Output Parameters

RramResultl 0:FAIL/1 :PASS

RramResult2 0:FAIL/1 :PASS

Return Values

NONE N/A

R0O1AN6974EJ0100 Rev.1.00

Page 76 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.4 Clock

The RA MCU has a Clock Frequency Accuracy Measurement Circuit (CAC). The CAC counts the pulses of the target
clock within the time generated by the reference clock and generates an interrupt request if the number of pulses is
outside the acceptable range.

The main clock oscillator also has an oscillation stop detection circuit.

1.4.1 Main Clock Frequency Monitoring by CAC

Either one of Main, SUB_ CLOCK, HOCO, MOCO, LOCO, IWDTCLK, and PCLKB or an External clock on the
CACREEF pin can be used as a reference clock source.

(a) When using an external reference clock:
e f#define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK in clock monitor.h file.
e Be sure to provide target and reference clocks frequency in Hz.

(b) When using one of the internal clock source:
e Ensure CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.

e Be sure to select the reference clock (through ref clock input parameter).
e Be sure to provide target and reference clocks frequency in Hz.

If the frequency of the main clock deviates during runtime from a configured range, two types of interrupt can be
generated: frequency error interrupt or an overflow interrupt. The user of this module must enable these two kinds of
interrupt and handle them. See Section 2.4 for an example of interrupt activation. The allowable frequency range can be
adjusted using.

/* Percentage tolerance of main clock allowed before an error is reported.*/
#tdefine CLOCK_TOLERANCE_PERCENT 10

When using the internal clock as the reference clock, the reference clock division ratio in the CAC circuit (RCDS [1: 0]
in the CACR?2 register) is fixed at 1/128 in the test function.

The division ratio of the target clock (TCSS [1: 0] in the CACRI1 register) is selected from 1/1, 1/4, 1/8, 1/32 by
calculation in the test function based on the input parameters. However, no matter which division ratio is applied, an
error occurs if the calculation result is not within the range that can be set in the 16-bit wide "CAC Upper-Limit and
Lower-Limit Value Setting Register".

1.4.2 Oscillation Stop Detection of Main Clock

The main clock oscillator of the RA MCU has an oscillation stop detection circuit. If the main clock stops, the Middle-
Speed On-Chip oscillator (MOCO) will automatically be used instead and an NMI interrupt will be generated.

In the ClockMonitor_Init function, when the main clock oscillator stop bit (MOSTP) in the main clock oscillator
control register (MOSCCR) is 0 (main clock oscillator operation), oscillation stop detection and NMI is enabled as
follows.

e Oscillation stop detection control register (OSTDCR)

- Oscillation stop detection function enable bit (OSTDE): Enable
- Oscillation stop detection interrupt enable bit (OSTDIE): Enable

¢ [ICU non-maskable interrupt enable register (NMIER)
- Oscillation stop detection interrupt enable bit (OSTEN): Enable

The user of this module must handle the NMI interrupt and check the NMISR.OSTST (Oscillation Stop Detection
Interrupt Status Flag) bit.

R0O1AN6974EJ0100 Rev.1.00 Page 77 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.4.3 CLock Software API

The software API source files related to Clock testing are shown in Table 1.10.

Table 1.21 Clock Source Files

File Name

clock_monitor.h

Declaration of Clock Test API function.

clock_monitor.c

Clock test implementation part

The test module relies on the renesas.h header file to access to peripheral registers.

B clock_monitor.c File

There are two versions of the ClockMonitor_Init function.

(a) ClockMonitor_Init Function When Using an External Reference Clock.
(If CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK Is Defined.)

Syntax

void ClockMonitor_Init(clock_source_t target_clock,
uint32_t MainClockFrequency,
uint32_t ExternalRefClockFrequency,
CLOCK_MONITOR_CACREF_PIN ePin,
CLOCK_MONITOR_ERROR_CALL_BACK CallBack)

Description

1. Start monitoring the target clock selected through target_clock input parameter using the CAC module and
the CACREF pin as a reference clock.

2. The CACREF pin can be selected by SW (for details, refer to Section 2.4 Clock in Chapter 2 Example Usage).
It is the user's responsibility to select the terminals based on the system configuration.

3. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.

Input Parameters

clock_source_t target_clock

Target clock monitored by CAC.

The clock shall be one among Main clock, Sub clock, HOCO clock,
MOCO clock, LOCO clock, IWDTCLK clock and PCLKB clock.

uint32_t MainClockFrequency

Target clock expected frequency in Hz.

(The parameter name is MainClockFrequency, but it is the frequency of
the target clock specified by target clock.)

uint32_t
ExternalRefClockFrequency

External reference clock frequency in Hz.

CLOCK_MONITOR_CACREF_PIN ePin

The pin to use for CACREF.

CLOCK_MONITOR_ERROR_CALL_BACK
CallBack

A function that is called when the target clock is out of tolerance or
when this function fails to properly configure the CAC circuit from the
input parameters.

Output Parameters

NONE | N/A
Return Values
NONE | N/A

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

Page 78 of 106
RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

(b) ClockMonitor_Init Function When Using One of the Internal Clock Source for Reference Clock.
(If CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK Is Not Defined.)

Syntax

void ClockMonitor_Init(clock_source_t target_clock,
clock_source_t ref_clock,
uint32_t target_clock_frequency,
uint32_t ref_clock_frequency,
CLOCK_MONITOR_ERROR_CALL_BACK CallBack)

Description

1. Start monitoring the target clock selected through target_clock input parameter using the CAC module and
the reference clock selected through ref_clock input parameter.

2. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.

Input Parameters

clock_source_t target_clock

Target clock monitored by CAC.

The clock shall be one of Main clock, Sub clock, HOCO clock, MOCO
clock, LOCO clock, IWDTCLK clock, and PCLKB clock.

clock_source_t ref_clock

The reference clock to be used by CAC to monitor the target clock.
The clock shall be one of Main clock, Sub clock, HOCO clock, MOCO
clock, LOCO clock, IWDTCLK clock, and PCLKB clock.

uint32_t target_clock_frequency

The target clock frequency in Hz

uint32_t ref_clock_frequency

The reference clock frequency in Hz.

CLOCK_MONITOR_ERROR_CALL_BACK
CallBack

A function that is called when the target clock is out of tolerance or
when this function fails to properly configure the CAC circuit from the
input parameters.

Output Parameters

NONE EA
Return Values
NONE | /A

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

Page 79 of 106
RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Syntax

extern void cac_ferrf_isr(void)

Description

CAC frequency error interrupt handler.
This function calls the callback function registered by the ClockMonitor_Init function.

Input Parameters

NONE | /A
Output Parameters

NONE | /A
Return Values

NONE | N/A
Syntax

extern void cac_ovff_isr(void)

Description

CAC overflow error interrupt handler.
This function calls the callback function registered by the ClockMonitor_Init function.

Input Parameters

NONE | /A
Output Parameters

NONE | N/A
Return Values

NONE | N/A
Syntax

bool t CAC_Err_Detect Test(void)

Description

When the power is turned on, it check that the frequency error detection by the CAC function and the interrupt by the
overflow error detection are operating normally.
Returns “TRUE” if each interrupt occurrence can be confirmed within a certain period of time (counted by software

loop).

Input Parameters

NONE | /A
Output Parameters
NONE | /A

Return Values

bool_t 1 : True = Passed(Each interrupt occurrences was occurred)
0 : False = Failed(Could not be confirmed both interrupt occurrences)

R0O1AN6974EJ0100 Rev.1.00 Page 80 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.5 Independent Watchdog Timer (IWDT)

A watchdog timer is used to detect abnormal program execution. If a program is not running as expected, the watchdog
timer will not be refreshed by software as required and will therefore detect an error.

The Independent Watchdog Timer (IWDT) module of the RA MCU is used for this. It includes a windowing feature so
that the refresh must happen within a specified ‘window’ rather than just before a specified time. It can be configured to
generate an internal reset or a NMI interrupt if an error is detected.

All the configurations for IWDT can be done through the Option Function Select Register 0 (OFSO0) in Option-Setting
Memory whose settings are controlled by the user (see Section 2.5 for an example of configuration). The option setting
memory is a series of registers that can be used to select the state of the microcontroller after reset and is located in the

code flash area.
A function is provided to be used after a reset to decide if the IWDT has caused the reset.

The test module relies on the renesas.h header file to access to peripheral registers.

R0O1AN6974EJ0100 Rev.1.00 Page 81 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

1.5.1 IWDT Software API

The software API source files related to IWDT testing are shown in Table 1.22.

Table 1.22 Independent Watchdog Timer Source Files

File Name
iwdt.h Declaration of IWDT Test API function.
iwdt.c IWDT test implementation part

Syntax

void IWDT_Init (void)

Description

Initialize the independent watchdog timer. After calling this, the INDT_Kick function must then be called at the
correct time to prevent a watchdog timer error.

Note: If configured to produce an interrupt then this will be the Non Maskable Interrupt (NMI). This must be handled
by user code which must check the NMISR.IWDTST flag.

Input Parameters

NONE | N/A
Output Parameters

NONE | N/A
Return Values

NONE EA
Syntax

void IWDT_Kick(void)

Description

Refresh the watchdog timer count.

Input Parameters

NONE | N/A
Output Parameters
NONE | N/A
Return Values
NONE EA
RO1AN6974EJ0100 Rev.1.00 Page 82 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Syntax

bool t IWDT_DidReset(void)

Description

Returns true if the IWDT has timed out or not been refreshed correctly. This can be called after a reset to decide if
the watchdog timer caused the reset.

Input Parameters

NONE | N/A

Output Parameters

NONE EA

Return Values

bool_t | True(1) if watchdog timer has timed out, otherwise false(0).
Syntax

bool t IWDT_Err_Detect Test(void)

Description

When the power is turned on, it check that the interrupt by the detection of counter underflow for IWDT function is
operating normally.

Returns “TRUE” if NMI interrupt occurrence by detecting IWDT counter underflow can be confirmed within a
certain period of time (counted by software loop).

Set f IWDT ERROR TEST to "1" and determine if f IWDT ERROR TEST becomes "0" within a certain period
of time.

Note that the user must create a process to set f IWDT ERROR_TEST to "0" when the IWDT underflow/refresh
error interrupt status flag is "1" in NMI_Handler_callback().

For details, refer to 2.5 Independent Watchdog Timer IWDT).

Input Parameters

NONE | /A
Output Parameters
NONE | /A

Return Values

bool_t 1 : True = Passed(NMI interrupt occurrences was occurred)
0 : False = Failed(Could not be confirmed NMI interrupt occurrences)

R0O1AN6974EJ0100 Rev.1.00 Page 83 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

2. Example Usage

This section gives to the user some useful suggestions about how to apply the released software.
Self testing can be divided into two patterns:

(a) Power-On Test
These are tests run once following a reset. They should be run as soon as possible but especially if start-up time is
important it may be permissible to run some initialization code before running all the tests so that for example a

faster main clock can be selected.

(b) Periodic Test
These are tests that are run regularly throughout normal program operation. This document does not provide a
judgment of how often a particular test should be ran. How the scheduling of the periodic tests is performed is up
to the user depending upon how their application is structured.

The following sections provide an example of how each test type should be used.

RO1AN6974EJ0100 Rev.1.00 Page 84 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

21 CPU

If a fault is detected by any of the CPU tests then a user supplied function called CPU_Test_ErrorHandler will be
called. As any error in the CPU is very serious the aim of this function should be to get to a safe state, where software
execution is not relied upon, as soon as possible.

2.1.1 Power-On

The the CPU tests should be run as soon as possible following a reset.

The function CPU_Test ClassC can be used to automatically run all the CPU tests.

2.1.2 Periodic

To test the CPU periodically, the function CPU_Test ClassC can be used, as it is for the power-on tests, to
automatically run CPU tests.

Alternatively, to reduce the amount of testing done in a single function call, the user can select by
"r_cpu_diag_config.h".

2.1.3 Preparation for CPU testing

The following describes the preparation for CPU testing.

It configures the CPU test via directive settings before compiling your code.

See Table 1.15 for the relationship between directives and each CPU test.

Directives are used to define what tests will be included in or excluded from the compilation.
The directive can be found in the r_cpu_diag_config.h file.

The sample software is set to build all CPU tests.
If it set the directives to "0"(an excluded from test), the empty function called norm_null() is executed.

For example, when your CPU core is CM33 and no FPU is used, you can exclude FPU-related test from CPU Test
compilation.
(Set "0" to the directives from “BUILD R _CPU DIAG 11” to “BUILD R CPU DIAG 15 6” in Table 1.15)

The next page shows where to set the directives that make up the CPU test.

R0O1AN6974EJ0100 Rev.1.00 Page 85 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

@ Definition parts in the "r_cpu_diag_config.h" file.(blue text)

If "1" is set in the following settings, it will be subject to test execution, and if "0" is set, it will not be subject to test

execution.

khkkhhhhhh bbb bbb bbbttt

* Macro definitions

* ==== Define build options ====*/
#define BUILD_R_CPU_DIAG_0 ()]
#define BUILD_R_CPU_DIAG_1 ()]
f#define BUILD_R CPU_DIAG_2 @
#define BUILD_R_CPU_DIAG_3 (€0)

#define BUILD_R_CPU_DIAG 4 1)
#define BUILD_R_CPU_DIAG 4 2)
#define BUILD_R_CPU_DIAG_5)
#define BUILD_R_CPU_DIAG_6)
#define BUILD_R_CPU_DIAG_7_1)
#define BUILD_R_CPU_DIAG 7 2)
#define BUILD_R_CPU_DIAG 7 3)

#define BUILD R _CPU_DIAG_8$)
#define BUILD_R_CPU_DIAG 9)
#define BUILD_R_CPU_DIAG_10)
#define BUILD_R_CPU_DIAG_11)
#define BUILD_R_CPU_DIAG_12)
#define BUILD_R_CPU_DIAG_13)

#define BUILD_R_CPU DIAG 141 (1)
#define BUILD_R_CPU DIAG 14 2 (1)
#define BUILD_R_CPU DIAG 151 (1)
#define BUILD_R_CPU_DIAG 152 (1)
#define BUILD_R_CPU_DIAG 153 (1)
#define BUILD_R_CPU DIAG 15 4 (1)
#define BUILD_R_CPU_DIAG_ 155 (1)
#define BUILD_R_CPU_DIAG_ 15 6 (1)
#define BUILD_R_CPU_DIAG_16)

R0O1AN6974EJ0100 Rev.1.00

Page 86 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
22 ROM

In ROM test, it compare the calculated CRC value of the range under test with a pre-stored reference CRC value.(used
the 32-bit CRC32 Polynomial is "CRC-32")

A reference CRC value must be stored to a ROM area that is not included in the CRC calculation. The way of the
reference CRC value is calculated depends on your development environment.

In addition, this sample software performs divided processing to reduce the processing load of the ROM test, and
supports Multi Checksum.The CRC module incorporated into the RA MCU must be initialized before use by calling the
CRC _Init function. When dividing and processing, please initialize only the first time of divided processing.

2.2.1 Reference CRC Value Calculation in Advance

Since the GNU tool does not have a CRC calculation function, use the SRecord tool (*1) introduced below to calculate
the reference CRC value. The user uses this tool to write the CRC value for reference in ROM in advance, and
compares it with this value in the self-test.

*1: SRecord is an open source project on SourceForge. See below for details.
e SRecord Web Site (SRecord v1.64)
http://srecord.sourceforge.net/

e CRC Checksum Generation with “SRecord” Tools for GNU and Eclips

https://gcc-
renesas.com/wiki/index.php?titte=CRC_ Checksum_ Generation with %E2%80%98SRecord%E2%8

0%99 Tools for GNU and Eclipse

After unzipping the downloaded ZIP file, the following folders will be expanded.

README. pdf
Readme-Windows.txt

I IE] srec_cat.exe Id—

[#:] srec_cmp.exe

CRC calculation tool

(5] srec_info.exe
srecord-1. 64 pdf

Figure 2.1 SRecord Tool Contents

R0O1AN6974EJ0100 Rev.1.00 Page 87 of 106

http://srecord.sourceforge.net/
https://gcc-renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2%80%99_Tools_for_GNU_and_Eclipse
https://gcc-renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2%80%99_Tools_for_GNU_and_Eclipse
https://gcc-renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2%80%99_Tools_for_GNU_and_Eclipse

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

An example of the folder structure of the project and SRecord tool is shown below.

v = RA_Safety_Selftest_CM33_TZproj

v = Project
= RAB6M4_non_sec Non-Safety parts Project folder
e The location indicated by the build
= RABM4_sec Safety parts variable ${ProjDirPath}
v (= SelftestLib
= src > Source File of Self Test

v (= srec

© CRCcalcCmd1MB_64KB_divtxt _ — ¢\
CRCcalcCmd1MB.ba Command file for SRecord tool
CRCcalcCmd256KB.txt (By ROM capacity)
CRCcalcCmd512KB.txt
CRCcalcCmdDebug1MB.txt
CRCcalcCmdDebug256KB.txt Command file fF)r SRecord tool
CRCcalcCmdDebug512KB.txt (Ifdebug s enable)
ab srec_cat.exe

Command file for SRecord tool
ti checksum support when ROM=1MB)

» SRecordTool execute file

Figure 2.2 Folder Configuration Example

R0O1AN6974EJ0100 Rev.1.00 Page 88 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

When using Safety part and Non-Safty parts of TrustZone, it is necessary to set in the property of each project.

@ ’Settings in the project for "Safety part"

a workspace_2021_10_fsp350 - RABM4_non_sec/srcfdnn maain ¢ - e studio

File Edit Source Refactor Mavigate Search] Project |Renesas Miews Run Window Help

’{:5‘ Debug Open Project
Close Project
=S s = T T Open FSP Configuration

Fim Project Expl x Deb S
i Project Explorer ¥ Debug B Build Al Cerl+Alt+B

~ [RA_Safety_Selftest CM33_TZproj v090.zip_

¥ } =

N . Build Configurations >
v = RA_Safety_Selftest_CM33_TZproj
- Build Project Ctrl+B
~ = Project))
IS RAGMA4 non sec (e Ty =i ’
T_.vﬁ RAEM4_sec [SoftwareDebug] Clean...
= SelftestLib Build Automatically
(= srec 2] Generate Javadoc...
CCe+ Index >3
Update All Dependencies Alt+D
Change Device

Change Toolchain Version

HE C/C++ Proiect Setfinas Cirl+ Alf+P

Properties

File Edit Source Refactor Mavigate Search Project Renesas Vi

7;&- Debug [E7 RABM4_non_sec SoftwareDebug_S - | ® - ﬁ > | '?5 1 | | & ‘ F i?n.} &‘

{8 Properties for RAGM4_sec O x

&« BT Settings —

wvs Bun Window Help

“ iz RA_Safety Selftest CM33_TZproj_v090.zip Resource
~ [= RA_Safety_Selftest CM33_TZproj Builders "
¥ = Project v C/C++ Build Configuration: | SoftwareDebug [Active] ~ | | Manage Configurations...
'[rﬁ RABM4_non_sec Build Variables
Lv_—ﬁ RAEM4_sec [SoftwareDebug] Environment
[= SelftestLib Logging M2 Tool Settings ¥ Toolchain #* Build Steps Build Artifact Binary Parsers @ Error Parsers
(= srec et
Pre-build steps
[ool Chain Editor P
C/C++ General Command(s):
LinkerScript ‘ v |
McU P
Project Natures Escription:
Project References ‘ > |
Renesas QE
Run/Debug Settings Post-build steps
Task Tags Commandis):
Validation ‘a[\ﬂ-Tonf-e?bi-PI:onp'if-C{sre:: ”ﬁfPr?JNaimel‘EIfi" "E}r\gjna[,ses.srsc"] v
Description:
| 7]
v
@ Write in the “Command(s)” field Gppard@es)| @mes
Figure 2.3 Output SRecord File and Start SRecord Tool(setting in Safety Parts project)
In the "Post-build steps" of the "Build Steps" tab in the above figure, write as follows.
B Example of Command(s): entry (write on one line without line breaks)
arm-none-eabi-objcopy -0 srec "${ProjName}.elf" "Original_sec.srec"
In above, it descript that generate the S record file "Original sec.srec" from * .elf generated by Safety part.
RO1AN6974EJ0100 Rev.1.00 Page 89 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

@ "Settings in the project for "Non-Safety part"

Open "Project" = "Properties" of €2 studio, and Copy "Original sec.srec" that was created in Safety part to the
correspond folder in the project on the Non-Safety side with the copy command on "Pre-build steps"

Next, in the "Post-build step", use the objcopy command to generate the S-record file "Original non_sec.srec" from the
* .elf file generated at Non-Safety part.

Furthermore, it is converted into one S record file from "Original non_sec.srec" and "Original _sec.srec".
The converted file name is "Original.srec".

This file will be the input for the SRecord tool.

File Edit Source Refactor Navigate Search | Project JRenesas Views Run Window Help

+§ Debug ~ Open Project

Cloge Project
SiwigdisS

a workspace_2021_10_fsp350 - RA5M4_sec/ranspfsrcfb5i.fcmsis/DEvice/RENESAS!SDurce/startup‘c -e'st

Open FSP Configuration

DENLE By Project Explorer X =
EeoD LY By Project Explorer - & BuildAl Ctrl+Alt+B 4
5% Y Build Configurations >
~ > RA_Safety_Selftest_CM33_TZproj_v Build Praject Ctrl:B
~ = RA_Safety_Selftest CM33_TZproj Build Working Set s |
v i Project Clean...
I 1% RABM4 non_sec [SaﬂwareDehugI Build Automatically
L
= RABMA_sec 2] Generate Javadoc...
(= SelftestLib el s
++ Index
v)
W srec Update All Dependencies Alt+D
= CRCcalcCmd1MB.txt = laiss
|2 CRCcalcCmd256KB.txt Change Toolchain Version

= CRCcalcCmd512KB.txt -) -

= CRCcalcCmdDebug1MB.txt I B . I
Properties

= RO Al mmANsh A2 EAKD +

l

[

[

File Edit Source Refactor Mavigate Search Project RenesasViews Run Window Help

7§:$Dzal'.tug v | | [EF] RABM4_non_sec SoftwareDebug 5 v I |E\3'Q'.ﬁv % b\| = 00 M g i U 19‘:} &|
T A A N R H R TR e R R Q

35 Debug _ = | @ Properties for RAGMA_non_sec [} X
&=
S Settings v g
v Iz RA_Safety_Selftest CM33_TZproj_
Resource

v i RA_Safety_Selftest CM33_TZpro| puigers
v Project ~ CfC++ Build Configuration: | SoftwareDebug [Active] ~| | Manage Cenfigurations...

Build Variables

l§ RA6M4_non_sec [Soﬂware[)ebug]l
Environment

£
I~ RAGMA4_sec Logging & Tool Settings B Toolchai # Build Steps Build Artifact Binary Parsers @ Error Parsers

= SelftestLib b
- i re-build steps
v (= srec Tool Chain Editor
_ CfC++ General ,Lqmmandm'___________________________________
=l CRCealcCmd1MB ¢t LinkerScript :|copy‘.¥‘.¥RA6M4_5&(¥SthwareDebug¥0riginal_sec‘srec v| 1
Z/ CRCcalcCmd256KB.txt MCU -b?sc-n'ﬁcﬁ------------------------------------'
£/ CRCcalcCmd5 12KB.txt Project Natures

| e |

Post-build steps

Project References

= CRCcalcCmdDebug1MB.txt Renesas QF
CRCcaleCmdDebug256KB.ty Run/Debug Settings

CRCcalcCmdDebug512KB.t Task Tags
Validation

i

i

Command(s):

r|Frm-none-eabi-objcopy -0 srec "${ProjName}.elf" "Original_non_sec.srec” & ${ProjDirPath}/...../sre vT n]
e E e e e e e e e -

Description:

| > |

i

srec_catexe

[Console [J] Debug Shell [*] Problems @ A¥

I Apply and Close Cancel

/7
Write in the “Command(s)” field

Figure 2.4 Output S-Record file and start SRecord tool (setting in Non-Safety part project)

R0O1AN6974EJ0100 Rev.1.00 Page 90 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

In the "Pre-build steps" and "Post-build steps" of the "Build Steps" tab in the above figure, describe as follows.

B Example of entry in the Command (s) column of "Pre-build steps" (write on one line without line breaks)

copy ..\..\RA6M4_sec\SoftwareDebug\Original_sec.srec

Use the copy command to copy the "Original sec.srec" created in Safety part to the corresponding folder on the Non-
Safety side.

Next, in the "Post-build steps" of the "Build Steps" tab in the above figure, write as follows.

B Example of entry in the Command (s) column of "Post-build steps" (write on one line without line breaks)
[when divided processing is enabled (DIV_AREA=1)]

arm-none-eabi-objcopy -0 srec "${ProjName}.elf" "Original_non_sec.srec" &
${ProjbDirPath}/../../srec/srec_cat Original_non_sec.srec Original_sec.srec -o
Original.srec & ${ProjDirPath}/../../srec/srec_cat
@${ProjbDirPath}/../../srec/CRCcalcCmd1MB_64KB_div.txt

[when divided processing is disabled (DIV_AREA=0)]

arm-none-eabi-objcopy -0 srec "${ProjName}.elf" "Original_non_sec.srec" &
${ProjDirPath}/../../srec/srec_cat Original_non_sec.srec Original_sec.srec -o
Original.srec & ${ProjDirPath}/../../srec/srec_cat
@${ProjDirPath}/../../srec/CRCcalcCmd1MB.txt

Untill before the "&" in the third line above mean that the S-record file is generated.
The format "srec_cat @ command file" on the third line is the launch of the srec_cat tool.

The description example is shown about the following Command files :
+ "CRCcalcCmdiMB_64KB_div.txt"(when divided processing is enabled)
+ "CRCcalcCmdiMB. txt" (when divided processing is disabled)

Also, please refer to ’2.2.2 Setting for the support Multi-checksum” for setting of split processing.

R0O1AN6974EJ0100 Rev.1.00 Page 91 of 106

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

CRCcalecCmd1MB_64KB_div.txt 77 1 JLORE ()

CRC calculate
Original.srec

-fill 0xFF 0x00000 0x100000
#

-crop 0xF0000 OxFFFCO
-STM32-le 0xOFFFFC

-crop 0xFFFFC 0x100000
Original.srec

-fill 0xFF 0x00000 0xF0000
-crop 0xE0000 0xF0000
-STM32-le 0xOFFFF8
-crop 0xFFFF8 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0xD0000 0xE0000
-STM32-le 0xOFFFF4
-crop 0xFFFF4 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0xC0000 0xD0000
-STM32-le 0xOFFFFO0
-crop 0xFFFF0 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0xB0000 0xC0000
-STM32-le 0xOFFFEC
-crop 0xFFFEC 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0xA0000 0xB0000
-STM32-le 0xOFFFES8
-crop 0xFFFE8 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0x90000 0xA0000
-STM32-le 0xOFFFE4
-crop 0OxFFFE4 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0x80000 0x90000
-STM32-le 0xOFFFEOQ
-crop 0OxFFFEO 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0x70000 0x80000
-STM32-le 0xOFFFDC
-crop OxFFFDC 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0x60000 0x70000
-STM32-le 0xOFFFD8
-crop 0xFFFD8 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0x50000 0x60000
-STM32-le 0xOFFFD4
-crop 0xFFFD4 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0x40000 0x50000
-STM32-le 0xOFFFDO
-crop 0xFFFDO 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0x30000 0x40000
-STM32-le 0xOFFFCC
-crop 0OxFFFCC 0x100000
Original.srec

#

-fill 0xFF 0x00000 0xF0000
-crop 0x20000 0x30000
-STM32-le 0xOFFFC8
-crop OxFFFC8 0x100000

Read srec file
1MB ROM fill by OxFF

CRC calculate area (Test area 0xF0000 - OxXFFFCO : 64KB-4) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFFC.
Keep CRC area(0xFFFFC - 0xFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0xE0000 - OXEFFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFF8.
Keep CRC area(0xFFFF8 - 0xFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0xD0000 - OXDFFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFF4.
Keep CRC area(0xFFFF4 - 0OxFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0xC0000 - OXCFFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFFO.
Keep CRC area(0xFFFFO - 0OxFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0xB0000 - 0xBFFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFEC.
Keep CRC area(0xFFFEC - OxFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0xA0000 - OXAFFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFES.
Keep CRC area(0xFFFE8 - 0OxFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0x90000 - 0x9FFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFE4.
Keep CRC area(0xFFFE4 - OxFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0x80000 - 0x8FFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFEO.
Keep CRC area(0xFFFEO - OxFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0x70000 - 0x7FFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFDC.
Keep CRC area(0xFFFDC - 0xFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0x60000 - 0x6FFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFD8.
Keep CRC area(0xFFFD8 - 0xFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0x50000 - 0x5FFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFD4.
Keep CRC area(0xFFFD4 - 0xFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0x40000 - 0x4FFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFDO.
Keep CRC area(0xFFFDO - 0OxFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0x30000 - 0x3FFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFCC.
Keep CRC area(0xFFFCC - 0xFFFFF)

Read srec file

0-0xF0000 ROM fill by OxFF

CRC calculate area (Test area 0x20000 - 0x2FFFF : 64KB) for debug

The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFCS8.
Keep CRC area(0xFFFC8 - 0xFFFFF)

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

Page 92 of 106
RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Original.srec # Read srec file

#

-fill OxFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF

-crop 0x10000 0x20000 # CRC calculate area (Test area 0x10000 - 0x1FFFF : 64KB) for debug

-STM32-le 0xOFFFC4 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFC4.
-crop 0xFFFC4 0x100000 # Keep CRC area(0xFFFC8 - 0OxFFFFF)

Original.srec # Read srec file

#

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by OxFF
-crop 0x00000 0x10000 # CRC calculate area (Test area 0x0 - 0xFFFF : 64KB) for debug

-STM32-le 0xOFFFCO # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFCO.
-crop 0xFFFCO0 0x100000 # Keep CRC area(0xFFFCO - OxFFFFF)

Original.srec # Read srec file

#

-fill 0xFF 0x000000 0xOFFFCO # fill OXFF from 0x0 to 0xFFFCO

-Output addcrc.srec # Output of S-record file including CRC value

B Contents of CRCcalecCmd1MB.txt file (example)

Original.srec # Read srec file

-fill OxFF 0x00000 0x100000 # 1IMB ROM fill by OxFF

-Crop 0x00000 OxOFFFFC # CRC calculate area

-STM32-1e OxOFFFFC # Calculate and output CRC value

-crop OXFFFFC 0x100000 # Keep CRC area

Original.srec # Read srec file again

-fill OxFF ©x000000 OxOFFFFC # -fill OxFF from ©0x0 to OXFFFFC

-Output addcrc.srec # Output of S-record file including CRC value
RO1AN6974EJ0100 Rev.1.00 Page 93 of 106

Jun.30.2023 RENESAS

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

If the ROM capacity varies depending on the device, change the address setting according to the device.

Also, when debugging, some ROMs rewrite the contents of ROM due to a software break. In that case, it is
necessary to set the operation target area to something other than the debug area.

With the above operation, addcrc.srec (S record file with CRC calculation result added to the end of
program code) can be created in the build configuration folder under the project folder, so download it to the

target board.

Right-click on the top of the project tree and select "Debug as" — "Debug Configuration".

e Project - e” studio

(K] (] (@] [3 oo

[y Project Explorer 3
v I > RA_self_test_local [RA_se
(&% doc
v fek > prog
&y > RA_Safety_Selftest
v [> RA_Safety_Selftest_
w [y > Project
v [z > RABMA4 [Soft

b 4

@ELE

[E7 SoftwareDebug

New

Go Into

Open in New Window
Show In

Show in Local Terminal

Copy
Paste
Delete
Source
Move...

Rename...

Import...

Export...

Export FSP Project...
Export FSP User Pack...

Build Project

Clean Project

2| Refresh

Close Project

Close Unrelated Project

Build Targets
Index

Build Configurations

Run As

File Edit Mavigate Search Project RenesasViews Run Window Help

Alt+5Shift+W »
>

Cirl+C
Ctrl+V
Delete

>

Debug As

L+

Profile As

Restore from Local History...

MISRA-C
C/C++ Project Settings
Save build settings report

-

1 GDB Simulater Debugging (RHE50)

2 Local C/C++ Application

3 Renesas GDB Hardware Debugging

4 Renesas Simulator Debugging (RX, RL78)

|®'Q—',ﬁv 2 Q|

Ctrl+Alt+P I

Debug Configurations...

Figure 2.5 Select Debug Configuration of the Project

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 94 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

When the debug configuration dialog is displayed, select the "Startup" tab and select the build configuration to use.
Only the symbol information is read from the ELF file, and the program image including the CRC calculation value is
set to be read from addcrc.srec.

Click the "Debug" button to download the CRC calculation value to the target.

| @ Debug Configurations m] X

| Create, manage, and run configurations

ICEeEX BY- Mame: [RAGM4_non_sec SoftwareDebug_SSD |
i | [type filter text ‘ B Main | %5 Debugge Source| [T] Common

[E] €/C++ Application Initialization Commands ~
| [E] €/C++ Remote Application [IReset and Delay (seconds): 3
I & easescrpt
| [€] GDB Hardware Debugging CHalt

[€] GDB OpenOCD Debugging

[E7 GDB Simulator Debugging (RH&50)
1 Java Applet

[1] Java Application

g Launch Group

T Remote Java Application

Load image and symbaols

[~FTEname Tosape = =g = e R

w [l Benecac GOR Hardua eDebugging Add..
[c7] RABM4_non_sec SoftwareDebug_S5D RAEM4_sec.elf [¥RAEMA_sec¥SoftwareDebug] Symbols only Yes
&7 Renesas Simulator Debugging (RX, &) Program Binary [RAG6M4_non_sec.elf] Symbeols only Yes i
addcre.srec [SoftwareDebug] Image only a Yes Remove

Runtime Options

[]5et program counter at (hex):

[Set breakpoint at: main
] Resume

Run Commands

Revert Apply
Filter matched 13 of 16 items

Figure 2.6 Load Image and Symbol Setting Example

R0O1AN6974EJ0100 Rev.1.00 Page 95 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

2.2.2 Setting for the support Multi-checksum

It have mach time to test all areas in one ROM test. As measure, it is possible to divide the processing with the
following settings.

Edit and set "RA_Self Tests.c" including this sample software. Divided processing is enabled by default.
The setting part in the "RA_SelfTests.c" file of the sample software is explained below.

@ Sctting part in the "RA_SelfTests.c" file of the sample software (blue text)

Set whether to enable or disable split processing below.

#define DIV_AREA 1 /1 0:Not divide 1:Do divide

The reference addresses for pre-computed CRC values are defined below.

* The address where the 32bit reference CRC value will be stored.

The linker must be configured to generate a CRC value and store it at this location. */
#define DIV_AREA 1 /I 0:Not divide 1:Do divide
#if(DIV_AREA==1)

#define CRC_ADDRESS 0x000FFFCO0 // Flash ROM 1MB *The area from 0xFFFCO to 0xFFFFF is stored Calurated CRC Value.
#define CRC_ADDRESS 0x000BFFC0 // Flash ROM 768KB

/#define CRC_ADDRESS 0x0007FFC0 // Flash ROM 512KB

Helse

f#define CRC_ADDRESS 0x000FFFFC // Flash ROM 1MB

l#define CRC_ADDRESS 0x000BFFFC // Flash ROM 768KB

/#define CRC_ADDRESS 0x0007FFFC // Flash ROM 512KB

Hendif

It store the precomputed checksum with the above settings.
When divied processing is enabled. (DIV_AREA=1) : Store in the area of addrres 0xFFFCO to OxFFFFF.
When divied processing is disabled. (DIV_AREA=0) : Store in the area of addrres 0XFFFFC to OxFFFFF.

For the stored method, refer to”2.2.1 Reference CRC Value Calculation in Advance”

R0O1AN6974EJ0100 Rev.1.00 Page 96 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

2.2.3 Power-On
All the ROM memory used must be tested at power-on.

If this area is one contiguous block then function CRC_Calculate can be used to calculate and return a calculated
CRC value.

If the ROM used is not in one contiguous block then the following procedure must be used.

1. Call CRC Start.
2. Call CRC_AddRange for each area of memory to be included in the CRC calculation.
3. Call CRC_Result to get the calculated CRC value.

The calculated CRC value can then be compared with the reference CRC value stored in the ROM using function
CRC_Verify.

It is a user’s responsibility to ensure that all ROM areas used by their project are included in the CRC calculations.

2.2.4 Periodic

It is suggested that the periodic testing of ROM is done using the CRC_AddRange method, even if the ROM is
contiguous. This allows the CRC value to be calculated in sections so that no single function call takes too long. Follow
the procedure as specified for the power-on tests and ensure that each address range is small enough that a call to
CRC_AddRange does not take too long.

R0O1AN6974EJ0100 Rev.1.00 Page 97 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
2.3 RAM

It is very important to realize that the area of RAM that needs to be tested may change dramatically depending upon
your project’s memory map.

When testing RAM, keep the following points in mind:

1. Include r_ram_diag.h.

2. Modify the directives in r_ram_diag_config.h as needed (see Table 1.9).
3. Disable ECC and S cache and run the test.

4. Define the required parameters for R_RAM_Diag (see 1.3.4), pass the parameters and call the function
R_RAM_Diag.

5. For non-destructive tests, allocate a buffer (RramBuffer) and set the protected data to be stored in other blocks

2.3.1 Power-On

At power on, a RAM test is performed.

First performing the RAM test with the Extended March C-algorithm, then perform the RAM test with the WALKPAT
algorithm.

It is possible to choose a destructive test.

If startup time is very important, make fine adjustments such as limiting the area to be tested and the test algorithm to be
used.

2.3.2 Periodic
All periodic tests must be non-destructive.

In the periodic RAM test, select "Extended March C-" or "WALKPAT" as the algorithm to be used. (* Select
"WALKPAT" in the sample project)

Also, if the test target area is wide, the processing time will be long, so it will be necessary to divide the RAM blocks
according to the system.

R0O1AN6974EJ0100 Rev.1.00 Page 98 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
24 Clock

The monitoring of the main clock is set up with a single function call to ClockMonitor_Init. There are two versions
of this file depending on the choice between using an external or internal reference clock as decided by the following
#define:

#define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK

For example:
#ifdef CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK
#define MAIN_CLOCK_FREQUENCY_HZ (12000000) // 12 MHz

#define EXTERNAL_REF_CLOCK_FREQUENCY HZ (15000) // 15kHz

ClockMonitor_Init(MAIN, MAIN_CLOCK_FREQUENCY_HZ, EXTERNAL_REF_CLOCK_FREQUENCY_HZ,
eCLOCK_MONITOR_CACREF_A, CAC_Error_Detected_Loop);

#telse
t#tdefine TARGET_CLOCK_FREQUENCY_HZ (12000000) // 12 MHz
t#tdefine REFERENCE_CLOCK_FREQUENCY_HZ (15000) // 15kHz

ClockMonitor_Init(MAIN, IWDTCLK, TARGET_CLOCK_FREQUENCY_HZ,
REFERENCE_CLOCK_FREQUENCY_HZ, CAC_Error_Detected_Loop);
/*NOTE: The IWDTCLK clock must be enabled before starting the clock monitoring.*/

#tendif

When using an external reference clock as the reference clock, the user can specify the CACREF pin to use with the
input parameter of the ClockMonitor_Init function (in the above example, eCLOCK_MONITOR_CACREF_A is
specified).

The relationship between the terminals and input parameters of each device of the RA MCU is shown below. The user
decides which terminal to use according to the system configuration.

Table 2.1 CACREF Pin and Input Parameter (CLOCK_MONITOR_CACREF_PIN ePin)

MCU Terminal (Port Number) That Symbol of Input Parameter "ePin"
Can Be Specified for CACREF
RA6M4 P204 eCLOCK_MONITOR_CACREF_A
P402 (Note) eCLOCK_MONITOR_CACREF_B
P500 eCLOCK_MONITOR_CACREF_C
P600 eCLOCK_MONITOR_CACREF_D
P611 eCLOCK_MONITOR_CACREF_E
P708 eCLOCK_MONITOR_CACREF_F

Note: The P402 is affected by the VBTICTLR (VBATT input control register) setting. For details, refer to the
"I/ O Ports" and "Battery Backup Function" chapters in the hardware user's manual for each RA MCU.

The ClockMonitor_Init function can be called as soon as the main clock has been configured and the IWDT has
been enabled. See Section 2.5 for enabling the IWDT.

The clock monitoring is then performed by hardware and so there is nothing that needs to be done by software during
the periodic tests.

In order to enable interrupt generation by the CAC, both Interrupt Controller Unit (ICU) and Nested Vectored Interrupt
Controller (NVIC) should be configured in order to handle it.

In the interrupt controller unit (ICU), set the event signal number corresponding to CAC frequency error interrupt and
CAC overflow in the ICU event link setting register (IELSRn).

R0O1AN6974EJ0100 Rev.1.00 Page 99 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

When using FSP (Flexible Software Package) with e’ studio, the ICU configuration can be set in the "Interrupts" tab of

the RA Configuration Editor.

Table 2.2 Setting of IELSRn Register Related to CAC

MCU Event Name IELSRN.IELS
RA6M4, RA4M3 CAC_FERRI 0x09E
CAC_OVFI 0x0A0

The nested vector interrupt controller (NVIC) is set by the test_main function in the RA_SelfTests.c file. Where

NVIC_SetPriority and NVIC_EnableIRQ are CMSIS functions provided by FSP, and
CAC_FREQUENCY_ERROR_IRQn and CAC_OVERFLOW_IRQn are IRQ numbers generated by the FSP.

// NVIC settings related to CAC

/* CAC frequency error ISR priority */ : NVIC settings related to Frequency

NVIC_SetPriority(CAC_FREQUENCY_ERROR_IRQn,®); . .

/* CAC frequency error ISR enable */ '/////' error interrupt
NVIC_EnableIRQ(CAC_FREQUENCY_ ERROR_IRQn);

/* CAC overflow ISR priority */ :
NVIC_SetPriority(CAC_OVERFLOW_IRQn,®); E/////v
/* CAC overflow ISR enable */
NVIC_EnableIRQ(CAC_OVERFLOW_IRQn);

error interrupt

NVIC settings related to Overflow

If oscillation stop is detected, an NMI interrupt occure. In this sample software, as shown in the following, the prepared
in advance error handling function ("Clock Stop Detection()") is executed in the NMI interrupt callback function

(NMI_Handler_callback).

static void NMI_Handler callback(bsp_grp irq_t irq)
{
switch(irq) {
case BSP_GRP_IRQ IWDT_ERROR

break;
case BSP_GRP_IRQ LVDI1
case BSP_GRP_IRQ LVD2
break;
case BSP_GRP_IRQ OSC_STOP_DETECT :
Clock_Stop Detection();
break;
case BSP_GRP_IRQ TRUSTZONE

break;
default:
break;

R0O1AN6974EJ0100 Rev.1.00

Page 100 of 106

RA Family

IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

2.5 Independent Watchdog Timer (IWDT)

2.5.1

OFSO0 Register Setting Example (IWDT Related)

In order to configure the Independent Watchdog Timer, it is necessary to set the OFSO0 register in Option-Setting
Memory. For example, suppose the Option-Setting Memory is set as follows.

Table 2.3 OFSO0 Register Setting Example (IWDT Related)

ltem

OFSO0 Register Setting (For Example)

IWDT Start Mode Select (IWDTSTRT)

1: Disable IWDT after a reset

IWDT Timeout Period Select (IWDTTOPSI[1:0])

10b: 512 cycles

IWDT-Dedicated Clock Frequency Division Ratio Select | 0010b: 1/16
(IWDTCKSJ[3:0])

IWDT Window End Position Select (IWDTRPES[1:0]) 00b: 75%
IWDT Window Start Position Select (IWDTRPSS[1:0]) 11b: 100%

IWDT Reset Interrupt Request Select (IWDTRSTIRQS)

request

0: Enable non-maskable interrupt request or interrupt

IWDT Stop Control (IWDTSTPCTL)

1: Stop counting when in Sleep, Snooze, or Software
Standby mode.

When using FSP (Flexible Software Package) with e’ studio, the "Option-Setting Memory" settings can be done in the
property of the "BSP" tab of the configuration.

v (= RA Safety Selftest CM33_TZproj
~ [Project
=% RAGM4_non_sec
v 125 RABMA4_sec
4%, Binaries
= Includes
[SelfTestLib
2 ra
(# ra_gen
(3 src
== SoftwareDebug
= ra_cfg

pt
8 co nfiguration.xml

ABMAA B.pincig

Double click
to open

B Console [Problems [RIS EE S [Memory

~ 12 RA_Safety_Selftest CM33_TZproj_v090.zip_expanded

Q workspace_2021_10_fsp350 - RAGMA4_sec/configuration.xml - € studio
File Edit MNavigate Search Project Renesas¥iews Run Window Help

¥ Debug [£7] RABM4_non_sec SoftwareDebug_S i
i A - Pl vl]
[Project Explorer 2 | 4§ Debug S| 7 & = O [[RAGMAsec] FSP Configuration 33

" || Board Support Package Configuration

Device Selection

FSP version: |3.5.0

Board: Custom User Board (Any Device) ~
Device: R7FAEM4AF3CFB
RTOS: No RTOS

[T

| ®-R-6%

Board Details

v || Summa locks | Pins | Interrupts | Event Links | Stacks | Components

TR

-]

Generate Project Content

E Restore Defaults

Custom User Board (Any Device)

Settings Property
~ RABM4 Family
Security

Value

Open the BSP properties with
Window = Show View command

~ OFS0 register settings
v Independent WDT
Start Mode
Timeout Period

Window End Position
Window Start Position

Reset Interrupt Request Select
Stop Control

Dedicated Clock Frequency Divisor

IWDT is automatically activated after a reset (Autostart mode)

512 cycles

16

75%

100% (no window start position)

MMI request or interrupt request is enabled

Stop counting when in Sleep, Snooze mode, or Software Standby

WwDT
OF51 reqgister settings

Figure 2.7 Example of OFS0 Register Setting by Using FSP with e? studio

RO1ANG6974EJ0100 Rev.1.00
Jun.30.2023

RENESAS

Page 101 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

When the "Generate Project Content" button is clicked, the contents set in the property will be reflected in the
definition of the corresponding symbol in the following file . (For details, refer to "Renesas Flexible Software Package

(FSP) User's Manual".)

e Applicable file
..\project-name\ra_cfg\fsp_cfg\bsp\bsp_mcu_family cfg.h

e Applicable symbol (Excerpt)

#define OFS_SEQ1 0xA001A001 | (@ << 1) | (1 << 2)
#define OFS_SEQ2 (2 << 4) | (0 << 8) | (3 << 10)
#define OFS_SEQ3 (@ << 12) | (1 << 14) [T (1T << 17)

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

— |WOTST) _ |WOTRS| woTRPSS[10] | WDTRPES[10] WDTCKS[3.0] worTopsprop | WOIST|
Value after reset: The value set by the user’!

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

— |MERTST |WOTRS| \wDTRPSS[1:0] | IWDTRPES{1:0] IWDTCKS[3:0] wottopsrgp |WETST
Value after reset: The value set by the user’!

Figure 2.8 Option Function Select Register 0 (OFS0)

The Independent Watchdog Timer should be initialized as soon as possible following a reset with a call to INDT_Init:

/*Setup the Independent WDT.*/
IWDT_Init();

After this, the watchdog timer must be refreshed regularly enough to prevent the watchdog timer timing out and
performing a reset. Note, if using windowing the refresh must not just be regular enough but also timed to match the

specified window. A watchdog timer refresh is called by calling this:

/*Regularly kick the watchdog to prevent it performing a reset. */
IWDT Kick();

If the watchdog timer has been configured to generate an NMI on error detection then the user must handle the resulting
interrupt.

If the watchdog timer has been configured to perform a reset on error detection then following a reset the code should
check if the IWDT caused the reset by calling IWDT_DidReset:

if(TRUE == IWDT_DidReset())

{
/*todo: Handle a watchdog reset.*/
while(1){
/*DO NOTHING*/
}
}
RO1AN6974EJ0100 Rev.1.00 Page 102 of 106

Jun.30.2023 RENESAS

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

2.5.2 Example of registering and writing an NMI interrupt callback function
It check whether the IWDT operates normally at Power ON startup on API function "IWDT Err Detect Test()".

For that, user necessary to prepare the processing that set f IWDT ERROR TEST to "0" if the cause of the interrupt is
an IWDT underflow in the NMI interrupt callback function (NMI_Handler callback).

Users can register callbacks using the BSP API function “R_BSP_GrouplrqWrite()” provided by FSP (Flexible
Software Package).

By doing this, you can enable notification of one or more group interrupts.
When an NMI interrupt occurs, the NMI handler checks to see if there is a callback registered for the interrupt source,
and if so, calls the registered callback function.

For more information, refer to the RA FSP (Flexible Software Package) documentation below.

Renesas Flexible Software Package (FSP) v3.5.0 User’s Manual
Refer to ” 4.1.2 MCU Board Support Package(BSP)” — “4 R_BSP_GrouplrqWrite()”.

R0O1AN6974EJ0100 Rev.1.00 Page 103 of 106

https://www.renesas.com/jp/ja/document/mas/renesas-flexible-software-package-fsp-v350-users-manual?r=658306

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

The following describes the registration and description example of the NMI interrupt callback function
(NMI_Handler callback).

©Register NMI interrupt callback function

This is a description example when registering a callback function of the sample software "RA_SelfTest.c". Please
register according to the user's system.

for (bsp_grp_irq tirq =BSP_GRP_IRQ IWDT ERROR;irq <= BSP_GRP _IRQ CACHE PARITY; irq++){
R BSP_GrouplrqWrite(irq , NMI Handler callback);
)

©Description example of generating an IWDT interrupt factor in the NMI interrupt callback function
(NMI_Handler callback) (blue text)

static void NMI_Handler callback(bsp_grp_irq tirq)

/*Read NMISR register to discover NMI cause.*/
switch(irq){
case BSP_GRP IRQ IWDT ERROR
if(t IWDTSR_reg->IWDTSR_b.REFEF==1)
f
1
Watchdog_Test Failure();
1
s
else if(f IWDT_ERROR_TEST==0)
s
v
Watchdog Test Failure();

!
s

break;

case BSP_GRP _IRQ OSC STOP DETECT :
Clock_Stop Detection();
break;

default:
break;
}

if(irg==BSP_GRP_IRQ IWDT ERROR)
I
¥

f IWDT _ERROR_TEST =0;

/*Clear flag*/
IWDTSR_reg->IWDTSR_b.UNDFF = 0;

__NOP(); __NOP(); __NOP(); __ NOP(); __ NOP(); _ NOP();
else

1 Error_Detected_Loop(ERROR_NMI_OTHER);
Error_Detected_Loop(ERROR_NMI_OTHER);

/*Should not return from an NMI*/
while(1){;}

R0O1AN6974EJ0100 Rev.1.00 Page 104 of 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

Website and Support

Visit the following URLSs to learn about the key elements of the RA MCU, download tools, components, and related
documentation, and get support.

¢ RA Product Information: www.renesas.com/ra

¢ RA (Flexible Software Package): www.renesas.com/FSP

e RA Support Forum: www.renesas.com/ra/forum
e Renesas Support: www.renesas.com/support

Reference Documents

[1] Arme Cortexa-M33 Devices Generic User Guide Revision: r1p0

- 2.1.3 Core registers
- Chapter 3:The Cortex®-M33 Instruction Set

[2] Arm®v8-M Architecture Reference Manual

- D1.1 Register index
- C2.4 Alphabetical list of instructions

All trademarks and registered trademarks are the property of their respective owners.

R0O1AN6974EJ0100 Rev.1.00 Page 105 of 106

https://www.renesas.com/ra
https://www.renesas.com/FSP
https://www.renesas.com/ra/forum
https://www.renesas.com/support

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)
Revision History
Description
Rev. Date Page Summary
1.00 Jun 30, 2023 - First edition

RO1AN6974EJ0100 Rev.1.00

Jun.30.2023

RENESAS

Page 106 of 106

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vix (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between ViL (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

(Rev.4.0-1 November 2017)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2020 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	Introduction
	Table of Contents
	1. Tests
	1.1 CPU
	1.1.1 CPU instruction test and CPU register test
	1.1.2 Test Error
	1.1.3 CPU Software API
	1 Addition instructions test
	1 Sign extension
	1 Branch
	1 Bit manipulation
	1 LDR and STR
	4 LDRD and STRD
	1 LDAEX and STLEX
	1 PUSH and POP
	1 Detecting “0” fixed fault for status and control registers
	2 Detecting “1” fixed fault for status and control registers
	3 Detecting “0” fixed fault for general purpose registers
	4 Detecting “1” fixed fault for general purpose registers
	5 Detecting coupling fault for general purpose registers between any two bits
	7 Detecting "0" fixed fault for MSP(R13)
	8 Detecting "1" fixed fault for MSP(R13)
	9 Detecting coupling fault for MSP(R13) between any two bits
	1 Multiply accumulate (MAC)
	1 Four basic arithmetic instructions test
	1 Multiply accumulate (MAC)
	1 Floating-point rounding
	1 VPOP T2 and VPUSH T2
	3.VMOV
	1. Detecting “0” fixed fault for FPU status and control registers
	5 Detecting coupling fault for single-precision registers between any two bits
	5 Detecting coupling fault for single-precision registers between any two bits
	5 Detecting coupling fault for single-precision registers between any two bits
	6. Detecting coupling fault for single-precision registers between any two registers
	6. Detecting coupling fault for single-precision registers between any two registers

	1.2 ROM
	1.2.1 CRC32 Algorithm
	1.2.2 Multi Checksum
	1.2.3 CRC Software API

	1.3 RAM
	1.3.1 RAM Block Configuration
	1.3.2 Reserved Area
	1.3.3 RAM Test Algorithm
	(1) Extended March C-
	(2) WALKPAT
	(3) Algorithm Characteristics

	1.3.4 RAM Software API

	1.4 Clock
	1.4.1 Main Clock Frequency Monitoring by CAC
	1.4.2 Oscillation Stop Detection of Main Clock
	1.4.3 CLock Software API

	1.5 Independent Watchdog Timer (IWDT)
	1.5.1 IWDT Software API

	2. Example Usage
	2.1 CPU
	2.1.1 Power-On
	2.1.2 Periodic
	2.1.3 Preparation for CPU testing

	2.2 ROM
	2.2.1 Reference CRC Value Calculation in Advance
	2.2.2 Setting for the support Multi-checksum
	2.2.3 Power-On
	2.2.4 Periodic

	2.3 RAM
	2.3.1 Power-On
	2.3.2 Periodic

	2.4 Clock
	2.5 Independent Watchdog Timer (IWDT)
	2.5.1 OFS0 Register Setting Example (IWDT Related)
	2.5.2 Example of registering and writing an NMI interrupt callback function

	Website and Support
	Reference Documents
	Revision History

