
 Application Note

R11AN0526EU0102 Rev.1.02 Page 1 of 1
Mar.21.22

Renesas RA Family

RA AWS MQTT/TLS Cloud Connectivity Solution
Introduction
This application note describes the IoT Cloud connectivity solution in general, provides a brief introduction to
IoT Cloud providers like Amazon Web Services (AWS), and covers the FSP MQTT/TLS module and its
features. The application example provided in the package uses AWS IoT Core. The detailed steps in this
document show first-time AWS IoT Core users how to configure the AWS IoT Core platform to run this
application example.

This application note enables developers to effectively use the FSP MQTT/TLS modules in end-product
design. Upon completion of this guide, developers will be able to add “AWS Core MQTT”, “Mbed TLS”, and
“secure sockets on FreeRTOS plus TCP” using the Ethernet interface, configure them correctly for the target
application, and write code using the included application example code as a reference for an efficient
starting point.

References to detailed API descriptions, and other application projects that demonstrate more advanced
uses of the module, are in the FSP User’s Manual (available at: https://renesas.github.io/fsp/), which serves
as a valuable resource in creating more complex designs.

This MQTT/TLS AWS Cloud Connectivity solution is supported on the EK-RA6M3.

Applies to:
• RA6M5 MCU Group
• RA6M4 MCU Group
• RA6M3 MCU Group
• RA6M2 MCU Group
• RA6M1 MCU Group

Required Resources
To build and run the MQTT/TLS application example, the following resources are needed.

Development tools and software
• e2 studio IDE v2022-01 or later (renesas.com/us/en/software-tool/e-studio)
• Flexible Software Package (FSP) 3.6.0 or later (renesas.com/us/en/software-tool/flexible-software-

package-fsp)
 Installer for e2 studio and FSP can be found at ehttps://github.com/renesas/fsp

• SEGGER RTT Viewer V 7.60e or later (https://www.segger.com/products/debug-probes/j-link/tools/rtt-
viewer/)

Hardware
• Renesas RA™ EK-RA6M3 kit (renesas.com/ra/ek-ra6m3)
• PC running Windows® 10 and an installed web browser (Google Chrome, Internet Explorer, Microsoft

Edge, Mozilla Firefox, or Safari)
• Micro USB cables (included as part of the kit)
• Ethernet cable (CAT5/6)
• Ethernet switch or router with an Ethernet port which has access to the Internet.

Prerequisites and Intended Audience
This application note assumes that the user is adept in operating the Renesas e2 studio ISDE with Flexible
Software Package (FSP). If not, we recommend reading and following the procedures in the FSP User
Manual sections for ‘Starting Development’ including ‘Debug the Blinky Project’. Doing so enables
familiarization with e2 studio and FSP and validates proper debug connection to the target board. In addition,
this application note assumes prior knowledge of MQTT/TLS and its communication protocols.

https://renesas.github.io/fsp/
https://www.renesas.com/us/en/software-tool/e-studio
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://github.com/renesas/fsp
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://www.renesas.com/ra/ek-ra6m3

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 2 of 2
Mar.21.22

The intended audience is users who want to develop applications with MQTT/TLS modules using Renesas
RA™ RA6 MCU Series.

Note: If you are a first-time user of e2 studio and FSP, we highly recommend you install e2 studio and FSP
on your system in order to run the Blinky Project and to get familiar with the e2 studio and FSP
development environment before proceeding to the next sections.

Note: This Application Project and App Note can only use versions FSP V3.6.0 or later. Since the AWS
MQTT client module is deprecated starting FSP V3.0.0, this application note, which uses Core MQTT,
should be used as a reference for operating the equivalent AWS Core MQTT module.

Prerequisites
1. Access to online documentation available in the Cloud Connectivity References section
2. Access to latest documentation for identified Renesas Flexible Software Package
3. Prior knowledge of operating e2 studio and built-in (or standalone) RA Configurator
4. Access to associated hardware documentation such as User Manuals, Schematics, and so forth

Using this Application Note
Section 1 of this document covers the General Overview of Cloud Connectivity, AWS IOT Core, MQTT and
TLS protocols, and device certificates and keys used in Cloud Connectivity.

Sections 2 to 5 cover the use of the FSP configurator to add the Core MQTT, Secure Sockets, Integrated
TLS client and MQTT components to the project.

Sections 6.1 and 6.2 cover Cloud connectivity Application Project architecture and its software components
overview.

Section 6.3 covers the step-by-step procedure to recreate the bundled Application Project using the FSP
configurator.

Note: For a quick validation using the provided application project, you can skip the above sections and go
to section 6.5 for instructions on importing, building, and running the Application Project on the EK
board. You are still required to provide necessary user credentials for the application as described in
sections 6.4, 6.5, and 6.6 before validation can be done using the steps described in the section 6.7.

Section 6.4 covers the cloud side configuration required to run the Application Project.

Section 6.5 covers the importing, building, and running the Application Project on the EK board.

Section 6.6 covers the user specific credentials to run the application.

Section 6.7 covers the validation of the Application Project from the board and from the cloud.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 3 of 3
Mar.21.22

Contents

1. Introduction to Components for Cloud Connectivity .. 4
1.1 General Overview .. 4
1.2 Cloud Service Provider... 4
1.3 AWS IoT Core .. 5
1.4 MQTT Protocol Overview ... 5
1.5 TLS Protocol Overview... 5
1.6 Device Certificates, CA, and Keys .. 6

2. AWS Core MQTT with RA FSP ... 6

3. Secure Sockets Implementation .. 7

4. Mbed TLS .. 9

5. MQTT Module APIs Usage...10

6. Cloud Connectivity Application Example ...10
6.1 Overview.. 10
6.2 MQTT/TLS Application SW Architecture Overview ... 12
6.3 Creating the Application Project using the FSP Configurator... 13
6.4 MQTT/TLS Configuration ... 16
6.4.1 IoT Cloud Configuration (AWS) .. 18
6.4.2 Creating a Device on AWS IoT Core .. 18
6.4.3 Generating Device Certificate and Keys ... 26
6.4.4 Activate the Certificate ... 28
6.4.5 Attach Thing to certificate ... 29
6.5 Running the MQTT/TLS Application Example ... 29
6.5.1 Importing, Building and Loading the Project .. 29
6.5.2 Loading the Executable Binary into the Target MCU ... 30
6.5.3 Powering up the Board ... 30
6.6 Connecting to AWS IoT .. 30
6.6.1 AWS IoT Credentials .. 30
6.7 Verifying the Application Project ... 32

7. MQTT/TLS Module Next Steps ...37

8. Bibliography ..38

9. Known Issues ..38

Revision History..40

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 4 of 4
Mar.21.22

1. Introduction to Components for Cloud Connectivity
1.1 General Overview
The Internet-of-Things (IoT) is a global infrastructure for the information society, enabling advanced services
by interconnecting (physical and virtual) things based on existing and evolving interoperable information and
communication technologies. The ‘things’ in this definition are objects in the physical world (physical objects)
or information world (virtual) that can be identified and integrated into communication networks. In the
context of the IoT, a ‘device’ is a piece of equipment with the mandatory capabilities of communication and
the optional capabilities of sensing, actuation, data capture, data storage, and data processing.
Communication is often performed with providers of network-hosted services, infrastructure, and business
applications to process/analyze the generated data and manage the devices. Such providers are called
Cloud Service Providers. While there are many manufacturers for devices and cloud service providers, for
the context of this application note, the device is a Renesas RA Microcontroller (MCU) connecting to services
provided by Amazon Web Services (AWS) for IoT.

1.2 Cloud Service Provider
AWS IoT is a platform that enables users to connect devices to AWS services and other devices, secure
data and interactions, process, and act upon device data, and enable applications to interact with devices
even when they are offline. As a Cloud Service Provider, AWS IoT provides the ability to:

• Connect and manage devices
• Secure device connections and data
• Process and act upon device data
• Read and set device state at any time

Figure 1 summarizes the features provided by AWS IoT.

Figure 1. AWS IoT Features, Service Components, and Data Flow Diagram
A key feature provided by AWS is the AWS IoT Software Development Kit (SDK) written in C, which allows
devices such as sensors, actuators, embedded microcontrollers, or smart appliances; to connect,
authenticate, and exchange messages with AWS IoT using the MQTT, HTTP, or WebSocket’s protocols.
This application note focuses on configuring and using the AWS IoT Device SDK and the included MQTT
protocol available through the Renesas Flexible Software Package (FSP) for Renesas RA MCUs.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 5 of 5
Mar.21.22

1.3 AWS IoT Core
AWS IoT Core is a managed cloud service that lets connected devices easily and securely interact with
cloud applications and other devices. AWS IoT Core can support billions of devices and trillions of
messages. It can process and route messages to AWS endpoints and to other devices reliably and securely.
With AWS IoT Core, customer applications can keep track of all devices, all the time, even when they are not
connected.

AWS IoT Core addresses security concerns for the infrastructure by implementing mutual authentication and
encryption. AWS IoT Core provides automated configuration and authentication upon a device’s first
connection to AWS IoT Core, as well as end-to-end encryption throughout all points of connection, so that
data is never exchanged between devices and AWS IoT Core without proven identity.

This application note focuses on complementing the security needs of AWS IoT Core through installing a
proven identity for the RA MCU by storing a X.509 certificate and asymmetric cryptography keys in Privacy
Enhanced Mail (PEM) format in the on-board flash. The RA MCU has on-chip security features, such as Key
Wrapping, to protect the private key associated with the public key and the certificate associated with the
device1. Additionally, RA MCUs can also generate asymmetric keys using features of the Secure
Cryptography Engine (SCE) and API available through the FSP. The SCE accelerates symmetric
encryption/decryption of data between the connected device and AWS IoT, allowing the ARM Cortex-M
processor to perform other application specific computations.

1.4 MQTT Protocol Overview
This application note features Message Queuing Telemetry Transport (MQTT) as it is a lightweight
communication protocol specifically designed to tolerate intermittent connections, minimize the code footprint
on devices, and reduce network bandwidth requirements. MQTT uses a publish/subscribe architecture which
is designed to be open and easy to implement, with up to thousands of remote clients capable of being
supported by a single server. These characteristics make MQTT ideal for use in constrained environments
where network bandwidth is low or where there is high latency and with remote devices that might have
limited processing capabilities and memory. The RA MCU device in this application note implements a Core
MQTT which communicates with AWS IoT and exchanges example telemetry information, such as MCU
temperature and MCU GPIO status.

1.5 TLS Protocol Overview
The primary goal of the Transport Layer Security (TLS) protocol is to provide privacy and data integrity
between two communicating applications or endpoints. AWS IoT mandates use of secure communication.
Consequentially, all traffic to and from AWS IoT is sent securely using TLS. TLS protocol version 1.2 or later
ensures the confidentiality of the application protocols supported by AWS IoT. A variety of TLS Cipher Suites
are supported. This application note configures the RA Flexible Software Package for the MCU based device
to provide the following capabilities and AWS IoT negotiates the appropriate TLS Cipher Suite configuration
to maximize security.

Table 1. TLS Capabilities in RA FSP

Secure Crypto Hardware Acceleration Supported
Key Format Supported AES, ECC, RSA
Hash SHA-256
Cipher AES
Public Key Cryptography ECC, ECDSA, RSA
Message Authentication Code (MAC) HKDF

On top of these supported features, Mbed Crypto middleware also supports a variety of features which can
be enabled through the RA Configurator. Refer to the FSP User’s Manual section for the Crypto Middleware
(rm_psa_crypto).

1 This application note does not focus on using Key Wrapping for securely storing the private key for devices
deployed in a production environment.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 6 of 6
Mar.21.22

1.6 Device Certificates, CA, and Keys
Device Certificates, Certificate Authorities (CA), and Asymmetric Key Pairs create the foundation for trust
needed for a secure environment. The background information on these commonly used components in
AWS is as follows:

A digital certificate is a document in a known format that provides information about the identity of a device.
The X.509 standard includes the format definition for public-key certificate, attribute certificate, certificate
revocation list (CRL), and attribute certificate revocation list (ACRL). X.509-defined certificate formats (X.509
Certificates) are commonly used on the internet and in AWS IoT for authenticating a remote entity/endpoint,
that is, a Client and/or Server. In this application note, an X.509 certificate and asymmetric cryptography key
pair (public and private keys) are generated from AWS IoT and installed (during binary compilation) into the
RA MCU device running the Core MQTT to establish a known identity. In addition, a root Certification
Authority (CA) certificate is also downloaded and used by the device to authenticate the connection to the
AWS IoT gateway.

Certification authority (CA) certificates are certificates that are issued by a CA to itself or to a second CA for
the purpose of creating a defined relationship between the two CAs2. The root CA certificate allows devices
to verify that they're communicating with AWS IoT Core and not another server impersonating AWS IoT
Core.
The public and private keys downloaded from AWS IoT use RSA algorithms for encryption, decryption,
signing and verification3. These key pairs, and certificates are used together in the TLS process to:

1. Verify device identity.
2. Exchange symmetric keys, for algorithms such as AES, for encrypting and decrypting data transfers

between endpoints.

2. AWS Core MQTT with RA FSP
The AWS MQTT library included in RA FSP can connect to either AWS MQTT or to any third party MQTT
broker such as Mosquitto. The complete documentation for the library can be found on the AWS IoT Device
SDK C: MQTT website. Primary features supported by the library are:

• MQTT connections over TLS to an AWS IoT Endpoint or Mosquitto server or any MQTT broker.
• Non-secure MQTT connections to Mosquitto servers.4

The AWS Core MQTT can be directly imported into a Thread Stack and is configured through the RA
Configuration Perspective. To add the AWS Core MQTT to a new thread in e2 studio, open
Configuration.xml with the RA Configuration. While ensuring that the correct thread is selected on the
left, use the tab for Stacks > New Stack > Search and search for the keyword AWS Core MQTT.

2 The root CA certificate provided by AWS IoT is signed by Digital Guardian.
3 Public Key length used is 2048 bits.
4 Recommended for local server testing and not for production/deployment.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 7 of 7
Mar.21.22

Figure 2. AWS Core MQTT Module Selection
Adding the AWS Core MQTT Stack results in the default configuration with some unmet dependencies, as
shown below in Figure 3.

Figure 3. AWS Core MQTT Stack View
While the AWS Core MQTT stack shown contains a lot of dependencies and configurable properties, most
default settings can be used as-is. The following change is needed to meet all unmet dependencies (marked
in red) for the AWS Core MQTT stack added to a new project (as shown above):

Enable Mutex and Recursive Mutex usage support as needed by IoT SDK and FreeRTOS in the created
Thread properties.

Note: Properties > Common > General > Use Mutexes > Enabled
Properties > Common > General > Use Recursive Mutexes > Enabled

Upon completion of the above step, the AWS Core MQTT is ready to accept a Secure Socket
Implementation, which has dependencies on using a TLS Session and an underlying TCP/IP
implementation.

Additional documentation on the AWS Core MQTT is available in the FSP User’s Manual under RA Flexible
Software Package Documentation > API Reference > Modules > AWS Core MQTT.

3. Secure Sockets Implementation
The AWS Secure Sockets module provides an API that is based on the widely used BSD Sockets. While the
RA FSP contains a Secure Socket Implementation for both Wi-Fi and Ethernet, this application and
application note focuses on the use of an on-board Ethernet.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 8 of 8
Mar.21.22

Secure Sockets can be added to the Thread Stack by clicking on Add Secure Sockets Implementation >
New > Secure Sockets on WiFi or Secure Sockets on FreeRTOS Plus TCP (for Ethernet).

Figure 4. Adding Secure Socket to the Core MQTT Module
Upon addition, the needed stack is complete and has unmet dependencies for the dependent modules.

Now hover the cursor over the red blocks and the error will pop up. Make the appropriate settings.

• For the Buffer Allocation error: Choose the heap implementation using New Stack > RTOS >
FreeRTOS Heap 4. Also, set Dynamic Memory allocation using Application Thread > Properties >
Memory Allocation > Support Dynamic Allocation > Enabled.

• For the MbedTLS(Crypto Only) error, the MBEDTLS_ECDH_C in MbedTLS must be defined when using
MbedTLS. Set by selecting the MbedTLS(Crypto Only) module and navigating tp properties > Public
Key Cryptography(PKC|ECC| MBEDTLS_ECDH_C > Define.

• For the RTOS Heap memory error, set Heap Memory allocation using Application Thread > Properties
> Memory Allocation > Total Heap Size > 0x40000

• The flash file system for the persistent storage is needed. This can be added by clicking on Add AWS
PKCS11 PAL > New > AWS PKCS11 PAL on LittleFS.

• Add heap by navigating to the BSP tab. Then go to Properties > | RA Common | Heap Size of 0x1000.
This is required to do malloc with LittleFS and other standard library functions.

After all the appropriate settings to take care of the errors due to the missing configuration, the new
configurator snapshot looks clean with no errors as shown below in Figure 5.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 9 of 9
Mar.21.22

Figure 5. Expanded Secure Socket Module

Additional documentation on AWS Secure Sockets is available in the FSP User’s Manual under RA Flexible
Software Package Documentation > API Reference > Modules > AWS Secure Sockets.

4. Mbed TLS
Arm® Mbed™ TLS is Arm’s implementation of the TLS protocols as well as the cryptographic primitives
required by those implementations. Mbed TLS is also solely used for its cryptographic features even if the
TLS/SSL portions are not used.

Secure Socket TLS Support uses FreeRTOS+TLS which eventually uses Mbed TLS. Use of Mbed TLS
requires configuration and operation of the Mbed Crypto module which in turn operates the SCE on the
MCU.

The following underlying mandatory changes are needed by a project using the Secure Sockets on
FreeRTOS+TLS module:

1. Use FreeRTOS heap implementation scheme 4 (first fit algorithm with coalescence algorithm) or scheme
5 (first fit algorithm with coalescence algorithm with heap spanning over multiple non-adjacent/non-
contiguous memory regions.

2. Enable support for dynamic memory allocation in FreeRTOS.
3. Enable Mbed TLS platform memory allocation layer.
4. Enable the Mbed TLS generic threading Layer that handles default locks and mutexes for the user and

abstracts the threading layer to use an alternate thread-library.
5. Enable Elliptic Curve Diffie Helleman library.
6. Change FreeRTOS Total Heap Size to a value greater than 0x1500.

Additional documentation on the Mbed TLS is available in the FSP User’s Manual under RA Flexible
Software Package Documentation > API Reference > Modules > Crypto Middleware (rm_psa_crypto).

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 10 of 10
Mar.21.22

5. MQTT Module APIs Usage
The AWS Core MQTT is documented online. Table 2 lists APIs provided by AWS Core MQTT that are used
as a part of the Application Example.

Table 2. MQTT Module APIs

API Description
MQTT_Init Initializes an MQTT context
MQTT_Connect Establishes an MQTT session
MQTT_Subscribe Sends MQTT SUBSCRIBE for the given list of topic filters to

the broker
MQTT_Publish Publishes a message to the given topic name
MQTT_Ping Sends an MQTT PINGREQ to broker
MQTT_Unsubscribe Sends MQTT UNSUBSCRIBE for the given list of topic

filters to the broker
MQTT_Disconnect Disconnect an MQTT session
MQTT_ProcessLoop Loop to receive packets from the transport interface.

Handles keep-alive
MQTT_ReceiveLoop Loop to receive packets from the transport interface. Does

not handle keep-alive
MQTT_GetSubAckStatusCodes Parses the payload of an MQTT SUBACK packet that

contains status codes corresponding to topic filter
subscription requests from the original subscribe packet

MQTT_Status_strerror Error code to string conversion for MQTT statuses.
MQTT_PublishToResend Get the packet ID of next pending publish to be resent

6. Cloud Connectivity Application Example
6.1 Overview
This application project demonstrates the use of APIs available through the Renesas FSP-integrated
modules for Amazon IoT SDK C, Mbed TLS module, Amazon FreeRTOS, and HAL Drivers operating on
Renesas RA MCUs. Network connectivity is established using Ethernet. The application running on a
Renesas Evaluation Kit also serves as a reference system for the operation of Core MQTT, Mbed
TLS/Crypto, and Ethernet configuration, using the FSP configurator. The application may be used as a
starting point for inspiring other customized cloud-based solutions using Renesas RA MCUs. In addition, it
marginally demonstrates the operation and setup of cloud services available through the cloud service
provider.

The upcoming sub-sections show step-by-step creation of a device and security credentials policies as
required by the AWS IOT on the cloud side to communicate with the end devices. The example,
accompanying this documentation, demonstrates Subscribe and Publish messaging between and Core
MQTT and MQTT Broker, periodic publication of temperature data, asynchronous publication of a “User
Push Button” event from the MCU to the Cloud. The device is also subscribed to receive actuation events
(LED ON/OFF) from the Cloud, thereby showing two-way control.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 11 of 11
Mar.21.22

Figure 6. Application Projects High-Level Overview for Ethernet

Figure 7. MQTT Publish/Subscribe to/from AWS IoT Core

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 12 of 12
Mar.21.22

6.2 MQTT/TLS Application SW Architecture Overview
The following files from this application project serve as a reference

Table 3. Files Used in Application Project

No. Filename Purpose
1 src/application_thread_entry.c Contains data structures, functions, and main

thread used in a Cloud Connectivity application.
2 src/common_utils.h Contains macros, data structures, and functions

commonly used across the project.
3 src/hal_entry.c Unused file automatically generated by FSP.

This file is used for non-RTOS based projects.
4 src/mqtt_demo_helpers.c Contains data structures and functions used in

thenmqtt interface for Cloud Connectivity.
5 src/ mqtt_demo_helpers.h Accompanying header for exposing functionality

provided by mqtt_demo_helpers.c.
6 src/SEGGER_RTT/SEGGER_RTT.c Implementation of SEGGER real-time transfer

(RTT) which allows real-time communication on
targets which support debugger memory
accesses while the CPU is running.

7 src/SEGGER_RTT/SEGGER_RTT.h
8 src/SEGGER_RTT/SEGGER_RTT_Conf.h
9 src/SEGGER_RTT/SEGGER_RTT_printf.c
10 src/usr_config.h To customize the user configuration to run the

application.
11 src/usr_hal.c Contains data structures and functions used for

the Hardware Abstraction Layer (HAL)
initialization and associated utilities.

12 src/usr_hal.h Accompanying header for exposing functionality
provided by usr_hal.c.

13 src/usr_data.h Accompanying header file for the application
thread.

14 src/usr_network.c Contains data structures and functions used to
operate the FreeRTOS TCP/IP and Ethernet
Module. This file is for Ethernet-specific use.

15 src/usr_network.h Accompanying header for exposing functionality
provided by usr_network.c. This file is for
Ethernet-specific use.

16 src/
backoffAlgorithm/backoff_algorithm.c

Retry algorithms with random back off for the
next retry attempt

17 src/
backoffAlgorithm/backoff_algorithm.h

Retry algorithms with random back off for the
next retry attempt header file

18 src/subcription_manager/
mqtt_subscription_manager.c

MQTT Subscription manager, which handles the
callback

19 src/subcription_manager/
mqtt_subscription_manager.h

Associated header file for MQTT Subscription
manager, which handles the callback.

Note: application_thread_entry.c is the file auto generated as part of the project creation. Users are

required to add code this file.

Note: To run the application with the supplied code, application_thread_entry.c is available part of
this App note bundle can be merged or overwritten with the autogenerated file.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 13 of 13
Mar.21.22

Figure 8. Application Example Implementation Details

6.3 Creating the Application Project using the FSP Configurator
This section shows complete steps to create the project from the start using the e2 studio and FSP
configurator. The table below shows the step-by-step process in creating the Project. It is assumed that the
user is familiar with the e2 studio and FSP configurator. Launch the installed e2 studio for the FSP.

Table 4. Step-by-step Details for Creating the Application Project for Ethernet and Wi-Fi (EK-RA6M3)

 Step Intermediate Steps
1 Project Creation: File → New → C/C++ Project
2 Project Template: Templates for New RA C/C++ Project →

Renesas RA C/C++ Project → Next
3 e2 studio - Project Configuration (RA

C Executable Project) →
Project Name (Name for the Project)
Note: Input your desired name for the project -> Next

4 Device Selection → FSP Version: 3.6.0
Board: EK-RA6M3

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 14 of 14
Mar.21.22

 Step Intermediate Steps
Device: R7FA6M3AH3CFC
Language: C

5 Select Tools Toolchain: GNU ARM Embedded (Default)
Toolchain version: (10.3.1.20210824)
Debugger: J-Link ARM
Next→FreeRTOS (v10.4.3-LTS.Patch.2+fsp.3.6.0)

6 Build Artifact and RTOS Selection Artifact Selection: Executable
RTOS Selection: FreeRTOS(v3.6.0) → Next

 Project Template Project Template Selection: FreeRTOS – Minimal – Static
Allocation → Finish

7 Stacks Tab (Part of the FSP
Configurator)→

Threads → New Thread

8 Config Thread Properties→
Symbol: application_thread
Name: Application Thread
Stack size: 32768 Bytes
Priority: 1
Thread Context: NULL
Memory Allocation: Static

9 Generic RTOS configs under thread (Additional configuration on top of the Default Config
provided by FSP)
Common → General Use Mutexs: Enabled

Use Recursive Mutexes: Enabled
Max Task Name Len: 32

Common → Memory Allocation Support Dynamic Allocation: Enabled
Total Heap Size: 0x40000
Note: For Ethernet application Total Heap Size: 0x40000 is
required

10 Add the Heap Implementation in HAL/Common
New Stack → RTOS → FreeRTOS Heap 4

11 Adding the AWS MQTT Wrapper Module to the Application Thread
Note: Now the Newly created thread (Application thread) is ready to add new Stack (Here the AWS
MQTT Wrapper is added)
New Stack → Networking → AWS MQTT Wrapper

13 Adding the AWS MQTT Wrapper module brings in the AWS Core MQTT module to the

configurator. Now the dependency modules are required to be added.
13a Under the “Add transport Interface”,

add
New → AWS Transport Interface on Secure Sockets

13b Under the “Add secure socket
Implementation”, add

New → AWS Secure Socket on FreeRTOS Plus TCP

14 Adding persistent storage support for AWS PKCS11 and resolve the error in the configurator
by selecting the Heap size in the BSP Tab. Right-click on pink highlighted stack to
Add AWS PKCS11 PAL module → New → AWS PKCS11 PAL on LittleFS
BSP Tab → RA Common→ Heap size : 0x1000

15 Some dependency related to TLS Support are needed to be resolved to remove the error in the
FSP configurator by modifying the “MbedTLS(Crypto Only)” Property Settings.
Common → Platform → MBEDTLS_PLATFORM_MEMORY: Define
Common → General → MBEDTLS_THREADING_C: Define
Common → General → MBEDTLS_THREADING_ALT: Define
Common → Public Key
Cryptography (PKC) →

ECC → MBEDTLS_ECDH_C: Define

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 15 of 15
Mar.21.22

 Step Intermediate Steps
19 FreeRTOS + TCP Configuration

Note: This is only applicable for the Ethernet application project. Most of the default settings remain the
same, except few of the default configuration needs to be changed
Common → DHCP callback function → Enable

DHCP Send Discover After Auto IP: Enable
Let TCP use windowing mechanism → Enable

20 Ethernet Driver Configuration
General → Flow control functionality → Enable
Buffers → Number of Tx Buffers → 4

Number of Rx Buffers → 4
21 Ether PHY Driver

Module g_ether_phy0 → PHY LSI Address → 1

22 Adding the HAL Modules as required for the Application Project: Here, ADC, Timer0, Timer1,
External IRQ and ELC Modules are used for MCU Temperature, 30 Seconds periodic timer, 1
second Periodic Heartbeat Monitor Timer, Push button switches, and Event linking of ADC Data
read respectively.
HAL/Common Stacks → New Stack → Input → External IRQ Driver on r_icu
Property Settings for r_icu Name: pushButtonS1

Channel: 13
Trigger: Rising
Digital Filtering: enabled
Digital Filtering Sample Clock (PCLK/64)
Pin Interrupt Priority: Priority 10
Callback: pb_callback

HAL/Common Stacks → New Stack → Input → External IRQ Driver on r_icu
Property Settings for r_icu Name: pushButtonS2

Channel: 12
Trigger: Rising
Digital Filtering: enabled
Digital Filtering Sample Clock (PCLK/64)
Pin Interrupt Priority: Priority 10
Callback: pb_callback

HAL/Common Stacks → New Stack → Timers → Timer Driver on r_gpt
Property Settings for r_gpt →
General

Name: gpt
Channel: 0
Mode: Periodic
Period: 30
Period Unit: Seconds

Interrupts: Callback: NULL
Overflow/Crest Interrupt Priority: Priority 10

HAL/Common Stacks → New Stack → Timers → Timer Driver on r_gpt
Property Settings for r_gpt →
General

Name: g_hb_timer
Channel: 1
Mode: Periodic
Period: 1000
Period Unit: MilliSeconds

Interrupts: Callback: g_hb_timer_cb
Overflow/Crest Interrupt Priority: Priority 10

HAL/Common Stacks → New Stack → System → ELC Driver on r_elc

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 16 of 16
Mar.21.22

 Step Intermediate Steps
Property Settings for r_elc →
Module g_elc Driver on r_elc

Name: g_elc

HAL/Common Stacks → New Stack → Analog → ADC Driver on r_adc
Property Settings for r_adc →
General

Name: adc
Unit: 0
Resolution: 12-bit
Alignment: Right
Clear after read: On
Mode: Single Scan
Double-trigger: Disabled

Property Settings for r_adc → Input
→

Channel Scan Mask : Temperature Sensor

Property Settings for r_adc →
Interrupt →

Normal/Group A Trigger: GPT0 COUNTER
OVERFLOW(overflow)
Callback: adc_mcu_temp_callback
Scan End Interrupt Priority: Priority 10

23 Modifying the Pin configuration as required for the Application Projects (UART related Pins,
Flow Control Pins, Disable Multi functionality pins as needed to use alternative pin functions).
Note: The GLCDC Pins are shared with SCI9 (PMOD 1), In this Application Project GLCDC is not
used, so disable it if it is enabled by default.
Pins Tab in the FSP configurator → Peripherals→ Graphics: GLCDC → GLCDC0

Operation Mode: Disabled
24 Modifying the BSP Settings - RA Common for (Main stack and Heap Settings)

Property Settings for RA Common Main stack size(bytes): 0x1000
Heap size (bytes): 0x1000

25 Adding FreeRTOS Objects for the Application (Topic Queue needs to be created for the
application – Message Queue)
Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_topic_queue

Item Size (Bytes): 64
Queue Length (Items): 16
Memory Allocation: Static

The above configuration is a prerequisite to generate the required stack and features for the cloud
connectivity application provided with this application note. Once the Generate Project Content button is
clicked, it generates the source code for the project. The generated source code contains the required
drivers, stacks, and middleware. The user application files must be added into the src folder.

Note: FSP-generated code needs to be called/used from the application, while some of the middleware
needs to be called exclusively as part of the application for proper initialization. For instance, the
Mbedtls_platform_setup () call initializes the SCE and TRNG. SYSTEM_Init() initializes and
prepares the Crypto and Socket libraries.

For the validation of the created project, the same source files listed in the section MQTT/TLS Application
SW Architecture Overview (Table 3) may be added. Users are required to add the directory path and
subdirectory for proper compilation. Refer the enclosed project for more details.

The details of the configurator from the default settings to changed settings are described in the following
sections, including the reason for change.

6.4 MQTT/TLS Configuration
This section describes the MQTT and TLS module configuration settings that are done as part of this
application example.

The following table lists changes made to a default configuration populated by the RA Configurator.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 17 of 17
Mar.21.22

Table 5. Default Configuration for EK-RA6M3

Property Original
Value

Changed Value Reason for Change

Application Thread
Common → General → Use Mutexes Disabled Enabled This requirement is set by

the AWS IOT SDK C
stack

Common → Memory Allocation →
Support Dynamic Allocation

Disabled Enabled This requirement is set by
the AWS IOT SDK C
stack

Common → Memory Allocation →
Total Heap Size

0 0x40000 Heap required for the
FreeRTOS, AWS IOT
SDK, Mbed TLS

AWS IoT Common
Platform Name Unknown AWS Cloud

Connectivity
This value is user
selectable and can be set
to any value.

Mbed TLS (Crypto Only)
Platform →
Mbedtls_platform_memory

Undefine Define This selection is required
in order to support the
Mbed_tls.

General → Mbedtls_threading_alt Undefine Define This selection is required
in order to support the
Mbed_tls to plug in any
thread library.

General → Mbedtls_threading_c Undefine Define This selection is required
in order to support the
Mbed_tls to abstracts the
threading layer to allow
easy plugging in any
thread-library.

Public Key Cryptography → ECC →
Mbedtls_ecdh_c

Undefine Define This selection is required
in order to support the
Mbed_tls to enable the
ECDH module.

LittleFS (Heap Selection)
BSP → RA Common Heap Size 0x0 0x1000 Heap selection for Heap 3

and below needs to be
done here.

FreeRTOS + TCP Configuration
Common → DHCP Callback function Disable Enable Callback for DHCP

handling
Let TCP use windowing mechanism
→

Disabled Enable Turns on the TCP Flow
control

Ethernet Driver Configuration
BSP → RA Common Heap Size 0x0 0x1000 Heap selection for Heap 3

and below needs to be
done here.

General → Flow control functionality
→

Disable Enable Flow control selection for
Ethernet

Buffers → Number of Tx Buffers → 1 4 Tx Buffer for Data
Transmit

Buffers → Number of Rx Buffers → 1 4 Rx Buffer for Data
Reception

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 18 of 18
Mar.21.22

Property Original
Value

Changed Value Reason for Change

Ethernet PHY Driver
Module g_ether_phy0 → 0 1 Select the LSI PHY

Address

6.4.1 IoT Cloud Configuration (AWS)
6.4.1.1 AWS IoT Policies
AWS IoT Core policies are JSON (JavaScript Object Notation) documents that authorize a device to perform
AWS IoT Core operations. AWS IoT defines a set of policy actions describing the operations and resources
for which access can be granted or denied. For example:

• IoT: Connect represents permission to connect to the AWS IoT message broker.
• IoT: Subscribe represents permission to subscribe to an MQTT topic or topic filter.
• IoT: GetThingShadow represents permission to get a ‘thing’ shadow.

JSON
JSON is an open standard, lightweight data-interchange format. As a text document, it is easy for users to
read and write, and for machines to parse and generate.

JSON is completely language independent, using conventions that are familiar to C-family programmers,
including C, C++, C#, Java, JavaScript, Perl, Python, and many others. The following example shows a
JSON script used to turn on an LED.

{
 “LED_value”: “On”
}

AWS IoT Thing Shadow
A thing shadow (also referred to as a Device Shadow) is a JSON document used to store and retrieve
current state information for a Thing (device, application, and so on).

The Thing Shadow service maintains a thing shadow for each thing connected to AWS IoT Core. Thing
shadows may be used to get and set the state of a thing over MQTT or HTTP, regardless of whether the
thing is connected to the Internet. Each thing shadow is uniquely identified by its name.

Amazon Web Services Signup
Amazon Web Services offers a free account (12 months) for each user. A user account must be created on
the AWS IoT Cloud service before continuing to the next section.

To create an AWS account, open to the following link in a web browser:
https://portal.aws.amazon.com/billing/signup#/start

Fill in the required details and create a user account.

Note: While creating the project, certificates and policies, the screenshots may look slightly different from
what is shown in the document and users need to use navigation in the AWS IoT core environment to
find corresponding attributes while working on this project.

6.4.2 Creating a Device on AWS IoT Core
The following steps detail how to create a device on the IoT Core user account. It is assumed that the user
account is created in the AWS IoT Core and the user has followed the AWS signup procedure.

6.4.2.1 Open AWS IoT Core Service
1. Connect to the AWS IoT service by typing IoT Core in the AWS services search bar.
2. Click IoT Core.

https://portal.aws.amazon.com/billing/signup#/start

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 19 of 19
Mar.21.22

Figure 9. RA Cloud Connectivity AWS IOT Core Selection

6.4.2.2 Create a Thing Type
1. Start creating a device “Thing Type” by selecting Manage on the AWS IOT console as shown in the

snapshot.

Note: Be sure to select the appropriate region in the AWS console on the top right corner. A Thing
created in one region will not be seen in another region.

2. Now select Types.
3. Next, select Create a thing type to create a thing type.

Figure 10. Creating Thing Types

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 20 of 20
Mar.21.22

Figure 11. Create a Thing Type

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 21 of 21
Mar.21.22

4. Add Thing_RA6_Type as the Thing type name and AWS Cloud Connectivity as the optional
description.

5. Click on Add Attribute, which will open window for adding Temperature as the Attribute Key. Then click
on Create thing type.

Figure 12. Create a Thing type
6. The newly created thing type will look as shown in Figure 12. This Thing type name is being used while

creating the thing in the next section 6.4.2.3.

Figure 13. Newly Created Thing Type

6.4.2.3 Create a Thing
1. Start creating a Thing by selecting Manage as shown in Figure 14.
2. Now select Things.
3. Next, select Create a thing to create a thing.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 22 of 22
Mar.21.22

Figure 14. Create a Thing
4. Next, select the Create a single thing button. Then click Next.

Figure 15. Create a Single Thing
5. Enter the Thing Name. In the example, a Thing by name Thing_RA6 is being created.

Note: Remember to store the Thing Name. This information is required for future reference during
configuration.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 23 of 23
Mar.21.22

6. Choose a Thing type by clicking the Thing type dropdown and select Thing_RA6_Type and choose the
attribute value (In this case, Temperature 35) and Unnamed Shadow for Device Shadow.

Figure 16. Create a Thing

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 24 of 24
Mar.21.22

7. Click Next, which will take you to device certificate configuration. Choose Skip creating a certificate
at this time and click Create thing.

Figure 17. Create a Thing Without Certificate

Figure 18. Newly Created Thing Without Certificate

6.4.2.4 Create a Policy
1. Start creating the policy required for the Thing you just created by selecting Secure and Policies from

the AWS IOT console as shown in Figure 19.
2. Now click on Create a Policy.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 25 of 25
Mar.21.22

Figure 19. Create a New Policy
3. Next, input Thing_RA6_Policy as Name
4. Set Action for the policy to iot:*
5. Set Resource ARN to *
6. Set Effect to Allow as shown in Figure 20 and click on Create.

Figure 20. Create a New Policy

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 26 of 26
Mar.21.22

Figure 21. Created Thing New Policy

6.4.3 Generating Device Certificate and Keys
At this point, it is assumed that the AWS IoT Thing and Thing Policy has been created using the above
instructions. Now we need to create device key and certificates for the AWS IoT Thing (Thing) created.

1. From the AWS IOT console, select Secure and then Certificates,
2. On the new window click on Create a Certificate as shown in the Figure 22.

Figure 22. Creating New Certificate

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 27 of 27
Mar.21.22

3. On the new Create a Certificate window, click on One-click certificate creation (recommended) as
shown in the Figure 23.

Figure 23. Create a new Certificate
4. Newly created certificates and keys need to be downloaded. These will be used in the application

project. Details of using them in the application are described in the upcoming sections. Download and
save it on your computer.

5. Activate the certificate by clicking the Activate button.
6. Finally, click Attach a policy to attach the newly created policy to this certificate.

Figure 24. Device Certificate and Keys

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 28 of 28
Mar.21.22

7. In the new window, select the newly created policy Thing_RA6_Policy and click Done as shown in
Figure 25.

Figure 25. Attach Policy to the Certificate

6.4.4 Activate the Certificate
1. In the opened window, you will notice the successfully attached policy.
2. The newly created certificate needs to be activated in order to use it. To activate the certificate, just click

on Activate as shown in Figure 26.

Figure 26. Activate the Certificate Created

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 29 of 29
Mar.21.22

6.4.5 Attach Thing to certificate
1. On the same dropdown menu, you can click Attach thing. This will attach the newly created thing ”Thing

RA6” to the certificate.

Figure 27. Attach Thing to Certificate
2. In the pop-up window, choose the newly created Thing Thing_RA6 and click Attach.

Figure 28. Attach Newly Created Thing to Certificate

6.5 Running the MQTT/TLS Application Example
Note: If the project has been created with the instructions given in the previous section (6.3) using the FSP

configurator, skip importing the project and directly go to Loading the Executable Binary into the
Target MCU (6.5.2). However, to quickly import and evaluate the application project archived with this
document, browse the sub-sections below on importing, building, and loading sections.

6.5.1 Importing, Building and Loading the Project
6.5.1.1 Importing
This project can be imported into e2 studio using the instructions provided in the RA FSP User’s Manual. See
Section Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio
ISDE.

6.5.1.2 Building the Latest Executable Binary
Upon successfully importing and/or modifying the project into e2 studio IDE, follow the instructions provided
in the RA FSP User’s Manual to build an executable binary/hex/mot/elf file. See Section Starting
Development > e2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Build the Blinky Project.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 30 of 30
Mar.21.22

Note: The attached Application Project Example may produce an error connecting to the AWS cloud if test
credentials are used during the run. Refer to the upcoming section 6.6, Connecting to AWS IoT, to
enter the credentials for the device created per section 6.4.2, Creating a Device on AWS IoT Core.

6.5.2 Loading the Executable Binary into the Target MCU
The executable file may be programmed into the target MCU through any one of three means.

6.5.2.1 Using a Debugging Interface with e2 studio
Instructions to program the executable binary are found in the latest RA FSP User Manual. See Section
Starting Development > e2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Debug the
Blinky Project.
This is the preferred method for programming as it allows additional debugging functionality available
through the on-chip debugger.

6.5.2.2 Using J-Link Tools
SEGGER J-Link Tools such as J-Flash, J-Flash Lite, and J-Link Commander can be used program the
executable binary into the target MCU. Refer to User Manuals UM08001 and UM08003 on www.segger.com.

6.5.2.3 Using Renesas Flash Programmer
The Renesas Flash Programmer provides usable and functional support for programming the on-chip flash
memory of Renesas microcontrollers in each phase of development and mass production. The software
supports all RA MCUs and the software user’s manual is available online.

6.5.3 Powering up the Board
To connect power to the board, connect the USB cable to the EK-RA6M3 board’s J10 connector
(DEBUG_USB) and the other end to the PC USB port. Then run the debug application, using the following
instructions.

Reset the board assembly associated with this application note to the default electrical jumper settings as
specified in the board’s hardware user’s manual, before proceeding with the next set of instructions.

6.5.3.1 Deviation from Default Jumper Settings
The following are deviations from default board settings that should be performed prior to applying power to
evaluate the application.

Table 6. Jumper Settings

Board Name Jumper settings
EK-RA6M3 No change necessary

For this Ethernet-based cloud connectivity application project and application note, the user is required to
connect the Ethernet cable to the RJ45 Ethernet connector on the board.

6.5.3.2 Power-on Behavior
Upon successful configuration and downloading of the image to the target RA MCU, the following behavior
should be observed upon application of power:

1. The power LED on the RA MCU target assembly lights up.
2. The J-Link LED will be blinking based on the activity when it is connected.
3. The User LEDs (BLUE, GREEN, RED) are used to indicate the status of the application from the start of

initialization to continuous status of running.

6.6 Connecting to AWS IoT
This section describes the steps to be followed to connect the device to the AWS IoT.

Note: Firewalls in the network may prevent connectivity to AWS IoT. Configure the network to allow access
to the MQTT Port 8883.

6.6.1 AWS IoT Credentials
Default credentials for connectivity to AWS IoT are provided in the file usr_config.h These should be
updated to use the credentials generated per the guidelines provided in section Creating a Device on AWS

http://www.segger.com/

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 31 of 31
Mar.21.22

IoT Core. MQTT ENDPOINT is obtained from the AWS IoT Core. The screenshots for the reference to
capture the Endpoint information are as shown in Figure 29 and Figure 30.

#define USR_MQTT_ENDPOINT "aoh5lvd4o23ku-ats.iot.us-east-1.amazonaws.com"

Figure 29. Getting User MQTT Endpoint

Figure 30. User MQTT Endpoint
The downloaded asymmetric key pairs and certificates generated from AWS need to be included into the
source code (usr_config.h) for the application example by converting each line into the format required
by the AWS SDK as shown below. Refer src/usr_config.h from the attached project for more details.

Note: You can even use the Offline tool provided by AWS FreeRTOS for converting the Certificates and
Keys PEM file to C string. The tool certificate_configuration.zip is attached as part of the
bundle. Unzip the tool and, from the Certificate configuration tool page, provide the client certificate
and private key PEM files downloaded from the AWS IoT Console. This will generate and saves the
certificate and Private key in the c string format as required by the AWS SDK.

Downloaded Certificate/Key format from AWS Desired Format for the AWS SDK
-----BEGIN PUBLIC KEY----- “-----BEGIN PUBLIC KEY-----\n”\

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 32 of 32
Mar.21.22

#define CLIENT_CERTIFICATE “Populate the Client Certificate”
#define CLIENT_KEY “Populate the Client Key”

Note: From the downloaded files, client cert is the "xxxxx-certificate.pem.crt" file and the client key is the
"xxxx-private.pem.key" file

Note: For TLS communication, some of the cloud service providers offer Mutual Authentication and some
cloud service providers offer server-only authentication. The current application project uses Mutual
Authentication to connect to the AWS cloud where both server and clients verify each other. But there
are a few cloud service providers such as Adafruit and Huawei where Mutual Authentication is not
used. Instead server-only authentication is used where after the handshake, the server sends the
client its public key and a digitally signed certificate signed by a CA. If the client has this CA's public
key, it can decrypt the certificate and establish trust with the server. When developing applications,
users are required to know what kind of authentication is being used by the TLS.

6.7 Verifying the Application Project
This section describes the steps to verify this application example’s functions.

When the target RA MCU is successfully programmed with the application example binary and the board is
powered up, a SEGGER J-Link RTT Console such as J-Link RTT Viewer V6.98e or later should display
output similar to the output shown in Figure 31.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 33 of 33
Mar.21.22

Figure 31. Welcome Screen on the Console
On the cloud side, go to IoT Core and select Test, then choose MQTT test client. Subscribe to a topic (In
this application aws/topic/temperature and aws/topic/switch_status are the topics for subscription). You
may observe events on the dashboard for the subscribed topics as shown below.

Note: Temperature messages are synchronous (every 30 seconds). Switch statuses are asynchronous.
User can press S1 or S2 button to verify the switch status on the Dashboard.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 34 of 34
Mar.21.22

Figure 32. Subscribe to a Temperature Topic Messages on the AWS IoT Screen

Figure 33. Subscribe to a Switch status Topic Messages on the AWS IoT Screen

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 35 of 35
Mar.21.22

Figure 34. Subscribed Messages on the AWS IoT Screen - Temperature

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 36 of 36
Mar.21.22

Figure 35. Subscribed Messages on the AWS IoT Screen - Switch Status
To publish the message from the cloud to the device to turn the LEDs ON/OFF, select Publish to a topic
and type the specific topic (aws/topic/led) and message in the respective window and click Publish to a
topic as shown below. Follow the steps 1-4 as shown in Figure 36.

The actuation of the requested LED can be seen on the demo board.

Note: The messages under the Message column are case sensitive. Users need to take care of this while
using them to turn the LEDs ON/OFF.

Only enter one message at a time. Copy the message ‘as-is’ and do not include any extra spaces. The
parser on the device is sensitive to message JSON format. Do not include any extra spaces in the JSON
message. If the message alone is seen on the console without the LED actuation, please check for the
spaces introduced in the message.

Table 7. Messages for Toggling User LED

LED State Message
RED LED ON {"Red_LED":"ON"}
RED LED OFF {"Red_LED":"OFF"}

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 37 of 37
Mar.21.22

Figure 36. Publishing the Messages from the AWS IoT Screen
Note: The LEDS are also used for other user indications in this Application. So, you may see that the LED

status changes after you set the LED status from the MQTT GUI Publish to a topic due to the
following events.

• Blinking red LED indicates that MQTT message failure activity is seen. This could be Message Publish or
Subscribe failure.

• Solid red LED indicates the initialization failed. The console log will have the appropriate log for the error
(if this is not turned on by the user as part of the publish message).

• Green LED blinks periodically to indicate the heartbeat of the system and healthy network connectivity.
• Blue LED toggles based on the MQTT activity (default: temperature data every 30 seconds). Here the

blue LED activity indicates that successful MQTT messages are being exchanged.

7. MQTT/TLS Module Next Steps
• For setting up a client using a device certificate signed by a preferred CA certificate, refer to the link:

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
• For using a self-signed certificate to configure AWS, refer to the link:

https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 38 of 38
Mar.21.22

8. Bibliography

[1] International Telecommunication Union, "ITU-T Y.4000/Y.2060 (06/2012)," 15 06 2012. [Online].
Available: http://handle.itu.int/11.1002/1000/11559.

[2] Amazon Web Services, "AWS IoT Core Features," [Online]. Available:
https://www.amazonaws.cn/en/iot-core/features/.

[3] Amazon Web Services, "AWS IoT Core," [Online]. Available: https://www.amazonaws.cn/en/iot-core/.

[4] W. T. L. L. O. S. R. N. S. R. X. G. K. N. K. S. F. M. K. D. L. I. R. Valerie Lampkin, Building Smarter
Planet Solutions with MQTT and IBM WebSphere MQ Telemetry, IBM Redbooks, 2012.

[5] I. E. T. Force, "The Transport Layer Security (TLS) Protocol Version 1.2," [Online]. Available:
https://tools.ietf.org/html/rfc5246.

[6] Amazon Web Services, "AWS IoT Security," [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security.html.

[7] Amazon Web Services, "Transport Security in AWS IoT," [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html.

[8] International Telecommunication Union, "X.509 (10/19) Summary," 10 2019. [Online]. Available:
https://www.itu.int/dms_pubrec/itu-t/rec/x/T-REC-X.509-201910-I!!SUM-HTM-E.htm.

[9] Eclipse Foundation, "Eclipse Mosquitto™ - An open source MQTT broker," [Online]. Available:
https://mosquitto.org/.

[10] Amazon Web Services, "AWS IoT Device SDK C: MQTT," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html.

[11] R. Barry, "Mastering the FreeRTOS™ Real Time Kernel," in A Hands-On Tutorial Guide, 2016.

[12] A. I. D. S. C. Documentation, "AWS IoT Device SDK C: MQTT Functions," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/mqtt_functions.html.

[13] Amazon, "Configuring the FreeRTOS Demos," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-configure.html.

[14] "Amazon FreeRTOS mbedTLS," [Online]. Available: https://github.com/aws/amazon-
freertos/blob/master/libraries/3rdparty/mbedtls/utils/mbedtls_utils.c.

[15] Renesas Electronics Corporation, "Renesas Flash Programmer (Programming GUI) - Documentation,"
[Online]. Available: https://www.renesas.com/us/en/products/software-tools/tools/programmer/renesas-
flash-programmer-programming-gui.html#documents.

[16] Silex Technology, Inc., "SX-ULPGN-EVK - Evaluation kit for Ultra-Low-Power Hostless Wi-Fi IoT
Module," [Online]. Available: https://www.silextechnology.com/connectivity-solutions/embedded-
wireless/sx-ulpgn-evk.

9. Known Issues
Details about the known FSP and tool related issues can be found at this link:
https://github.com/renesas/fsp/issues

https://github.com/renesas/fsp/issues

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 39 of 39
Mar.21.22

Website and Support
Visit the following vanity URLs to learn about key elements of the RA family, download components and
related documentation, and get support.

RA Product Information renesas.com/ra
RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support

http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution

R11AN0526EU0102 Rev.1.02 Page 40 of 40
Mar.21.22

Revision History

Rev. Date
Description
Page Summary

1.00 Aug.17.21 — First release document
1.01 Sep.17.21 — Updated new AWS snapshots
1.02 Mar.21.22 --- Updated the AWS Wrapper module Specific configs and

review comments

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction to Components for Cloud Connectivity
	1.1 General Overview
	1.2 Cloud Service Provider
	1.3 AWS IoT Core
	1.4 MQTT Protocol Overview
	1.5 TLS Protocol Overview
	1.6 Device Certificates, CA, and Keys

	2. AWS Core MQTT with RA FSP
	3. Secure Sockets Implementation
	4. Mbed TLS
	5. MQTT Module APIs Usage
	6. Cloud Connectivity Application Example
	6.1 Overview
	6.2 MQTT/TLS Application SW Architecture Overview
	6.3 Creating the Application Project using the FSP Configurator
	6.4 MQTT/TLS Configuration
	6.4.1 IoT Cloud Configuration (AWS)
	6.4.1.1 AWS IoT Policies

	6.4.2 Creating a Device on AWS IoT Core
	6.4.2.1 Open AWS IoT Core Service
	6.4.2.2 Create a Thing Type
	6.4.2.3 Create a Thing
	6.4.2.4 Create a Policy

	6.4.3 Generating Device Certificate and Keys
	6.4.4 Activate the Certificate
	6.4.5 Attach Thing to certificate

	6.5 Running the MQTT/TLS Application Example
	6.5.1 Importing, Building and Loading the Project
	6.5.1.1 Importing
	6.5.1.2 Building the Latest Executable Binary

	6.5.2 Loading the Executable Binary into the Target MCU
	6.5.2.1 Using a Debugging Interface with e2 studio
	6.5.2.2 Using J-Link Tools
	6.5.2.3 Using Renesas Flash Programmer

	6.5.3 Powering up the Board
	6.5.3.1 Deviation from Default Jumper Settings
	6.5.3.2 Power-on Behavior

	6.6 Connecting to AWS IoT
	6.6.1 AWS IoT Credentials

	6.7 Verifying the Application Project

	7. MQTT/TLS Module Next Steps
	8. Bibliography
	9. Known Issues
	Revision History

