

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

1.0 Abstract
The following article describes CPU Rewrite Mode on the M16C/62 (M30624FG), which allows erasing and

programming the on-chip flash memory under control of a user’s program. It is assumed that the microcontroller

is operating in “single chip” mode. A short program, targeted for the MSV1632 Starter Kit, illustrates how to apply

CPU Rewrite Mode.

2.0 Introduction
The Renesas M16C/62 is a 16-bit MCU, based on the M16C CPU core, with 256k bytes of user flash. The device

can erase and program the on-chip flash memory under control of a user’s program with no external

programming devices required. This feature is called “CPU Rewrite Mode”.

The premise for CPU Rewrite Mode is that applications may require nonvolatile storage of data. In general, this

could be data acquisition, configuration parameters, hours in service, and so on.

3.0 Background
The M16C/62 has two other flash programming modes: Parallel I/O Mode, and Standard Serial I/O Mode.

Because these modes are mainly for programming the application code into the flash, details are not discussed

in this article.

To use CPU Rewrite Mode, the memory structure and the control registers need to be identified. The memory

map of the M16C/62 is shown in . Note that the flash is divided into blocks such that certain

erase/programming functions are done on a block basis. The boot flash area is used for serial I/O mode and is

not available for CPU Rewrite mode programming.

Figure 1

The “Flash Memory Control Register” (FMR0) is shown in . Normally, only the first three LSBs are used

for CPU rewrite mode.

Figure 2

Beyond CPU registers, the flash memory has its own logic to handle erase and programming procedures. This is

the flash’s “Write State Machine” (WSM). The WSM commands are given in . Table 1

REU05B0016-0100Z June 2003 Page 1 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

00000H
003FFH
00400H

BFFFFH
C0000H

FFE00H
FFFFFH

External area

SFR area

Block 0: 16K bytes

Fixed vector

Internal RAM area

Block 6: 64K bytes

053FFH

Block 1: 8K bytes

Block 5: 64K bytes

Block 4: 64K bytes

Block 3: 32K bytes

Block 2: 8K bytes

E0000H

F0000H

F8000H

D0000H

FA000H

FC000H

8K byte boot flash area

FFFFFH

FE000H

The boot flash is not in the 1M linear address space
and can only be accessed by coming out of reset in Boot Mode.

Figure 1 M16C/62 Memory Map

b0b7
Symbol Address At
FMRO

X X 0
FMR00 RY/BY * flag 0: flash busy

1: flash ready

FMR01 CPU rewrite bit
0: Normal mode
1: CPU rewrite mode

FMR02
Lock bits disable bit 0: flash block lock bits in effect
(allow lock bit erase) 1: over-ride flash block lock bits

FMR03
0: normal operation

Abort Current command 1: reset flash

FMR05
ROM area select bit 0: boot ROM area is selected
(effective in boot mode only) 1: User ROM area is selected

03b7H XX000001

Figure 2 Flash Memory Control Register

REU05B0016-0100Z June 2003 Page 2 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

Table 1 List of Software Commands (CPU Rewrite Mode)

4.0 Flash Programming Basics
The flash must be programmed in 256-byte pages on page boundaries (A0 –A7 = 00 – FEh), 16 bits at a time.

Attempts to program 8-bit data are ignored, and even commands must be set as 16-bit words. The flash can be

“bulk” erased (‘erase all unlocked blocks’ command) or erased one block at a time (see memory map). Bit erase

state = 1. Once a block is erased, individual pages can be programmed at any time. The CPU rewrite program

can be stored in the flash, but because the WSM is common to all flash (all blocks), the CPU rewrite code cannot

execute out of flash. The rewrite code must be transferred to RAM before it can be executed.

A generalized CPU Rewrite mode flowchart is shown in . Note that before and after executing any

program or erase command, the “Read Array” command is issued. This has the effect of resetting the flash

control logic.

Figure 3

REU05B0016-0100Z June 2003 Page 3 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

application requires flash
operation (program, erase, etc)

For programming, application moves
data into a buffer (in RAM)

transfer programming code into RAM.

if required, move variable vector table
and interrupt service routines to RAM

set proccessor mode for flash
operations

set CPU rewrite mode bit.
Execute ’read array’ command

Execute required command:
’page program’, ’erase block’,

etc

Execute ’read array’ command.
Clear CPU rewrite bit.

Determine if flash operation successful
(may require more flash operations, ie ’read

SRD’)

Return proccessor mode to previous state.

Jump to code in
RAM

Return to flash

Return to main
application

Figure 3 CPU Rewrite Mode Flowchart

5.0 Example Program
The example program was written to run on the MSV1632 Starter Kit but could be modified to implement in a

user application. The program is written in C (Renesas’ NC30 Compiler), with assembler used for the code

executing out of RAM. This is a “no frills” program, but its main feature is that the code in RAM uses only about

160 bytes.

As illustrated in , the program erases a block, programs a page, locks a block, and then unlocks the

block. The block is unlocked because locked blocks are not compatible with the Starter Kit’s debugger, KD30.

Figure 4

Note in the assembler code that after the CPU Rewrite bit is cleared, the Reserve bit is set. This is required

because clearing the CPU Rewrite bit automatically clears the Reserve bit. The Reserve bit is used for

compatibility between other M16C derivatives. For consistent operation of the M16C/62 in single chip mode, this

bit is set before returning to the flash area. See the M16C/62 data sheets for more information.

5.1 Compatibility

This program is compatible with M16C/6x microcontrollers with page write (256 bytes) flash memory. It is NOT

compatible with word write MCUs such as the M16C/62P series. The driver is compatible with the above noted

MCUs on any Starter Kit/evaluation system running under the KD30 debugger. It CANNOT be evaluated or

demonstrated on any emulator using RAM to emulate flash (i.e., Renesas’ PC4701, Nohau, or Ashling emulator

systems).

REU05B0016-0100Z June 2003 Page 4 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

5.2 Demonstrating the Program

Under KD30, the RAM buffer (at 2000h) can be edited, the program run, and the flash viewed. Note that viewing

the C Watch -> Globals window will produce the status of the flash (SRD) and the lock bit status.

6.0 Alternate Implementation
To program the flash, 256 bytes must be sent to the flash at a time. However, not all 256 bytes need to be

programmed at the same time. If only part of a page is to be programmed, the remaining bytes are sent FFh

(erase state). At a later time, more bytes can be programmed using the following steps:

1. Copy the partly programmed flash page to a 256-byte RAM buffer.

2. Insert the bytes to be programmed into the RAM buffer.

3. Write the RAM buffer to flash.

It must be noted that each time a page is programmed, it should be considered as another erase/program cycle.

7.0 Reference

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

Data Sheets

M16C/62 datasheets, 62aeds.pdf

User’s Manual

• 6020esm.pdf (Software Manual)

• 6020ec.pdf (C Manual)

• 6020easm.pdf (Assembler Manual)

• NC30ue.pdf (Compiler Manual)

REU05B0016-0100Z June 2003 Page 5 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

8.0 Appendix

Set up LED display
ports

Copy programming
code to RAM

Block address = efffeh
page address = e0000h

Save current processor settings.
Set processor clock to f/2. Insert

one wait state

erase block to clear lock
bit (for KD30)

Erase block
e0000h

Program page
at e0000h

Set block address = cfffeh

lock block c0000h
 (also reads lock bit)

restore processor
settings

stop

Start

Figure 4 Example Program Flowchart: Main C Routine

REU05B0016-0100Z June 2003 Page 6 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

Set CPU rewrite bit

Get flash address

cmdnum =1?

cmdnum =2?

cmdnum =3?

Read flash arry

write lock bit command.
Wait for rdy =1

write confirm command.
Wait for rdy =1

Write ’read lock bit’
command. Wait for rdy =1

Read lock bit

Wait for rdy =1.
Read flash SRD.
Read flash arry

Return to calling program in
flash

From application
subroutine call in flash

E

P

A

Set reserve bit (see text).

Enable lock bits.
Clear CPU rewrite bit

Figure 5 Example Program Flowchart: Assembler Code in RAM. Page 1

REU05B0016-0100Z June 2003 Page 7 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

Write ’erase block’ command .

Write ’confirm command’.

E

Over-ride all lock bits

A

write ’page program command. Wait
for rdy =1

i = 0

M[flash + i] M[buffer + i]

i > FEH?

i = i + 2

no

yes

P

Over-ride all lock bits

Get buffer address.

A

Figure 6 Example Program Flowchart: Assembler Code in RAM. Page 2

9.0 Software Code

/**
*
*
* File Name: cpu_rw62.c
*
* Content: CPU REWRITE PROGRAMMER version 2.1
* Compiled with KNC30 ver. 3.20.00.
*
* Demonstrates CPU rewrite mode on the M16C/62
* microcontroller. This program was designed to
* operate on any M16C/62 starter kit, using the KD30 debugger.
* Note it is NOT compatible with emulators such as
* Renesas's PC4701 series that use RAM to emulate flash ROM.
*
* It is intended that the program executes out of the D0000h block
* as blocks C0000h and E0000h are erased and programmed.
*
* The program also demonstrates how to mix assembler
* and C code using Renesas's NC30 compiler.
*
*

REU05B0016-0100Z June 2003 Page 8 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

* Copyright,2003 RENESAS TECHNOLOGY CORPORATION
*
*
* note:
* Renesas Technology Corporation does not guarantee the performance or
* use of this source-code. The intended use of provided source-code is the
* sole responsible of the user. The files have been successfully compiled
* using Renesas's NC30 compiler. Before using this software review the
* source and make any necessary changes to support your hardware and
* application.
*
*===
* $Log:$
===/
#define aerase 1 //set cmndnum to one of these 'a' values
#define aprogram 2
#define areadloc 3
#define alocblock 4

#define wait1 0x8e00 // processor mode value for 1 wait state

#define interrupton _asm (" fset i") // "macro" assembler code
#define interruptoff _asm (" fclr i")

#define RAMBUFFLOC 0x2000 //location of ram buffer (for programming flash)

#pragma ADDRESS ramcode 1000h // address in RAM for CPU rewrite code
#pragma ADDRESS prcr 00ah // SFR's
#pragma ADDRESS cm0 006h
#pragma ADDRESS cm1 007h
#pragma ADDRESS pm01 004h

unsigned int ram_buff; // assembler "pointer" to RAM buffer
unsigned long int flsh_addr; // assembler "pointer" to flash page/block
extern far int copy_strt,copy_end;
far volatile int *ramxfer,*romxfer;
volatile int pm01;
int pm01sav;

char cm0sav,cm1sav;
char flsh_stat,cmndnum,lokbitstat;
volatile char cm0,cm1,prcr,port0,port1,dir_p0,dir_p1;

// function prototypes
void asm_block(void);
void ramcode(void); // From the 'pragma' above, C considers "ramcode"
 //just as any other label in memory.
void transfer(void);
void cpu_ini(void);
void eraseblock(unsigned long int);
void writepage(unsigned long int);
void lockblock(unsigned long int);
void cpu_rstor(void);
void lockbitstat(unsigned long int);

REU05B0016-0100Z June 2003 Page 9 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

 /***
Name: asm_block()

Parameters:
 inputs: globals only: cmndnum - 1 = erase block
 2 = program page
 3 = read lock bit status (default command)
 4 = lock block, includes read lock bit status

 flsh_addr - the block or page to be operated on
 ram_buff - points to the 256 bytes of data to be
 programmed
 (required only for program page command)

Returns: nothing
 modifies: global flsh_stat - the flash SRD status byte after performing command
 global lokbitstat - if bit6 (D6) = 1, block unlocked,
 if bit6 = 0, block locked.

Description: CPU rewrite assembler code. The following 'block' of assembler
 code is moved to RAM then executed out of RAM. The assembler
 code is relocatable and command functions are generic enough
 to be implemented in a user application. Although not required
 for the starter kit, the erase and program routines disable
 the lock block bits.
 Ram usage approx. 160 bytes.
** */

void asm_block(void) // clean place for the assembler code, but function
 // not required.
{

#pragma ASM // 'ASM' must be in upper case

;flash memory commands
rd_fstat .equ 0070h
wrt_cmd .equ 0041h
erase_cmd .equ 0020h
cfm_cmd .equ 00D0h
lok_cmd .equ 0077h
rlok_cmd .equ 0071h
rda_cmd .equ 00ffh

fmr0 .equ 03b7h ;M16C\62 flash control register
bsy_rdy .btequ 0,fmr0
cpu_rwrt .btequ 1,fmr0
lock_dis .btequ 2,fmr0

REU05B0016-0100Z June 2003 Page 10 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

flsh_rst .btequ 3,fmr0
resbit .equ 3 ; reserve area bit

_copy_strt:
; first do instructions common to all commands (save RAM space)
 bclr cpu_rwrt
 bset cpu_rwrt ;set CPU rewrite mode
 mov.w _flsh_addr+2,a1
 mov.w _flsh_addr,a0 ;get block address
; sequence to reset flash
 mov.b #rda_cmd,r0l ; Read array resets flash
 jsr Command_write

; decode command
 cmp.b #aerase,_cmndnum
 jeq eraseflsh ;erase block?
 cmp.b #aprogram,_cmndnum
 jeq progflsh ;write page?
 cmp.b #alocblock,_cmndnum
 jeq lockflshblk ;lock block?
 jmp readlokstat ;default:read lock bit

lockflshblk:
 mov.b #lok_cmd,r0l
 jsr Command_write ;send lock command
 mov.b #cfm_cmd,r0l
 jsr Command_write ;send confirm byte
 ;fall into read lock bit
readlokstat:
 mov.b #rlok_cmd,r0l
 jsr Command_write ;read lock bit
 lde.w [a1a0],r0
 mov.b r0l,_lokbitstat

 jmp flsh_bsy ;lock/read command sent,
 ;now wait for flash ready then exit

eraseflsh:
 bclr lock_dis
 bset lock_dis ;unlock all blocks

 mov.b #erase_cmd,r0l
 ste.w r0,[a1a0] ;send erase command
 mov.b #cfm_cmd,r0l
 ste.w r0,[a1a0] ;send confirm byte
;erase command sent, now wait for
;flash ready then exit (fall into flsh_bsy)

flsh_bsy:
 btst bsy_rdy
 jeq flsh_bsy

 mov.w #rd_fstat,r1
 ste.w r1,[a1a0]
 lde.w [a1a0],r1

REU05B0016-0100Z June 2003 Page 11 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

 mov.b r1l,_flsh_stat ; get status (SRD) of
 ; last operation (error checking)

 mov.b #rda_cmd,r0l ; Read array resets flash
 jsr Command_write
 bclr lock_dis
 bclr cpu_rwrt
 bset resbit,_pm01+1 ;above instruction clears
 ;this bit!!!

 rts ;return to ROM area

progflsh:
 bclr lock_dis
 bset lock_dis ;unlock all blocks
 mov.b #wrt_cmd,r0l ;Page program command
 jsr Command_write
 mov.w _ram_buff,r1 ;get ram buffer address
prog_loop:
 xchg.w r1,a0 ;save flash address
 mov.w [a0],r3 ;get data
 xchg.w r1,a0 ;get write to address
 ste.w r3,[a1a0] ;and write
 add.w #2,r1
 add.w #2,a0
 tst.b #0ffh,a0
 jnz prog_loop
 jmp flsh_bsy ;write page command
 :complete, now wait
 ;for flash ready then exit
Command_write:
 btst bsy_rdy ; wait for flash ready
 jz Command_write
 ste.w r0,[a1a0] ; write command to flash WSM
 rts

_copy_end:
#pragma ENDASM

}

/***
Name: Main()

Parameters: none
Returns: nothing

Description: Main program. For demonstration purposes, the main program erases
 the E0000H - EFFFFH block then writes the contents of ram_buff
 to the first (256 byte) page in that block. Ram_buff was given an absolute
 address (2000H) such that under KD30, the buffer could be edited,
 program run, then the flash viewed to see that it programmed. To
 use this program with KD30 on a Starter Kit, run the program in "free run"

REU05B0016-0100Z June 2003 Page 12 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

 mode and do a "go free". Hit the reset icon on KD30. At this
 point the flash can be viewed. Note that when you reload a program into
 flash, KD30 erases the entire user flash.

 Notes on lock bit. WARNING!! locking a block IS NOT compatible with KD30
 and the ROM monitor. If you lock any block and attempt to
 download your program to the flash, it will mess up the ROM monitor and you
 will need to reprogram the ROM monitor back into the M16C/62 (i.e.
 using flashwriter). The lock disable bit in the 'flash memory
 control register' only over-rides the lock bits, not clear them. The only
 way to clear a lock bit is to erase the associated block. This example
 operates on a 'dummy' block for demonstrating lock bit programming.

 It is up to the main program (and user) to ensure that valid
 addresses are passed to the commands (no error checking). The assembler
 code supports reading the flash status (SRD) but main() doesn't use it.

***/

void main(void)
{
 long maxb_addr,writ_addr;

 maxb_addr = 0xefffe; // for erasing
 writ_addr = 0xe0000; // page to program
 transfer(); // transfer assembler program to ram
 cpu_ini(); // set processor for programming
 eraseblock(maxb_addr);
 writepage(writ_addr); // assumes data in buffer, fill via KD30.

 // Now demonstrate locking a block, under KD30, view global 'lokbitstat'
 maxb_addr = 0xdfffe;
 lockblock(maxb_addr); // also reads lock bit into 'lokbitstat'
 eraseblock(maxb_addr); // clears lock bit..VERY Important for KD30! see
 //above text on lock bit.
 cpu_rstor(); // restore processor modes

 while(1)
 { //good ending
 }
 }

/***
Name: transfer()
Parameters: none
Returns: nothing
Description: Copies assembler code to program the flash into RAM

** */

void transfer(void)
{

REU05B0016-0100Z June 2003 Page 13 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

 romxfer = ©_strt; // point to assembler code in flash area
 ramxfer = (far int *)&ramcode; // point to RAM where code is to be executed
 // from (get compiler warning if don't
 // typecast)

 while (romxfer < ©_end)
 {
 *ramxfer = *romxfer;
 ramxfer++;
 romxfer++;
 }
}

/***
Name: void cpu_ini(void)
Parameters: none
Returns: nothing
Description: Sets the processor mode for programming flash. A wait state is
 added and the clock is set to the input frequency/2 (Xin/2).
 Original configuration saved in globals: cm0sav, cm1sav,pm01sav.

** */

 void cpu_ini(void)
 {
 cm0sav = cm0; // save current CPU modes and clock setting
 cm1sav = cm1;
 pm01sav = pm01;
 prcr = 3; // protect off
 pm01 = wait1; // insert wait state
 cm1 = 0x60; // divide CPU clock by 2
 cm0 = 0x08; // ensure high drive on clock
 prcr = 0; // protection back on
 }

/***
Name: void eraseblock(unsigned long int)
Parameters: maxb_addr
Returns: nothing, modifies global 'flsh_stat'
Description: Erases the flash block at maxb_addr. maxb_addr is the last
 (even) address in the block to be erased
** */

void eraseblock(unsigned long int maxb_addr)
 {
 flsh_addr = maxb_addr;
 cmndnum = aerase;
 interruptoff;
 ramcode();
 interrupton;
 }

REU05B0016-0100Z June 2003 Page 14 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

/*
/***
Name: void writepage(unsigned long int)
Parameters: writ_addr
Returns: nothing, modifies global 'flsh_stat'
Description: writes a 256 byte page in flash, starting at address writ_addr.
 Function has fixed the ram buffer at RAMBUFFLOC for demonstration
 purposes.
** */

 void writepage(unsigned long int writ_addr)
 {
 flsh_addr = writ_addr;
 ram_buff = RAMBUFFLOC;
 cmndnum = aprogram;
 interruptoff;
 ramcode();
 interrupton;
 }

/***
Name: lockblock(unsigned long int)
Parameters: maxb_addr
Returns: nothing, modifies globals 'lokbitstat','flsh_stat'
Description: Programs the lock bit for the block at maxb_addr. maxb_addr is
 the last (even) address in the block.
** */

 void lockblock(unsigned long int maxb_addr)
 {
 flsh_addr = maxb_addr;
 cmndnum = alocblock;
 interruptoff;
 ramcode();
 interrupton;
 }

/***
Name: cpu_rstor(void)
Parameters: none
Returns: nothing
Description: Restores the processor mode back to original speed.
** */

REU05B0016-0100Z June 2003 Page 15 of 16

M16C/62
Programming the M16C/62 Flash in CPU Rewrite Mode

 void cpu_rstor(void)
 {
 // restore CPU & clock settings
 prcr = 3; // protect off
 pm01 = pm01sav;
 cm1 = cm1sav;
 cm0 = cm0sav;
 prcr = 0; // protection back on
 }

/***
Name: lockbitstat(unsigned long int)
Parameters: maxb_addr
Returns: nothing, modifies globals 'lokbitstat','flsh_stat'
Description: Reads lock bit status determined by maxb_addr into global
 'lokbitstat'. maxb_addr is the last (even) address in the block.

** */

 void lockbitstat(unsigned long int maxb_addr)
 {
 flsh_addr = maxb_addr;
 cmndnum = areadloc;
 interruptoff;
 ramcode();
 interrupton;
 }

REU05B0016-0100Z June 2003 Page 16 of 16

Keep safety first in your circuit designs!

• Renesas Technology Corporation puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms,
or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake. Please
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor when considering the use of a product contained herein for any specific purposes, such as
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

	Abstract
	Introduction
	Background
	Flash Programming Basics
	Example Program
	Alternate Implementation
	Reference
	Appendix
	Software Code

