To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS

Application Note

Power-Down Mode Demonstration
For NEC Electronics Microcontrollers

Document no. U18288EU1VOANOO
©July 2006. NEC Electronics America, Inc.
All rights reserved.

Power-Down Mode Demonstration NEC

Power-Down Mode Demonstration NEC

The information in this document is current as of July 2006. The information is subject to change without notice. For
actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-
date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please
check with an NEC sales representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted
under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
in semiconductor product operation and application examples. The incorporation of these circuits, software and
information in the design of customer's equipment shall be done under the full responsibility of customer. NEC
Electronics no responsibility for any losses incurred by customers or third parties arising from the use of these circuits,
software and information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of
damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers
must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure
features.

NEC Electronics products are classified into the following three quality grades: “Standard”, “Special” and “Specific”.

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated
“quality assurance program” for a specific application. The recommended applications of NEC Electronics product
depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics
product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and
visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special”: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems,
anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support
systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is “Standard” unless otherwise expressly specified in NEC Electronics
data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC
Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics 's
willingness to support a given application.

Notes:
1. "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics
(as defined above).

MB8E 02.10

Power-Down Mode Demonstration NEC

Power-Down Mode Demonstration NEC

Revision History

Date Revision Section Description

July 2006 — — First release

Power-Down Mode Demonstration NEC

Contents
1. 8 oo (3o 1 o] o SRR 9
1.1 An Overview Of POWEr-DOWN FEALUIES..........ccuiiieiitirieisie e ste ettt sttt sttt sbe st sbeseeresne e 9
2. Clock Control and STANADYcc.oiiiiiiiie e et e e e be st sresteenaesreanes 10
2.1 Features of Clock Control and Standby FUNCLIONS..........ccccov i 10
2.1.1 ClOCK CONLIOI FRAIUMES ... cviiteieieite ettt sttt ettt sb et sbe st tesbe e tesbe e ereaneneas 10
2.1.2 StANADY FEALUMESc.viiiiieie sttt sttt s r e te e s e e et e be st e s beeaeete e e entesrentenrearens 13
2.2 Program Description and SPecCifiCatioNccoeiiiiiiiiiiii e 15
2.3 SOTEWAEE FIOW CRAETS......eieiiiieiite ettt b e bbbt e e b e b b et e bt e b e e e e benbesbe b e 18
2.3.1 Program Startup and INitialization...........ccoivieeiercie i 19
2.3.2 Clock_Init() — CPU Clock INitialiZation.........cccoueriereiinniesesiese e seese e se s eee e sresnen 20
2.3.3 INT_Init() — Key-Return Interrupt INitializationcccoeriiiiiiiiiineene e 21
2.3.4 WT_Init() — Watch-Timer Initialization for Square-Wave Generationcccccovcvrervnivrinnnnns 22
2.3.5 Main() — The Main Program — POWer-DOWN FUNCLIONS...........cciiiiiiieiniienee e 23
2.3.6 SetClk() — Select CPU CIOCK SOUICE.........ccuiiiiiiiie ettt 25
2.3.7 SetCIkHSR() — Set CPU Clock to Internal High-Speed OSCIllatorccocooiiieiiiiiiiiienns 27
2.3.8 SetCIkEx() — Set CPU Clock to X1/X2 Crystal OSCIllator...........ccccoeiiieiiiiiiiieicie e 29
2.3.9 SetCIkEx() — Alternate — Set CPU Clock t0 EXCLK INPULccccoveiiiiiiiiiiecreieiece e 32
2.3.10 SetClkSub() — Set CPU Clock t0 SUBCIOCKcocviiiiiiiiiesrcecece e 34
2.3.11 SetPCC() — Set PCC Register for Main Clock DiViSiON..........cccovevverinierienininseeeeseee e 35
2.3.12 DispOff() — Turn LCD and HCO Peripheral Off...........ccooviiiiiiiiceice e 38
2.3.13 TurnDIspOff() — Turn Display Off ..o 39
2.3.14 TurnDISpON() — TUIN DiSPIAY ONcoiuiiiiiiiiieiiie ettt 40
2.3.15 Standby() — Select Standby IMOGEooveiiiiiiie e 41
2.3.16 StandbyHalt1() — HALT With Periodic Wake-up INtEITupPtcccoovvviiriiiiiieesc e 43
2.3.17 StandbyHalt2() — HALT with NO Periodic INterrupt..........ccooveiiieiiiiieie s 44
2.3.18 StandbyStopl() — Stop with Periodic Wake-up INerrupt........ccocoeoeieieieninenicieeee e 46
2.3.19 StandbyStop2() — Stop with No Periodic Interrupt, Subclock Runningc.cccoceveiiiincicnnns 48
2.3.20 StandbyStop3() — Stop with No Periodic Interrupt, Subclock Stopped.........ccccccoevviiiiiiiniiennns 50
2.3.21 MD_INTKR() — Key-Return Interrupt-Service ROULINEcccvevieviiieiieiise e 51
2.3.22 MD_INTWT() — Watch-Timer Interrupt-Service ROULINEc.ccceveviieiiiieiiciesece e 53
2.4 APPHIEL'S REFEIENCE DIFIVENiiiiiiiiei ettt b e bbbt e et be e 54
2.4.1 Configuring Applilet for Clock Initializationcccoeverieiirsieieee e 54
2.4.2 Configuring Applilet for Key-Return INterruptcccoovv i i 56
2.4.3 Configuring Applilet for WatCh TImMer..........ccoiiiiiiiiieei e 57
2.4.4 Configuring Applilet for HCO COMMUNICALIONccviiriiiiieieesie et 58
245 Generating Code With APPHIEL..........coiiiiiiiic e 60
2.4.6 Applilet-Generated Files and Functions for Clock Initialization..............cc.ccooiiiiniiiiinennnns 61
2.4.7 Applilet-Generated Files and Functions for Key-Return Interrupt...........ccoovoeiieinnenenenieniennens 61
2.4.8 Applilet-Generated Files and Functions for Watch TIMercccccceviiieiienisieseciesese e 62
2.4.9 Applilet-Generated Files and Functions for [ICO Communication............c.ccceeevveieeveieseseseaneas 63
2.4.10 Other Applilet-Generated FilESccciiiiiiiiiicieeiee s ane 66
2.4.11 Demonstration-Program Files Not Generated by Applletc.ccovevevie i 67
2.5 Demonstration PIAtfOrM...... ... e bbbt b e 67
2.5. 1 RESOUICTES ..eeueitieiieste itttk te sttt ese ettt h bbb e e e s et e e bt b e Rt b e bt e b e e e bt nb e e bt bt e bt eb e e e e e e e nnenbeane s 67
2.5.2 Demonstration OF PrOGIaMccuiiiiiiiiieisie ettt ettt et sb e e sne e 68
2.6 Hardware BIOCK DIAQIamcccociiiiieiieie ettt st ta e e be s besbestesneetae e e beseesrenre e 70
2.6.1 Power MeasuremMent RESUILSc.oiviieiiiiieiieie ettt st s sne e nne s 71
2.7 SOFEWAIE IMOAUIES ...ttt b e et b ettt b ettt sb e et sbe e et e bt ete st e 74

Vi

Power-Down Mode Demonstration NEC

3.

Appendix A - DEVEIOPMENT TOOIS.c..oiiiiiiieiteeee e 75
3.1 SOFEWALIE TOOIS.....eciiciiciecte ettt et e et e st e e s be e s be e te e aeesaeesbeebeeabeenbeetbestsesbaesbeesbeereenres 75
3.2 HAFAWALIE TOOISeviiiiciectie ettt ettt ettt e st e e s be e sbe e be s ae e saeeebeebeeabeenbeetbestbestaesbeeseeesreanees 75
APPeNdiX B — SOFtWAIE LISTINGSeciveiiiiie ettt te e sre e s e e snaennee s 76
O R |V, - U] o X oSSR 76
o .Y o | X o RSSO 88
e N V. Uod o To [)T o o OO EPSTOPRTT RSP 89
V1 (-] 1 10 o SRR 90
T V1 (=1 411 0 oSSR 91
A6 SYSTBIMILC ittt R e e R bRt n e reane 93
O 1 1 70 o RS SSRRRP 94
4.8 1) oSSR 95
e T 1 Y AU 7T o o SRS 96
A.10 SEFIALN et b bbbt R Rttt b b Ee bt b et et st nbenbeane 98
B R 1= =L I oSO RURUPORPTPRURPRT 99
1Y o T | VST oSSR 106
413 WALCHTIMEI.N Lo b et b e et e ettt e et et etesbe e etesbe e 110
O I Y= (o] 1] 1 L o OO PRSPPI 111
STV 1= (o] [g T=T T 7] oSS 112
I © T) o X oSS 114
O A © T 1 T =T o S 115
S T 1= 1 [T o (SO OTOPTO PP 116
e R ot 1Y o SR ST PTORSPRTPPN 116
0 I oo IS oSSR 117
421 LCADIVAPP-N oot bt b ettt te et e e b e 121
O W elo | D] o o] o K OO RPTRSRPPTRSPRTPRN 125

vii

Power-Down Mode Demonstration NEC

1.

1.1

Introduction

This application note illustrates the use of the peripherals in NEC Electronics microcontrollers. It will help
you better understand the peripherals and provide you with basic routines you can use in more complex
applications.

The information provided includes:

Description of peripheral features

Example program descriptions and specifications
Software flow charts

Applilet reference drivers

Descriptions of the demonstration platforms

* & & o oo o

Hardware block diagram
¢ Software modules
Each of the techniques described in this application note use the Applilet—an NEC Electronics software

tool that generates driver code for the peripherals. This tool provides a quick and convenient way to
generate code.

For details on using the Applilet and NEC Electronics microcontrollers, please consult the appropriate user
manuals and related documents.

An Overview of Power-Down Features

The power dissipation of CMOS devices is:
P = C x (V**2) x (frequency of operation)
Power dissipation is a direct function of the operating frequency.

NEC Microcontrollers implement many advanced features to select and control CPU and peripheral clocks.
Using these features, you can reduce the CPU clock frequency when you do not need full processing power
and turn off on-chip peripherals when they are not needed. Standby features, implemented for most NEC
Electronics microcontrollers, reduce power consumption to a minimum. These features make NEC
Electronics microcontrollers an ideal choice for battery-operated portable systems. This document
demonstrates various methods of controlling the clocks and using the standby features.

Power-Down Mode Demonstration NEC

2. Clock Control and Standby

Whether using an on-board oscillator or external clock, the clock generator is a major power consumer.
NEC Electronics microcontrollers have two major functions that reduce this power consumption:

¢ Comprehensive methods of controlling clocks

¢ Standby features

2.1 Features of Clock Control and Standby Functions

This section provides a brief description of the features for clock control and standby.

2.1.1 Clock Control Features

The clocking options for NEC Electronics microcontrollers include:

¢ Main clock operation from external crystal oscillator for high speed

¢ Operation from a driven external clock

¢ Operation from an internal high-speed oscillator (available in some microcontrollers)

¢ Ability to operate the CPU at the main clock frequency or at a fraction of it (for power saving)
Ability to operate CPU and peripherals from different clocks

Support for a low-speed external subclock (32.768 kHz) for timekeeping

Ability to operate the CPU from the subclock for reduced power consumption

Ability to operate some peripherals on the subclock

Low-speed internal oscillator for some peripherals (available in some microcontrollers)

*® & & & oo o

Clock pins not used for clocks available for use as 1/0O ports

The clock generator generates clocks for the CPU and peripheral hardware. The main clock (X1) can be
selected by the main-clock mode register (MCM) and clock-operation mode-select register (OSCCTL).
Various sources of the system clock for NEC Electronics microcontrollers are shown in the table below.
The subsystem clock is a 32.768 kHz crystal oscillator.

10

Power-Down Mode Demonstration NEC

Table 1. System Clock Sources

Clock Category Clock Select Descriptions
high-speed main oscillator
Main Oscillator Main osc. can be Stopped by Stop instruction
Main Clock (X1) Main osc. can also be stopped by setting osc control register
External Clock External clock can be disabled by executing stop instruction

External clock can also be disabled by RCM (internal-osc mode)
Internal oscillator, typical frequency is 8 MHz

Internal high-speed Osc. After reset, CPU always operates with high-speed internal-osc.
Oscillator can be stopped by stop or internal-osc. mode register
Subsystem Subsystem Clock Osc. The subsystem clock oscillator frequency is 32.768 kHz
Clock External subsystem clock External subsystem clock can be disabled by proc. clock control or
(XT1) oscillator-control register

Internal oscillator oscillates at typical frequency of 240 kHz. After reset, the internal low-speed
oscillator always starts operating

Oscillation can be stopped by internal-oscillator mode register (depend on mask option or option-byte

Low-speed setting
Inte_rlrllal The internal low-speed oscillator cannot be used for CPU clock
oscillator . - -
Internal Low-speed oscillator operates watchdog timer and Timer H1
Figure 1. Typical Clock System in NEC Electronics Microcontrollers
1 1 Internal Bus 1 1
\ 4 A 4 A 4 \ 4
Clock Operation Osc. Stabilization Main Clock Processor Clock
Mode Register Time Right Register Mode Register Control Register
[I I I
* .
High-Speed » Peripheral Peripheral
X1 — System Clock Hardware @—> Hardware
Crystal/Ceramic_Osc. _ | Clock Switch Clock
X2/EXCLK @)— External Clock High-Speed
Ring-Osc. —
A
»{ Main System _
.| Clock switch [PreScaler " s
v 5 CPU
o —>
XT1 (@— Subsystem Clock ; ® Clock
Crystal_Osc. :|—>
v Div2
XTUEXCLKS | External Clock
A I To
Watch Timer
Clock Operation Ring_Osc. Low-Speed To
Mode Register Mode Register »| Ring_Osc. —» Watch-dog Timer
8-Bit Timer H1
Internal Bus

As main system clock, you can select either the X1 externally supplied high-speed clock (EXCLK) or the
internal high-speed oscillator. The peripheral hardware clock derives from the main system clock.

Newer members of the NEC Electronics microcontroller family feature the internal high-speed oscillator.
After the release of reset, this oscillator automatically starts—typically at 8 MHz. Once the oscillator
stabilizes, you can switch the CPU to this clock source.

11

NEC

Power-Down Mode Demonstration

Newer members of NEC Electronics microcontroller family also incorporate an internal low-speed
oscillator. This oscillator serves only for the watchdog timer and 8-bit timer H1 and does not work as a
CPU clock. After release of reset, the low-speed internal oscillator starts—typically running at 240 kHz.

The microcontroller’s prescaler generates various clocks by dividing the main-system clock you select as
the CPU clock source.

Table 2. Registers Controlling Clock Generator
Register Symbol Description of Functions
Clock-operation mode-select register OSCCTL | Selects operation modes of high-speed and subsystem clocks
Processor-clock control register PCC Selects CPU clock and division ratio
Sets operating mode for subsystem clock
Internal-oscillator mode register RCM Sets operating mode of internal oscillator
Main-oscillator control register MOC Selects the operating mode of high-speed system clock
Stop X1 oscillator or disable external clock (EXCLK)
Main-clock mode register MCM Selects main-system clock to CPU and peripheral hardware
Osc. stabilization time-counter status OSTC Indicates count status of X1 stabilization time counter
Osc. stabilization time-select register OSTS Selects X1 clock oscillation stabilization time
Figure 2. Clock Generation Timing Diagram
VDD
Power Supply
Voltage
ov
Internal
Reset Signal
Reset processing
{=3=Waiting for (20 us (TYP.J) Switched by~
'yoltage stabilization! /! ERitaa s wtir
(224ms (TYPJ) v 1 - -
CPU Clock — High-spead Ring-CSC clock High-sp=ed system clock X Subsystam clock
2 L |
High-Speed [
Ring Oscillator i

*Waiting for cecillation '

accuracy slabilization el |-|

i_. -l

| X1 clock oscillation stabilization

' tima: 2' e to 275/RE
Starting X1 oecillation

s
iz spacifisd by scitwars. ’_l_I_IN

Starting XT1 oscillation
is spacified by softwars.

High-Speed
System Clock

Subsystem Clock

12

Power-Down Mode Demonstration NEC

Here is a brief description of the timing generation:

¢

When you turn on the microcontroller’s power, the power-on-clear (POC) function generates an
internal reset.

When the power-supply voltage exceeds 1.59V (typical), the reset is released.

The internal high-speed oscillator clock starts automatically.

The CPU starts operating on the internal high-speed oscillator.

When software sets external clock pins for oscillation mode, X1 and XT1 oscillation begins.

After waiting for clock stabilization, software can switch the CPU clock to X1 or XT1.

To set the system clocks for operation, you typically use this sequence:

¢

Configure the 1/O pins for external high-speed clock (X1 and X2) or 1/0O mode with the OSCCTL
register.

If using the external clock, enable it with the MOC register.

Wait for external-oscillator stabilization, using the OSTC register to control the delay.

Set the OSTS register for the necessary restart stabilization time from STOP mode.

Switch from the internal high-speed oscillator to the external clock, if desired, using the MCM register.
Stop the internal oscillator, if desired, with the RCM register.

Configure the 1/O pins for subclock (XT1 and XT2) or I/0O mode with the OSCCTL register.

Select the desired CPU clock divider or subclock with the PCC register.

2.1.2 Standby Features

Standby operation reduces the system operating current, using the halt and stop modes. Features of these
standby modes are:

* & & & o oo o

Either mode retains RAM data and 1/O states.

Halt mode stops CPU execution and provides quick restart for moderate power savings.
Peripherals can operate in halt mode.

Main CPU clock stops in stop mode, for large power savings.

In stop mode, peripherals operate on subclock or internal low-speed oscillator.

You exit from standby with an unmasked interrupt or reset.

The microcontroller automatically waits for oscillator stabilization when exiting stop mode.

You set the halt mode by executing a halt instruction. In halt mode, the main CPU clock does not stop
oscillating, but the clock is not supplied to the CPU, so the CPU consumes less current. The selected CPU

clock resumes operation when you release the halt mode. Although halting does not reduce operating

13

Power-Down Mode Demonstration NEC

14

current as much as stop mode, halt mode is useful if you want to restart operations immediately after an
interrupt.

If you operate both the CPU and the peripherals from the same clock, the peripherals’ clock is available
during halt mode. You can operate the CPU from the internal high-speed oscillator and the peripherals from
the external X1 clock, allowing the peripherals to operate during a halt. Alternatively, you can stop the
peripherals and their external clock before entering halt mode.

You enter stop mode by executing a stop instruction. This mode stops the main clock oscillators, and thus
stops the whole system. You clear stop mode with an interrupt. Because an external crystal oscillator takes
time to restart after being stopped, an internal circuit provides a wait for the oscillator to stabilize after
release of stop mode. If the microcontroller must start processing immediately after the interrupt, use halt
instead.

In either halt or stop mode, all registers, flags, data-memaory contents, I/O port-output latches, and output
buffers remain unchanged.

You can release both halt and stop mode with either an interrupt or a device reset.

Figure 3. Releasing Halt Mode
HALT Mode Release by Interrupt

Intemupt
HALT redueast
instruction Wait

Standby Release Signal

CPU Status perating mode | HALT mode Wait J__ O perating mode

System Clock
High-speed System Clock
High-speed Ring-Osc.
Subsystem Clock

Osdillation

HALT Mode Release by Reset

~ HALT
instruction
Reset Signal
:i

Oparating mode] E
({high-speed Resat ~ Operating moda
CPU Status systam clock) HALT mode pericd {high-speed Ring-05C clock)

Ciscillation) Cscilation
Oscillates stopped | stoppad | Oscillates

High-speed System Clock

Cscillation stabilization fime
(211 1o 28]
Starting X1 oscillation is
specified by softwara,

Power-Down Mode Demonstration NEC

Figure 4. Releasing Stop Mode

STOP Mode Release by Interrupt

Wait
~ STOP | (sat by OSTS) |
instruction | |
1
) L8 :
Standby Release Signal ‘ G
Operating moda Operating mode
I:[Ihigh-s?:eed Cscillation stabilizafion wait {high-spead
CPU Status sysiem clock) STOP moda (HALT meode status) ‘ system clock)
High-speed System Clock Oscillales Oscillation stopped Osdillates
L. A

Oiscillation stabilization time (set by OSTS)

STOP Mode Release by Reset

. BTOF
instruction

Reset Signal "

Operating modea H

{high-speed Ressat ~ Operating modea
CPU Status system clock) STOP mode period {high-speed Ring-05C clock)
) o Oscillation| Cscillation
High-speed System Clock Osdillates | Osdillation stopped | stoppad dsb:med__L Osdillates

Oseillation stabilization tima
I:gﬂm to 2|ul,m
Starting X1 oscillation is
specified by software.

2.2 Program Description and Specification

The demonstration program selects various clocks for the system clock and allows you to reduce clock
speed and select standby modes. You make choices of clock, clock divider, display control, and standby
mode from a menu. An ammeter measures the CPU current to verify that slower clock speeds result in
lower power consumption.

15

Power-Down Mode Demonstration NEC

A navigation switch allows you to select among program options. An external LCD displays program
output. To indicate CPU operation in some power-down modes, an external buzzer or speaker provides
beeps.

Figure 5. Demonstration Hardware Configuration

Ammeter
0.500 mA
NEC
. VDD Power
Microcontroller
I
32.768 KHz
Crystal for :I Output Buzzer
Subclock | XT2
J_— X1 Segment
Lines

10 MHz
Crystal for :l

Main clock —l__ X2
Y —

V —
» Key Return Input \/l 8-Digit, 14-Segment |\ /l

=== === | CD Display Module

Up Selecte { || V/JI\l e
— Key Return Input
Left — W — W
P Key Return Input
Right

Down Common
Key Return Input

Lines

»| Key Return Input

16

Power-Down Mode Demonstration NEC

Figure 6. Flowchart for Demonstration Program

Program Startup

'

Main Menu High-speed
CPU Clock Ring-Oscillator

i

External 10 MHz
X1 crystal

:

Subsystem Clock
32KHz

A
A 4

L0 D b bhk

A 4

v
Set
PCC Register < >

PCC =00

PCC=01

PCC=nn

v

LCD Display = On LCD Display = Off

A
A

A 4

HALT
w/Watch Timer On

'

v STOP
w/Watch Timer On

'

STOP
w/Watch Timer Off

Standby Mode

A
A 4

ETC

Specifications:
¢ The demonstration system allows use of the internal high-speed oscillator, 10-MHz X1 crystal, or
32.768-kHz subclock.

¢ Examples are shown for initializing an externally driven EXCLK clock, but this clock is not used in the
demonstration program.

¢ You can set the PCC register for all possible divisions of the main CPU clock.
¢ A watch timer generates periodic interrupts and measures intervals.

¢ The system demonstrates halt and stop modes with selected CPU clocks, though stop is not available if
running on the subclock.

¢ Halt and stop modes are shown with and without periodic interrupts.

17

Power-Down Mode Demonstration NEC

2.3 Software Flow Charts

18

The demonstration program consists of the following major sections:

¢

¢

Program initialization code, called before the main() program starts, which includes clock, key-return,
and watch-timer initialization

The main program loop, which displays menu options and responds to switches
Submenu routines for CPU CLK, SET PCC, DISPLAY, and STANDBY menu items
Subroutines invoked from submenus to set clock, PCC, display and standby modes
Subroutines generated by the Applilet for watch timer and 1CCO operation

Subroutines with user code for handling key-return and watch-timer interrupts (Applilet-generated stub
interrupt-service routines, with user code added)

Subroutines for LCD operation

The flowcharts describe the initialization, the main program, clock and standby routines, key-return and
watch-timer interrupts. Flowcharts are not included for 11C0O and LCD initialization, [1CO communication,
or LCD-data transfer. The software listings include this code, however.

Power-Down Mode Demonstration NEC

2.3.1 Program Startup and Initialization

For 78K0 programs written in the C language, an object file such as s01.rel links to the user program and
provides the startup code for the C program. The startup code calls a function named hdwinit(), where you
can place hardware-initialization code.

When you use the Applilet to generate a C program for the 78K0, the tool automatically adds the hdwinit()
function to the user program and calls the function Systemlnit(). The SystemlInit() function in turn calls
initialization routines for each peripheral.

RESET
SOoxx.rel

CALL hdwinit()

i DI() .
CALL Systemlnit() CALL Clock_Init()

EI()
. 1 CALL INT_Init()
Other Start-up Code

Figure 7. Flowchart for System Initialization

hdwinit()

Systemlnit()

A
\ 4

A

CALL WT_Init()

[elo [

CALL main() —>@

After the hdwinit() function finishes, the startup code calls the main() function of the user program. So
when main() starts, peripheral initialization is complete for ports, key-return interrupt, and timers. Thus,
main() does not need to call these initialization routines.

19

Power-Down Mode Demonstration NEC

20

2.3.2 Clock_Init() — CPU Clock Initialization

Figure 8. Flowchart for CPU-Clock Initialization

?

MCM.2,0 = 00 (XSEL, MCMO)
Select 8MHz High-Speed Ring-OS
for System and Peripheral Clock

PM12.4,3=11
Set P124/XT2 and P123/XT1 in Input Mode

EXCLKS =0 (OSCCTL.5)
OSCSELS =1 (OSCCTL.4)
Set P123/P124 for Subclock Crystal Oscillation Mode

MSTOP =1 (MOC.7) Stop X1 Oscillation
Disable EXCLK Clock Input

PCC = 0x00 Set CPU Clock = FXP = 8MHz

v

Return

Systeminit() first calls Clock_Init() to initialize the main, peripheral and subclocks. The assumption at this
point is that the CPU is operating with default values in the clock-control registers. Specifically, the CPU
and peripherals are operating from the 8-MHz internal high-speed oscillator, and the external clock and the
subclock are not enabled.

The routine first sets the XSEL and MCMO bits in the MCM register to select the main and peripheral
clock. Setting these bits to zero (which should be the current state) selects the 8-MHz internal high-speed
oscillator for both clocks.

Next, the routine sets PM12 bits 4 and 3 to one, which specifies port pins P124/XT2 and P123/XT1 as
inputs. This setting connects the 32.768-kHz external crystal. Clock_Init() sets the EXCLKS and
OSCSELS bits in the OSCCTL register to 0,1, selecting XT1 oscillation mode on pins P124/XT2 and
P123/XT1. At this point, the subclock begins oscillation.

Clock_Init() sets the MSTOP bit in the MOC register to 1 (the default) to stop X1 oscillation and disable
the EXCLK input. This setting stops the external crystal oscillation or disables the driven external clock.

Finally, Clock_Init() sets the PCC register to 0x00, to select the fastest CPU clock by selecting fxr (8 MHZz)
as the CPU clock.

Power-Down Mode Demonstration NEC

2.3.3 INT_Init() — Key-Return Interrupt Initialization
Figure 9. Flowchart for Initializing Key-Return Interrupt

EGP = 0x00 Disable Edge Detection
EGN = 0x00 Interrupts INTPO - INTP5

KRMK =1 (MK1L.4)
to Disable Key Return Interrupt

PU7.0-4=11111 to Set Pull-up on P70 - P74
PM7.0 - 4=11111 to Set P70 - P74 as Inputs
KRM = 0x1F Set P70/KRO
to P74/KR4 as Key Return Mode

KRPR =1 (PR1L.4) to Set Low Priority
KRIF =0 (IF1L.4) to Clear Interrupt Flag
KRMK =0 (MK1L.4)
to Enable Key Return Interrupt

v

Return

Systemlnit() calls INT_Init() to set up the key-return function. The demonstration uses pins P70/KRO
through P74/KR4 as key-return inputs from the navigation switch. Since no other external interrupts are
specified in the Applilet (more on this later), the routine sets the EGP and EGN registers to disable other
external interrupts.

INT_Init() sets the key-return interrupt-mask bit, KRMK, to 1 to mask the interrupt while modifying other
registers.

The routine writes the PU7 register with Ox1F to provide the P70-P74 port pins with pull-up resistors. The
routine writes the same value to the port-mode register (PM7) to make the pins inputs. The routine writes
Ox1F to the key-return mode register (KRM) to specify that key-return interrupt sources KRO through KR4
cause a key-return interrupt. A negative edge on any of these pins invokes the interrupt.

INT_Init() sets the key-return interrupt priority to low, clears the interrupt flag (KRIF), and sets the mask
bit to zero to enable the key-return interrupt (INTKR).

See the section on the MD_INTKR() key-return interrupt-service routine to see the actions taken on key-
return interrupts.

21

Power-Down Mode Demonstration NEC

22

2.3.4 WT_Init() — Watch-Timer Initialization for Square-Wave Generation

Figure 10. Flowchart for Initializing Square-Wave Generator

T

WTM = 0x00 to Disable Watch Timer

WTPR =1 (PRIL.5) Low Priority INTWT
WTMK =0 (MKIL.5) Enable INTWT (Watch Timer Interrupt)

WTM.7 = 1 (WTM7) Select Fsub as Watch Timer Clock (32KHz)
WTM.3,2=00 Set 0.5 Second for Watch Timer Interrupt
WTM.6-4 =010 Set 1953 Microseconds

for Watch Timer Interval Interrupt

v

Return

Systemlnit() calls WT_Init() to initialize the watch timer for both watch-timer and interval-timer functions.
First the routine disables the watch timer by setting WTM.0 to zero.

WT_Init() sets the WTPR (PR1L.5) and WTMK (MKZ1L.5) bits to give the WTM watch-timer interrupt
(INTWT) low priority and to enable the interrupt. The routine leaves the priority and mask bits controlling
the watch-timer interval interrupt (INTWTI) in the default state, so the INTWTI interrupt remains
disabled.

WT_Init() sets WTM.7 to 1 to set the 32.768-kHz subclock as fw—the time base for WTM. The routine
sets WTM bits 3 and 2 to zero, which sets the interval for the watch-timer interrupt as 16384/fw, or every
0.5 seconds. The routine sets WTM bits 6 through 4 to 010, which sets the interval-timer interrupt to 64/fw,
or 1953 microseconds (approximately 2 milliseconds). The processor uses this interval to time delays in
LCD initialization and switch debouncing.

Power-Down Mode Demonstration NEC

2.3.5 Main() - The Main Program — Power-Down Functions

Figure 11. Flowchart for Power-Down Functions

Q

Set global variables
CALL 11CO_lInit()
CALL LCD_lInit()
CALL WT_Start()
menu =0

sw3_in=0
Display MainMenu[menu].title

A\ 4

menu =3

A 4

*

SetClk()

SetPCC()
DispOff()
Standby(0

IGoGmTm

\ 4

CALL MainMenu[menu].func() ;

A

Calling main() starts the program. Main() sets some global variables used to track the state of the clock:

¢ g _clock=CLK_HSR currently selected clock (CLK_HSR, CLK_EX, or CLK_SUB)
¢ ¢_mainclock =CLK_HSR main system clock (CLK_HSR or CLK_EX)

¢ g_main_on=0N whether main clock is running or not

¢ Q_beep =OFF whether to beep periodically in watch-timer ISR

Main() then calls 11CO_Init() to start the 11CO peripheral for communication with the LCD controller, calls
LCD_Init() to initialize the LCD, and calls WT_Start() to start the watch timer.

The routine sets the menu variable to zero. This variable tracks the currently selected item. Then the
routine enters the main program loop. The main loop clears the sw3_in variable, which reflects the

23

Power-Down Mode Demonstration NEC

24

navigation switch being pressed. The main loop also displays the title of the current menu item from the
MainMenu table, which contains the items shown below.

Table 3. Main Menu Table

Index (n) MainMenu[n].title MainMenu[n].func Function Operation

0 “CPUCLK “ SetClIk() Set CPU clock source

1 “SET PCC “ SetPCC() Set PCC register for main clock divider
2 “DISPLAY “ DispOff() Turn LCD and ICCO off

3 “STANDBY * Standby/() Select standby mode

The loop waits until the sw3_in variable is not zero (so the program waits until you press a switch). If you
press a switch, the key-return interrupt (INTKR) occurs. The MD_INTKR interrupt-service routine checks
the switch input and updates the sw3_in variable with the value of the debounced switch input.

Interrupts also occur once every 0.5 seconds from the watch-timer interrupt (INTWT), but the MD_INTWT
interrupt-service routine takes no action.

Once a valid switch input is debounced, the main program loop sees a non-zero value in sw3_in and
proceeds. The routine checks to see which switch you pressed and takes appropriate action.

If you press the UP switch, the program decrements the menu variable, wrapping around from O to 3.
If you press the DOWN switch, the program increments the main variable, wrapping around from 3 to 0.

If you press the RIGHT switch, the program calls the function associated with the value of the menu
variable. The routines called are shown in the table above.

After processing the switch inputs (and after the function called by RIGHT returns), the program goes to
the top of the loop, clears the switch input, displays the currently-selected menu item, and waits again for a
key press.

In this way, the UP and DOWN switches cycle through the menu choices, and the RIGHT key executes the
current choice. Some of the submenu routines called from main() use a similar menu-processing strategy.

Power-Down Mode Demonstration NEC

2.3.6 SetCIk() — Select CPU Clock Source

Figure 12. Flowchart for CPU Clock Source Selection

?

| clk = g_clock |

>
»

sw3_in=0
Display ClockMenu[clK].title
If clk = g_clock, Display "X" at Left

EO SetCIKHSR()
E1 SetCIKEx()
E2 SetClkSub()

Clk=Clk-1 Clk=2

A 4

Clk=Clk +1 |

Clk=0

No

Clk = ClockMenu[clKk].func() ﬁ—,

A 4

The SetCIk() routine, called from main(), sets the source of the CPU clock. SetCIk() sets the local variable
clk to the current state of the global clock variable, g_clock, which contains one of the three values shown
in the table below.

Table 4. Clock-Source Selection

Symbolic variable Value CPU clock source

CLK_HSR 0 Internal high-speed oscillator (8 MHz)
CLK_EX 1 External clock (X1 crystal or driven EXCLK)
CLK_SUB 2 XT1/XT2 subclock crystal (32.768 kHz)

25

Power-Down Mode Demonstration

NEC

26

The SetClk() routine then enters a menu processing loop, much like the one used in main(). The menu
structure ClockMenu controls operation and the clk variable is an index into this structure.

At the top of the loop, the routine sets sw3_in to zero to clear the previous switch input. The LCD displays
the title of the menu item currently selected. If the current value of clk matches g_clock (as it does at the
start), the routine displays an “X” at the left side of the display.

Table 5. ClockMenu Contents

Index (n) ClockMenu[n].title ClockMenu[n].func | Function Operation

0 “CHSR “ SetCIKHSR() Set CPU clock to internal high-speed oscillator
1 “CEX*“ SetCIKEX() Set CPU clock to external X1 crystal oscillator
2 “CSsuB*“ SetCIkSub() Set CPU clock to subclock

The menu processing loop handles switch inputs, changing the value of the clk variable to a new index,

executing the selected function to change the clock, or returning to the main menu.

The UP switch cycles through the CPU clock choices in reverse order: 0—2—1—0. The DOWN switch
cycles clk through the CPU clock choices in forward order: 0—1—2—0.

The RIGHT switch calls the selected function. If the function can change the clock (not all changes are
possible), the routine updates the global variable g_clock. The functions return the value of the current
CPU clock and updates the clk variable with the (possibly changed) value.

The LEFT switch returns from the SetCIk() routine to the main() routine, to return to the main menu.

After processing the switch inputs (and after the function called by RIGHT returns), the program goes to
the top of the loop, clears the switch input, displays the currently-selected menu item, and waits again for a

key press.

Power-Down Mode Demonstration NEC

2.3.7 SetCIkHSR() — Set CPU Clock to Internal High-Speed Oscillator

Figure 13. Flowchart for Setting CPU Clock for Internal High-Speed Oscillator

Yes
g_clock ==0?
(CLK_HSR)

No

Return CLK_HSR

Return g_clock

RSTOP =0 (RCM.0)
Start H-S Ring-OSC

<&
<

RSTS==0?
(RCM.7)

CSS =0 (PCC.4)
Change from Subclock, If Using

g_clock = CLK_HSR
g_mainclock = CLK_HSR
g_main_on = ON

Return CLK_HSR

The SetCIkHSR() routine sets the CPU clock to the internal high-speed oscillator (8 MHz) and returns the
value of the CPU clock. If the CPU clock is already CLK_HSR, the routine returns with no action.

If the XSEL bit (bit 2 in the MCM register) is one, the program has changed the main CPU clock and
peripheral clock from the power-up default (internal high-speed oscillator) to the external EXCLK or X1
crystal oscillator. Since you can change the XSEL only once after a reset, you cannot change it back to the
internal high-speed oscillator for the peripherals. Thus, the routine does not change the CPU clock or the
peripheral clock. In this case, the routine returns the current state of the clock (CLK_EX or CLK_SUB).

If XSEL is zero, the main clock is still set to the internal high-speed oscillator, but the CPU may be
operating on the 32.768-kHz subclock. But because SetCIKHSR() would have already returned if g_clock
was CLK_HSR or CLK_EX, clearly the CPU is running on the subclock. The routine needs to change from
operating on the subclock, with the internal high-speed oscillator stopped, to operating on the internal high-
speed oscillator.

First the routine starts the internal high-speed oscillator by clearing the RSTOP bit in the RCM register.
The routine checks the state of the RSTS bit in the RCM register (which is 1 when the oscillator is stable),
and waits until this bit is set.

27

Power-Down Mode Demonstration NEC

28

Note that you can skip this wait. The internal high-speed oscillator begins operation immediately after
RSTOP is set to zero, at about 5 MHz. It takes some time for the oscillator to reach its stable operating
range of 8 MHz. If you do not need an accurate clock, however, the program could proceed without
waiting for RSTS to be set.

After the oscillator is stable, the routine sets the CSS bit in the PCC register to zero, which switches the
CPU clock source from the subclock to the oscillator. The subclock keeps operating, however.

The routine updates global variables g_clock and g_mainclock, sets g_main_on to ON (to indicate that the
main clock is on), and returns the value CLK_HSR to SetCIk().

Power-Down Mode Demonstration NEC

2.3.8 SetCIKEx() — Set CPU Clock to X1/X2 Crystal Oscillator

Figure 14. Flowchart for Setting CPU Clock to Crystal Oscillator

Return CLK_EX

MSTOP =0 (MOC.7) o OSTS = value for Stop Restart Time
Enable X1 Crystal Oscillation Start
|

MCM.2,0 = 11 (XSEL, MCMO)
CPU and Peripherals Use Crystal Clock

SUB && CLK_EX?

RSTOP =0 (restart HSR)
Wait for RSTS == 1
CSS =0 (PCC.4) (change to HSR)

OSTC.0==07?

Wait for CLS == 0 Yes

l CSS=0(PCC.4)

| AMPH =0 (OSCCTL.0) (10 MHZ) Change back from Subclock to X1

| No
PM12.2,1=11 B RSTOP =1 (RCM.0)
Set P122/X2/EXCLK as Input g_clock = CLK_EX Stop High-Speed Ring-OSC
Set P121/X1 as Input g_mainclock = CLK_EX

g_main_on = ON

| Return CLK_EX
OSCCTL.7,6 = 01 (EXCLK, OSCSEL) g_clock = CLK_EX
Set for Crystal Oscillation on X1/X2 g_mainclock = CLK_EX

| g_main_on = ON

Return CLK_EX

MSTOP =0 (MOC.7)
Enable X1 Crystal Oscillation Start
Wait for OSTC.0 == 1 with timeout

Yes

OSTC.0==1?

MSTOP = 1 (stop X1 again)
Error message “E NO OSC”
Return CLK_HSR

The SetCIKEX() routine sets the CPU clock to the external X1 crystal and returns the value of the CPU
clock. In the demonstration program, this menu item selects a 10-MHz external X1 crystal on the P121/X1
and P122/X2/EXCLK input pins. See the next section for a version to use if the external clock is a driven
clock signal on the P122/X2/EXCLK pins.

If the CPU clock is already set to CLK_EX (as reflected in the g_clock variable), the routine returns
CLK_EX and takes no action. If g_clock is not CLK_EX, it is either CLK_HSR (internal high-speed
oscillator) or CLK_SUB (subclock). SetCIKEx() switches the CPU from either of these clock sources to the
external X1/X2 crystal oscillator.

29

Power-Down Mode Demonstration NEC

30

If g_clock is CLK_SUB and g_clockmain is CLK_EX, the crystal has already been selected and the clock
switched to the subclock. In this case, the routine sets the MSTOP bit to zero to restart the main clock, and
waits for the X1 oscillation to stabilize, indicated when bit zero of the OSTC register becomes one. The
routine switches the clock from the subclock to the main clock by setting the CSS bit in the PCC register to
zero. The SetCIKEx() routine then returns to the caller with the clock set to CLK_EX.

If the routine goes beyond the previous two checks, then either g_clock is CLK_HSR (running on the
internal high-speed oscillator), or g_clock is CLK_SUB (running on the subclock) and g_clockmain is
CLK_HSR. In either of these cases, the routine now needs to start the X1 crystal oscillator for the first
time.

If the program is running on the subclock, the routine needs to switch the clock back to the internal high-
speed oscillator. This switch is done by setting the RSTOP bit to zero and waiting for RSTS to be one, and
then setting CSS to zero and waiting for CLS to be zero.

To begin setting up the X1 crystal clock, first SetCIKEX() sets the AMPH bit (OSCCTL register bit 0) to
zero for operation from 2 to 10 MHz. If the external crystal oscillates at a higher speed than 10 MHz, set
the bit to one. Note that when AMPH is first set to 1, the CPU clock stops for a minimum of 5
microseconds to allow for clock stabilization at the higher frequencies. This delay also occurs when exiting
stop mode.

SetCIKEX() sets the PM12 register bits 2 and 1, which control the mode of the P122/X2/EXCLK and
P121/X1 pins. Setting these bits to 1 configures the pins as inputs.

The routine sets the EXCLK and OSCSEL bits in the OSCCTL register for EXCLK =0, OSCSEL =1, to
select X1/X2 inputs as crystal-oscillator mode (rather than 1/0 port or driven-clock input mode). At this
point, the external crystal is selected, but is not oscillating, and the CPU is operating on the internal high-
speed oscillator or subclock.

The routine clears the MSTOP bit in the MOC register to zero, thus starting oscillation of the external
crystal. Once oscillation starts, the microcontroller changes bits in the OSTC register (from the reset value
of 0x00) to indicate the stability of the oscillation. Specifically, bits 4, 3, 2, 1 and 0 are set in sequence after
a certain number of X1 oscillations. By checking for a particular bit to change to a 1, the program can wait
for a specific oscillator-stabilization time. For example, by waiting for OSTC bit 0 to change to 1, the
program waits a minimum of 6.55 milliseconds at 10 MHz.

The demonstration program times out if OSTC bit zero does not become one after a number of checks
designed to be well past the necessary start time. If the timeout occurs, the routine displays the error
message “E NO OSC” to indicate that no oscillation of the X1 crystal has been detected, and waits for a
key to be pressed. Once you press a key, the program returns without changing the clock source.

Power-Down Mode Demonstration NEC

Once OSTC.0 is 1, the external crystal clock is enabled and stable, but the CPU is still running on the high-
speed oscillator. Before switching to the crystal clock, the routine sets the OSTS register to the value
needed to control the X1 oscillator’s restart when exiting stop mode.

To switch to the X1 clock, the routine sets the XSEL and MCMO bits in the MCM register to 1. This setting
chooses the external crystal input as the clock for the CPU and peripherals.

The MCS bit in the MCM register indicates whether the main system clock is operating on the internal
high-speed oscillator (zero), or the EXCLK or X1/X2 external clock (one). The SetCIKEX() routine waits
for this bit to become one to confirm clock switch-over.

Once the MCM bit is one, the CPU is operating on the X1 external crystal clock. Since the internal high-
speed oscillator is no longer needed, the routine sets the RSTOP bit in the RCM register to one, stopping
the internal high-speed oscillator.

The routine updates the global variables g_clock and g_mainclock to CLK_EX to reflect the X1/X2 crystal
input, sets g_main_on to ON to indicate main clock on, and returns the value CLK_EX to SetCIk().

31

Power-Down Mode Demonstration NEC

2.3.9 SetCIKEx() — Alternate — Set CPU Clock to EXCLK Input

Figure 15. Flowchart for Setting CPU to EXCLK

Return CLK_EX

Yes
SUB && CLK EXD MSTOP =0 (MOC.7) OSCCTL.7,6 = 11 (EXCLK, OSCSEL)
- Enable EXCLK input Set for driven clock on P122/X2/EXCLK
CSS =0 (PCC.4) MSTOP =0 (MOC.7)
RSTOP =0 (restart HSR) Change back from Subclock to EXCLK Enable EXCLK input

Wait for RSTS == 1 T

CSS =0 (PCC.4) (change to HSR)

Wait for CLS == 0 B MCM.2,0 = 11 (XSEL, MCMO0)
g_clo_ck = CLK_EX CPU and Peripherals Use Crystal Clock
[g_mainclock = CLK_EX

| AMPH = 0 (OSCCTL.0) (10 MHZ) g;mi:}”&”; gz‘

| Yes
PM12.2=1
Set P122/X2/EXCLK as Input

| No
Count number of times P122 RSTOP =1 (RCM.0)
changes state from0->1->0 Stop High-Speed Ring-OSC
during a loop, to check for EXCLK

input active clock

g_clock = CLK_EX

g_mainclock = CLK_EX
Yes g_main_on = ON

Count > 0? Return CLK_EX

No
MSTOP = 1 (stop X1 again)
Error message “E NO EXC”
Return CLK_HSR

The previous SetCIKEXx() routine set the CPU clock to the external X1 crystal on the P121/X1 and
P122/X2/EXCLK pins. You can also use an external driven-clock signal (EXCLK) connected to the
P122/X2/EXCLK pin.

This alternate version of SetCIKEx() demonstrates how to switch to a driven 6-MHz external clock. This
version is not compiled in the demonstration program; the code exists but is commented out. Choose only
one version of SetCIKEXx(), depending on whether the external clock is a crystal or a driven clock.

If the CPU clock is already set to the EXCLK input (as reflected in the g_clock variable), the routine
returns CLK_EX and takes no action. If g_clock is not CLK_EX, the variable is either CLK_HSR (internal
high-speed oscillator) or CLK_SUB (subclock). SetCIKEx() switches from either of these clocks to the
EXCLK input.

32

Power-Down Mode Demonstration NEC

If g_clock is CLK_SUB and g_clockmain is CLK_EX, the external EXCLK has already been checked and
selected, and the clock switches to the subclock. In this case, the routine restarts the main clock by setting
the MSTOP bit to zero. (It is not necessary to wait for bit zero of the OSTC register to become one, as is
done for the crystal input.) The routine switches the clock from subclock to the main clock by setting the
CSS bit in the PCC register to zero. The SetCIKEX() routine then returns to the caller with the clock set to
CLK_EX.

If the routine goes beyond the previous two checks, then either g_clock is CLK_HSR (running on the
internal high-speed oscillator), or CLK_SUB (running on subclock) and g_clockmain is CLK_HSR. In
either of these cases, the program has not selected the EXCLK input before and must start EXCLK for the
first time.

If the program is running on the subclock, the routine switches the clock back to the internal high-speed
oscillator. This switch is done by setting the RSTOP bit to zero and waiting for RSTS to be one, then
setting CSS to zero and waiting for CLS to be zero.

The routine then sets up the EXCLK input clock, first setting the AMPH bit (OSCCTL register bit 0) to
zero. (This bit needs to be set to one if the external clock frequency is above 10 MHz. The demonstration
program uses a 6-MHz driven input.)

SetCIKEX() sets the PM12 register bit 2 to 1 to configure the P122/X2/EXCLK pin as an input.

The program checks for oscillation on the P122/X2/EXCLK input. The routine runs a loop, inputting the
value of the P122 pin and checking it against the previous value. If the values are different, the pin has
changed state, and the routine increments a counter.

After completing the loop, the routine checks the counter. If the count is zero, there is no oscillation on the
P122/X2/EXCLK input. The program displays the error message “E NO EXC” and returns, leaving the
clock set to the internal high-speed oscillator.

If EXCLK oscillation is detected, the routine sets the EXCLK and OSCSEL bits in the OSCCTL register to
1, to select the P122/X2/EXCLK input as driven-clock input mode (rather than 1/O-port or crystal-oscillator
mode). The external EXCLK is now selected but not enabled, and the CPU is still operating on the internal
high-speed oscillator.

SetCIKEX() clears the MSTOP bit in the MOC register, enabling the EXCLK input. The routine sets the
XSEL and MCMO bits in the MCM register to 1, selecting the EXCLK input as the clock to the CPU and
the peripherals.

The MCS bit in the MCM register indicates whether the main system clock is operating on the internal
high-speed oscillator (if zero), or the EXCLK or X1/X2 external clock (if one). The SetCIKEx() routine
waits for this bit to become one, to confirm clock switch-over.

33

Power-Down Mode Demonstration NEC

34

Once the MCM bit is one, the CPU is operating on the driven EXCLK external clock, and the internal high-
speed oscillator is no longer needed. The routine sets the RSTOP bit in the RCM register to one, to stop the
internal high-speed oscillator.

SetCIKEX() updates the global variables g_clock and g_mainclock to CLK_EX to reflect the EXCLK
input, sets g_main_on to ON to indicate that the main clock is on, and returns the value CLK_EX to
SetCIk().

2.3.10 SetClkSub() — Set CPU Clock to Subclock

Figure 16. Flowchart to Set CPU Clock to Subclock

g_clock = = 22Y¢s
(CLK_SUB) Return CLK_SUB

No

CSS =1 (PCC.4)
To Select Subclock as CPU clock

RSTOP = 1 (RCM.0) MSTOP = 1 (MOC.7)
Stop High-Speed Ring-OSC Stop EXCLK/Crystal-OSC

&
<

LSRSTOP =1 (RCM.1)
Stop Low-Speed Ring-OSC

g_clock = CLK_SUB
g_main_on = OFF
Return CLK_EX

The SetClkSub() routine sets the CPU clock to the 32.768-kHz subclock and returns the value of the CPU
clock.

If the CPU clock is already set to the subclock (as reflected in the g_clock variable), the routine returns
CLK_SUB and takes no action. If g_clock is not CLK_SUB, it is either CLK_HSR (internal high-speed

Power-Down Mode Demonstration NEC

oscillator) or CLK_EX (external EXCLK or X1/X2 clock), and SetCIkSub() switches the CPU to the
subclock.

SetClkSub() sets the CSS bit in the PCC register to 1, selecting the subclock as the CPU clock. The CLS bit
in the PCC register reflects whether the CPU is operating from the main system clock (CLS=0) or from the
subclock (CLS=1). The SetCIkSub() routine waits for the CLS bit to become 1, to ensure that the CPU is
operating on the subclock before proceeding. At this point, the main system clock(s) can be stopped.

If the system was operating on the external clock, the routine sets the MSTOP bit in the MOC register to
one. This setting stops the external X1 crystal (or disables the EXCLK input, if you use this version of the
demonstration software).

If the system was using the internal high-speed oscillator, the routine sets the RSTOP bit in the RCM
register to one to stop the internal high-speed oscillator.

The demonstration program also stops the internal low-speed oscillator by setting the LSRSTOP bit in the
RCM register to 1. At this point, the subclock is operating, the CPU is running from the subclock, and all
other clocks are stopped.

SetClkSub() sets the global variables g_clock to CLK_SUB to reflect the subclock, sets g_main_on to
OFF to indicate that the main clock is off, and returns the value CLK_SUB to SetClk().

2.3.11 SetPCC() - Set PCC Register for Main Clock Division

Figure 17. Flowchart for Setting Main Clock Divisions—Part 1

Yes

o
PCC_val = PCC AND 0xF8

new_pcc = PCC AND 0x07

————]

sw3_in=0
Display "PCC n" n =new_pcc
If new_pcc == PCC AND 0x07, Display "X" at Left

sw3_in==07?

35

Power-Down Mode Demonstration NEC

36

The SetPCC() routine displays the current setting for the PCC register divider and allows you to change the
divider.

When the CPU is operating on the main system clock (internal high-speed oscillator, X1 crystal. or
EXCLK clocks), the lower three bits of the PCC register determine the operating frequency the CPU uses
in executing instructions. The table below shows the settings for the three low bits of PCC and the selected
division of the main system clock.

Table 6. Main Clock Divisions

PCC.2-0 CPU clock (fcpu) fcpu With fxp = 8 MHz Instruction time
(2/fcpu)

0 fxp 8 MHz 0.25 psec

1 fxp/2 (default) 4 MHz 0.5 psec

2 fxpld 2 MHz 1.0 psec

3 fxp/8 1 MHz 2.0 psec

4 fyp/16 500 kHz 4.0 psec

Other values prohibited

When the CPU is operating on the subclock, the CPU clock frequency is 32.768 kHz, and the minimum
instruction time is 122.1 ps. The subclock is selected by setting the CSS bit in the PCC register (PCC.4) to
one. The PCC register’s lower three bits have no effect when the CPU is operating on the subclock.

The SetPCC() routine first checks if CSS is 1, and if so, does not change the lower three bits. The routine
displays “PCC SUB” and then waits for a switch to be pressed. Once you press a switch, the routine clears
the switch value and returns to the main() program loop.

If CSS is 0, then the SetPCC() routine displays and alters the setting. The routine saves the upper five bits
of PCC in the variable pcc_val, and places the lower three bits in the new_pcc variable, which now has a
value from 0 to 4.

At the top of the SetPCC() loop, the routine clears the switch input and displays “ PCC n , where n is the
value of new_pcc. If new_pcc is the same as the lower three bits of PCC (as it is at the start of the routine),
the routine displays an X at the left of the display to show that this is the current value of PCC.

The SetPCC() routine then waits until you press a switch.

Power-Down Mode Demonstration NEC

Figure 18. Flowchart for Setting Main Clock Divisions—Part 2

| new_pcc = new_pcc - 1 | | new_pcc =4

A 4

new_pcc = new_pcc + 1 |

A 4

PCC =PCC_val OR new_pcc

When you press the UP or DOWN switches, SetPCC() decrements or increments the new_pcc variable,
wrapping around from 0—4 or 4—0. The routine then returns to the top of the loop and displays “ PCC n”
where n is the changed value of new_pcc. You can cycle through all possible values of the lower three bits
of PCC. Whenever the current value of PCC matches new_pcc, the routine displays the X.

When you pres the RIGHT switch, the routine sets the PCC register to the logical OR of the current
new_pcc variable for the lower three bits, and the pcc_val variable with the upper five bits. The SetPCC()
routine then returns to the top of the loop and shows that PCC matches the current value of new_pcc.

When you press the LEFT switch, the SetPCC() routine returns to the main() program loop.

Using these settings, you can observe the power-consumption effects of changing CPU clock speed. Simply
watch the current on the ammeter while changing the PCC divider. The fastest CPU speed, with PCC=0,
should show the most power consumption. The slowest CPU speed (on the main clock), with PCC=4,
should show the least.

37

Power-Down Mode Demonstration NEC

2.3.12 DispOff() — Turn LCD and IICO Peripheral Off

Figure 19. Flowchart for Turning LCD and IICO Peripheral Off

P

‘ Display "OFF" |

‘ Wait 2 Seconds |

‘ CALL TurnDispOff() O

No

‘ CALL TurnDispOn() O

Return

Main() calls the DispOff() routine when you select the “DISPLAY” menu item. To demonstrate power
savings when the display is disabled, the routine turns off the LCD controller and the 11CO peripheral used
internally to communicate with the LCD controller.

The routine displays “OFF” on the display for two seconds to let you know that the display is turning off,
and then calls the TurnDispOff() routine to disable the display.

DispOff() clears the sw3_in variable to show no switch down and waits for sw3_in to be non-zero,
indicating that a key has been pressed.

Once you press a key, DispOff() calls TurnDispOn() to turn the LCD back on, and returns to the main()
routine.

Note that both TurnDispOff() and TurnDispOn() turn on the main clock (if the clock is off) and set the
CPU to run from the main clock, thus increasing power consumption. This increase is brief for
TurnDispOff(), but TurnDispOn() takes four seconds to initialize the display. When measuring power
consumption, wait for a second after the display goes off. Disregard power measurements after pressing a
key, even though the display is still blank for four seconds.

38

Power-Down Mode Demonstration NEC

2.3.13 TurnDIspOff() — Turn Display Off

Figure 20. Flowchart for Turning Off Display

Yes
g_clock ==2?
(clk_sub)

| Clear All LCD Segments |

Turn off LCD on (LCDM.7)
Turn off SCOC (LCDM.6)
Turn off VLCON (LCDM.5)

Disable Clock to LCD Controller

PM6.1,0 =11
ICCEOQ =0 (11CCO0.7) to Disable 11CO Controller

Turn Main Clock on
Set CSS =0 to Switch
to Main Clock

Set CSS =1 to Set Subclock
Turn Main Clock Off

Both DispOff() and StandbyXxxxN() use TurnDispOff() to turn off the microcontroller’s LCD controller
and 11CO peripheral. 11CO is used internally to communicate with the LCD controller for register and
segment-memory reads and writes.

The LCD controller uses a clock to multiplex the display and to boost voltages. In the demonstration
program, the LCD-controller clock is based on the subclock. The 11CO peripheral operates on the main
system clock and requires that the CPU operate interrupt-service routines in a timely fashion to update the
display.

When the demonstration program is operating on the subclock, the main system clock is off, and the 11CO
controller cannot communicate. Therefore, when g_clock is CLK_SUB, TurnDispOff() must enable the
main clock in order to communicate with the LCD controller. Also, in order to process instructions quickly
for interrupt service, TurnDispOff() switches the CPU to the main clock.

Once the clock switches, the routine clears all LCD segments, blanking the display. TurnDispOff() then
writes to the LCD controller’s LCDM register to turn off the bits LCDON (disables display), SCOC
(connects all segment and common lines to ground), and VLCON (turns off voltage boost). TurnDispOff()

39

Power-Down Mode Demonstration NEC

writes to the CKS register to turn off the LCD controller clock, and to the PM14 register to disable the
clock output.

To disable the 11CO controller, first TurnDispOff() sets PM6 register bits 0 and 1 to 1. These settings make
the SDAO and SCLO pins inputs. Then the routine writes to the IICCO register to clear the ICCEO bit, which
disables the 11CO controller.

Then, if the system was initially running on the subclock, TurnDispOff() switches the CPU clock back to
the subclock and turns the main clock off.

2.3.14 TurnDIspOn() — Turn Display On

Figure 21. Flowchart for Turning on Display

Yes
g_clock ==2?
(CLK_SUB)

CALL 11CO_Init() to
Initialize 11CO Controller

CALL LCD_lnit() to
Initialize LCD Controller

Turn Main Clock On
Set CSS = 0 to Switch
to Main Clock

Set CSS =1 to Switch
to Subclock
Turn Main Clock Off

Return

DispOff() and StandbyXxxxN() use TurnDispOff() to reinitialize the LCD controller and 11CO peripheral
after TurnDispOff() has disabled the display.

TurnDispOn() first turns the main clock on and switches the CPU clock to the main clock (if currently
running on the subclock). Please see the previous section on TurnDispOff() for information about switching
to the main clock.

Then TurnDispOn() calls 11CO_Init() to reinitialize the 11CO controller and calls LCD_Init() to initialize the
LCD controller.

40

Power-Down Mode Demonstration NEC

Initialization of the LCD controller in LCD_Init() involves a wait of four seconds, to allow LCD voltage
boosting to reach proper levels. When TurnDispOn() is called, the display remains blank, and the CPU runs
from the main clock for this period of time.

After initializing the I1CO controller and LCD controller, TurnDispOn() returns the CPU to the subclock
and turns off the main clock.

2.3.15 Standby() — Select Standby Mode

Figure 22. Flowchart for Selecting Standby Modes

7

| mode = 0 |

»
»

sw3_in=0
Display StandbyMenu[mode].title

HO StandbyHalt1()
H1 StandbyHalt2()
H2 StandbyStop1()
H3 StandbyStop2()
H4 StandbyStop3()

mode == 0?

mode = mode -

A 4

mode = mode + 1 |

Yes
mode =0

A 4

CALL StandbyMenu[mode].func() ﬁ—l

41

Power-Down Mode Demonstration NEC

42

The Standby() routine, called from main(), puts the processor into one of five standby modes. Two of these
mode changes use the halt instruction, and three use the stop instruction. Standby() is similar to the main()
and SetClIk() routines in using a menu structure to process switch inputs.

The routine sets the mode variable to zero at the start of the routine. This variable is then used as an index
into the StandbyMenu structure. At the top of the loop, Standby() sets sw3_in to zero and displays the title
of the menu item selected. The StandbyMenu has the contents shown in the table below.

Table 7. Standby Menu Contents

Index (n) StandbyMenu[n].title | StandbyMenu[n].func | Function Operation

0 “HALT1*“ StandbyHalt1() Halt, periodic interrupt every 0.5 seconds
1 “HALT 2“ StandbyHalt2() Halt, no periodic interrupt

2 “STOP1*“ StandbyStop1() Stop, periodic interrupt every 0.5 seconds
3 “STOP2*“ StandbyStop2() Stop, no periodic interrupt

4 “STOP3*“ StandbyStop3() Stop, subclock oscillation stopped

The UP and DOWN keys move through the menu options, rolling over from 4—0 or 0—4.

The RIGHT key executes the selected standby routine. As shown in the flowcharts that follow, these
routines turn off the display, set up the mode, and then execute the halt or stop instruction. Since interrupts
can bring the processor out of halt or stop modes, the program loops, reentering the halt or stop mode until
you press the LEFT key. Pressing the LEFT key in a StandbyXxxxN() routine turns the display back on,
and returns to the Standby() routine.

The LEFT key exits from the Standby() routine back to main().

Power-Down Mode Demonstration NEC

2.3.16 StandbyHalt1()— HALT With Periodic Wake-up Interrupt

Figure 23. Flowchart for Halt with Periodic Wake-up Interrupts

| CALL TurnDispOff() |

| g_beep = ON |
—>
| sw3_in=0 |

(INTWT)
(INTKR)

CALL TurnDispOn()

Return

The StandbyHalt1() routine executes a halt instruction with a periodic interrupt from the watch timer,
INTWT, which occurs every 0.5 seconds.

StandbyHalt1() turns the display off by calling TurnDispOff() and sets the global variable g_beep to ON.
This variable setting causes the interrupt-service routine MD_INTWT() to sound a brief beep on the
buzzer/speaker every 4 seconds, indicating that the processor is waking from the halt mode.

After setting up, StandbyHalt1() sets the sw3_in variable to zero to clear the switch input, and executes the
halt instruction. The CPU stops instruction execution, which decreases power consumption, but the
subclock is still running. If the CPU clock is not the subclock, the main clock is also still running.

StandbyHalt1() follows the halt instruction with a few NOPs. If you run the program with an emulator, you
can set a breakpoint on one of the NOPs to catch the exit from halt mode.

The halt mode is ended by either a key-return interrupt (INTKR), if a switch is pressed, or by the watch-

Timer interrupt (INTWT), every 0.5 seconds. The appropriate interrupt-service routine executes, and the
43

Power-Down Mode Demonstration NEC

44

program returns to the halt loop. The routine checks to see if you pressed the LEFT switch. If not, the
routine returns to the top of the loop to clear any switch input and execute the halt instruction again.

If you press the LEFT key, StandbyHalt1() clears sw3_in, sets g_beep to OFF to cancel beeping by the
MD_INTWT() routine, turns the display back on with TurnDIspOn(), and returns to the Standby() routine.

Running StandbyHalt1() shows the power consumption needed by the system in halt mode with brief exits
every 0.5 second to check status and possibly take some action. The power consumption without a periodic
interrupt is slightly lower, as demonstrated by the next routine.

2.3.17 StandbyHalt2() — HALT with No Periodic Interrupt

Figure 24. Flowchart for Halt with no Periodic Interrupt

@

| CALL TurnDispOff() |

| CALL WT_Stop() |

(INTKR)

Yes .

No CALL WT_Start()
CALL TurnDispOn()

Return

The StandbyHalt2() routine executes a halt instruction with no periodic interrupts, staying in halt mode
until you press a switch.

StandbyHalt2() turns the display off by calling the TurnDispOff() routine, and calls WT_Stop() to stop the
watch timer and prevent the periodic INTWT interrupt.

Power-Down Mode Demonstration NEC

After setting up, StandbyHalt2() sets the sw3_in variable to zero to clear switch input, and executes the halt
instruction. The CPU stops instruction execution, which decreases power consumption. The subclock is
still running, however, and if the CPU clock is not the subclock, the main clock is also still running.

StandbyHalt2() follows the halt instruction with a few NOPs. If you are using an emulator, you can set a
breakpoint on one of the NOPs to catch the exit from halt mode. The CPU should stay in halt mode until
you press a key.

When you press a key, the key-return interrupt (INTKR) cancels the halt mode. The MD_INTKR interrupt-
service routine executes to process the switch input, and returns to the halt loop. The routine checks to see
if you have pressed the LEFT switch. If not, it returns to the top of the loop to clear any switch input and
execute the halt instruction again.

If you press the LEFT key, StandbyHalt2() clears the sw3_in variable, turns the watch timer back on by
calling WT_Start(), turns the display back on with TurnDIspOn(), and returns to the Standby() routine.

StandbyHalt2() illustrates power consumption when the CPU stays in the halt mode. The power
consumption here is slightly less than halt mode with a periodic interrupt.

45

Power-Down Mode Demonstration NEC

46

2.3.18 StandbyStopl()— Stop with Periodic Wake-up Interrupt

Figure 25. Flowchart for Stop with Periodic Interrupt

g_clock = =2? Yes

(CLK_SUB)

| CALL TurnDispOff() | Display "NO STOP"
| Wiait 1 Second

| g_beep = ON | Display "CLK SUB"
— Wiait 1 Second
}
| sw3_in=0 |

Return

(INTKR)
(INTWT)

CALL TurnDispOn()

Return

The StandbyStop1() routine executes a stop instruction with a periodic interrupt from the watch timer,
which occurs every 0.5 seconds. This routine is similar to StandbyHalt1() but uses stop instead of halt.

You cannot enter stop mode with the CPU running from the subclock. Thus, StandbyStop1() checks
g_clock, and if the variable is set to CLK_SUB, displays the message “NO STOP”, “CPU SUB”, and
returns to the Standby() routine.

StandbyStop1() turns the display off by calling the TurnDispOff() routine, and sets the global variable
g_beep to ON. This setting causes the interrupt-service routine for the watch-timer interrupt,
MD_INTWT(), to sound a brief beep on the buzzer/speaker every 4 seconds, indicating that the processor
is waking up from the stop mode.

Power-Down Mode Demonstration NEC

StandbyStop1() sets the sw3_in variable to zero to clear the switch input and executes the stop instruction.
This action stops the CPU from executing instructions and turns off the main clock. The subclock is still
running.

StandbyStop1() follows the stop instruction with a few NOPs. If you run the program with an emulator,
you can set a breakpoint on one of the NOPs to catch the exit from stop mode.

Either a key-return or watch-timer interrupt cancels the stop mode and restarts the main clock. Once the
stop mode is cancelled, the appropriate interrupt-service routine executes and returns to the stop loop. The
routine checks to see if you pressed the LEFT switch. If not, it returns to the top of the loop to clear any
switch input and execute the stop instruction again.

If you press the LEFT key, StandbyStop1() clears the sw3_in variable, sets g_beep to OFF to cancel
beeping by the MD_INTWT() routine, turns the display back on with TurnDIspOn(), and returns to the
Standby() routine.

Running StandbyStop1() shows the power consumption needed by the microcontroller in stop mode with
brief exits every 0.5 second to check status and possibly take some action. The power consumption in this
case is slightly less than when running with the CPU set to the subclock.

47

Power-Down Mode Demonstration NEC

48

2.3.19 StandbyStop2() — Stop with No Periodic Interrupt, Subclock Running

Figure 26. Flowchart for Stop with no Periodic Interrupt

®

g_clock = =2? Yes

(clk_sub)

| CALL TurnDispOff() | Display "NO STOP"
| Wiait 1 Second
| CALL WT_Stop() | Display "CLK SUB"
Wait 1 Second
- '
| sw3_in=0 |

Return

(INTKR)

CALL TurnDispOn()

Return

The StandbyStop2() routine executes a stop instruction with no periodic interrupts, staying in stop mode
until you press a switch. This routine is similar to StandbyHalt2() but uses stop instead of halt.

You cannot enter stop mode with the CPU running on the subclock. Thus, StandbyStop2() checks g_clock.
If the variable is set to CLK_SUB, the routine displays the message “NO STOP”, “CPU SUB”, and returns
to the Standby() routine.

StandbyStop2() turns the display off by calling the TurnDispOff() routine, and calls WT_Stop() to stop the
watch timer to prevent the periodic INTWT interrupt.

StandbyStop2() sets sw3_in to zero to clear switch input and executes the stop. The CPU stops executing
instructions, and the main clock stops. The subclock is still running.

Power-Down Mode Demonstration NEC

StandbyStop2() follows the stop instruction with a few NOPs. If you run the program with an emulator, you
can set a breakpoint on one of the NOPs to catch the exit from stop mode. The CPU stays in stop mode
until you press a key.

When you press a key, the key-return interrupt (INTKR) cancels the stop mode and restarts the main clock.
The MD_INTKR interrupt-service routine processes the switch input and returns to the stop loop. The
routine checks to see if you pressed the LEFT switch. If not, it returns to the top of the loop to clear any
switch input and execute the stop instruction again.

If you press the LEFT key, StandbyStop2() clears the sw3_in variable, turns on the watch timer by calling
WT_Start(), turns the display back on with TurnDIspOn(), and returns to the Standby() routine.

Running StandbyStop2() shows power consumption when the CPU stays in stop mode. The power
consumption here is slightly less than stop mode with a periodic interrupt, and also slightly less than when
running with the CPU set to the subclock.

49

Power-Down Mode Demonstration NEC

2.3.20 StandbyStop3()— Stop with No Periodic Interrupt, Subclock Stopped

Figure 27. Flowchart for Stop with No Periodic Interrupt, Subclock Stopped

Yes

g_clock ==2?
(CLK_SUB)

| CALL TurnDispOff() | Display "NO STOP"
| Wait 1 Second

CALL WT_Stop() |

OSCSELS = 0 (OSCCTL.4) Display "CLK SUB™
to Stop Subclock Oscillation Wait 1 Second
LSRSTOP = 1 (RCM.1)
to Stop Low-speed Ring-OSC l
| Return
—

(INTKR)

OSCSELS =1 (OSCCTL.4)
to Restart Subclock Oscillation
CALL WT_Start()

CALL TurnDispOn()

Return

The StandbyStop3() routine executes a stop instruction with no periodic interrupts, staying in stop mode
until you press a switch. The routine also stops the subclock to conserve the power used to drive the crystal
oscillator.

You cannot enter stop mode with the CPU running from the subclock. Thus, StandbyStop3() checks
g_clock. If the variable is set to CLK_SUB, the routine displays the message “NO STOP”, “CPU SUB”,
and returns to the Standby() routine.

StandbyStop3() turns the display off by calling the TurnDispOff() routine, and calls WT_Stop() to stop the
watch timer and prevent the periodic INTWT interrupt. StandbyStop3() then sets the OSCSELS bit in the
OSCCTL register to zero, which sets the P123/XT1 and P124/XT2 pins in /0O port mode. These pins

50

Power-Down Mode Demonstration NEC

connect to the 32.768-kHz subclock crystal, so changing their mode stops the crystal. The routine also sets
the LSRSTOP bit in the RCM register to 1 to stop the internal low-speed oscillator. Now only the main
clock is oscillating.

After setting up, StandbyStop3() sets the sw3_in variable to zero to clear the switch input, and executes the
stop instruction. This action prevents the CPU from executing instructions and stops the main clock. At this
point, no clocks are active.

StandbyStop3() follows the stop instruction with a few NOPs. If you run the program with an emulator, you
can set a breakpoint on one of the NOPs to catch the exit from stop mode. The CPU stays in stop mode
until you press a key.

Pressing a key invokes the key-return interrupt (INTKR), which cancels the stop mode and restarts the
main clock. The MD_INTKR interrupt-service routine processes the switch input and returns to the stop
loop. The routine checks to see if you pressed the LEFT switch. If not, the routine returns to the top of the
loop to clear any switch input and execute the stop instruction again.

If you press the LEFT key, StandbyStop3() clears the sw3_in variable, turns the watch timer back on by
calling WT_Start(), turns the display back on with TurnDIspOn(), and returns to the Standby() routine.

Running StandbyStop3() shows power consumption when the CPU stays in stop mode, with all clocks
stopped. This level of power consumption is slightly lower than that for stop mode with the subclock and
internal low-speed oscillator running, and also slightly lower than when running the CPU on the subclock.

2.3.21 MD_INTKR() — Key-Return Interrupt-Service Routine

Figure 28. Flowchart for Key-Return Interrupt-Service Routine

INTKR

| Read P7[4-0] to sw3_first |

| Wait 5 mSec Using delay5ms() |

| Read P7[4-0] to sw3_second |

Yes

sw3_first ==
sw3_second?

sw3_in=0 | | sw3_in = sw3_first |

v
Return

51

Power-Down Mode Demonstration NEC

52

The MD_INTKR() routine services the INTKR interrupt. Closing any of the key switches on the SW3
navigation switch connects the key-return input pin to GND. The negative edge on the key return pin
causes the INTKR interrupt.

The MD_INTKR() routine reads the input port attached to the switches to get the current state of the pins.
The routine then calls delay5msec() to delay for five milliseconds. After this 5-millisecond interval, the
routine reads the input port again.

If the first and second values for the switches agree, the routine considers the switches stable.
MD_INTKR() sets the global variable SW3_in to the value read (to indicate that a switch has been
pressed) and returns.

If the first and second values do not agree, MD_INTKR() sets SW3_in to zero (to indicate that the routine
did not find a stable switch value) and returns.

If the switches are still bouncing, the next negative edge on the key return inputs causes another INTKR
interrupt, and MD_INTKR() checks the switches again.

Note that the delay5msec() routine (not included in the flowchart) uses the watch-timer interval timer. This
timer’s interval is approximately two milliseconds, so the routine delays by counting three intervals. In
StandbyStop3(), however, the subclock is not running, so delay5msec() executes an instruction loop to
approximate the delay. The program adjusts the number of instructions executed in the loop based on the
value in the PCC register, thus creating the same delay regardless of the PCC divider of the main system
clock .

Power-Down Mode Demonstration NEC

2.3.22 MD_INTWT() — Watch-Timer Interrupt-Service Routine

Figure 29. Flowchart for Watch-Timer Interrupt-Service Routine

INTWT

g_beep == OFF?

P0.6 =0, PM0.6 =0
to Turn on Buzzer Drive

P0.6 =0, PM0.6 =1
to Turn Off Buzzer Drive

WTIIF ==0?

| WTIIF=0 |

| Invert PO.6 to drive buzzer |

Watch-timer interrupt INTWT invokes the MD_INTWT() routine. The interrupt occurs every 0.5 seconds
when the subclock is running.

The MD_INTWT() routine checks the global variable g_beep, and if the variable is off, just returns from
interrupt service.

In StandbyHalt1() or StandbyStop1(), g_beep is on, so MD_INTWT() increments the variable hsec. This
variable tracks half-seconds. If the half-second counter has not reached eight (four seconds), the routine
returns.

If hsec has reached eight, MD_INTWT() clears the variable to zero and generates a short beep. The routine
generates the beep by setting pin P06 as an output, then setting the pin’s value alternately low and high

53

Power-Down Mode Demonstration NEC

2.4

54

every time the watch-timer interval flag is set. The watch-timer interval counter overflows every 1953
microseconds, or about every 2 milliseconds. Using this interval thus generates a square wave with a 4-
millisecond cycle time—a 250-Hz frequency. The routine runs this on/off cycle 16 times, so the beep lasts
about 32 milliseconds.

With P06 connected to a buzzer, the beep of the square wave tells you when the INTWT interrupt brings
the CPU out of halt or stop mode periodically for processing.

Applilet's Reference Driver

NEC Electronics’ Applilet program generator can automatically generate C or assembly language source
code to manage peripherals for NEC Electronics microcontrollers. Please see the Appendix for the version
of the Applilet used.

The Applilet produces the code for the program’s basic initialization and main function; clock
initialization; drivers for the key-return interrupt; initialization and control for the watch timer; and code to
handle the 11CO controller for communication with the LCD controller. After the Applilet produces the
basic code, you can add code to customize the program.

This section describes how to set up the Applilet to produce code for these peripherals, and lists the files
and routines produced. Also listed are additional files not generated by the Applilet.

When you start the Applilet and select the target device, save your settings to a new project (.prx) file. The
Applilet displays a dialog box that lets you select the peripheral blocks you want to set up.

2.4.1 Configuring Applilet for Clock Initialization

Select System and the Applilet displays the system settings for clocks. Use the Foundation setting tab to
establish which clocks operate at startup.

Power-Down Mode Demonstration

Figure 30.

Configuring Applilet for Clock Initialization

- Gystem

Fourdation setting | CPU and perinheral clock set | Wemory and Cn-chin debug |

—Main system clock
¢ Hizh-speed intemal oscillator clack

"~ High-speed system clock

Sub-clock mode setting
= Tlnused

¥ HT1 input clock operation
" Exclk input clock operation

—High-speed system clock operation mode
= 31 oeeillation mode

{% External clock input raode

—High-speed internal ascillator clock sefting
{% | High-speed internal nspillator clock operation

") High-speed internal ospillstor clock stap

~Hinh-speed system clock setting
" High-speed systemn clock operation

¥ High-speed systern clock stop

High-speed system frequency control
& IHz==fr==101Hz

£ 10N Hz=f==2011Hz

[T Low-speed intemal nscillator clock stop

—Low-speed internal oscillator option byte selection
¥ Low-speed internal oscillator can be stop by software

~Dscillates setting
High-speed system clock oscillation(TWvHz)

High-speed intermal oseillator oscillation(TWH=)
Low-speed internal oscillator oscillationFHz)

Suh oacillation K Hz)

—Qscillation stabilization time
Stable timelros)

6

; 7

240 ~|
72,763 =l
52]

Detail | Defaultl

Help | Infa |

0] | Cancell

This dialog controls how the Clock_Init() routine initializes the clocks. When the processor starts, the CPU

is running on the internal high-speed oscillator, and the external clock input is disabled. For the

demonstration, you want the microcontroller to remain in that mode, so keep High-speed internal

oscillator clock (internal high-speed oscillator) selected for the Main system clock. High-speed system
clock setting is set for High-speed system clock stop, which ensures that the external clock remains

stopped.

Because the external clock is disabled, the High-speed system clock operation mode section is grayed
out. The choices in this section would select between a crystal on P121/X1 and P122/XT2, or a driven input

on P122/EXCLK.

Since the high-speed internal oscillator has already been selected, the choices in the High-speed internal
oscillator clock setting section are also grayed out.

55

Power-Down Mode Demonstration NEC

56

Under Sub-clock mode setting, click XT1 input clock operation to select a crystal oscillator connected to
the XT1 and XT2 pins. (Selecting Unused would disable the subclock, and Exclk input clock operation
would configure the microcontroller for a driven input on the P124/XT2 pin.)

Set the Low-speed internal oscillator option byte selection to allow the internal low-speed oscillator to
be stopped by software. This action is controlled by a bit in the option byte. You can set the option byte to
prevent the internal low-speed oscillator from being stopped, which is useful when the oscillator runs the
watchdog timer.

Clock speeds depend on the microcontroller specification—in this case, 8 MHz for the internal high-speed
oscillator, 240 kHz for the internal low-speed oscillator, and 32.768 kHz for the subclock. The setting for
the external clock is grayed out since this clock is disabled at the start.

Figure 31. CPU and Peripheral Clock Information

- Gystem
Foundation setting & GELLand. peripheral ciock set | Mermory and One-chin debug |

CPLU and peripheral clock set
CFT clock{EHz) 2000 j

Peripheral clock{IvHz) 2Hh) E[

(hlank space in dialog hox removed)

Detaill Defaultl Help | Infi | oK | Cancell

Once you have configured the foundation settings, you can move to the CPU and peripheral clock set
settings.

The CPU clock(kHz) setting controls the initial main-clock division (set in the PCC register). Choose 8000
(for 8 MHz), for the fastest CPU speed. With the CPU clock sourced by the internal high-speed oscillator,
the peripheral clock must be the same, so the only choice for Peripheral clock(MHz) is 8 MHz.

2.4.2 Configuring Applilet for Key-Return Interrupt

Select Interrupt Controller and then the Key return function tab to set details for the key-return
interrupt.

Power-Down Mode Demonstration

Figure 32. Configuring Key-Return Interrupt

'-.,-_'"-Inl:errupt Controller

Interrupt setting i Kem retmm fmetion. |

— key return setting

¥ Enable key returm interrupt

¥ KRD
[+ KR2
W KR4
[T KRé
Priority

— ke return interrupt setting

¥ KRl
¥ KR3
[T KRS
™ KR7

lowrest j

{ blank space in dialog hox removed)

Detail | Defaultl Help |

[nfio | 0] | Cancell

Check the Key return setting box to Enable key-return interrupt, and set the interrupt priority for

lowest.

The navigation switch connects to pins P70/KRO0 through P74/KR4, so check the boxes for KRO through
KR4. You can use pins P75/KR5, P76/KR6 and P77/KR7 as general-purpose 1/O pins without affecting the

key-return interrupt function.

2.4.3 Configuring Applilet for Watch Timer

Selecting WatchTimer brings up a dialog showing the watch-timer settings.

57

Power-Down Mode Demonstration NEC

Figure 33. Configuring Watch Timer

> WatchTimer
—Mode Clock mode
= rnszed £ Tlze MainClock
& Tsed & se SubClock
—Used as watch timer
Time(us) | 500000 |
¥ Ershle watch timer interrupt(INTWT)
Friority Ilawest j
—Used as interval timer
Prescaler selectionus) I 1050 j
[Enshle interval timer mterrupt{THTWTT)
Friority I]J:nwest

Detaill Defaultl Help | Info |

Set Mode to Used and set Clock mode to Use SubClock to establish the 32.768-kHz subclock as the
watch-timer timebase.

Under Used as watch timer select 500000 (0.5 second) from the drop-down list, and check the box to
enable the INTWT interrupt.

Under Used as interval timer, SELECT 1950 (microseconds) as the interval. Leave Enable interval
timer interrupt(INTWT]I) unchecked.

The Applilet generates WT_Init() to initialize the watch timer and WT_Start() to start the timer. The
Applilet can also generate other functions for watch timer control, and you can select these additional
functions either in the Applilet function view or during code generation.

2.4.4 Configuring Applilet for IICO Communication

The microcontroller’s 11CO peripheral is used internally for communication with the LCD controller, so
click Serial and select the 11CO peripheral as Used.

58

Power-Down Mode Demonstration NEC

Figure 34. Configuring Applilet for ICO Communication

'--.-:"-Serial Communication Interface

Cteneral | 1100 |

—LARTOMSSIT10 —LIARTE

o

Both unnsed & Unused

" TARTO used

¢ CSI0 used " Used

—i5111 — iz

* TTnuszed = TTnused

= Tlzed e Tlzed
(hlank space in dialog bhox removed)
Detail | Default | Help | Info |

You can now go to the 11CO tab to make detailed settings.

Figure 35. 1ICO Detail Settings

“=Serial Communication Interface

—C0 transfer speed

¥ Mormal " High-speed rande

Nommalfbps) [s0000 | High-speedfups) 23000 =
— Digital filter

% On D
—lz0 slave address

Lddress ||:|
— 0 interrupt setting

Priority lonar j
— 0 callback function

¥ Ddaster error ¥ Dlaster send end ¥ Ilaster recerve end

[Slawe ervor [Slawve send end [Slave tecene end

(hlank space in dialog hox removed)

Detail Default Help Info (0] 4 Cancel

Set the 11CO peripheral to operate in Normal mode. This selection makes the drop-down menu of
communication speeds available. The speeds are based on divisions of the peripheral clock, so the choices
depend on the peripheral clock. Select the highest available speed—90000 bps.

59

Power-Down Mode Demonstration NEC

60

The 11CO peripheral can operate in slave or master mode, and can switch between the two. Unless in the
middle of a transfer initiated as a master, the peripheral runs in slave mode, but this demonstration does not
use slave mode. Leave the slave address at the default of 0.

Set the 11CO interrupt setting for low priority.

The Applilet generates several standard operating routines and can generate blank callback routines that
allow you to insert code for dealing with particular events. Some of these callback routines support master
communication, so check Master error, Master send end and Master receive end. Leave the slave-
callback boxes unchecked.

For the 11CO peripheral, the Applilet also has optional functions not selected in the 11CO tab. You can select
these functions in the Applilet function view or during code generation.

2.4.5 Generating Code with Applilet

Once you have set up the various dialog boxes, click Generate code. The Applilet displays the peripherals
and functions to be generated and allows you to select a directory in which to store the source code.

At this point, select the additional watch-timer function, WT_Stop(), as shown below.

Figure 36. Selecting Watch-Timer Function

% Generate source code

—Select peripherals and functions: —Select driver and directon:
ra— B aD ;I I ==T3 Wj_c] j
[o— ¥ Timer .SC:'L
¥ WatchdogTirner A NECTools32
¥ WatchTiraer (A 1-Station
WT_Init{) CADKLG24N
WT_Start() & PWE_DN

.............. ¥ WT Stop()
.............. ®OWT Uger Init()

[ra— ¥ DU
[rx— ®oOLVI
= Create folder
Expand all Collapse all Select all Clear all Cenerate Cancel

Power-Down Mode Demonstration NEC

Several additional functions are selected for the I1CO peripheral as well. To make these choices, expand
Serial, then expand 11CO. Point to the appropriate function and left-click to select.

When you click Generate, the Applilet creates the code in several C-language source files (extension .c)
and header files (extension .h), and shows the list of files created in a dialog box.

To support clock initialization, the Applilet generates system.h and system.c.

To support the key-return interrupt, the Applilet generates int.h, int.c, and int_user.c.

To support the watch timer, the Applilet generates watchtimer.h, watchtimer.c and watchtimer_user.c.
To support the 11CO peripheral, the Applilet generates serial.h, serial.c, and serial_user.c.

The Applilet generates several other files, including a main.c file with a blank main function.

2.4.6 Applilet-Generated Files and Functions for Clock Initialization

The files system.h and system.c contain the code for clock initialization.

2.4.6.1 System.h

The header file system.h contains declarations for the functions controlling the clock and
definitions of values for clock initialization.

2.4.6.2 System.c

The source file system.c contains the following function generated by the Applilet for clock
initialization:

void Clock_Init(void)
The Clock_Init() routine is the first function Systemlnit() calls. Clock_Init() sets up the clocks as
specified in the Applilet’s System block.

2.4.7 Applilet-Generated Files and Functions for Key-Return Interrupt

The files int.h, int.c and int_user.c contain the code generated for key-return interrupt support.

2.4.7.1 Int.h

The header file int.h contains declarations for the functions controlling the key-return interrupt and
definitions of values for key-return initialization. The header file macrodriver.h, used for all

61

Power-Down Mode Demonstration NEC

62

Applilet-generated code, also defines some data types and values, such as the MD_STATUS values
returned by some functions.

Code added to the Applilet-generated file provides the external declaration of the sw3_in variable.
This variable reports the state of the key switch matrix, so including int.h enables other portions of
the program to examine the switch state. You must also add the definitions of the bit patterns set in
the sw3_in variable corresponding to switch 1 down, switch 2 down, etc.

24.7.2 Int.c

The source file Int.c contains the following function generated by the Applilet for the key-return
interrupt:

void INT_Init(void)
The INT _Init() routine initializes the key-return register and interrupt as specified in the Applilet
key-return dialog.

2.4.7.3 Int_user.c

The source file int_user.c contains stub functions for user code. These functions are empty on code
generation to allow you to add application-specific code.

__interrupt void MD_INTKR(void)
This is the interrupt-service routine for the key-return interrupt INTKR, generated when a negative-
going edge is seen on one of the key-return pins.

The Applilet generates this interrupt-service routine blank. You add code to use the key-return
interrupt to debounce and read the key switch matrix.

You must add the declaration of the sw3_in variable to this file.

2.4.8 Applilet-Generated Files and Functions for Watch Timer

The code generated for watch-timer support is in the files watchtimer.h, watchtimer.c and
watchtimer_user.c.

2.4.8.1 Watchtimer.h

The header file watchtimer.h contains declarations for the functions controlling the watch timer.
The header file macrodriver.h, used for all Applilet-generated code, also defines some data types
and values, such as the MD_STATUS values returned by some watch-timer functions

Power-Down Mode Demonstration NEC

2.4.8.2 Watchtimer.c

The source file watchtimer.c contains the following functions generated by the Applilet for the
watch timer:

void WT_Init(void)
The WT_Init() routine initializes the watch timer as specified in the Applilet watch-timer detail
dialog.

void WT_Start(void)
The WT_Start() routine starts watch-timer operation by enabling the timer and the interrupt
INTWT.

void WT_Stop(void)
The WT_Stop() routine stops the watch timer by disabling the timer and disabling the timer
interrupts.

2.4.8.3 Watchtimer_user.c

The source file watchtimer_user.c contains stub functions for user code. These functions are empty
on code generation to allow you to add application-specific code.

__interrupt void MD_INTWT (void)

This is the interrupt-service routine for the watch-timer interrupt INTWT. The Applilet generates
this interrupt-service routine blank. You add code to use the watch timer to count half-seconds and
to beep every four seconds.

2.4.9 Applilet-Generated Files and Functions for ICO Communication

The code generated for 11CO support is in the files serial.h, serial.c and serial_user.c.

2.4.9.1 Serial.h

The header file serial.h contains declarations for the functions controlling 11CO, and definitions of
values for 11CO initialization. The header file macrodriver.h, used for all Applilet-generated code,
also defines some data types and values, such as the MD_STATUS values returned by some
functions.

You need to add external declarations for the variables used to signal 11CO states:
¢ extern MD_STATUS Ul_MasterError

63

Power-Down Mode Demonstration NEC

64

¢ extern MD_STATUS Ul_MasterSendEnd
¢ extern MD_STATUS Ul_MasterReceiveEnd
¢ extern MD_STATUS UIl_MasterFindSlave

Also add external declarations for the functions 11C0_Init() and 11CO_MasterStartAndSend().

2.4.9.2 Serial.c

The source file Serial.c contains the following Applilet-generated functions for [1CO:

void 11CO_Init(void)
This routine initializes the 11CO peripheral as specified in the Applilet 11CO detail dialog.

MD_STATUS 1ICO_MasterStart(TransferMode mode, UCHAR adr, UCHAR wait)

This routine starts master-mode communications. The mode parameter is either Send or Receive to
specify the direction. The adr parameter specifies the 11C slave address, and wait specifies the
number of loop times to wait for a start condition to occur. This routine creates a start condition
and sends the slave address.

void 11C0_Stop(void)
This routine stops the 11CO peripheral. The demonstration program does not use this function.

MD_STATUS I1C0_MasterSendData(UCHAR* txbuf , UINT txnum)

I1CO_MasterStart() calls this routine after starting a Send transfer. The txbuf parameter points to
an array of bytes to send, and the txnum parameter specifies the number of bytes to send. This
routine sets the buffer pointer and count, and sends the first byte in the buffer. The MD_INTIHICO()
interrupt-service routine sends the remaining bytes.

MD_STATUS HHCO_MasterReceiveData(UCHAR* rxbuf, UINT rxnum)

I1CO_MasterStart() calls this routine after starting a Receive transfer. The rxbuf parameter
specifies the address of a buffer for storing received characters, and rxnum specifies the number of
characters to receive. The demonstration program does not use this routine.

__interrupt void MD_INTIICO(void)
This is the 11CO interrupt-service routine, invoked by the INTIICO interrupt. This routine calls
either 11CO_MasterHandler() or 11CO_SlaveHandler(), depending on the I1CO master or slave state.

Power-Down Mode Demonstration NEC

MD_STATUS IICO_SlaveHandler(void)
MD_INTIICO() calls this routine to handle 11CO interrupts in master mode.

MD_STATUS I1C0_MasterHandler(void)
MD_INTIHCO() calls this routine to handle 11CO interrupts in slave mode.

2.4.9.3 Serial_user.c

The source file serial_user.c contains stub functions for user code. These functions are empty on
code generation to allow you to add application-specific code.

You need to add the following variables to enable subroutines to check the state of 11CO
communication:

¢ MD_STATUS Ul_MasterError (stores master errors)
¢ MD_STATUS Ul_MasterSendEnd

¢ MD_STATUS Ul_MasterReceiveEnd

¢ MD_STATUS Ul_MasterFindSlave

void 11CO_User_Init(void)
I1CO_Init() calls this routine, but the demonstration does not use the routine.

void CALL_IICO_MasterError(MD_STATUS flag)
After detecting an error, 11CO_MasterHandler() calls this routine. Add code to store the flag
parameter in Ul_MasterError.

void CALL_I1CO0_MasterReceiveEnd(void)
I1CO_MasterHandler() calls this routine when the receive count reaches zero. Add code to set the
Ul_MasterReceiveEnd flag to MD_OK. The demonstration program does not use this routine.

void CALL_IICO_MasterSendEnd(void)
I1CO_MasterHandler() calls this routine after sending the last transmit byte. Add code to set the
Ul_MasterSendEnd flag to MD_OK.

void CALL_I1CO_SlaveAddressMatch(void)
I1CO_SlaveHandler() calls this routine when the slave address received in slave mode matches the
slave address for the 11CO peripheral. The demonstration program does not use this routine.

65

Power-Down Mode Demonstration NEC

66

void CALL_I1CO0_MasterFindSlave(void)

This routine sets the Ul_MasterFindSlave flag to MD_OK. The routine is called when
I1CO_MasterHandler() receives an ACK after sending the slave address, indicating that a slave has
responded to the slave address.

The following routine was not generated by the Applilet, but was written for this demonstration
program:

MD_STATUS IIC0_MasterStartAndSend(UCHAR sadr, UCHAR* txbuf, UINT txnum)
This routine combines the MasterStart and MasterSendData functions, since these work together to
send data to a particular slave. First, 11CO_MasterStart(Send, sadr, 10) sets up a sending transfer to
the specified slave address. The routine then waits for Ul_MasterFindSlave to be set, indicating
that the slave has responded.

Then I1C0_MasterSendData(txbuf, txnum) sends the specified data. The routine then waits for the
Ul_MasterSendDone flag to be set, indicating that the transfer has completed.

The routine monitors the Ul_MasterError flag while waiting, to check for error conditions in the
sending of the slave address or data transfer.

2.4.10 Other Applilet-Generated Files

For the demonstration program, the Applilet generates several other source files. The files and their
functions are shown below.

Table 8. Other Applilet-Generated Files
File Function
Macrodriver.h General header file for Applilet-generated programs
Systeminit.c Systemlnit() and hdwinit() functions for initialization
Main.c The main program function
Option.asm Defines the option byte and security bytes
Option.inc Defines settings for the option byte and security settings

Power-Down Mode Demonstration NEC

2.4.11 Demonstration-Program Files Not Generated by Applilet

The demonstration program also includes the following files, not generated by the Applilet.

Table 9. Demonstration-Program Files not Generated by Applilet

File Function

define.h Definitions of navigation switch values

Icd.h Header file for high-level LCD functions

lcd.c Code to write characters and strings to the LCD

LcdDrvApp.h Header file for LCD-driver functions

LcdDrvApp.c Code to initialize, write and read the LCD controller;
these functions call Applilet-generated 11CO routines

2.5 Demonstration Platform

The demonstration uses a development board from NEC Electronics. You may be able to duplicate the
same hardware using off-the-shelf components along with the NEC Electronics microcontroller of interest.

2.5.1 Resources

The program demonstration uses the following resources:

¢ DemoKit-LG2 demonstration board, with uPD78F0397 8-bit microcontroller mounted

¢ DemoKit-LG2 resources:

8-character, 14-segment LCD

SW3 navigation switch

BUZ1 buzzer driven by P06/TO01

3V battery in BAT1 receptacle

Ammeter between JP1.3 and JP1.2 to measure current from battery

Added 10-MHz crystal in location X1 (normally not populated); remove JP3

In order to make more accurate current measurements, disable the DemoKit-LG2 light sensor by removing

resistor

R8, and disconnect phototransistor Q1 from the 78F0397 MCU.

For details on the hardware listed above, please refer to the appropriate user manual, available from NEC
Electronics upon request.

67

Power-Down Mode Demonstration NEC

68

Figure 37. Demonstration Platform

J

vwwww,, W

©0000000C000000000
0000000000000 0CODROD
0000 COCOOOOODOOCDOOY

mdggooooooooooooooooool“
00 '
00

L2 Demokit ¢
EESS-0800-028-02 s
_ Wodo In Gormany Verslem: 2,00

o

2.5.2 Demonstration of Program

With the hardware configured and the uPD78F0397 microcontroller programmed with the demonstration
code, the demonstration is as follows:

¢ Press navigation switch SW3 UP and DOWN to change menu selections
¢ Press navigation switch SW3 RIGHT to select submenu or activate selection
¢ Press navigation switch SW3 LEFT to return to previous menu

¢ Observe the current on ammeter in selected clock/standby mode
In submenu CPU CLK:
¢ Select C HSR to set clock to internal high-speed oscillator (Note 1)

¢ Select C EX to set clock to 10-MHz external crystal X1 (Note 2)
¢ Select C SUB to set clock to 32.768-kHz subclock

Power-Down Mode Demonstration NEC

Note 1: The CPU and peripherals begin operation running on the internal high-speed oscillator (HSR).
When you switch the CPU clock to the X1 crystal, you must switch the peripherals as well. Once you set
the peripherals to use the external crystal you cannot switch them back to the HSR, even though you can
switch the CPU clock back to the HSR. To return the peripherals to the HSR, reset the device or remove
and reapply power.

Note 2: The option C EX selects the external X1 crystal. In the initialization process for setting X1, the
program checks for crystal oscillation. If the crystal does not start oscillating within a timeout period, the
program does not change the clock to C EX, but instead keeps the current clock. The routine displays an
error message of “E NO OSC” on the LCD and waits for you to press a switch before continuing.

In submenu SET PCC:

Select PCC 0 to set fastest CPU clock operation (fxp)
Select PCC 1 to set CPU clock as fxp/2

Select PCC 2 to set CPU clock as fxp/4

Select PCC 3 to set CPU clock as fxp/8

Select PCC 4 to set slowest CPU clock operation (fxp/16)

* & & o o

Note: If you set the CPU CLK to C SUB (subclock operation), changing PCC has no effect. In this case,
selecting SET PCC displays PCC SUB. The routine then waits for a further SW3 key press before returning
to the main menu.

Selecting main menu item DISPLAY shows “OFF” for a second, and then turns off the LCD, the LCD
controller, and the 11CO peripheral. Make your current measurements when the LCD goes blank to see the
power savings from turning off the display. Press SW3 to turn the LCD on again. This restart takes four
seconds, during which the current consumption includes 11C0 and the LCD controller.

In submenu STANDBY::

¢ Select HALT 1 for halt mode 1 = halt instruction, subclock running, periodic watch-timer interrupt
every 0.5 second, short beep every 4 seconds

¢ Select HALT 2 for halt mode 2 = halt instruction, subclock running, no periodic interrupts

¢ Select STOP 1 for stop mode 1 (Note) = stop instruction, subclock running, periodic watch-timer
interrupt every 0.5 seconds, short beep every 4 seconds

¢ Select STOP 2 for stop mode 2 (Note) = stop instruction, subclock running, watch timer stopped

¢ Select STOP 3 for stop mode 3 (Note) = stop instruction, subclock stopped, watch timer stopped

Note: If you set the CPU CLK to C SUB (subclock operation), stop is not allowed. If you attempt stop
mode, you see a message, and the LCD shows the submenu item again.

69

Power-Down Mode Demonstration

NEC

2.6 Hardware Block Diagram

70

Figure 38. Hardware Block Diagram
Ammeter
0.500 mA
JP1
uPD78F0397 2%3 +3
78K0/LG2 VDD Battery
N P123/XT1
32.768 KHz I:l
Crystal P06/TO01 4|:il Buzzer
) E— P124/XT2
P121/X1
| SO0 - S39
10 MHz]
Crystal for
Main clock P122/X2/EXCLK
VY —
» P70/KRO |\ /| 8-Digit, 14-Segment |\ /|
e === | CD Display Module —
Up Seleete | || 1/J/I\Nl e
— P74/KR4
Left —
p P72/KR2
Right
Down | »| P71/kr1 COMO-COM3
»| P73/KR3

JP1 is the power terminal for the uPD78F0397 MCU on the DemoKit-LG2. Connect an ammeter between
JP1.3 and JP1.2 to measure MCU current from the 3V battery in the BAT1 holder underneath the board.

When you attach a crystal in the board’s X1 location, remove the JP3 jumper. This jumper connects a
driven 6-MHz clock from the PLD to the P122/X2/EXCLK pin, in conflict with the crystal, when the board
is powered from the USB cable.

Power-Down Mode Demonstration NEC

2.6.1 Power Measurement Results

In a standard DemoKit-LG2, the light sensor causes variable current consumption, which interferes with
current measurements. Disconnect the light sensor by removing R8 and disconnecting Q1 from the CPU.
Additionally, if you operate the board from the 5V supply provided by the USB cable, the USB interface
and PLD are powered and can interfere with power measurements. For this demonstration, measure power
with the 3V battery (USB and PLD not operating).

Note that the following results are in-system current in various operation modes tested on DemoKit-LG2.
For the power consumption of a specific microcontroller, refer to the device’s user manual.

Figure 39. In-system current measurement with 8-MHz Internal High-Speed Oscillator and 3V power

Power consumption vs. Operation Mode

1.8

1.6

1.4

1.2
<
E 1
'_
Z
1}
£ 0.8
=)
o

0.6

0.4

0.2

0,

PCC=0 PCC=1 PCC=2 PCC=3 PCC=4 PCC=0 PCC=0 PCC=4 PCC=4 PCC=0 PCC=0 PCC=0
fxp fxp/2 fxpld fxp/8 fxp/l6 HALT1 HALT2 HALT1 HALT2 STOPL STOP2 STOP3
MODE

71

Power-Down Mode Demonstration

NEC

72

Figure 40.

In-system current measurement with 10-MHz main clock and 3V power

CURRENT (mA)

25

=
o

[y

0.5

PCC=1
fxp fxp/2

PCC =0

Power consumption vs. Operation Mode

PCC=2 PCC=3 PCC=4 PCC=0 PCC=0 PCC=4 PCC=4 PCC=0 PCC=0 PCC=0
fxpl4 fxp/8 fxp/16 HALT1 HALT2 HALT1 HALT2 STOP1 STOP2 STOP3
MODE

O Battery current

Power-Down Mode Demonstration NEC

Figure 41. In-system current measurement with 32.768-KHz subclock and 3V power

Power consumption vs. Operation Mode

0.05

0.04

< 003
E
-
zZ
w
4
@

3 0.02

0.01

0

Display ON Display OFF HALT1 HALT2
MODE

73

Power-Down Mode Demonstration NEC

2.7 Software Modules

74

The following files make up the software modules for the demonstration program. The table below shows
which files were generated by the Applilet and which require modification to create the demonstration
program.

The listings for these files are located in the Appendix.

Table 10. Demonstration Program Software Modules

File Purpose Generated Modified
By Applilet By User

Main.c Main program Yes Yes
Macrodriver.h General definitions used by the Applilet Yes No
System.h Clock-related definitions Yes No
Systeminit.c Systemlnit() and hdwinit() functions Yes No
System.c Clock_Init() function Yes No

Int.h Interrupt-related definitions Yes Yeghote!
Int.c Key-return interrupt-related functions Yes No
Int_user.h User code for key-return interrupt Yes Yeshoe!
Serial.h 11CO-related definitions Yes Yeshore?
Serial.c 11CO-related functions Yes Yeghote2
Serial_user.c User code for 11C0-callback routines Yes Yeshote2
Watchtimer.h Watch-timer related definitions Yes No
Watchtimer.c Watch-timer functions Yes No
Watchtimer_user.c User code for timer-interrupt handling Yes Yeshoes
Option.inc Option-byte, POC, and security definitions Yes No
Option.asm Option-byte, POC, and security data Yes No
define.h Definitions of navigation-switch values -- Yes
Lcd.h LCD high-level function definition -- Yes
Lcd.c LCD high-level functions -- Yes
LcdDrvApp.h LCD-controller driver definitions -- Yes
LcdDrvApp.c LCD-controller driver functions -- Yes

Note 1. Modify Int.h to add the declaration of sw3_in (the variable used to store the navigation switch
debounced input) and definitions for switch-input values. Modify Int_user.c to add the variable sw3_in, to
add the code for handling the key-return interrupt in MD_INTKR(), and to add the delay5msec() routine.

Note 2: Modify Serial.h to add the declarations of 11CO-related global variables, defined in Serial_user.c,
and also to declare the functions 11CO_Init() (not declared by default) and 11C0_MasterStartAndSend().
Modify Serial.c slightly to remove settings for P6 not supported for 78K0/LG2, and to replace "asm"
versions of DI and El instructions with NEC Electronics C-Compiler equivalents. Move the setting of the
PMB6 register to points where the ICCEO enable is already set. Modify Serial_user.c to have 11C0-callback
functions set the 11CO-related global variables, and to add the 11CO_MasterStartAndSend() function.

Note 3: Modify Watchtimer_user.c to add the code to handle the periodic INTWT interrupt in the
MD_INTWT() routine, which beeps once every 4 seconds when the g_beep variable is set ON.

Power-Down Mode Demonstration

NEC

3. Appendix A - Development Tools

This demonstration uses the following software and hardware tools.

3.1 Software Tools

Table 11. Software Tools for Demonstration

Tool Version Comments

Applilet for 78KOKE2 V151 Source-code generation tool for 78KO0/KE2 devices
PM Plus V5.21 Project manager for program compilation and linking
CC78KO0 V3.70 C Compiler for NEC Electronics 78K0 devices
RA78K0 V3.80 Assembler for NEC Electronics 78K0 devices
DF0397.78K V1.01 Device file for uPD78F0397 device

3.2 Hardware Tools

Table 12. Hardware Tools for Demonstration

Tool

Version

Comments

DemoKit-LG2

V2.00

Demonstration kit for 78K0397 (78K0/LG2)

75

Power-Down Mode Demonstration NEC

4. Appendix B — Software Listings

4.1 Main.c

/* main.c for NEC Power Down Application Note */

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** fncurred by customers or third parties arising from the use of this file.
** Filename : main.c

** Abstract : This file implements main function

** API1lib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler: NEC/CC78KO

*/

#include "macrodriver.h"

#include "system_h"

#include "int.h"

#include "watchtimer.h"

#include "serial.h"

/* added header for powerdown application */
#include "pwr_dn.h"

/* include files for DemoKit-LG2 LCD */
#include "lcd.h"

#include "defines.h"

#include "LcdDrvApp.h"

/*
AEEAEXEIAKA AL A AKX EAA A AEAAXA A AXA A A XA XA A AXAAAXA AL A AXAAAXAAXAAXAAAXAAAXAXAXAAXAAAXAAXAXAAXAAAXAALAAAXAAXAX*X

** MacroDefine

AEEAXEIKA AL EAAXAEAA XA LA AKX A AXT A AKX AKX A AXA A A XA LA AXAAAXAAXAAXAAAXAAAXAXAXAAXAAAXAAXAXAAXAAAXAALAAAXAAXAX*X

*/

/* main menu functions */
void SetClk(void);
void SetPCC(void);
void DispOff(void);
void Standby(void);

76

Power-Down Mode Demonstration NEC

YA e st
// Global variables

YA et st
unsigned char g_clock; /* current clock setting */

unsigned char g_mainclock; /7* setting for main clock */
unsigned char g _main_on; /* track if main clock is on or off */

unsigned char g_iic_on; /* track if 1IC is on/off */

unsigned char g_beep; /* whether to beep or not in Watchtimer ISR */
Y A e e e e e e L e
// Global variables

Y A e e e e e L e

/* Main Program Menu for invoking sub-menu items */
#define MAIN_MENU_SIZE 4
struct MenuType {
UCHAR title[9];
void (*func)(void);
} MainMenu[MAIN_MENU_SIZE] = {
{"CPU CLK ", SetCIk},
{""SET PCC ™, SetPCC},
{"DISPLAY ", DispOff},
{"STANDBY ", Standby} };

** Abstract:
kel main function

** Parameters:
*x None

** Returns:
kel None

*/
void main(void)

{
UCHAR menu;

IMS
IXS

MEMORY_IMS_SET;
MEMORY_IXS_SET;

/* set global variables */
g_clock = CLK_HSR;
g_mainclock = CLK_HSR;
g_main_on = ON;

g_beep = OFF;

/* start the Watch Timer */
WT_Start();

/* initialize 1IC */
11CO_Init();
g_iic_on = ON;

/* initialize LCD */
LCD_Init(Q;

while(Isw3_in) {
LCD_string_shift((unsigned char *)"NEC DEMOKIT-LG2'™);
LCD_string_shift((unsigned char *)"POWER DOWN APP NOTE');
#iT (CLK_EX_TYPE == CLK_EX_SEL_X1)
LCD_string_shift((unsigned char *)"EXTERNAL 10 MHZ X1 CRYSTAL'™);

77

Power-Down Mode Demonstration NEC

#else
LCD_string_shift((unsigned char *)"DRIVEN 6 MHZ EXCLK™);
#endif
LCD_string_shift((unsigned char *)"PRESS SW3 TO START™);
}
menu = O;
while(1){

/* clear switch, display current menu selection */
sw3_in = 0;
LCD_string(MainMenu[menu] -title,0);
while (sw3_in == 0)
; /* wait for switch input */
/* handle switches */
if (sw3_in == UP) {
if (menu == 0)
menu = MAIN_MENU_SIZE - 1;
else
menu = menu - 1;

.

f (sw3_in == DOWN) {
menu = menu + 1;
if (menu == MAIN_MENU_SIZE)

menu = 0;
T
ifT (sw3_in == RIGHT) {
/* execute selected function */
(MainMenu[menu] -func);
T

/* return to top of loop to clear switch */
/* and display new menu selection */
} /7* end while (1) */

UCHAR SetCIkHSR(void);
UCHAR SetCIKEx(void);
UCHAR SetClkSub(void);

#define CLOCK_MENU_SIZE 3

struct ClockMenuType {
UCHAR title[9];
UCHAR (*func)(void);

} ClockMenu[CLOCK_MENU_SIZE] = {
{" C HSR ", SetCIkHSR},
{" C EX ", SetCIKkEx},
{" C SuB ", SetCIlkSub} };

// Module name: SetClk
// Description: Menu of choices to set CPU clock

void SetClk(void)
6CHAR clk;
clk = g_clock;
while (1) {
sw3_in = 0;

if (clk == g_clock) {
LCD_putc(0, "X"- 0x30);

78

Power-Down Mode Demonstration NEC

LCD_string(&(ClockMenu[clk].title[1]).1);
} else {
LCD_string(ClockMenu[clk] -title,0);

}
while (sw3_in == 0)

it (sw3_in == UP) {
if (clk == 0)
clk = CLOCK_MENU_SIZE - 1;
else
clk = clk - 1;

s
it (sw3_in == DOWN) {
clk = clk + 1;
if (clk == CLOCK_MENU_SIZE)
clk = 0;

b
if (sw3_in == RIGHT) {
clk = (ClockMenu[clk]-func)(Q;

}
if (sw3_in == LEFT) {
return;
}
}
}
/)——————————
// SetCIkHSR
/)——————————
UCHAR SetCIkHSR(void)
{
/* if clock is already high-speed Internal-0SC, just return it */
if (g_clock == CLK_HSR)
return (CLK_HSR);
/* 1f XSEL is 1, peripheral clock has been set to EXCLK or X1 */
/* spec says XSEL can only be set once, so we can"t set back; */
/* we could set CPU clock back, but then couldn®t stop X1/EXCLK */
/* to the peripherals, so there is no point in switching CPU */
/* we check g_mainclock also, in case XSEL was set to 1 but */
/* MCS did not go to 1, clock remained HSR */
/* won"t happen normally - only if clock oscillates but doesn"t switch */
if ((XSEL == 1) && (g_mainclock == CLK_EX))
return (g_clock); /* keep the same - CLK_EX or CLK_SUB */
RSTOP = 0; /* start the H-S Internal-Osc in case stopped */
while (RSTS == 0)
; /> wait for it to be stable */
/* switch off of subclock if on */
CSS = 0;
g_clock = CLK_HSR;
g_mainclock = CLK_HSR;
g_main_on = ON; /* main clock is on */
return (CLK_HSR);
}

#iT (CLK_EX_TYPE == CLK_EX_SEL_X1)
/* SetClkEx for 10 MHz X1 crystal */

/)

// SetCIKEXx
/)

UCHAR SetCIKEx(void)
{

int i;

79

Power-Down Mode Demonstration NEC

/* if clock is already EXCLK, just return it */
if (g_clock == CLK_EX)
return (CLK_EX);

/* if main clock is CLK_EX, and current clock is subclock, just switch back */
if ((g_clock == CLK_SUB) && g_mainclock == CLK_EX) {
MSTOP = 0; /* restart main clock */
while (OSTC.0 == 0)
; /* wait for oscillator to stabilize */
CSS = 0; /* switch from subclock */
while (CLS == 1)
; /* wait for switch to take effect */
g_clock = CLK_EX;
g_main_on = ON;
return (CLK_EX);
b

/* at this point, mainclock must be HSR, so starting X1 for first time */
/* First switch back to HSR if running on subclock */
if (CLS == 1) {
RSTOP = 0O; /* switch on HSR */
while (RSTS == 0)
; /* wait for stabilize */
CSS = 0; /* switch back from subclock */
while (CLS == 1)
; /* wait for switch */
g_clock = CLK_HSR;

g_main_on = ON; /* main clock is on */
}
/* now running on HSR */
AMPH = 0; /* set to zero for 2 - 10 MHz */
PM12 &= 0x06; /* set P122/X2/EXCLK and P121/X1 as inputs */
OSCCTL = OSCCTL & Ox7F; /* clear EXCLK (OSCCTL.7) */
OSCCTL = OSCCTL | 0x40; /* set EXCLK=0, OSCSEL=1 for X1 crystal input */
MSTOP = 0; /* MSTOP = 0 (MOC.7) to enable X1 oscillation

*/

/* wait for X1 oscillator to stabilize, with timeout */
for (i=0; i < 10000; i++) {

if (OSTC.0 == 1)

break; /* exit loop if OSTC bit 0 is 1, oscillator stabilized */

}
if (OSTC.0 == 0) {

/* loop timed out without stabilization */

MSTOP = 1; /* stop clock again */

sw3_in = 0;

/* display error message, no oscillation on X1 */

LCD_string((UCHAR *)"E NO 0SC",0);

while (sw3_in == 0)

; /* wait for keypress */

sw3_in = 0; /* clear switch */

return (g_clock); /* return showing switch back to HSR */
/* OSTC reported oscillator stabilized, set time to stabilize on STOP exit */
OSTS = CG_X1STAB_SEL; /* set oscillation stabilization time for exit STOP

mode */

/* now need to switch main clock to X1 clock */
MCM = MCM | OxO05; /* set XSEL, MCMO to run CPU and periph on X1 clock */
/* this is permanent - not allowed to set

XSEL back to 0 */

80

/* wait for MCS (MCM.1) to be one to indicate main clock is X1 input */
/* Note: could check with timeout here, but if clock is oscillating, */

Power-Down Mode Demonstration NEC

/* then MCS should go to one */
while (MCS == 0)

/* wait for MCS == 1 */
/* succeeded in changing to X1 crystal clock */

/* stop H-S Internal 0SC */

RSTOP = 1;

g_clock = CLK_EX;

g_mainclock = CLK_EX;

g_main_on = ON; /* main clock is on */
return (CLK_EX);

T
#endi

#if (CLK_EX_TYPE == CLK_EX_SEL_EXCLK)
/* SetClkEx for driven 6 MHz EXCLK - not used */

UCHAR SetCIkEx(void)

{

int i,osccnt;

unsigned char pl22 vala,pl22_valb;

/* if clock is already EXCLK, just return it */
if (g_clock == CLK_EX)
return (CLK_EX);

/* if main clock is CLK_EX, and current clock is subclock, just switch back */
if ((g_clock == CLK_SUB) && g_mainclock == CLK_EX) {

MSTOP = 0; /* restart main clock */

/* no need to wait for stabilization */
CSS = 0; /* switch from subclock */
while (CLS == 1)
; /* wait for switch to take effect */

g_clock = CLK_EX;
g_main_on = ON;
return (CLK_EX);

/* at this point, mainclock must be HSR, so starting EXCLK for first time */
/* First switch back to HSR if running on subclock */
if (CLS == 1) {

RSTOP = 0O; /* switch on HSR */

while (RSTS == 0)

; /* wait for stabilize */

CSS = 0; /* switch back from subclock */
while (CLS == 1)

; /* wait for switch */

g_clock = CLK_HSR;

g_main_on = ON; /* main clock is on */
}

/* now running on HSR */

/* start setup for EXCLK input */
AMPH = 0; /* set to zero for 2 - 10 MHz */
PM12.2 = 1; /* set P122/X2/EXCLK as input */

/* now that P122/X2/EXCLK is input, check if EXCLK clock is running */

/* this check needs to be done before changing bits in OSCCTL */
osccnt = 0; /* set count of EXCLK changes to zero */
pl22_vala = pl122 valb = P12.2;

for (i=0; i<10000; i++) {

81

Power-Down Mode Demonstration NEC

pl22_vala = P12.2; /* read new EXCLK input */
it (pl122_vala = pl22_valb) { /* compare with previous */
/* has changed, increment count */

oscent++;
pl22_valb = pl122_vala; /* save previous value */
}
3
/* give error if not oscillating, don®"t change XSEL,MCMO */
if (oscent == 0) { /* could check for a minimum number of counts */
MSTOP = 1; /* stop clock again */
sw3_in = 0;
/* display error message, no oscillation on EXCLK */
LCD_string((UCHAR *)"E NO EXC",0);
while (sw3_in == 0)
; /* wait for keypress */
sw3_in = 0; /* clear switch */
return (g_clock); /* report switch back to HSR */
}

/* we have seen a clock input on the pin, now set for EXCLK mode */
OSCCTL = OSCCTL | 0OxCO; /* set EXCLK, OSCSEL for external EXCLK input */
MSTOP = O; /* enable EXCLK */

/* in the case of a driven EXCLK, we do not need to wait for OSTC to */
/* indicate stabilization; OSTC does not count with driven clock */

/* now need to switch main clock to EXCLK clock */
MCM = MCM] OxO05; /* set XSEL, MCMO to run CPU and periph on EXCLK */

/* this is permanent - not allowed to set

XSEL back to 0 */

/* wait for MCS (MCM.1) to be one to indicate main clock is EXCLK input */
/* Note: could check with timeout here, but if clock is oscillating, */
/* then MCS should go to one */
while (MCS == 0)

; /* wait for MCS == 1 */

/* succeeded in changing to EXCLK driven clock */

/* stop H-S Internal 0SC */

RSTOP = 1;

g_clock = CLK_EX;

g_mainclock = CLK_EX;

g_main_on = ON; /* main clock is on */
return (CLK_EX);

3
#endif /* SetClkEx for driven 6 MHz EXCLK - not used */

UCHAR SetClkSub(void)
{
/* if clock is already Subclock, just return it */
if (g_clock == CLK_SUB)
return (CLK_SUB);

/* switch to subclock */

CSS = 1;

/* wait for switch to take effect */
while (CLS == 0)

/* stop’main clock */
ifT (g_mainclock == CLK_HSR) {
RSTOP = 1; /* stop H-S Internal-0SC */

82

Power-Down Mode Demonstration

NEC

} else {

MSTOP = 1; /* disable EXCLK input */

}

g_main_on = OFF;
g_clock = CLK_SUB;
return (CLK_SUB);

// Module name: SetPCC

// Description: Menu of choices to set PCC clock

void SetPCC(void){
UCHAR pcc_val,new_pcc;
UCHAR buffer[9] = " PCC N ™

/* if running off the subclock, display "PCC SUB", wait for key, return */

if (CSS == 1) {

LCD_string((UCHAR *)"PCC SUB ',0);

sw3_in = 0;

while (sw3_in == 0)
sw3_1in = 0;

return;

}

pcc_val
new_pcc

PCC & OxF8;
PCC & 0x07;

while (1) {
sw3_in = 0;
buffer[6] = new_pcc

/* clear switch */

/* wait for key press */
/* clear again */

/* mask off low three bits */
/* mask to just low three bits */

/* clear key */

+ 0x30; /* display current new PCC */

/* display an X at left if we are at current PCC */
if (new_pcc == PCC & 0x07) {
buffer[0] = "X~;

} else {
}

buffer[0] = ~

LCD_string(buffer,0);
/* wait for a key press */

while (sw3_in == 0)

if (sw3_in == UP) {

/* wait for key */

/* change new_pcc 4->3->2->1->0->4 */
it (new_pcc == 0)
new_pcc = 4;

else

new_pcc = new_pcc - 1;

}
ifT (sw3_in == DOWN)

{

/* change new_pcc 0->1->2->3->4->0 */
new_pcc = new_pcc + 1;
if (new_pcc == 5)

new_pcc = O;

}

if (sw3_in == RIGHT) {
/* change PCC to new value */
PCC = pcc_val | new_pcc;

}
if (sw3_in == LEFT)

{

/* return from this submenu */

return;

83

Power-Down Mode Demonstration NEC

} /7* end of while (1) loop */

// Module name: TurnDispOff
// Description: Turns LCD Display and 1IC off, switching to high power if necessary

void TurnDispOff(void)

{

UCHAR disp_fast;
/* switch to fast CPU if necessary */
disp_fast = Disp_Fast();

/* turn off LCD display and I1C communication */

LcdDrvOff();

/* disable 1CCO */

SetlORBit(PM6, 0x03); /* turn off drive of SCLO and SDAO to conserve power */
CIrIORBit(11CCO, 0x80); /* stop transfer */

/* return to slow CPU if set fast */
if (disp_fast)
Disp_Slow();

// Module name: TurnDispOn
// Description: Turns 11C and LCD Display back on, switching to high power if necessary

void TurnDispOn(void)

{

UCHAR disp_fast;
/* switch to fast CPU if necessary */
disp_fast = Disp_Fast();

/* reenable 1IC */
11CO_Init();

/* reinitialize LCD */
LCD_Init();

/* return to slow CPU if set fast */

if (disp_fast)
Disp_Slow();

// Module name: DispOff
// Description: Turns LCD Display off, waits for key

void DispOff(void){

LCD_string((UCHAR*)"™ OFF ™,0); /* display OFF for two seconds */
Wait(40);

TurnDispOff(); /* turn LCD and 1IC off */
/* wait until a key is pressed - user can measure current here */

sw3_in = 0; /* clear key switch */
while (sw3_in == 0)

TurnDispOn(); /7* turn IIC and LCD back on */

84

Power-Down Mode Demonstration NEC

/* return to main menu */

void StandbyHaltl();
void StandbyHalt2();
void StandbyStopl();
void StandbyStop2();
void StandbyStop3(Q);

#define STBY_MENU_SIZE 5
struct StbyMenuType {
UCHAR title[9];
void (*func)(void);
} StandbyMenu[STBY_MENU_SIZE] = {

{" HALT 1 ", StandbyHalt1},
{" HALT 2 ", StandbyHalt2},
{" STOP 1 ™, StandbyStop1l},
{" STOP 2 ', StandbyStop2},
{" STOP 3 ', StandbyStop3} };

#define STBY_HALT1
#define STBY_HALT2
#define STBY_STOP1
#define STBY_STOP2
#define STBY_STOP3

A WNRFLO

// Module name: Standby
// Description: Menu of choices of HALT/STOP modes

void Standby(void)
{
UCHAR mode;
mode = STBY_HALT1;

while (1) {
sw3_in = 0;
LCD_string(StandbyMenu[mode] .-title,0);
while (sw3_in == 0)

if (sw3_in == UP) {
if (mode == 0)
mode = STBY _MENU _SIZE - 1;
else
mode = mode - 1;

¥
ifT (sw3_in == DOWN) {
mode = mode + 1;
if (mode == STBY_MENU_SIZE)
mode = O;

}
if (sw3_in == RIGHT) {
(StandbyMenu[mode] - func)) ;

¥
if (sw3_in == LEFT) {
return;
b
¥
b
B EE——————————————

85

Power-Down Mode Demonstration NEC

// Module name: StandbyHaltl
// Description: Halt, keep periodic watch timer interrupt going

/)
void StandbyHaltl(void)
{
TurnDispOff(); /* turn LCD and 1IC off */
g_beep = ON; /* set for periodic beep */
sw3_in = 0; /* set no switch down */
while (1) {
HALTQ; /* execute HALT to stop CPU */
NOP(Q); /* INTWT will bring out of HALT every 0.5 sec */
NOPQ); /* or INTKR will bring out of HALT if SW3 pressed */
NOPQ);
if (sw3_in == LEFT)
break; /* end loop if LEFT pressed */
sw3_in = 0; /* otherwise clear key and HALT again */
}
sw3_in = 0; /* clear switch */
g_beep = OFF; /* turn periodic beep off */
TurnDispOn(); /7* turn 11C and LCD back on */
}
) —

// Module name: StandbyHalt2
// Description: Halt, stop watch timer, subclock still running

/)
void StandbyHalt2(void)
{
TurnDispOff(); /* turn LCD and 11C off */
sw3_in = 0; /* set no switch down */
WT_Stop(Q); /* stop the watch timer */
while (1) {
HALTQ; /* execute HALT to stop CPU */
NOPQ); /* INTKR will bring out of HALT if SW3 pressed */
NOPQ);
NOPQ);
if (sw3_in == LEFT)
break; /* end loop if LEFT pressed */
sw3_in = 0; /* otherwise clear key and HALT again */
}
sw3_in = 0; /* clear switch */
WT_Start(); /* restart watch timer */
TurnDispOn(); /7* turn 1IC and LCD back on */
}
/)

// Module name: StandbyStopl
// Description: Execute STOP, subclock running, watchtimer running

void StandbyStopl(void)
{
if (g_clock == CLK_SUB) {
/* cannot enter STOP mode if running on subclock */
LCD_string((UCHAR*)"NO STOP ",0);

Wait(20);
LCD_string((UCHAR*)"CLK SUB ",0);
Wait(20);
return;
}
TurnDispOFf(Q); /* turn LCD and IIC off */

86

Power-Down Mode Demonstration NEC

g_beep = ON; /* set for periodic beep */
sw3_in = 0; /* set no switch down */
while (1) {
STOPQ); /* execute STOP to stop main clock */
NOPQ); /* INTWT will bring out of STOP every 0.5 sec */
NOPQ); /* or INTKR will bring out of STOP if SW3 pressed */
NOP();
it (sw3_in == LEFT)
break; /* end loop if LEFT pressed */
sw3_in = 0; /* otherwise clear key and STOP again */
}
sw3_in = 0; /* clear switch */

g_beep = OFF; /* turn periodic beep off */
TurnDispOn(); /7* turn 1IC and LCD back on */

// Module name: StandbyStop2
// Description: Stop watchtimer, Execute STOP

) —
void StandbyStop2(void)
{
if (g_clock == CLK_SUB) {
/* cannot enter STOP mode if running on subclock */
LCD_string((UCHAR*)"NO STOP ",0);
Wait(20);
LCD_string((UCHAR*)"CLK SUB ",0);
Wait(20);
return;
}
TurnDispOff(Q); /* turn LCD and 11C off */
WT_Stop(Q); /* stop watchtimer */
sw3_in = 0; /* set no switch down */
while (1) {
STOPQ); /* execute STOP to stop main clock */
NOPQ); /* INTKR will bring out of STOP if SW3 pressed */
NOP();
NOP();
if (sw3_in == LEFT)
break; /* end loop if LEFT pressed */
sw3_in = 0; /* otherwise clear key and STOP again */
}
sw3_in = 0; /* clear switch */
WT_Start(); /* restart Watchtimer */
TurnDispOn(); /7* turn IIC and LCD back on */
}
/)

// Module name: StandbyStop3
// Description: Stop watchtimer, stop subclock, Execute STOP

void StandbyStop3(void)
{
if (g_clock == CLK_SUB) {
/* cannot enter STOP mode if running on subclock */
LCD_string((UCHAR*)"NO STOP ",0);
Wait(20);
LCD_string((UCHAR*)"'CLK SUB ",0);
Wait(20);
return;

87

Power-Down Mode Demonstration NEC

TurnDispOff(); /* turn LCD and I1IC off */

WT_Stop(Q); /* stop watchtimer */

OSCSELS = 0; /* set XT1/XT2 to input port mode to stop subclock */
LSRSTOP = 1; /* stop low-speed Internal-0SC if not already stopped */

sw3_in = 0; /* set no switch down */

while (1) {
STOPQ); /* execute STOP to stop main clock */
NOPQ); /* INTKR will bring out of STOP if SW3 pressed */
NOPQ);
NOP(Q);

if (sw3_in == LEFT)
break; /* end loop if LEFT pressed */

sw3_in = 0; /* otherwise clear key and STOP again */
}
sw3_in = 0; /* clear switch */
OSCSELS = 1; /* restart subclock oscillator */
WT_Start(); /* restart Watchtimer */
TurnDispOn(); /7* turn 1IC and LCD back on */
}
4.2 Pwr_dn.h
/*

** pwr_dn.h
** Header file for Power-Down Application Note Program

*/

/* definitions of clock types */

#define CLK_HSR 0 /* clock is high-speed Internal-0SC */
#define CLK_EX 1 /* clock is EXCLK input */

#define CLK_SUB 2 /* clock is Subclock crystal */

/* definitions of whether CLK_EX is X1 crystal or driven EXCLK */
#define CLK _EX_ SEL X1 1 /* X1 crystal */

#define CLK_EX_SEL_EXCLK 2 /* driven EXCLK */

#define CLK_EX_TYPE CLK_EX_SEL_X1/* set program for X1 crystal */

#ifndef OFF
#define OFF O

#endif

#ifndef ON

#define ON 1

#endif

/* Global variables */

extern unsigned char g_clock; /* current clock setting */

extern unsigned char g_mainclock; /* setting for main clock */

extern unsigned char g_main_on; /* track if main clock is on or off */
extern unsigned char g_iic_on; /* track if 1IC is on/off */

88

Power-Down Mode Demonstration

NEC

extern unsigned char g_beep;

UCHAR Disp_Fast();
void Disp_Slow(Q);

4.3 Macrodriver.h

/* whether to beep or not in Watchtimer ISR */

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** fncurred by customers or third parties arising from the use of this file.

** Filename : macrodriver.h
** Abstract : This is the general header file
** API1lib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device :

uPD78F0537

** Compiler: NEC/CC78KO

*/
#ifndef
#define

#pragma
#pragma
#pragma
#pragma
#pragma
#pragma

/* data
typedef
typedef
typedef
typedef
typedef

#define
#define

#define
#define

#define
#define
#define

EE R S e

MDSTATUS

MDSTATUS

sfr
di
ei
NOP
HALT
STOP

type defintion */

unsigned
unsigned
unsigned
unsigned
unsigned

ON 1
OFF 0

TRUE
FALSE

or

IDLE O
READ 1
WRITE 2

long ULONG;
int UINT;
short USHORT;
char UCHAR;
char BOOL;

/* idle status */
/* read mode */
/* write mode */

89

Power-Down Mode Demonstration

NEC

#define
#define

#define
#define

SET 1
CLEARO

MD_STATUS
MD_STATUSBASE

unsigned short

0x0

/* status list definition */

#define
#define
#define
#define

MD_OK
MD_RESET
MD_SENDCOMPLETE
MD_OVF

MD_STATUSBASE+0x0 /* register setting OK */
MD_STATUSBASE+0x1 /* reset input */

/* error list definition */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
in TXBn
#define
#define
#define
#define
#define
#define

/* main

MD_ERRORBASE
MD_ERROR
MD_RESOURCEERROR
MD_PARITYERROR
MD_OVERRUNERROR
MD_FRAMEERROR
MD_ARGERROR
MD_TIMINGERROR
MD_SETPROHIBITED
MD_DATAEXISTS
register */
MD_SPT

MD_NACK

MD_SLAVE_RCV_END

0x80

MD_STATUSBASE+0x2 /* send data complete */
MD_STATUSBASE+0x3 /* timer count overflow */

MD_ERRORBASE+0x0 /* error */

MD_ERRORBASE+0x1 /* no resource available */
MD_ERRORBASE+0x2 /* UARTn parity error */
MD_ERRORBASE+0x3 /* UARTn overrun error */
MD_ERRORBASE+0x4 /* UARTn frame error */

MD_ERRORBASE+0x5 /* Error agrument input error */
MD_ERRORBASE+0x6 /* Error timing operation error */

MD_ERRORBASE+0x7 /* setting prohibited */

MD_ERRORBASE+0x8 /* Data to be transferred next exists

MD_STATUSBASE+0x8 /*1IC stop*/
MD_STATUSBASE+0x9 /*11C no ACK*/
MD_SLAVE_SEND_END MD_STATUSBASE+0x10 /*I11C slave send end*/
MD_STATUSBASE+0x11 /*11C slave receive end*/
MD_MASTER_SEND_END MD_STATUSBASE+0x12 /*11C master send end*/
MD_MASTER_RCV_END MD_STATUSBASE+0x13 /*I1IC master receive end*/

clock and subclock as clock source */
enum ClockMode { HiRingClock, SysClock };

/* the value for IMS and

#define
#define

MEMORY_IMS_SET
MEMORY _IXS_SET

IXS */
0xCC
0x00

/* clear 10 register bit and set 10 register bit */
#define CIr1ORBit(Reg, CIrBitMap) Reg &= ~ClrBitMap
#define SetlORBit(Reg, SetBitMap) Reg |= SetBitMap

enum INTLevel { Highest, Lowest };

#define SYSTEMCLOCK
#define SUBCLOCK
#define MAINCLOCK
#define FRCLOCK
#define FRCLOCKLOW
#endi

4.4 System.h

90

8000000
32768
8000000
8000000
240000

Power-Down Mode Demonstration NEC

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** fncurred by customers or third parties arising from the use of this file.
** Filename : system._h

** Abstract : This file implements device driver for SYSTEM module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

AEEAXEIAKAALAEAAXAEAAAAEAAXAA AKX A AKX AXAEAAXAAAXA AL A AXAAXAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAXAAXAAAXAALAAAXAA XX AXX

*/
#ifndef _MDSYSTEM_
#define “MDSYSTEM_
/*

*/

#define CG_X1STAB_SEL Ox5
#define CG_X1STAB_STAOX1F
#define CG_CPU_CLOCKSEL 0x0

enum CPUClock { SystemClock, Sys Half, Sys_Quarter, Sys OneEighth, Sys_OneSixteen,
Sys_SubClock };

enum PSLevel { PS_STOP, PS_HALT };

enum StabTime { ST _LevelO, ST Levell, ST Level2, ST Level3, ST Level4d };

void Clock_Init(void);

#endif

4.5 Systeminit.c

/*

E R T e

*x

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

*x

** Copyright(C) NEC Electronics Corporation 2002 - 2005

** All rights reserved by NEC Electronics Corporation.

**x

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

91

Power-Down Mode Demonstration NEC

** jncurred by customers or third parties arising from the use of this file.
** Filename : systeminit.c

** Abstract : This file implements macro initialization.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

EaE L S

** Include files

*/

#include "macrodriver.h"
#include "system.h"
#include "int.h"
#include "watchtimer.h"
#include "serial.h"

/*

EE S e

** MacroDefine

EE A e e s e

*/
/*
A o ——————,——,—,—,—,—,—,—,—,—,—,—,—,——,——,—,—,—,——,—,—,——,—,—_—,—_——_———_——_——_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_——_——_
**
** Abstract:
kel Init every Macro
*x
** Parameters:
kel None
**
** Returns:
kel None
*x
K e e
*/
void Systemlnit(void)
{
/* Clock generator initiate */
Clock_Init(Q);
/* INT initiate */
INT_InitQ);
/* WT initiate */
WT_InitQ;
T
/*
A o o o e
*x
** Abstract:
kel Init hardware setting
**
** Parameters:
kel None
* X
** Returns:
kel None
**x
*x

Power-Down Mode Demonstration NEC

*/

void hdwinit(void)
DIC);
Systemlnit();
EIC);

}

4.6 System.c

/*

E R T S e

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : system.c

** Abstract : This file implements device driver for System module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

** Include files

*/

#include "macrodriver.h"

#include "system.h"

/*

A AAAAAAAAAAAAARAAARAAAAAAAARA A AR AKX

** MacroDefine

AEEAEXEIKX AL EAAXAEAEA A AEA AKX A AXA A AKX AKX A AXAAAXA AL A AXAAXAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAXAAXAAAXAALAAAXAAXAd*X

*/

/*
*x

*x

** Abstract:
** Init the Clock Generator and Oscillation stabilization time.

** Parameters:
kel None

** Returns:

93

Power-Down Mode Demonstration

NEC

*/
void Clock_Init(void)

{
CIrl1ORBit(MCM, 0x05);

SetlORBit(MCM, Ox01);
SetIORBit(PM12, 0x18);
CIrI0RBit(0OSCCTL, 0x20);
Setl0RBit(0SCCTL, 0x10);
SetlORBit(MOC, Ox80);
PCC = CG_CPU_CLOCKSEL;

4.7 Int.h

/*

/* high-Internal-0SC operate for CPU */
/* peripheral hardware clock:frh */
/* P123/124 input mode */

/* XT1 input mode */

/* stop X1 clock */

AEEAEXEAEALAEAAEAAA KA AEA AKX A AKX A AKX AKX A AKX AAXA AL A XA AXAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAAAXAAAAALAAAXAAXAX*X

*x

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

*x

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** fncurred by customers or third parties arising from the use of this file.

** Filename : int.h

** Abstract : This file implements device driver for INT module.
** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler : NEC/CC78KO

B S s

*/
#ifndef _MDINT_
#define _MDINT_
/*

** MacroDefine

EE A e e s e

*/

#define EGP_INT 0x0
#define EGN_INT 0x0
#define PU7_KR Ox1F
#define PM7_KR Ox1f
#define KRM_KR Ox1f

enum External INT {

94

EE T S e

Power-Down Mode Demonstration NEC

EX_INTPO, EX_INTP1, EX_INTP2, EX_INTP3,
EX_INTP4, EX_INTP5, EX_INTP6, EX_INTP7

¥

enum INTInputEdge {
None, RisingEdge, FallingEdge, BothEdge

¥

enum MaskableSource {
INT_LVI, INT_INTPO, INT_INTP1, INT_INTP2,
INT_INTP3, INT_INTP4, INT_INTP5, INT_SRE6,
INT_SR6, INT_ST6, INT_CSI10_STO, INT_TMH1,
INT_TMHO, INT_TM50, INT_TMOOO, INT_TMO1O0,
INT_AD, INT_SRO, INT_WTI, INT_TM51,
INT_KR, INT_WT, INT_INTP6, INT_INTP7,
INT_I1CO_DMU, INT_CSI11, INT_TMOO1l, INT_TMO1ll

void INT_Init(void);

__interrupt void MD_INTKR(void);

/* global value used for debounced switch input */
extern ___sreg volatile unsigned char sw3_in;

#endif

4.8 Int.c

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : int.c

** Abstract : This Ffile implements device driver for INT module.

** APIIib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler : NEC/CC78KO

95

Power-Down Mode Demonstration

NEC

#include "macrodriver.h"
#include "int.h"
/*
** MacroDefine
*/
/*
A L o o o
o
** Abstract:
olal This function initializes the external interrupt, key return function.
**
** Parameters:
holad None
*x
** Returns:
*x None
**x
R o e e e e e e e e e e
*/
void INT_Init(void)
{
EGP = EGP_INT;
EGN = EGN_INT;
KRMK = 1; /* disable INTKR */
PU7 |= PU7_KR;
PM7 |= PM7_KR;
KRM = KRM_KR; /* set KR input mode */
KRPR = 1;
KRIF = 0;
KRMK = 0; /* enable INTKR */
}

4.9 Int_user.h

This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
78K0/KD2, 78K0O/KE2 and 78KO/KF2 8-Bit Single-Chip Microcontrollers.

Copyright(C) NEC Electronics Corporation 2002 - 2005
All rights reserved by NEC Electronics Corporation.

This program should be used on your own responsibility.
NEC Electronics Corporation assumes no responsibility for any losses
incurred by customers or third parties arising from the use of this file.

Filename : int_user.c
Abstract : This file implements device driver for INT module.
APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

Device : uPD78F0537

Power-Down Mode Demonstration NEC

*x

** Compiler :NEC/CC78KO

#pragma interrupt INTKR MD_INTKR

/*
A AAAAAAAAAAAAARAAAARAAAAAAAAAAAAA AKX
** Include files
A AR AAAAAAAAAAARAAAARAAAAAAAARA A AR AKX
*/
- “ - “
#include "macrodriver.h
- LA - "
#include "int.h
/*

EE S E e s

** MacroDefine

EE R T

*/

/* add include for Watchtimer functions */
#include "watchtimer.h"

/* global value used for debounced switch input */
__sreg volatile unsigned char sw3_in;

** Function: delay5msec

** Delay for 5 milliseconds

** use Watchtimer if subclock running

** use instruction delay if subclock stopped
*/

void delay5msec(void)

{

unsigned char count,count2;

unsigned char wt_off = 0;

if (OSCSELS == 0) {
/* subclock is not running (we are on 8 MHz or 6 MHz clock) */
/* if PCC=0, each instruction is 0.25 usec; need 20,000 for 5 msec */
/* do 25 NOPs * 800 = 25 * 50 * 16 */
/* but if PCC=1, 2, etc, clock is twice, four, etc times as slow */
/* so we need 25 * 50 * (16/2) or 25 * 50 * (16/4), etc. */
count2 = 16;
count = PCC & 0x07; /* get PCC divider bits */
while (count = 0) {
count2 = count2 >> 1;
count--;
}
/* now count2 is proper multiplier of 25 * 50 * n */
while (count2 1= 0) {
for (count = 0; count < 50; count++) {
NOP(); NOP(); NOP(); NOP(); NOP();
NOP(); NOP(); NOP(); NOP(); NOP();
NOP(); NOP(); NOP(); NOP(); NOP();
NOP(); NOP(); NOP(); NOP(); NOP();
NOP(); NOP(); NOP(); NOP(); NOPQ);
by

count2--;

/* done with delay using instructions */
} else {
/* subclock is running, use Watchtimer */
if (WML == 0) {
/* watch timer is off, start it to time our interval */

97

Power-Down Mode Demonstration NEC

wt_off = 1;
WT_Start();

}
for (count = 0; count < ((6000/1950)+1); count++) {
while (WTIIF == 0)

WTIIF = O;

}
if (wt_off) {
/* watch timer was off when we came in, stop it again */

WT_StopQ);
}
}
}
/*
R o e e e e e
**x
** Abstract:
*x INTKR Interrupt service routine.

** Parameters:
*x None

** Returns:

*x None

**x

A
*/

__interrupt void MD_INTKR(void)

{

unsigned char sw3_first,sw3_second;

sw3_First= (~P7) & Ox1f; // read SW3 First time

delay5msec(); // delay 5 milliseconds
sw3_second= (~P7) & Ox1f; // read SW3 second time
iT(sw3_first==sw3_second)

sw3_in=sw3_first; // debounce SW3

else
sw3_in=0;

4,10 Serial.h

E R T S e

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
All rights reserved by NEC Electronics Corporation.

*
*

** This program should be used on your own responsibility.

Power-Down Mode Demonstration NEC

** NEC Electronics Corporation assumes no responsibility for any losses
** jncurred by customers or third parties arising from the use of this file.

** Filename :serial.h
** Abstract : This file implements device driver for SERIAL module.
** API1lib = NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

**x

A AR AAAAAAAAAAARAAAARAAAAAAAARA A AR AKX
*/

#ifndef MDSERIAL

#define _MDSERIAL_

/*

EE S E e s

** Global variables

*/
#define 11CO_SLAVEADDRESS 0xO

enum TransferMode { Send, Receive };

MD_STATUS 11CO_MasterStart(enum TransferMode , UCHAR , UCHAR);
MD_STATUS 11CO_MasterSendData(UCHAR* , UINT);
MD_STATUS 11CO_MasterReceiveData(UCHAR* , UINT);
void 11CO_Stop(void);

__interrupt void MD_INTIICO(void) ;

void 11CO _User_Init(void);

MD_STATUS 11CO_SlaveHandler(void);

MD_STATUS 11CO_MasterHandler(void);

void CALL_I1CO_SlaveAddressMatch(void);

void CALL_I11CO_MasterFindSlave(void);

void CALL_IICO_MasterSendEnd(void);

void CALL_I1CO_MasterReceiveEnd(void);

void CALL_I11CO_MasterError(MD_STATUS flag);

/* added flags set by callback routines for use by upper level routine */
extern MD_STATUS Ul_MasterError;

extern MD_STATUS Ul _MasterSendEnd;

extern MD_STATUS Ul_MasterReceiveEnd;

extern MD_STATUS Ul _MasterFindSlave;

/* added definition for initialize routine */
void 1ICO_Init(void);

/* added combined function */
MD_STATUS 11CO_MasterStartAndSend(UCHAR sadr, UCHAR* txbuf, UINT txnum);

#endif

4.11 Serial.c

99

Power-Down Mode Demonstration NEC

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename :serial.c

** Abstract : This file implements device driver for SERIAL module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

E R

*/

#define FIX_PM6_SET 1 /* move setting of PM6 to after II1CEO set on */
#pragma interrupt INTIICO MD_INTIICO

/*

*/
#include "macrodriver.h"
#include "serial.h"

UCHAR iicO_m_sta flag; /* start flag for send address check by master mode */
UCHAR *iic0O_m_send_pbuf; /* send data pointer by master mode */

UINT iicO_ _send_size; /* send data size by master mode */

UCHAR *iicO_m_rev_pbuf; /* receive data pointer by master mode */

UINT iicO_m_rev_size; /* receive data size by master mode */

UCHAR 1iicO_s_sta_flag; /* start flag for send address check by slave mode */
UCHAR *iic0O_s send_pbuf; /* send data pointer by slave mode */

UINT 11cO_s_send_size; /* send data size by slave mode */

UCHAR *iic0O_s_rev_pbuf; /* receive data pointer by slave mode */

UINT iicO_s rev_size; /* receive data size by slave mode */

/*

K o

*x

** Abstract:

*x This function initializes 11CO module.

** Parameters:
**x None

** Returns:

** None
*x
A L o o e e
*/
void 1ICO_Init(void)
CITIORBit(11CCO, 0x80); /* stop 11CO */
SetlORBit(MK1H, 0x1); /* disable interrupt */

#if (FIX_PM6_SET == 1)
#else

100

Power-Down Mode Demonstration

NEC

#endi

CIrIORBit(PM6, 0x03); /*

// remove setting of P6 for 78F0397 (78K0/LG2)

//

*/

CIrlORBit(P6, 0x03);

port setting */

start-condition doesn®"t need stop-

comunication reserve - disable */
stop-condition interrupt - enable */
interrupt control - 8 clock falling edge

mode */
CLOO = 0 CLO1 0 */
disable extension */

interrupt priority low */

enable interrupt */

mode

set wait for need waiting when get start condition

SetlORBit(1ICFO, 0x02); /*
condition */
SetlORBit(1ICFO, 0x01); /*
SetlORBit(11CCO, 0x10); /*
CIrlIORBit(1ICCO, 0x08); /*
/* transfer clock */
/* fprs/88 */
CIrIORBit(11CCLO, 0x08); /* normal
CIrIORBit(1ICCLO, 0x3); /*
CIrIORBit(1ICX0, 0x1); /*
/* selection interrupt priority */
SetlORBit(PR1H, 0x1); /*
CIrIORBit(MK1H, 0Ox1); /*
11CO_User_Init();
return;
Abstract:
This function is responsible for start 11CO by master mode.
Parameters:
enum TransferMode mode : select transfer
Send : send data
Receive : receive data
UCHAR adr : set address for select slave
UCHAR wait :
Returns:
MD_OK
MD_ERROR
MD_ARGERROR

*/

MD_STATUS 11CO_MasterStart(enum TransferMode mode, UCHAR adr, UCHAR wait)

{
//

//

/* bus check */

asm(*'di"); // replace in-line assembly with psuedo-function

DIO);

ifC 1ICFO & 0x40){
__asm(ei'); /* bus busy */
EIQ; 7/ replace in-line assembly with psuedo-function
return MD_ERROR;

}

/* start 11CO */

SetlORBit(11CCO, 0x18); /* SPIEO = WTIMO = 1 */

SetlORBit(11CCO, 0x80); /* 11ICEO0 = 1 */

#if (FIX_PM6_SET == 1)
CIrIORBit(PM6, 0x03); /* port setting */

#endi

101

Power-Down Mode Demonstration

NEC

SetlORBit(11CCO, 0x02); /* generate start condition */
// __asm(ei'™);
E1Q; /7 replace in-line assembly with psuedo-function

/* wait */
while(wait--);

ifC T(ICSO & 0x2)){ /* check start condition */
return MD_ERROR;
}

/* set transfer mode to address */
/* slave would be selected trans or receive from bitO at address */
if(mode == Send){

CIrIORBit(adr, 0x01); /* 1T master is send mode, clear bit0 */
else iT(mode == Receive){
SetlORBit(adr, 0x01); /> 1T master is receive mode, set bit0 */
}
else{
return MD_ARGERROR;
}
iicO_m sta_flag = O;
11CO = adr; /* send address */
return MD_OK;
}
/*

** Abstract:
*x This function is responsible for stop 11CO.

** Parameters:
*x None

** Returns:
**x None

*/
void 11CO_Stop(void)

{
#if (FIX_PM6_SET == 1)

SetlORBit(PM6, 0x03); /* port setting */
#endif
CIrIORBit(11CCO, 0x80); /* stop transfer */
return;
}
/*

** Abstract:
** This function is responsible for 11CO data transfering by master mode.

** Parameters:
x UCHAR txbuf : transfer buffer pointer
o UINT txnum : buffer size

** Returns:
*x MD_OK

Power-Down Mode Demonstration

NEC

*x
*x

**

*/

MD_ERROR : cannot send address

MD_STATUS 11C0O_MasterSendData(UCHAR* txbuf, UINT txnum)

{

*/

ifC 1icO_m _sta_flag == 0){
return MD_ERROR; /* cannnot send address */
}

/* set parameter */
iicO_m_send_size = txnum;
iicO_m_send_pbuf = txbuf;

11CO = *iicO_m_send_pbuf ++ ; /* start transfer */
iicO_m send size--;

return MD_OK;

Abstract:
This function is responsible for 11CO data receiving by master mode.

Parameters:
UCHAR* rxbuf
USHORT rxnum

receive buffer pointer
buffer size

Returns:
MD_OK
MD_ERROR : cannot send address

MD_STATUS 11CO_MasterReceiveData(UCHAR* rxbuf, UINT rxnum)

{

*x

if(C 1icO_m_sta_flag == 0){
return MD_ERROR; /* cannnot send address */
}

/* set parameter */

iicO_m rev_size = rxnum;

iicO_m_rev_pbuf = rxbuf;

CIrlIORBit(l1ICCO, 0x08); /* clear WTIMO */
SetlORBit(11CCO, 0x04); /* set ACKEO */
SetlIORBit(11CCO, 0x20); /* start receive */

return MD_OK;

Abstract:
11CO interrupt service routine

Parameters:
None

Returns:
None

103

Power-Down Mode Demonstration NEC

__interrupt void MD_INTIICO(void)
MD_STATUS sta;
ifC 11CSO & 0x80) {
sta = 11CO_MasterHandler();

else {
sta = 11CO_SlaveHandler();

** Abstract:
*x The function call at 1ICO interrupt request

** Parameters:
**x None.

** Returns:

wox MD_OK
*x MD_ERROR : cannot get address

** not slave mode

*x MD_SLAVE_RCV_END : all data received

il MD_SLAVE SEND END : all data sended

*x MD_SPT : get stop condition

**

A o ——————,—,—,—,—,—,—,—,—,—,—,—,—,——,——,—,—,—,——,—,—,——,—,—,—_—,—_——_——_——_——_—_—_—_—_—_—_—_—_—_—_—_—_——_———
*/

MD_STATUS 11CO_SlaveHandler(void)

{

/* control for stop condition */
iTC 1ICSO & 0x01){ /* get stop condition */
/* slave send end and get stop condition */
iT(1ic0_s_sta_flag &&(i1icO_s_send_size == 0)){
return MD_SLAVE SEND END;
} else {
return MD_SPT;
}

}

/* control for get address */
if(iicO_s _sta _flag == 0){
ifC 1(1ICSO & 0x20)){ /* check EXCO -> external code */
ifC 11CSO & 0x10){ /* check COI0 -> address */
iicO_s sta flag = 1;
CALL_I11CO_SlaveAddressMatch(); /* slave address match */

else{
return MD_ERROR;
T
}
else{
return MD_ERROR;
by

}

/* slave send control */
else if(1ICSO & 0x08){
iT(YC 11ICSO & 0x04)){ /* check ACKDO -> acknowledge */
return MD_NACK;

104

Power-Down Mode Demonstration

NEC

*/

}
11CO = *iicO_s_send_pbuf ++ ;
iicO_s send size--;

/* slave receive control */

else{
*iicO_s_rev_pbuf ++ = 11CO;
iicO_s rev_size--;
SetlORBit(11CCO, 0x20);
if(1icO_s_rev_size ==
CIrIORBit(11ICCO, 0x04);
return MD_SLAVE_RCV_END;
}
}

return MD_OK;

Abstract:
The function call at 1ICO interrupt request.

Parameters:
None.

Returns:
MD_OK

/* WREL1 = 1 start receive */
/* check all data received */
/* clear ACKEO */

MD_ERROR : cannot get ack after sended address

not master mode

slave did not send ack
MD_MASTER_RCV_END : all data received
MD_MASTER_SEND_END : all data sended

MD_STATUS 11CO_MasterHandler(void)

{

/* control for stop condition */

ifC 1C 1ICFO & 0x40)){
CALL_I11CO_MasterError(MD_SPT);
return MD_SPT;

}

/* control for sended condition */
if('iicO_m_sta_flag){
iTC 1ICSO & 0x4){
iicO_m sta flag = 1;
CALL_I11CO_MasterFindSlave();

else{
CALL_11CO_MasterError (MD_NACK);
return MD_NACK;
}
}
/* master send control */
else iT(1ICSO & 0x8){
ifC 1(1ICSO & 0x4) H){
SetlORBit(11CCO, 0x01);
CALL_11CO_MasterError (MD_NACK);
return MD_NACK;

}

if('iicO_m_send_size){
SetlORBit(11CCO, 0x01);

/* get stop condition */

/* check ACK */
/* address complete */

/* check ACK */
/* generate stop condition */

/* sended finish */
/* generate stop condition */

105

Power-Down Mode Demonstration NEC

CALL_I11CO_MasterSendEnd();
return MD_MASTER_SEND END;

}
11CO = *iicO_m_send_pbuf ++ ; /* send data */
i1icO_m_send_size--;
b
/* master receive control */
else {
1icO_m_rev_pbuf ++ = 11CO; / receive data */
iicO_m rev_size--;
ifC 1icO_m_rev_size == 0){ /* receive finish */
CIrIORBit(1ICCO, 0x04); /* ACK STOP */
SetlIORBit(11CCO, 0x01); /* generate stop condition */
CALL_I1CO_MasterReceiveEnd();
return MD_MASTER_RCV_END;
}
SetlORBit(11CCO, 0x20); /> start receive */
}

return MD_OK;

4,12 Serial_user.c

EaE L S

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** jncurred by customers or third parties arising from the use of this file.

** Filename : serial_user.c
** Abstract : This file implements device driver for SERIAL module.
** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

AEEAEXEEKIAALAEAAEAEAA KA AEA AKX A AXT A AKX AXAEA AKX AAXA AL A AXAAAXAAXAAXAXAAXAAAXAAXAXAAXAAAXAAXAXAAXAAXAAALAAAXA XX AX*X
*/
/*

EE R e e

** Include files

*/
#include "macrodriver.h"
#include "serial._.h"

/* added flags set by callback routines for use by upper level routine */
MD_STATUS Ul_MasterError;

106

Power-Down Mode Demonstration NEC

MD_STATUS Ul_MasterSendEnd;
MD_STATUS Ul_MasterReceiveEnd;
MD_STATUS Ul_MasterFindSlave;

/*
*x

**

** Abstract:
*x This function is an empty function for user code when I1CO initializing

** Parameters:
*x None

** Returns:
** None

void 11CO_User_Init(void)
{

}
/*

**

*x

** Abstract:
*x Master Error,
** callback function open for users operation

** Parameters:
*x MD_STATUS flag

**x
** Returns:
kel None
*x
K e e e
*/
void CALL_I1CO_MasterError(MD_STATUS flag)
{
/* user operation */
Ul_MasterError = flag;
return;
¥
/*
K e e e
**x
** Abstract:
**x Master recevice finish,
*x callback function open for users operation
**x
** Parameters:
kel None
*x
** Returns:
*x None
**
A
*/
void CALL_I11CO_MasterReceiveEnd(void)
{

/* user operation */
Ul_MasterReceiveEnd = MD_OK;

107

Power-Down Mode Demonstration NEC

return;
}
/*
AR
**x
** Abstract:
*x Master send finish,
*x callback function open for users operation
**x
** Parameters:
** None
*x
** Returns:
**x None
**x
R o e e e e e
*/
void CALL_I1CO_MasterSendEnd(void)
{
/* user operation */
Ul_MasterSendEnd = MD_OK;
return;
}
/*
A L o o o
**x
** Abstract:
*x 11CO slave address match
*x callback function for users operation
**x

** Parameters:

*x None
**x
** Returns:
kel None
* X
A o o o e e
*/
void CALL_I1CO_SlaveAddressMatch(void)
{
/* user operation */
¥
/*
R e e
**x
** Abstract:
** Master find the slave address
*x callback function open for users operation
**x
** Parameters:
kel None
*x
** Returns:
*x None
**
A
*/
void CALL_I11CO_MasterFindSlave(void)
{
/* user operation */
Ul_MasterFindSlave = MD_OK;
by

108

Power-Down Mode Demonstration

NEC

MD_.

Abstract:
Combines 11C0_MasterStart(Send, (sadr), 10)
and 11CO_MasterSendData(UCHAR* txbuf, UINT txnum)

Parameters:
UCHAR sadr : set address for select slave
UCHAR* txbuf : transfer buffer pointer
UINT txnum : buffer size

Returns:
MD_OK
MD_ERROR
MD_ARGERROR
MD_NACK - timeout on slave address

STATUS 11CO_MasterStartAndSend(UCHAR sadr, UCHAR* txbuf, UINT txnum)

{
MD_STATUS status;

in

//

ti,j;

// Init 1IC in case it needs it
11CO_Init();

// set up for First operation
Ul_MasterError = MD_OK;
Ul_MasterSendEnd = MD_ERROR;
Ul_MasterFindSlave = MD_ERROR;

status = 11CO_MasterStart(Send, sadr, 10);
if (status = MD_OK) {

return status;
}

1 = 10000;
do {

} while ((Ul _MasterFindSlave == MD_ERROR) && (Ul_MasterError == MD_OK) && (i > 0)

if (i ==0) {
return MD_NACK;
}

if (UI_MasterError = MD_OK) {
return Ul_MasterError;
}

// got slave address ok here
status = 11CO_MasterSendData(txbuf, txnum); // send data bytes
if (status = MD_OK) {
return status;
}
i = 10000;
do {

} while ((UI_MasterError == MD_OK) && (Ul_MasterSendEnd == MD_ERROR) && (i > 0));

if (i ==0) {

109

Power-Down Mode Demonstration NEC

return MD_NACK;

}
if (UI_MasterError = MD_OK) {
return Ul_MasterError;

it (Ul_MasterSendEnd = MD_OK) {
return Ul_MasterSendEnd;

}

// Fix to interact with other LCD code for now
// SetlORBit(MK1H, 0x1); /* disable interrupt */
// CIrIORBit(l1ICCO, 0x10); /* clear SPIEO bit */
// CIrIORBit(IF1H, 0x01); /* clear IICIFO bit */

return MD_OK; /7* no error */

4.13 Watchtimer.h

/*
AEEAEXEAEALAEAAEAAA KA AEA AKX A AKX A AKX AKX A AKX AAXA AL A XA AXAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAAAXAAAAALAAAXAAXAX*X

*x

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

*x

** Copyright(C) NEC Electronics Corporation 2002 - 2005

** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** fncurred by customers or third parties arising from the use of this file.
** Filename :watchtimer.h

** Abstract : This file implements device driver for watchtimer module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler : NEC/CC78KO

*/

#ifndef _MDWATCHTIMER_

#define _MDWATCHTIMER_

/*

AAEAEAAAAAA A A AAA A A AA AL A AAAA A AAA AR AAAAAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXK
** MacroDefine

AAEAEA A AAA A A AAAA A AAA AR AAAA A AAA LA A AAAAAAAALAAAARAAAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAXK
*/

void WT_Init(void);

MD_STATUS WT_Start(void);

MD_STATUS WT_Stop(void);

__interrupt void MD_INTWT(void);

#endi

110

Power-Down Mode Demonstration NEC

4.14 Watchtimer.c

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename :watchtimer.c

** Abstract : This Ffile implements device driver for watchtimer module.

** APIIib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

*/
#include "macrodriver.h"
#include "watchtimer.h"
/*

EE L S

** MacroDefine

E R S e s

*/

/*
*x

*x

** Abstract:
** This function initializes the watch timer module.

** Parameters:
** None

** Returns:

*x None
*x
A o o o e
*/
void WT_Init(void)
{
WTM = 0;
WTPR = 1; /* low priority level */
WTMK = 0;
WTM.7 = 1; /* watch timer clock: fw = fsub */

111

Power-Down Mode Demonstration

NEC

*x

*/

CIrIORBit(WTM, 0xO0c); /* watch time: 2714/fw (0.5s at 32.768Kz) */

CIr1IORBit(WTM, 0Ox70); /* interval time: 276/fw */
SetlORBit(WTM, 0x20);

Abstract:
This function restarts the watch timer after stopping.

Parameters:
None

Returns:
MD_OK

MD_STATUS WT_Start(void)

{

*x

*/

/* Enable watch timer operation */

WTM1 = 1;

/* Start the 5-bit counter */

WTMO = 1;

WTMK = 0O; /* INTWT enable */

return MD_OK;

Abstract:
This function stops the watch timer.

Parameters:
None

Returns:
MD_OK

MD_STATUS WT_Stop(void)

{

WTMK = 1; /* INTWT disable */
/* stop the 5-bit counter */

WTM1 = O;

/* stop watch timer operation */

WTMO = O;

return MD_OK;

4.15 Watchtimer_user.c

112

Power-Down Mode Demonstration NEC

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** fncurred by customers or third parties arising from the use of this file.
** Filename : watchtimer_user.c

** Abstract : This file implements device driver for watchtimer module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

AEEAXEIAKAALAEAAXAEAAAAEAAXAA AKX A AKX AXAEAAXAAAXA AL A AXAAXAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAXAAXAAAXAALAAAXAA XX AXX

*/

#pragma interrupt INTWT MD_INTWT

*/

#include "macrodriver.h"

#include "watchtimer.h"

/* add include of power down variables */
#include "pwr_dn_h"

/*
AEEAEXEEEAALAEAIAEAEAA A AEA AKX A AKX A AKX AKX A AKX AAXA AL A AXAAAXA AKX AXAAAXAAAXAXAXAAXAAAXAAXAAAXAAAXALAAAXAAAXAd*X

** MacroDefine

AEEAEXEEAKX AL EAAAEAAAAEA AKX A AXA A AKX AKX A AXAAAXA AL A AXAAXAXA AKX AXAAAXAAXAXAXAAXAAAXAAXAAAXAAXAXAALAAAXAAXAd*X

*/

/*
*x

*x

** Abstract:
*x INTWT interrupt service routine.

** Parameters:
kel None

** Returns:

kel None

**x

A
*/

static hsec = 0; /* half-second counter */

__interrupt void MD_INTWT(void)

{
UCHAR count;
/* 1T beep is off, just return */
it (g_beep == OFF)
return;
/* beep is on, count up half-second counter until 4 seconds */
hsec = hsec + 1;

113

Power-Down Mode Demonstration NEC

if (hsec < 8)

return; /* haven®t reached the time to beep yet */
hsec = 0;
/* make a brief sound by toggling P06 at WTI frequency */
PO.6 = 0; /* set output low */
PMO.6 = O; /* turn to output */

for (count = 0; count < 16; count++) {

}

PO.6 =

PMO.6

while (WTIIF == 0)

WTIIF = O;

PO = PO ™ 0x40; /* flip bit to drive high and low alternately*/
0; /* set latch low */

=1; /* turn back to input */

4.16 Option.inc

E R e

;** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,

;** 78K0/KD2,

78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

;** Copyright(C) NEC Electronics Corporation 2002 - 2005
;** All rights reserved by NEC Electronics Corporation.

;** This program should be used on your own responsibility.
;** NEC Electronics Corporation assumes no responsibility for any losses

;** incurred

;** Filename
;** Abstract

by customers or third parties arising from the use of this file.

> option.asm
: This File implements OPTION-BYTES/SECURITY-ID setting.

;** API1ib: NEC78KOKX2.1ib V1.01 [09 Aug. 2005]

;** Device : uPD78F0537
;**

;** Compiler : NEC/CC78KO0
;**

;** MacroDefine
OPTION_BYTE EQU OOH
POC81 EQU OOH

POC82 EQU OOH

POC83 EQU OOH
CG_ONCHIP EQU 02H
CG_SECURITYO EQU OffH
CG_SECURITY1 EQU OffH
CG_SECURITY2 EQU OffH
CG_SECURITY3 EQU OffH
CG_SECURITY4 EQU OffH
CG_SECURITY5 EQU OffH

114

Power-Down Mode Demonstration

NEC

CG_SECURITY6 EQU OffH
CG_SECURITY7 EQU OffH
CG_SECURITY8 EQU OffH
CG_SECURITY9 EQU OffH

4.17 Option.asm

;** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
;** 78K0/KD2, 78K0/KE2 and 78KO/KF2 8-Bit Single-Chip Microcontrollers.

;** Copyright(C) NEC Electronics Corporation 2002 - 2005
;** All rights reserved by NEC Electronics Corporation.

;** This program should be used on your own responsibility.

;** NEC Electronics Corporation assumes no responsibility for any losses

;** incurred by customers or third parties arising from the use of this file.
;** Filename : option.asm

;** Abstract : This file implements OPTION-BYTES/SECURITY-ID setting.

;** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

;** Device : uPD78F0537

;** Compiler : NEC/CC78KO0

S S

- o S S s s

$ INCLUDE (option.inc)
OPT_SET CSEG AT 80OH

OPTION: DB OPTION_BYTE
DB POC81
DB POC82
DB POC83
ONC_SET CSEG AT 84H
ONCHIP: DB CG_ONCHIP

CSEG SECUR_ID

SECURITYO: DB CG_SECURITYO
SECURITY1: DB CG_SECURITY1
SECURITY2: DB CG_SECURITY2
SECURITY3: DB CG_SECURITY3
SECURITY4: DB CG_SECURITY4
SECURITY5: DB CG_SECURITY5
SECURITY6: DB CG_SECURITY6
SECURITY7: DB CG_SECURITY7
SECURITY8: DB CG_SECURITY8
SECURITY9: DB CG_SECURITY9
END

115

Power-Down Mode Demonstration

NEC

4.18 defines.h

#define UP Ox01
#define DOWN 0x02
#define RIGHT 0x04
#define LEFT 0x08
#define SELECT 0x10

#define BAUDRATE 115200

4.19 Lcd.h

E R

** This file was created for the NEC Application Notes

** Copyright(C) NEC Electronics Corporation 2002 - 2006
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** fncurred by customers or third parties arising from the use of this file.

** Filename : lcd.h
** Abstract : This file implements header for LCD functions on DemoKit-LG2

** Device : uPD78F0397

** Compiler :NEC/CC78KO

*/
#ifndef _LCD_H_
#define _LCD_H_

void Wait(unsigned char Number);
void LCD_Init(void);

__callt extern void LCD_putc(unsigned char digit, unsigned char data);
__callt extern void LCD_string(unsigned char const *point, unsigned char dpos);
__callt extern void LCD_string_shift(unsigned char const *point);

#endif /* LCD_H_ */

116

Power-Down Mode Demonstration

NEC

4,20 Lcd.c

** This file was created for the NEC Application Notes

** Copyright(C) NEC Electronics Corporation 2002 - 2006
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** jncurred by customers or third parties arising from the use of this file.

** Filename : lcd.c

** Abstract : This Ffile implements LCD functions on DemoKit-LG2
** Modified from DemoKit-LG2 example code to use LcdDrvApp-.h
** Modified for Power-down Application Note

** Device : uPD78F0397

** Compiler : NEC/CC78KO

*/

#include "macrodriver.h"

#include "watchtimer.h" /* for Watchtimer routines */
#include "int.h" /* for sw3_in definition */

#include "serial._h" /* for 1IC functions */

#include "defines.h"

#include "lcd.h"

#include "LcdDrvApp.h"

#include "pwr_dn.h" /* for power down application */

unsigned const short characters[43] = {

0x0e70, // "0"
0x2060, // "1¢
0x4c32, // "2*
0x4872, // "3"
0x4262, // "4*
Ox4a52, // °5"
Ox4e52, // "6*
0x0070, // "7*
Ox4e72, // "8"
Ox4a72, // "9*
0x500a, // "+*
0x4002, // =-*
0x4232, // "°"
0x0800, // *_*
0x2004, // */*
0x4c42, // "o"
0x0000, // * " => space
0x4672, // “A*
Ox4e42, // "B*
0x0el10, // °C*
Ox4c62, // "D*
0x0el2, // “E*
ox0612, // “F*
0x4e50, // °G*

117

Power-Down Mode Demonstration

NEC

0x4662, // "H"
0x1008, /7 *1°
0x0c70, // "J*
0xa602, // "K-
0x0e00, // "L"
0x2661, // "M*
0x8661, // "N*
0x0e70, // "OF
0x4632, // "P*
0x8e70, // =Q~
0xc632, // "R*
Ox4ab2, // "S-
0x1018, // °"T"
0x0e60, // U~
0x8061, // *"V-
0x9664, // "W*
0xa005, // "X-
0x2009, /7 *"Y*
0x2814 // “Z*

};
// string of spaces for clearing display
const unsigned char *s_clear =" ";
/)~

// Global variables

__sreg unsigned char transmit_buffer[2];
__sreg char message_byte count;

// Module name: Wait
// Description: This module delays the program for (number * 50ms).

void Wait(unsigned char number)

{
UCHAR count;
UCHAR wt_off = 0;

if (WML == 0) {
/* watch timer is off, start it to time our interval */
wt_off = 1;
WT_Start();

}
while (number > 0) {
for (count = 0; count < ((50000/1950)+1); count++) {
while (WTIIF == 0)

WTIIF = 0;
}

number--;

}

it (wt_off) {
/* watch timer was off when we came in, stop it again */
WT_StopQ);

// Module name: LCD_Init
// Description: Calls LcdDrv functions to initialize LCD

void LCD_Init(void)

LcdDrvinit(Q);
118

Power-Down Mode Demonstration

NEC

LcdDrvOnWait();
Wait(80); // voltage boost wait time = 4s
LcdDrvon(Q);
}
/[-

// Module: LCD_putc
// Description: Sent character to LCD controller

__callt void LCD_putc (unsigned char digit, unsigned char data)
unsigned char disp_fast;

disp_fast = Disp_Fast();
// convert special characters

switch(data)

case Ox2f: data = OxOd; // " _*
break;

case Oxf0: data = 0x10; // * " => space
break;

case 0x80: data = OxOc; // *"°*
break;

case Oxfb: data = OxOa; // "+"
break;

case Oxfd: data = OxOb; // "--
break;

case Oxff: data = OxOe; // “/"
break;

case 0x3f: data = OxOf; // "o-
break;

default: break;

3

// load transmit buffer

transmit_buffer [0] = ((characters[data])& Oxff00)>>8;
transmit_buffer [1] = ((characters[data])& Ox00ff);
message_byte_count = 2;

digit<<=1;
LcdDrvSegWrite(&transmit_buffer[0],digit,message byte count);

if (disp_fast) {
Disp_Slow();

// Module: LCD_string
// Description: Send character string to LCD module

__callt void LCD_string(unsigned char const *point, unsigned char dpos)

{

unsigned char disp_fast;
disp_fast = Disp_Fast();

while(dpos<=7)

{

if(point[0])

{
LCD_putc(dpos, *point-0x30);
*point++;

}

else

{
LCD_putc(dpos,0xf0);

119

Power-Down Mode Demonstration

NEC

¥
dpos++;
if (disp_fast) {
Disp_Slow();
}
}
/)

// Module: LCD_string_shift
// Description: Send character string to LCD module

__callt void LCD_string_shift(unsigned char const *point)
{

unsigned char dpos=7;

while(dpos!=0xff)

{

if(sw3_in)

{
LCD_string(&s_clear[0],0);
return;

LCD_string(point,dpos);
dpos--;

Wait(4);

Foo

*point++;

dpos=0;

while(point[0])

{

if(sw3_in)
{
LCD_string(&s_clear[0],0);
return;
o
*point++;
LCD_string(point,dpos);
Wait(4);
}

}

static UCHAR disp_save = OFF;
static UCHAR main_save = OFF;
static UCHAR clock save = OFF;
static UCHAR iic_save = OFF;

/* 1T CPU is slow, make fast for display */
UCHAR Disp_Fast(void)
{
if (disp_save == ON)
return OFF;
main_save = g_main_on;
if (g_main_on == OFF) {
disp_save = ON;
if (g_mainclock == CLK_HSR){
RSTOP = 0;
while (RSTS == 0)
} else {
MSTOP = 0;

/* if we are using X1 crystal, need to wait for Osc stablilze time */

#if (CLK_EX_TYPE == CLK_EX_SEL_X1)
while (0STC.0 == 0)

; /* wait for X1 clock to stabilize */

#endi
120

Power-Down Mode Demonstration NEC

g_main_on = ON;

clock_save = g_clock;
if (g_clock == CLK_SUB) {
disp_save = ON;
CSS = 0; /* set to main clock */
it (g_mainclock == CLK_HSR)
g_clock = CLK_HSR;
else
g_clock = CLK_EX;

ic_save = g_ilc_on;

f (g_iic_on == OFF) {
disp_save = ON;
11CO_Init();
g_iic_on = ON;

- -

}

return (disp_save);

}

/* 1T we set fast to display, set slow again */
void Disp_Slow()
{
if (disp_save == OFF)
return;
disp_save = OFF;
if (iic_save == OFF) {
PM6 |= 0x03;
11CO_Stop(Q);
g_iic_on = OFF;

}

if (clock_save == CLK_SUB) {
CSS = 1;
while (CLS == 0);

g_clock = CLK_SUB;
}
if (main_save == OFF) {
if (g_mainclock == CLK_HSR) {
RSTOP = 1;
} else {
MSTOP = 1;
}

g_main_on = OFF;

4.21 LcdDrvApp.h

> NNNNNN NN EEEEEEEEEEEEEEEEEE CCCCCCCCCCCCCCC
> NNNNNNNN NN EEEEEE CCCCCC
> NNNNNNNNNN NN EEEEEE CCCCCC

121

Power-Down Mode Demonstration NEC

NN NNNNNNNN NN EEEEEEEEEEEEEEEEE CCCCCC

NN NNNNNNNN NN EEEEEE CCCCCC

NN NNNNNNNNNN EEEEEE CCCCCC

NN NNNNNN EEEEEEEEEEEEEEEE CCCCCCCCCCCCCCC

NEC Electronics 78K0/Lx2

[History]

2005.06.-- Newly created

2006.01.18 - mod to use Applilet-generated 1IC routines instead of iic.c
- mod for DemoKit-LG2, LCDC = 0x02 instead of O0xOC

***/

*

External reference

T T T I I I T

*/

#ifndef LCDDRVAPP H_
#define _LCDDRVAPP_H_

== Various interface functions ==/
/* LCD driver initialization processing */
extern unsigned char LcdDrvinit(void);
/* LCD driver display ON wait start pre-processing
(used only when internal step-up mode is selected) */
extern unsigned char LcdDrvOnWait(void);
/* LCD driver display ON processing */
extern unsigned char LcdDrvOn(void);
/* LCD driver display OFF processing */
extern unsigned char LcdDrvOFf(void);
/* LCD driver control register write processing */
extern unsigned char LcdDrvCtrWrite(unsigned char *src,
unsigned char addr,
unsigned char size);
/* LCD driver segment data write processing */
extern unsigned char LcdDrvSegWrite(unsigned char *src,
unsigned char addr,
unsigned char size);
/* LCD driver segment data clear processing */
extern unsigned char LcdDrvSegCIlr(void);
/* Single byte write processing in LCD driver control register */
extern unsigned char LcdDrvCtrWritelByte(unsigned char addr,
unsigned char data);
/* Single byte write processing of LCD driver segment data */
extern unsigned char LcdDrvSegWritelByte(unsigned char addr,
unsigned char data);
/*== Control register address value ==*/
#define CLDR_ADDR_LCDMD 0Ox00 /* Ox00: LCD mode select register */
#define CLDR_ADDR_LCDM 0x01 /* 0Ox01: LCD display mode register */
#define CLDR_ADDR_LCDC 0x02 /* 0x02: LCD clock control register */
#define CLDR_ADDR_VLCGO 0x03 /* 0x03: LCD step-up control register */

/*== Error type value ==*/
enum

CLDR_ERR_NONE /* O: No errors */

, CLDR_ERR_NACK /* 1: NACK received */

, CLDR_ERR_BUSY /* 2: Busy (communication disabled) */
, CLDR_ERR _PARA /* 3: Parameter error */

}:
/*
122

Power-Down Mode Demonstration

NEC

/
7

7
/
/

/
/
/
/
/
/
/
/

7
/

Definition of constants

Settings in registers that control the LCD controller/driver
and main unit®s control register

*/

*

Settings in control register for LCD chip®s LCD control unit

*/

*

[Communication format]

Address Bit

76543210

S — R — T - R R R S R +
OOH LCDMD |SEGSET2|SEGSET1]|SEGSETO] O | O | O |MDSET1 |MDSETO |

S — - T R R R R S R +
MDSET1/0 : Selects LCD reference voltage generator

SEGSET2-0 : Sets number of segments (fixed as 40)

- - T - R R R S R +
O1H LCDM | LCDON | SCOC | VLCON | O] O | LCDM2 | LCDM1 | LCDMO |
- T —— - - N R R R +
LCDM2-0 : Selects LCD controller/driver display mode

VLCON : Enables/disables operation of step-up circuit

SCOC : Controls segment pins/common pins output

LCDON : Enables/disables LCD display

Fom—— Fom—— Fom—— Fom—— Fom—— Fom—— Fom—— Fom——— +
O2H LCDC | O] O] O] O] LCDC3 | LCDC2 | LCDC1 | LCDCO |

Fom—— Fom—— Fom—— Fom—— Fom—— Fom—— Fom—— Fom——— +
LCDC1/0 : Sets LCD clock

LCDC3/2 : Sets LCD source clock

Fom—— Fom—— Fom—— Fom—— Fom—— Fom—— Fom—— Fom——— +
O3H VLCGO |CTSEL1 |CTSELO | O 1] O] O] O] O | GAIN |

Fom—— Fom—— Fom—— Fom—— Fom——_— Fom—— Fom—— o —— +
GAIN : Sets reference voltage level

CTSEL1/0 : Selects contrast adjustment

**Selects each register™s settings from the following patterns.

*/

A o o e e e e e e
LCD mode select register (register address: OOH)
__ */
--- Selects LCD reference voltage generator ---/
/ #define CLDR_LCDMD Ob00000000 /* <1> External resistor division mode */

/ #define CLDR_LCDMD Ob0O0000001 /* <2> Internal resistor division mode */
#define CLDR_LCDMD Ob0O0O000010 /* <3> Internal step-up mode */
* 76543210 */

* o 000 0: Bit must be set */

“ 1 =7

* 1111111l **Settings are from patterns <1> to <3> above */

* 1 */

* 11111]++-- MDSET1/0 Sets LCD reference voltage generator */

* || |+++---- <000 fixed> */

% bt <000 fixed> Selects number of segments (SEGSET2/1/0) */

-- Selects LCD controller/driver display mode --/
* */

123

Power-Down Mode Demonstration

NEC

/* | Resistor | Step-up | */

/* | division mode | mode | */

/* | Time | Bias | Time | Bias | */

/* |division|method|division|method]| */

#define CLDR_LCDM 0b11100000 /* <1> | 4 | 1/3 | 4 | 1/3 | */

// #define CLDR_LCDM 0b11100001 /* <2> | 3 | /3 | 3 | /3 | */
// #define CLDR_LCDM 0b11100010 /* <3> | 2 | 172 | 4 | /3 | */
// #define CLDR_LCDM 0b11100011 /* <4> | 3 | /2 | 3 | /3 | */
// #define CLDR_LCDM 0b11100100 /* <5> | Static |Set prohibited | */
/* 76543210 */
/* XXX--000...... 0: Bit must be set, */
;* IIIIIIII X: Bi; setting not required, control by software */
* *
/% 11111111 **Settings are from patterns <1> to <5> above */
/* 11111111 **Bits 7 to 5 are controlled by software */
7= LT */
/* |111]+++-- LCDM2/1/0 Selects LCD controller/driver disp mode */
/* | |++-—-- <00 fixed> */
/* || +------- VLCON (1 fixed) Enables/disables step-up circuit */
/* |+ SCOC (1 fixed) Controls segment/common pins output */
Y el e LCDON (1 fixed) Enables/disables LCD display */
)
; LCD clock control register (register address: 02H)
e */
/*-- Selects LCD source clock (fLCD) & LCD clock --*/
/* */
/* | LCD source | LCD clock | */
/* |clock (FfLCD)| LCD clock | */
// #define CLDR_LCDC Ob0O0000000 /* <1> | fPCL | fLCD/276 | */
// #define CLDR_LCDC 0b00000001 /* <2> | fPCL | fLCD/2™7 | */
#define CLDR_LCDC Ob0O0000010 /* <3> | fPCL | fLCD/278 | */
// #define CLDR_LCDC 0b00000011 /* <4> | fPCL | fLCD/279 | */
// #define CLDR_LCDC Ob00001000 /* <5> | fPCL/2 | fLCD/276 | */
// #define CLDR_LCDC 0b00001001 /* <6> | fPCL/2 | fLCD/2™7 | */
// #define CLDR_LCDC 0b00001010 /* <7> | fPCL/2 | fLCD/278 | */
// #define CLDR_LCDC 0b00001011 /* <8> | fPCL/2 | fLCD/279 | */
// #define CLDR_LCDC 0b00001100 /* <9> | fPCL/272 | fLCD/276 | */
// #define CLDR_LCDC 0b00001101 /* <10>]| fPCL/272 | fLCD/2™7 | */
// #define CLDR_LCDC 0b00001110 /* <11>]| fPCL/272 | fLCD/278 | */
// #define CLDR_LCDC 0b00001111 /* <12>] fPCL/27"2 | fLCD/279 | */
/* 76543210 */
/* ----0000 0: Bit must be set */
7= LT */
/7% 11111111 **Settings are from patterns <1> to <12> above */
/= LT */
/* |1111]++-- LCDC1/0 Sets LCD clock */
/* |1l]++---- LCDC3/2 Sets LCD source clock */
/* ettt <0000 fixed> */
)
; LCD step-up control register (register address:03H)
e e e e e e e e e e */

/*-- Selects reference voltage (VLC2) level & contrast adjustment (TYP.

/* */

/* |Reference| Contrast | */

/* | voltage | adjustment | */

/* | (vLC2) | (TYP. value) | */

/* |level *1 | VLCO | VLC1 | vLC2 | */

#define CLDR_VLCGO 0b10000000 /* <1> |1.5V | 4.89V | 3.27V | 1.633V |
// #define CLDR_VLCGO 0b11000000 /* <2> |1.5V | 4.71V | 3.13V | 1.567V
// #define CLDR_VLCGO Ob0O0O0O0O0000 /* <3> |1.5V | 4.50V | 3.00V | 1.500V
// #define CLDR_VLCGO 0b01000000 /* <4> |1.5V | 4.29V | 2.87V | 1.433V
// #define CLDR_VLCGO 0b10000001 /* <5> |1.0V | 3.29V | 2.27V | 1.133V
// #define CLDR_VLCGO 0b11000001 /* <6> |1.0V | 3.21V | 2.13V | 1.067V
// #define CLDR_VLCGO 0b00000001 /* <7> |1.0V | 3.00V | 2.00V | 1.000V

124

value) -*/

*/

Power-Down Mode Demonstration NEC

// #define CLDR_VLCGO 0b01000001 /* <8> |1.0V | 2.79V | 1.87V | 0.933Vv | */
/* 76543210 */

/* 00-—--- O O: Bit must be set */

7 1T */

/% 11111111 **Settings are from patterns <1> to <8> above */
A */

/* |111111+-- GAIN Sets reference voltage level */

/* | |+++++—-- <00000 Fixed> */

[/* e CTSEL1/0 Selects contrast adjustment */

/* */

/* *1: The reference voltage level is selected 1.5 V when the target LCD panel */
/* 1s rated at 4.5V, and is selected as 1.0 V when the target LCD panel is */

/* rated at 3.0 V. */

/*
; Definition of main control register settings

; */

; Selects clock output

/*-- Selects PCL"s output clock --*/

/* TSUB=32.768kHz */

/* TfPRS=peripheral clock */

/* | fPRS=10MHz | fPRS=20MHz | */

// #define CLDR_CKS 0b00000110 /* <1> | fPRS/276 | 156.25kHz | 312.5 kHz | */

// #define CLDR_CKS 0b00000111 /* <2> | fPRS/2~7 | 78.125kHz | 156.25kHz | */
#define CLDR_CKS 0b00001000 /* <3> | fSUB | 32.768kHz | 32.768kHz | */

/* 76543210 */

/* ---X0000 0: Bit must be set */

/* |1 X: Bit setting not required, control by software */
/* */

/* **Settings are from patterns <1> to <3> above */

|

| Setting

| **Bit 4 is controlled by software */
|

+

1
1|
1
7= 11
/7~ 11 */
/= 11 -- CCS3/2/1/0 Selects PCL"s output clock */
/* | +------ CLOE (O fixed) Enables/disables clock output to LCD */
/* At <000 fixed> */
Y Al e < END OF FILE >-——-—-———- */

#endif /* _LCDDRVAPP_H */

4,22 LcdDrvApp.c

/***********************7\'**

NNNNNN NN EEEEEEEEEEEEEEEEEE CCCCCCCCCCCCCCC
NNNNNNNN NN EEEEEE CCCCCC

NNNNNNNNNN NN EEEEEE CCCCCC

NN NNNNNNNN NN EEEEEEEEEEEEEEEEE CCCCCC

NN NNNNNNNN NN EEEEEE CCCCCC

NN NNNNNNNNNN EEEEEE CCCCCC

NN NNNNNN EEEEEEEEEEEEEEEE CCCCCCCCCCCCCCC

NEC Electronics 78K0/Lx2

B S R

B R R

125

Power-Down Mode Demonstration

NEC

; LCD controller/driver control -- Processing file--

;[History]

; 2005.06.-- Newly created

; 2005.07.01 [050701] Provisionally added voltage supply to VLCO

; 2006.01.11 Modified to use Applilet-generated I1IC routines - rdh
; 2006.01.27 Correction in LcdDrvOff in turning off VLCON - rdh

; 2006.03.30 Use routines for writing only for Application Notes

"""""""""" /
#pragma sfr

/*

; INCLUDE

s */
#include "macrodriver.h"

#include "serial.h"

#include "LcdDrvApp.h"

static void LcdDrvCIkOut(void);

static void LcdDrvClkStop(void);

/*

; Definition of control area for LCD driver and various settings

- */
}*:::::::::::

; Slave 1D

;::::::::::*/
#define CSLV_ID_LCDCTL 0b01110000 /* Control register (LCDCTL) */
#define CSLV_ID_LCDSEG 0b01110010 /* Segment data (LCDSEG) */

;::::::::::*/

/*-- Clock output select register --*/

#define LDR_CKS CKS

#define LDR_CKS_CLOE LDR_CKS.4 /* Clock output enable/disable */

/*-- Port/port mode register (directly connected in microcontroller) --*/
#define PO_LDR_RST P13.0 /* Reset to LCD chip */
#define PM_LDR_OUT PM14.0 /* Clock output to LCD chip */

/*-- Port/port mode register --*/ /*[050701]>>*/
#define PO_VLCO _HL P7.7 /* Voltage supply to VLCO */
#define PM_VLCO_HL PM7.7 /* Voltage supply to LLCO [050701] */

/* Selects LCD reference voltage generator: internal step-up mode */
#define CLDR_LCDMD_VOL 0b00000010

/**

; LCD driver initialization

D[N -

; [OUT] 0= Setting OK, 1 = NACK received, 2 = Busy
aleiaiaiaiaiaiaiaiaiaisiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiataiaiaie /
unsigned char LcdDrvinit(void)

{
register unsigned char result = CLDR_ERR_NONE;

PO_LDR_RST = 1; /* Cancels LCD chip"s reset status */
LDR_CKS = (CLDR_CKS & 0b00001111); /* Output clock setting (CCS3-0) */

/*-- Enables clock output to LCD chip --*/
126

Power-Down Mode Demonstration NEC

LcdDrvCIkOut();

/*-- Selects reference voltage generator --*/
result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDMD, CLDR_LCDMD);

/*-- Clears segment data --*/
if(result == CLDR_ERR_NONE){
result = LcdDrvSegCIr(Q);

}

/*-- Selects display mode --*/

if(result == CLDR_ERR_NONE){

result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDM, (CLDR_LCDM & Ob00000111));
}

/*-- LCD clock setting --*/

iT(result == CLDR_ERR_NONE){

result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDC, CLDR_LCDC);
¥

return (result);

<< Note >>

Only N is called when internal step-up mode is selected for the reference
voltage generator. After this processing is called, a wait period
of at least 500 ms should occur, then the "LcdDrvOn" should be called.

[P N -
[OUT] 0= Setting OK, 1 = NACK received, 2 = Busy

Gnsigned char LcdDrvOnWait(void)

{

#if (CLDR_LCDMD==CLDR_LCDMD_VOL)

/* Reference voltage generator: internal step-up mode */
register unsigned char result = CLDR_ERR_NONE;

/*-- Enables clock output to LCD chip --*/
LcdDrvCikOut();

/*-- Sets LCD step-up level and contrast--*/
result = LcdDrvCtrWritelByte(CLDR_ADDR_VLCGO, CLDR_VLCGO);

/*-- Enables LCD step-up --*/
iT(result == CLDR_ERR_NONE){
result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDM, (CLDR_LCDM & 0b00100111));
by
/* -- After 500 ms, the "LcdDrvOnWait" function must be called -- */
return (result);
#else/*1 (CLDR_LCDMD==CLDR_LCDMD_VOL)*/
/* Reference voltage generator: resistor division mode */
return (0);
#endif/*(CLDR_LCDMD)*/

s
/ nnnnnnnnnnnnnnnn
; << Note >>

When internal step-up mode has been selected for the reference voltage
127

Power-Down Mode Demonstration NEC

; generator, after the "LcdDrvOnWait"™ has been called, a wait period of
; at least 500 ms must occur before calling the next function.

L1 N -
[OUT] O= Setting OK, 1 = NACK received, 2 = Busy

unsigned char LcdDrvOn(void)

{
register unsigned char result = CLDR_ERR_NONE;

#if (CLDR_LCDMD==CLDR_LCDMD_VOL)

/* Reference voltage generator: internal step-up mode */

/*-- Setting of deselect potential output --*/

result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDM, (CLDR_LCDM & 0b01100111));

/*-- Display ON setting --*/

iT(result == CLDR_ERR_NONE){

result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDM, (CLDR_LCDM & 0b11100111));
¥

#else/* 1 (CLDR_LCDMD==CLDR_LCDMD_VOL)*/
/* Reference voltage generator: resistor division mode */
/*-- Enables clock output to LCD chip --*/
LcdDrvCikOut();

/*-- Setting of deselect potential output --*/
result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDM, (CLDR_LCDM & 0Ob01000111));

/*-- Display ON setting --*/

if(result == CLDR_ERR_NONE){

result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDM, (CLDR_LCDM & 0b11000111));
¥

#endif/*(CLDR_LCDMD)*/
return (result);

B R s s

LCD driver display OFF processing

[N] -
[OUT] 0= Setting OK, 1 = NACK received, 2 = Busy

I ™

*Clears AX register

- ***/
’

unsigned char LcdDrvOff(void)

{
register unsigned char result = CLDR_ERR_NONE;

/*-- Clears segment data --*/
result = LcdDrvSegCIr();

/*-- Display OFF setting --*/

if(result == CLDR_ERR_NONE){

result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDM, (CLDR_LCDM & 0b01100111));
}

/*-- Segment/common buffer output disable setting --*/

if(result == CLDR_ERR_NONE){

result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDM, (CLDR_LCDM & 0b00100111));
¥

#if (CLDR_LCDMD==CLDR_LCDMD_VOL)

128

Power-Down Mode Demonstration

NEC

/*-- LCD step-up disable setting --*/
if(result == CLDR_ERR_NONE){
#if O /* correction 060127 - bit 5 is 1, does not turn off VLCON */

result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDM, (CLDR_LCDM & 0b00100111));

#else /* correction turns off VLCON by having bit 5 as zero */

result = LcdDrvCtrWritelByte(CLDR_ADDR_LCDM, (CLDR_LCDM & Ob0O0000111));

#endi
}

#endif/*(CLDR_LCDMD)*/

if(result == CLDR_ERR_NONE){

/*-- Disables clock output to LCD chip --*/
LcdDrvCIkStop(Q);

¥

return (result);

Writes LCD driver control data

[N] src : Control register data"s storage address

addr : Control register address value

size : Number of bytes to be transmitted (4 bytes maximum)

[OUT] 0= Setting OK, 1 = NACK received, 2 = Busy, 3 = Parameter error

xxxxxxxxxxxxxx /

nsigned char SLDRCTLW(unsigned char *src,

unsigned char addr, unsigned char size)

{

register unsigned char result = CLDR_ERR_NONE;
register unsigned char cnt;
MD_STATUS status;
unsigned char buf[5];
unsigned char uc;

}
/ *hkkx
u

/*-- Enables clock output to LCD chip --*/
LcdDrvCikOut();

/*-- Checks parameters --*/
iT((size == 0)||(addr > 0x03)| ((0x03+1 - addr) < size)){
result = CLDR_ERR_PARA;

}

buf[0] = addr;

for (uc = 0; uc < size; uc++) {
buf[uc+1] = srcluc];

}

status = 11CO_MasterStartAndSend(CSLV_ID_LCDCTL, buf, size + 1);
if (status !'= MD_OK)

result = CLDR_ERR_NACK;

return (result);

Writes LCD driver segment data

[1 N] src : Address of segment data to be written

addr : Data address for start of write operation

size : Number of bytes to be transmitted (maximum: 20 bytes)

[OUT] 0= Setting OK, 1 = NACK received, 2 = Busy, 3 = Parameter error

** Smooths data before transmitting segment data.

<Received data>
bit7 bité bit5 bitd4 bit3 bit2 bitl bit0

R T

129

Power-Down Mode Demonstration NEC

s —
1st byte (OOH) | COM3] COM2] COM1 | COMO | COM3 | COM2 | COM1 | COMO |
o S S U &

I<- segment.Sl ->|<- segment:SO ->|

N R S S - ———

; 2nd byte (01H)]COM3]COM2]COM1]|COMO]COM3]COM2]COM1|COMO]
N R S S S -——

; S | S &

; 19th byte (12H)]COM3]COM2]COM1]COMO|COM3|COM2|COML|COMO]
e TR YR S T S S S S——

S SRR Y S SV

; 20th byte (13H)]COM3]COM2]COM1]COMO|COM3|COM2]|COML|COMO]
S SRR YU S SV

; |<- segment:S39 ->]|<- segment:S38 ->|

; <Sent data>
; bit7 bit6 bith bit4 bit3 bit2 bitl bit0

R VRO S S S ——
; 1st byte(OOH)l 0] 0] O] O JCOM3]COM2]COML]|COMO]
o S R &

|<— segment:S0 ->|
; Address:00H |

|<— segment:S39 ->|
| Address:27H |

; B S S St SOt S &

; 2nd byte O1M] 0 | o | O] O JCOM3]COM2]COM1]COMO]
R R S R WA P I S NS

; | S S &

; 39th byte (26H)| 0oJojJo0]oO |COM3|COM2|COM1|COMO|
e R YR S " o +

S R S - -——

; 40th byte @M™]I0oJ0]0]oO |COM3|COM2|COM1|COMO|
R R S N SRR WERSVRIN TSR SRR S W, +

unsigned char LcdDrvSegWrite(unsigned char *src,
unsigned char addr, unsigned char size)

{
register unsigned char result = CLDR_ERR_NONE;
register unsigned char cnt;
MD_STATUS status;
unsigned char buf[41];
unsigned char uci,ucd;

/*-- Enables clock output to LCD chip --*/
LcdDrvCIkOut();

/*-- Checks parameters --*/
if((size == 0)]](addr > 0x13)|] ((Ox13+1 - addr) < size)){
result = CLDR_ERR_PARA;

}

buf[0] = addr*2;

for (uci = 0, ucd = 1; uci < size; uci++, ucd = ucd + 2) {
buf[ucd] = src[uci] & OxO0f ;

buf[ucd+1] = (src[uci] >> 4) & OxOf;

}

status = 11CO_MasterStartAndSend(CSLV_ID_LCDSEG, buf, (size * 2) + 1);
130

Power-Down Mode Demonstration

NEC

if (status !'= MD_OK)
result = CLDR_ERR_NACK;
return (result);

; Clears LCD driver segment data

L1 N] -
[OUT] 0= Setting OK, 1 = NACK received, 2 = Busy

nsigned char LcdDrvSegClr(void)

P Courur

register unsigned char result = CLDR_ERR_NONE;
register unsigned char cnt;

MD_STATUS status;

unsigned char buf[41];

unsigned char uc;

/*-- Enables clock output to LCD chip --*/
LcdDrvCikOout();

buf[0] = 0; // start at location zero
for (uc = 1; uc < 41; uc++) {
buffuc] = 0;
¥

status = 11CO_MasterStartAndSend(CSLV_ID_LCDSEG, buf, 41);

if (status !'= MD_OK)
result = CLDR_ERR_NACK;
return (result);

[N] addr : control register address value
; data : control register data
[OUT] 0= Setting OK, 1 = NACK received, 2 = Busy, 3

Parameter error

register unsigned char result = CLDR_ERR_NONE;
MD_STATUS status;

unsigned char buf[2];

unsigned char uc;

/*-- Enables clock output to LCD chip --*/
LcdDrvCikOut(Q);

buf[0]
buf[1]

addr;
data;

status = 11CO_MasterStartAndSend(CSLV_ID_LCDCTL, buf,

if (status !'= MD_OK)
result = CLDR_ERR_NACK;
return (result);

*/

nsigned char LcdDrvCtrWritelByte(unsigned char addr, unsigned char data)

2);

[1 N] addr : Control register address value
data : control register data

TR L ™

[OUT] 0= Setting OK, 1 = NACK received, 2 = Busy, 3 =

Parameter error

131

Power-Down Mode Demonstration

NEC

- KAKKKKKKIKKR

Gnsigned char LcdDrvSegWritelByte(unsigned char addr, unsigned char data)

{
register unsigned char result = CLDR_ERR_NONE;

register unsigned char work;
MD_STATUS status;

unsigned char buf[5];
unsigned char uc;

/*-- Enables clock output to LCD chip --*/

LcdDrvCikOut();
buf[0] = addr;
buf[1] = data & OxOf;

buf[2] (data >>4) & OxOf;

status = 11CO_MasterStartAndSend(CSLV_ID_LCDSEG, buf, 3);
if (status !'= MD_OK)

result = CLDR_ERR_NACK;

return (result);

}

/*******************7\'**

; Enables clock and power output to LCD chip

static void LcdDrvCIkout(void)

PM_LDR_OUT = 0;

LDR_CKS_CLOE = 1;
#if (CLDR_LCDMD==CLDR_LCDMD_VOL) /*[050701]>>*/

PO_VLCO_HL = 0; /* Low output (power is supplied to VLCO)*/
#else /*1(CLDR_LCDMD==CLDR_LCDMD_VOL)*/

PO_VLCO _HL = 1; /* High output (power is not supplied to VLCO)*/
#endif/*(CLDR_LCDMD)*/ /*[050701]<<*/
}

/*******************7\'**

Disables clock and power output to LCD chip

tatic void LcdDrvClkStop(void)

) uru w

0;
PM_LDR_OUT
PO_VLCO_HL

b
S < END OF FILE >---*/

LDR_CKS_CLOE =
=1;
= 0; /*[050701]*/

132

	Application Note
	Power-Down Mode Demonstration
	For NEC Electronics Microcontrollers
	Revision History

	Contents
	Introduction
	An Overview of Power-Down Features

	Clock Control and Standby
	Features of Clock Control and Standby Functions
	Clock Control Features
	Standby Features

	Program Description and Specification
	Software Flow Charts
	Program Startup and Initialization
	Clock_Init() – CPU Clock Initialization
	INT_Init() – Key-Return Interrupt Initialization
	WT_Init() – Watch-Timer Initialization for Square-Wave Gene
	Main() – The Main Program – Power-Down Functions
	SetClk() – Select CPU Clock Source
	SetClkHSR() – Set CPU Clock to Internal High-Speed Oscillat
	SetClkEx() – Set CPU Clock to X1/X2 Crystal Oscillator
	SetClkEx() – Alternate – Set CPU Clock to EXCLK Input
	SetClkSub() – Set CPU Clock to Subclock
	SetPCC() – Set PCC Register for Main Clock Division
	DispOff() – Turn LCD and IIC0 Peripheral Off
	TurnDIspOff() – Turn Display Off
	TurnDIspOn() – Turn Display On
	Standby() – Select Standby Mode
	StandbyHalt1() – HALT With Periodic Wake-up Interrupt
	StandbyHalt2() – HALT with No Periodic Interrupt
	StandbyStop1() – Stop with Periodic Wake-up Interrupt
	StandbyStop2() – Stop with No Periodic Interrupt, Subclock
	StandbyStop3() – Stop with No Periodic Interrupt, Subclock
	MD_INTKR() – Key-Return Interrupt-Service Routine
	MD_INTWT() – Watch-Timer Interrupt-Service Routine

	Applilet's Reference Driver
	Configuring Applilet for Clock Initialization
	Configuring Applilet for Key-Return Interrupt
	Configuring Applilet for Watch Timer
	Configuring Applilet for IIC0 Communication
	Generating Code with Applilet
	Applilet-Generated Files and Functions for Clock Initializat
	System.h
	System.c

	Applilet-Generated Files and Functions for Key-Return Interr
	Int.h
	Int.c
	Int_user.c

	Applilet-Generated Files and Functions for Watch Timer
	Watchtimer.h
	Watchtimer.c
	Watchtimer_user.c

	Applilet-Generated Files and Functions for IIC0 Communicatio
	Serial.h
	Serial.c
	Serial_user.c

	Other Applilet-Generated Files
	Demonstration-Program Files Not Generated by Applilet

	Demonstration Platform
	Resources
	Demonstration of Program

	Hardware Block Diagram
	Power Measurement Results

	Software Modules

	Appendix A - Development Tools
	Software Tools
	Hardware Tools

	Appendix B – Software Listings
	Main.c
	Pwr_dn.h
	Macrodriver.h
	System.h
	Systeminit.c
	System.c
	Int.h
	Int.c
	Int_user.h
	Serial.h
	Serial.c
	Serial_user.c
	Watchtimer.h
	Watchtimer.c
	Watchtimer_user.c
	Option.inc
	Option.asm
	defines.h
	Lcd.h
	Lcd.c
	LcdDrvApp.h
	LcdDrvApp.c

