

RX230/RX231 Group, RX630 Group

Points of Difference Between RX231 Group and RX630 Group

Summary

This application note is intended principally as a reference providing an overview of the peripheral functions of the RX231 Group and RX630 Group, to enable checking of the points of difference between the I/O registers and pin functions of the two groups, and to allow confirmation of key points related to migration.

Unless specifically otherwise noted, the information in this application note applies to the 100-pin LQFP package version B of the RX231 Group and the 100-pin LQFP package version of the RX630 Group. To confirm details of differences in the specifications of the electrical characteristics, usage notes, and setting procedures, refer to the user's manuals of the products in question.

Target Devices

RX231 Group and RX630 Group

Contents

1.	Comparison of Functions of RX231 Group and RX630 Group	4
2.	Comparative Overview of Functions	6
2.1	CPU	6
2.2	Operating Modes	7
2.3	Address Space	8
2.4	Resets	11
2.5	Option-Setting Memory	12
2.6	Voltage Detection Circuit	14
2.7	Clock Generation Circuit	
2.8	Low Power Consumption Functions	23
2.9	Battery Backup Function	
2.10	Register Write Protection Function	
2.11	Exception Handling	34
2.12	Interrupt Controller	35
2.13	Buses	
2.14	Memory Protection Unit	
2.15	DMA Controller	
2.16	Data Transfer Controller	
2.17	I/O Ports	
2.18	Multi-Function Pin Controller	
2.19	Multi-Function Timer Pulse Unit 2	68
2.20	Port Output Enable 2	
2.21	16-Bit Timer Pulse Unit	70
2.22	8-Bit Timer	71
2.23	Compare Match Timer	72
2.24	Realtime Clock	73
2.25	Independent Watchdog Timer	76
2.26	USB 2.0 Function Module	79
2.27	Serial Communication Interface	
2.28	I ² C Bus Interface	91
2.29	CAN Module	94
2.30	Serial Peripheral Interface	
2.31	12-Bit A/D Converter	
2.32	D/A Converter	110
2.33	•	
2.34		
2.35	Flash Memory (ROM)	113
2.36	Flash memory (E2 DataFlash)	

2.37	Package (LQFP100 only)	
3.	Comparison of Pin Functions	
3.1	100-Pin LQFP Package	
4.	Notes on Migration	
4.1	Operating Voltage Range	
4.1.1	Power Supply Voltage	
4.1.2	Analog Power Supply Voltage	
4.2	Notes on the Pin Design	
4.2.1	Power Supply Pins and Operating Frequency	
4.2.2	Main Clock Oscillator	
4.2.3	VCL Pin (External Capacity)	
4.2.4	Mode Setting Pins	
4.2.5	General I/O Ports	
4.2.6	Analog Input Pins for A/D Converter	
4.2.7	Integrated Pull-Up and Pull Down Resistors for USB DP and DM Pins.	
4.2.8	Inputting an External Clock	
4.3	Notes on the Function Settings	
4.3.1	UB Code	
4.3.2	Battery Backup Function	
4.3.3	12-Bit A/D Converter	
4.3.4	12-Bit D/A Converter	
4.3.5	Memory Wait Cycle	
4.3.6	Transferring Firmware Contents to FCU RAM	
4.3.7	Using Commands to Program Flash Memory	
4.3.8	Supplemental Information on RAM Self-Diagnostics	
5.	Reference Documents	

1. Comparison of Functions of RX231 Group and RX630 Group

A comparison of the functions of the RX231 Group and RX630 Group is provided below. For details of the functions, see 2, Comparative Overview of Functions, and 5, Reference Documents.

Table 1.1 is a comparative listing of the functions of the RX231 and RX630.

Table 1.1 Comparison of Functions of RX231 and RX630

Function	RX630	RX231
CPU	\bigtriangleup	\bigtriangleup
Operating mode	\bigtriangleup	\bigtriangleup
Address Space	\bigtriangleup	\bigtriangleup
Resets	\bigtriangleup	\bigtriangleup
Option-setting memory	\bigtriangleup	\bigtriangleup
Voltage detection circuit (LVDA): RX630, (LVDAb): RX231	\bigtriangleup	\bigtriangleup
Clock generation circuit	\bigtriangleup	\triangle
Frequency measurement circuit (MCK)	0	X
Clock frequency accuracy measurement circuit (CAC)	×	0
Low power consumption function	\bigtriangleup	\bigtriangleup
Battery backup function	\bigtriangleup	\bigtriangleup
Register write protection function	\bigtriangleup	\bigtriangleup
Exception handling	\bigtriangleup	\bigtriangleup
Interrupt controller (ICUb)	\bigtriangleup	\bigtriangleup
Buses	[] U00 100 100 100 100 100	() 10.00 ()
Memory-protection unit (MPU)	0	0
DMA controller (DMACA)	[1] (20)) - 21 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	7-82 7-82 7-82 7-92 8-92 8-92 8-92 8-92
Data transfer controller (DTCa)	[1] (1)(2)) - 1) (1)(1) (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(5-00 7-004 2-017 8419 8419
Event link controller (ELC)	X	0
I/O ports	[1] (20)) - 11 (1) (1) (1) (1) (1) (1) (1) (1) (1) (5-00 7-00 2-00 840
Multi-function pin controller (MPC)	[1] (20)) - 11 (1) (1) (1) (1) (1) (1) (1) (1) (1) (5-00 7-00 2-00 840
Multi-function timer pulse unit 2 (MTU2a)	[7 12/3 30/4 487	5-03 721-1 3-17 8-17 8-17
Port output enable 2 (POE2a)	[1] (20)) - 11 (1) (1) (1) (1) (1) (1) (1) (1) (1) (5-00 7-00 8-01 8-01 8-01 8-01
16-bit timer pulse unit (TPUa)	[7 10/8 30/0 487	5-03 12-1 3-17 8-11 1-17
Programmable pulse generator (PPG)	0	X
8-bit timer (TMR)	[『 000) - 21月 単一 単一 単一	5-00 7-00 8-01 8-01 8-01 8-01
Compare match timer (CMT)	[7 523 364 487	5-03 12/1 3-17 8+11
Realtime clock (RTCa): RX630, (RTCe): RX231	[『 000) - 211 (第一) (第一) (第一) (第一) (第一) (第一) (第一) (第一)	5-00 7-00 8-01 8-01 8-01 8-01
Low-power timer (LPT)	X	0
Watchdog timer (WDTA)	0	0
Independent watchdog timer (IWDTa)		5-00 7-00 8-01 8-01 8-01 8-01
USB 2.0 function module (USBa): RX630	[7 5/3] Ala 487	5-00 102-1 3-17 800 800
USB 2.0 host/function module (USBd): RX231		
Serial communications interface (SCIc, SCId): RX630	17 000 1000 1000 1000 1000	
Serial communications interface (SCIg, SCIh): RX231		
IrDA interface	×	0
I ² C bus interface (RIIC): RX630, (RIICa): RX231		(* 1000) 1000 1000 1000 1000 1000
CAN module (CAN): RX630, (RSCAN): RX231	[7] 1007 1 × 507 1 × 507 1 × 507	1 200 1 200 1 - 101 1 - 101 1 - 101 1 - 101 1 - 101
Serial sound interface (SSI)	×	0
Serial peripheral interface (RSPI): RX630, (RSPIa): RX231		2299 1991 1997 1997 1997 1997
IEbus™ controller (IEB)	0	×
CRC calculator (CRC)	0	0

Function	RX630	RX231
SD host interface (SDHIa)	×	0
Security functions	×	0
Capacitive touch sensing unit (CTSU)	×	0
12-bit A/D converter (S12ADa): RX630, (S12ADE): RX231	日 - 1-20日 - 第二日 - 第 - 第二日 - 第二日 - 第二日 - 第二日 - 第 - 第 - 第 - 第 - 第 - 第 - 第 - 第 - 第 -	₩ 523 724 2+28 897 ***
10-bit A/D converter (ADb)	0	×
D/A converter (DAa): RX630	日	₩ 523 724 2+28 897 ***
12-bit D/A converter (R12DAA): RX231		
Temperature sensor: RX630, (TEMPSA): RX231		■ ************************************
Comparator B (CMPBa)	×	₽ + 23 + 21 + -
Data operation circuit (DOC)	×	₽ + 23 + 21 + 27 + 7 + 7 + 7 + 7 + 7 + 7 + 7 +
RAM	F 1000 2007 2007	1 1000 2 1000 2 1000 2 1000 2 1000
Flash memory (ROM)	F way	17 100 1711 1711 1711 1711
Flash memory (E2 DataFlash)	F with	1000 1007 1007
Boundary scan	17 1000 1000 1000 1000 1000 1000 1000	×
Package (LQFP100 only)	F were were were were were were were wer	1 1/10 1/10 1/10 1/10 1/10

Note: E: Function implemented, ×: Function not implemented,

E: Differences exist between implementation of function on RX630 and RX231.

2. Comparative Overview of Functions

2.1 CPU

Table 2.1 shows a comparative overview of the CPU specifications, and Table 2.2 shows a comparative overview of CPU registers.

Table 2.1	Comparative Overview of CPU Specifications
-----------	---

ltem	RX630	RX231
Central processing unit	 Maximum operating frequency: 100 MHz 32-bit RX CPU (RX) Min. instruction execution time: 1 clock cycle per instruction Address space: 4 GB, linear addressing Register 16 general-purpose registers (32 bits) 9 control registers (32 bits) 1 accumulator (64 bits) 73 basic instructions 8 floating-point instructions 9 DSP instructions 10 addressing modes Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian 32-bit multiplier: 32-bit × 32-bit → 64 bits Divider: 32-bit ÷ 32-bit → 32 bits Barrel shifter: 32 bits Memory protection unit (MPU) 	 Maximum operating frequency: 54 MHz 32-bit RX (RXv2) Min. instruction execution time: 1 clock cycle per instruction Address space: 4 GB, linear addressing Register 16 general-purpose registers (32 bits) 10 control registers (32 bits) 2 accumulators (72 bits) 75 basic instructions 11 floating-point instructions 23 DSP instructions 11 addressing modes Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian 32-bit multiplier: 32-bit × 32-bit → 64 bits Divider: 32-bit ÷ 32-bit → 32 bits Barrel shifter: 32 bits Memory protection unit (MPU)
FPU	 Single precision (32-bit) floating point Data types and exceptions in conformance with the IEEE754 standard 	 Single precision (32-bit) floating point Data types and exceptions in conformance with the IEEE754 standard

Table 2.2 Comparative Overview of CPU Registers

Register	Bit	RX630	RX231
EXTB	-	-	Exception Table Register
ACC	-	ACC: 64-bits (DSP, multiply and multiply-and-accumulate)	ACC0: 72-bits (DSP, multiply and multiply-and-accumulate) ACC1: 72-bits (DSP)

2.2 Operating Modes

Table 2.3 shows a comparative overview of the operating mode specifications, and Table 2.4 shows a comparative overview of the operating mode registers.

Table 2.3	Comparative Overview	of Operating Modes Specifications
-----------	----------------------	-----------------------------------

Item	RX630	RX231
Operating modes specified by	Single-chip mode	Single-chip mode
mode setting pins	Boot mode (SCI interface)	Boot mode (SCI interface)
	Boot mode (USB interface)	Boot mode (USB interface)
	User boot mode	
Operating modes specified by	Single-chip mode	Single-chip mode
register settings	User boot mode	
	On-chip ROM disabled extended mode	On-chip ROM disabled extended mode
	On-chip ROM enabled extended mode	On-chip ROM enabled extended mode

Table 2.4 Comparative Overview of Operating Mode Registers

Register	Bit	RX630	RX231	
MDSR		Mode status register		

2.3 Address Space

Figure 2.1 to Figure 2.3 shows the memory maps in the respective operating modes.

Figure 2.1 Memory Map in Each Operating Mode (Single-chip mode)

Figure 2.2 Memory Map in Each Operating Mode (On-chip ROM enabled extended mode)

Figure 2.3 Memory Map in Each Operating Mode (On-chip ROM disabled extended mode)

2.4 Resets

Table 2.5 shows a comparative overview of the reset specifications, and Table 2.6 shows a comparative overview of the reset registers.

Table 2.5	Comparative Listing of Reset Specifications
-----------	---

Item	RX630	RX231
Reset sources	RES# pin reset	RES# pin reset
	Power-on reset	Power-on reset
	Voltage monitoring 0 reset	Voltage monitoring 0 reset
	Voltage monitoring 1 reset	Voltage monitoring 1 reset
	Voltage monitoring 2 reset	Voltage monitoring 2 reset
	Deep software standby reset	
	Independent watchdog timer reset	Independent watchdog timer reset
	Watchdog timer reset	Watchdog timer reset
	Software reset	Software reset

Table 2.6 Comparative Listing of Reset Registers

Register	Bit	RX630	RX231
RSTSR0	DPSRSTF	Deep software standby reset flag	—

2.5 Option-Setting Memory

Table 2.7 shows a comparative overview of the option-setting memory registers, and Figure 2.4 shows a comparative of the option-setting memory.

Register	Bit	RX630	RX231
OFS0	IWDTTOPS [1:0]	IWDT timeout period select bits	IWDT timeout period select bits
		b3 b2	b3 b2
		0 0: 1,024 cycles (03FFh)	0 0: 128 cycles (007Fh)
		0 1: 4,096 cycles (0FFFh)	0 1: 512 cycles (01FFh)
		1 0: 8,192 cycles (1FFFh)	1 0: 1,024 cycles (03FFh)
		1 1: 16,384 cycles (3FFFh)	1 1: 2,048 cycles (07FFh)
	IWDTCKS [3:0]	IWDT timeout period select bits	IWDT timeout period select bits
		b7 b4	b7 b4
		0 0 0 0: ×1 (cycle period: 131 ms)	0 0 0 0: ×1 (cycle period: 136 ms)
		0 0 1 0: ×16 (cycle period: 2.10 sec.)	0 0 1 0: ×16 (cycle period: 2.18 sec.)
		0 0 1 1: ×32 (cycle period: 4.19 sec.)	0 0 1 1: ×32 (cycle period: 4.36 sec.)
		0 1 0 0: ×64 (cycle period: 8.39 sec.)	0 1 0 0: ×64 (cycle period: 8.73 sec.)
		1 1 1 1: ×128 (cycle period: 16.8 sec.)	1 1 1 1: ×128 (cycle period: 17.5 sec.)
		0 1 0 1: ×256 (cycle period: 33.6 sec.)	0 1 0 1: ×256 (cycle period: 34.9 sec.)
	IWDTSLCSTP	IWDT sleep mode count stop control	IWDT sleep mode count stop control
		bit	bit
		0: Counting stop is disabled	0: Counting stop is disabled
		1: Counting stop is enabled when entering sleep, software standby, deep software standby, or all- module clock stop mode	1: Counting stop is enabled when entering sleep, software standby, or deep sleep mode
OFS1	VDSEL[1:0]		Voltage detection 0 level select bits
	FASTSTUP	—	Power-on fast startup time bit
MDES: RX630 MDE: RX231	MDE[2:0]	Endian select register <mark>S</mark>	Endian select register
MDEB	MDE[2:0]	Endian select register B	
UB code A		Codes required when using user boot	
UB code B		mode	

Table 2.7 C	comparative Ove	rview of Option	-Setting Memor	y Registers
-------------	-----------------	-----------------	----------------	-------------

RX230/RX231 Group, RX630 Group

Figure 2.4 Comparative of Option-Setting Memory

2.6 Voltage Detection Circuit

Table 2.8 shows a comparative overview of the voltage detection circuit specifications, and Table 2.9 shows a comparative overview of the voltage detection circuit registers.

		RX630 (LVDA)			RX231 (LVDAb)		
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
VCC monitoring	Monitored voltage	Vdet0	Vdet1	Vdet2	Vdet0	Vdet1	Vdet2
	Detection target	Voltage falls lower than Vdet0.	Voltage rises or falls past Vdet1.	Voltage rises or falls past Vdet2.	Voltage falls lower than Vdet0.	Voltage rises or falls past Vdet1.	Voltage rises or falls past Vdet2.
					-		Selectable between VCC and CMPA2 pin input voltage using LVCMPCR.EXV CCINP2 bit.
	Detection voltage	One level fixed	Specify voltage using LVDLVLR.LVD 1LVL[3:0] bits	Specify voltage using LVDLVLR.LVD 2LVL[3:0] bits	Selectable from four levels using OFS1 register.	Selectable from 14 levels using LVDLVLR.LVD1 LVL[3:0] bits.	Selectable from four levels using LVDLVLR.LVD2 LVL[1:0] bits.
	Monitor flag	_	LVD1SR.LVD1 MON flag: Monitors if higher or lower than Vdet1.	LVD2SR.LVD2 MON flag: Monitors if higher or lower than Vdet2.	_	LVD1SR.LVD1 MON flag: Monitors if higher or lower than Vdet1.	LVD2SR.LVD2 MON flag: Monitors if higher or lower than Vdet2.
			LVD1SR.LVD1 DET flag: Detects rise or fall past Vdet1.	LVD2SR.LVD2 DET flag: Detects rise or fall past Vdet2.		LVD1SR.LVD1 DET flag: Detects rise or fall past Vdet1.	LVD2SR.LVD2 DET flag: Detects rise or fall past Vdet2.
Voltage detection processing	Reset	Voltage monitoring 0 reset	Voltage monitoring 1 reset	Voltage monitoring 2 reset	Voltage monitoring 0 reset	Voltage monitoring 1 reset	Voltage monitoring 2 reset
		Reset when Vdet0 > VCC: CPU operation restarts a fixed period of time after VCC > Vdet0.	Reset when Vdet1 > VCC: Selectable between CPU operation restarts a fixed period of time after VCC > Vdet1 and CPU operation restarts a fixed period of time after Vdet1 > VCC.	Reset when Vdet2 > VCC: Selectable between CPU operation restarts a fixed period of time after VCC > Vdet2 and CPU operation restarts a fixed period of time after Vdet2 > VCC.	Reset when Vdet0 > VCC: CPU operation restarts a fixed period of time after VCC > Vdet0.	Reset when Vdet1 > VCC: Selectable between CPU operation restarts a fixed period of time after VCC > Vdet1 and CPU operation restarts a fixed period of time after Vdet1 > VCC.	Reset when Vdet2 > VCC or CMPA2 pin: Selectable between CPU operation restarts a fixed period of time after VCC or CMPA2 pin > Vdet2 and CPU operation restarts a fixed period of time after Vdet2 > VCC or CMPA2 pin.

Table 2.8 Comparative overview of Voltage Detection Circuit Specifications

RX230/RX231 Group, RX630 Group

		RX630 (LVDA)			RX231 (LVDAb)		
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
Voltage detection processing	Interrupt	_	Voltage monitoring 1 interrupt Non-maskable	Voltage monitoring 2 interrupt Non-maskable		Voltage monitoring 1 interrupt Selectable	Voltage monitoring 2 interrupt Selectable
			interrupt	interrupt		between non- maskable interrupt and interrupt.	between non- maskable interrupt and interrupt.
				Interrupt request generated both when Vdet2 > VCC and when VCC > Vdet2, or one or the other.		Interrupt request generated both when Vdet1 > VCC and when VCC > Vdet1, or one or the other.	Interrupt request generated both when Vdet2 > VCC or CMPA2 pin and when VCC or CMPA2 pin > Vdet2, or one or the other
Digital filter	Enable/ disable switching	_	Available	Available	_	_	_
	Sampling time	_	1/n LOCO frequency × 2 (n: 1, 2, 4, 8)	1/n LOCO frequency × 2 (n: 1, 2, 4, 8)	_	_	_
Event link fu	nction	_	_	_	_	Available: Vdet1 pass-through detection event output	Available: Vdet2 pass-through detection event output

Register	Bit	RX630 (LVDA)	RX231 (LVDAb)
LVD1CR1	LVD1IRQSEL	_	Voltage monitoring 1 interrupt type select bit
LVD2CR1	LVD2IDTSEL	Voltage Monitoring 2 Interrupt	Voltage Monitoring 2 Interrupt
	[1:0]	Generation Condition Select	ELC Event Generation Condition Select
		b1 b0	b1 b0
		0 0: When VCC ≥ Vdet2 (rise) is detected	0 0: When VCC or the CMPA2 pin ≥ Vdet2 (rise) is detected
		0 1: When VCC < Vdet2 (drop) is detected	0 1: When VCC or the CMPA2 pin < Vdet2 (drop) is detected
		1 0: When drop and rise are detected	1 0: When drop and rise are detected
		1 1: Settings prohibited	1 1: Setting prohibited
	LVD2IRQSEL	_	Voltage monitoring 2 interrupt type select bit
LVD2SR	LVD2MON	Voltage Monitoring 2 Signal	Voltage Monitoring 2 Signal
		Monitor Flag	Monitor Flag
		0: VCC < Vdet2	0: VCC or the CMPA2 pin < Vdet2
		1: VCC ≥ Vdet2 or LVD2MON is disabled	1: VCC or the CMPA2 pin ≥ Vdet2 or LVD2MON is disabled
LVCMPCR	EXVCCINP2		Voltage detection 2 comparison voltage external input select bit
LVDLVLR	LVD1LVL[3:0]	Voltage detection 1 level select bits (standard voltage during drop in voltage)	Voltage detection 1 level select bits (standard voltage during drop in voltage)
		b3 b0	b3 b0
			0 0 0 0: 4.29 V
			0 0 0 1: 4.14 V
			0 0 1 0: 4.02 V
			0 0 1 1: 3.84 V
			0 1 0 0: 3.10 V
			0 1 0 1: 3.00 V
			0 1 1 0: 2.90 V
			0 1 1 1: 2.79 V
			1 0 0 0: 2.68 V
			1 0 0 1: 2.58 V
		1 0 1 0: 2.95 V	1 0 1 0: 2.48 V
			1 0 1 1: 2.20 V
			1 1 0 0: 1.96 V
			1 1 0 1: 1.86 V
		Do not set to values other than the above.	Do not set to values other than the above.
		Initial value after a reset is different	

 Table 2.9
 Comparative Overview of Voltage Detection Circuit Registers

Register	Bit	RX630 (LVDA)	RX231 (LVDAb)
	LVD2LVL[3:0]: RX630 LVD2LVL[1:0]: RX231	Voltage detection 2 level select bits (standard voltage during drop in voltage)	Voltage detection 2 level select bits (standard voltage during drop in voltage)
		b7 b4	b5 b4 0 0: 4.29 V
		1 0 1 0: 2.95 V	0 1: 4.14 V 1 0: 4.02 V 1 1: 3.84 V
		Do not set to values other than the above.	
LVD1CR0	LVD1DFDIS	Initial value after a reset is different. Voltage monitoring 1 digital filter disable mode select bit	
	LVD1FSAMP[1:0]	Sampling clock select bits	
LVD2CR0	LVD2DFDIS	Voltage monitoring 2 digital filter disable mode select bit	_
	LVD2FSAMP[1:0]	Sampling clock select bits	
	LVD2RN	Voltage monitoring 2 reset negation select bit 0: Negation follows stabilization time (tLVD2) after VCC > Vdet2 is detected.	Voltage monitoring 2 reset negation select bit 0: Negation follows stabilization time (tLVD2) after VCC or CMPA2 pin > Vdet2 is detected.
		 Negation follows stabilization time (tLVD2) after assertion of LVD2 reset. 	 Negation follows stabilization time (tLVD2) after assertion of LVD2 reset.

2.7 Clock Generation Circuit

Table 2.10 shows a comparative overview of the clock generation circuit specifications, and Table 2.11 shows a comparative overview of the clock generation circuit registers.

ltem	RX630	RX231
Uses	 Generates the system clock (ICLK) supplied to the CPU, DMAC, DTC, ROM, and RAM. 	 Generates the system clock (ICLK) supplied to the CPU, DMAC, DTC, ROM, and RAM. Generates the peripheral module clock (PCLKA) to be supplied to the MTU2.
	 Generates the peripheral module clocks (PCLKB) supplied to the peripheral modules. 	 Generates the peripheral module clocks (PCLKB) supplied to the peripheral modules. Generates the peripheral module clock (PCLKD) to be supplied to the S12ADC.
	 Generates the FlashIF clock (FCLK) supplied to the FlashIF. Generates the external bus clock (BCLK) supplied to the external bus. Generates the USB clock (UCLK) supplied to the USB. Generates the CAN clock (CANMCLK) supplied to the CAN. Generates the IEBUS clock (IECLK) to be supplied to the IEBUS. 	 Generates the FlashIF clock (FCLK) supplied to the FlashIF. Generates the external bus clock (BCLK) supplied to the external bus. Generates the USB clock (UCLK) supplied to the USB. Generates the CAN clock (CANMCLK) supplied to the RSCAN.
	 Generates the RTC-dedicated sub- clock (RTCSCLK) supplied to the RTC. Generates the RTC main clock (RTCMCLK) supplied to the RTC. Generates the IWDT-dedicated clock (IWDTCLK) supplied to the IWDT. Generates the JTAG clock (JTAGTCK) 	 Generates the CAC clock (CACCLK) supplied to the CAC. Generates the RTC-dedicated subclock (RTCSCLK) supplied to the RTC. Generates the IWDT-dedicated clock (IWDTCLK) supplied to the IWDT.
	supplied to the JTAG.	 Generates the SSI clock (SSISCK) supplied to the SSI. Generates the LPT clock (LPTCLK) supplied to the LPT.

Table 2.10 Comparative Overview of Clock Generation Circuit Specifications

Item	RX630	RX231
Operating	• ICLK: 100 MHz (max.)	• ICLK: <u>54 MHz</u> (max.)
frequencies		• PCLKA: 54 MHz (max.)
	PCLKB: 50 MHz (max.)	PCLKB: 32 MHz (max.)
		PCLKD: 54 MHz (max.)
	FCLK: 4 MHz to 50 MHz (for	 FCLK: 1 MHz to 32 MHz (for
	programming and erasing the ROM and E2 DataFlash)	programming and erasing the ROM and E2 DataFlash)
	50 MHz (max.) (for reading from the E2 DataFlash)	32 MHz (max.) (for reading from the E2 DataFlash)
	 BCLK: 50 MHz (max.) 	 BCLK: <u>32 MHz</u> (max.)
	 BCLK pin output: 25 MHz (max.) 	 BCLK pin output: 16 MHz (max.)
	 UCLK: 48 MHz (max.) 	UCLK: 48 MHz
	 CANMCLK: 20 MHz (max.) IECLK: 50 MHz (max.) 	CANMCLK: 20 MHz (max.)
		 CACCLK: Same frequency as each oscillator
	 RTCSCLK: 32.768 kHz RTCMCLK: 4 MHz to 16 MHz 	RTCSCLK: 32.768 kHz
	 IWDTCLK: 125 kHz JTAGTCK: 10 MHz (max.) 	• IWDTCLK: 15 kHz
		• SSISCK: 20 MHz (max.)
		LPTCLK: Same frequency as selected oscillator
Main clock	Resonator frequency:	Resonator frequency:
oscillator	4 MHz to 16 MHz	1 MHz to 20 MHz (VCC ≥ 2.4 V), 1 MHz to 8 MHz (VCC < 2.4 V)
	 External clock input frequency: 20 MHz (max.) 	 External clock input frequency: 20 MHz (max.)
	 Connectable resonator or additional circuit: Ceramic resonator, crystal resonator 	 Connectable resonator or additional circuit: Ceramic resonator, crystal resonator
	 Connection pins: EXTAL, XTAL 	 Connection pins: EXTAL, XTAL
	 Oscillation stop detection function: 	Oscillation stop detection function:
	When oscillation stop of the main clock	
	is detected, the system clock source is	is detected, the system clock source is
	switched to LOCO, and MTU output	switched to LOCO, and MTU output
	can be forcedly driven to high-	can be forcedly driven to high-
	impedance.	impedance.
Sub-clock	Decenter from an 22 760 kl -	Drive capacity switching function
Sub-clock oscillator	Resonator frequency: 32.768 kHz	Resonator frequency: 32.768 kHz
oscillator	 Connectable resonator or additional circuit: crystal resonator 	 Connectable resonator or additional circuit: crystal resonator
	Connection pins: XCIN, XCOUT	
		 Drive capacity switching function

Item	RX630	RX231
PLL circuit	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz to 16 MHz Frequency multiplication ratio: Selectable within range from 8, 10, 12, 16, 20, 24, 25, 50 VCO oscillation frequency: 104 MHz to 200 MHz 	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz to 12.5 MHz Frequency multiplication ratio: Selectable within range from 4 to 13.5 (increments of 0.5) Oscillation frequency: 24 MHz to 54 MHz (VCC ≥ 2.4 V)
USB-dedicated PLL circuit		 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz, 6 MHz, 8 MHz, 12 MHz Frequency multiplication ratio: Selectable within range from 4, 6, 8, 12 Oscillation frequency: 48 MHz (VCC ≥ 2.4 V)
High-speed on- chip oscillator (HOCO)	 Oscillation frequency: 50 MHz HOCO power supply control 	 Oscillation frequency: 32 MHz and 54 MHz
Low-speed on-chip oscillator (LOCO)	Oscillation frequency: 125 kHz	Oscillation frequency: 4 MHz
IWDT-dedicated on-chip oscillator	Oscillation frequency: 125 kHz	Oscillation frequency: 15 kHz
External clock input (TCK) for JTAG	Input clock frequency: 10 MHz (max.)	_
Control of output on BCLK pin	 BCLK clock output or high output is selectable BCLK or BCLK/2 is selectable as the output clock 	 BCLK clock output or high output is selectable BCLK or BCLK/2 is selectable as the output clock

Register	Bit	RX630	RX231
SCKCR	PCKD[3:0]		Peripheral module clock D
			(PCLKD) select bits
	PCKA[3:0]	—	Peripheral module clock A (PCLKA)
			select bits
SCKCR2		System clock control register 2	
PLLCR	STC[5:0]	Frequency multiplication factor	Frequency multiplication factor
		select bits	select bits
		b13 b8	b13 b8
		0 0 0 1 1 1: ×8	0 0 0 1 1 1: ×4
		0 0 1 0 0 0: ×10	0 0 1 0 0 0: ×4.5
			0 0 1 0 0 1: ×5
		0 0 1 0 1 1: ×12	
		0 0 1 1 1 1:×16	
			0 1 0 0 1 0: ×9.5
		0 1 0 0 1 1: ×20	0 1 0 0 1 1: ×10
			0 1 0 1 0 0: ×10.5
			0 1 0 1 0 1: ×11
			0 1 0 1 1 0: ×11.5
			0 1 0 1 1 1: ×12
		0 1 0 1 1 1: ×24	0 1 1 0 0 0: ×12.5
		0 1 1 0 0 0: ×25	0 1 1 0 0 1: ×13
			0 1 1 0 1 0: ×13.5
		1 1 0 0 0 1: ×50	
		Do not set to values other than the	Do not set to values other than the
		above.	above.
		Initial value after a reset is different.	
UPLLCR			USB-dedicated PLL control register
UPLLCR2		_	USB-dedicated PLL control register
			2
HOCOCR2			High-speed on-chip oscillator
			control register 2
OSCOVFSR			Oscillation stabilization flag register

Table 2.11	Comparative Overview of Clock Generation Circuit Registers
	Comparative Overview of Olock Ceneration Orean Registers

Register	Bit	RX630	RX231
MOSCWTCR	MSTS[4:0]	Main clock oscillator wait time	Main clock oscillator wait time
		select bits	select bits
		b4 b0 Wait time	b4 b0 Wait time
		0 0 0 0 0: 2 cycles	0 0 0 0 0: 2 cycles
		0 0 0 0 1: 4 cycles	0 0 0 0 1: 1,024 cycles
		0 0 0 1 0: 8 cycles	0 0 0 1 0: 2,048 cycles
		0 0 0 1 1: 16 cycles	0 0 0 1 1: 4,096 cycles
		0 0 1 0 0: 32 cycles	0 0 1 0 0: 8,192 cycles
		0 0 1 0 1: 64 cycles	0 0 1 0 1: 16,384 cycles
		0 0 1 1 0: 512 cycles	0 0 1 1 0: 32,768 cycles
		0 0 1 1 1: 1,024 cycles	0 0 1 1 1: 65,536 cycles
		0 1 0 0 0: 2,048 cycles	Do not set to values other than the
		0 1 0 0 1: 4,096 cycles	above.
		0 1 0 1 0: 16,384 cycles	
		0 1 0 1 1: 32,768 cycles	
		0 1 1 0 0: 65,536 cycles	
		0 1 1 0 1: 131,072 cycles	
		0 1 1 1 0: 262,144 cycles	
		0 1 1 1 1: 524,288 cycles	
		Do not set to values other than the	
		above.	
		Initial value after a reset is different.	
SOSCWTCR		Sub-clock oscillator wait control	
CKOCR		register	CLKOUT output control register
MOFCR	MOFXIN	Main clock oscillator forced	
		oscillation bit	
	MODRV21		Main clock oscillator drive capability switch bit
	MOSEL		Main clock oscillator switch bit
HOCOPCR		High-speed on-chip oscillator power supply control register	
MEMWAIT			Memory wait cycle setting register
LOCOTRR		_	Low-speed on-chip oscillator
			trimming register
ILOCOTRR			IWDT-dedicated on-chip oscillator
			trimming register
HOCOTRRn			High-speed on-chip oscillator
			trimming register n (n = 0 or 3)

2.8 Low Power Consumption Functions

Table 2.12 shows a comparative overview of the low power consumption function specifications, Table 2.13 to Table 2.17 shows a Comparative Listing of Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode, and Table 2.18 shows a comparative overview of the low power consumption function registers.

Item	RX630	RX231
Reduction of power consumption by clock switching	The frequency division ratio can be set independently for the system clock (ICLK), peripheral module clock (PCLKB), external bus clock (BCLK), and Flash interface clock (FCLK).	The frequency division ratio can be set independently for the system clock (ICLK), high-speed peripheral module clock (PCLKA), peripheral module clock (PCLKB), S12AD clock (PCLKD), external bus clock (BCLK), and FlashIF clock (FCLK).
BCLK output control function	BCLK output or high-level output can be selected.	BCLK output or high-level output can be selected.
SDCLK output control function	SDCLK output or high-level output can be selected.	SDCLK output or high-level output can be selected.
Module stop function	Each peripheral module can be stopped independently.	Each peripheral module can be stopped independently.
Function for transition to low power consumption mode	It is possible to transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped.	It is possible to transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped.
Low power consumption modes	 Sleep mode All-module clock stop mode Software standby mode Deep software standby mode 	 Sleep mode Deep sleep mode Software standby mode
Operating power reduction function	 Power consumption can be reduced in normal operation, sleep mode, and all-module clock stop mode by selecting an appropriate operating power consumption control mode according to the operating frequency and operating voltage. Operating power control modes: 3 — High-speed operating mode 	 Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power consumption control mode according to the operating frequency and operating voltage. Operating power control modes: 3 High-speed operating mode Middle-speed operating mode Low-speed operating mode
	 Low-speed operating mode 1 Low-speed operating mode 2 	

Table 2.12	Comparative	Overview	of Low	Power	Consumption	Functions	Specifications
------------	-------------	----------	--------	-------	-------------	-----------	----------------

Table 2.13Comparative Listing of Entering and Exiting Low Power Consumption Modes and
Operating States in Each Mode (Sleep Mode)

Entering and Exiting Low Power Consumption Modes and Operating	RX630	RX231	
States	Sleep Mode	Sleep Mode	
Entry trigger	Control register + instruction	Control register + instruction	
Exit trigger	Interrupt	Interrupt	
After exiting from each mode, CPU begins from	Interrupt handling	Interrupt handling	
Main clock oscillator	Operating possible	Operating possible	
Sub-clock oscillator	Operating possible	Operating possible	
High-speed on-chip oscillator	Operating possible	Operating possible	
Low-speed on-chip oscillator	Operating possible	Operating possible	
IWDT-dedicated on-chip oscillator	Operating possible	Operating possible	
PLL	Operating possible	Operating possible	
USB-dedicated PLL	—	Operating possible	
CPU	Stopped (Retained)	Stopped (Retained)	
RAM1 (0001 0000h to 0001 FFFFh)	Operating possible (Retained)	—	
RAM0 (0000 0000h to 0000 FFFFh)	Operating possible (Retained)	—	
RAM (0000 0000h to 0000 FFFFh)	—	Operating possible (Retained)	
DMAC	Operating possible	Operating possible	
DTC	Operating possible	Operating possible	
Flash memory	Operating	Operating	
USB 2.0 function module (USB)	Operating possible	Operating possible	
Watchdog timer (WDT)	Stopped (Retained)	Stopped (Retained)	
Independent watchdog timer (IWDT)	Operating possible	Operating possible	
Realtime clock (RTC)	Operating possible	Operating possible	
8-bit timer (unit 0, unit 1) (TMR)	Operating possible	Operating possible	
Low power timer (LPT)	—	Operating possible	
Voltage detection circuit (LVD)	Operating possible	Operating possible	
Power-on reset circuit	Operating	Operating	
Peripheral modules	Operating possible	Operating possible	
I/O ports	Operating	Operating	
RTCOUT	Operating possible	Operating possible	
CLKOUT	_	Operating possible	
Comparator B		Operating possible	

Table 2.14 Comparative Listing of Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode (All-Module Clock Stop Mode)

Entering and Exiting Low Power Consumption Modes and Operating	RX630	RX231	
States	All-Module Clock Stop Mode	All-Module Clock Stop Mode	
Entry trigger	Control register + instruction		
Exit trigger	Interrupt	_	
After exiting from each mode, CPU begins from	Interrupt handling	_	
Main clock oscillator	Operating possible		
Sub-clock oscillator	Operating possible	_	
High-speed on-chip oscillator	Operating possible		
Low-speed on-chip oscillator	Operating possible	_	
IWDT-dedicated on-chip oscillator	Operating possible	_	
PLL	Operating possible	_	
USB-dedicated PLL			
CPU	Stopped (Retained)	_	
RAM1 (0001 0000h to 0001 FFFFh)	Stopped (Retained)		
RAM0 (0000 0000h to 0000 FFFFh)	Stopped (Retained)		
RAM (0000 0000h to 0000 FFFFh)			
DMAC	Stopped (Retained)		
DTC	Stopped (Retained)		
Flash memory	Stopped (Retained)	_	
USB 2.0 function module (USB)	Stopped		
Watchdog timer (WDT)	Stopped (Retained)	_	
Independent watchdog timer (IWDT)	Operating possible	_	
Realtime clock (RTC)	Operating possible		
8-bit timer (unit 0, unit 1) (TMR)	Operating possible	_	
Low power timer (LPT)			
Voltage detection circuit (LVD)	Operating possible		
Power-on reset circuit	Operating		
Peripheral modules	Stopped (Retained)	_	
I/O ports	Retained		
RTCOUT	Operating possible	_	
CLKOUT	_	_	
Comparator B	_	_	

Table 2.15 Comparative Listing of Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode (Software Standby Mode)

Entering and Exiting Low Power Consumption Modes and Operating	RX630	RX231	
States	Software Standby Mode	Software Standby Mode	
Entry trigger	Control register + instruction	Control register + instruction	
Exit trigger	Interrupt	Interrupt	
After exiting from each mode, CPU begins from	Interrupt handling	Interrupt handling	
Main clock oscillator	Operating possible	Stopped	
Sub-clock oscillator	Operating possible	Operating possible	
High-speed on-chip oscillator	Stopped	Stopped	
Low-speed on-chip oscillator	Stopped	Stopped	
IWDT-dedicated on-chip oscillator	Operating possible	Operating possible	
PLL	Stopped	Stopped	
USB-dedicated PLL	—	Stopped	
CPU	Stopped (Retained)	Stopped (Retained)	
RAM1 (0001 0000h to 0001 FFFFh)	Stopped (Retained)	—	
RAM0 (0000 0000h to 0000 FFFFh)	Stopped (Retained)	—	
RAM (0000 0000h to 0000 FFFFh)	—	Stopped (Retained)	
DMAC	Stopped (Retained)	Stopped (Retained)	
DTC	Stopped (Retained)	Stopped (Retained)	
Flash memory	Stopped (Retained)	Stopped (Retained)	
USB 2.0 function module (USB)	Stopped	Stopped (Retained)	
Watchdog timer (WDT)	Stopped (Retained)	Stopped (Retained)	
Independent watchdog timer (IWDT)	Operating possible	Operating possible	
Realtime clock (RTC)	Operating possible	Operating possible	
8-bit timer (unit 0, unit 1) (TMR)	Stopped (Retained)	Stopped (Retained)	
Low power timer (LPT)	—	Operating possible	
Voltage detection circuit (LVD)	Operating possible	Operating possible	
Power-on reset circuit	Operating	Operating	
Peripheral modules	Stopped (Retained)	Stopped (Retained)	
I/O ports	Retained	Retained	
RTCOUT	Operating possible	Operating possible	
CLKOUT		Operating possible	
Comparator B		Operating possible	

Table 2.16 Comparative Listing of Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode (Deep Software Standby Mode)

Entering and Exiting Low Power	RX630	RX231
Consumption Modes and Operating States	Deep Software Standby Mode	Deep Software Standby Mode
Entry trigger	Control register + instruction	
Exit trigger	Interrupt	
After exiting from each mode, CPU begins from	Interrupt handling	_
Main clock oscillator	Operating possible	
Sub-clock oscillator	Operating possible	
High-speed on-chip oscillator	Stopped	
Low-speed on-chip oscillator	Stopped	
IWDT-dedicated on-chip oscillator	Stopped (Undefined)	
PLL	Stopped	—
USB-dedicated PLL		
CPU	Stopped (Undefined)	
RAM1 (0001 0000h to 0001 FFFFh)	Stopped (Undefined)	
RAM0 (0000 0000h to 0000 FFFFh)	Stopped (Retained/Undefined)	
RAM (0000 0000h to 0000 FFFFh)		
DMAC	Stopped (Undefined)	
DTC	Stopped (Undefined)	
Flash memory	Stopped (Retained)	
USB 2.0 function module (USB)	Stopped (Retained/Undefined)	
Watchdog timer (WDT)	Stopped (Undefined)	
Independent watchdog timer (IWDT)	Stopped (Undefined)	
Realtime clock (RTC)	Operating possible	
8-bit timer (unit 0, unit 1) (TMR)	Stopped (Undefined)	—
Low power timer (LPT)	_	_
Voltage detection circuit (LVD)	Operating possible	_
Power-on reset circuit	Operating	_
Peripheral modules	Stopped (Undefined)	_
I/O ports	Retained	_
RTCOUT	Stopped	_
CLKOUT		
Comparator B		

Table 2.17 Comparative Listing of Entering and Exiting Low Power Consumption Modes and
Operating States in Each Mode (Deep Sleep Mode)

Entering and Exiting Low Power Consumption Modes and Operating	RX630	RX231
States	Deep Sleep Mode	Deep Sleep Mode
Entry trigger		Control register + instruction
Exit trigger		Interrupt
After exiting from each mode, CPU begins from	_	Interrupt handling
Main clock oscillator	_	Operating possible
Sub-clock oscillator	_	Operating possible
High-speed on-chip oscillator	_	Operating possible
Low-speed on-chip oscillator		Operating possible
IWDT-dedicated on-chip oscillator	_	Operating possible
PLL	—	Operating possible
USB-dedicated PLL	_	Operating possible
CPU	_	Stopped (Retained)
RAM1 (0001 0000h to 0001 FFFFh)		
RAM0 (0000 0000h to 0000 FFFFh)	_	
RAM (0000 0000h to 0000 FFFFh)	—	Stopped (Retained)
DMAC	—	Stopped (Retained)
DTC	—	Stopped (Retained)
Flash memory	—	Stopped (Retained)
USB 2.0 function module (USB)	—	Operating possible
Watchdog timer (WDT)	—	Stopped (Retained)
Independent watchdog timer (IWDT)	—	Operating possible
Realtime clock (RTC)	—	Operating possible
8-bit timer (unit 0, unit 1) (TMR)	—	Operating possible
Low power timer (LPT)	—	Operating possible
Voltage detection circuit (LVD)		Operating possible
Power-on reset circuit		Operating
Peripheral modules		Operating possible
I/O ports		Operating
RTCOUT	_	Operating possible
CLKOUT		Operating possible
Comparator B		Operating possible

Register	Bit	RX630	RX231
SBYCR	OPE	Output port enable bit	Output port enable
		0: In software standby mode or deep software standby mode, the address bus and bus control signals are set to the high- impedance state.	0: In software standby mode, the address bus and bus control signals are set to the high- impedance state.
		1: In software standby mode or deep software standby mode, the address bus and bus control signals retain the output state.	1: In software standby mode, the address bus and bus control signals retain the output state.
	SSBY	Software standby bit	Software standby bit
		 0: Transition to sleep mode or all- module clock stop mode after WAIT instruction is executed 1: Transition to software standby mode after WAIT instruction is 	 0: Transition to sleep mode or deep sleep mode after WAIT instruction is executed 1: Transition to software standby mode after WAIT instruction is
		executed	executed
MSTPCRA	MSTPA10	Programmable pulse generator (unit 1) module stop bit	_
	MSTPA11	Programmable pulse generator (unit 0) module stop bit	_
	MSTPA12	16-bit timer pulse unit 1 (unit 1) module stop bit	_
	MSTPA19	D/A converter module stop bit	12-bit D/A converter module stop bit
	MSTPA23	10-bit A/D converter module stop bit	
	MSTPA24	module stop A24 bit	—
	MSTPA27	module stop A27 bit	_
	MSTPA29	module stop A29 bit	
	ACSE	All-module clock stop mode enable bit	—
MSTPCRB	MSTPB0	CAN module 0 module stop bit Target module: CAN0	RSCAN0 module stop bit Target module: RSCAN0
	MSTPB1	CAN module 1 module stop bit Target module: CAN1	_
	MSTPB2	CAN module 2 module stop bit Target module: CAN2	_
	MSTPB4	Serial Communication Interface SCId Module Stop	Serial Communication Interface SCIh Module Stop
		Target module: SCId (SCI12) 0: The module-stop state is canceled	Target module: SCIh (SCI12) 0: This module clock is enabled
		1: Transition to the module-stop state is made	1: This module clock is disabled
	MSTPB6		DOC module stop bit
	MSTPB8	Temperature sensor module stop bit	
	MSTPB9		ELC module stop bit
	MSTPB10		Comparator B module stop bit
	MSTPB16	Serial peripheral interface 1 module	

Table 2.18 Comparative Overview of Low Power Consumption Function Registers

Register	Bit	RX630	RX231
	MSTPB20	I ² C bus interface 1 module stop bit	
	MSTPB24	Serial communication interface 7 module stop bit	_
	MSTPB27	Serial communication interface 4 module stop bit	_
MSTPCRB	MSTPB28	Serial communication interface 3 module stop bit	_
	MSTPB29	Serial communication interface 2 module stop bit	—
MSTPCRC	MSTPC1	RAM1 module stop bit	
	MSTPC16	I ² C bus interface 3 module stop bit	
	MSTPC17	I ² C bus interface 2 module stop bit	
	MSTPC18	IEBUS module stop bit	
	MSTPC19	Frequency measurement module stop bit	Clock frequency accuracy measurement circuit module stop bit
	MSTPC20		IrDA module stop bit
	MSTPC22	Serial peripheral interface 2 module stop bit	_
	MSTPC24	Serial communication interface 11 module stop bit	_
	MSTPC25	Serial communication interface 10 module stop bit	_
	DSLPE		Deep sleep mode enable bit
MSTPCRD			Module stop control register D
OPCCR	OPCM[2:0]	Operating power control mode select bits	Operating power control mode select bits
		b2 b0	b2 b0
		0 0 0: High-speed mode	0 0 0: High-speed mode 0 1 0: Middle-speed mode
		1 1 0: Low-speed mode 1 1 1 1: Low-speed mode 2	
		Do not set to values other than the above.	Do not set to values other than the above.
		Initial value after a reset is different.	
	OPCMTSF	Operating power control mode transition status flag	Operating power control mode transition status flag
		Read	
		Read 0: Transition completed	0: Transition completed
			0: Transition completed 1: Transition in progress
		0: Transition completed	•

Register	Bit	RX630	RX231
RSTCKCR	RSTCKSEL [2:0]	Sleep mode return clock source select bits	Sleep mode return clock source select bits
		b2 b0	b2 b0
			0 0 0: LOCO selected.
		0 0 1: HOCO selected.	0 0 1: HOCO selected.
		0 1 0: Main clock oscillator is selected.	0 1 0: Main clock oscillator is selected.
MOSCWTCR *1	MSTS[4:0]	Main clock oscillator wait time select bits	Main clock oscillator wait time select bits
		b4 b0 Wait time	b4 b0 Wait time
		0 0 0 0 0: 2 cycles	0 0 0 0 0: 2 cycles
		0 0 0 0 1: 4 cycles	0 0 0 0 1: 1,024 cycles
		0 0 0 1 0: 8 cycles	0 0 0 1 0: 2,048 cycles
		0 0 0 1 1: 16 cycles	0 0 0 1 1: 4,096 cycles
		0 0 1 0 0: 32 cycles	0 0 1 0 0: 8,192 cycles
		0 0 1 0 1: 64 cycles	0 0 1 0 1: 16,384 cycles
		0 0 1 1 0: 512 cycles	0 0 1 1 0: 32,768 cycles
		0 0 1 1 1: 1,024 cycles	0 0 1 1 1: 65,536 cycles
		0 1 0 0 0: 2,048 cycles	Do not set to values other than the
		0 1 0 0 1: 4,096 cycles	above.
		0 1 0 1 0: 16,384 cycles	
		0 1 0 1 1: 32,768 cycles	
		0 1 1 0 0: 65,536 cycles	
		0 1 1 0 1: 131,072 cycles	
		0 1 1 1 0: 262,144 cycles	
		0 1 1 1 1: 524,288 cycles	
		Do not set to values other than the	
		above.	
		Initial value after a reset is different.	
SOSCWTCR		Sub-clock oscillator wait control register	
PLLWTCR		PLL wait control register	
DPSBYCR		Deep standby control register	
DPSIER0	—	Deep standby interrupt enable register 0	—
DPSIER1		Deep standby interrupt enable register 1	
DPSIER2		Deep standby interrupt enable register 2	_
DPSIER3		Deep standby interrupt enable register 3	
DPSIFR0		Deep standby interrupt flag register 0	—
DPSIFR1		Deep standby interrupt flag register 1	—
DPSIFR2	—	Deep standby interrupt flag register 2	
DPSIFR3	—	Deep standby interrupt flag register 3	—

Register	Bit	RX630	RX231	
DPSIEGR0		Deep standby interrupt edge register 0	_	
DPSIEGR1	—	Deep standby interrupt edge register 1	—	
DPSIEGR2		Deep standby interrupt edge register 2	_	
DPSIEGR3	—	Deep standby interrupt edge register 3	—	
DPSBKRy		Deep standby backup register (y = 0 to 31)	_	

Note 1. In the User's Manual: Hardware of the RX231 Group, MOSCWTCR is described in the Clock Generation Circuit section.

2.9 Battery Backup Function

Table 2.19 shows a comparative overview of the battery backup function registers.

Table 2.19 Comparative Overview of Battery Backup Function Registers

Register	Bit	RX630	RX231
VBATTCR			VBATT control register
VBATTSR			VBATT status register
VBTLVDICR			VBATT pin voltage drop detection interrupt control register

2.10 Register Write Protection Function

Table 2.20 shows a comparative overview of the register write protection function, and Table 2.21 shows a comparative overview of the register write protection function registers.

Item	RX630	RX231
PRC0 bit	Registers related to the clock generation circuit SCKCR, SCKCR2, SCKCR3, PLLCR, PLLCR2, BCKCR, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR	Registers related to the clock generation circuit SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR, CKOCR, UPLLCR, UPLLCR2, BCKCR, HOCOCR2, MEMWAIT, LOCOTRR, ILOCOTRR, HOCOTRR0, HOCOTRR3
PRC1 bit	 Registers related to the operating modes SYSCR0, SYSCR1 	 Registers related to the operating modes SYSCR0, SYSCR1
	 Registers related to the low power consumption functions SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, OPCCR, RSTCKCR, MOSCWTCR, SOSCWTCR, PLLWTCR, DPSBYCR, DPSIER0 to DPSIER3, DPSIFR0 to DPSIFR3, DPSIEGR0 to DPSIEGR3 	 Registers related to the low power consumption functions SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR
	 Registers related to the clock generation circuit MOFCR, HOCOPCR 	 Registers related to the clock generation circuit MOFCR, MOSCWTCR
	 Software reset register SWRR 	 Software reset register SWRR
PRCR2 bit		Registers related to the low power timer LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPWUCR
PRC3 bit	 Registers related to the LVD LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR 	 Registers related to the LVD LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR Registers related to the battery backup function VBATTCR, VBATTSR, VBTLVDICR

 Table 2.20
 Comparative Overview of Register Write Protection Function

Register	Bit	RX630	RX231
PRCR	PRC1	Enables writing to the registers related to operating modes, low power consumption functions, and software reset.	Enables writing to the registers related to operating modes, low power consumption functions, the clock generation circuit, and software reset.
	PRC2	_	Enables writing to the registers related to the low power timer.

 Table 2.21
 Comparative Overview of Register Write Protection Function Registers

2.11 Exception Handling

Table 2.22 shows a Comparative Listing of Vector, and Table 2.23 shows a Comparative Listing of Return from Exception Handling Routine.

Table 2.22 Comparative Listing of Vector

Exception (Event)		RX630	RX231
Undefined instruction exception		Fixed vector table	Exception vector table (EXTB)
Privileged instruction exception		Fixed vector table	Exception vector table (EXTB)
Access exception		Fixed vector table	Exception vector table (EXTB)
Floating-point exception		Fixed vector table	Exception vector table (EXTB)
Reset		Fixed vector table	Exception vector table (EXTB)
Non-maskable interrupt		Fixed vector table	Exception vector table (EXTB)
Interrupt	Fast interrupt	FINTV	FINTV
	Other than above	Relocatable vector table (INTB)	Interrupt vector table (INTB)
Unconditional trap		Relocatable vector table (INTB)	Interrupt vector table (INTB)

Table 2.23	Comparative Listing of	f Return from Exception Handling Routine
------------	------------------------	--

Exception		RX630	RX231
Undefined	instruction exception	RTE	RTE
Privileged i	instruction exception	RTE	RTE
Access exc	ception	RTE	RTE
Floating-point exception		RTE	RTE
Reset		Return is impossible	Return is impossible
Non-maska	able interrupt	Prohibited	Prohibited
Interrupt	Fast interrupt	RTFI	RTFI
	Other than above	RTE	RTE
Unconditional trap		RTE	RTE

2.12 Interrupt Controller

Table 2.24 shows a comparative overview of the interrupt controller specifications, and Table 2.25 shows a comparative overview of the interrupt controller registers.

ltem		RX630 (ICUb)	RX231 (ICUb)
Interrupt	Peripheral function interrupts	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection The detection method is fixed for each connected peripheral module source. Interrupt grouping: Multiple interrupt requests can be allocated to a single interrupt vector. Number of groups for edge detection interrupts: 7 (groups 0 to 6) Number of groups for edge detection interrupts: 1 (group 12) Interrupt unit selection: One of two interrupt requests can be selected as the interrupt request source. Number of units: 6 	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection The detection method is fixed for each connected peripheral module source.
	External pin interrupts	 Interrupts from pins IRQ0 to IRQ15 Sources: 16 Interrupt detection: Low level, falling edge, rising edge, and rising and falling edges. One of these detection methods can be set for each source. Digital filter function: Supported 	 Interrupts from pins IRQ0 to IRQ7 Sources: 8 Interrupt detection: Low level, falling edge, rising edge, and rising and falling edges. One of these detection methods can be set for each source. Digital filter function: Supported
	Software interrupt Event link	 Interrupts generated by writing to a register. Interrupt sources: 1 	 Interrupts generated by writing to a register. Interrupt source: 1 The ELSR8I, ELSR18I, or ELSR19I
	interrupt Interrupt priority level Fast interrupt function	Priority is specified by register settings. Faster interrupt processing by the CPU can be specified only for a single interrupt source.	interrupt is generated by an ELC event. Priority is specified by register settings. Faster interrupt processing by the CPU can be specified only for a single interrupt source.
	DTC and DMAC control	Interrupt sources can be used to start the DTC and DMAC.	Interrupt sources can be used to start the DTC and DMAC.

ltem		RX630 (ICUb)	RX231 (ICUb)
Non-maskable interrupts	NMI pin interrupt Oscillation stop detection interrupt	 Interrupt from the NMI pin Interrupt detection: Falling edge/rising edge Digital filter function: Supported Interrupt at oscillation stop detection 	 Interrupt from the NMI pin Interrupt detection: Falling edge/rising edge Digital filter function: Supported Interrupt at oscillation stop detection
	WDT underflow/ refresh error IWDT	Interrupt at an underflow of the down counter or at the occurrence of a refresh error Interrupt at an underflow of the	Interrupt at an underflow of the down counter or at the occurrence of a refresh error Interrupt at an underflow of the
	underflow/ refresh error	down counter or at the occurrence of a refresh error	down counter or at the occurrence of a refresh error
	Voltage monitoring 1 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)	Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)
	Voltage monitoring 2 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2)	Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2)
	VBATT voltage monitoring interrupt		VBATT voltage monitoring interrup
Return from low power	Sleep mode	Return is initiated by non-maskable interrupt or any interrupt source.	Return is initiated by non-maskable interrupt or any interrupt source.
consumption modes	Deep sleep mode	—	Return is initiated by non-maskable interrupt or any interrupt source.
	All-module clock stop mode	Return is initiated by non-maskable interrupts, IRQ0 to IRQ15 interrupts, TMR interrupts, USB resume interrupts, and RTC alarm and period interrupts.	
	Software standby mode	Return is initiated by non-maskable interrupts, IRQ0 to IRQ15 interrupts, RTC alarm and period interrupts, and USB resume interrupts.	Return is initiated by non-maskable interrupts, IRQ0 to IRQ7 interrupts, RTC alarm and period interrupts.
	Deep software standby mode	Return is initiated by some pins that generate external pin interrupts and peripheral function interrupts (RTC alarm and period, USB resume, voltage monitor 1, and voltage monitor 2).	

Register	Bit	RX630 (ICUb)	RX231 (ICUb)
IRQCRi		IRQ control register i (i = 0 to 15)	IRQ control register i (i = 0 to 7)
IRQFLTE1		IRQ pin digital filter enable register 1	
IRQFLTC1		IRQ pin digital filter setting register 1	
NMISR	VBATST	_	VBATT voltage monitoring interrupt status flag
NMIER	VBATEN	_	VBATT voltage monitoring interrupt enable bit
NMICLR	VBATCLR		VBAT clear bit
GRPn		Group m interrupt source register (m = 00 to 06, 12)	_
GENn		Group m interrupt enable register (m = 00 to 06, 12)	
GCRn		Group m interrupt clear register (m = 00 to 06)	
SEL		Unit selecting register	

Table 2.25 Comparative Overview Interrupt Controller Registers

2.13 Buses

Table 2.26 shows a comparative overview of the bus specifications, Table 2.27 shows a comparative overview of the external bus specifications, and Table 2.28 shows a comparative overview of the bus registers.

Bus Type		RX630	RX231
CPU bus	Instruction bus	 Connected to the CPU (for instructions). Connected to the on-chip memory (RAM and ROM). Operates in synchronization with the system clock (ICLK). 	 Connected to the CPU (for instructions). Connected to the on-chip memory (RAM and ROM). Operates in synchronization with the system clock (ICLK).
	Operand bus	 Connected to the CPU (for operand). Connected to the on-chip memory (RAM and ROM). Operates in synchronization with the system clock (ICLK). 	 Connected to the CPU (for operand). Connected to the on-chip memory (RAM and code flash memory). Operates in synchronization with the system clock (ICLK).
Memory	Memory bus 1	Connected to the RAM.	Connected to the RAM.
buses	Memory bus 2	Connected to the ROM.	Connected to the ROM
Internal main buses	Internal main bus 1	 Connected to the CPU. Operates in synchronization with the system clock (ICLK). 	 Connected to the CPU. Operates in synchronization with the system clock (ICLK).
	Internal main bus 2	 Connected to the DTC and DMAC. Connected to the on-chip memory (RAM and ROM). Operates in synchronization with the system clock (ICLK). 	 Connected to the DTC and DMAC. Connected to the on-chip memory (RAM and ROM). Operates in synchronization with the system clock (ICLK).
Internal peripheral buses	Internal peripheral bus 1	 Connected to peripheral modules (DTC, DMAC, interrupt controller, and bus error monitoring section). Operates in synchronization with the system clock (ICLK). 	 Connected to peripheral modules (DTC, DMAC, interrupt controller, and bus error monitoring section). Operates in synchronization with the system clock (ICLK).
	Internal peripheral bus 2	 Connected to peripheral modules (modules other than those connected to internal peripheral buses 1, 3, 4, and 5). Operates in synchronization with the peripheral module clock (PCLKB). 	 Connected to peripheral modules (modules other than those connected to internal peripheral buses 1, 3, and 4). Operates in synchronization with the peripheral module clock (PCLKB).
	Internal peripheral bus 3	 Connected to peripheral modules (USB). Operates in synchronization with the peripheral module clock (PCLKB). 	 Connected to peripheral modules (USB0, CAN, and CTSU). Operates in synchronization with the peripheral module clock (PCLKB).
	Internal peripheral bus 4	Reserved area	 Connected to peripheral modules (MTU2). Operates in synchronization with

Table 2.26	Comparative Overview of Bus Specifications
------------	--

the peripheral module clock

(PCLKA).

Bus Type		RX630	RX231
Internal peripheral buses	Internal peripheral bus 5	Reserved area	Reserved area
	Internal	 Connected to the ROM (in P/E)	 Connected to the flash control
	peripheral bus	and E2 DataFlash. Operates in synchronization with	module and E2 DataFlash. Operates in synchronization with
	6	the FlashIF clock (FCLK).	the FlashIF clock (FCLK).
External	CS area	 Connected to external devices. Operates in synchronization with	 Connected to external devices. Operates in synchronization with
bus		the external bus clock (BCLK).	the external bus clock (BCLK).

Table 2.27 Comparative Overview of External Bus Specificatio	Table 2.27	Comparative Overview of External Bus Specifications
--	------------	--

ltem	RX630	RX231
External address space	 The external address space is divided into eight CS areas (CS0 to CS7) for management. Chip select signals can be output for each area. The bus width can be specified for each area. Separate bus: An 8, 16, or 32-bit bus space is selectable. Address/data multiplexed bus: An 8 or 16-bit bus space is selectable. The endian mode can be specified 	 The external address space is divided into four CS areas (CS0 to CS3) for management. Chip select signals can be output for each area. The bus width can be specified for each area. Separate bus: An 8 or 16-bit bus space is selectable. Address/data multiplexed bus: An 8 or 16-bit bus space is selectable. The endian mode can be specified
	for each area.	for each area.
CS area controller	 Recovery cycles can be inserted. Read recovery: Up to 15 cycles Write recovery: Up to 15 cycles Cycle wait function: Wait for up to 31 cycles (page access: up to 7 cycles) Wait control Timing of assertion and negation of chip-select signals (CS0# to CS7#) Timing of assertion of the read signal (RD#) and write signals (WR#, WR0# to WR3#) Timing of start and end of data output. 	 Recovery cycles can be inserted. Read recovery: Up to 15 cycles Write recovery: Up to 15 cycles Cycle wait function: Wait for up to 31 cycles (page access: up to 7 cycles) Wait control Timing of assertion and negation of chip-select signals (CS0# to CS3#) Timing of assertion of the read signal (RD#) and write signals (WR#, WR0#, and WR1#) Timing of start and end of data output.
	 Write access mode: Single write strobe mode/byte strobe mode Separate bus or address/data multiplexed bus can be set for each area. 	 Write access mode: Single write strobe mode/byte strobe mode Separate bus or address/data multiplexed bus can be set for each area.
Write buffer function	When write data from the bus master has been written to the write buffer, write access by the bus master is completed.	When write data from the bus master has been written to the write buffer, write access by the bus master is completed.

Item	RX630	RX231
Frequency	The CS area controller (CSC) operates in synchronization with the external-bus clock (BCLK).	The CS area controller (CSC) operates in synchronization with the external-bus clock (BCLK).

Table 2.28 Comparative Overview of Bus Registers

Register	Bit	RX630	RX231
CSnCR	BSIZE[1:0]	External bus width select bits (n = 0 to 7)	External bus width select bits $(n = 0 \text{ to } 3)$
		b5 b4 0 0: A 16-bit bus width is selected.	b5 b4 0 0: A 16-bit bus width is selected.
		0 1: A 32-bit bus width is selected.1 0: An 8-bit bus width is selected.	0 1: Setting prohibited.1 0: An 8-bit bus width is selected.
		1 1: Setting prohibited.	1 1: Setting prohibited.
	EMODE	Endian mode bit $(n = 0 \text{ to } 7)$	Endian mode bit $(n = 0 \text{ to } 3)$
		0: Endian mode of area n is the same as the endian mode of the operating mode.	0: Endian mode of area n is the same as the endian mode of the operating mode.
		1: Endian mode of area n is not the endian mode of the operating mode.	1: Endian mode of area n is not the endian mode of the operating mode.
	MPXEN	Address/data multiplexed I/O interface select bit (n = 0 to 7)	Address/data multiplexed I/O interface select bit (n = 0 to 3)
		0: Separate bus interface is selected for area n.	0: Separate bus interface is selected for area n.
		1: Address/data multiplexed I/O interface is selected for area n.	1: Address/data multiplexed I/O interface is selected for area n.
CSnREC		CSn recovery cycle register (n = 0 to 7)	CSn recovery cycle register $(n = 0 \text{ to } 3)$
CSnMOD		CSn mode register (n = 0 to 7)	CSn mode register (n = 0 to 3)
CSnWCR1		CSn weight control register 1 (n = 0 to 7)	CSn weight control register 1 $(n = 0 \text{ to } 3)$
CSnWCR2		CSn weight control register 2 $(n = 0 \text{ to } 7)$	CSn weight control register 2 $(n = 0 \text{ to } 3)$
BUSPRI	BPHB[1:0]		Internal peripheral bus 4 priority control bits

2.14 Memory Protection Unit

Table 2.29 shows a comparative overview of the memory protection unit registers.

Table 2.29	O Comparative Overview of Memory Protection	Unit Registers
------------	---	----------------

Register	Bit	RX630 (MPU)	RX231 (MPU)
MPESTS	IA: RX630 IMPER: RX231	Instruction memory protection error generated bit	Instruction memory protection error generated bit
	DA: RX630 DMPER: RX231	Data memory protection error generated bit	Data memory protection error generated bit

2.15 DMA Controller

Table 2.30 shows a comparative overview of the DMA controller specifications.

ltem		RX630 (DMACA)	RX231 (DMACA)
Number of	channels	4 (DMACm (m = 0 to 3))	4 (DMACm (m = 0 to 3))
Transfer space		512 MB (00000000h to 0FFFFFFh and F0000000h to FFFFFFFh, excluding reserved areas)	512 MB (00000000h to 0FFFFFFh and F0000000h to FFFFFFFh, excluding reserved areas)
Maximum transfer volume		1 MB data units (maximum number of transfers in block transfer mode: 1,024 data × 1,024 blocks)	1 MB data units (maximum number of transfers in block transfer mode: 1,024 data × 1,024 blocks)
DMAC activation sources		 Activation source selectable for each channel Software trigger Interrupt requests from peripheral modules or trigger input to external interrupt input pins 	 Activation source selectable for each channel Software trigger Interrupt requests from peripheral modules or trigger input to external interrupt input pins
Channel pr	iority	Channel 0 > channel 1 > channel 2 > channel 3 (channel 0: highest)	Channel 0 > channel 1 > channel 2 > channel 3 (channel 0: highest)
Transfer	Single data	Bit length: 8, 16, 32 bits	Bit length: 8, 16, 32 bits
data	Block size	Number of data: 1 to 1,024	Number of data: 1 to 1,024
Transfer modes	Normal transfer mode Repeat transfer mode Block transfer mode	 One data transfer per DMA transfer request Setting in which total number of data transfers is not specified (free running mode) is available. One data transfer per DMA transfer request Program returns to the transfer start address on completion of the repeat size of data transfer specified for the transfer source or destination. Maximum settable repeat size: 1,024 data One block data transfer per DMA transfer request Maximum settable block size: 	 One data transfer per DMA transfer request Setting in which total number of data transfers is not specified (free running mode) is available. One data transfer per DMA transfer request Program returns to the transfer start address on completion of the repeat size of data transfer specified for the transfer specified for the transfer source or destination. Maximum settable repeat size: 1,024 data One block data transfer per DMA transfer request Maximum settable block size:
Selective functions	Extended repeat area function	 1,024 data Function in which data can be transferred by repeating the address values in the specified range with the upper bit values in the transfer address register fixed Area of 2 bytes to 128 MB separately settable as extended repeat area for transfer source or destination 	 1,024 data Function in which data can be transferred by repeating the address values in the specified range with the upper bit values in the transfer address register fixed Area of 2 bytes to 128 MB separately settable as extended repeat area for transfer source or destination

Table 2.30 Comparative Overview of DMA Controller Specifications

ltem		RX630 (DMACA)	RX231 (DMACA)
Interrupt request	Transfer end interrupt	Generated on completion of transferring data volume specified by the transfer counter.	Generated on completion of transferring data volume specified by the transfer counter.
	Transfer escape end interrupt	Generated when the repeat size of data transfer is completed or the extended repeat area overflows.	Generated when the repeat size of data transfer is completed or the extended repeat area overflows.
Event link activation			Event link request generated after one data transfer (or after one block transfer in case of block transfer operation).
Low power consumption function		Module stop state can be set.	Module stop state can be set.

2.16 Data Transfer Controller

Table 2.31 shows a comparative overview of the data transfer controller specifications.

ltem	RX630 (DTCa)	RX231 (DTCa)
Transfer modes	 Normal transfer mode A single activation leads to a single data transfer. Repeat transfer mode A single activation leads to a single 	 Normal transfer mode A single activation leads to a single data transfer. Repeat transfer mode A single activation leads to a single
	 data transfer. The transfer address is returned to the transfer start address after a number of data transfers corresponding to the repeat size. The maximum number of repeat transfers is 256. 	 data transfer. The transfer address is returned to the transfer start address after a number of data transfers corresponding to the repeat size. The maximum number of repeat transfers is 256, and the maximum data transfer size is 256 × 32 bits, 1,024 bytes.
	 Block transfer mode A single activation leads to the transfer of a single block. Maximum block size setting: 256 	 Block transfer mode A single activation leads to the transfer of a single block. Maximum block size setting: 256 × 32 bits = 1,024 bytes
Transfer channels	 Channel transfer corresponding to the interrupt source is possible (transferred by DTC transfer request from the ICU). Data of multiple channels can be transferred on a single activation source (chain transfer). Either "executed when the counter is 	 Channel transfer corresponding to the interrupt source is possible (transferred by DTC transfer request from the ICU). Data of multiple channels can be transferred on a single transfer request (chain transfer). Either "executed when the counter is
	0" or "always executed" can be selected for chain transfer.	0" or "always executed" can be selected for chain transfer.
Transfer space	 16 Mbytes in short-address mode (areas from 0000 0000h to 007F FFFFh and FF80 0000h to FFFF FFFFh, excepting reserved areas) 4 Gbytes in full-address mode (area from 0000 0000h to FFFF FFFFh, excepting reserved areas) 	 16 Mbytes in short-address mode (areas from 0000 0000h to 007F FFFFh and FF80 0000h to FFFF FFFFh, excepting reserved areas) 4 Gbytes in full-address mode (area from 0000 0000h to FFFF FFFFh, excepting reserved areas)
Data transfer units	 Single data: 8 bits, 16 bits, or 32 bits Single block size: 1 to 256 data 	 Single data: 1 byte (8 bits), 1 word (16 bits), or 1 longword (32 bits) Single block size: 1 to 256 data
CPU interrupt requests	 Single block size: 1 to 256 data An interrupt request can be generated to the CPU on a DTC activation interrupt. An interrupt request can be generated to the CPU after a single data transfer. An interrupt request can be generated 	 Single block size: 1 to 256 data An interrupt request can be generated to the CPU on a DTC activation interrupt. An interrupt request can be generated to the CPU after a single data transfer. An interrupt request can be generated

Item	RX630 (DTCa)	RX231 (DTCa)	
Event link activation		Event link request generated after one data transfer (or after one block transfer in case of block transfer operation).	
Read skip	It is possible to specify that reading of transfer information be skipped.	It is possible to specify that reading of transfer information be skipped.	
Write-back skip	When "fixed" is selected for the transfer source address or transfer destination address, write-back of non-updated transfer data can be omitted.	When "fixed" is selected for the transfer source address or transfer destination address, write-back of non-updated transfer data can be omitted.	
Low power consumption function	Module stop state can be set.	Module stop state can be set.	

Register	Bit	RX630 (RIIC)	RX231 (RIICa)
DTCVBR		DTC Vector Base Register	DTC Vector Base Register
		The DTCVBR register is used to set	The DTCVBR register is used to set
		the base address for calculating the	the base address for calculating the
		address to which the DTC vector is allocated.	address to which the DTC vector is allocated.
		Writing to the upper 4 bits (b31 to	Writing to the upper 4 bits (b31 to
		b28) is ignored, and the address of	b28) is ignored, and the address of
		this register is extended by the value	this register is extended by the value
		specified by b27. The lower 12 bits	specified by b27. The lower 10 bits
		are reserved and the values are fixed to 0. Write 0 to the lower 12	are reserved and the values are fixed to 0. Write 0 to the lower 10 bits
		bits if necessary.	if necessary.
		It can be set in the range of 0000	It can be set in the range of 0000
		0000h to 07FF F000h and F800	0000h to 07FF FC00h and F800
		0000h to FFFF F000h in 4-Kbyte	0000h to FFFF FC00h in 1-Kbyte
		units.	units.

2.17 I/O Ports

Table 2.33 shows a comparative overview of the I/O port specifications, and Table 2.34 shows a comparative listing of I/O port functions, and Table 2.35 shows a comparative overview of the I/O port registers.

Table 2.33	Comparative Overview of I/O port Specifications	
------------	---	--

Port Symbol	RX630 (100-pin)	RX231 (100-pin)	
PORT0	P05, P07	P03, P05, P07	
PORT1	P12 to P17	P12 to P17	
PORT2	P20 to P27	P20 to P27	
PORT3	P30 to P37	P30 to P37	
PORT4	P40 to P47	P40 to P47	
PORT5	P50 to P55	P50 to P55	
PORTA	PA0 to PA7	PA0 to PA7	
PORTB	PB0 to PB7	PB0 to PB7	
PORTC	PC0 to PC7	PC0 to PC7	
PORTD	PD0 to PD7	PD0 to PD7	
PORTE	PE0 to PE7	PE0 to PE7	
PORTH	— PH0 to PH3		
PORTJ	PJ3	PJ3	

Table 2.34 Comparative Listing of I/O Port Functions

ltem	Port Symbol	RX630 (100-pin)	RX231 (100-pin)
Input pull-up	PORT0	P05, P07	P03, P05, P07
function	PORT1	P12~P17	P12~P17
	PORT2	P20~P27	P20~P27
	PORT3	P30~P34, P36, P37	P30~P34, P36, P37
	PORT4	P40~P47	P40~P47
	PORT5	P50~P55	P50~P55
	PORTA	PA0~PA7	PA0~PA7
	PORTB	PB0~PB7	PB0~PB7
	PORTC	PC0~PC7	PC0~PC7
	PORTD	PD0~PE7	PD0~PD7
	PORTE	PE0~PE7	PE0~PE7
	PORTH	—	PH0~PH3
	PORTJ	PJ3	PJ3
Open-drain	PORT0	P05, P07	—
output	PORT1	P12~P17	P12~P17
	PORT2	P20~P27	P20~P27
	PORT3	P30~P34, P36, P37	P30~P34, P36, P37
	PORT4	P40~P47	—
	PORT5	P50~P52, <mark>P53</mark> , P54, <mark>P55</mark>	P50~P52, P54
	PORTA	PA0~PA7	PA0~PA7
	PORTB	PB0~PB7	PB0~PB7
	PORTC	PC0~PC7	PC0~PC7
	PORTD	PD0~PE7	—
	PORTE	PE0~PE7	PE0~PE7
	PORTH		—

RX230/RX231 Group, RX630 Group

Item	Port Symbol	RX630 (100-pin)	RX231 (100-pin)
	PORTJ	PJ3	PJ3
Drive capacity	PORT0	P05*1, P07*1	P03* ² , P05* ² , P07* ²
switching	PORT1	P12~P17 ^{*1}	P12~P17
function	PORT2	P20~P26 ^{*1} , P27	P20~P26, P27
	PORT3	P30~P34 ^{*1} , P36 ^{*2} , P37 ^{*1}	P30~P34, P36* ² , P37* ²
	PORT4	P40~P47*2	P40~P47*2
	PORT5	P50~P52, P53~P55*1	P50~P52, P53~P55
	PORTA	PA0~PA7	PA0~PA7
	PORTB	PB0~PB7	PB0~PB7
	PORTC	PC0~PC7	PC0~PC7
	PORTD	PD0~PD7	PD0~PD7
	PORTE	PE0~PE7	PE0~PE7
	PORTH	—	PH0~PH3
	PORTJ	PJ3*1	PJ3
5 V tolerant	PORT0	P07	
	PORT1	P12, P13, P14, P15, P16, P17	P12, P13, P16, P17
	PORT2	P20~P25	—
	PORT3	P30~P32, <mark>P33, P34</mark>	P30~P32
	PORT4	—	—
	PORT5	P50~P52, P54~P57	—
	PORTA	PA1~PA4, PA6	—
	PORTB	PB0~PB4, PB5, PB6, PB7	PB5
	PORTC	PC0~PC7	—
	PORTD	—	—
	PORTE	—	—
	PORTH	—	—
	PORTJ	—	—

Note 1. Fixed to high drive output

Note 2. Fixed to normal output

Register	Bit	RX630	RX231
ODR0	B2, B3	Pm1 output format specification bit	Pm1 output format specification bit
		P21, P31, <mark>P41</mark> , P51, PA1, PB1, PC1, PD1	P21, P31, P51, PA1, PB1, PC1
		Other than PE1	Other than PE1
		b2 0: CMOS output	b2 0: CMOS output
		1: N-channel open-drain output	1: N-channel open-drain output
		b3 This bit is read as 0. The write value should be 0.	b3 This bit is read as 0. The write value should be 0.
		PE1	PE1
		b3 b2	b3 b2
		00: CMOS output	00: CMOS output
		01: N-channel open-drain output	01: N-channel open-drain output
		10: P-channel open-drain output	10: P-channel open-drain output
		11: Setting prohibited	11: Hi-Z

Table 2.35 Comparative Overview of I/O Port Registers

2.18 Multi-Function Pin Controller

Table 2.36 shows a comparative listing of functions assigned to each multiplexed pin, and Table 2.37 shows a comparative overview of the multi-function pin controller registers.

Blue characters exist only in the RX630, and orange characters exist only in the RX231. " $\sqrt{}$ " indicates pin implemented, " \times " indicates pin not implemented, "-" indicates no assignment pin for function, Grey hatching indicates pin function not implemented.

Table 2.36	Comparative Listing of Functions Assigned to Each Multiplexed Pin
------------	---

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
Interrupt	NMI (input)	P35	0	0
	IRQ0-DS (input)	P30	0	
	IRQ0 (input)	P10	×	-
		PD0	0	0
		P30	-	0
		PH1	-	0
	IRQ1-DS (input)	P31	0	
	IRQ1 (input)	P11	×	-
		PD1	0	0
		P31	-	0
		PH2	-	0
	IRQ2-DS (input)	P32	0	
	IRQ2 (input)	P12	0	0
		PD2	0	0
		P32	-	0
	IRQ3-DS (input)	P33	0	
	IRQ3 (input)	P13	0	0
		PD3	0	0
		P33	-	0
	IRQ4-DS (input)	PB1	0	
	IRQ4 (input)	P14	0	0
		P34	0	0
		PD4	0	0
		PF5	×	-
		PB1	-	0
	IRQ5-DS (input)	PA4	0	
	IRQ5 (input)	P15	0	0
		PD5	0	0
		PE5	0	0
		PA4	-	0
	IRQ6-DS (input)	PA3	0	
	IRQ6 (input)	P16	0	0
	· · /	PD6	0	0
		PE6	0	0
		PA3	-	0

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
nterrupt	IRQ7-DS (input)	PE2	0	
	IRQ7 (input)	P17	0	0
		PD7	0	0
		PE7	0	\bigcirc
		PE2	-	0
	IRQ8-DS (input)	P40	0	
	IRQ8 (input)	P00	\times	
		P20	0	
	IRQ9-DS (input)	P41	0	
	IRQ9 (input)	P01	×	
		P21	0	
	IRQ10-DS (input)	P42	0	
	IRQ10 (input)	P02	×	
		P55	0	
	IRQ11-DS (input)	P43	0	
	IRQ11 (input)	P03	×	
		PA1	0	
	IRQ12-DS (input)	P44	0	
	IRQ12 (input)	PB0	0	
		PC1	0	
	IRQ13-DS (input)	P45	0	
	IRQ13 (input)	P05	0	
		PC6	0	
	IRQ14-DS (input)	P46	0	
	IRQ14 (input)	PC0	0	
		PC7	0	
	IRQ15-DS (input)	P47	0	
	IRQ15 (input)	P07	0	
		P67	×	
Clock generation circuit	CLKOUT(output)	PE3		0
		PE4		0
Aulti-function timer	MTIOC0A (input/output)	P34	0	0
unit 2		PB3	0	0
	MTIOC0B (input/output)	P13	0	\bigcirc
		P15	0	0
		PA1	0	\bigcirc
	MTIOC0C (input/output)	P32	0	0
		PB1	0	0
	MTIOC0D (input/output)	P33	0	0
		PA3	0	0
	MTIOC1A (input/output)	P20	0	0
		PE4	0	0
	MTIOC1B (input/output)	P21	0	0
		PB5	0	0

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
Aulti-function timer	MTIOC2A (input/output)	P26	0	0
unit 2		PB5	0	0
	MTIOC2B (input/output)	P27	0	0
		PE5	0	0
	MTIOC3A (input/output)	P14	0	0
		P17	0	0
		PC1	0	0
		PC7	0	0
	MTIOC3B (input/output)	P17	0	0
		P22	0	0
		P80	×	-
		PB7	0	0
		PC5	0	0
	MTIOC3C (input/output)	P16	0	0
		P56	×	-
		PC0	0	0
		PC6	0	0
		PJ3	0	0
	MTIOC3D (input/output)	P16	0	0
		P23	0	0
		P81	×	-
		PB6	0	0
		PC4	0	0
	MTIOC4A (input/output)	P24	0	0
		P82	×	-
		PA0	0	0
		PB3	0	0
		PE2	0	0
	MTIOC4B (input/output)	P30	0	0
		P54	0	0
		PC2	0	0
		PD1	0	0
		PE3	0	0
	MTIOC4C (input/output)	P25	0	0
		P83	×	-
		PB1	0	0
		PE1	0	0
		PE5	0	0
	MTIOC4D (input/output)	P31	0	0
		P55	0	0
		PC3	0	0
		PD2	0	0
		PE4	0	0

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
Multi-function timer	MTIC5U (input)	P12	×	-
unit 2		PA4	0	0
		PD7	0	0
	MTIC5V (input)	P11	×	-
		PA6	0	0
		PD6	0	0
	MTIC5W (input)	P10	×	-
		PB0	0	0
		PD5	0	0
	MTCLKA (input)	P14	0	0
		P24	0	0
		PA4	0	0
		PC6	0	0
	MTCLKB (input)	P15	0	0
		P25	0	0
		PA6	0	0
		PC7	0	0
	MTCLKC (input)	P22	\bigcirc	0
		PA1	\bigcirc	0
		PC4	\bigcirc	0
	MTCLKD (input)	P23	0	0
		PA3	\bigcirc	0
		PC5	\bigcirc	0
Port output enable 2	POE0# (input)	PC4	0	0
		PD7	0	0
	POE1# (input)	PB5	\bigcirc	0
		PD6	\bigcirc	0
	POE2# (input)	P34	\bigcirc	0
		PA6	\bigcirc	0
		PD5	\bigcirc	0
	POE3# (input)	P33	\bigcirc	0
		PB3	\bigcirc	0
		PD4	0	0
	POE8# (input)	P17	0	0
		P30	0	0
		PD3	0	0
		PE3	0	0
6-bit timer pulse unit	TIOCA0 (input/output)	P86	×	-
		PA0	0	0
	TIOCB0 (input/output)	P17	0	0
		PA1	0	0
	TIOCC0 (input/output)	P32	0	0
	TIOCD0 (input/output)	P33	0	0
		PA3	0	0

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
6-bit timer pulse unit	TIOCA1 (input/output)	P56	×	-
		PA4	\bigcirc	\bigcirc
	TIOCB1 (input/output)	P16	\bigcirc	\bigcirc
		PA5	\bigcirc	0
	TIOCA2 (input/output)	P87	×	-
		PA6	\bigcirc	\bigcirc
	TIOCB2 (input/output)	P15	0	0
		PA7	\bigcirc	\bigcirc
	TIOCA3 (input/output)	P21	0	0
		PB0	0	0
	TIOCB3 (input/output)	P20	0	0
		PB1	0	0
	TIOCC3 (input/output)	P22	0	0
		PB2	0	0
	TIOCD3 (input/output)	P23	0	0
		PB3	0	0
	TIOCA4 (input/output)	P25	0	0
		PB4	0	0
	TIOCB4 (input/output)	P24	0	0
		PB5	0	0
	TIOCA5 (input/output)	P13	0	0
		PB6	0	0
	TIOCB5 (input/output)	P14	0	0
		PB7	0	0
	TCLKA (input)	P14	0	0
		PC2	0	0
	TCLKB (input)	P15	0	0
		PA3	0	0
		PC3	0	0
	TCLKC (input)	P16	0	0
		PB2	0	0
		PC0	0	0
	TCLKD (input)	P17	0	0
	x 1 - 7	PB3	0	0
		PC1	0	0
	TIOCA6 (input/output)	PC6	X	
	TIOCB6 (input/output)	PC7	×	
	TIOCC6 (input/output)	PC4	×	
	TIOCD6 (input/output)	PC5	×	
	TIOCA7 (input/output)	PD0	×	
	TIOCB7 (input/output)	PD1	×	
	TIOCA8 (input/output)	PD2	×	
	TIOCB8 (input/output)	PD3	×	
		100	/ `	

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
16-bit timer pulse unit	TIOCA9 (input/output)	PE2	×	
	TIOCB9 (input/output)	PE3	×	
	TIOCC9 (input/output)	PE0	×	
	TIOCD9 (input/output)	PE1	×	
	TIOCA10 (input/output)	PE4	×	
	TIOCB10 (input/output)	PE5	×	
	TIOCA11 (input/output)	PE6	×	
	TIOCB11 (input/output)	PE7	×	
	TCLKE (input)	PC4	×	
	TCLKF (input)	PC5	×	
	TCLKG (input)	PD1	×	
	TCLKH (input)	PD3	×	
Programmable pulse	PO0 (output)	P20	0	
generator	PO1 (output)	P21	0	
	PO2 (output)	P22	0	
	PO3 (output)	P23	0	
	PO4 (output)	P24	0	
	PO5 (output)	P25	0	
	PO6 (output)	P26	0	
	PO7 (output)	P27	0	
	PO8 (output)	P30	0	
	PO9 (output)	P31	0	
	PO10 (output)	P32	0	_
	PO11 (output)	P33	0	
	PO12 (output)	P34	0	
	PO13 (output)	P13	0	
		P15	0	
	PO14 (output)	P16	0	
	PO15 (output)	P14	0	_
		P17	0	
	PO16 (output)	P73	X	_
		PA0	0	_
	PO17 (output)	PA0	0	_
		PC0	0	_
	PO18 (output)	PC0 PA2	0	_
		PA2 PC1	0	_
		PE1	<u> </u>	
	PO19 (output)	P74	×	
		PA3	<u> </u>	
	PO20 (output)	P75	×	
		PA4	0	
	PO21 (output)	PA5	0	
		PC2	0	
	PO22 (output)	P76	×	
		PA6	\bigcirc	

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
Programmable pulse	PO23 (output)	P77	×	
generator		PA7	0	
		PE2	0	
	PO24 (output)	PB0	0	
		PC3	0	
	PO25 (output)	PB1	0	
		PC4	0	
	PO26 (output)	P80	×	
		PB2	0	
		PE3	0	
	PO27 (output)	P81	×	
		PB3	0	
	PO28 (output)	P82	×	
		PB4	0	
		PE4	0	
	PO29 (output)	PB5	0	
		PC5	0	
	PO30 (output)	PB6	0	
		PC6	0	
	PO31 (output)	PB7	0	
		PC7	0	
8-bit timer	TMO0 (output)	P22	0	0
		PB3	0	0
		PH1		0
	TMCI0 (input)	P01	×	-
		P21	0	0
		PB1	0	0
		PH3	-	0
	TMRI0 (input)	P00	×	-
		P20	0	0
		PA4	0	0
		PH2	-	0
	TMO1 (output)	P17	0	0
	inter (output)	P26	0	0
	TMCI1 (input)	P02	X	-
		P12	0	0
		P54	0	0
		PC4	0	0
	TMRI1 (input)	P24		0
		PB5	0	0
	TMO2 (output)	P16	0	0
		P10 PC7	0	0
	TMCI2 (input)	P15	0	0
		P15 P31	0	0
		PC6	\bigcirc	\bigcirc

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
3-bit timer	TMRI2 (input)	P14	0	0
		PC5	0	\bigcirc
	TMO3 (output)	P13	0	0
		P32	0	\bigcirc
		P55	0	0
	TMCI3 (input)	P11	×	-
		P27	0	0
		P34	0	0
		PA6	0	0
	TMRI3 (input)	P10	×	-
		P30	0	\bigcirc
		P33	0	\bigcirc
Serial	RXD0 (input)/	P21	0	\bigcirc
ommunications nterface	SMISO0 (input/output)/ SSCL0 (input/output)	P33	0	-
	TXD0 (output)/	P20	0	0
	SMOSI0 (input/output)/ SSDA0 (input/output)	P32	0	-
	SCK0 (input/output)	P22	0	0
		P34	0	-
	CTS0# (input)/	P23	0	0
	RTS0# (output)/ SS0# (input)	PJ3	0	-
	RXD1 (input)/	P15	0	0
	SMISO1 (input/output)/	P30	0	0
	SSCL1 (input/output)	PF2	X	-
	TXD1 (output)/	P16	0	0
	SMOSI1 (input/output)/	P26	0	0
	SSDA1 (input/output)	PF0	X	-
	SCK1 (input/output)	P17	0	0
		P27	0	0
		PF1	X	-
	CTS1# (input)/	P14	0	0
	RTS1# (output)/	P31	0	0
	SS1# (input)	1.01	\bigcirc	\bigcirc
	RXD2 (input)/	P12	0	
	SMISO2 (input/output)/ SSCL2 (input/output)	P52	0	
	TXD2 (output)/	P13	0	
	SMOSI2 (input/output)/	P50	0	
	SSDA2 (input/output)	1.00	\bigcirc	
	SCK2 (input/output)	P11	X	
		P51	0	
	CTS2# (input)/	P54	0	
	RTS2# (output)/	1 04	\bigcirc	
	SS2# (input)			

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
Serial	RXD3 (input)/	P16	0	
communications	SMISO3 (input/output)/	P25	0	
nterface	SSCL3 (input/output)			
	TXD3 (output)/	P17	\bigcirc	
	SMOSI3 (input/output)/	P23	0	
	SSDA3 (input/output)			
	SCK3 (input/output)	P15	0	
		P24	0	
	CTS3# (input)/	P26	0	
	RTS3# (output)/			
	SS3# (input)			
	RXD4 (input)/	PB0	×	
	SMISO4 (input/output)/	PK4	×	
	SSCL4 (input/output)			
	TXD4 (output)/	PB1	×	
	SMOSI4 (input/output)/	PK5	×	
	SSDA4 (input/output)			
	SCK4 (input/output)	P70	×	
		PB3	×	
	CTS4# (input)/	PB2	×	
	RTS4# (output)/	PE6	×	
	SS4# (input)			
	RXD5 (input)/	PA2	0	0
	SMISO5 (input/output)/	PA3	0	0
	SSCL5 (input/output)	PC2	0	0
	TXD5 (output)/	PA4	0	0
	SMOSI5 (input/output)/	PC3	0	0
	SSDA5 (input/output)			
	SCK5 (input/output)	PA1	0	0
		PC1	0	0
		PC4	0	0
	CTS5# (input)/	PA6	0	0
	RTS5# (output)/	PC0	0	0
	SS5# (input)	DO4		
	RXD6 (input)/	P01	×	-
	SMISO6 (input/output)/	P33	0	0
	SSCL6 (input/output)	PB0	0	0
	TXD6 (output)/	P00	×	-
	SMOSI6 (input/output)/	P32	0	0
	SSDA6 (input/output)	PB1	0	0
	SCK6 (input/output)	P02	×	-
		P34	0	0
	0700#//	PB3	0	0
	CTS6# (input)/	PB2	0	0
	RTS6# (output)/	PJ3	0	\bigcirc
	SS6# (input)			

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
Serial	RXD7 (input)/	P92	×	
communications	SMISO7 (input/output)/			
nterface	SSCL7 (input/output)			
	TXD7 (output)/	P90	×	
	SMOSI7 (input/output)/			
	SSDA7 (input/output)			
	SCK7 (input/output)	P91	×	
	CTS7# (input)/	P93	×	
	RTS7# (output)/			
	SS7# (input)			
	RXD8 (input)/	PC6	0	0
	SMISO8 (input/output)/			
	SSCL8 (input/output)			
	TXD8 (output)/	PC7	0	0
	SMOSI8 (input/output)/			
	SSDA8 (input/output)			
	SCK8 (input/output)	PC5	0	0
	CTS8# (input)/	PC4	0	0
	RTS8# (output)/		<u> </u>	U
	SS8# (input)			
	RXD9 (input)/	PB6	0	0
	SMISO9 (input/output)/	PK3	X	-
	SSCL9 (input/output)	110		
	TXD9 (output)/	PB7	0	0
	SMOSI9 (input/output)/	PK2	X	
	SSDA9 (input/output)	1112		
	SCK9 (input/output)	P60	×	-
		PB5	0	0
	CTS9# (input)/	P61	×	-
	RTS9# (output)/	PB4	<u> </u>	
	SS9# (input)	F D4	\bigcirc	\bigcirc
	RXD10 (input)/	P81	×	
	SMISO10 (input/output)/	101	~	
	SSCL10 (input/output)			
	TXD10 (output)/	P82	X	_
	SMOSI10 (input/output)/	FOZ	~	
	SSDA10 (input/output)			
	SCK10 (input/output)	P80	~	_
			× ×	
	CTS10# (input)/	P83	X	
	RTS10# (output)/			
	SS10# (input)	DZC	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	RXD11 (input)/	P76	×	
	SMISO11 (input/output)/			
	SSCL11 (input/output)			

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
Serial	TXD11 (output)/	P77	×	
communications	SMOSI11 (input/output)/			
interface	SSDA11 (input/output)			
	SCK11 (input/output)	P75	×	
	CTS11# (input)/	P74	×	
	RTS11# (output)/			
	SS11# (input)			
	RXD12 (input)/	PE2	\bigcirc	\bigcirc
	SMISO12 (input/output)/			
	SSCL12 (input/output)/			
	RXDX12 (input)			
	TXD12 (output)/	PE1	\bigcirc	\bigcirc
	SMOSI12 (input/output)/			
	SSDA12 (input/output)/			
	TXDX12 (output)/			
	SIOX12 (input/output)			
	SCK12 (input/output)	PE0	0	0
	CTS12# (input)/	PE3	\bigcirc	0
	RTS12# (output)/			
	SS12# (input)			
I ² C bus interface	SCL0[FM+] (input/output)	P12	0	
	SDA0[FM+] (input/output)	P13	0	
	SCL1 (input/output)	P21	×	
	SDA1 (input/output)	P20	×	
	SCL2-DS (input/output)	P16	0	
	SDA2-DS (input/output)	P17	0	
	SCL3 (input/output)	PC0	×	
	SDA3 (input/output)	PC1	×	
I ² C bus interface	SCL (input/output)	P16		0
		P12		0
	SDA (input/output)	P17		0
		P13		0
USB 2.0 Function	USB0_DPUPE (output)	P14	0	
Module	USB0_VBUS (input)	P16	0	0
		PB5	-	0
USB 2.0 host/function	USB0_EXICEN (output)	P21		0
module		PC6		×
	USB0_VBUSEN (output)	P16		0
	_ 、 , ,	P24		0
		P26		×
		P32		0
	USB0_OVRCURA (input)	P14		0
	USB0_OVRCURB (input)	P16		0
		P22		0
	USB0_ID (input)	P20		0
		PC5		×
		1 00		^

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
CAN module	CRX0 (input)	P33	0	
		PD2	0	
	CTX0 (output)	P32	0	
		PD1	0	
	CRX1-DS (input)	P15	0	
	CRX1 (input)	P55	0	
	CTX1 (output)	P14	0	
		P54	0	
	CRX2 (input)	P67	×	
	CTX2 (output)	P66	×	
	CRXD0 (input)	P15		0
		P55		0
	CTXD0 (output)	P14		0
		P54		0
Serial peripheral interface	RSPCKA (input/output)	PA5	0	0
		PB0	0	0
		PC5	0	0
	MOSIA (input/output)	P16	0	0
		PA6	0	0
		PC6	0	0
	MISOA (input/output)	P17	0	0
		PA7	0	0
		PC7	0	0
	SSLA0 (input/output)	PA4	0	0
		PC4	0	0
	SSLA1 (output)	PA0	0	0
		PC0	0	0
	SSLA2 (output)	PA1	0	0
		PC1	0	0
	SSLA3 (output)	PA2	0	0
		PC2	0	0
	RSPCKB (input/output)	P27	0	
		PE1	0	
		PE5	0	
	MOSIB (input/output)	P26	0	
		PE2	0	
		PE6	0	
	MISOB (input/output)	P30	0	
		PE3	0	
		PE7	0	
	SSLB0 (input/output)	P31	0	
		PE4	0	
	SSLB1 (output)	P50	0	
		PE0	0	
	SSLB2 (output)	P51	0	
		PE1	\bigcirc	

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
Serial peripheral	SSLB3 (output)	P52	0	
interface		PE2	0	
	RSPCKC (input/output)	PD3	×	
	MOSIC (input/output)	PD1	×	
	MISOC (input/output)	PD2	×	
	SSLC0 (input/output)	PD4	×	
	SSLC1 (output)	PD5	×	
	SSLC2 (output)	PD6	×	
	SSLC3 (output)	PD7	×	
IEBus controller	IERXD (input)	P16	0	
		PC2	0	
	IETXD (output)	P17	0	
		PC3	0	
IrDA interface	IRTXD5 (output)	PA4		0
		PC3		0
	IRRXD5 (input)	PA2		0
		PA3		0
		PC2		0
Serial sound interface	SSISCK0 (input/output)	P23		0
		P31		0
		PA1		0
	SSIWS0 (input/output)	P21		0
		P27		0
		PA6		0
	SSITXD0 (output)	P17		0
		PA4		0
	SSIRXD0 (input)	P20		0
		P26		0
		PA3		0
	AUDIO_MCLK (input)	P22		0
		P30		0
		PE3		0
SD host interface	SDHI_CLK (output)	PB1		0
	SDHI_CMD (input/output)	PB0		0
	SDHI_D0 (input/output)	PC3		0
	SDHI_D1 (input/output)	PB6		0
		PC4		0
	SDHI_D2 (input/output)	PB7		0
	SDHI_D3 (input/output)	PC2		0
	SDHI_CD (input)	PB5		0
	SDHI_WP (input)	PB3		0

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
Realtime clock	RTCOUT (output)	P16	0	0
		P32	0	0
	RTCIC0 (input)	P30	0	0
	RTCIC1 (input)	P31	0	\bigcirc
	RTCIC2 (input)	P32	0	0
12-bit A/D converter	AN000 (input)	P40	0	0
	AN001 (input)	P41	0	0
	AN002 (input)	P42	0	0
	AN003 (input)	P43	0	0
	AN004 (input)	P44	0	0
	AN005 (input)	P45	0	0
	AN006 (input)	P46	0	0
	AN007 (input)	P47	0	0
	AN008 (input)	PD0	0	
	AN009 (input)	PD1	0	
	AN010 (input)	PD2	0	
	AN011 (input)	PD3	0	
	AN012 (input)	PD4	0	
	AN013 (input)	PD5	0	
	AN014 (input)	P90	×	
	AN015 (input)	P91	×	
	AN016 (input)	P92	×	_
		PE0	-	0
	AN017 (input)	P93	×	-
		PE1		0
	AN018 (input)	P00	×	-
		PE2	-	0
	AN019 (input)	P01	×	-
		PE3	_	0
	AN020 (input)	P02	×	-
	/	PE4	-	0
	AN021 (input)	PE5		0
	AN022 (input)	PE6		0
	AN022 (input)	PE7		0
	AN023 (input)	PD0		0
	AN024 (input)	PD1		0
	AN026 (input)	PD2		0
	AN020 (input) AN027 (input)	PD3		0
	AN027 (input)	PD4		0
	AN028 (input)	PD4 PD5		0
	AN029 (input)	PD5 PD6		0
	AN030 (input)	PD7		0
	ADTRG0# (input)	P07	0	0
		P07 P16	0	0
			0	0
		P25	U	U

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
10-bit A/D converter	AN0 (input)	PE2	0	
	AN1 (input)	PE3	0	
	AN2 (input)	PE4	0	
	AN3 (input)	PE5	0	
	AN4 (input)	PE6	0	
	AN5 (input)	PE7	0	
	AN6 (input)	PD6	0	
	AN7 (input)	PD7	0	
	ANEX0 (output)	PE0	0	
	ANEX1 (input)	PE1	0	
	ADTRG# (input)	P13	0	
		P17	0	
D/A converter	DA0 (output)	P03	×	0
	DA1 (output)	P05	0	0
Clock frequency accuracy	CACREF (input)	PA0		0
measurement		PC7		0
circuit		PH0		0
LVD voltage detection input	CMPA2 (input)	PE4		0
Comparator B	CMPB0 (input)	PE1		0
	CVREFB0 (input)	PE2		0
	CMPB1 (input)	PA3		0
	CVREFB1 (input)	PA4		0
	CMPB2 (input)	P15		0
	CVREFB2 (input)	P14		0
	CMPB3 (input)	P26		0
	CVREFB3 (input)	P27		0
	CMPOB0 (output)	PE5		0
	CMPOB1 (output)	PB1		0
	CMPOB2 (output)	P17		0
	CMPOB3 (output)	P30		0
Capacitive touch sensing	TSCAP (output)	PC4		0
unit (CTSU)	TS0 (output)	P34		0
	TS1 (output)	P33		0
	TS2 (output)	P27		0
	TS3 (output)	P26		0
	TS4 (output)	P25		0
	TS5 (output)	P24		0
	TS6 (output)	P23		0
	TS7 (output)	P22		0
	TS8 (output)	P21		0
	TS9 (output)	P20		0
	TS12 (output)	P15		0
	TS13 (output)	P14		0
	TS15 (output)	P55		0
	TS16 (output)	P54		0

Module/Function	Pin Functions	Allocation	RX630	RX231
		Port	100 pin	100 pin
Capacitive touch sensing unit	TS17 (output)	P53		0
(CTSU)	TS18 (output)	P52		0
	TS19 (output)	P51		0
	TS20 (output)	P50		0
	TS22 (output)	PC6		0
	TS23 (output)	PC5		0
	TS27 (output)	PC3		0
	TS30 (output)	PC2		0
	TS33 (output)	PC1		0
	TS35 (output)	PC0		0

Table 2.37 Comparative Overview of Multi-Function Pin Controller Registers

Register	Bit	RX630 (MPC)	RX231 (MPC)
P0nPFS	ISEL	Interrupt Input Function Select	
	ASEL	Analog Input Function Select	Analog Function Select
		0: Used other than as analog pin.	0: Used other than as analog pin
		1: Used as analog pin.	1: Used as analog pin
		P00: AN018 (177/176/145/144 pins)	
		P01: AN019 (177/176/145/144 pins)	
		P02: AN020 (177/176/145/144 pins)	
		P03: DA0 (177/176/145/144 pins)	P03: DA0 (<mark>100/64</mark> pins)
		P05: DA1 (177/176/145/144/100/80	P05: DA1 (100/64 pins)
		pins)	
P1nPFS	ISEL	Interrupt Input Function Select	Interrupt Input Function Select
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		P10: IRQ0 input switch	
		(177/176 pins)	
		P11: IRQ1 input switch	
		(177/176 pins)	
		P12: IRQ2 input switch	P12: IRQ2 input switch (100 pins)
		(177/176/145/144/100/80 pins)	
		P13: IRQ3 input switch	P13: IRQ3 input switch (100 pins)
		(177/176/145/144/100/80 pins)	
		P14: IRQ4 input switch	P14: IRQ4 input switch
		(177/176/145/144/100/80 pins)	(100/ <mark>64/48</mark> pins)
		P15: IRQ5 input switch	P15: IRQ5 input switch
		(177/176/145/144/100/80 pins)	(100/ <mark>64/48</mark> pins)
		P16: IRQ6 input switch	P16: IRQ6 input switch
		(177/176/145/144/100/80 pins)	(100/ <mark>64/48</mark> pins)
		P17: IRQ7 input switch	P17: IRQ7 input switch
		(177/176/145/144/100/80 pins)	(100/ <mark>64/48</mark> pins)
	ASEL		Analog Function Select
P2nPFS	ISEL	Interrupt Input Function Select	
	ASEL		Analog Function Select

Register	Bit	RX630 (MPC)	RX231 (MPC)
P3nPFS	ISEL	Interrupt Input Function Select	Interrupt Input Function Select
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		P30: IRQ0- <mark>DS</mark>	P30: IRQ0 input switch
		(177/176/145/144/100/80 pins)	(100/ <mark>64/48</mark> pins)
		P31: IRQ1 <mark>-DS</mark>	P31: IRQ1 input switch
		(177/176/145/144/100/80 pins)	(100/ <mark>64/48</mark> pins)
		P32: IRQ2 <mark>-DS</mark>	P32: IRQ2 input switch
		(177/176/145/144/100/80 pins)	(100 pins)
		P33: IRQ3 <mark>-DS</mark>	P33: IRQ3 input switch
		(177/176/145/144/100 pins)	(100 pins)
		P34: IRQ4	P34: IRQ4 input switch
		(177/176/145/144/100/80 pins)	(100 pins)
P4nPFS	ISEL	Interrupt Input Function Select	
	ASEL	Analog Input Function Select	Analog Function Select
		0: Used other than as analog pin.	0: Not used as an analog pin
		1: Used as analog pin.	1: Used as an analog pin
		P40: AN000	P40: AN000 (100/ <mark>64/48</mark> pins)
		(177/176/145/144/100/80 pins)	
		P41: AN001	P41: AN001 (100/ <mark>64/48</mark> pins)
		(177/176/145/144/100/80 pins)	
		P42: AN002	P42: AN002 (100/ <mark>64/48</mark> pins)
		(177/176/145/144/100/80 pins)	
		P43: AN003	P43: AN003 (100/ <mark>64</mark> pins)
		(177/176/145/144/100/80 pins)	
		P44: AN004	P44: AN004 (100/ <mark>64</mark> pins)
		(177/176/145/144/100/80 pins)	
		P45: AN005	P45: AN005 (100 pins)
		(177/176/145/144/100/80 pins)	
		P46: AN006	P46: AN006 (100/ <mark>64/48</mark> pins)
		(177/176/145/144/100/80 pins)	、 · · /
		P47: AN007	P47: AN007 (100 pins)
		(177/176/145/144/100/80 pins)	
P5nPFS	ISEL	Interrupt Input Function Select	_
P6nPFS		P6n Pin Function Control Registers	
P7nPFS		P7n Pin Function Control Registers	
P8nPFS		P8n Pin Function Control Registers	_
P9nPFS		P9n Pin Function Control Registers	
PAnPFS	ISEL	Interrupt Input Function Select	Interrupt Input Function Select
1741110	IOLL	0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		PA1: IRQ11 input switch	
		(177/176/145/144/100/80 pins)	
		PA3: IRQ6-DS input switch	PA3: IRQ6 input switch
		•	•
		(177/176/145/144/100/80 pins)	(100/64/48 pins)
		PA4: IRQ5-DS input switch	PA4: IRQ5 input switch
		(177/176/145/144/100/80 pins)	(100/64/48 pins)
	ASEL		Analog Function Select

Register	Bit	RX630 (MPC)	RX231 (MPC)
PBnPFS	ISEL	Interrupt Input Function Select	Interrupt Input Function Select
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		PB0: IRQ12	
		(177/176/145/144/100/80 pins)	
		PB1: IRQ4-DS	PB1: IRQ4 (100/ <mark>64/48</mark> pins)
		(177/176/145/144/100/80 pins)	
PCnPFS	ISEL	Interrupt Input Function Select	
PDnPFS	ISEL	Interrupt Input Function Select	Interrupt Input Function Select
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		PD0: IRQ0	PD0: IRQ0 input switch (100 pins)
		(177/176/145/144/100/80 pins)	
		PD1: IRQ1	PD1: IRQ1 input switch (100 pins)
		(177/176/145/144/100/80 pins)	······································
		PD2: IRQ2	PD2: IRQ2 input switch (100 pins)
		(177/176/145/144/100/80 pins)	
		PD3: IRQ3	PD3: IRQ3 input switch (100 pins)
		(177/176/145/144/100 pins)	1 Do. In Qo Input Switch (100 pins)
		PD4: IRQ4	PD4: IRQ4 input switch (100 pins)
			PD4. IKQ4 Input Switch (100 pills)
		(177/176/145/144/100 pins)	DDE IDOE input quitch (100 pipe)
		PD5: IRQ5	PD5: IRQ5 input switch (100 pins)
		(177/176/145/144/100 pins)	
		PD6: IRQ6	PD6: IRQ6 input switch (100 pins)
		(177/176/145/144/100 pins)	
		PD7: IRQ7	PD7: IRQ7 input switch (100 pins)
	-	(177/176/145/144/100 pins)	
	ASEL	Analog Input Function Select	Analog Function Select
		0: Used other than as analog pin	0: Used other than as analog pin
		1: Used as analog pin	1: Used as analog pin
		PD0: AN008	PD0: AN024 (100 pins)
		(177/176/145/144/100/80 pins)	
		PD1: AN009	PD1: AN025 (100 pins)
		(177/176/145/144/100/80 pins)	
		PD2: AN010	PD2: AN026 (100 pins)
		(177/176/145/144/100/80 pins)	
		PD3: AN011	PD3: AN027 (100 pins)
		(177/176/145/144/100/ pins)	
		PD4: AN012	PD4: AN028 (100 pins)
		(177/176/145/144/100 pins)	· · /
		PD5: AN013	PD5: AN029 (100 pins)
		(177/176/145/144/100 pins)	x - 1 - 7
		PD6: AN6	PD6: AN030 (100 pins)
		(177/176/145/144/100 pins)	
		PD7: AN7	PD7: AN031 (100 pins)
		(177/176/145/144/100 pins)	

Register	Bit	RX630 (MPC)	RX231 (MPC)
PEnPFS	ISEL	Interrupt Input Function Select	Interrupt Input Function Select
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		PE2: IRQ7-DS	PE2: IRQ7 input switch
		(177/176/145/144/100/80 pins)	(100/ <mark>64/48</mark> pins)
		PE5: IRQ5	PE5: IRQ5 input switch
		(177/176/145/144/100/80 pins)	(100/ <mark>64</mark> pins)
		PE6: IRQ6	PE6: IRQ6 input switch (100 pins)
		(177/176/145/144/100 pins)	
		PE7: IRQ7	PE7: IRQ7 input switch (100 pins)
		(177/176/145/144/100 pins)	
	ASEL	Analog Input Function Select	Analog Function Select
	AGEL	•	-
		0: Used other than as analog pin.	0: Used other than as analog pin
		1: Used as analog pin.	1: Used as analog pin
		PE0: ANEX0	PE0:AN016 (100/64 pins)
		(177/176/145/144/100/80 pins)	
		PE1: ANEX1	PE1:AN017 or CMPB0
		(177/176/145/144/100/80 pins)	(100/ <mark>64/48</mark> pins)
		PE2: AN0	PE2:AN018 or CVREFB0
		(177/176/145/144/100/80 pins)	(100/ <mark>64/48</mark> pins)
		PE3: AN1	PE3:AN019 (100/64/48 pins)
		(177/176/145/144/100/80 pins)	
		PE4: AN2	PE4:AN020 (100/ <mark>64/48</mark> pins)
		(177/176/145/144/100/80 pins)	
		PE5: AN3	PE5:AN021 (100/64 pins)
		(177/176/145/144/100/80 pins)	
		PE6: AN4	PE6:AN022 (100 pins)
		(177/176/145/144/100 pins)	· · · · · · · · · · · · · · · · · ·
		PE7: AN5	PE7:AN023 (100 pins)
		(177/176/145/144/100 pins)	
PFnPFS		PFn Pin Function Control Registers	
PHnPFS			PHn Pin Function Control Registers
PKnPFS		PKn Pin Function Control Registers	Thirt in Tunction Control Registers
			CS0 Enable of P24
PFCSE	CS4E	CS4 Enable	
		0: CS4# output disabled	0: Configures the P24 as an I/O pin.
		1: CS4# output enabled	1: Configures the P24 as an CS0#
		005 5 11	output pin.
	CS5E	CS5 Enable	CS1 Enable of P25
		0: CS5# output disabled	0: Configures the P25 as an I/O pin.
		1: CS5# output enabled	1: Configures the P25 as an CS1#
			output pin.
	CS6E	CS6 Enable	CS2 Enable of PC5
		0: CS6# output disabled	0: Configures the PC5 as an I/O pin.
		1: CS6# output enabled	1: Configures the PC5 as an CS2#
			output pin.
	CS7E	CS7 Enable	CS3 Enable of PC4
		0: CS7# output disabled	0: Configures the PC4 as an I/O pin.
		1: CS7# output enabled	1: Configures the PC4 as an CS3#
			output pin.
		00	and and a
PFCSS0		CS output pin select register 0	—

Register	Bit	RX630 (MPC)	RX231 (MPC)
PFBCR0	ADRHMS	A16 to A23 output enable bit	
	DH32E	D16 to D31 output enable bit	
	WR32BC32E	WR3#/BC3# output enable bit	
		WR2#/BC2# output enable bit	
PFBCR1	WAITS[1:0]	WAIT select bits	WAIT select bits
		b1b0	b1b0
		0 0: Configures P57 as the WAIT# input pin. 0 1: Configures P55 as the WAIT#	0 0: Setting prohibited 0 1: Configures P55 as the WAIT# input pin.
		input pin. 1 0: Configures PC5 as the WAIT#	1 0: Configures PC5 as the WAIT# input pin.
		input pin.	1 1: Configures P51 as the WAIT#
		1 1: Configures P51 as the WAIT# input pin.	input pin.
PFUSB0		USB0 control register	_

2.19 Multi-Function Timer Pulse Unit 2

Table 2.38 shows a comparative overview of the multi-function timer pulse unit 2 specifications.

ltem	RX630 (MTU2a)	RX231 (MTU2a)
Pulse input/output	Maximum 16	Maximum 16
Pulse input	3	3
Count clocks	7 or 8 or clocks per channel (4 clocks for MTU5)	7 or 8 or clocks per channel (4 clocks for MTU5)
Available operations	 [MTU0 to MTU4] Waveform output at compare match Input capture function (noise filter setting function) Counter clear operation Simultaneous writing to multiple timer counters (TCNT) Simultaneous clearing by compare match or input capture Simultaneous register input/output by synchronous counter operation Up to 15-phase PWM output in combination with synchronous operation 	 [MTU0 to MTU4] Waveform output at compare match Input capture function (noise filter setting function) Counter clear operation Simultaneous writing to multiple timer counters (TCNT) Simultaneous clearing by compare match or input capture Simultaneous register input/output by synchronous counter operation Up to 15-phase PWM output in combination with synchronous operation
	 [MTU0, MTU3, and MTU4] Ability to specify buffer operation Ability to select between 2 types of waveform output (chopping and level) for AC synchronous motor (brushless DC motor) drive mode using complementary PWM output or reset- synchronized PWM output [MTU1 and MTU2] 	 [MTU0, MTU3, and MTU4] Ability to specify buffer operation Ability to select between 2 types of waveform output (chopping and level) for AC synchronous motor (brushless DC motor) drive mode using complementary PWM output or reset- synchronized PWM output [MTU1 and MTU2]
	 Ability to specify phase counting mode independently Cascade connection operation [MTU3 and MTU4] A total of 6 layers of waveform output, including 3 phases each for positive and negative complementary PWM or reset PWM output, by interlocking operation 	 Ability to specify phase counting mode independently Cascade connection operation [MTU3 and MTU4] A total of 6 layers of waveform output, including 3 phases each for positive and negative complementary PWM or reset PWM output, by interlocking operation
	 [MTU5] Dead time compensation counter function Input capture function (noise filter setting) Counter clear operation 	 [MTU5] Dead time compensation counter function Input capture function (noise filter setting) Counter clear operation
Complementary PWM modes	 Interrupts at counter peak and trough A/D converter start trigger skipping function 	 Interrupts at counter peak and trough A/D converter start trigger skipping function
Interrupt sources	28	28
Buffer operation	Automatic transfer of register data	Automatic transfer of register data

Table 2.38 Comparative Overview of Multi-Function Timer Pulse Unit 2 Specifications

ltem	RX630 (MTU2a)	RX231 (MTU2a)
Trigger generation	A/D converter start triggers can be generated.	A/D converter start triggers can be generated.
	Programmable pulse generator (PPG) output trigger generation is available.	_
Low power consumption function	Module stop state can be set.	Module stop state can be set.

2.20 Port Output Enable 2

Table 2.39 shows a comparative overview of the port output enable 2 specifications.

Table 2.39	Comparative Overview of Port Output Enable 2 Specifications
------------	---

ltem	RX630 (POE2a)	RX231 (POE2a)
High-impedance control by input level detection	 Falling-edge detection or sampling of the low level 16 times at PCLK/8, PCLK/16, or PCLK/128 can be specified for each of the POE0# to POE3# and POE8# input pins. Pins for complementary PWM output from the MTU can be placed in the high-impedance state at falling-edge detection or sampling of the low level on the POE0# to POE3# pins. MTU0 output pins can be placed in the high-impedance state at falling- edge detection or sampling of the low level on the POE8# pin. 	 Falling-edge detection or sampling of the low level 16 times at PCLK/8, PCLK/16, or PCLK/128 can be specified for each of the POE0# to POE3# and POE8# input pins. Pins for complementary PWM output from the MTU can be placed in the high-impedance state at falling-edge detection or sampling of the low level on the POE0# to POE3# pins. MTU0 output pins can be placed in the high-impedance state at falling- edge detection or sampling of the low level on the POE8# pin.
High-impedance control by output level comparison	Levels output on pins for complementary PWM output from the MTU are compared, and when simultaneous output of the active level continues for one or more cycles, the pins can be placed in the high-impedance state.	Levels output on pins for complementary PWM output from the MTU are compared, and when simultaneous output of the active level continues for one or more cycles, the pins can be placed in the high-impedance state.
High-impedance control by oscillation stop detection	Pins for complementary PWM output from the MTU and the MTU0 output pins can be placed in the high-impedance state when oscillation by the clock generation circuit stops.	Pins for complementary PWM output from the MTU and the MTU0 output pins can be placed in the high-impedance state when oscillation by the clock generation circuit stops.
High-impedance control by software (registers)	Pins for complementary PWM output from the MTU and the MTU0 output pins can be placed in the high-impedance state by writing to the POE registers.	Pins for complementary PWM output from the MTU and the MTU0 output pins can be placed in the high-impedance state by writing to the POE registers.
High-impedance control by event signal	_	Pins for complementary PWM output from the MTU and the MTU0 output pins can be placed in the high-impedance state in response to an event signal from the event link controller (ELC).
Interrupts	Interrupts are generated in response to the results of POE0# to POE3# and POE8# input-level detection and MTU complementary PWM output-level comparison.	Interrupts are generated in response to the results of POE0# to POE3# and POE8# input-level detection and MTU complementary PWM output-level comparison.

2.21 16-Bit Timer Pulse Unit

Table 2.40 shows a comparative overview of 16-bit timer pulse unit specifications, and Table 2.41 shows a comparative overview of the 16-bit timer pulse unit registers.

ltem	RX630 (TPUa)	RX231 (TPUa) Maximum 16	
Pulse input/output	Maximum 32 (Unit 0: 16, unit 1: 16)		
Count clocks	7 and 8 clocks for each channel	7 and 8 clocks for each channel	
Available operations	 Waveform output on compare match Input capture function (noise filter setting available) Counter-clearing operation Simultaneous writing to multiple timer counters (TCNT) Simultaneous clearing by compare match or input capture Synchronous input/output for registers by counter synchronous operation Maximum of 15-phase PWM output by combination with synchronous operation Cascade connection operation available 	 Waveform output on compare match Input capture function (noise filter setting available) Counter-clearing operation Simultaneous writing to multiple timer counters (TCNT) Simultaneous clearing by compare match or input capture Synchronous input/output for registers by counter synchronous operation Maximum of 15-phase PWM output by combination with synchronous operation Cascade connection operation available 	
Buffer operation	• Channels 0, 3, 6, and 9	Channels 0 and 3	
-	Automatic transfer of register data	Automatic transfer of register data	
Phase coefficient mode	Channels 1, 2, 4, 5, 7, 8, 10, and 11	Channels 1, 2, 4, and 5	
Interrupt sources	52 (Unit 0: 26, unit 1: 26)	26	
Trigger generation	Programmable pulse generator (PPG) output trigger generation is available.	_	
	A/D converter start triggers can be generated.	A/D converter start triggers can be generated.	
Low power consumption function	Module stop state can be set.	Module stop state can be set.	

e 2.40 Comparative Overv	ew of 16-Bit Timer Puls	se Unit Specifications
e 2.40 Comparative Overv	ew of 16-Bit Timer Puls	se Unit Specifications

Table 2.41	Comparative Overview of 16-Bit Timer Pulse Unit Registers
------------	---

Register	Bit	RX630 (TPUa)	RX231 (TPUa)
TPUA.TSTR: RX630		Timer start register (Unit 0)	Timer start register
TSTR: RX231			
TPUB.TSTR		Timer start register (Unit 1)	
TPUA.TSYR: RX630	—	Timer synchronous register	Timer synchronous register
TSYR: RX231		(Unit 0)	
TPUB.TSYR		Timer synchronous register	
		(Unit 1)	

2.22 8-Bit Timer

Table 2.42 shows a comparative overview of 8-bit timer specifications, and Table 2.43 shows a comparative overview of the 8-bit timer registers.

ltem	RX630 (TMR)	RX231 (TMR)
Count clocks	 Internal clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1,024, PCLK/8,192 External clock 	 Frequency-divided clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1,024, PCLK/8,192 External clock
Number of channels	(8 bits \times 2 channels) \times 2 units	(8 bits \times 2 channels) \times 2 units
Compare match	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B) 	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B)
Counter clear	Selectable among compare match A, compare match B, and external reset signal.	Selectable among compare match A, compare match B, and external reset signal.
Timer output	Output pulses with a user-defined duty cycle or PWM output	Output pulses with a user-defined duty cycle or PWM output
Cascading of two channels	 16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits) 	 16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits)
	 Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches). 	 Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches).
Interrupt sources	Compare match A, compare match B, and overflow	Compare match A, compare match B, and overflow
Event link function (output)	_	Compare match A, compare match B, and overflow (TMR0 and TMR2)
Event link function (input)		Ability to perform one of three actions according to accepted event (1) Counter start (TMR0 and TMR2) (2) Event counter (TMR0 and TMR2) (3) Counter restart (TMR0 and TMR2)
DTC activation	The DTC can be activated by compare match A interrupts or compare match B interrupts.	The DTC can be activated by compare match A interrupts or compare match B interrupts.
Generation of trigger to start A/D converter	Compare match A of TMR0 or TMR2	
Generation of baud rate clock for SCI	Generation of baud rate clock for SCI	Generation of baud rate clock for SCI
Low power consumption function	Each unit can be placed in a module stop state.	Each unit can be placed in a module stop state.

Table 2.42	Comparative Overview of 8-Bit Timer Specifications
------------	---

Table 2.43	Comparative Overview of 8-Bit Timer Registers
------------	---

Register	Bit	RX630 (TMR)	RX231 (TMR)
TCSR	ADTE	A/D trigger enable bit	_
TCSTR	—		Time counter start register

2.23 Compare Match Timer

Table 2.44 shows a comparative overview of the compare match timer specifications.

ltem	RX630 (CMT)	RX231 (CMT)
Count clocks	Four frequency-divided clocks	Four frequency-divided clocks
	One clock from among PCLK/8,	One clock from among PCLK/8,
	PCLK/32, PCLK/128, and PCLK/512 can	PCLK/32, PCLK/128, and PCLK/512 can
	be selected individually for each channel.	be selected individually for each channel.
Interrupt	A compare match interrupt can be requested individually for each channel.	A compare match interrupt can be requested individually for each channel.
Event link function (output)	_	Event signal output at CMT1 compare match
Event link function (input)	_	Support for linked operation of specified module
		• Support for CMT1 counter start, event counter, and count restart
Low power	Each unit can be placed in a module stop	Each unit can be placed in a module stop
consumption function	state.	state.

 Table 2.44
 Comparative Overview of Compare Match Timer Specifications

2.24 Realtime Clock

Table 2.45 shows a comparative overview of the realtime clock specifications, and Table 2.46 shows a comparative overview of the realtime clock registers.

tem RX630 (RTCa)		RX231 (RTCe)	
Count modes	Calendar count mode	Calendar count mode, binary count mode	
Count source	Sub-clock (XCIN) or main clock (EXTAL)	Sub-clock (XCIN)	
Clock and calendar functions	 Calendar count mode Year, month, date, day of the week, hours, minutes, and seconds are counted and represented in BCD format Selection of 12- or 24-hour mode 30-second adjustment (30 seconds or less are rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute.) Automatic leap year adjustment 	 Calendar count mode Year, month, date, day of the week, hours, minutes, and seconds are counted and represented in BCD format Selection of 12- or 24-hour mode 30-second adjustment (30 seconds or less are rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute.) Automatic leap year adjustment Binary count mode Count seconds in 32 bits, binary display 	
	 Start/stop function Binary display of digits below seconds (1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz) Time error adjustment function Clock (1 Hz) output 	 Common to both modes Start/stop function Binary display of digits below seconds (1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz) Time error adjustment function Clock (1 Hz/64 Hz) output 	
Interrupt	 Alarm interrupt (ALM) Year, month, date, day of the week, hours, minutes, and seconds can be selected as conditions for the alarm interrupt. 	 Alarm interrupt (ALM) Any of the following can be selected as conditions for the alarm interrupt: Calendar count mode: Year, month, date, day of the week, hours, minutes, and seconds Binary count mode: Each bit of 32-bit binary counter 	
	 Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, 1/128 second, or 1/256 second can be selected as the interrupt period. Carry interrupt (CUP) An interrupt is generated to indicate when a carry occurs on the second counter, or when the 64 Hz counter is read at the same time as a carry occurs on the 64 Hz counter. 	 Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, 1/128 second, or 1/256 second can be selected as the interrupt period. Carry interrupt (CUP) An interrupt is generated at either of the following timings When a carry from the 64-Hz counter to the second counter is generated. When the 64-Hz counter is changed and the R64CNT register is read at the same time. 	

Table 2.45 Comparative Overview of Realtime Clock Specifications

ltem	RX630 (RTCa)	RX231 (RTCe)
Interrupt	 Recovery from software standby mode or deep software standby mode can be performed by an alarm interrupt or periodic interrupt 	 Recovery from software standby mode can be performed by an alarm interrupt or periodic interrupt
Time-capture function	 Time capture using edge detection on the time capture event input pin is available. At each input event the month, date, hour, minute, and second is captured. 	 Time capture using edge detection on the time capture event input pin is available. At each input event the month, date, hour, minute, and second is captured, or the 32-bit binary counter value is captured.
Event link function		Periodic event output

Table 2.46	Comparative Overview of Realtime Clock Registers
------------	---

Register	Bit	RX630 (RTCd)	RX231 (RTCe)
BCNT0*1			Binary counter 0
BCNT1*1			Binary counter 1
BCNT2*1			Binary counter 2
BCNT3*1			Binary counter 3
BCNT0AR*1			Binary counter 0 alarm register
BCNT1AR*1			Binary counter 1 alarm register
BCNT2AR*1			Binary counter 2 alarm register
BCNT3AR*1			Binary counter 3 alarm register
BCNT0AER*1			Binary counter 0 alarm enable
			register
BCNT1AER*1		—	Binary counter 1 alarm enable
			register
BCNT2AER*1			Binary counter 2 alarm enable
			register
BCNT3AER*1			Binary counter 3 alarm enable
			register
RCR1	RTCOS		RTCOUT output select bit

Register	Bit	RX630 (RTCd)	RX231 (RTCe)
RCR1	PES[3:0]	Periodic interrupt select bits	Periodic interrupt select bits
		b7 b4 0 1 1 0: A periodic interrupt is generated every 1/256 second. (However, when the main clock is selected (RCR4.RCKSEL = 1) while PES[3:0] = 0110b, a periodic interrupt is	b7 b4 0 1 1 0: A periodic interrupt is generated every 1/256 second.
		generated every 1/128 second.) 0 1 1 1: A periodic interrupt is generated every 1/128 second.	0 1 1 1: A periodic interrupt is generated every 1/128 second.
		1 0 0 0: A periodic interrupt is generated every 1/64 second.	1 0 0 0: A periodic interrupt is generated every 1/64 second.
		1 0 0 1: A periodic interrupt is generated every 1/32 second.	1 0 0 1: A periodic interrupt is generated every 1/32 second.
		1 0 1 0: A periodic interrupt is generated every 1/16 second.	1 0 1 0: A periodic interrupt is generated every 1/16 second.
		1 0 1 1: A periodic interrupt is generated every 1/8 second.	1 0 1 1: A periodic interrupt is generated every 1/8 second.
		1 1 0 0: A periodic interrupt is generated every 1/4 second.1 1 0 1: A periodic interrupt is	 1 0 0: A periodic interrupt is generated every 1/4 second. 1 1 0 1: A periodic interrupt is
		generated every 1/2 second. 1 1 1 0: A periodic interrupt is generated every 1 second.	generated every 1/2 second. 1 1 1 0: A periodic interrupt is generated every 1 second.
		1 1 1 1: A periodic interrupt is generated every 2 seconds.	1 1 1 1: A periodic interrupt is generated every 2 seconds.
		Do not set to values other than the above.	Do not set to values other than the above.
RCR2	CNTMD		Count mode select bit
RCR3	RTCDV[2:0]	_	Sub-clock oscillator drive capacity control bits
RCR4		RTC control register 4	_
RFRH/L		Frequency register H/L	
BCNT0CPy*1	_		BCNT0 capture register y (y = 0 to 2)
BCNT1CPy*1	—		BCNT1 capture register y (y = 0 to 2)
BCNT2CPy*1		_	BCNT2 capture register y (y = 0 to 2)
BCNT3CPy*1	—		BCNT3 capture register y (y = 0 to 2)

Note 1. In binary count mode

2.25 Independent Watchdog Timer

Table 2.47 shows a comparative overview of the independent watchdog timer specifications, and Table 2.48 shows a comparative overview of the independent watchdog timer registers.

ltem	RX630 (IWDTa)	RX231 (IWDTa)
Count source	IWDT-dedicated clock (IWDTCLK)	IWDT-dedicated clock (IWDTCLK)
Clock division ratio	Division by 1, 16, 32, 64, 128, or 256	Division by 1, 16, 32, 64, 128, or 256
Counter operation	Counting down using a 14-bit down- counter	Counting down using a 14-bit down- counter
Conditions for starting the counter	 Counting starts automatically after a reset (auto-start mode). Counting is started (register start mode) by refreshing the counter (writing 00h and then FFh to the IWDTRR register). 	 Counting starts automatically after a reset (auto-start mode). Counting is started (register start mode) by refreshing the counter (writing 00h and then FFh to the IWDTRR register).
Conditions for stopping the counter	 Reset (The down-counter and other registers return to their initial values.) A counter underflows or a refresh error is generated. Count restart (auto-start mode: count restarts automatically; register start mode: count restarts after the counter is refreshed) 	 Reset (The down-counter and other registers return to their initial values.) A counter underflows or a refresh error is generated. Count restart (auto-start mode: count restarts automatically after a reset or output of a non-maskable interrupt request; register start mode: count restarts after the counter is refreshed)
Window function	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods).	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods).
Reset output sources	 Down-counter underflow Refresh occurring outside the refresh-permitted period (refresh error) 	 Down-counter underflow Refresh occurring outside the refresh-permitted period (refresh error)
Interrupt sources	 Non-maskable interrupts Down-counter underflow Refresh occurring outside the refresh-permitted period (refresh error) 	 Non-maskable interrupt sources Down-counter underflow Refresh occurring outside the refresh-permitted period (refresh error)
Reading the counter value	The down-counter value can be read by reading the IWDTSR register.	The down-counter value can be read by reading the IWDTSR register.
Event link function (output)		Down-counter underflow event outputRefresh error event output
Output signals (internal signals)	 Reset output Interrupt request output Sleep mode count stop control output 	 Reset output Interrupt request output Sleep mode count stop control output

Item	RX630 (IWDTa)	RX231 (IWDTa)
Auto-start mode (controlled by option function select register 0 (OFS0))	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPES[1:0] bits) Selecting reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, deep software standby mode, or all- module clock stop mode (OFS0.IWDTSLCSTP bit) 	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPES[1:0] bits) Selecting reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (OFS0.IWDTSLCSTP bit)
Register start mode (controlled by the IWDT registers)	 Selecting the clock frequency division ratio after a refresh (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, deep software standby mode, or all- module clock stop mode (IWDTCSTPR.SLCSTP bit) 	 Selecting the clock frequency division ratio after a refresh (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (IWDTCSTPR.SLCSTP bit)

Register	Bit	RX630 (IWDTa)	RX231 (IWDTa)
IWDTCR	TOPS[1:0]	Timeout period select bits	Timeout period select bits
		b1 b0	b1 b0
		0 0: 1,024 cycles (03FFh)	0 0: 128 cycles (007Fh)
		0 1: 4,096 cycles (0FFFh)	0 1: 512 cycles (01FFh)
		1 0: 8,192 cycles (1FFFh)	1 0: 1,024 cycles (03FFh)
		1 1: 16,384 cycles (3FFFh)	1 1: 2,048 cycles (07FFh)
IWDTCSTPR	SLCSTP	Sleep mode count stop control bit	Sleep mode count stop control bit
		0: Counting stop is disabled	0: Counting stop is disabled
		1: Counting stop is enabled when entering sleep, software standby, deep software standby, or all- module clock stop mode	1: Counting stop is enabled when entering sleep, software standby, or deep sleep mode

2.26 USB 2.0 Function Module

Table 2.49 shows a comparative overview of the USB 2.0 function module specifications, and Table 2.50 shows a comparative overview of the USB 2.0 function module registers.

ltem	RX630 (USBa)	RX231 (USBd)
Features	 Integrated USB Device Controller (UDC) and transceiver for USB 2.0 1 port 	 Integrated USB Device Controller (UDC) and transceiver for USB 2.0 Support for host controller, function controller, and on-the-go (OTG) functionality (1 channel) Software can switch between the Host controller and function controller modes.
	 Self-power mode or bus-power mode can be selected. Transfer interval setting function for isochronous and interrupt transfers 	 Self-power mode or bus-power mode can be selected. Battery Charging Specification,
		Revision 1.2 (BC1.2) is supported. When host controller operation is
	—	selected:
		 Full-speed transfer (12 Mbps) and low- speed transfer (1.5 Mbps) are supported.
		 Automatic scheduling of SOF and packet transmissions
		 Transfer interval setting function for isochronous and interrupt transfers
	Support for full-speed transfer (12	When function controller operation is selected:
	Mbps) (Low-speed transfer (1.5 Mbps) is not supported when function controller operation is selected.)	 Support for full-speed transfer (12 Mbps) and low-speed transfer (1.5 Mbps)
	Control transfer stage control function	Control transfer stage control function
	 Device state control function 	 Device state control function
	Auto response function for SET_ADDRESS requests	Auto response function for SET_ADDRESS requests
Communication	SOF interpolation function	SOF interpolation function
Communication data transfer types	Control transfer	Control transfer
uala liansiei lypes	Bulk transferInterrupt transfer	Bulk transferInterrupt transfer
	 Interrupt transfer Isochronous transfer 	 Interrupt transfer Isochronous transfer

Table 2.49 Comparative Overview of USB 2.0 Function Module Specifications

ltem	RX630 (USBa)	RX231 (USBd)
Pipe configuration	 Buffer memory for USB communication is provided. Up to ten pipes can be selected (including the default control pipe). Endpoint numbers can be assigned flexibly to PIPE1 to PIPE9. Transfer conditions that can be set for each pipe: PIPE0: Control transfer: 64-bytes single buffer PIPE1 and PIPE2: Ability to specify 64- byte double buffering for bulk transfer Ability to specify 256-byte double buffering for isochronous transfer PIPE3 to PIPE5: Ability to specify 64- byte double buffering for bulk transfer PIPE6 to PIPE9: Interrupt transfer: 64- bytes single buffer 	 Buffer memory for USB communication is provided. Up to ten pipes can be selected (including the default control pipe). Endpoint numbers can be assigned flexibly to PIPE1 to PIPE9. Transfer conditions that can be set for each pipe: PIPE0: Control transfer: 64-bytes single buffer PIPE1 and PIPE2: Ability to specify 64- byte double buffering for bulk transfer Ability to specify 256-byte double buffering for isochronous transfer PIPE3 to PIPE5: Ability to specify 64- byte double buffering for bulk transfer PIPE6 to PIPE9: Interrupt transfer: 64- bytes single buffer
Other functions	 Reception end function using transaction count Function that changes the BRDY interrupt event notification timing (BFRE) Function that automatically clears the buffer memory after the data for the pipe specified at the DnFIFO (n = 0 or 1) port has been read (DCLRM) NAK setting function for response PID generated by end of transfer (SHTNAK) 	 Reception end function using transaction count Function that changes the BRDY interrupt event notification timing (BFRE) Function that automatically clears the buffer memory after the data for the pipe specified at the DnFIFO (n = 0 or 1) port has been read (DCLRM) NAK setting function for response PID generated by end of transfer (SHTNAK) On-chip DP/DM pull-up and pull-down resistors
Low power consumption function	Module stop state can be set.	Module stop state can be set.

Register	Bit	RX630 (USBa)	RX231 (USBd)
SYSCFG	DMRPU	_	D- line resister control bit
	DRPD		D+/D- line resister control bit
	DCFM		Controller function select bit
	CNEN	_	Single end receiver enable bit
SYSSTS0	LNST[1:0]	USB data line status monitor bits	USB data line status monitor bits
			Low-speed operation
			b1b0
			0 0: SE0
			0 1: K-State
			1 0: J-State
			1 1: SE1
			Full-speed operation
		b1b0	b1b0
		0 0: SE0	0 0: SE0
		0 1: J-State	0 1: J-State
		1 0: K-State	1 0: K-State
		1 1: SE1	1 1: SE1
	IDMON	_	External ID0 input pin monitor bit
	HTACT		USB host sequencer status monito
			bit
	OVCMON [1:0]	_	USB data line status monitor bit
DVSTCTR0	RHST[2:0]	USB bus reset status flag	USB bus reset status bits
	1.1.01[2.0]		When the Host controller is selected
			b2 b0
			0 0 0: Communication speed not
			determined (powered state of
			no connection)
			1 x x: USB bus reset in progress
			0 0 1: Low-speed connection 0 1 0: Full-speed connection
			When the Function controller is
			selected
		b2 b0	b2 b0
		0 0 0: Communication speed not determined	0 0 0: Communication speed not determined
		1 0 0: USB bus reset in progress	0 1 1: USB bus reset in progress of low-speed connection
		0 1 0: Full-speed connection	0 1 0: USB bus reset in progress of full-speed connection
	UACT		USB bus enable bit
	RESUME		Resume output bit
	USBRST		USB bus reset output bit
	RWUPE		Wakeup detection enable bit

Table 2.50	Comparative Overview of USB 2.0 Function Module Registers
------------	---

RX230/RX231 Group, RX630 Group

Register	Bit	RX630 (USBa)	RX231 (USBd)
DVSTCTR0	VBUSEN		USB0_VBUSEN output pin control
			bit
	EXICEN	—	USB0_EXICEN output pin control
			bit
	HNPBTOA	—	Host negotiation protocol (HNP)
			control bit
INTENB1	—	—	Interrupt enable register 1
SOFCFG	TRNENSEL		Transaction-enabled time select bit
			(When stopping the USB module
			clock, confirm that this bit has been
			cleared to 0.)
INTSTS1	<u> </u>		Interrupt status register 1
DVCHGR	—	Device state changing register	<u> </u>
USBADDR	—	USB address register	—
DCPCFG	_		DCP configuration register
DCPMAXP	DEVSEL		Device select bits
	[3:0]		
DCPCTR	SUREQCLR	—	SUREQ bit clear bit
	SUREQ		SETUP token transmission bit
PIPEMAXP	DEVSEL		Device select bits
	[3:0]		
DEVADDn	—	—	Device address n configuration
			register (n = 0 to 5)
USBMC	—	—	USB module control register
USBBCCTRL0	_		BC control register 0
DPUSR0R		Deep standby USB transceiver	
		control/pin monitor register	
DPUSR1R	_	Deep standby USB suspend/	
		resume interrupt register	

2.27 Serial Communication Interface

The RX630 Group has 9 independent serial communications interface channels (SCIc: 8 channels, SCId: 1 channel).

The RX231 Group has 7 independent serial communications interface channels (SCIg: 6 channels, SCIh: 1 channel).

Table 2.51 shows a comparative overview of the SCIc specifications, Table 2.52 shows a comparative overview of the SCId specifications, Table 2.53 shows a comparative overview of the SCI channel specifications, and Table 2.54 shows a comparative overview of the serial communications interface registers.

ltem		RX630 (SCIc)	RX231 (SClg)
Number of channels		8 channels	6 channels
Serial communication modes		 Asynchronous Clock synchronous Smart card interface Simple I²C bus Simple SPI bus 	 Asynchronous Clock synchronous Smart card interface Simple I²C bus Simple SPI bus
Transfer speed		Bit rate specifiable by on-chip baud rate generator.	Bit rate specifiable by on-chip baud rate generator.
Full-duplex communication		 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure. 	 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure.
Data transfer		Selectable between LSB-first or MSB-first transfer.	Selectable between LSB-first or MSB-first transfer.
Interrupt sources		Transmit end, transmit data empty, receive data full, receive error, completion of generation of start condition, restart condition, or stop condition (simple I ² C mode)	Transmit end, transmit data empty, receive data full, receive error, completion of generation of start condition, restart condition, or stop condition (simple I ² C mode)
Low power construction	sumption	The module stop state can be specified for each channel.	The module stop state can be specified for each channel.
Asynchronous	Data length	7 or 8 bits	7, 8, or <mark>9</mark> bits
mode	Transmission stop bits	1 or 2 bits	1 or 2 bits
	Parity	Even parity, odd parity, or no parity	Even parity, odd parity, or no parity
	Receive error detection	Parity, overrun, and framing errors	Parity, overrun, and framing errors
	Hardware flow control	The CTSn# and RTSn# pins can be used to control transmission and reception.	The CTSn# and RTSn# pins can be used to control transmission and reception.
	Start bit detection	Low level detection	Selectable between low level and falling edge.
	Break detection	When a framing error occurs, a break can be detected by reading the RXDn pin level directly.	When a framing error occurs, a break can be detected by reading the RXDn pin level directly.

Table 2.51 Comparative Overview of SCIc Specifications

	Clock source		
		 An internal or external clock can be selected. Transfer rate clock input from the TMR can be used (SCI5 and SCI6). 	 An internal or external clock can be selected. Transfer rate clock input from the TMR can be used (SCI5 and SCI6).
Asynchronous mode	Double- speed mode		Baud rate generator double-speed mode is selectable.
	Multi- processor communicati on function	Serial communication among multiple processors	Serial communication among multiple processors
	Noise cancellation	The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.	The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.
Clock synchronous	Data length	8 bits	8 bits
mode	Receive error detection	Overrun error	Overrun error
	Hardware flow control	The CTSn# and RTSn# pins can be used to control transmission and reception.	The CTSn# and RTSn# pins can be used to control transmission and reception.
Smart card interface mode	Error processing	An error signal can be transmitted automatically when a parity error is detected during reception.	An error signal can be transmitted automatically when a parity error is detected during reception.
		Data can be retransmitted automatically when an error signal is received during transmission.	Data can be retransmitted automatically when an error signal received during transmission.
	Data type	Both direct convention and inverse convention are supported.	Both direct convention and inverse convention are supported.
Simple I ² C mode	Communicati on format	I ² C bus format	I ² C bus format
	Operating mode	Master (single-master operation only)	Master (single-master operation only)
	Transfer rate	Maximum 384 kbps Fast mode is supported.	Fast mode is supported.
	Noise canceler	 The signal paths from input on the SSCLn and SSDAn pins incorporate on-chip digital noise filters. The noise cancellation bandwidth is adjustable. 	 The signal paths from input on the SSCLn and SSDAn pins incorporate on-chip digital noise filters. The noise cancellation bandwidth is adjustable.
Simple SPI mode	Data length	8 bits	8 bits
	Error detection	Overrun error	Overrun error
	SS input pin function	Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.	Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock polarity are selectable.	Four kinds of settings for clock phase and clock polarity are selectable.
Bit rate modulat	ion function		On-chip baud rate generator output correction can reduce errors.

Item	RX630 (SCIc)	RX231 (SCIg)
Event link function	—	Error (receive error, error signal detection) event output
		Receive data full event output
		Transmit data empty event output
		Transmit end event output

ltem		RX630 (SCId)	RX231 (SCIh)
Number of channels		1 channel	1 channel
Serial communication modes		 Asynchronous Clock synchronous Smart card interface Simple I²C bus Simple SPI bus 	 Asynchronous Clock synchronous Smart card interface Simple I²C bus Simple SPI bus
Transfer speed		Bit rate specifiable by on-chip baud rate generator.	Bit rate specifiable by on-chip baud rate generator.
Full-duplex communication		 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure. 	 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure.
Data transfer		Selectable between LSB-first or MSB-first transfer.	Selectable between LSB-first or MSB-first transfer.
Interrupt sources		Transmit end, transmit data empty, receive data full, receive error, completion of generation of start condition, restart condition, or stop condition (simple I ² C mode)	Transmit end, transmit data empty, receive data full, receive error, completion of generation of start condition, restart condition, or stop condition (simple I ² C mode)
Low power cons function	sumption	Module stop state can be set.	Module stop state can be set.
Asynchronous	Data length	7 or 8 bits	7, 8, or <mark>9</mark> bits
mode	Transmission stop bits	1 or 2 bits	1 or 2 bits
	Parity	Even parity, odd parity, or no parity	Even parity, odd parity, or no parity
	Receive error detection	Parity, overrun, and framing errors	Parity, overrun, and framing errors
	Hardware flow control	The CTSn# and RTSn# pins can be used to control transmission and reception.	The CTSn# and RTSn# pins can be used to control transmission and reception.
	Start bit detection	Low level detection	Selectable between low level and falling edge.
	Break detection	When a framing error occurs, a break can be detected by reading the internal register directly.	When a framing error occurs, a break can be detected by reading the internal register directly.
	Clock source	An internal or external clock can be selected.	An internal or external clock can be selected.
	Double-speed mode		Baud rate generator double-speed mode is selectable.
	Multi- processor communication function	Serial communication among multiple processors	Serial communication among multiple processors
	Noise cancellation	The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.	The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.

Table 2.52 Comparative Overview of SCId Specifications

ltem		RX630 (SCId)	RX231 (SCIh)
Clock	Data length	8 bits	8 bits
synchronous mode	Receive error detection	Overrun error	Overrun error
	Hardware flow control	The CTSn# and RTSn# pins can be used to control transmission and reception.	The CTSn# and RTSn# pins can be used to control transmission and reception.
Smart card interface mode	Error processing	An error signal can be transmitted automatically when a parity error is detected during reception.	An error signal can be transmitted automatically when a parity error is detected during reception.
		Data can be retransmitted automatically when an error signal is received during transmission.	Data can be retransmitted automatically when an error signal is received during transmission.
	Data type	Both direct convention and inverse convention are supported.	Both direct convention and inverse convention are supported.
Simple I ² C mode	Communicatio n format	I ² C bus format	I ² C bus format
	Operating	Master	Master
	mode	(single-master operation only)	(single-master operation only)
	Transfer speed	Fast mode is supported.	Fast mode is supported.
	Noise canceler	 The signal paths from input on the SSCLn and SSDAn pins incorporate on-chip digital noise filters. The noise cancellation handwidth is adjustable 	 The signal paths from input on the SSCLn and SSDAn pins incorporate on-chip digital noise filters. The noise cancellation handwidth is a divertable
Simple SPI	Data longth	bandwidth is adjustable.	bandwidth is adjustable.
mode	Data length Error detection		
mode		Overrun error	Overrun error
	SS input pin function	Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.	Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock polarity are selectable.	Four kinds of settings for clock phase and clock polarity are selectable.

ltem		RX630 (SCId)	RX231 (SCIh)
Extended serial mode	Start frame transmission	 Output of the break field low width and generation of an interrupt on detection Detection of bus collisions and the generation of interrupts on detection 	 Output of the break field low width and generation of an interrupt on detection Detection of bus collisions and the generation of interrupts on detection
	Start frame reception	 Detection of the break field low width and generation of an interrupt on detection Comparison of data in control fields 0 and 1 and generation of an interrupt when the two match Two kinds of data for comparison (primary and secondary) can be set in control field 1. A priority interrupt bit can be set in control field 1. Support for handling of start frames that do not include a break field Support for handling of start frames that do not include control field 0 Function for measuring bit rates 	• Two kinds of data for comparison (primary and secondary) can be set in control field 1.
	I/O control functions	 Selectable polarity for TXDX12 and RXDX12 signals Ability to enable digital filter function for RXDX12 Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Selectable timing for the sampling of data received through RXDX12 Signals received on RXDX12 can be passed through to SCIc when the extended serial mode control section is off. 	 Selectable polarity for TXDX12 and RXDX12 signals Ability to enable digital filter function for RXDX12
Bit rate modul	Timer function ation function	Usable as a reloading timer —	Usable as a reloading timer On-chip baud rate generator output correction can reduce errors.

Item	RX630 (SCIc, SCId)	RX231 (SCIg and SCIh)
Asynchronous mode	SCI0, SCI1, SCI2, SCI3, SCI5, SCI6,	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9,
	SCI8, SCI9, SCI12	SCI12
Clock synchronous	SCI0, SCI1, SCI2, SCI3, SCI5, SCI6,	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9,
mode	SCI8, SCI9, SCI12	SCI12
Smart card interface	SCI0, SCI1, SCI2, SCI3, SCI5, SCI6,	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9,
mode	SCI8, SCI9, SCI12	SCI12
Simple I ² C mode	SCI0, SCI1, <mark>SCI2, SCI3</mark> , SCI5, SCI6,	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9,
	SCI8, SCI9, SCI12	SCI12
Simple SPI mode	SCI0, SCI1, <mark>SCI2, SCI3</mark> , SCI5, SCI6,	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9,
	SCI8, SCI9, SCI12	SCI12
Extended serial	SCI12	SCI12
mode		
TMR clock input	SCI5, SCI6, SCI12	SCI5, SCI6, SCI12
Event link function		SCI5

Table 2.53 Comparative Overview of SCI Channel Specifications

Table 2.54	Comparative Overview of Serial Communication Interface Registers
------------	--

Register	Bit	RX630 (SCIc and SCId)	RX231 (SCIg and SCIh)
SMR	PM	Parity Mode	Parity Mode
		(Valid only when the PE bit is 1 in	(Valid only when the PE bit is 1)
		asynchronous mode)	
		0: Selects even parity	0: Selects even parity
		1: Selects odd parity	1: Selects odd parity
	CHR	Character Length	Character Length
		(Valid only in asynchronous mode)	(Valid only in asynchronous mode)
			Selects in combination with the SCMR.CHR1 bit.
			CHR1 CHR
			0 0: Transmit/receive in 9-bit data length
			0 1: Transmit/receive in 9-bit data length
		0: Selects 8 bits as the data length	1 0: Transmit/receive in 8-bit data length (initial value)
		1: Selects 7 bits as the data length	1 1: Transmit/receive in 7-bit data length
	СМ	Communications Mode	Communications Mode
		0: Asynchronous mode	0: Asynchronous mode or simple I2C mode
		1: Clock synchronous mode	1: Clock synchronous mode or simple SPI mode
SSR	RDRF		Receive data full flag
	TDRE		Receive data empty flag
SCMR	CHR1		Character length bit 1
SEMR	BRME		Bit rate modulation enable bit
	BGDM		Baud rate generator double-speed
			mode select bit
	RXDESEL		Asynchronous start bit edge
			detection select bit
TDRHL			Transmit data register HL
RDRHL			Receive data register HL

Register	Bit	RX630 (SCIc and SCId)	RX231 (SCIg and SCIh)
MDDR			Modulation duty register
CR2	BCCS[1:0]	Bus collision detection clock select bits	 Bus collision detection clock select bits When SEMR.BGDM bit = 0, or SEMR.BGDM bit = 1 and SMR.CKS[1.0] bits = other than 00b
		b5 b4	b5 b4
		0 0: SCI base clock	0 0: SCI base clock
		0 1: SCI base clock frequency divided by 2	0 1: SCI base clock frequency divided by 2
		1 0: SCI base clock frequency divided by 4	1 0: SCI base clock frequency divided by 4
		1 1: Setting prohibited.	1 1: Setting prohibited.
			• When SEMR.BGDM bit = 1 and SMR.CKS[1.0] bits = 00b
			b5 b4
			0 0: SCI base clock frequency divided by 2
			0 1: SCI base clock frequency divided by 4
			1 0: Setting prohibited.
			1 1: Setting prohibited.

2.28 I²C Bus Interface

Table 2.55 shows a comparative overview of the l^2C bus interface specifications, and Table 2.56 shows a comparative overview of the l^2C bus interface registers.

ltem	RX630 (RIIC)	RX231 (RIICa)
Number of channels	4 channels	1 channel
Communication format	 I²C bus format or SMBus format Selectable between master mode or slave mode. Automatic securing of the various setup times, hold times, and bus-free times for the transfer rate 	 I²C bus format or SMBus format Selectable between master mode or slave mode. Automatic securing of the various setup times, hold times, and bus-free times for the transfer rate
Transfer speed	Up to 1 Mbps	Fast mode is supported. (up to 400 kbps)
SCL clock	For master operation, the duty cycle of the SCL clock is selectable in the range from 4% to 96%.	For master operation, the duty cycle of the SCL clock is selectable in the range from 4% to 96%.
Issuing and detection conditions	Start, restart, and stop conditions are generated automatically. Start conditions (including restart conditions) and stop conditions are detectable.	Start, restart, and stop conditions are generated automatically. Start conditions (including restart conditions) and stop conditions are detectable.
Slave addresses	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (along with the use of both at once). General call addresses, device ID addresses, and SMBus host addresses are detectable. 	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (along with the use of both at once). General call addresses, device ID addresses, and SMBus host addresses are detectable.
Acknowledgement	 For transmission, the acknowledge bit is loaded automatically. Transfer of the next data for transmission can be suspended automatically on reception of a not-acknowledge bit. For reception, the acknowledge bit is transmitted automatically. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible. 	 For transmission, the acknowledge bit is loaded automatically. Transfer of the next data for transmission can be suspended automatically on reception of a not-acknowledge bit. For reception, the acknowledge bit is transmitted automatically. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible.
Wait function	 For reception, the following wait periods can be obtained by holding the SCL clock at the low level: Wait between the eighth and ninth clock cycles Wait between the ninth and first clock cycles 	 For reception, the following wait periods can be obtained by holding the SCL clock at the low level: Wait between the eighth and ninth clock cycles Wait between the ninth and first clock cycles
SDA output delay function	Timing of the output of transmitted data, including the acknowledge bit, can be delayed.	Timing of the output of transmitted data, including the acknowledge bit, can be delayed.

ltem	RX630 (RIIC)	RX231 (RIICa)
Arbitration Timeout detection function	 Multi-master support Operation to synchronize the SCL clock in cases of conflict with the SCL clock from another master is possible. When issuing a start condition, loss of arbitration is detected by testing for non-matching of the signals for the SDA line. In master operation, loss of arbitration is detected by testing for non-matching of transmit data. Loss of arbitration due to detection of a start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). Loss of arbitration in transfer of a not-acknowledge bit due to the signals for the SDA line not matching is detectable. Loss of arbitration due to non-matching of data is detectable in slave transmission. 	 Multi-master support Operation to synchronize the SCL clock in cases of conflict with the SCL clock from another master is possible. When issuing a start condition, loss of arbitration is detected by testing for non-matching of the signals for the SDA line. In master operation, loss of arbitration is detected by testing for non-matching of transmit data. Loss of arbitration due to detection of a start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). Loss of arbitration in transfer of a not-acknowledge bit due to the signals for the SDA line not matching is detectable. Loss of arbitration due to non-matching of data is detectable in slave transmission.
Noise canceler	clock. The interface incorporates digital noise filters for both the SCL and SDA inputs, and the bandwidth for noise cancellation by the filters is adjustable by software.	clock. The interface incorporates digital noise filters for both the SCL and SDA inputs, and the bandwidth for noise cancellation by the filters is adjustable by software.
Interrupt sources	 Four sources Communication error or event occurrence Arbitration detection, NACK detection, timeout detection, start condition detection (including restart condition), stop condition detection Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) Transmit end 	 Four sources Communication error or event occurrence Arbitration detection, NACK detection, timeout detection, start condition detection (including restart condition), stop condition detection Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) Transmit end
Low power consumption function	Module stop state can be set.	Module stop state can be set.
RIIC operating modes	4 modes: Master transmit mode, master receive mode, slave transmit mode, and slave receive mode	4 modes: Master transmit mode, master receive mode, slave transmit mode, and slave receive mode

Item	RX630 (RIIC)	RX231 (RIICa)
Event link function	—	Four sources
		 Communication error or event occurrence Arbitration detection, NACK detection, timeout detection, start condition detection (including restart condition), stop condition detection
		Receive data full
		 Transmit data empty
		Transmit end

Table 2.56 Comparative Overview of I²C Bus Interface Registers

Register	Bit	RX630 (RIIC)	RX231 (RIICa)	
ICMR2	TWME	Timeout internal counter write enable bit	_	
ICFER	FMPE	Fast-mode plus enable bit		
TMOCNTL	—	Timeout internal counter L		
TMOCNTU		Timeout internal counter U		

2.29 CAN Module

Table 2.57 shows a comparative overview of the CAN module specifications, and Table 2.58 shows a comparative overview of the CAN module registers.

ltem	RX630 (CAN)	RX231 (RSCAN)
Number of channels	1 channel on products with 512 KB or less of RAM 2 channels on products with 768 KB or more of RAM	1 channel
Protocol	ISO 11898-1 compliant	ISO 11898-1 compliant
Bit rate	(standard and extended frames) Programmable bit rate below 1 Mbps (fCAN \ge 8 MHz) fCAN: CAN clock source	(standard and extended frames) Maximum 1 Mbps
Message box	 32 mailboxes: Two selectable mailbox modes Normal mailbox mode: 32 mailboxes can be configured for either transmission or reception. FIFO mailbox mode: 24 mailboxes can be configured for either transmission or reception. Of the other mailboxes, four FIFO stages can be configured for transmission and four FIFO stages for reception. 	16 message boxes
Reception	 Data frames and remote frames can be received. Selectable receiving ID format (only standard ID, only extended ID, or both IDs) Programmable one-shot reception function Selectable between overwrite mode (messages overwritten) and overrun mode (messages discarded) Reception-complete interrupt can be individually enabled or disabled for each mailbox. 	 Data frames and remote frames can be received. Selectable receiving ID format (standard ID, extended ID, or both IDs) Sets interrupt enable/disable for each
		 Sets Interrupt enable/disable for each FIFO. Mirror function (to receive messages transmitted from own CAN node) Timestamp function (to record message reception time as a 16-bit timer value)
Acceptance filter	 Eight acceptance masks (one mask for every four mailboxes) The mask can be individually enabled or disabled for each mailbox. 	Refer to reception filtering function.

ltem	RX630 (CAN)	RX231 (RSCAN)
Reception filtering function		 Ability to select receive messages using a total of 16 receive rules Ability to set the number of receive rules (0 to 16) for each channel Acceptance filtering: Ability to set ID and mask for each receive rule DLC filter processing: Ability to specify DLC filter checking for each receive rule
Receive message transfer function		 Routing function Ability to transfer receive messages to user-defined buffers (max. transfer buffers: 2) Transfer destination: Receive buffer, receive FIFO buffer, or transmit/receive FIFO buffer
		 Label addition function Ability to simultaneously store label information when storing a message in a receive buffer and FIFO buffer
Transmission	 Data frames and remote frames can be transmitted. Selectable transmitting ID format (only standard ID, only extended ID, or both IDs) Programmable one-shot transmission function Ability to select ID priority mode or mailbox number priority mode Ability to abort transmission requests (and ability to confirm abort completion with a flag) Ability to enable or disable transmit end interrupt individually by mailbox 	 Data frames and remote frames can be transmitted. Selectable transmitting ID format (standard ID, extended ID, or both IDs) Programmable one-shot transmission function Ability to select ID priority transmission or transmit buffer number priority transmission Transmit abort function (with ability to confirm abort completion with a flag) Ability to enable or disable interrupt individually by transmit buffer or transmit/receive FIFO buffer
Interval transmission function Transmit history		Ability to set the message transmission interval time (transmit mode of transmit/receive FIFO buffers) Function for storing history information
function Mode transition for bus-off recovery	 The mode transition for recovery from the bus-off state can be selected. ISO 11898-1 compliant Automatic transition to CAN halt mode at bus-off start Automatic transition to CAN halt mode at bus-off end Transition to CAN halt mode by a program Transition to error-active state by a program 	 for transmitted messages The mode transition for recovery from the bus-off state can be selected. ISO 11898-1 compliant Automatic transition to channel halt mode at bus-off entry Automatic transition to channel halt mode at bus-off end Transition to channel halt mode by a program Transition to error-active state by a program (forcible return from the bus-off state)

ltem	RX630 (CAN)	RX231 (RSCAN)
Error status monitoring	 Monitoring of CAN bus errors (stuff errors, form errors, ACK errors, CRC errors, bit errors, and ACK delimiter errors) Detection of error status transitions (error warning, error passive, bus off entry, and bus off recovery) The error counters can be read. 	 Monitoring of CAN protocol errors (stuff errors, form errors, ACK errors, CRC errors, bit errors, ACK delimiter errors, and bus dominant locking) Detection of error status transitions (error warning, error passive, bus off entry, and bus off recovery) The error counters can be read. DLC error monitoring
Time stamp function	 Time stamp function using a 16-bit counter The reference clock can be selected from 1-, 2-, 4- and 8-bit time periods. 	 Time stamp function using a 16-bit counter Time stamp clock source division function
Interrupt function	Five interrupt sources (reception complete, transmission complete, receive FIFO, transmit FIFO, and error interrupt)	 5 Global (2 sources) Global receive FIFO interrupt Global error interrupt Channels (3 sources per channel) Channel transmit interrupts Transmit end interrupt Transmit abort interrupt Transmit/receive FIFO transmit end interrupt Transmit history interrupt Transmit/receive FIFO receive interrupt Channel error interrupt
CAN sleep mode	Current consumption can be reduced by stopping the CAN clock.	
Software support units	 Three software support units: Acceptance filter support Mailbox search support (receive mailbox search, transmit mailbox search, and message lost search) Channel search support 	
CAN clock source	Peripheral module clock (PCLKB), CANMCLK	Peripheral module clock (PCLK), CANMCLK
Test mode	 Three test modes for user evaluation Listen-only mode Self-test mode 0 (external loopback) Self-test mode 1 (internal loopback) 	 Test modes for user evaluation Listen-only mode Self-test mode 0 (external loopback) Self-test mode 1 (internal loopback) RAM test (read/write test)
Low power consumption function	Module stop state can be set.	Module stop state can be set.

Register	Bit	RX630 (CAN)	RX231 (RSCAN)
CTLR		Control register	—
BCR		Bit configuration register	
MKRk		Mask register k (k = 0 to 7)	
FIDCR0		FIFO received ID compare register 0	
FIDCR1		FIFO received ID compare register 1	_
MKIVLR		Mask invalid register	
MBj		Mailbox register j (j = 0 to 31)	
MIER		Mailbox interrupt enable register	_
MCTLj		Message control register $i (i = 0 \text{ to } 31)$	
RFCR		Receive FIFO control register	
RFPCR		Receive FIFO pointer control register	
TFCR		Transmit FIFO control register	
TFPCR		Transmit FIFO pointer control register	_
STR		Status register	_
MSMR		Mailbox search mode register	
MSSR		Mailbox search status register	
CSSR		Channel search support register	
AFSR		Acceptance filter support register	
EIER		Error interrupt enable register	
EIFR		Error interrupt source judge register	
RECR		Receive error count register	
TECR		Transmit error count register	
ECSR		Error code store register	
TSR		Time stamp register	
TCR		Test control register	
CFGL			Bit configuration register L
CFGH			Bit configuration register H
CTRL			Control register L
CTRH			Control register H
STSL			Status register L
STSH			Status register H
ERFLL			Error flag register L
ERFLH			Error flag register H
GCFGL			Global configuration register L
GCFGH			Global configuration register H
GCTRL			Global control register L
GCTRH			Global control register H
GSTS			Global status register
GERFLL		—	Global error flag register
			5 5
GTINTSTS			Global transmit interrupt status register
GTSC			Timestamp register
GAFLCFG		—	Receive rule number configuration register
GAFLIDLj			Receive rule entry register jAL
			(j = 0 to 15)
GAFLIDHj		—	Receive rule entry register jAH

Table 2.58 Comparative Overview of CAN Module Registers

Register	Bit	RX630 (CAN)	RX231 (RSCAN)
GAFLMLj			Receive rule entry register jBL
			(j = 0 to 15)
GAFLMHj			Receive rule entry register jBH
			(j = 0 to 15)
GAFLPLj			Receive rule entry register jCL
			(j = 0 to 15)
GAFLPHj			Receive rule entry register jCH
-			(j = 0 to 15)
RMNB			Receive buffer number configuration
			register
RMND0			Receive buffer receive complete flag
			register
RMIDLn	—	—	Receive buffer register nAL
			(n = 0 to 15)
RMIDHn			Receive buffer register nAH
			(n = 0 to 15)
RMTSn			Receive buffer register nBL
			(n = 0 to 15)
RMPTRn			Receive buffer register nBH
			(n = 0 to 15)
RMDF0n			Receive buffer register nCL
			(n = 0 to 15)
RMDF1n			Receive buffer register nCH
			(n = 0 to 15)
RMDF2n			Receive buffer register nDL
			(n = 0 to 15)
RMDF3n			Receive buffer register nDH
			(n = 0 to 15)
RFCCm			Receive FIFO control register m
			(m = 0 or 1)
RFSTSm			Receive FIFO status register m
			(m = 0 or 1)
RFPCTRm			Receive FIFO pointer control register
			m (m = 0 or 1)
RFIDLm			Receive FIFO access register mAL
			(m = 0 or 1)
RFIDHm			Receive FIFO access register mAH
			(m = 0 or 1)
RFTSm			Receive FIFO access register mBL
			(m = 0 or 1)
RFPTRm		—	Receive FIFO access register mBH
			(m = 0 or 1)
RFDF0m		—	Receive FIFO access register mCL
			$\frac{(m = 0 \text{ or } 1)}{(m = 0 \text{ or } 1)}$
RFDF1m		—	Receive FIFO access register mCH
DEDEam			$\frac{(m = 0 \text{ or } 1)}{Possive FIEO access register mDL}$
RFDF2m		—	Receive FIFO access register mDL (m = 0 or 1)
RFDF3m	_		Receive FIFO access register mDH
		—	(m = 0 or 1)

Register	Bit	RX630 (CAN)	RX231 (RSCAN)
CFCCL0			Transmit/receive FIFO control register
			OL
CFCCH0			Transmit/receive FIFO control register
			0H
CFSTS0			Transmit/receive FIFO status register
			0
CFPCTR0		—	Transmit/receive FIFO pointer control
CFIDL0			register 0 Transmit/receive FIFO access register
CFIDLU			0AL
CFIDH0			Transmit/receive FIFO access register
			0AH
CFTS0			Transmit/receive FIFO access register
			0BL
CFPTR0		_	Transmit/receive FIFO access register
			0BH
CFDF00			Transmit/receive FIFO access register
			OCL
CFDF10		—	Transmit/receive FIFO access register 0CH
CFDF20			Transmit/receive FIFO access register
01 01 20			0DL
CFDF30			Transmit/receive FIFO access register
			0DH
RFMSTS			Receive FIFO message lost status
			register
CFMSTS			Transmit/receive FIFO message lost
			status register
RFISTS		_	Receive FIFO interrupt status register
CFISTS			Transmit/receive FIFO receive interrupt status register
ТМСр			Transmit buffer control register p
Пиор			(p = 0 to 3)
TMSTSp			Transmit buffer status register p
			(p = 0 to 3)
TMTRSTS			Transmit buffer transmit request status
			register
TMTCSTS		—	Transmit buffer transmit complete
			status register
TMTASTS			Transmit buffer transmit abort status
TMIEC			register
INIEC	_	—	Transmit buffer interrupt enable register
TMIDLp			Transmit buffer register pAL
D - p			(p = 0 to 3)
TMIDHp			Transmit buffer register pAH
r			(p = 0 to 3)
TMPTRp			Transmit buffer register pBH
·			(p = 0 to 3)
TMDF0p			Transmit buffer register pCL
			(p = 0 to 3)

Register	Bit	RX630 (CAN)	RX231 (RSCAN)
TMDF1p			Transmit buffer register pCH
			(p = 0 to 3)
TMDF2p			Transmit buffer register pDL
			(p = 0 to 3)
TMDF3p			Transmit buffer register pDH
			(p = 0 to 3)
THLCC0		—	Transmit history buffer control register
THLSTS0			Transmit history buffer status register
THLACC0			Transmit history buffer access register
THLPCTR0			Transmit history buffer pointer control
			register
GRWCR	—	—	Global RAM window control register
GTSTCFG			Global test configuration register
GTSTCTRL			Global test control register
GLOCKK			Global test protection unlock register
RPGACCr			RAM test register r (r = 0 to 127)

2.30 Serial Peripheral Interface

Table 2.59 shows a comparative overview of the serial peripheral interface specifications, and Table 2.60 shows a comparative overview of the serial peripheral interface registers.

Item	RX630 (RSPI)	RX231 (RSPIa)
Number of channels	2 channels	1 channel
RSPI transfer functions	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communication through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK is supported. Switching of the phase of RSPCK is supported. 	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communication through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK is supported. Switching of the phase of RSPCK is supported.
Data format	 Selectable between MSB-first and LSB-first. Transfer bit length is selectable among 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (with each frame consisting of up to 32 bits). 	 Selectable between MSB-first and LSB-first. Transfer bit length is selectable among 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (with each frame consisting of up to 32 bits).
Bit rate	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from 2 to 4,096). In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is PCLK divided by 8). Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK 	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from 2 to 4,096). In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is PCLK divided by 8). Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK
Buffer configuration	The transmit and receive buffers have a double buffer configuration.	 The transmit and receive buffers have a double buffer configuration. The transmit and receive buffers are each 128 bits in size.

	Table 2.59	Comparative (Overview of	Serial Peripheral	Interface Specifications
--	------------	---------------	-------------	--------------------------	--------------------------

ltem	RX630 (RSPI)	RX231 (RSPIa)
Error detection	Mode fault error detectionOverrun error detection	 Mode fault error detection Overrun error detection When master receive and the RSPCK auto-stop function are enabled, the transfer clock stops at the point in time when overrun error detection occurs, so no overrun error is generated.
	Parity error detection	Parity error detection
SSL control function	 Four SSL pins (SSLn0 to SSLn3) for each channel In single-master mode, SSLn0 to SSLn3 pins are output. In multi-master mode: SSLn0 pins is input, and SSLn1 to SSLn3 pins are either output or unused. In slave mode: SSLn0 pins is input, and SSLn1 to SSLn3 pins are unused. Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) Setting range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) 	delay)
	 Setting range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable wait for next-access SSL output assertion (next-access delay) Setting range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) SSL polarity-change function 	 Setting range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable wait for next-access SSL output assertion (next-access delay) Setting range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) SSL polarity-change function
Control in master transfer	 Transfers of up to eight commands can be performed sequentially in looped execution. For each command, the following can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, LSB/MSB-first, burst, RSPCK delay, SSL negation delay, and next-access delay A transfer can be initiated by writing to the transmit buffer. The MOSI signal value when SSL is 	 Transfers of up to eight commands can be performed sequentially in looped execution. For each command, the following can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, LSB/MSB-first, burst, RSPCK delay, SSL negation delay, and next-access delay A transfer can be initiated by writing to the transmit buffer. The MOSI signal value when SSL is
Interrupt sources	 negated can be specified. Receive buffer full interrupt Transmit buffer empty interrupt RSPI error interrupt (mode fault, overrun, parity error) RSPI idle interrupt (RSPI idle) 	 negated can be specified. RSPCK auto-stop function Receive buffer full interrupt Transmit buffer empty interrupt RSPI error interrupt (mode fault, overrun, parity error) RSPI idle interrupt (RSPI idle)

ltem	RX630 (RSPI)	RX231 (RSPIa)
Event link function (output)		 The following events can be output to the event link controller (RSPI0): Receive buffer run event signal Transmit buffer empty event signal Mode fault, overrun, or parity error event signal RSPI idle event signal Transmit end event signal
Other functions	Function for initializing the RSPILoopback mode function	 Function for switching between CMOS output and open-drain output Function for initializing the RSPI Loopback mode function
Low power consumption function	Module stop state can be set.	Module stop state can be set.

Table 2.60	Comparative Overview of	Serial Peripheral	Interface Registers
------------	-------------------------	-------------------	---------------------

Register	Bit	RX630 (RSPI)	RX231 (RSPIa)
SPSR	SPTEF		Transmit buffer empty flag
	SPRF		Receive buffer full flag
SPCR2	SCKASE	_	RSPCK auto-stop function enable bit

2.31 12-Bit A/D Converter

Table 2.61 shows a comparative overview of the 12-bit A/D converter specifications, and Table 2.62 shows a comparative overview of the 12-bit A/D converter registers.

Item	RX630 (S12ADa)	RX231 (S12ADE)
Number of units	1 units	1 unit
Input channels	21 channels	24 channels
Extended analog	Temperature sensor output, internal	Temperature sensor output, internal
inputs	reference voltage	reference voltage
A/D conversion method	Successive approximation method	Successive approximation method
Resolution	12 bits	12 bits
Conversion time	1.0 μs per channel (when operating with A/D conversion clock ADCLK = 50 MHz)	0.83 μs per channel (when operating with A/D conversion clock ADCLK = 54 MHz)
A/D conversion clock (ADCLK)	4 clocks: PCLK, PCLK/2, PCLK/4, PCLK/8	Peripheral module clock PCLK and A/D conversion clock ADCLK can be set so that the division ratio is one of the following: PCLKB: ADCLK frequency ratio = 1:1, 1:2, 2:1, 4:1, 8:1
		ADCLK is set using the clock generation circuit.
Data register	 For analog input: 21 data registers 	 For analog input: 24 data registers one data register for each unit for A/D conversion data duplication in double trigger mode
	For temperature sensor: One data register	For temperature sensor: One data register
	 For internal reference voltage: One data register 	For internal reference voltage: One data register
	 The results of A/D conversion are stored in 12-bit A/D data registers. 	 1 register per unit for self-diagnostics The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion
	 In A/D-converted value addition mode, A/D conversion results are stored in a 14-bit A/D data register. 	 The value obtained by adding up A/D-converted results is stored as a value (number of conversion accuracy bits + 2 bits/4 bits) in the A/D data registers in A/D-converted value addition mode.
		 Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register.

Table 2.61	Comparative Overview of 12-Bit A/D Converter Specifications

Item	RX630 (S12ADa)	RX231 (S12ADE)
Operating mode	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 21 user-selected channels. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage. 	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 24 user-selected channels. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage.
	 Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 21 user-selected channels. (Continuous scan mode should not be used when temperature sensor output or the internal reference voltage is selected.) 	 Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 24 user-selected channels.
		 Group scan mode: Analog inputs of up to 24 arbitrarily selected channels are divided into group A and group B, and A/D conversion of the analog inputs selected as a group unit is performed only once. The scanning start conditions (synchronous trigger) for group A and group B can be selected independently, allowing A/D conversion of group A and group B to be started at different times. Group scan mode (when group A is given priority): If a group A trigger is input during A/D conversion on group B, the A/D conversion on group B is stopped and A/D conversion is performed on group A
		 performed on group A. Restart (rescan) of A/D conversion on group B after completion of A/D conversion on group A can be specified.
A/D conversion start conditions	 Software trigger Synchronous trigger Conversion start is triggered by the MTU, TPU, and TMR. 	 Software trigger Synchronous trigger Conversion start is triggered by the MTU, TPU, and ELC.
	 Asynchronous trigger A/D conversion can be triggered by the ADTRG0# pin. 	 Asynchronous trigger A/D conversion can be started by the external trigger ADTRG0# pin (unit 0).

Item	RX630 (S12ADa)	RX231 (S12ADE)
Functions	Variable sampling state count	 Sample-and-hold function Variable sampling state count Self-diagnostic function for 12-bit A/D converter
	A/D-converted value adding mode	 Selectable A/D-converted value adding mode or averaging mode Analog input disconnection detection function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) A/D data register auto-clear function Compare function (window A, window B) 16 ring buffers when the compare function is used
Interrupt sources	 An scan end interrupt request (S12ADI0) can be generated on completion of A/D conversion. 	 In modes other than double trigger mode and group scan mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of a single scan. In double trigger mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of a double scan. In group scan mode, a scan end interrupt request (S12ADI0) can be generated on completion of a generated on completion of a group A scan. On completion of a group B scan a dedicated group B scan end interrupt request (GBADI) can be generated. When double trigger mode is selected in group scan mode, a scan end interrupt request (S12ADI0) can be generated.
	 A S12ADI0 interrupt can activate the DMAC and DTC. 	B scan a dedicated group B or group C scan end interrupt request (GBADI) can be generated.

ltem	RX630 (S12ADa)	RX231 (S12ADE)
Event link function		 An ELC event is generated on completion of scans other than group B scan in group scan mode. An ELC event is generated on completion of group B scan in group scan mode. An ELC event can be generated at end of all scans. Scanning can be started by a trigger from the ELC. An ELC event is generated according to the event conditions of the window compare function in single scan mode.
Low power consumption function	It is possible to specify transition to the module-stop state. (When the module- stop state is canceled, A/D conversion can be started after 10 ms has elapsed.)	It is possible to specify transition to the module-stop state. (When the module- stop state is canceled, A/D conversion can be started after at least 1 µs has elapsed.)

Table 2.62 Comparative Overview of 12-Bit A/D Converter Registers

Register	Bit	RX630 (S12ADa)	RX231 (S12ADE)
ADDBLDR			A/D data duplication register
ADRD			A/D self-diagnostic data register
ADCSR	DBLANS [4:0]	_	Double trigger channel select bits
	GBADIE	_	Group B scan end interrupt enable bit
	DBLE		Double trigger mode select bit
	EXTRG	Trigger select bit (b0)	Trigger select bit (b8)
	TRGE	Trigger start enable bit (b1)	Trigger start enable bit (b9)
	CKS[1:0]	A/D conversion clock select bits	
	ADHSC		A/D conversion select bit
	ADIE	Scan end interrupt enable bit (b4)	Scan end interrupt enable bit (b12)
	ADCS: RX630	Scan mode select bit	Scan mode select bit
	ADCS[1:0]:		b14 b13
	RX231	0: Single scan mode	0 0: Single scan mode
			0 1: Group scan mode
		1: Continuous scan mode	1 0: Continuous scan mode
			1 1: Setting prohibited
	ADST	A/D conversion start bit (b7)	A/D conversion start bit (b15)
ADANS0		A/D conversion channel select bit 0	
ADANS1		A/D conversion channel select bit 1	
ADANSA0			A/D channel select register A0
ADANSA1			A/D channel select register A1
ADANSB0			A/D channel select register B0
ADANSB1			A/D channel select register B1

Register	Bit	RX630 (S12ADa)	RX231 (S12ADE)
ADADS0		A/D-converted value addition mode select register 0	A/D-converted value addition/averaging channel select
		A/D as a stad walk a solution made	register 0 A/D-converted value
ADADS1	_	A/D-converted value addition mode select register 1	addition/averaging channel select register 1
ADADC	ADC[1:0]: RX630	Addition count select bits	Addition count select bits
	ADC[2:0]:	b1 b0	b2 b0
	RX231	0 0: 1-time conversion (no addition, same as normal conversion)	0 0 0: 1-time conversion (no addition, same as normal conversion)
		0 1: 2-time conversion (addition once)	0 0 1: 2-time conversion (addition once)
		1 0: 3-time conversion (addition twice)	0 1 0: 3-time conversion (addition twice)
		1 1: 4-time conversion (addition three times)	0 1 1: 4-time conversion (addition three times)
			1 0 1: 16-time conversion (addition 15 times)
			Do not set to values other than the above.
	AVEE		Average mode enable bit
ADCER	DIAGVAL [1:0]	_	Self-diagnostic conversion voltage select bits
	DIAGLD		Self-diagnostic mode select bit
	DIAGM		Self-diagnostic enable bit
ADSTRGR	ADSTRS [3:0]	A/D conversion start trigger select bits	
	TRSB[5:0]	_	A/D conversion start trigger for group B select bits
	TRSA[5:0]	_	A/D conversion start trigger select bits
ADEXICR	TSSAD	Temperature sensor output A/D- converted value addition mode select bit	Temperature sensor output A/D- converted value addition/averaging mode select bit
	OCSAD	Internal reference voltage A/D conversion select bit	Internal reference voltage A/D- converted value addition/averaging mode select bit
	TSS: RX630 TSSA:	Temperature sensor output A/D conversion select bit	Temperature sensor output A/D conversion select bit
	RX231		
	OCS: RX630	Internal reference voltage A/D- conversion select bit	Internal reference voltage A/D- conversion select bit
	OCSA: RX231		
ADDRy		A/D data register y (y = 0 to 20)	A/D data register y (y = 0 to 7, 16 to 31)
ADSSTR01		A/D sampling state register 01	··· /
ADSSIRUI			

Register	Bit	RX630 (S12ADa)	RX231 (S12ADE)
ADSSTRn		_	A/D sampling state register n (n = 0 to 7, L, T, and O)
ADDISCR		_	A/D disconnection detection controller
ADELCCR			A/D event link control register
ADGSPCR		_	A/D group scan priority control register
ADCMPCR		_	A/D comparison function control register
ADCMPANSR0			A/D comparison function window A channel select register 0
ADCMPANSR1		_	A/D comparison function window A channel select register 1
ADCMPANSER		_	A/D comparison function window A extended input select register
ADCMPLR0		_	A/D comparison function window A compare condition setting register 0
ADCMPLR1			A/D comparison function window A compare condition setting register 1
ADCMPLER		_	A/D comparison function window A extended input compare condition setting register
ADCMPDR0		_	A/D comparison function window A lower level setting register
ADCMPDR1		_	A/D comparison function window A upper level setting register
ADCMPSR0		_	A/D comparison function window A channel status register 0
ADCMPSR1		_	A/D comparison function window A channel status register 1
ADCMPSER		_	A/D comparison function window A extended input channel status register
ADHVREFCNT		_	A/D high-side/low-side reference voltage control register
ADWINMON		_	A/D comparison function window A/B status monitor register
ADCMPBNSR		_	A/D comparison function window B channel select register
ADWINLLB		_	A/D comparison function window B lower level setting register
ADWINULB		_	A/D comparison function window B upper level setting register
ADCMPBSR		_	A/D comparison function window B channel status register
ADBUFn			A/D data storage buffer register n (n = 0 to 15)
ADBUFEN		_	A/D data storage buffer enable register
ADBUFPTR		_	A/D data storage buffer pointer register

2.32 D/A Converter

Table 2.63 shows a comparative overview of the D/A converter specifications, and Table 2.64 shows a comparative overview of the D/A converter registers.

Item	RX630 (DAa)	RX231 (R12DAA)
Resolution	10 bits	12 bits
Output channel	2 channels	2 channels
Measure against mutual interference between analog modules	 Measure against interference between D/A and A/D conversion: (Products with a ROM capacity of 1.5 MB or more are not equipped with a function to prevent mutual interference between analog modules.) D/A converted data update timing is controlled by the 10-bit A/D converter synchronous D/A conversion enable 	 Measure against interference between D/A and A/D conversion: D/A converted data update timing is controlled by the 12-bit A/D converter synchronous D/A conversion enable
	input signal output by the the 10-bit A/D converter. (Degradation of A/D conversion accuracy caused by interference is reduced by controlling the D/A converter inrush current generation timing with the enable signal.)	input signal output by the the 12-bit A/D converter. Degradation of 12-bit A/D conversion accuracy caused by interference is reduced by controlling the D/A converter inrush current generation timing with the enable signal.
Low power consumption function	Module stop state can be set.	Module stop state can be set.
Event link function (input)		Ability to activate DA0 by event signal input

Table 2.63 Comparative Overview of D/A Converter Specificatio

	•	•	
Register	Bit	RX630 (DAa)	RX231 (R12DAA)
DADRm) (m = 0, 1)	_	 D/A Data Register m DADPR.DPSEL bit = 0 (data is flush with the right end of the register) Data placement : b9 to b0 DADPR.DPSEL bit = 1 (data is flush with the left end of the 	 D/A Data Register m DADPR.DPSEL bit = 0 (data is flush with the right end of the register) Data placement : b11 to b0 DADPR.DPSEL bit = 1 (data is flush with the left end of the
		register) Data placement : b15 to b6	register) Data placement : b15 to b <mark>4</mark>
DACR	DAE	D/A enable bit	
DAADSCR	DAADST	D/A A/D synchronous conversion bit	D/A A/D synchronous conversion bit
		0: D/A converter operation is not synchronized with 10-bit A/D converter operation (function to prevent mutual interference between D/A and A/D conversion disabled).	0: D/A converter operation is not synchronized with 12-bit A/D converter operation (function to prevent mutual interference between D/A and A/D conversion disabled).
		1: D/A converter operation is synchronized with 10-bit A/D converter operation (function to prevent mutual interference between D/A and A/D conversion enabled).	1: D/A converter operation is synchronized with 12-bit A/D converter operation (function to prevent mutual interference between D/A and A/D conversion enabled).
DAVREFCR		,	D/A VREF control regsiter

Table 2.64 Comparative Overview of D/A Converter Registers

2.33 Temperature Sensor

Table 2.65 shows a comparative overview of the temperature sensor specifications, and Table 2.66 shows a comparative overview of the temperature sensor register.

ltem	RX630 (TEMPS)	RX231 (TEMPSA)
Temperature sensor voltage output	12-bit A/D converter	Output to the 12-bit A/D converter
Low power consumption function	Module stop state can be set.	_
Temperature sensor calibration data registers	These registers store temperature sensor reference data measured for each chip at the time of shipment. (Calibration data registers are provided on version G products only.)	These registers store temperature sensor reference data measured for each chip at the time of shipment.

Table 2.65	Comparative Overview of D/A	Converter Specifications
------------	-----------------------------	---------------------------------

Table 2.66	Comparative Overview of Temperature Sensor Register
------------	---

Register	Bit	RX630 (TEMPS)	RX231 (TEMPSA)
TSCR	_	Temperature sensor control register	—

2.34 RAM

Table 2.67 shows a comparative overview of the RAM specifications.

Item	RX630	RX231	
RAM capacity	 64 KB RAM0: 64 KB 96 KB RAM0: 64 KB, RAM1: 32 KB 128 KB RAM0: 64 KB, RAM1: 64 KB 	 32 KB RAM0: 32 KB 64 KB RAM0: 64 KB 	
RAM address	 When the RAM capacity is 64 KB RAM0: 0000 0000h to 0000 FFFFh When the RAM capacity is 96 KB RAM0: 0000 0000h to 0000 FFFFh RAM1: 0001 0000h to 0001 7FFFh When the RAM capacity is 128 KB RAM0: 0000 0000h to 0000 FFFFh RAM1: 0001 0000h to 0001 FFFFh 	 When the RAM capacity is 32 KB RAM0: 0000 0000h to 0000 7FFFh When the RAM capacity is 64 KB RAM0: 0000 0000h to 0000 FFFFh 	
Access	 Single-cycle access is possible for both reading and writing. The RAM can be enabled or disabled. 	 Single-cycle access is possible for both reading and writing. The RAM can be enabled or disabled. 	
Data retention function	Data in RAM0 can be retained in deep software standby mode.		
Low power consumption function	The module-stop state is independently selectable for RAM0 and RAM1.	Module stop state can be set.	

Table 2.67 Comparative Overview of RAM Specifications

2.35 Flash Memory (ROM)

Table 2.68 shows a comparative overview of the flash memory specifications, and Table 2.69 shows a comparative overview of the flash memory registers.

ltem	RX630	RX231
Memory space	User area: Maximum 2 MB	User area: Maximum 512 KB
	Data area: 32 KB	Data area: 8 KB
	User boot area: 16 KB	
		Extra area: Stores the start-up area
		information, access window
		information, and unique ID.
Read cycle	Code flash	Less than 32 MHz: No-wait memory
	High-speed read operation using 1	access
	cycle of ICLK is supported.	32 MHz to 54 MHz: Wait states. No wait
	E2 DataFlash	state if the instruction is served by a ROM
	A read operation requires 6 FCLK	accelerator hit.
	cycles during word or byte access.	
Value after erase	Code flash	• ROM
	FFh	FFh
	E2 DataFlash	E2 DataFlash
	Undefined value	FFh
Programming/	On-chip dedicated sequencer (FCU)	 Following transition to a dedicated
erasing method	for programming the ROM/E2	sequencer mode for programming and
	DataFlash	erasing, programming and erasing can
	Programming/erasing the ROM are	be accomplished by issuing
	handled by issuing commands to the FCU.	programming and erasing commands.
	Programming/erasure through transfer	Programming/erasure through transfer
	by a dedicated flash-memory	by a dedicated flash-memory
	programmer via a serial interface	programmer via a serial interface
	(serial programming)	(serial programming)
	Programming/erasure of flash memory	Programming/erasure of flash memory
	by a user program (self-programming)	by a user program (self-programming)
Security function	Prevents unauthorized modification or	Prevents unauthorized modification or
	reading of data.	reading of data.
Protection function	• Software-controlled protection function:	Prevents unintentional programming of
	Registers and lock bits can be set to	the flash memory.
	prevent unintentional programming.	
	FCU command-lock function:	
	When abnormal operations are detected during programming/erasure,	
	any further programming/erasure is	
	disabled.	
Background	The CPU can run programs in the ROM	Programs in the ROM can be executed
operation (BGO)	area while the E2 DataFlash is being	while the E2 DataFlash is being
function	programmed or erased.	programmed.

ltem	RX630	RX231
Suspend/resume function	 Halts (suspends) programming/erasure of the ROM, allowing the CPU to execute program code from the ROM area. Programming/erasure of the ROM can be restarted (resumed) after suspension. 	
Units of programming and erasure	 Programming the user area and user boot area: 128 bytes Erasing the user area: One block (64, 32, 16, 4 KB) Erasing the user boot area: 16 KB Programming the data area: 2 bytes Erasing the data area: 	 Programming the user area: 8 bytes Erasing the user area: One block (2 KB) Programming the data area: 4 bytes Erasing the data area: One block (1 KB)
Other functions	One block (32 KB) Ability to accept interrupts during self- programming Ability to specify initial settings for the microcontroller in option-setting memory	One block (1 KB) Ability to accept interrupts during self- programming Ability to specify initial settings for the microcontroller in option-setting memory Ability to select block 0 to 7 or 8 to 15 as the startup area of the code flash memory
On-board programming	 Programming in boot mode (SCI interface) The asynchronous serial interface (SCI1) is used. The communication speed is adjusted automatically. The user boot area can also be programmed. 	 Programming in boot mode (SCI interface) The asynchronous serial interface (SCI1) is used. The communication speed is adjusted automatically.
	 Programming in USB boot mode USB0 is used. Dedicated hardware is not required, so direct connection to a PC is possible. Programming in user boot mode Users can create their own boot 	 Programming in boot mode (USB interface) Channel 0 (USB0) of the USB 2.0 Function module is used. A personal computer can be connected using only a USB cable. Flash programming can be performed in either self-powered or bus-powered mode.
Programming/ erasing with dedicated parallel programmer	 programs. Programming by a routine for ROM programming within the user program This allows ROM programming without resetting the system. A flash programmer can be used to program the user area and user boot area. (It is not possible to program the data area using a flash programmer.) 	 Programming in boot mode (FINE interface) Uses FINE. Programming/erasing by a routine for flash programming within the user program This allows ROM programming without resetting the system. A flash programmer (serial programmer or parallel programmer) can be used to program the user area and data area.

Item	RX630	RX231
Unique ID	A unique 16-byte ID code is provided for each MCU. (The unique ID is only available for the G-version products.)	A unique 16-byte ID code is provided for each MCU.
ID code protect	 Connection with the serial programmer can be enabled or disabled using ID codes in boot mode. Connection with an on-chip debugging emulator can be enabled or disabled using ID codes. Connection with a parallel programmer can be enabled or disabled using ROM codes. 	 Connection with the serial programmer can be enabled or disabled using ID codes in boot mode. Connection with an on-chip debugging emulator can be enabled or disabled using ID codes. Connection with a parallel programmer can be enabled or disabled using ROM codes.
Start-up program protection function	_	This function is used to safely rewrite blocks 0 to 7 (1 block = 2 KB).
Area protection		This function enables rewriting of only the specified range in the user area and disables rewriting of the other blocks during self-programming.

Register	Bit	RX630	RX231
FWBn		_	Flash write buffer n register
			(n = 0 to 3)
FWEPROR		Flash P/E protection register	—
FMODR		Flash mode register	
FASTAT		Flash access status register	
FAEINT		Flash access error interrupt enable register	—
FRDYIE		Flash ready interrupt enable register	—
DFLRE0		E2 DataFlash read enable register 0	
DFLRE1		E2 DataFlash read enable register	
DFLWE0		E2 DataFlash P/E enable register 0	_
DFLWE1		E2 DataFlash P/E enable register 1	
FCURAME		FCURAM enable register	
FSTATR0	PRGSPD	Programming suspend status flag	
	ERSSPD	Erasure suspend status flag	
	SUSRDY	Suspend ready flag	
	PRGERR	Program error flag (b4)	Program error flag (b1)
	ERSERR:	Erasure error bit (b5)	Erase error flag (b0)
	RX630		
	ERERR:		
	RX231		
	ILGLERR	Illegal command error flag (b6)	Illegal command error flag (b4)
	FRDY	Flash ready flag	
	BCERR		Blank check error flag
	EILGLERR	_	Extra area illegal command error flag
FSTATR1	FLOCKST	Lock bit status bit	_
	FCUERR	FCU error flag	
	FRDY		Flash ready flag
	EXRDY		Extra area ready flag
DFLCTL			E2 DataFlash control register
FENTRYR	FENTRY1	ROM P/E mode entry bit 1	
	FENTRY2	ROM P/E mode entry bit 2	_
	FENTRY3	ROM P/E mode entry bit 3	
FPROTR		Flash protection register	
FPR			Protection unlock register
FPSR		_	Protection unlock status register
FPMCR		_	Flash P/E mode control register
FISR			Flash initial setting register
FRESETR	FRKEY[7:0]	Key code	
FCMDR		FCU command register	
FCPSR		FCU processing switching register	
DFLBCCNT		E2 DataFlash blank check control	
		register	
FPESTAT		Flash P/E status register	

Table 2.69	Comparative Overview of Flash Memory	/ Reaisters
		1109101010

Register	Bit	RX630	RX231
DFLBCSTAT		E2 DataFlash blank check status	—
		register	
PCKAR		Peripheral clock notification register	—
FASR	_	—	Flash area select register
FCR	_		Flash control register
FEXCR			Flash extra area control register
FSARH			Flash processing start address
			register H
FSARL			Flash processing start address
			register L
FEARH	_		Flash processing end address
			register H
FEARL	_	—	Flash processing end address
			register L
FWBn		—	Flash write buffer n register
FEAMH	—	—	Flash error address monitor
			register H
FEAML	—	—	Flash error address monitor
			register L
FSCMR	—	—	Flash start-up setting monitor
			register
FAWSMR			Flash access window start address
			monitor register
FAWEMR			Flash access window end address
			monitor register

2.36 Flash memory (E2 DataFlash)

Table 2.70 shows a comparative overview of the flash memory (Data flash) specifications.

Item	RX630	RX231	
Memory capacity	32 Kbytes	8 Kbytes	
Value after	Undefined	FFh	
erasure			
Block	Block: 32 bytes	Block: 1 Kbytes	
configuration			
Number of blocks	1024	8	

Table 2.70 Comparative Overview of Flash Memory (Data Flash) Specifications

2.37 Package (LQFP100 only)

There are some differences in the outline drawing of the LQFP100 package, so please be careful when designing the board.

For details, refer to Design Guide for Migration between RX Family: Differences in Package External form (R01AN4591EJ).

Table 2.71 Comparison of package codes

ltem	RX630	RX231
100 pin LQFP	PLQP0100KB- <mark>A</mark>	PLQP0100KB-B

3. Comparison of Pin Functions

A comparison of pin functions, power supplies, clocks, and system control pins is shown below. Items that apply to one group only are colored blue, while items that are implemented on both groups but with points of difference are colored red. Items are shown in **black** when there are no points of difference in their specifications.

3.1 100-Pin LQFP Package

Table 3.1 shows a comparative listing of the pin functions on the 100-pin LQFP package.

Table 3.1 Comparative Listing of Pin Functions on 100-pin LQFP Package

100-Pin		
LQFP	RX630	RX231
1	VREFH	VREFH
2	EMLE	P03/DA0
3	VREFL	VREFL
4	PJ3/MTIOC3C/CTS6#/RTS6#/CTS0#/	PJ3/MTIOC3C/CTS6#/RTS6#/SS6#
	RTS0#/SS6#/SS0#	
5	VCL	VCL
6	VBATT	VBATT
7	MD/FINED	MD/FINED
8	XCIN	XCIN
9	XCOUT	XCOUT
10	RES#	RES#
11	XTAL/P37	XTAL/P37
12	VSS	VSS
13	EXTAL/P36	EXTAL/P36
14	VCC	VCC
15	P35/NMI	P35/NMI
16	TRST#/P34/MTIOC0A/TMCI3/PO12/POE2#/	P34/MTIOC0A/TMCI3/POE2#/SCK6/TS0/
	SCK6/SCK0/IRQ4	IRQ4
17	P33/MTIOC0D/TIOCD0/TMRI3/P011/	P33/MTIOC0D/TMRI3/POE3#/TIOCD0/RXD6/
	POE3#/RXD6/RXD0/SMISO6/SMISO0/	SMISO6/SSCL6/TS1/IRQ3
	SSCL6/SSCL0/CRX0*1/IRQ3-DS	
18	P32/MTIOC0C/TIOCC0/TMO3/P010/	P32/MTIOC0C/TMO3/TIOCC0/RTCOUT/
	RTCOUT/RTCIC2/TXD6/TXD0/SMOSI6/ SMOSI0/SSDA6/SSDA0/CTX0*1/IRQ2-DS	RTCIC2/TXD6/SMOSI6/SSDA6/ USB0 VBUSEN/IRQ2
19	TMS/P31/MTIOC4D/TMCI2/PO9/RTCIC1/	P31/MTIOC4D/TMCl2/RTCIC1/CTS1#/
19	CTS1#/RTS1#/SS1#/SSLB0/IRQ1-DS	RTS1#/SS1#/SSISCK0/IRQ1
20	TDI/P30/MTIOC4B/TMRI3/P08/RTCIC0/	P30/MTIOC4B/TMRI3/POE8#/RTCIC0/
20	POE8#/RXD1/SMISO1/SSCL1/MISOB/	RXD1/SMISO1/SSCL1/AUDIO_MCLK/IRQ0/
	IRQ0-DS	CMPOB3
21	TCK/FINEC/P27/CS7#/MTIOC2B/TMCI3/	P27/CS3#/MTIOC2B/TMCI3/SCK1/SSIWS0/
	PO7/SCK1/RSPCKB	TS2/CVREFB3
22	TDO/P26/CS6#/MTIOC2A/TMO1/PO6/TXD1/	P26/CS2#/MTIOC2A/TMO1/TXD1/SMOSI1/
	CTS3#/RTS3#/SMOSI1/SS3#/SSDA1/ MOSIB	SSDA1/SSIRXD0/TS3/CMPB3
23	P25/CS5#/MTIOC4C/MTCLKB/TIOCA4/PO5/	P25/CS1#/MTIOC4C/MTCLKB/TIOCA4/TS4/
	RXD3/SMISO3/SSCL3/ADTRG0#	ADTRG0#
24	P24/CS4#/MTIOC4A/MTCLKA/TIOCB4/	P24/CS0#/MTIOC4A/MTCLKA/TMRI1/
	TMRI1/PO4/SCK3	TIOCB4/USB0_VBUSEN/TS5

100-Pin		
LQFP	RX630	RX231
25	P23/MTIOC3D/MTCLKD/TIOCD3/PO3/TXD3/	P23/MTIOC3D/MTCLKD/TIOCD3/CTS0#/
	CTS0#/RTS0#/SMOSI3/SS0#/SSDA3	RTS0#/SS0#/SSISCK0/TS6
26	P22/MTIOC3B/MTCLKC/TIOCC3/TMO0/PO2/	P22/MTIOC3B/MTCLKC/TMO0/TIOCC3/
	SCK0	SCK0/USB0_OVRCURB/AUDIO_MCLK/TS7
27	P21/MTIOC1B/TIOCA3/TMCI0/PO1/RXD0/	P21/MTIOC1B/TMCI0/TIOCA3/RXD0/
	SMISO0/SSCL0/IRQ9	SMISO0/SSCL0/USB0_EXICEN/SSIWS0/TS8
28	P20/MTIOC1A/TIOCB3/TMRI0/PO0/TXD0/	P20/MTIOC1A/TMRI0/TIOCB3/TXD0/
	SMOSI0/SSDA0/IRQ8	SMOSI0/SSDA0/USB0_ID/SSIRXD0/TS9
29	P17/MTIOC3A/MTIOC3B/TIOCB0/TCLKD/	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/
	TMO1/PO15/POE8#/SCK1/TXD3/SMOSI3/	TIOCB0/TCLKD/SCK1/MISOA/SDA/SSITXD0,
	SSDA3/MISOA/SDA2-DS/IETXD/IRQ7/ ADTRG#	IRQ7/CMPOB2
20		
30	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLKC/ TMO2/PO14/RTCOUT/TXD1/RXD3/	P16/MTIOC3C/MTIOC3D/TMO2/TIOCB1/ TCLKC/RTCOUT/TXD1/SMOSI1/SSDA1/
	SMOSI1/SMISO3/SSDA1/SSCL3/MOSIA/	MOSIA/ <mark>SCL</mark> /USB0_VBUS/USB0_VBUSEN/
	SCL2-DS/IERXD/USB0_VBUS/IRQ6/	USB0_OVRCURB/IRQ6/ADTRG0#
	ADTRG0#	
31	P15/MTIOC0B/MTCLKB/TIOCB2/TCLKB/	P15/MTIOC0B/MTCLKB/TMCI2/TIOCB2/
01	TMCI2/PO13/RXD1/SCK3/SMISO1/SSCL1/	TCLKB/RXD1/SMISO1/SSCL1/CRXD0/TS12/
	CRX1-DS/IRQ5	IRQ5/CMPB2
32	P14/MTIOC3A/MTCLKA/TIOCB5/TCLKA/	P14/MTIOC3A/MTCLKA/TMRI2/TIOCB5/
	TMRI2/PO15/CTS1#/RTS1#/SS1#/CTX1/	TCLKA/CTS1#/RTS1#/SS1#/CTXD0/
	USB0_DPUPE/IRQ4	USB0_OVRCURA/TS13/IRQ4/CVREFB2
33	P13/MTIOC0B/TIOCA5/TMO3/PO13/TXD2/	P13/MTIOC0B/TMO3/TIOCA5/SDA/IRQ3
	SMOSI2/SSDA2/SDA0[FM+]/IRQ3/ADTRG#	
34	P12/TMCI1/RXD2/SMISO2/SSCL2/	P12/TMCI1/ <mark>SCL</mark> /IRQ2
	SCL0[FM+]/IRQ2	
35	VCC_USB	VCC_USB
36	USB0_DM	USB0_DM
37	USB0_DP	USB0_DP
38	VSS_USB	VSS_USB
39	P55/WAIT#/MTIOC4D/TMO3/CRX1/IRQ10	P55/WAIT#/MTIOC4D/TMO3/CRXD0/TS15
40	P54/ALE/MTIOC4B/TMCI1/CTS2#/RTS2#/	P54/ALE/MTIOC4B/TMCI1/CTXD0/TS16
	SS2#/CTX1	
41	BCLK/P53*2	BCLK/P53/TS17
42	P52/RD#/RXD2/SMISO2/SSCL2/SSLB3	P52/RD#/TS18
43	P51/WR1#/BC1#/WAIT#/SCK2/SSLB2	P51/WR1#/BC1#/WAIT#/TS19
44	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2/	P50/WR0#/WR#/TS20
	SSLB1	
45	PC7/A23/CS0#/MTIOC3A/MTCLKB/TMO2/	UB*3/PC7/A23/CS0#/MTIOC3A/MTCLKB/
	PO31/TXD8/SMOSI8/SSDA8/MISOA/IRQ14	TMO2/TXD8/SMOSI8/SSDA8/MISOA/
		CACREF
46	PC6/A22/CS1#/MTIOC3C/MTCLKA/TMCI2/	PC6/A22/CS1#/MTIOC3C/MTCLKA/TMCI2/
	PO30/RXD8/SMISO8/SSCL8/MOSIA/IRQ13	RXD8/SMISO8/SSCL8/MOSIA/TS22
47	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCLKD/	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCLKD/
	TMRI2/PO29/SCK8/RSPCKA	TMRI2/SCK8/RSPCKA/TS23
48	PC4/A20/CS3#/MTIOC3D/MTCLKC/TMCI1/	PC4/A20/CS3#/MTIOC3D/MTCLKC/TMCI1/
	PO25/POE0#/SCK5/CTS8#/RTS8#/SS8#/	POE0#/SCK5/CTS8#/RTS8#/SS8#/
	SSLA0	SSLA0/SDHI_D1/TSCAP
49	PC3/A19/MTIOC4D/TCLKB/PO24/TXD5/	PC3/A19/MTIOC4D/TCLKB/TXD5/SMOSI5/
	SMOSI5/SSDA5/IETXD	SSDA5/IRTXD5/SDHI_D0/TS27

100-Pin LQFP	RV620	RX231
	RX630 PC2/A18/MTIOC4B/TCLKA/PO21/RXD5/	PC2/A18/MTIOC4B/TCLKA/RXD5/SMISO5/
50	SMISO5/SSCL5/SSLA3/IERXD	SSCL5/SSLA3/IRRXD5/SDHI_D3/TS30
51	PC1/A17/MTIOC3A/TCLKD/PO18/SCK5/ SSLA2/IRQ12	PC1/A17/MTIOC3A/TCLKD/SCK5/SSLA2/ TS33
52	PC0/A16/MTIOC3C/TCLKC/PO17/CTS5#/ RTS5#/SS5#/SSLA1/IRQ14	PC0/A16/MTIOC3C/TCLKC/CTS5#/RTS5#/ SS5#/SSLA1/TS35
53	PB7/A15/MTIOC3B/TIOCB5/PO31/TXD9/ SMOSI9/SSDA9	PB7/A15/MTIOC3B/TIOCB5/TXD9/SMOSI9/ SSDA9/SDHI D2
54	PB6/A14/MTIOC3D/TIOCA5/PO30/RXD9/ SMISO9/SSCL9	PB6/A14/MTIOC3D/TIOCA5/RXD9/SMISO9/S SCL9/SDHI D1
55	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/ TMRI1/PO29/POE1#/SCK9	PB5/A13/MTIOC2A/MTIOC1B/TMRI1/POE1#/ TIOCB4/SCK9/USB0_VBUS/SDHI_CD
56	PB4/A12/TIOCA4/PO28/CTS9#/RTS9#/SS9#	PB4/A12/TIOCA4/CTS9#/RTS9#/SS9#
57	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/ TCLKD/TMO0/PO27/POE3#/SCK6	PB3/A11/MTIOC0A/MTIOC4A/TMO0/POE3#/ TIOCD3/TCLKD/SCK6/SDHI_WP
58	PB2/A10/TIOCC3/TCLKC/PO26/CTS6#/ RTS6#/SS6#	PB2/A10/TIOCC3/TCLKC/CTS6#/RTS6#/ SS6#
59	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/ TMCI0/PO25/TXD6/SMOSI6/SSDA6/ IRQ4-DS	PB1/A9/MTIOC0C/MTIOC4C/TMCI0/TIOCB3/ TXD6/SMOSI6/SSDA6/SDHI_CLK/IRQ4/ CMPOB1
60	VCC	VCC
61	PB0/A8/MTIC5W/TIOCA3/PO24/RXD6/ SMISO6/SSCL6/RSPCKA/IRQ12	PB0/A8/MTIC5W/TIOCA3/RXD6/SMISO6/ SSCL6/RSPCKA/SDHI CMD
62	VSS	VSS
63	PA7/A7/TIOCB2/PO23/MISOA	PA7/A7/TIOCB2/MISOA
64	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMCI3/ PO22/POE2#/CTS5#/RTS5#/SS5#/MOSIA	PA6/A6/MT/IC5V/MTCLKB/TMCI3/POE2#/ TIOCA2/CTS5#/RTS5#/SS5#/MOSIA/ SSIWS0
65	PA5/A5/TIOCB1/PO21/RSPCKA	PA5/A5/TIOCB1/RSPCKA
66	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TMRI0/ PO20/TXD5/SMOSI5/SSDA5/SSLA0/ IRQ5-DS	PA4/A4/MTIC5U/MTCLKA/TMRI0/TIOCA1/ TXD5/SMOSI5/SSDA5/SSLA0/SSITXD0/ IRTXD5/IRQ5/CVREFB1
67	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/ PO19/RXD5/SMISO5/SSCL5/ IRQ6-DS	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/ RXD5/SMISO5/SSCL5/SSIRXD0/IRRXD5/ IRQ6/CMPB1
68	PA2/A2/PO18/RXD5/SMISO5/SSCL5/SSLA3	PA2/A2/RXD5/SMISO5/SSCL5/SSLA3/ IRRXD5
69	PA1/A1/MTIOC0B/MTCLKC/TIOCB0/PO17/ SCK5/SSLA2/IRQ11	PA1/A1/MTIOC0B/MTCLKC/TIOCB0/SCK5/ SSLA2/SSISCK0
70	PA0/A0/BC0#/MTIOC4A/TIOCA0/PO16/ SSLA1	PA0/A0/BC0#/MTIOC4A/TIOCA0/SSLA1/ CACREF
71	PE7/D15[A15/D15]/MISOB/IRQ7/AN5	PE7/D15[A15/D15]/IRQ7/AN023
72	PE6/D14[A14/D14]/MOSIB/IRQ6/AN4	PE6/D14[A14/D14]/IRQ6/AN022
73	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/ RSPCKB/IRQ5/AN3	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/ IRQ5/AN021/CMPOB0
74	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/ PO28/SSLB0/AN2	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/ AN020/CMPA2/CLKOUT
75	PE3/D11[A11/D11]/MTIOC4B/PO26/POE8#/ CTS12#/RTS12#/SS12#/MISOB/AN1	PE3/D11[A11/D11]/MTIOC4B/POE8#/ CTS12#/RTS12#/SS12#/AUDIO_MCLK/ AN019/CLKOUT

100-Pin		
LQFP	RX630	RX231
76	PE2/D10[A10/D10]/MTIOC4A/PO23/RXD12/	PE2/D10[A10/D10]/MTIOC4A/RXD12/
	SMISO12/SSCL12/RXDX12/SSLB3/MOSIB/	RXDX12/SMISO12/SSCL12/IRQ7/AN018/
	IRQ7-DS/AN0	CVREFB0
77	PE1/D9[A9/D9]/MTIOC4C/PO18/TXD12/	PE1/D9[A9/D9]/MTIOC4C/TXD12/TXDX12/
	SMOSI12/SSDA12/TXDX12/SIOX12/SSLB2/ RSPCKB/ANEX1	SIOX12/SMOSI12/SSDA12/AN017/CMPB0
78	PE0/D8[A8/D8]/SCK12/SSLB1/ANEX0	PE0/D8[A8/D8]/SCK12/AN016
79	PD7/D7[A7/D7]/MTIC5U/POE0#/IRQ7/AN7	PD7/D7[A7/D7]/MTIC5U/POE0#/IRQ7/AN031
80	PD6/D6[A6/D6]/MTIC5V/POE1#/IRQ6/AN6	PD6/D6[A6/D6]/MTIC5V/POE1#/IRQ6/AN030
81	PD5/D5[A5/D5]/MTIC5W/POE2#/IRQ5/AN013	PD5/D5[A5/D5]/MTIC5W/POE2#/IRQ5/AN029
82	PD4/D4[A4/D4]/POE3#/IRQ4/AN012	PD4/D4[A4/D4]/POE3#/IRQ4/AN028
83	PD3/D3[A3/D3]/POE8#/IRQ3/AN011	PD3/D3[A3/D3]/POE8#/IRQ3/AN027
84	PD2/D2[A2/D2]/MTIOC4D/CRX0*1/	PD2/D2[A2/D2]/MTIOC4D/IRQ2/AN026
	IRQ2/AN010	
85	PD1/D1[A1/D1]/MTIOC4B/CTX0*1/	PD1/D1[A1/D1]/MTIOC4B/IRQ1/ <mark>AN025</mark>
	IRQ1/AN009	
86	PD0/D0[A0/D0]/IRQ0/AN008	PD0/D0[A0/D0]/IRQ0/AN024
87	P47/IRQ15-DS/AN007	P47/AN007
88	P46/IRQ14-DS/AN006	P46/AN006
89	P45/IRQ13-DS/AN005	P45/AN005
90	P44/IRQ12-DS/AN004	P44/AN004
91	P43/IRQ11-DS/AN003	P43/AN003
92	P42/IRQ10-DS/AN002	P42/AN002
93	P41/IRQ9-DS/AN001	P41/AN001
94	VREFL0	VREFL0
95	P40/IRQ8-DS/AN000	P40/AN000
96	VREFH0	VREFH0
97	AVCC0	AVCC0
98	P07/IRQ15/ADTRG0#	P07/ADTRG0#
99	AVSS0	AVSS0
100	P05/IRQ13/DA1	P05/DA1
Noto 1	Valid for products with a POM capacity of 769 KP	

Note 1. Valid for products with a ROM capacity of 768 KB or more.

Note 2. When the external bus is enabled, P53 cannot be used as an I/O port because it also functions as the BCLK pin.

Note 3. The indication UB does not appear in the listing of pin functions for the RX630, but when selecting the operating mode the same settings are required as on the RX630.

4. Notes on Migration

4.1 Operating Voltage Range

4.1.1 Power Supply Voltage

The power supply voltage ranges of the RX630 Group and RX231 Group differ.

Table 4.1 shows a comparative listing of the power supply voltage ranges.

Table 4.1	Comparative Listing of Power Supply Voltage R	anges
-----------	---	-------

ltem	RX630	RX231	
VCC	2.7 V to 3.6 V	1.8 V to 5.5 V*1	
		3.0 V to 3.6 V*2	
		4.0 V to 5.5 V* ³	
AVCC0	Same potential as VCC	1.8 V to 5.5 V*4	
VREFH0	2.7 V to AVCC0	1.8 V to AVCC0	
VREFH	Same potential as VCC	1.8 V to AVCC0	
VCC_USB	Same potential as VCC	Same potential as VCC	
VBATT	2.3 V to 3.6 V	1.8 V to 5.5 V	

Note 1. When not using USB

Note 2. When using USB but not using a USB regulator

Note 3. When using USB and a USB regulator

Note 4. When VCC ≥ 2.0 V, AVCC0 and VCC may be set independently, within the usable range. When VCC < 2.0 V, AVCC0 = VCC.

The power-on sequence for the VCC and AVCC0 pins should be either simultaneous power-on of both pins or VCC power-on followed by AVCC0 power-on.

4.1.2 Analog Power Supply Voltage

On the RX231 Group AVCC0 and VCC may be set independently, within the usable range, if VCC \ge 2.0 V.

4.2 Notes on the Pin Design

4.2.1 Power Supply Pins and Operating Frequency

On the RX231 Group the upper limit of the operating frequency differs according to the voltage (VCC) input on the power supply pins. For details on power supply voltages and operating frequencies, refer to refer to the User's Manual: Hardware of the RX230 Group and RX231 Group, listed in 5, Reference Documents.

4.2.2 Main Clock Oscillator

When connecting an oscillator (ceramic resonator or crystal oscillator) to the EXTAL or XTAL pin on the RX231 Group, ensure that the oscillation frequency of the oscillator is within the range 1 MHz to 20 MHz (VCC \geq 2.4 V) or 1 MHz to 8 MHz (VCC \leq 2.4 V).

In the crystal oscillator connection examples for the RX630 Group and RX231 Group, the capacitor and damping resistor reference values differ. For detailed information on connecting a crystal oscillator, refer to the User's Manual: Hardware of the RX230 Group and RX231 Group, listed in 5, Reference Documents.

The processing when the EXTAL or XTAL pin will not be used differs for the RX630 Group and RX231 Group. On the RX231 Group the P36/EXTAL should be set as general port P36 and the P37/XTAL pin as general port P37 when the main clock is not used. If these pins are not used as general ports, they should be processed in the same manner as port 3.

4.2.3 VCL Pin (External Capacity)

On the RX231 Group, connect a 4.7μ F smoothing capacitor to the VCL pin for internal power supply stabilization.

4.2.4 Mode Setting Pins

After a reset the mode setting pins on the RX630 Group are the MD and PC7 pins, but on the RX231 Group they are the MD pin and the UB/PC7 pin.

When using the on-chip debugging emulator (E1/E20 emulator), connect the MD pin to the E1/E20 emulator and drive the PC7/UB pin low, or connect the MD pin and PC7/UB pin to the E1/E20 emulator.

4.2.5 General I/O Ports

The processing when port 0 and port 4 are unused pins differs on the RX630 Group and RX231 Group. If the port 0 and port 4 pins will not be used on the RX231 Group, set both pins as input (PORTn.PDR bit = 0) and then connect each pin to AVCC0 or AVSS0 via a resistor. Alternatively, set both pins as output (PORTn.PDR bit = 1) and leave them open.

4.2.6 Analog Input Pins for A/D Converter

On the RX231 Group, ensure that AVCC0 = VCC when performing A/D conversion on signals input on analog input pins AN016 to AN031.

4.2.7 Integrated Pull-Up and Pull Down Resistors for USB DP and DM Pins

The RX231 Group has integrated pull-up and pull down resistors for the DP and DM pins.

USB external connection circuit examples for the RX630 Group and RX231 Group are therefore different.

For detailed information on the USB external connection circuit, refer to the User's Manual: Hardware of the RX630 Group and RX231 Group, listed in 5, Reference Documents.

4.2.8 Inputting an External Clock

On the RX630 Group it is permissible to input on the XTAL pin a signal that is the antiphase of the external clock signal input on the EXTAL pin. On the RX231 Group, however, this is not allowed. Keep this in mind when designing your system.

When inputting an external clock to the RX231 Group, it is necessary to set the main clock oscillator switch bit (MOSEL) in the main clock oscillator forced oscillation control register (MOFCR) to 1.

4.3 Notes on the Function Settings

4.3.1 UB Code

User boot mode is not provided in the RX231 Group. UB code A and UB code B necessary for user boot mode are also not provided. In the RX231 Group, the user area/data area of the flash memory can be programmed and read with an arbitrary interface using start-up program protection instead of user boot mode. For details, refer to the User's Manual: Hardware of the RX630 Group and RX231 Group, listed in 5, Reference Documents.

4.3.2 Battery Backup Function

On the RX630 Group it was possible to utilize the battery backup function by enabling voltage monitor 0 reset (OFS1.LVDAS bit = 0), but on the RX231 Group it is necessary both to enable voltage monitor 0 reset (OFS1.LVDAS bit = 0) and to select 2.51 V as the voltage monitor 0 level in order to use this function.

4.3.3 12-Bit A/D Converter

The number of I/O registers used with the 12-bit A/D converter has increased on the RX231 Group. In addition, software that makes use of the eight channels on pins AN008 to AN015 on RX210 Group microcontrollers must be altered to use channels among the 16 channels on pins AN016 to AN031 on RX231 Group microcontrollers.

4.3.4 12-Bit D/A Converter

When using the D/A converter on the RX630 group, care must be taken to ensure that the 10-bit A/D converter does not enter the module stop state when the DAADSCR.DAADST bit is set to 1 (measure against interference between D/A and A/D conversion enabled).

When using the 12-bit D/A converter on the RX231 Group, ensure that the 12-bit A/D converter does not enter the module stop state when the DAADSCR.DAADST bit is set to 1 (measure against interference between D/A and A/D conversion enabled). Otherwise, not only A/D conversion but also D/A conversion could be halted.

4.3.5 Memory Wait Cycle

RX231 Group microcontrollers have a memory wait cycle setting register (MEMWAIT), but RX630 Group microcontrollers do not. To select a high-speed ICLK clock frequency above 32 MHz on the RX231 Group, set the MEMWAIT bit to 1 (wait states). For details, refer to the User's Manual: Hardware of the RX231 Group, which are listed in 5, Reference Documents.

4.3.6 Transferring Firmware Contents to FCU RAM

In order to use FCU commands on the RX630 Group it is necessary to store the contents of the FCU firmware in the FCU RAM. This processing is not needed on the RX231 Group.

4.3.7 Using Commands to Program Flash Memory

On the RX630 Group programming and erasing of the flash memory is accomplished by issuing commands to the FCU. On the RX231 Group, in contrast, programming and erasing of the flash memory is accomplished by first transitioning to the dedicated sequencer mode for programming and erasing the ROM and then issuing software commands.

Table 4.2 compares the specifications of FCU commands and software commands.

Table 4.2 Comparison of FCU Command and Software Command Specifications

Item	FCU Commands (RX630)	Software Commands (RX231)
Command issue area	Program/erase address (00E0 0000h to 00FF FFFFh)	_
Usable commands	 P/E Normal mode transition Status read mode transition Lock bit read mode transition Peripheral clock notification Programming Block erase P/E suspend P/E resume Status register clear Lock bit read 2 Lock bit programming Blank check 	 Programming Block erase P/E suspend P/E resume Status register clear Forced end Configuration setting

4.3.8 Supplemental Information on RAM Self-Diagnostics

The RX231 Group provides a buffer to enable fast access between the RAM and CPU. When a write to RAM is followed by a read access to the same address, the data may be read not from the RAM but from the buffer in some cases. Such read and write operations present no problems in a buffered configuration, but programs that expect to actually read from the RAM the previously written data (for example, software that performs self-diagnostics on on-chip RAM) may not operate as expected (because the data is read from the buffer instead).

To ensure that data is actually read from the RAM, do the following.

When reading data from an address in RAM aligned with a 4-byte boundary^{*1} after a write to RAM completes, first perform a write to another address that is different from that address aligned with a 4-byte boundary that you wish to read, then start the read from the desired address in RAM.

Note 1. An address aligned with a 4-byte boundary refers to an address whose lowest two bits have a value of 00b to 11b.

5. Reference Documents

User's Manual: Hardware

RX230 Group, RX231 Group User's Manual: Hardware Rev.1.20 (R01UH0496EJ0120) (The latest version can be downloaded from the Renesas Electronics website.)

RX630 Group User's Manual: Hardware Rev.1.60 (R01UH0040EJ0160) (The latest version can be downloaded from the Renesas Electronics website.)

Application Note

Migration Design Guide between RX Families: Package Dimensions Difference (R01AN4591EJ) (The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The technical updates issued after each referenced user manual are not reflected in this application note, so obtain latest version from the Renesas Electronics website.)

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Oct. 23, 2017	-	First edition issued
1.10	May. 8, 2019	Whole	Confirmed the contents of the description again (Addition of description mistake etc.)
		8	Add memory map comparison of address space
		13	Add area comparison of option setting memory
		24	Add Comparative Listing of Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode
		34	Add comparison of exception handling
		46	Add comparative listing of functions assigned to each multiplexed pin
		61	Add comparison of pin function control register
		116	Add comparison of flash memory (E2 Data Flash)
		116	Add differences in package external form

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - 'Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.