

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REC05B0006-0102/Rev.1.02 April 2006 Page 1 of 16

M16C/Tiny Series
Operation of Watchdog Timer

1. Abstract
This application note describes how to use watchdog timer of the M16C/Tiny series microcomputers.

2. Introduction
The explanation of this issue is applied to the following condition:

• MCU: M16C/26A Group
 M16C/28 Group
 M16C/29 Group

This program can be operated under the condition of M16C family products with the same SFR (Special Function
Register) as 26A, 28, 29 group products. Because some functions may be modified of the M16C family products, see
the user’s manual. When using the functions shown in this application note, evaluate them carefully for an operation.

M16C/Tiny Series
Operation of Watchdog Timer

3. Specifications
3.1 Operation
(1) Writing to the watchdog timer start register initializes the watchdog timer to “7FFFh” and causes it to start a down

count.
(2) With the watchdog timer’s counting in progress, writing to the watchdog timer start register again initializes the

watchdog timer to “7FFFh” and causes it to resume counting.
(3) Either executing the WAIT instruction or going to the stopped state causes the watchdog timer to stop counting and

to hold the current value of counter. The watchdog timer resumes counting after returning from the execution of the
WAIT instruction or from the stopped state.

(4) If the watchdog timer underflows, it is initialized to “7FFFh” and continues counting. Simultaneously, a watchdog
timer interrupt occurs.

Notes:
• The watchdog timer and the prescaler both are inactive after reset, so that the watchdog timer is activated to start
counting by writing to the WDTS register. Write the WDTS register with shorter cycle than the watchdog timer
cycle in order not to generate any watchdog timer interrupt. Set the WDTS register also in the beginning of the
watchdog timer interrupt routine.
• If the watchdog timer function select bit in Processor Mode Register 1 (PM1 register) is set to 1 (watchdog timer
reset), the pins, CPU, and SFR are initialized when a watchdog timer interrupt occurs, and the program is executed
from the address indicated by the reset vector.

Figure 1 shows the operation timing of watchdog.

7FFFh

0000h

Write signal to the
watchdog timer
start register

“H”
“L”

(2) Write operation
(1) Start count

(3) In stopped state, or WAIT
 instruction is executing, etc

(4) Generate watchdog
 timer interrupt

t

Figure 1. Operation Timing of Watchdog

REC05B0006-0102/Rev.1.02 April 2006 Page 2 of 16

M16C/Tiny Series
Operation of Watchdog Timer

3.2 Register setting
The following procedure in this application note is based on M16C/29 group products, other M16C/Tiny series’s setup
procedure please refer to the hardware user’s manual.

(1) Setting watchdog timer function select bit (Note 1)

00
b7

01
b0

Processor mode register 1 [Address 0005h] PM1

0 : Watchdog timer interrupt
Watchdog timer function select bit

1 : Watchdog timer reset (Note 2)
Note 1: Write to this register after setting the PRC1 bit in the PRCR register to “1” (write enable).
Note 2: PM12 bit is set to “1” by writing “1” in a program. (Writing “0” has no effect.)

0

(2) Setting WDT count source protective bit

0
b7

0
b0

Processor mode register 2 [Address 001Eh] PM2

0 : Select CPU clock
WDT count source protective bit (Note 1, 2)

1 : Select On-chip oscillator clock
Note 1: Once this bit is set to “1”, it cannot be cleared to “0” in a program.
Note 2: Setting PM22 bit to “1” results in the following condition:
 · The on-chip oscillator clock becomes the WDT count source.
 · The CM10 bit of CM1 register is disabled against write. (writing “1” has no effect, nor is
 stop mode entered.)
 · The WDT does not stop when in wait mode.

(3) Setting watchdog timer control register

0 00
b7

Watchdog timer control register [Address 000Fh] WDC
b0

High-order bit of watchdog timer

Must set to “0”

0 : Divided by 16
Prescaler select bit

1 : Divided by 128

b7
1F16

(4) Setting watchdog timer start register
b0

Watchdog timer start register [Address 000Eh] WDTS

The watchdog timer is initialized and starts counting after a write
instruction to this register. The watchdog timer value is always
initialized to “7FFFh” regardless of whatever value is written.

REC05B0006-0102/Rev.1.02 April 2006 Page 3 of 16

M16C/Tiny Series
Operation of Watchdog Timer

4. The example of reference program
Figure 2 shows the sample circuit of reference program.

P2_0
P2_1
P2_2
P2_3
P2_4
P2_5
P2_6
P2_7

P0_0

a
b
c
d
e
f
g
dp

MCU 7seg LED1

NAR141SM16C/29

VCC

com1
com2

Figure 2. Sample Circuit of Reference Program

4.1 Using the watchdog timer interrupt program
While this program writes to the watchdog timer start register, it increases the indication of port P2. When the output of
port P2 reaches “9”, the program stops writing to the watchdog timer start register to stop updating the indication of
port P2.

When a watchdog timer interrupt occurs, the program writes to the watchdog timer start register while it decreases the
indication of port P2 in a watchdog timer interrupt service routine. When the output of port P2 reaches “0”, the program
stops updating the indication of port P2.

/***/
/* */
/* M16C/Tiny Series Program Collection */
/* */
/* FILE NAME : rec05b0006-0102_int.c */
/* CPU : M16C/29 Group */
/* FUNCTION : Operation of Watchdog Timer */
/* HISTORY : 2006.04.13 Ver 1.02 */
/* */
/* Copyright (C) 2006. Renesas Technology Corp. */
/* All right reserved. */
/***/

/***/
/* Include File */
/***/
#include "sfr29.h" // Special function register header file

/***/
/* Function Definition */
/***/
void init_mcu(void); // SFR initialize
void wait_10ms(void); // Main clock oscillation stable wait routine
#pragma INTERRUPT wdt_int

REC05B0006-0102/Rev.1.02 April 2006 Page 4 of 16

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 5 of 16

/***/
/* Define Label */
/***/
#define PRODUCT_TYPE 0 // 28,29 group: 0 26A group: 1
#define PIN_TYPE 0 // 80 pin: 0 64 pin: 1 (28,29 group)
 // 48 pin: 0 42 pin: 1 (26A group)

/***/
/* Define Const */
/***/
/* port2_0 - port2_7 data : 0 1 2 3 4 5 6 7 8 9 */
unsigned char count_data[10] =
{0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xD8,0x80,0x90};

unsigned int i,j;

/***/
/* Main Program */
/***/
void main(void)
{
 init_mcu(); // SFR initialize

 j = 0;
 i = 0;

 wdc = 0; // Setting watchdog timer control register
 // Prescaler select bit is set to 0 (0: divided by 16)

 wdts = 1; // Setting watchdog timer start register

 while (1)
 {
 while (ir_ta0ic == 0); // 1ms?

 ta0ic = 0x00; // Timer A0 interrupt level: 0
 i++;

 if (i == 500)
 {
 i = 0;
 if (j <= 9)
 {
 p2 = count_data[j];
 }
 j++;
 }
 if (j <= 9)
 {
 wdts = 1; // Setting watchdog timer start register
 }
 }
}

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 6 of 16

/***/
/* Watchdog Timer Interrupt Routine */
/***/
void wdt_int()
{
 wdts = 1; // Set the WDTS register in the beginning of the
 // watchdog timer interrupt routine.

 while (1)
 {
 wdts = 1; // For long-time loop, set WDTS register again to
 // avoid the underflow of watchdog timer.

 while (ir_ta0ic == 0); // 1ms?

 ta0ic = 0x00; // Timer A0 interrupt level: 0
 i++;

 if (i == 500)
 {
 i = 0;
 if (j != 0)
 {
 j--;
 if (j <= 9)
 {
 p2 = count_data[j];
 }
 }
 }
 }
}

/***/
/* MCU Initialize */
/***/
void init_mcu(void)
{
 prcr = 0x03; // Protect register off

 // Set processor mode registers
 pm0 = 0x00; // Single-chip mode
 pm1 = 0x08; // No expansion, No wait

 wait_10ms(); // Waiting for main clock oscillation stable

 // Set system clock control registers
 cm2 = 0x00; // System clock select Main clock or PLL clock
 cm1 = 0x20; // Xin-Xout High, Main clock is no division
 cm0 = 0x08; // Xcin-Xcout drive capacity select bit (1: high)

 pclkr = 0x03; // TimerA, B clock select bit (1: f1)

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 7 of 16

 // WDT clock setting
 pm22 = 0; // Set WDT count source protective bit
 // <PM22> : select CPU clock
 // 0: select CPU clock

 // Set WDT function select bit
 pm12 = 0; // <PM12> :0: WDT interrupt; 1: WDT reset
 // (writing a 1 by program, writing a 0 has no effect)

 prcr = 0x00; // Protect register on

 #if PRODUCT_TYPE // Product selection: 26A group
 ifsr2a = 1; // Interrupt request cause select register2 IFSR2A
 // <IFSR20> : Reserved bit (Must be set to "1")
 prcr = 0x04; // Protect register off
 #if PIN_TYPE // Port setting
 pacr = 0x01; // 42pin type
 #else
 pacr = 0x04; // 48pin type
 #endif
 prcr = 0x00; // Protect register on
 #else // Product selection: 28,29 group
 ifsr2a = 0; // Interrupt request cause select register2 IFSR2A
 // <IFSR20> : Reserved bit (Must be set to "0")
 prcr = 0x04; // Protect register off
 #if PIN_TYPE // Port setting
 pacr = 0x02; // 64pin type
 #else
 pacr = 0x03; // 80pin type
 #endif
 prcr = 0x00; // Protect register on
 #endif

 p0 = 0x02; // Select LED1
 p2 = 0; // Port2 output
 pd0 = 0xff; // Port direction0: output mode
 pd2 = 0xff; // Port direction2: output mode

 // Timer A0 setup
 ta0mr = 0x40; // Selection of timer mode
 // Pulse output function select bit (0: pulse is not output)
 // Gate function select bit (00: gate function not available)
 // Count source (01: f8)
 ta0 = 2500-1; // Setting counter value (1msec @20MHz, f8)
 ta0ic = 0x00; // Setting interrupt priority levels in timer A0
 ta0s = 1; // Timer A0 count start
}

/***/
/* Main Clock Oscillation Stable Wait 10ms Routine */
/***/
void wait_10ms(void)

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 8 of 16

{
 ta0mr = 0x00; // Set Timer A0 mode register (Timer mode, count source: f1)

 ta0 = 20000-1; // Setting counter value (10msec @4MHz/2, f1)

 ta0ic = 0x00; // Clear interrupt request bit

 tabsr = 0x01; // Timer A0 start counting

 while (ir_ta0ic == 0){ }

 ir_ta0ic = 0; // Clear interrupt request bit

 tabsr = 0x00; // Timer A0 stops counting
}

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 9 of 16

In order for this program to run properly, the watchdog timer interrupt vector needs to point to the service routines for
the interrupt. The interrupt vector table information is included in the startup file "sect30.inc". Insert the function label "
_wdt_int " into the interrupt vector table locations as shown below.

;/**
; C Compiler for R8C/Tiny, M16C/60, 30, 20, 10
; Copyright(C) 1999(2000-2004). Renesas Technology Corp.
; and Renesas Solutions Corp., All rights reserved.
;
; Written by T.Aoyama
;
; sect30.inc : section definition
; This program is applicable when using the basic I/O library
;
; $Id: sect30.inc,v 1.23.4.6 2004/10/29 14:06:39 simomura Exp $
;
;***/

;===
; fixed vector section
;---
 .section fvector,ROMDATA
 .org 0fffdcH
 .glb _wdt_int
;UDI:
; .lword dummy_int
;OVER_FLOW:
; .lword dummy_int
;BRKI:
; .lword dummy_int
;ADDRESS_MATCH:
; .lword dummy_int
;SINGLE_STEP:
; .lword dummy_int
 .org 0ffff0H
WDT:
 .lword _wdt_int
;DBC:
; .lword dummy_int
;NMI:
; .lword dummy_int
 .org 0ffffcH
RESET:
 .lword start
;***

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 10 of 16

4.2 Using the watchdog timer interrupt to reset program
When the watchdog timer underflows after reaching terminal count, the program is reset and writes to the watchdog
timer start register while it increases the indication of port P2. When the output of port P2 reaches “9”, the program
stops updating the indication of port P2. Because the program stops writing to the watchdog timer start register, the
program will be reset soon.

/***/
/* */
/* M16C/Tiny Series Program Collection */
/* */
/* FILE NAME : rec05b0006-0102_rst.c */
/* CPU : M16C/29 Group */
/* FUNCTION : Operation of Watchdog Timer */
/* HISTORY : 2006.04.13 Ver 1.02 */
/* */
/* Copyright (C) 2006. Renesas Technology Corp. */
/* All right reserved. */
/* */
/***/

/***/
/* Include File */
/***/
#include "sfr29.h" // Special function register header file

/***/
/* Function Definition */
/***/
void init_mcu(void); // SFR initialize
void wait_10ms(void); // Main clock oscillation stable wait routine

/***/
/* Define Label */
/***/
#define PRODUCT_TYPE 0 // 28,29 group: 0 26A group: 1
#define PIN_TYPE 0 // 80 pin: 0 64 pin: 1 (28,29 group)
 // 48 pin: 0 42 pin: 1 (26A group)

/***/
/* Define Const */
/***/
/* port2_0 - port2_7 data : 0 1 2 3 4 5 6 7 8 9 */
unsigned char count_data[10] =
{0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xD8,0x80,0x90};

unsigned int i,j;

/***/
/* Main Program */
/***/
void main(void)
{

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 11 of 16

 init_mcu(); // SFR initialize

 j = 0;
 i = 0;

 wdc = 0; // Setting watchdog timer control register
 // Prescaler select bit is set to 0 (0: divided by 16)

/* wdt reset */
 wdts = 1; // Setting watchdog timer start register

 while (1)
 {
 while (ir_ta0ic == 0); // 1ms?

 ta0ic = 0x00; // Timer A0 interrupt level: 0
 i++;

 if (i == 500)
 {
 i = 0;
 if (j <= 9)
 {
 p2 = count_data[j];
 }
 j++;
 }
 if (j <= 9)
 {
 wdts = 1; // Setting watchdog timer start register
 }
 }
}

/***/
/* MCU Initialize */
/***/
void init_mcu(void)
{
 prcr = 0x03; // Protect register off

 // Set processor mode registers
 pm0 = 0x00; // Single-chip mode
 pm1 = 0x08; // No expansion, No wait

 wait_10ms(); // Waiting for main clock oscillation stable

 // Set system clock control registers
 cm2 = 0x00; // System clock select Main clock or PLL clock
 cm1 = 0x20; // Xin-Xout High, Main clock is no division
 cm0 = 0x08; // Xcin-Xcout drive capacity select bit (1: high)

 pclkr = 0x03; // TimerA, B clock select bit (1: f1)

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 12 of 16

 // WDT clock setting
 pm22 = 0; // Set WDT count source protective bit
 // <PM22> : select CPU clock
 // 0: select CPU clock

 // Set WDT function select bit
 pm12 = 1; // <PM12> :0: WDT interrupt; 1: WDT reset
 // (writing a 1 by program, writing a 0 has no effect)

 prcr = 0x00; // Protect register on

 #if PRODUCT_TYPE // Product selection: 26A group
 ifsr2a = 1; // Interrupt request cause select register2 IFSR2A
 // <IFSR20> : Reserved bit (Must be set to "1")
 prcr = 0x04; // Protect register off
 #if PIN_TYPE // Port setting
 pacr = 0x01; // 42pin type
 #else
 pacr = 0x04; // 48pin type
 #endif
 prcr = 0x00; // Protect register on
 #else // Product selection: 28,29 group
 ifsr2a = 0; // Interrupt request cause select register2 IFSR2A
 // <IFSR20> : Reserved bit (Must be set to "0")
 prcr = 0x04; // Protect register off
 #if PIN_TYPE // Port setting
 pacr = 0x02; // 64pin type
 #else
 pacr = 0x03; // 80pin type
 #endif
 prcr = 0x00; // Protect register on
 #endif

 p0 = 0x02; // Select LED1
 p2 = 0; // Port2 output
 pd0 = 0xff; // Port direction0: output mode
 pd2 = 0xff; // Port direction2: output mode

 // Timer A0 setup
 ta0mr = 0x40; // Selection of timer mode
 // Pulse output function select bit (0: pulse is not output)
 // Gate function select bit (00: gate function not available)
 // Count source (01: f8)
 ta0 = 2500-1; // Setting counter value (1msec @20MHz, f8)
 ta0ic = 0x00; // Setting interrupt priority levels in timer A0
 ta0s = 1; // Timer A0 count start
}

/***/
/* Main Clock Oscillation Stable Wait 10ms Routine */
/***/
void wait_10ms(void)

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 13 of 16

{
 ta0mr = 0x00; // Set Timer A0 mode register (Timer mode, count source: f1)

 ta0 = 20000-1; // Setting counter value (10msec @4MHz/2, f1)

 ta0ic = 0x00; // Clear interrupt request bit

 tabsr = 0x01; // Timer A0 start counting

 while (ir_ta0ic == 0){ }

 ir_ta0ic = 0; // Clear interrupt request bit

 tabsr = 0x00; // Timer A0 stops counting
}

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 14 of 16

5. Reference
Renesas web-site
 http://www.renesas.com/

Inquiry
 http://www.renesas.com/inquiry
 csc@renesas.com

Hardware manual
 M16C/26A Group (M16C/26A, M16C/26T) Hardware Manual Rev.1.00
 M16C/28 Group Hardware Manual Rev.1.01
 M16C/28 Group (T-ver./V-ver.) Hardware Manual Rev.1.00
 M16C/29 Group Hardware Manual Rev.1.00
 (Use the latest version on the web-site: http://www.renesas.com)

Technical update/Technical news
 (Use the latest version on the web-site: http://www.renesas.com)

mailto:csc@renesas.com
http://www.renesas.com/

M16C/Tiny Series
Operation of Watchdog Timer

REC05B0006-0102/Rev.1.02 April 2006 Page 15 of 16

Revision
Description Rev. Issue data
Page Summary

1.00 Dec.23.05 - First edition issued
1.01 Jan.25.06 - Sample program modified: define PRODUCT_TYPE
1.02 Apr.14.06 - Modified function “wait_10ms” in sample program

M16C/Tiny Series
Operation of Watchdog Timer

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

REC05B0006-0102/Rev.1.02 April 2006 Page 16 of 16

	1. Abstract
	2. Introduction
	3. Specifications
	3.1 Operation
	3.2 Register setting

	4. The example of reference program
	4.1 Using the watchdog timer interrupt program
	4.2 Using the watchdog timer interrupt to reset program

	5. Reference

