
 Application Note

R11AN0172EU0102 Rev.1.02 Page 1 of 29
May.02.19

Renesas Synergy™ Platform

NetX™, NetX Duo™ BSD Support Module Guide
Introduction
This module guide will enable you to effectively use a module in your own design. Upon completion of this
guide, you will be able to add this module to your own design, configure it correctly for the target application,
and write code using the included application project code as a reference and an efficient starting point.
References to more detailed API descriptions and suggestions of other application projects that illustrate
more advanced uses of the module are included in this document and will be valuable resources for creating
more complex designs.

The BSD Socket API Compliancy Wrapper (NetX™ BSD) supports a subset of the basic BSD Socket API
calls (with some limitations) using NetX™ services.

Note: The NetX Duo BSD is similar to NetX BSD in for BSD application development. When the NetX BSD
is referenced in this document, the same applies to the NetX Duo BSD unless otherwise noted.

This overview covers key elements of the NetX BSD implementation on the Renesas Synergy™ Platform.
The primary focus is the addition and configuration of the NetX BSD Support Module to a Renesas
Synergy™ Platform project. For more details on the operation of this module, consult the NetX™ BSD 4.3
Socket API Wrapper for NetX User Guide (or NetX Duo™ BSD 4.3 Socket API Wrapper for NetX™ Duo
User’s Guide) for the Renesas Synergy Platform.

This document is available as part of a X-Ware™ and NetX™ Component Documents for the Renesas
Synergy zip file available from the Renesas Synergy Gallery (www.renesas.com/synergy/ssp).

Contents
1. NetX BSD Support Module Features ... 2
2. NetX BSD Support Module APIs Overview .. 2
3. NetX BSD Support Module Operational Overview ... 5
3.1 NetX BSD Support Module Important Operational Notes and Limitations .. 8
3.1.1 NetX BSD Support Module Operational Notes ... 8
3.1.2 NetX BSD Support Module Limitations ... 9
4. Including the NetX BSD Support Module in an Application .. 10
5. Configuring the NetX BSD Support Module ... 11
5.1 Configuration Settings for the NetX BSD Support Lower-Level Modules ... 12
5.2 NetX BSD Support Module Clock Configuration ... 14
5.3 NetX BSD Support Module Pin Configuration ... 14
6. Using the NetX BSD Support Module in an Application ... 15
7. The NetX BSD Support Module Application Project ... 17
8. Customizing the NetX BSD Support Module for a Target Application 23
9. Running the NetX BSD Support Module Application Project .. 24
10. NetX BSD Support Module Conclusion .. 26
11. NetX BSD Support Module Next Steps .. 27

https://www.renesas.com/synergy/ssp

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 2 of 29
May.02.19

1. NetX BSD Support Module Features
• The NetX BSD Support module is compliant with BSD 4.3.
• Provides high-level APIs to:

 Create and delete sockets
 Set socket options
 Request TCP connections and listen for connection requests
 Send and receive packets
 Raw packet support**
 PPP over Ethernet support**

** NetX Duo BSD only

Figure 1. NetX BSD Support Module Block Diagram

2. NetX BSD Support Module APIs Overview
The NetX BSD Support module defines APIs for connecting, binding, listening, sending, and receiving. A
complete list of the available APIs, an example API call, and a short description of each can be found in the
following table. The services that are unique to NetX and NetX Duo BSD begin with nx_, and are listed at the
end of this table.

Table 1. NetX BSD Support Module API Summary

Function Name Example API Call and Description
accept

accept(INT sockID, struct sockaddr
*ClientAddress, INT *addressLength);
TCP server socket waits to make a TCP connection

bsd_initialize bsd_initialize(NX_IP *default_ip, NX_PACKET_POOL
*default_pool, CHAR *bsd_thread_stack_area,
ULONG bsd_thread_stack_size, UINT

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 3 of 29
May.02.19

Function Name Example API Call and Description
bsd_thread_priority);
Sets up BSD Support Module to use NetX and BSD services.
(Called by the NetX BSD Support Module automatically.)

bind bind(INT sockID, struct sockaddr *localAddress,
INT addressLength);
Bind TCP or UDP socket to a local port

connect connect(INT sockID, struct sockaddr
*remoteAddress, INT addressLength);
Connect to a TCP peer; if the remoteAddress indicates raw or
UDP socket, then if the address is NULL this dis-associates the
peer from this socket.

fcntl fcntl(INT sock_ID, UINT flag_type, UINT
f_options);
Sets socket options for the specified socket

freeaddrinfo freeaddrinfo(struct addrinfo *res);
Releases memory allocated by the getaddrinfo service

getnameinfo getnameinfo(const struct sockaddr *sa, socklen_t
salen, char *host, size_t hostlen, char *serv,
size_t servlen, int flags);
Converts a socket address to a corresponding host and service
string.

getpeername getpeername(INT sockID, struct sockaddr
*remoteAddress, INT *addressLength);
Return remote peer’s IP address and port.

getsockname getsockname(INT sockID, struct sockaddr
*localAddress, INT *addressLength);
Return the socket’s primary IP address and source port. In NetX
Duo, this would be the address as index 1 in the IP interface
table.

getsockopt getsockopt(INT sockID, INT option_level, INT
option_name, VOID *option_value, INT
*option_length);
Return the status of the specified socket option

getaddrinfo getaddrinfo(const CHAR *node, const CHAR
*service, const struct addrinfo *hints, struct
addrinfo **res);
Fills in the addrinfo for the indicated node (host) based on hints in
the addrinfo input.

ioctl ioctl(INT sockID, INT command, INT *result);
Carry out the command on the specified socket. Only two options
supported FIONREAD (extract number of bytes on socket queue)
and FIONBIO (enable/disable non blocking as per the result flag).

inet_addr inet_addr(const CHAR *buffer);
Convert an IP address from a string buffer to a number.

inet_ntoa inet_ntoa(struct in_addr address_to_convert);
Convert an IP address to a string.

inet_aton inet_aton(const CHAR * address_buffer_ptr,
struct in_addr *addr);
Converts hexadecimal characters into an ASCII IP address
representation

inet_pton inet_pton(INT af, const CHAR *src, VOID *dst);
Converts an IP address from string to numeric format

inet_ntop inet_ntop(INT af, const VOID *src, CHAR *dst,
socklen_t size);

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 4 of 29
May.02.19

Function Name Example API Call and Description
Converts an IP address from numeric format to string
presentation.

listen listen(INT sockID, INT backlog);
Bind a TCP server socket to a local port on which to listen for
connection requests.

recvfrom recvfrom(INT sockID, CHAR *buffer, INT
buffersize, INT flags,struct sockaddr *fromAddr,
INT *fromAddrLen);
Receive up to the specified number of bytes on the specified
socket (either UDP or TCP)

recv recv(INT sockID, VOID *rcvBuffer, INT
bufferLength, INT flags)
Copies up to a specified number of bytes received on the socket
into specified location. The given socket can be UDP or TCP, but
must be in the connected state.

send send(INT sockID, const CHAR *msg, INT msgLength,
INT flags)
Send the specified buffer out on the socket; the actual number of
bytes sent is returned in msglength. Does not support raw
sockets.

sendto sendto(INT sockID, CHAR *msg, INT msgLength, INT
flags, struct sockaddr *destAddr, INT
destAddrLen);
Send the specified buffer out on the socket; the actual number of
bytes sent is returned in msglength. The socket must be in a
connected state. Supports raw sockets (NetX Duo BSD only)

select select(INT nfds, fd_set *readfds, fd_set
*writefds, fd_set *exceptfds, struct timeval
*timeout);
Check all sockets specified in the fd_set inputs to be checked for
read request (incoming packets), write request (outgoing
packets), and exception request input.

soc_close soc_close(INT sockID);
Close the specified socket.

socket socket(INT protocolFamily, INT type, INT
protocol);

setsockopt setsockopt(INT sockID, INT option_level, INT
option_name, const VOID *option_value, INT
option_length);
Enable the input socket option on the socket.

fcntl fcntl(INT sock_ID, UINT flag_type, UINT
f_options);
Sets flag options for the specified socket.

nx_bsd_raw_packet_info_extract** nx_bsd_raw_packet_info_extract(NX_PACKET
*packet_ptr, NXD_ADDRESS *nxd_address, UINT
*interface_index);
Extracts source IP address and interface index of the IP address
in the IP interface table

nx_bsd_socket_set_inherited_settings nx_bsd_socket_set_inherited_settings(UINT
master_sock_id, UINT secondary_sock_id);
Apply the socket options of the specified master socket to the
specified child secondary socket; requires
NX_BSD_INHERIT_LISTENER_SOCKET_SETTINGS be defined.
If it is not, this function has no effect.

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 5 of 29
May.02.19

Function Name Example API Call and Description
nx_bsd_set_service_list nx_bsd_set_service_list(struct

NX_BSD_SERVICE_LIST *serv_list_ptr, ULONG
serv_list_len);
Define the service list used by getaddrinfo with the specified
service list.

** This API is available in NetX Duo BSD only.
The table of NetX BSD API return status codes is omitted. NetX BSD is compliant with the standard BSD and
return values defined by the BSD 4.3 specification for the BSD commands.

3. NetX BSD Support Module Operational Overview
To utilize NetX and BSD services, the NetX BSD Support module automatically creates an IP instance, and
creates memory space for the internal BSD thread stack. The packet pool can be the IP default packet pool
(g_packet_pool0) or by clicking on Add NetX Packet Pool (or Add NetX Duo Packet Pool) -> New, a
separate packet pool, g_packet_pool1, will be used for BSD packet transmissions. For memory space,
the defining parameters are the internal_thread_stack_size and internal_thread_priority
properties of the NetX BSD Support stack element.

Before using NetX BSD services, the application creates one or more sockaddr_in instances local and
peer hosts. A server application will only need to create a sock_addr for itself. (These are limited to IPv4
addressing.) For IPv6 addresses (which requires NetX Duo BSD), the application creates one or more
sockaddr_in6 instances. A socket of type TCP or UDP is created using the socket service; the protocol
must be AF_INET for IPv4 or AF_INET6 for IPv6.

For raw packets (NetX Duo BSD only), the socket must be of type AF_PACKET.

Optionally, the application can set socket options such as non-blocking using the fnctl and ioctl
services.

For TCP and UDP clients, the socket must bind a local-source port using the bind service. A value of zero
for the port in the sockaddr_in the data instance will inform NetX to assign a local port. For the TCP
sockets, the client socket connects to a TCP server using the connect service.

Both the UDP and TCP sockets can then send and receive data. Because the BSD is a streaming based
protocol, data is delivered to and from the application in user-defined buffers. Internally, NetX sends and
transmits data using packets from the packet pools transparently to the application. There is no requirement
to release received packets or allocated packets that NetX was not able to send.

To close a client socket, the application calls soc_close. There is no need to unbind the socket when
closing it using soc_close.

For TCP servers, the application chooses a local port to listen on by the specified master socket using the
listen service. The master socket then checks for connection requests using the select service. When one is
detected, it calls the accept service and assigns a secondary socket to handle the connection. In this
manner, the BSD can maintain multiple connections simultaneously.

To close a server socket, the application calls soc_close. Unlike NetX TCP sockets, there is no need to
call the nx_tcp_server_socket_unlisten or nx_tcp_server_socket_unaccept API on the TCP
socket in NetX BSD.

Eliminating an Internal BSD Thread
By default, BSD utilizes an internal thread to perform some of its processing. In systems with tight memory
constraints, NetX BSD can be built with NX_BSD_TIMEOUT_PROCESS_IN_TIMER defined, which eliminates
the internal BSD thread and alternatively uses an internal timer to perform the same processing. This
eliminates the memory required for the internal BSD thread control block and stack. The timer processing is
significantly increased and the BSD processing may also execute at a higher priority than needed.

To configure BSD sockets to run in the ThreadX-timer context, define
NX_BSD_TIMEOUT_PROCESS_IN_TIMER in the project. If the BSD layer is configured to execute the BSD
tasks in the timer context, the following properties of the BSD stack element are ignored:

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 6 of 29
May.02.19

• internal_thread_stack_size
• internal_thread_priority

NetX BSD with DNS Support
If NX_BSD_ENABLE_DNS is defined, NetX BSD can send DNS queries to obtain hostname or host IP
information. This feature requires a NetX DNS Client instance to be previously created. The BSD link to this
DNS instance is via an extern NX_DNS *_nx_dns_instance_ptr. When the BSD application calls
getnameinfo with an address or getaddrinfo with a hostname, NetX BSD will call various NetX DNS Client
services to obtain the host name or IP address, respectively. Refer to the NetX DNS Client User Guide for
the Renesas Synergy Platform, available as described at the Reference section at the end of this document,
for more details on setting up a DNS Client in an application.

Raw Socket Support (NetX Duo BSD only)
To use raw sockets in the NetX Duo BSD, the NetX Duo library must be compiled with
NX_ENABLE_IP_RAW_PACKET_FILTER defined in the project. By default, it is not defined. To define it,
right click on the project in the Synergy Configuration pane -> Properties -> Cross ARM C Compiler ->
Preprocessor and add this to the list of defined symbols by clicking on the (+) icon.

The application must then enable raw socket processing for a previously created IP instance by calling the
nx_ip_raw_packet_enable service before using NetX Duo BSD services. To create a raw socket in NetX
Duo BSD, the application uses the socket service and specifies the protocol family, socket type, and
protocol:
sock_1 = socket(INT protocolFamily, INT socket_type, INT protocol)

The NetX BSD supports these values for protocolFamily : AF_INET for IPv4 sockets, AF_INET6 for IPv6
sockets, and AF_PACKET for raw sockets. The socket_type must be set to SOCK_RAW. The protocol is
application specific.

To send and receive raw packets as well as close a raw socket, the application typically uses the same BSD
services as the UDP like sendto, recvfrom, select, and soc_close. Raw sockets do not support
either accept or listen BSD services.

• By default, received IPv4 raw data includes the IPv4 header. Conversely, received IPv6 raw data does
not include the IPv6 header.

• By default, when sending either raw IPv6 or IPv4 packets, the BSD wrapper layer adds the IPv6 or IPv4
header before sending the data.

The NetX Duo BSD supports additional raw socket options, including IP_RAW_RX_NO_HEADER,
IP_HDRINCL and IP_RAW_IPV6_HDRINCL. If IP_RAW_RX_NO_HEADER is set, the IPv4 header is removed
so that the received data does not contain the IPv4 header, and the reported message length does not
include the IPv4 header. For IPv6 sockets, by default the raw socket receive does not include the IPv6
header, equivalent to having the IP_RAW_RX_NO_HEADER option set. The application may use the
setsockopt service to clear the IP_RAW_RX_NO_HEADER option. Once the IP_RAW_RX_NO_HEADER
option is cleared, the received IPv6 raw data would include the IPv6 header, and the reported message
length includes the IPv6 header. This option has no effect on IPv4 or IPv6 transmitted data.

If IP_HDRINCL is set, the application includes the IPv4 header when sending data. This option has no effect
on IPv6 transmission and is not defined by default. If the IP_RAW_IPV6_HDRINCL is set, the application
includes the IPv6 header when sending data. This option has no effect on IPv4 transmission and is not
defined by default.

IP_HDRINCL and IP_RAW_IPV6_HDRINCL have no effect on IPv4 or IPv6 reception.

Note: The BSD 4.3 Socket specification specifies that the kernel must copy the raw packet to each socket
receive buffer. However, in NetX Duo BSD, if multiple sockets are created sharing the same protocol,
the behavior is undefined.

Raw Packet Support for PPPoE (NetX Duo BSD only)
To enable the raw packet support for PPPoE, NX_BSD_RAW_PPPOE_SUPPORT must be defined in the
project. To define it, right click on the project in the Synergy Configuration pane -> Properties -> Cross

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 7 of 29
May.02.19

ARM C Compiler -> Preprocessor and add this to the list of defined symbols by clicking on the (+) icon.
This does not require that the NetX Duo library be rebuilt.

The following command creates a BSD socket to handle PPPoE raw packets:
sockfd = socket(AF_PACKET, SOCK_RAW, protocol);

The current BSD implementation only supports two protocol types in AF_PACKET family:

• ETHERTYPE_PPPOE_DISC: PPPoE Discovery packets. In the MAC data frame, the Discovery packets
have the Ethernet frame type 0x8863.

• ETHERTYPE_PPPOE_SESS: PPP Session packets. In the MAC data frame, the Session packets have
the Ethernet frame type 0x8864.

The data type sockaddr_ll (the ll stands for link layer) is used to specify parameters when sending or
receiving PPPoE frames.

struct sockaddr_ll is declared as:

struct sockaddr_ll
{
USHORT sll_family; /* Must be AF_PACKET */
USHORT sll_protocol; /* LL frame type */
INT sll_ifindex; /* Interface Index. */
USHORT sll_hatype; /* Header type */
UCHAR sll_pkttype; /* Packet type */
UCHAR sll_halen; /* Length of address */
UCHAR sll_addr[8]; /* Physical layer address */
};

Note that not every field in the structure is used by sendto() or recvfrom(). See the following description
on how to set up the sockaddr_ll for sending and receiving PPPoE packets.

A socket created in the AF_PACKET family can be used to send either PPPoE discovery packets or PPP
session packets, regardless of the protocol specified. When transmitting a PPPoE packet, application must
prepare the buffer that includes properly formatted PPPoE frame, including the MAC headers (destination
MAC address, source MAC address, and frame type.) The size of the buffer includes the 14-byte Ethernet
header.

In the sockaddr_ll struct, the sll_ifindex is used to indicate the physical interface to be used for
sending this packet. The rest of the fields in the structure are not used. Values set to the unused fields are
ignored by the BSD internal process.

The following code block illustrates how to transmit a PPPoE packet:
struct sockaddr_ll peer_addr;

/* Transmit the PPPoE frame using the primary network interface. */

peer_addr.sll_ifindex = 0;

n = sendto(sockfd, frame, frame_size, 0, (struct

sockaddr*)&peer_addr, sizeof(peer_addr));

The return value indicates the number of bytes transmitted. Since PPPoE packets are message-based, on a
successful transmission, the number of bytes sent matches the size of the packet, including the 14-byte
Ethernet header.

PPPoE packets can be received using recvfrom(). The receive buffer must be big enough to
accommodate a message of ethernet MTU size. The received PPPoE packet includes a 14-byte ethernet
header. On receiving PPPoE packets, PPPoE discovery packets can only be received by socket created with
protocol ETHERTYPE_PPPOE_DISC. Similarly, PPP session packets can only be received by socket created
with protocol ETHERTYPE_PPPOE_SESS. If multiple sockets are created for the same protocol type, arriving
PPPoE packets are forwarded to the socket created first. If the first socket created for the protocol is closed,
the next socket in the order of creation is used for receiving these packets.

After a PPPoE packet is received, the following fields in the sockaddr_ll structure are valid:

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 8 of 29
May.02.19

• sll_family: Set by the BSD internal to be AF_PACKET
• sll_ifindex: Indicates the interface from which the packet is received
• sll_protocol: Set to the type of packet received: ETHERTYPE_PPPOE_DISC or

ETHERTYPE_PPPOE_SESS

3.1 NetX BSD Support Module Important Operational Notes and Limitations
3.1.1 NetX BSD Support Module Operational Notes
NetX BSD Build Requirements
• Add the NetX Source element to the configuration and set the Extended Notify Support property to

enabled.
• Define the following property in the ThreadX Source element:

 TX_THREAD_EXTENSION_2 int bsd_errno;
By default, all the EXTENSION macros are undefined; bsd_errno can also be defined as
TX_THREAD_EXTENSION_3, TX_THREAD_EXTENSION_1 or TX_THREAD_EXTENSION_0.

• On some systems, there may be a conflict with definition of types in the native BSD. If this happens,
include _POSIX_SOURCE among the project preprocessor definitions. This is done by right clicking at the
top level of the project, Properties -> C/C++ Build-> Settings -> Cross ARM C Compiler (if using that
project platform) -> Preprocessor.

NetX BSD Socket Options
NetX BSD socket options can be enabled (or disabled) at run time on a per socket basis using the
setsockopt service, which takes as one of its inputs option_level. There are two different settings for
option_level. The first type is SOL_SOCKET for socket level options. The list of supported options are:

SO_BROADCAST
If set, this enables sending and receiving broadcast packets from NetX sockets. This is the default
behavior for NetX Duo. All sockets have this capability.

SO_ERROR
Used to obtain socket status on the previous socket operation of the specified socket, using the
getsockopt service. All sockets have this capability.

SO_KEEPALIVE
If set, this enables the TCP Keep Alive feature. This requires the NetX Duo library to be built with
NX_TCP_ENABLE_KEEPALIVE defined (setting the TCP Keepalive property to enabled in the NetX
and NetX Duo Common stack element). By default, this feature is disabled.

SO_RCVTIMEO
This sets the wait option in seconds for receiving packets on NetX Duo BSD sockets. The default
value is the NX_WAIT_FOREVER (0xFFFFFFFF) or, if non-blocking is enabled, NX_NO_WAIT (0x0.

SO_RCVBUF
This sets the window size of the TCP socket. The default value, NX_BSD_TCP_WINDOW, is set to 64
k for BSD TCP sockets. To set the size over 65535 requires the NetX Duo library to be built with the
NX_TCP_ENABLE_WINDOW_SCALING be defined (setting the TCP Keepalive property to
enabled in the NetX and NetX Duo Common stack element).

SO_REUSEADDR
If set, this enables multiple sockets to be mapped to one port. The typical usage is for the TCP
Server socket. This is the default behavior of NetX sockets.

Note: The SO_ERROR option requires that the bsd_errno is defined. To define bsd_errno, add a NetX

Source Stack below the NetX Common on the nx element. Or if using NetX Duo, add a NetX Duo
Source element below the NetX Duo Common on the nxd element. Then add a ThreadX Source
Stack element in the NetX Duo Source. Scroll down the list of Properties and choose one of the
TX_THREAD_EXTENSION macros (0-2). Set the value as follows:
int bsd_errno;

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 9 of 29
May.02.19

This is explained in NetX BSD Build Requirements section above.

The other type is IP_PROTO for options that are implemented at the IP layer and affect all sockets. The list of
run time IP level options is shown below:

IP_MULTICAST_TTL
This sets the time to live for UDP sockets. The default value is NX_IP_TIME_TO_LIVE (0x80) when the
socket is created. This value can be overridden by calling setsockopt with this socket option before
calling the socket service.

IP_ADD_MEMBERSHIP
If set, this option enables the BSD socket (applies only to UDP sockets) to join the specified IGMP
group.

IP_DROP_MEMBERSHIP
If set, this option enables the BSD socket (applies only to UDP sockets) to leave the specified IGMP
group.

The following options are only supported in NetX Duo BSD:
IP_HDRINCL
If this option is set, the calling application must append the IP header and optionally application
headers to data being transmitted on raw IPv4 sockets created in BSD. To use this option, raw
socket processing must be enabled on the IP task. See the previous section Raw Socket Support
for specific details.

IP_RAW_IPV6_HDRINCL
If this option is set, the calling application must append an IPv6 header and optionally application
headers to data being transmitted on raw IPv6 sockets created by BSD. To use this option, raw
socket processing must be enabled on the IP task. See the previous section Raw Socket Support
for specific details.

IP_RAW_RX_NO_HEADER
If cleared, the IPv6 header is included with the received data for raw IPv6 sockets created in BSD.
IPv6 headers are removed by default in BSD raw IPv6 sockets, and the packet length does not
include the IPv6 header. If set, the IPv4 header is removed from received data on BSD raw sockets
of type IPv4. IPv4 headers are included by default in BSD raw IPv4 sockets and packet length
includes the IPv4 header. This option has no effect on either IPv4 or IPv6 transmission data. See
the previous section Raw Socket Support for specific details on enabling raw packet support.

To retrieve an option setting, call getsockopt for the option name with option_level again set to
SOL_SOCKET for socket level options or IP_PROTO for IP level options.

More details on run time socket level options are available in the NetX™ BSD 4.3 Socket API Wrapper for
NetX User’s Guide for the Renesas Synergy™ Platform and NetX Duo™ BSD 4.3 Socket API Wrapper for
NetX Duo User’s Guide for the Renesas Synergy™ Platform documents available as described previously in
the Introduction section.

3.1.2 NetX BSD Support Module Limitations
• Only MSG_DONTWAIT and MSG_PEEK flags are supported for send, recv, sendto and recvfrom

calls.
• NetX BSD socket level options are limited to:

 SO_BROADCAST
 SO_ERROR
 SO_KEEPALIVE
 SO_RCVTIMEO
 SO_RCVBUF
 SO_REUSEADDR

• NetX BSD IP level options are limited to:
 IP_MULTICAST_TTL
 IP_RAW_IPV6_HDRINCL (NetX Duo BSD only)

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 10 of 29
May.02.19

 IP_ADD_MEMBERSHIP
 IP_DROP_MEMBERSHIP
 IP_HDRINCL (NetX Duo BSD only, raw sockets must be enabled)
 IP_RAW_RX_NO_HEADER (NetX Duo BSD only, raw sockets must be enabled)

• Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4. Including the NetX BSD Support Module in an Application
This section describes how to include the NetX BSD Support Module in an application using the SSP
configurator.

Note: This section assumes you are familiar with creating a project, adding threads, adding a stack to a
thread, and configuring a block within the stack. If you are unfamiliar with any of these items, refer to
the first few sections of the SSP User’s Manual to learn how to manage each of these important steps
in creating SSP-based applications.

To add the NetX BSD Support Module to an application, add it to a thread using the stacks selection sequence
given in the following table.

Table 2. NetX and NetX Duo BSD Support Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence
NetX BSD Support Threads New Stack> X-Ware> NetX>

Protocols> NetX BSD Support

NetX Duo BSD Support Threads New Stack> X-Ware> NetX Duo>
Protocols> NetX Duo BSD Support

When the NetX BSD Support module added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower-level drivers. Any drivers that need additional
configuration information will be box text highlighted in red. Modules with a gray band are individual modules
that stand alone. Modules with a blue band are shared or common and need only be added once and can be
used by multiple stacks. Modules with a pink band can require the selection of lower-level drivers; these are
either optional or recommended. (This is indicated in the block with the inclusion of this text.) If the addition
of lower-level drivers is required, the module description will include Add in the text. Clicking on any pink
banded modules will bring up the New icon and then display the possible choices.

The NetX BSD needs a packet pool for sending packets. You can use the same packet pool created for the
NetX IP instance g_packet_pool0 as shown in the following figure. Another option is to create a new
packet pool for NetX BSD and fill in the properties box to specify the size of the payload and the number of
packets. A separate packet pool might be a more optimal use of memory if the expected file transfer packets
will require a different payload from the IP default packet pool. The latter is typically also shared with the
driver to receive packets.

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 11 of 29
May.02.19

Figure 2. NetX BSD Support Module Stack

5. Configuring the NetX BSD Support Module
The NetX BSD Support module must be configured by the user for the desired operation. The SSP
configuration window will automatically identify (by highlighting the block in red) any required configuration
selections, such as interrupts or operating modes, which must be configured for lower-level modules for
successful operation. Only those properties that can be changed without causing conflicts are available for
modification. Other properties are locked and are not available for changes, and are identified with a lock
icon for the locked property in the Properties window in the ISDE. This approach simplifies the configuration
process and makes it much less error-prone than previous manual approaches to configuration. The
available configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

One of the properties most often identified as requiring a change is the interrupt priority; this configuration
setting is available within the Properties window of the associated module. Simply select the indicated
module and then view the Properties window; the interrupt settings are often toward the bottom of the
properties list, so scroll down until they become available. Note that the interrupt priorities listed in the
Properties window in the ISDE will include an indication as to the validity of the setting based on the targeted
MCU (CM4 or CM0+). This level of detail is not included in the following configuration properties tables, but
is easily visible within the ISDE when configuring interrupt-priority levels.

Note: You may want to open your ISDE, create the module, and explore the property settings in parallel
with looking over the following configuration table settings. This will help orient you and can be a
useful hands-on approach to learning the ins and outs of developing with SSP.

Table 3. Suggested Configuration Settings for the NetX BSD Support Module

ISDE Property Value Description
Internal thread stack size(bytes) 2048 Internal thread stack size selection

Internal thread priority 3 Internal thread priority selection
Note: The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other

MCUs may have different default values and available configuration settings.

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 12 of 29
May.02.19

In some cases, settings other than the defaults for lower-level modules can be desirable. For example, it
might be useful to select different MAC or IP Addresses. The configurable properties for the lower-level stack
modules are given in the following sections for completeness and as a reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be determined by
inspection of the associated Properties window from the SSP configurator.

5.1 Configuration Settings for the NetX BSD Support Lower-Level Modules
Only a small number of settings must be modified from the default for lower-level modules as indicated via
the red text in the thread stack block. Notice that some of the configuration properties must be set to a
certain value for proper framework operation and will be locked to prevent modification. The following table
identifies all the settings within the Properties section for the module. Entries with yellow highlight must be
changed to match your system. Entries with a green highlight display a recommended value different from
the default value.

Table 4. Configuration Settings for the NetX IP Instance

ISDE Property Value Description
Name g_ip0 Module name
IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

**IPv6 Global Address (use commas for
separation) only if using BSD over IPv6

0x2001, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use commas
for separation, all zeros means use
MAC address) only if using BSD over
IPv6

0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size (bytes) 2048 (default is 1024) IP Helper Thread Stack Size (bytes)
selection. Recommended this priority
be the highest os any thread using
NetX services.

IP Helper Thread Priority 1 (default is 3) IP Helper Thread Priority selection
ARP Enable ARP selection
ARP Cache Size in Bytes 520 ARP Cache Size in Bytes selection
Reverse ARP Enable, Disable

Default: Disable
Reverse ARP selection

TCP Enable, Disable
Default: Enable

TCP selection

UDP Enable, Disable
Default: Enable

UDP selection

ICMP Enable, Disable
Default: Enable

ICMP selection

IGMP Enable, Disable
Default: Enable

IGMP selection

IP fragmentation Enable, Disable
Default: Disable

IP fragmentation selection

Note: The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other
MCUs may have different default values and available configuration settings.

**Indicates properties only included with NetX Duo

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 13 of 29
May.02.19

Table 5. Configuration Settings for the NetX Packet Pool Instance (when added as new)

ISDE Property Value Description
Name g_packet_pool1 Module name
Packet Size in Bytes 1568 (default 640 bytes) Packet size selection. This eliminates

the need for packet chaining of
packets exceeding the packet payload.

Number of Packets in Pool 16 Number of packets in pool selection.
For very busy networks, this may need
to be increased.

Note: The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other
MCUs may have different default values and available configuration settings.

Table 6. Configuration Settings for the NetX Packet Pool Instance

ISDE Property Value Description
Name g_packet_pool0 Module name
Packet Size in Bytes 1568 (default 640 bytes) Packet size selection. This eliminates

the need for packet chaining of
packets exceeding the packet
payload.

Number of Packets in Pool 16 Number of packets in pool selection.
For very busy networks, this may
need to be increased.

Note: The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other
MCUs may have different default values and available configuration settings.

Entries in yellow indicate settings that must be changed from the default value for the SK-S7G2 processor

Table 7. Configuration Settings for the NetX Common Instance

ISDE Property Value Description
No configurable settings

Note: The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other
MCUs may have different default values and available configuration settings.

Table 8. Configuration Settings for the NetX Port ETHER

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Enable or disable the
parameter checking

Channel 0 Phy Reset Pin IOPORT_PORT_09_PIN_03 Channel 0 Phy reset pin
selection

Channel 0 MAC Address
High Bits

0x00002E09 Channel 0 MAC address high
bits selection

Channel 0 MAC Address
Low Bits

0x0A0076C7 Channel 0 MAC address low
bits selection

Channel 1 Phy Reset Pin IOPORT_PORT_08_PIN_06 Channel 1 Phy reset pin
selection

Channel 1 MAC Address
High Bits

0x00002E09 Channel 1 MAC address high
bits selection

Channel 1 MAC Address
Low Bits

0x0A0076C8 Channel 1 MAC address low
bits selection

Number of Receive Buffer
Descriptors

8 Number of receive buffer
descriptors selection

Number of Transmit Buffer
Descriptors

32 Number of transmit buffer
descriptors selection

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 14 of 29
May.02.19

ISDE Property Value Description
Ethernet Interrupt Priority Between 3 is reasonable. Priority 0

(highest), Priority 1:2, Priority 3 (CM4: valid,
CM0+: lowest- not valid if using ThreadX),
Priority 4:14 (CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not valid if using
ThreadX, CM0+: invalid)
Default: Disabled

Ethernet interrupt priority
selection

Name g_sf_el_nx Module name
Channel 1 Channel selection
Callback NULL Callback selection

Note: The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other
MCUs may have different default values and available configuration settings.

5.2 NetX BSD Support Module Clock Configuration
The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set by using the
SSP configurator Clock tab prior to a build, or by using the CGC Interface at run-time.

5.3 NetX BSD Support Module Pin Configuration
The ETHERC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must be
selected and configured as required by the external device. The following table illustrates the method for
selecting the pins within the SSP configuration window and the subsequent table illustrates an example
selection for the I2C pins.

Note: The operation mode selection determines what peripheral signals are available and thus what MCU
pins are required.

Table 9. Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence
ETHERC Pins Select Peripherals > Connectivity:ETHERC >

ETHERC1.RMII
Note: The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Table 10. Pin Configuration Settings for the ETHERC1

Pin Configuration Property Value Description
Operation Mode Disabled, Custom, RMII

(Default: Disabled)
Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only
(Default: _A only)

Pin group selection

REF50CK P701 REF50CK Pin
TXD0 P700 TXD0 Pin
TXD1 P406 TXD1 Pin
TXD_EN P405 TXD_EN Pin
RXD0 P702 RXD0 Pin
RXD1 P703 RXD1 Pin
RX_ER P704 RX_ER Pin
CRS_DV P705 CRS_DV Pin
MDC P403 MDC Pin
MDIO P404 MDIO Pin

Note: The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit.
Other Synergy Kits and other Synergy MCUs may have different available pin configuration settings.

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 15 of 29
May.02.19

6. Using the NetX BSD Support Module in an Application
The following example assumes the NetX BSD Support module is TCP/UDP enabled and goes through the
typical steps in using the NetX BSD Support module in an application:

NetX BSD Client:
1. Poll the nx_ip_status_check API for when the IP instance has a valid IP address.
2. Create a socket using the socket API.
3. Create sockaddr_in for client and server defining IP address and port for client and server.
4. Bind to a local source port using the bind API.
5. Connect to the server using the connect API.
6. Obtain connection information using getpeername, getsockname services [Optional]
7. Send a packet to the Server using the send API.
8. Receive a packet using the recv API.
9. Close the socket using the soc_close API.

NetX BSD Server:
1. Poll the nx_ip_status_check API for when the IP instance has a valid IP address.
2. Create a master socket using the socket API.
3. Create sockaddr_in defining IP address and port for server.
4. Bind the socket to a port using the bind API.
5. Assign a local source port to listen for client requests using the listen API.
6. Check for socket requests (read, write, exception) using the select API.
7. Accept client requests and hand off the connection to a secondary socket using the accept API.
8. Receive packets using the recv API.
9. Send packets using the send API.
10. Close the socket using the soc_close API.

These common steps are illustrated in a typical operational flow diagram in the following figures:

Figure 3. NetX BSD TCP Client Support Module

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 16 of 29
May.02.19

Figure 4. NetX BSD TCP Server Support Module
NetX Duo BSD Client
1. Poll the nx_ip_status_check API for when the IP instance has a valid IP address.
2. Create a socket using the socket API.
3. Create sockaddr_in (or sockaddr_in6 for IPv6) defining IP (or IPv6) address and port for client and

server.
4. Bind to a local source port using the bind API.
5. Connect to the server using the connect API.
6. Obtain connection information using getpeername, getsockname services [Optional]
7. Send a packet using the send API.
8. Receive packets using the recv and send API.
9. Close the socket using the soc_close API.
NetX Duo BSD Server
1. Poll the nx_ip_status_check API for when the IP instance has a valid IP address.
2. Create a master socket using the socket API.
3. Create sockaddr_in (or sockaddr_in6 for IPv6) defining IP (or IPv6) address and port for server Set

socket options using ioctl, setsockopt API
4. Bind the socket to a port using the bind API.
5. Assign a local source port to listen for client requests using the listen API.
6. Check for socket requests (read, write, exception) using the select API.
7. Accept client requests and hand off the connection to a secondary socket using the accept API.
8. Receive packets using the recv API.
9. Send packets using the send API.
10. Close the socket using the soc_close API

These common steps are illustrated in a typical operational flow diagram in the following figures:

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 17 of 29
May.02.19

Figure 5. NetX Duo BSD TCP Client Support Module

Figure 6. NetX Duo BSD TCP Server Support Module

7. The NetX BSD Support Module Application Project
This application project demonstrates the steps in a full design. The project can be found using the link
provided in the Reference section at the end of this document. You may want to import and open the
application project within the ISDE and view the configuration settings for the NetX BSD Support module.

The application project demonstrates the typical use of the NetX BSD Support module APIs. It sets up a
BSD TCP Client socket on the board for connecting to a PC running a server socket Perl script, generating
connection information, and sending and receiving a packet with the server before disconnecting and closing
the socket. Then it sets up a BSD TCP Server socket on the board for accepting TCP Client connection

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 18 of 29
May.02.19

requests, exchanging packets, and releasing the accepting (secondary) socket after the client disconnects
back to the pool of available sockets to accept connections.

Table 11. Software and Hardware Resources Used by the Application Project

Resource Revision Description
e2 studio 7.3.0 or later Integrated Solution Development Environment
SSP 1.6.0 or later Synergy Software Platform
IAR EW for Renesas Synergy 8.23.3 or later IAR Embedded Workbench for Renesas Synergy
SSC 7.3.0 or later Synergy Standalone Configurator
SK-S7G2 v3.0 to v3.3 Starter Kit
ActivePerl 5.24.2 or later Perl

A simple flow diagram of the application project client and server functions are given in the figures below:

Figure 7. NetX BSD Support Module Application Project for TCP Client Flow Diagram

Figure 8. NetX BSD Support Module Application Project for TCP Server Flow Diagram

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 19 of 29
May.02.19

Figure 9. NetX Duo BSD TCP IPv6 Client

Figure 10. NetX Duo BSD TCP IPv6 Server
The BSD_Server_Client_TCP_MG.c file (and BSD_Server_Client_TCP_MG.h) is located in the project
src folder once it has been imported into the ISDE. You can open this file within the ISDE and follow along
with the description provided to help identify key uses of APIs.

The two main functions in the BSD_Server_Client_TCP_MG.c file are run_bsd_server_session()
and run_bsd_client_session(). If SEMI_HOSTING is defined in BSD_Server_Client_TCP_MG.h,
the output of the project is directed to the Renesas Debug Virtual console in the e2 studio. The progress each
function makes running a TCP session can also be viewed using a packet trace capture such as tcpdump or
Wireshark running on any PC located on the same network. Note that since TCP packets in this application
are unicast and only visible to the hosts on the network specified by the BSD local address and peer
address.

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 20 of 29
May.02.19

Two Perl scripts are included in this package when run on a PC, will create a socket and communicate with
the board running the example project. These scripts are:
socket_tcp_client_moduleguide.pl

socket_tcp_server_moduleguide.pl

NetX BSD TCP Server and Client Session Set up

Figure 11. Physical setup

1. Connect the SK-S7G2 board and a Windows PC to a network switch or router.
2. Connect the ethernet RJ45 cable to J11 of SK-S7G2 board and the other side to switch or router.
3. Connect Micro USB cable to J19 and the other end to PC.
4. Connect another ethernet RJ45 cable from your PC and the other end to the same switch or router your

using for SK-S7G2 board.
5. Run ipconfig in a command shell on the PC to determine the IP address of its wired Ethernet adapter.

6. Update the constant ECHO_SERVER_IP_ADDRESS in the file BSD_Server_Client_TCP_MG.h with
this IP address.

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 21 of 29
May.02.19

7. Set the IP address of the board to an address that is on the same network as the PC but that is not
taken. To determine if it is not taken run arp -a in a command shell on the PC. Alternatively you can
ping the IP address you would like to assign the S7G2 and if nobody responds, you can use that IP
address, at least for the time being.

8. Update the two Perl scripts with these two IP addresses using Text Editor
socket_tcp_client_moduleguide.pl:

socket_tcp_server_moduleguide.pl:

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 22 of 29
May.02.19

The auto-generated file bsd_thread_entry.c will call run_bsd_client_session()if
RUN_BSD_CLIENT is defined in BSD_Server_Client_TCP_MG.h; if not defined, it will run
run_bsd_server_session().

• Define DUO_IPV6 to run BSD over IPv6 (perl scripts not provided). Note that IPv6 is not supported in the
NetX BSD.

• If DUO_IPv6 is defined, and you are running the BSD Client socket session (RUN_BSD_CLIENT is
defined), set the localAddr6 IPv6 address for the PC running the TCP server.

• Make sure the IPv4 Address in the NetX IP Instance stack element in the project matches the device

sockaddr_in addresses defined in run_bsd_server_session and run_bsd_client_session in
BSD_Server_Client_TCP_MG.c.

• If you change CLIENT_PORT or SERVER_PORT (defined in BSD_Server_Client_TCP_MG.h) you will
need to modify the perl scripts accordingly. By default they match and you need not change them.

Table 12. Configuration Settings for NetX IP Instance Support Module

ISDE Property Value Description
Name g_ip0 Module name
IPv4 Address (use commas for
separation)

<device IP
address>

IPv4 Address selection

Table 13. Configuration Settings for the ThreadX Source Support Module

ISDE Property Value Description
TX_THREAD_EXTENSION_0 int bsd_errno; Enables error information in the thread

context to be retrieved by the BSD support
instance.

Table 14. Configuration Settings for the NetX Source Support Module

ISDE Property Value Description
Extended Notify Support Enabled Enables callbacks in NetX to notify the BSD instance

of certain events such as connection established and
packet received. Required for NetX BSD Support
projects.

Table 15. NetX Port ETHER Configuration Settings for the Application Project

ISDE Property Value Set
Parameter Checking BSP, Enabled, Disabled (Default: BSP)
Channel 0 Phy Reset Pin IOPORT_PORT_09_PIN_03
Channel 0 MAC Address High Bits 0x00002E09
Channel 0 MAC Address Low Bits 0x0A0076C7
Channel 1 Phy Reset Pin IOPORT_PORT_08_PIN_06
Channel 1 MAC Address High Bits 0x00002E09
Channel 1 MAC Address Low Bits 0x0A0076AB

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 23 of 29
May.02.19

ISDE Property Value Set
Number of Receive Buffer Descriptors 8
Number of Transmit Buffer Descriptors 32
Ethernet Interrupt Priority Priority 2
Name g_sf_el_nx
Channel 1
Callback NULL

• Set the Extended Notify Support to enabled in the NetX Source component. This is required for the

NetX library to support BSD.
• Set the value of TX_THREAD_EXTENSION_0, TX_THREAD_EXTENSION_1, or

TX_THREAD_EXTENSION_2 properties to int bsd_errno; in the ThreadX source component.
• Your system may require_POSIX_SOURCE to be defined in the preprocessors list in the project compiler:

Right click on the project in the Synergy Configuration view, choose Properties -> C/C++ Build ->
Setting -> Cross ARM C Compiler -> Preprocessor. Click on the + icon in the Defined symbols pane,
and type _POSIX_SOURCE.

• Click on Generate Project and then build the project.

8. Customizing the NetX BSD Support Module for a Target Application
There are numerous attributes that can be applied to BSD sockets to customize a socket for the application
purpose. Some of the typical attributes to fine tune an application are provided as follows:

Non-blocking Sockets
BSD sockets can be set to non-blocking connect, accept, send/sendto, and recv/recvfrom
calls have a NX_NO_WAIT option (timeout = 0). To make socket calls non-blocking, use the ioctl and
fcntl API as follows on a previously created socket with descriptor sockfd:

fcntl(sockfd, F_SETFL, O_NONBLOCK)

int arg = NX_TRUE;
ioctl(sockfd, FIONBIO, &arg)

Note that internally NetX and NetX BSD Support use an internal timeout.

Setting socket options
Use setsockopt to set socket options. A common option is the reuse address option. To enable the reuse
address (the default in NetX) set the value to 1. To disable, set the value to 0.

INT reuseaddr = 1;

setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR &reuseaddr, sizeof(INT));

Two other socket options of interest are the SO_SEDTIMEO and SO_RCVTIMEO options. Respectively these
set the timeout option on the send and recv calls. They set using the setsockopt API with the
SOL_SOCKET option level. The input is a struct timeval data type:

Struct timeval time_0;

/* Set the timeout value to 50 ticks. The conversion of microseconds to

 ticks is handled internally. */

time_0.tv_sec = 0;

time_0.tv_usec = 50 * NX_MICROSECOND_PER_CPU_TICK

setsockopt(sockfd, SOL_SOCKET, SO_RCVTIMEO, &time_0, sizeof(time_0));

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 24 of 29
May.02.19

Getting socket options
Use the getsockopt to obtain information relevant to socket operations. A very common option is the
SO_ERROR option.

INT error, len;

len = sizeof(error);

getsockopt(sock_tcp_client, SOL_SOCKET, SO_ERROR, &error, &len);

where the value of error is defined in nx_bsd.h for NetX BSD Support, and nxd_bsd.h for NetX Duo
BSD Support.
errno
Another way to check for an error is the errno macro. If a connect or accept call on a non-blocking socket
returns a non-successful result, check for indication of an in-progress connection/accept. This is not a
failed connection. NetX returns this for non-blocking sockets:

if (errno == EINPROGRESS)

If any socket call returns a non-successful result, check if the connection is terminated. Not an error per se.
The other side has closed the connection.

if (errno != ENOTCONN)

The difference between getsockopt with the SO_ERROR option and errno, is that for getsockopt the
error is in the context of the socket and is set by BSD directly. For errno, the error is in the context of the
BSD application thread and the error status in derived from the underlying NetX function call.

9. Running the NetX BSD Support Module Application Project
To run the NetX BSD Support module application project and to see it executed on a target kit, you can
import it into your ISDE, compile, and run debug. Set up your hardware according to Figure 5 and refer to the
Synergy Project Import Guide (r11an0023eu0121-synergy-ssp-import-guide.pdf, included in this package)
for instructions on importing the project into e2 studio or IAR Embedded Workbench® for Renesas Synergy™
and build/run the application.

Running the TCP Client Session
A TCP Server must already be running on the network before calling bsd_run_client_session(). The
project runs best if the TCP server and BSD TCP Client run on a local network, as opposed to through a
switch to a larger network. bsd_run_client_session creates a TCP socket using the socket API,
binds to a local port CLIENT_PORT/IPv4 address by calling the bind API, and connects to the TCP Server
specified in the echoServAddr address instance by calling the connect API.

Note: The application should call bind explicitly before calling connect(). connect() will call bind() if it detects
the socket is not bound. However, there is a bug in connect(), fixed in SSP releases following 1.5.0 such
that the socket is not assigned a valid network interface.

Once the connection succeeds, the application can check the server connection information by calling the
getpeername API, and its own connection port and IP address. Then it sends a packet and waits to
receive a packet, before closing (disconnects and closes internally) the socket by calling the soc_close
API.

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 25 of 29
May.02.19

1. Open a command shell in Windows and run the Perl script socket_tcp_server_moduleguide.pl.

2. Be sure the constant RUN_BSD_CLIENT is defined in the file BSD_Server_Client_TCP_MG.h.
3. Build the project and run it on the SK-S7G2 board with the virtual debugger window open in the tool.

4. A properly running example will display the output shown above.

Running the TCP Server Session
The application checks that the IP address is resolved and NetX is ready to perform API services. A master
TCP Server socket is created with the socket call. It then defines a sockaddr_in for its IP address and
port. For IPv6 BSD connections in NetX Duo BSD, it defines a sockaddr_in6 for the IPv6 address and
port*. It binds to the port it will listen on. Then the socket is set to listen on the specified server port. It calls
select until it gets a Client connection request. After starting the session, start a TCP Client on the local
network to connect to this server. When the connection is successful, the server waits to receive a packet
from the client. Then it returns the packet back. Then the server closes the socket (if the client hasn’t
already done so).

Note:

• Run the code and pause it.
• Run “socket_tcp_client_moduleguide.pl” file.
• Now keep the code running then we will see the output console.

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 26 of 29
May.02.19

1. Open a command shell in Windows and run the Perl script socket_tcp_client_moduleguide.pl.

2. Be sure the constant RUN_BSD_CLIENT is not defined in the file BSD_Server_Client_TCP_MG.h by
commenting this line out:

3. Build the project and run it on the SK-S7G2 board with the Renesas virtual debugger window open in e2

studio.

Figure 12. Example Output from NetX BSD Support Module Application Project

4. A properly running example will display the output shown above.

*Note that IP and IPv6 address information must be submitted in network byte order. When defining the
sockaddr_in and sockaddr_in6 data instances, the IP and IPv6 addresses are converted from host to
network byte order using the htonl macro. The port is converted to a network byte order using the htons
macro.

10. NetX BSD Support Module Conclusion
This module guide has provided all the background information needed to select, add, configure, and use the
BSD module in an example project. Many of these steps were time consuming and error-prone activities in
previous generations of embedded systems. The Renesas Synergy Platform makes these steps much less
time consuming and removes common errors, like conflicting configuration settings or incorrect selection of
lower-level drivers. The use of high-level APIs (as demonstrated in the application client and server projects)
illustrates additional development-time savings by allowing work to begin at a high level and avoiding the
time required in older development environments to use, or, in some cases, create, lower-level drivers.

For projects developed in BSD sockets, porting to a new TCP/UDP stack is potentially an arduous and
lengthy process. The BSD interface to the NetX and NetX Duo stack greatly simplifies this task. Developing
in the Synergy environment expedites most of the required steps, such as creating the IP instance, manually
enabling basic services such as UDP and TCP support, creation of basic resources such as sockets, and
setting up notification callbacks with NetX for socket events. The application is bundled with the NetX Port
ETHER driver to eliminate the need to develop and debug low level drivers.

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 27 of 29
May.02.19

This module guide offers suggestions for further development of BSD projects, including discussion of more
complex features like raw packet processing, using secondary interfaces, and setting socket options for non-
blocking sockets and the TCP keep alive support.

11. NetX BSD Support Module Next Steps
After you have mastered a simple BSD module project you may want to consider more complex features.
These include creating and using raw sockets (NetX Duo BSD only), joining and leaving IGMP multicast
memberships using the IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP, using the setsockopt.

The application project run_bsd_server_session function can be modified to continually check for new
connection requests rather than terminating after a single connection. In this manner, the BSD TCP Server
can handle multiple connections with TCP clients simultaneously which is the normal usage of BSD TCP
Server applications. Or it can be simplified to remove the select statement logic and simply wait to accept a
single connection request.

12. Reference Information
SSP User Manual: Available in html format in the SSP distribution package and as a pdf from the Renesas
Synergy Gallery.

Links to all the most up-to-date NetX BSD Support module reference materials and resources are available
on the Synergy Knowledge Base: https://en-support.renesas.com/knowledgeBase/16977450.

https://en-support.renesas.com/knowledgeBase/16977450

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 28 of 29
May.02.19

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform NetX™, NetX Duo™ BSD Support Module Guide

R11AN0172EU0102 Rev.1.02 Page 29 of 29
May.02.19

Revision History

Rev. Date
Description
Page Summary

1.00 Apr.18.17 - Initial Release
1.01 Dec.08.17 - Added NetX Duo, edit and release
1.02 May.02.19 - Updated for SSP v1.6.0

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. NetX BSD Support Module Features
	2. NetX BSD Support Module APIs Overview
	3. NetX BSD Support Module Operational Overview
	3.1 NetX BSD Support Module Important Operational Notes and Limitations
	3.1.1 NetX BSD Support Module Operational Notes
	3.1.2 NetX BSD Support Module Limitations

	4. Including the NetX BSD Support Module in an Application
	5. Configuring the NetX BSD Support Module
	5.1 Configuration Settings for the NetX BSD Support Lower-Level Modules
	5.2 NetX BSD Support Module Clock Configuration
	5.3 NetX BSD Support Module Pin Configuration

	6. Using the NetX BSD Support Module in an Application
	7. The NetX BSD Support Module Application Project
	8. Customizing the NetX BSD Support Module for a Target Application
	9. Running the NetX BSD Support Module Application Project
	10. NetX BSD Support Module Conclusion
	11. NetX BSD Support Module Next Steps
	12. Reference Information

