

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Application Note

Multimedia Processor for Mobile Applications

EMMC Interface
--

EMMA Mobile1

Document No. S19904EJ1V0AN00

Date Published Aug. 2009

 2009

Printed in Japan

PREFACE

PREFACE

Purpose The purpose of this document is to specify the usage of EMMA Mobile1

EMMC (SDM) interface.

Organization This document includes the following:

 Introduction

 Usage of EMMC(SDM) Interface

 Example of EMMC Operation

 EMMC Driver Function

Notation Here explains the meaning of following words in text:

Note Explanation of item indicated in the text

Caution Information to which user should afford special attention

Remark Supplementary information

Related document The following tables list related documents.

Reference Document

Document Name Version/date Author Description

S19265EJ1V0UM00_ASMUGIO.pdf 1st Edition NECEL SMU&GPIO user’s manual

S19268EJ1V0UM00_1chip.pdf 1st Edition NECEL 1 chip user’s manual

S19361JJ2V0UM00_SDI.pdf 2nd Edition NECEL
SDM interface user’s

manual

S19907EJ1V0AN00_GD.pdf 1st Edition NECEC GD Spec

KMCEG0000A-S9980(4GB

moviNAND_8Gb MLC Based)_0.0.pdf

V0.0
SAMAUN

G
EMMC chip user’s manual

Application Note S19904EJ1V0AN00

PREFACE

Application Note S19904EJ1V0AN00

Disclaimers

 The information contained in this document is subject to change without prior

notice in the future. Refer to the latest applicable data sheet(s) and user manual

when designing a product for mass production.

 No part of this document may be copied or reproduced in any form or by any means

without the prior written consent of NEC Electronics. NEC Electronics assumes no

responsibility for any errors that may appear in this document.

 NEC Electronics does not assume any liability for infringement of patents, copyrights or

other intellectual property rights of third parties by or arising from the use of NEC

Electronics products listed in this documents or any other liability arising from the use of

such products. No license, express, implied or otherwise, is granted under any patents,

copyrights or other intellectual property rights of NEC Electronics or others.

 Descriptions of circuits, software and other related information in this document are

provided for illustrative purposes in semiconductor product operation and application

examples. The incorporation of these circuits, software and information in the design of a

customers’ equipment shall be done under the full responsibility of the customer. NEC

Electronics assume no responsibility for any losses incurred by customers or third parties

arising from the use of these circuits, software and information.

 While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC

Electronics products, customers agree and acknowledge that possibility of defects thereof

cannot be eliminated entirely. To minimize risks of damage to property or injury (including

death) to persons arising from defects in NEC Electronics products, customers must

incorporate sufficient safety measures in their design, such as redundancy, fire-

containment and anti-failure features.

Note)

1. “NEC Electronics” as used in this document means NEC Electronics Corporation and also

includes its majority-owned subsidiaries.

2. “NEC Electronics products” means any product developed or manufactured by or for NEC

Electronics (as defined above)

3. All trademarks or registered trademarks are the property of their respective owners.

Registered trademarks ® and trademarks™ are not noted in this document.

INDEX 4/65

CONTENTS

Chapter 1 Introduction ... 7

1.1 Outline .. 7

1.2 Development Environment... 7

Chapter 2 Usage of EMMC(SDM) Interface .. 8

2.1 Initialization... 9

2.2 Data Transfer...11

2.3 Erase .. 14

2.4 Write Protect Management .. 15

2.5 Lock/Unlock Operation... 16

Chapter 3 Example of EMMC Operation.. 17

3.1 Outline of EMMC Operation ... 17

3.2 Initialization... 18

3.2.1 Operation Flow .. 18

3.2.2 Operation Detail... 19

3.3 Example of EMMC Single Block Read/Write ... 24

3.3.1 Operation Flow .. 24

3.3.2 Operation Detail... 25

3.4 Example of EMMC Multi Block Operation.. 27

3.4.1 Operation Flow .. 27

3.4.2 Operation Detail... 28

3.5 Example of EMMC Write Protect Operation .. 29

3.5.1 Operation Flow .. 29

3.5.2 Operation Detail... 30

3.6 Example of EMMC Lock/Unlock Operation.. 31

3.6.1 Operation Flow .. 32

3.6.2 Operation Detail... 33

APPENDIX A EMMC Driver Function ... 35

A.1 Function List... 35

A.2 Global Variable Define ... 35

A.3 Structure Define ... 36

A.3.1 mmc_csd... 36

A.4 Function Details ... 37

A.4.1 Hardware Initialization Function... 37

A.4.2 EMMC Init Operation... 38

A.4.3 Sector Setting.. 40

A.4.4 Send Command .. 41

A.4.5 Set Clock... 43

A.4.6 Set Block Length ... 44

A.4.7 Select Card ... 45

Application Note S19904EJ1V0AN00

INDEX 5/65

A.4.8 Configuration Extend CSD.. 46

A.4.9 Check Device Status ... 48

A.4.10 Erase Function .. 49

A.4.11 Single Block Read ... 50

A.4.12 Single Block Write ... 52

A.4.13 Multiple Block Read .. 54

A.4.14 Multiple Block Write... 55

A.4.15 Lock/Unlock Function.. 56

A.4.16 Write Protect Manage ... 58

A.4.17 Transfer Prepare ... 59

A.4.18 Decode CSD ... 60

A.4.19 Check Response Status.. 61

APPENDIX B COMMANDS .. 62

ANNEX Modification History... 65

Application Note S19904EJ1V0AN00

INDEX 6/65

Application Note S19904EJ1V0AN00

LIST OF TABLES

Table 1-1 Hardware Environment ... 7

Table 1-2 Software Environment... 7

Table 2-1 Lock/Unlock EMMC Data Structure .. 16

Table A-1 EMMC Driver Function List... 35

Table A-2 Global Variable Define.. 35

Table A-3 Structure Define.. 36

Table A-4 Structure of mmc_csd... 36

Table B-1 Command Description List ... 62

LIST OF FIGURES

Figure 2-1 EMMA Mobile 1 EMMC Initialization ... 9

Figure 2-2 EMMA Mobile 1 EMMC Data Transfer in DMA Mode 11

Figure 2-3 EMMA Mobile 1 EMMC Erase Operation .. 14

Figure 2-4 EMMA Mobile 1 EMMC Lock/Unlock Operation.. 16

Figure 3-1 Connection between EMMA Mobile 1 and KMCEG0000A.............................. 17

Figure 3-2 Initialization before Test... 18

Figure 3-3 EMMC Single Read/Write Operation Flow .. 24

Figure 3-4 EMMC Multi block Operation Flow .. 27

Figure 3-5 EMMC Write Protect Operation Flow .. 29

Figure 3-6 EMMC Lock/Unlock Operation Flow.. 32

Figure A-1 SDM Hardware Initialization Flow ... 37

Figure A-2 EMMC Chip Initialization Flow... 39

Figure A-3 Sector Setting Flow ... 40

Figure A-4 Send Command .. 42

Figure A-5 Set Block Length ... 44

Figure A-6 Select Card.. 45

Figure A-7 Configure Extend CSD.. 46

Figure A-8 Check EMMC Chip Stauts... 48

Figure A-9 Single Block Read in CPU mode .. 51

Figure A-10 Single Block Write in CPU mode... 53

Figure A-11 Lock/Unlock Progress ... 57

Figure A-12 Write Protect Management.. 58

Figure A-13 Register Prepare before Data transfer .. 59

Figure A-14 Check Response Status.. 61

Chapter 1 Introduction 7/65

Chapter 1 Introduction

1.1 Outline

This document will show users how to operate EMMC chip on EMMA Mobile1 evaluation board.

The EMMC operation will use SDM interface. More details about EMMC feature please refer to”

KMCEG0000A-S9980 (4GB moviNAND_8Gb MLC Based)_0.0.pdf” (EMMC chip user’s

manual), please contact “Samsung Electronics ” to get the EMMC chip user’s manual.

1.2 Development Environment

 Hardware environment of this project is listed as below.

Table 1-1 Hardware Environment

Name Version Maker

EMMA Mobile 1 evaluation board (PSKCH2Y-

S-0016-01)

- NEC Electronics

PARTNER-Jet ICE ARM M20 Kyoto Microcomputer Co. Ltd

 Software used in this project is listed as below.

Table 1-2 Software Environment

Name Version Maker

GNUARM Toolchain V4.3.2 GNU

WJETSET-ARM V5.10a Kyoto Microcomputer Co. Ltd

Application Note S19904EJ1V0AN00

 Chapter 2 Usage of EMMC Interface 8/65

Chapter 2 Usage of EMMC(SDM) Interface

According to the hardware feature, the EMMA Mobile 1 EMMC (SDM) interface has the following

main function:

1. Initialization

2. Data Transfer

3. Erase

4. Write Protect Management

5. Lock/Unlock Operation

Application Note S19904EJ1V0AN00

 Chapter 2 Usage of EMMC Interface 9/65

2.1 Initialization

Following figure shows EMMA Mobile 1 EMMC initialize progress:

Start

End

Power on

Clock and Reset setting about

SDM module

Wait/Read/Driver ability and Auto

frequency configuration

Switch GPIO to SD function and

Setting pull-up/pull-down for SD

Set block size (CMD 16)

Software reset SD

Setting bus width and response

time out value

Clear and mask all info

Enable and setting clock (in low

frequency)

Send CMD 0, setting EMMC

device into idle state

Send command 1, setting device

into ready state

Get CID info(CMD 2) and setting

relative address(CMD 3) for all

devices in bus

Get CSD info from device(CMD 9)

Select device (CMD 7)

Setting clock to higher frequency

Setting transfer bus width and

speed (CMD 6)

CHG_PINSEL_G80
CHG_PINSEL_G112
CHG_PULL_G112

ASMU_GCLKCTRL4ENA
ASMU_GCLKCTRL4
ASMU_RESETREQ3
ASMU_RESETREQ3ENA

ASMU_AB1_SDICWAITCTRL
ASMU_AB1_SDICREADCTRL
CHG_DRIVE1
ASMU_AUTO_FRQ_MASK3

SDIx_SOFT_RST

SDIC_OPTION

SDIC_INFO1
SDIC_INFO2
SDIC_INFO1_MASK
SDIC_INFO2_MASK

SDIC_CLK_CTRL

SDIC_CMD

Note3

Note4

Note5

SDIC_ARG0
SDIC_ARG1
SDIC_CMD

Note1

Note2

Note6

Figure 2-1 EMMA Mobile 1 EMMC Initialization

Application Note S19904EJ1V0AN00

 Chapter 2 Usage of EMMC Interface 10/65

Note:

1) Switch pins to SD function, in this document, use SD2 as the EMMC interface, users should

operate this step according the actual hardware connection, for example: if users connect the

EMMC with SD1 interface, please switch the related GPIO to SD1 function.

2) Before the initialization of EMMC device, set the bus width to be 1bit and the response time

out value to be maximum, reason is: in EMMC identification progress, bus width will use 1bit and

the clock frequency should in 10-400 KHz range.

3) After setting the clock for SDM transfer, please wait 1ms for stability.

4) After send command, user should check the command response, if error occurred (except

when response time out for CMD 2), the initialization will be ended abnormally.

Commands simple description please refers to the “APPENDIX B COMMANDS”.

More details about the commands format and function please refer to “Chapter4.6 Commands”

of the EMMC chip user’s manual.

5) CID: Card Identification

 CSD: Card Specific Data

More details about CID and CSD information please refer to “Chapter 5.0 REGISTERS” of the

EMMC chip user’s manual

6) After initialization, users can configure the bus width and clock frequency for transfer speed

according the CSD parameter of EMMC chip, the transfer speed defines in CSD register just

clock frequency not in high speed mode, so the actual transfer speed is related to EMMC chip

specification version.

7) More details about SDM registers and related bits please refer to SDM interface user’s manual

of EMMA Mobile 1.

Application Note S19904EJ1V0AN00

 Chapter 2 Usage of EMMC Interface 11/65

2.2 Data Transfer

EMMC has two kinds of data transfer mode: DMA mode and CPU mode. In realize operation,

mainly use DMA mode to transfer data, so in this chapter, introduce the DMA mode operation,

about EMMC single block read/write in CPU mode; please refer to “APPENDIX A EMMC Driver

Function”. Following figure shows EMMA Mobile 1 EMMC DMA read/write progress:

Start

End

Enable SDIC DMA mode

Start DMA

DMA init and transfer setting

 Send read/ write command

DMA transfer end?

R/W transfer end?

There is still data
 to be transfer?

Resetting DMA transfer parameter

Restart DMA for the left data

Check whether error occuer

No

Yes

Yes

No

Yes

No
Clear transfer info and disable

DMA mode

Wait for EMMC not busy SDIC_INFO2[14]

SDIC_CC_EXT_MODE

Note1

Set sector enable and sector

number to be transfered
SDIC_STOP
SDIC_SECCNT

Transfer prepare Note3

Note2

Note4

SDIC_INFO1[2]

SDIC_INFO2

Disable sector

Check EMMC chip status

SDIC_INFO1
SDIC_INFO2
SDIC_CC_EXT_MODE

Note5

SDIC_STOP

Figure 2-2 EMMA Mobile 1 EMMC Data Transfer in DMA Mode

Note:

1) In DMA init and transfer setting step, user should reset DMA channel, open DMA clock, clear

DMA interrupt source, set transfer parameter for DMA.

Application Note S19904EJ1V0AN00

 Chapter 2 Usage of EMMC Interface 12/65

 DMA reset setting related register:

 ASMU_RESETREQ0ENA

ASMU_RESETREQ0

DMA clock setting related register:

ASMU_GCLKCTRL0

ASMU_GCLKCTRL0ENA

P2M Clear DMA interrupt source related register:

DMA_P2M_PE0_LCH4LCH7_INT_REQ_CL

DMA_P2M_DSP_LCH4LCH7_INT_REQ_CL

M2P Clear DMA interrupt source related register:

DMA_M2P_PE0_LCH4LCH7_INT_REQ_CL

DMA_M2P_DSP_LCH4LCH7_INT_REQ_CL

P2M DMA transfer setting related register:

DMA_P2M_LCH5_AADD

DMA_P2M_LCH5_BADD

DMA_P2M_LCH5_BOFF

DMA_P2M_LCH5_BSIZE

DMA_P2M_LCH5_BSIZE_COUNT

DMA_P2M_LCH5_LENG

DMA_P2M_LCH5_MODE

M2P DMA transfer setting related register:

DMA_M2P_LCH5_BADD

DMA_M2P_LCH5_AADD

DMA_M2P_LCH5_AOFF

DMA_M2P_LCH5_ASIZE

DMA_M2P_LCH5_ASIZE_COUNT

DMA_M2P_LCH5_LENG

DMA_M2P_LCH5_MODE

2) Start DMA transfer.

P2M start register

DMA_P2M_CONT

M2P start register

DMA_M2P_CONT

Application Note S19904EJ1V0AN00

 Chapter 2 Usage of EMMC Interface 13/65

3) Before data transfer, clear all information register, make sure data transfer end, enable the

related interrupt.

Related register:

SDIC_INFO1

SDIC_INFO2

SDIC_INFO1_MASK

SDIC_INFO2_MASK

SDIC_STOP

4) Check whether DMA transfer has ended

P2M transfer related register:

DMA_P2M_CONTSTATUS

M2P transfer related register:

 DMA_M2P_CONTSTATUS

5) After data transfer, send CMD 13(SEND_STATUS) to read EMMC status register info, check

whether error occurred.

Related register:

SDIC_ARG0

SDIC_ARG1

SDIC_CMD

SDIC_RSP0

SDIC_RSP1

SDIC_INFO1

SDIC_INFO2

SDIC_INFO1_MASK

SDIC_INFO2_MASK

More details about EMMC status register information please refer to “Chapter 4.9 moviNAND

Status” of the EMMC chip user’s manual.

Application Note S19904EJ1V0AN00

 Chapter 2 Usage of EMMC Interface 14/65

2.3 Erase

Following figure shows EMMA Mobile 1 EMMC erase progress:

Start

Error End

Send CMD 35 for erase group

start setting

Send CMD 38 to execute erase

operation

Send CMD 36 for erase group end

setting

Send command OK?

Send command OK?

Yes

No

Send command OK?

Normal End

No

No

Yes

Yes

Note 1

Figure 2-3 EMMA Mobile 1 EMMC Erase Operation

Note:

1) Parameter about CMD 35, CMD36 will be the address to start and end, and the address will be

in Group erase unit, more details about erase operation and meaning of erase group unit please

refer to “Chapter 4.2.9 Erase” and “Chapter 4.10 Memory Array Partitioning” of EMMC chip

user’s manual.

Application Note S19904EJ1V0AN00

 Chapter 2 Usage of EMMC Interface 15/65

2.4 Write Protect Management

Write protect (WP) management including there command: set write protect (CMD 28), clear write

protect (CMD 29) and send write protect info (CMD30). To realize these functions, users just need

to send command to EMMC device.

The write protect argument is WP address, it based on unit of WP_GRP_SIZE, which is defined in

CSD register.

More details about write protect function and meaning of WP_GRP_SIZE please refer to

“Chapter 4.2.10 Write Protect Management” and “Chapter 4.10 Memory Array Partitioning” of

EMMC chip user’s manual.

Application Note S19904EJ1V0AN00

 Chapter 2 Usage of EMMC Interface 16/65

2.5 Lock/Unlock Operation

Lock/Unlock operation including password setting and cancel lock/unlock EMMC device and

enforce erase. To complete these function, please follow the fixed data structure format as followed.

Table 2-1 Lock/Unlock EMMC Data Structure

Byte # Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0

0 Reserved ERASE LOCK_UNLOCK CLR_PWD SET_PWD

1 PWD_LEN

2

…

PWD_LE

N + 1

Password data

ERASE: ‘1’ = Forced Erase Operation (all other bits shall be ‘0’) and only command byte is sent.

LOCK/UNLOCK: ‘1’ = Locks the EMMC. ‘0’ = Unlock the EMMC (note that it is valid to set this bit

together with SET_PWD but it is not allowed to set it together with CLR_PWD).

CLR_PWD: ‘1’ = Clears password (PWD).

SET_PWD: ‘1’ = Set new password to PWD

PWD_LEN: Defines the following password length (in bytes). Valid password length is 1 to 16 bytes.

 PWD: The password (new or currently used depending on the command).

Following figure shows the lock/unlock operation flow:

Start

Error End

Configure EMMC lock data

structure buffer

Command execute OK?

Yes

No

Setting block length OK?

Normal End

No

Yes

Setting block length for lock/unlock operation

Execute lock/unlock command

with EMMC lock data structure

Figure 2-4 EMMA Mobile 1 EMMC Lock/Unlock Operation

More details about lock/unlock operation and fixed data structure please refer to “Chapter 4.2.11

moviNAND Lock/Unlock Operation” of EMMC chip user’s manual.

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 17/65

Chapter 3 Example of EMMC Operation

3.1 Outline of EMMC Operation

This chapter will show users how to operate EMMC chip using SDM interface.

On EMMA Mobile 1 evaluation board (PSKCH2Y-S-0016-01), the external EMMC chip is

KMCEG0000M (Manufacture: Samsung). Its capacity is 4GB, and it has multimedia card system

specification Ver4.2 compatible feature. More details about the KMCEG0000A please refer to its

user’s manual.

Figure 3-1 shows the connection of EMMA Mobile 1 EMMC interface and KMCEG0000M.

SD2_DATA2

SD2_DATA1

SD2_DATA0

SD2_CKO

SD2_DATA3 DAT3

SD2_CMD

EMMA Mobile1 KMCME0000M

DAT2

DAT4~7

CLK

CMD

DAT0

DAT1

DAT3

KMCME0000M

DAT2

DAT4~7

CLK

CMD

DAT0

DAT1

Figure 3-1 Connection between EMMA Mobile 1 and KMCEG0000A

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 18/65

3.2 Initialization

Before EMMC operation, initialization should be executed at first.

3.2.1 Operation Flow

Start

End

Init EMMC device

[em1_emmc_init()]

Init hardware interface

[em1_emmc_hw_init()]

Init OK?

Set block size to be512Byte

[em1_emmc_set_blklength()]

Set block size OK?

Error End

Yes

No

Yes

No

Check EMMC chip status

[em1_emmc_check_dev_status]

Force erase the EMMC

EMMC locked?
No

Force erase Ok?

Yes

Yes

No

Note1

Figure 3-2 Initialization before Test

More details about the functions used in initialization please refer to “APPENDIX A EMMC Driver

Function”

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 19/65

3.2.2 Operation Detail

(1) Init SDM module hardware

Init SDM module (function: em1_emmc_hw_init()).

Following steps shows the hardware initialization (em1_emmc_hw_init()) progress:

Step1: Reset setting

 ASMU_RESETREQ3[4] (0: reset; 1: cancel reset)

ASMU_RESETREQ3ENA [4] (0: disable setting; 1: enable setting)

Step2: Clock setting

 ASMU_GCLKCTRL4[7] (0: close clock; 1: open clock)

 ASMU_GCLKCTRL4ENA[7] (0: disable setting; 1: enable setting)

Step3: Switch pins to SD function:

 CHG_PINSEL_G80 = 0x04000000 (GIO_P93 -> SD2_CKI)

 CHG_PINSEL_G112 = 0x00000555 (GIO_P112-117 -> SD2_CKO/CMD/DATA0-3)

Step4: Pull-up/down setting

CHG_PULL_G112 = 0x00666661 (SD2_CKO: Pull-up/down Disable, SD2_CMD

and DATA0-3: Input Enable, Pull-up enable)

Step5: Drive capability setting

 CHG_DRIVE1 = 0x05000000 (SD2_CK and SD2 pins : 4mA, default value)

Setp6: Read and wait control register setting

 ASMU_AB1_SDICWAITCTRL = 0x00000300

 ASMU_AB1_SDICREADCTRL = 0x00000000 (default value)

Setp7: Auto frequency control setting

 ASMU_AUTO_FRQ_MASK3 = 0x07 (default value)

(2) Init EMMC device

EMMC device initialization (em1_emmc _init()) including following steps:

Step1: Power on EMMC device

Step2: Soft reset SD

 SDIC_SOFT_RST = 0x0000 (module reset)

SDIC_SOFT_RST = 0x0007 (release reset)

Step3: Set bus width and time out value for response, card detect stable time

SDIC_OPTION = 0x80EE (bus width: 1bit; biggest time value for response time

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 20/65

out and card detection stable time)

Step4: Clear and mask all information and interrupt

 SDIC_INFO1 = 0x0000

 SDIC_INFO2 = 0x0000

 SDIC_INFO1_MASK = 0xFFFF

SDIC_INFO2_MASK = 0xFFFF

Step5: Set clock

SDIC_CLK_CTRL = 0x0140 (divide factor: 256, about 325KHz; Use the lower

frequency when init EMMC)

 Delay 1ms after setting the clock frequency

Step6: Send CMD0, make EMMC chip to idle state, including following steps:

 Clear all error and information (SDIC_INFO1, SDIC_INFO2)

Enable response end interrupt occur (SDIC_INFO1_MASK)

Enable all error occur (SDIC_INFO2_MASK)

Send command (SDIC_CMD)

Wait for command send end or error occur (SDIC_INFO1, SDIC_INFO2)

Check whether error occur (SDIC_INFO2, SDIC_RSP0, SDIC_RSP1)

 Note:

 If command has argument, setting the argument at first (SDIC_ARG0, SDIC_ARG1)

Step7: Send CMD1 with argument 0x40FF8080, make EMMC chip to ready state.

 SDIC_ARG0 = 0x8080

 SDIC_ARG1 = 0x40FF

Check whether power up is ready? (SDIC_RSP1[15]). If not ready, send CMD1 again;

if in ready state, run to next step. Details about send command please refer to step6.

Step8: All EMMC chip send CID to host, and get RCA (relative card address) information from

host, including following steps:

 Send CMD2(ALL_SEND_CID) with argument 0x00000000

 Send CMD3 (SNED_RELATIVE_ADDR) with argument RCA (RCA init value is 1)

Increase RCA value and circle Step8 until all the EMMC chip on the SD bus has get a

RCA from host, at this time, response time out error will occur, run to next step. Details

about send command please refer to step6.

Step9: Get CSD information, including following steps:

 Send CMD9 (SNED_CSD) with argument RCA (the one that need to send CSD

information to host). Details about send command please refer to step6.

 Get CSD information from the command response (SDIC_RSP0~SDIC_RSP7)

Step10: Select EMMC chip

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 21/65

 Send CMD7 (SELECT) with argument RCA(which selected to communicate).

Details about send command please refer to step6.

Step11: Re-setting clock

SDIC_CLK_CTRL = 0x0301 (divide factor: 4, about 20.8MHz; Use higher frequency

after init EMMC)

 Delay 1ms after setting the clock frequency

Step12: Setting extends CSD register, including following steps:

Send CMD6 (SWITCH) with argument 0x03B70100 (bus width: 4 bits) to configure

extends CSD register.

Change bus width in SDIC_OPTION register

Send CMD6 (SWITCH) with argument 0x03B90100 (high speed) to configure extends

CSD register. Details about send command please refer to step6.

Step13: Set block length, including following steps:

Send CMD16 (SET_BLOCKLEN) with argument “block length”. Details about send

command please refer to step6.

 Changing block size values in SDIC_SIZE register.

More details about the initialization progress please refer to “APPENDIX A EMMC Driver

Function”.

(3) Check EMMC Device Status

According to the EMMC chip feature (if chip has password, the chip will be locked automatically

after power on), in order to make sure read/write operation success after power on, check the

device status at first (function: em1_emmc_check_dev_status()). If EMMC is locked, enforce

erase the whole chip by lock/unlock command. If enforce erase OK, set block size to be 512 byte,

then the read and right operation followed can works normally.

Check device status (em1_emmc_check_dev_status()) including following steps:

 Step1: Send CMD13 (SEND_STATUS) with argument RCA. Details about send command

please refer to step 6 of “(2) Init EMMC device” in “Chapter 3.2.2 Operation Details”

Step2: Read response value (SDIC_RSP0, SDIC_RSP1)

Step3: Check whether EMMC locked and error occurred according the EMMC status structure.

More details about the EMMC status structure please refer to “Chapter 4.9 moviNAND

Status” of EMMC chip user’s manual.

(4) Enforce Erase If EMMC Device Locked

If EMMC is locked, enforce erase the whole chip by lock/unlock command (function:

em1_emmc_set_blklength() and em1_emmc_lock_unlock()).

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 22/65

a) Set block length to be 1.

Details about block length setting (em1_emmc_set_blklength()) please refer to step13 of “(2) Init

EMMC device” in “Chapter 3.2.2 Operation Details”.

b) Set lock/unlock data structure, make sure the bit3 “ERASE” of the lock/unlock data structure to

be 1, and execute lock/unlock function. More details about lock/unlock operation and fixed data

structure please refer to “Chapter 4.2.11 moviNAND Lock/Unlock Operation” of EMMC chip

user’s manual,

Lock/unlock function (em1_emmc_lock_unlock()) including following steps:

Step1: Ensure EMMC interface is not busy, check bit 14 of SDIC_INFO register

Step2: Enable sector setting and set sector number to 1 (SDIC_STOP, SDIC_SECCNT)

Step3: Prepare for data transfer, including following steps:

 Clear interrupt information in SDIC_INFO1 register

 Clear all error information in SDIC_INFO2 register

 Set transfer none stop (SDIC_STOP[0] = 0)

 Enable all error interrupt in SDIC_INFO2_MASK register

 Enable read/write access interrupt occur in SDIC_INFO1_MASK register

Step4: Send CMD42 (LOCK_UNLOCK) without argument. Details about send command

please refer to step 6 of “(2) Init EMMC device” in “Chapter 3.2.2 Operation Details”

Step5: Wait for write enable (SDIC_INFO2) and check whether error occur (SDIC_RSP0,

SDIC_RSP1)

Step6: Write data

If no errors occur, write data (lock/unlock data structure) to EMMC chip (SDIC_BUF0 =

data)

Step7: Wait for data transfer end or error occur (SDIC_INFO1, SDIC_INFO2)

Step8: Send CMD13 (SEND_STATUS) with argument RCA to check device status. Detail

steps about check EMMC device status please refer to “(3) Check EMMC Device Status” in

“Chapter 3.2.2 Operation Details”.

Note:

Details about send command please refer to step 6 of “(2) Init EMMC device” in “Chapter

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 23/65

3.2.2 Operation Details”.

(5) Set Block Size after Enforce Erase

After enforce erase, in order to make sure the read and right operation followed can works

normally, set block size to be 512 byte (function: em1_emmc_set_blklength()).

Details about block length setting (em1_emmc_set_blklength()) please refer to step13 of “(2) Init

EMMC device” in “Chapter 3.2.2 Operation Details”.

Note:

The EMMA Mobile 1 SDM interface can support 512 byte as the maximum block size.

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 24/65

3.3 Example of EMMC Single Block Read/Write

In this example, we will write fixed data to EMMC chip, then read out and compare whether the

data is right, both read and write operation will use single CPU operation mode.

3.3.1 Operation Flow

Initialization data buffer

 Start

Normal End

Write data to EMMC
[em1_emmc_single_write()]

Read data from EMMC
[em1_emmc_single_read()]

Check data, data right?

Error End

Write operation OK?

Read operation OK?

No

Yes

No

No

Yes

Yes

Yes

Figure 3-3 EMMC Single Read/Write Operation Flow

More details about the functions used in this example please refer to “APPENDIX A EMMC Driver

Function”

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 25/65

3.3.2 Operation Detail

(1) Initialization Data Buffer

Initialize the write data buffer, set fixed value (as the following code segment shows) to write data

buffer which will be wrote to EMMC chip. At the same time, initialize the read data buffer with 0, it

will read out data from EMMC chip.

for (i =0; i<SDM_BLOCKLEN_VAL; i++)

{

 g_write_buff[i] = (i&0xFF);

}

(2) Write Data to EMMC

Call the “em1_emmc_single_write()” function to write data into EMMC chip. If write operation

failed (error occur during data transfer), end the operation and print error information; if write

operation works OK, continue the test program.

Following steps shows the write operation progress:

Step1: Ensure EMMC interface is not busy, check bit 14 of SDIC_INFO register

Step2: Enable sector setting and set sector number (SDIC_STOP, SDIC_SECCNT)

Step3: Prepare for data transfer, including following steps:

 Clear interrupt information in SDIC_INFO1 register

Clear all error information in SDIC_INFO2 register

Set transfer none stop (SDIC_STOP[0] = 0)

Enable all error interrupt in SDIC_INFO2_MASK register

Enable read/write access interrupt occur in SDIC_INFO1_MASK register

Step4: Send CMD24 (WRITE_SINGLE_BLOCK) with argument “write address”. Detail steps

about send command please refer to step 6 of “(2) Init EMMC device” in “Chapter 3.2.2

Operation Details”.

Step5: Wait for write enable (SDIC_INFO2) and check whether error occur (SDIC_RSP0,

SDIC_RSP1)

Step6: Write data

If no errors occur after send CMD24 (WRITE_SINGLE_BLOCK), write data to EMMC

chip (SDIC_BUF0 = data)

Step7: Wait for data transfer end or error occur (SDIC_INFO1, SDIC_INFO2)

Step8: Send CMD13 (SEND_STATUS) with argument RCA to check device status. Detail

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 26/65

steps about check EMMC device status please refer to “(3) Check EMMC Device Status” in

“Chapter 3.2.2 Operation Details”.

More details about single block write operation please refer to “chapter A.4.12 Single Block

Write”.

(3) Read Data

Call “em1_emmc_single_read()” function to read out the written data by step (2) from EMMC. If

read failed, end the operation and print error; if read OK, continue the test program.

Following steps shows the read operation progress and registers configurations:

Step1: Ensure EMMC interface is not busy, check bit 14 of SDIC_INFO register

Step2: Enable sector setting and set sector number (SDIC_STOP, SDIC_SECCNT)

Step3: Prepare for data transfer, including following steps:

Clear interrupt information in SDIC_INFO1 register

Clear all error information in SDIC_INFO2 register

Set transfer none stop (SDIC_STOP[0] = 0)

Enable all error interrupt in SDIC_INFO2_MASK register

Enable read/write access interrupt occur in SDIC_INFO1_MASK register

Step4: Send CMD17 (READ_SINGLE_BLOCK) with argument “read address”. Detail steps

about send command please refer to step 6 of “(2) Init EMMC device” in “Chapter 3.2.2

Operation Details”.

Step5: Wait for write enable (SDIC_INFO2) and check whether error occur (SDIC_RSP0,

SDIC_RSP1)

Step6: Read data

If no errors occur after send CMD17 (READ_SINGLE_BLOCK), read data from EMMC chip

(data = SDIC_BUF0)

Step7: Wait for data transfer end or error occur (SDIC_INFO1, SDIC_INFO2)

Step8: Send CMD13 (SEND_STATUS) with argument RCA to check device status. Detail

steps about check EMMC device status please refer to “(3) Check EMMC Device Status” in

“Chapter 3.2.2 Operation Details”.

(4) Compare Data

Compare the read out data with the written data. If same, print OK; otherwise, print error end.

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 27/65

3.4 Example of EMMC Multi Block Operation

In this example, we will write fixed data (0x5A) to EMMC chip (first 16MB data area), then read

out and compare whether the data is right. When read/write works OK, erase the first 2MB data

area in EMMC chip, then read out and check whether data in first 2MB is zero or not. Both read

and write operation will use multi block DMA operation mode.

3.4.1 Operation Flow

Initialization data buffer

 Start

Write data to EMMC(first 16MB)
[em1_emmc_multi_write()]

Read data from chip(first 16MB)
[em1_emmc_multi_read()]

Check data, data right?
[strncmp()]

Write operation OK?

Read operation OK?

No

Yes

No

No

Yes

Yes

Yes

Normal End Error End

Erase first 2MB in EMMC
[em1_emmc_erase()]

Erase operation OK?

Read data from chip(first 2MB)
[em1_emmc_multi_read()]

Read operation OK?
No

Yes

Yes

All data is zero?

Yes

Yes

No

No

Figure 3-4 EMMC Multi block Operation Flow

More details about the functions used in this example please refer to “APPENDIX A EMMC

Driver Function”

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 28/65

3.4.2 Operation Detail

(1) Initialization Data Buffer

Initialize the write data buffer, set fixed value (0x5A) to write data buffer which will be wrote to

EMMC chip. At the same time, initialize the read data buffer with 0, it will read out data from

EMMC chip.

(2) Write Data to EMMC

Setting parameters about the data transfer, call the “em1_emmc_multi_write()” function to write

data into EMMC chip. Check the write operation, if failed, end the operation and print error

information; if OK, continue the test program.

Details about multiple blocks write operation please refer to “figure2-2 EMMA Mobile 1 EMMC

Data Transfer in DMA Mode “.

(3) Read Data from EMMC

Call “em1_emmc_multi_read()” function to read out the written data by step (2) from EMMC.

Check the read operation, if read failed, end the operation and print error; if read OK, continue the

test program.

Details about multiple blocks read operation please refer to “figure2-2 EMMA Mobile 1 EMMC

Data Transfer in DMA Mode “.

(4) Compare Data

Compare the read out data with the written data. If same, print OK; otherwise, print error and end

the test.

(5) Erase first 2MB in EMMC

Call “em1_emmc_erase()” function to erase the first 2MB data area in EMMC. If failed, end the

operation and print error; if OK, continue the test program.

Details about EMMC erase operation please refer to “figure2-3 EMMA Mobile 1 EMMC Erase

Operation “.

(6) Read Data from EMMC

Call “em1_emmc_multi_read()” function to read out the first 2MB data from EMMC. If read failed,

end the operation and print error; if read OK, continue the test program.

(7) Compare Data

Compare the read out data. If 2MB data are all zero, test operation works OK; otherwise, error

end.

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 29/65

3.5 Example of EMMC Write Protect Operation

In write protect operation example, set write protect(WP) to fixed address, then write data, if write

operation works normally, it means the WP operation failed, otherwise, the WP operation works

OK, then clear the write protect for fixed address, and write operation followed will works normally.

3.5.1 Operation Flow

Start

Error End

Set WP for fixed address(0x0)

[em1_emmc_wp_manage()]

Write block data to 0x0

[em1_emmc_single_write()]

Send command OK?

Send command OK?

Yes

No

Write operation OK?
Yes

No

No

Yes

Clear WP for fixed address(0x0)

[em1_emmc_wp_manage()]

Write block data to 0x0 address

[em1_emmc_single_write()]

Write operation OK?

Yes

Normal End

No

Figure 3-5 EMMC Write Protect Operation Flow

More details about the functions used in this example please refer to “APPENDIX A EMMC

Driver Function”

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 30/65

3.5.2 Operation Detail

(1) Set WP to 0x0 Address

Send CMD28(SET_WRITE_PROT) to EMMC(function: em1_emmc_wp_manage()), with address

0x0, if command send failed, print error and end test, otherwise, continue the test.

Write protect management (m1_emmc_wp_manage()) including following steps:

 Step1: Check whether the command is supported

Step2: Send command CMD28/CMD29 (SET_WRITE_PROT/ CLR_WRITE_PROT) with the

argument “write protect unit” (based on unit of WP_GRP_SIZE). Detail steps about send

command please refer to step 6 of “(2) Init EMMC device” in “Chapter 3.2.2 Operation

Details”.

(2) Write Data to EMMC

Setting parameters about the data transfer, call the “em1_emmc_single_write()” function to write

block data into 0x0 in EMMC chip. Check the write operation, if OK, means WP operation failed,

end the operation and print error information; if OK, continue the test program.

Details about EMMC single write operation please refer to “(2) Write Data to EMMC” of “Chapter

3.3.2 Operation Detail”.

(3) Clear WP for 0x0 Address

Send CMD28 (CLR_WRITE_PROT) to EMMC(function: em1_emmc_wp_manage()), with

address 0x0, if command send failed, print error and end test, otherwise, continue the test.

Details about Write protect management please refer to “(1) Set WP to 0x0 Address”.

(4) Write Data to EMMC

Setting parameters about the data transfer, call the “em1_emmc_single_write()” function to write

block data into 0x0 in EMMC chip. Check the write operation, if OK, means WP test operation

works OK, otherwise, the WP test failed.

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 31/65

3.6 Example of EMMC Lock/Unlock Operation

In lock/unlock example, set password for EMMC at first, then lock the device, check EMMC status,

if EMMC is not locked, means lock operation failed, otherwise, lock works OK; then unlock the

device, and read the EMMC status again to check the unlock operation.

Note:

In this test, use “123” as the password, and before end the lock/unlock test, in order not to affect

other tests, should clear the password, and restore the block size (512 byte).

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 32/65

3.6.1 Operation Flow

Start

Error End

Set password before lock

[em1_emmc_set_blklength()

em1_emmc_lock_unlock()]

Lock the EMMC chip

[em1_emmc_lock_unlock()]

Password set OK?

Lock operation OK?

Yes

No

No

Yes

Check EMMC chip status

[em1_emmc_check_dev_status()]

Unlock the EMMC chip

[em1_emmc_lock_unlock()]

Unlock operation OK?

Yes

Normal End

EMMC chip is Locked?

Yes

No

No

EMMC chip is unlocked??
No

Yes
Clear password before quit test

[em1_emmc_lock_unlock()]

Restore block size(512B)

[em1_emmc_single_read()]

Password clear OK?

Command send OK?

Yes

Yes

No

No

Check EMMC chip status

[em1_emmc_check_dev_status()]

Figure 3-6 EMMC Lock/Unlock Operation Flow

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 33/65

3.6.2 Operation Detail

(1) Set Password before Lock

Call function “em1_emmc_set_blklength()” and “em1_emmc_lock_unlock()” to set password

before lock the chip, before send command to EMMC, setting the lock/unlock data structure, and

make sure the bit0(SET_PWD) in lock/unlock data structure set to 1. If failed, end the operation

and print error information; if OK, continue the test program.

In this test, use “123” as the password contact.

Note:

Details about execution of lock/unlock function please refer to “(4) Enforce Erase If EMMC

Device Locked” of “Chapter 3.2.2 Operation Details”.

(2) Lock EMMC

Call function “em1_emmc_lock_unlock()” to lock the EMMC chip, make sure the bit2(Lock/Unlock)

in lock/unlock data structure set to 1. If failed, end the operation and print error information; if OK,

continue the test program.

(3) Check EMMC Chip Status

Call “em1_emmc_check_dev_status ()” function to check EMMC status. if card is not locked,

means lock function failed, end the operation and print error; otherwise, continue the test program.

Detail steps about check EMMC device status please refer to “(3) Check EMMC Device

Status” in “Chapter 3.2.2 Operation Details”.

(4) Unlock EMMC

Call function “em1_emmc_lock_unlock()” to unlock the EMMC chip, make sure the

bit2(Lock/Unlock) in lock/unlock data structure set to 0. If failed, end the operation and print error

information; if OK, continue the test program.

(5) Check EMMC Chip Status

Call “em1_emmc_check_dev_status ()” function to check EMMC status. if card is still locked,

means unlock function failed, end the operation and print error; otherwise, continue the test

program.

 (6) Clear Password

Call function “em1_emmc_lock_unlock()” to clear password, make sure the bit1(CLR_PWD) in

lock/unlock data structure set to 1, “123” as the password contact. If failed, end the operation and

print error information; if OK, continue the test program.

(7) Set block length to be 512 byte

Before end the lock/unlock test, call function “em1_emmc_set_blklength()” to set block size as

512 byte, if command works OK, end the test normally.

Application Note S19904EJ1V0AN00

Chapter 3 Example of EMMC Operation 34/65

Application Note S19904EJ1V0AN00

Details about block length setting (em1_emmc_set_blklength()) please refer to step13 of “(2) Init

EMMC device” in “Chapter 3.2.2 Operation Details”.

Note:

More details about lock/unlock data structure and its operation; please refer to “Chapter 4.2.11

moviNAND Lock/Unlock Operation” of EMMC chip user’s manual.

More details about the functions used in this example please refer to “APPENDIX A EMMC

Driver Function”

APPENDIX A EMMC Driver Function 35/65

APPENDIX A EMMC Driver Function

A.1 Function List

The following table shows the EMMC driver interface functions:

Table A-1 EMMC Driver Function List

Class Function Name Function Detail

em1_emmc_hw_init Init the SDM module setting

em1_emmc_init EMMC device initialization

em1_emmc_set_seccnt Enable/disable sector and set sector number

em1_emmc_send_cmd Send comand

em1_emmc_set_clk Set SDM output clock value

em1_emmc_set_blklength Set block length

em1_emmc_select_card Select card

em1_emmc_set_ext_csd Set extend CSD register

em1_emmc_check_dev_status Check EMMC chip status

em1_emmc_erase Erase function

em1_emmc_single_read Single block read operation in CPU mode

em1_emmc_signle_write Single block write operation in CPU mode

em1_emmc_multi_read Multi block read operation in DMA mode

em1_emmc_multi_write Multi block write operation in DMA mode

em1_emmc_lock_unlock Lock/unlolck operation

External

function

em1_emmc_wp_manage Write protect management

_em1_emmc_tranf_prepare Prepare before data transfer

_em1_emmc_decode_csd Decode CSD structure
Internal
function

_em1_emmc_check_rsp_status Check response status

A.2 Global Variable Define

Table A-2 Global Variable Define

Name Type Detail

g_RCA_VAL ushort Globle flag for relative address

g_password_buff uchar Password data structure buffer

g_read_buff[] uchar Read buffer

g_write_buff[] uchar Write buffer

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 36/65

A.3 Structure Define

Table A-3 Structure Define

Structure Name Detail

mmc_csd CSD register sturcture

A.3.1 mmc_csd

Table A-4 Structure of mmc_csd

Member Detail

uchar mmca_vsn MMC structure version

ushort cmdclass Command classes

ushort tacc_clks Read access time in clocks

uint tacc_ns Read access time in ns

uint max_dtr Maximum data transfer speed

uint read_blkbits Read block bits

uint read_blkbits Write block bits

uint capacity Device capacity

uint erase_grp_size Erase group base size

uint erase_grp_mult Erase group size multipile factor

uint wp_grp_size Write protect froup size

uint read_partial Whether enable read in partial block

uint read_misalign Whether enable read block cross physical block
boundaries

uint write_partial Whether enable write in partial block

uint write_misalign Whether enable write block cross physical block

boundaries

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 37/65

A.4 Function Details

A.4.1 Hardware Initialization Function

[Function Name]

em1_emmc_hw_init

[Format]

void em1_emmc_hw_init (void);

[Argument]

 None

[Function Return]

None

[Flow Chart]

Start

End

Power on

Clock and Reset setting about

SDM module

Wait/Read/Driver ability and Auto

frequency configuration

Switch GPIO to SD function and

Setting pull-up/pull-down for SD

CHG_PINSEL_G80
CHG_PINSEL_G112
CHG_PULL_G112

ASMU_GCLKCTRL4ENA
ASMU_GCLKCTRL4
ASMU_RESETREQ3
ASMU_RESETREQ3ENA

ASMU_AB1_SDICWAITCTRL
ASMU_AB1_SDICREADCTRL
CHG_DRIVE1
ASMU_AUTO_FRQ_MASK3

Note1

Figure A-1 SDM Hardware Initialization Flow

[Note]

1) Switch GPIO which used for EMMC to SD function, users should operate this step

according the actual hardware connection.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 38/65

A.4.2 EMMC Init Operation

[Function Name]

em1_emmc_init

[Format]

int em1_emmc_init(void) ;

[Argument]

None.

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 39/65

Start

End

Set block size (CMD 16)

Software reset SD

Setting bus width and response

time out value

Clear and mask all info

Enable and setting clock (in low

frequency)

Send CMD 0, setting EMMC

device into idle state

Send command 1, setting device

into ready state

Get CID info(CMD 2) and setting

relative address(CMD 3) for all

devices in bus

Get CSD info from device(CMD 9)

Select device (CMD 7)

Setting clock to higher frequency

Setting transfer bus width and

speed (CMD 6)

SDIx_SOFT_RST

SDIC_OPTION

SDIC_INFO1
SDIC_INFO2
SDIC_INFO1_MASK
SDIC_INFO2_MASK

SDIC_CLK_CTRL

SDIC_CMD

Note2

Note3

SDIC_ARG0
SDIC_ARG1
SDIC_CMD

Note1

Note4

Figure A-2 EMMC Chip Initialization Flow

[Note]

1) Before the initialization of EMMC device, set the bus width to be 1bit and the response time

out value to be maximum, reason is: in EMMC identification progress, bus width will use 1bit and

the clock frequency should in 10-400 KHz.

2) After setting the clock for SDM transfer, please wait 1ms for stability.

3) After send command, user should check the command response, if error occurred (except

when response time out for CMD 2), the initialization will be ended abnormally.

4) After initialization, users can configure the bus width and clock frequency for transfer speed

according the CSD parameter of EMMC chip, the transfer speed defines in CSD register just

clock frequency not in high speed mode, so the actual transfer speed is related to EMMC chip

specification version.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 40/65

A.4.3 Sector Setting

[Function Name]

em1_emmc_set_seccnt

[Format]

void em1_emmc_set_seccnt(BOOL bEnable, uint sec_num);

[Argument]

Parameter Type I/O Detail

bEnable BOOL I Enable/disable sector

sec_num uint I Sector number

[Function Return]

None

[Flow Chart]

Enable the Sector ?

Enable and Configure Sector
[SDIC_STOP

SDIC_SECCNT]
Disable Sector
[SDIC_STOP]

No

Yes
Ensure R/W Operation is Over

[SDIC_INFO1]

Figure A-3 Sector Setting Flow

[Note]

 None

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 41/65

A.4.4 Send Command

[Function Name]

em1_emmc_send_cmd

[Format]

int em1_emmc_send_cmd (int cmd) ;

[Argument]

Parameter Type I/O Detail

cmd int I Command index that need to be send

[Function Return]

DRV_OK

 Others: error end

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 42/65

[Flow Chart]

Enable response end error
[SDIC_INFO1]

Send command
[SDIC_CMD]

Clear all information registers
[SDIC_INFO1
SDIC_INFO2]

Enable all errors
[SDIC_INFO2_MASK]

Wait until command send end

Time out?

Response end?
[SDIC_INFO1]

Error occur?
[SDIC_INFO2]

Read the error information register
[SDIC_INFO2]

Error occur?

Clear response end information
[SDIC_INFO1]

Clear all error information
[SDIC_INFO2]

Normal End Error End

Start

Yse

No

No

No

Yse

Yse

Yse

No

Figure A-4 Send Command

[Note]

Send command to EMMC chip

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 43/65

A.4.5 Set Clock

[Function Name]

em1_emmc_set_clk

[Format]

void em1_emmc_set_clk(ushort value);

[Argument]

Parameter Type I/O Detail

value ushort I Clock setting value

[Function Return]

None

[Flow Chart]

None

[Note]

Set SDIx_CLK_CTRL register.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 44/65

A.4.6 Set Block Length

[Function Name]

em1_emmc_set_blklength

[Format]

int em1_emmc_set_blklength(ushort length);

[Argument]

Parameter Type I/O Detail

length ushort I Block length setting value

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Command parameter setting
[SDIC_ARG0 SDIC_ARG1]

Send CMD16 to set block length
[em1_emmc_send_cmd()]

Send command OK?

Set block size
[SDIC_SIZE]

Normal End Error End

Start

Yse

No

Figure A-5 Set Block Length

 [Note]

Data transfer block length setting.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 45/65

A.4.7 Select Card

[Function Name]

em1_emmc_select_card

[Format]

int em1_emmc_select_card(uint RCA);

[Argument]

Parameter Type I/O Detail

RCA uint I Relative card address that need to be select

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Setting RCA for command
parameters

[SDIC_ARG0 SDIC_ARG1]

Send CMD7 to select EMMC chip
[em1_emmc_send_cmd()]

Send command OK?

Normal End Error End

Start

Yse

No

Figure A-6 Select Card

[Note]

None.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 46/65

A.4.8 Configuration Extend CSD

[Function Name]

em1_emmc_set_ext_csd

[Format]

int em1_emmc_set_ext_csd(void) ;

[Argument]

 None

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Set command parameters(bus
width as 4bit)

[SDIC_ARG0 SDIC_ARG1]

Send CMD6 to switch bus width
[em1_emmc_send_cmd()]

Send command OK?

Normal End Error End

Start

Yse

No

Set SDM as 4 bit bus width
[SDIC_OPTION]

Yse

Set command parameters(set
HS_TIMING on)

[SDIC_ARG0 SDIC_ARG1]

Send CMD6 to switch bus width
[em1_emmc_send_cmd()]

Send command OK? No

Note1

Figure A-7 Configure Extend CSD

[Note]

Change bus width and other operation mode.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 47/65

1) Details about extend CSD information, please refer to “Chapter 5.5 Extended CSD

Register” of EMMC chip user’s manual

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 48/65

A.4.9 Check Device Status

[Function Name]

em1_emmc_check_dev_status

[Format]

int em1_emmc_check_dev_status (void) ;

[Argument]

 None

[Function Return]

DRV_EMMC_LOCKED

DRV_EMMC_UNLOCKED

DRV_ERR_STATE

[Flow Chart]

Set command parameters(RCA)
[SDIC_ARG0 SDIC_ARG1]

Send CMD13 to get device status
[em1_emmc_send_cmd()]

Send command OK?

Normal End Error End

Start

Yse

No

Read response value
[SDIC_RSP0 and SDIC_RSP1]

Yse

Check whether card locked

Check whether error occur

Error occured?

No

Figure A-8 Check EMMC Chip Stauts

[Note]

Check EMMC chip status register.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 49/65

A.4.10 Erase Function

[Function Name]

em1_emmc_erase

[Format]

int em1_emmc_erase(uint str_addr, uint end_addr) ;

[Argument]

Parameter Type I/O Detail

str_addr uint I Start erase group unit address

end_addr uint I End of erase group unit address

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Please refer to “figure2-3 EMMA Mobile 1 Erase Operation” in “chapter 2.3 Erase”.

[Note]

None

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 50/65

A.4.11 Single Block Read

[Function Name]

em1_emmc_single_read

[Format]

int em1_emmc_single_read(uint address, uchar *data);

[Argument]

Parameter Type I/O Detail

address uint I block address to be read

data uchar * I/O read out data buffer

[Function Return]

DRV_OK

Others: error end

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 51/65

[Flow Chart]

Start

Normal End

 Send single block read command

 [em1_emmc_send_cmd()]

Send command Ok?

R/W transfer end?

No

Yes

Yes

No

Clear response and r/w end info

[SDIC_INFO1]

Wait for EMMC not busy
[SDIC_INFO2[14]]

Set sector enable and sector

number to be 1
SDIC_STOP
SDIC_SECCNT

Transfer prepare

[_em1_emmc_transfer_prepare]

Check device status

[em1_emmc_check_dev_status()]

Check parameter

[whether data buffer is NULL]

Wait for read enable

[SDIC_INFO2]

Check response OK?
[_em1_emmc_check_rsp_status]

Yes

No

Read data

[SDIC_BUF0]

Error occur?
[SDIC_INFO2]

Clear all error info

[SDIC_INFO2]

Error occur?

No

Error End

No

Yes

Yes

Figure A-9 Single Block Read in CPU mode

[Note]

None

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 52/65

A.4.12 Single Block Write

[Function Name]

em1_emmc_single_write

[Format]

int em1_emmc_single_write(uint address, uchar *data);

[Argument]

Parameter Type I/O Detail

address uint I block address to be write

data uchar * I/O Write source data buffer

[Function Return]

DRV_OK

Others: error end

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 53/65

[Flow Chart]

Start

Normal End

 Send single block write command

 [em1_emmc_send_cmd()]

Send command Ok?

R/W transfer end?

No

Yes

Yes

No

Clear response and r/w end info

[SDIC_INFO1]

Wait for EMMC not busy
[SDIC_INFO2[14]]

Set sector enable and sector

number to be 1
SDIC_STOP
SDIC_SECCNT

Transfer prepare

[_em1_emmc_transfer_prepare()]

Check device status

[em1_emmc_check_dev_status()]

Check parameter

[whether data buffer is NULL]

Wait for write enable

[SDIC_INFO2]

Check response OK?
[_em1_emmc_check_rsp_status]

Yes

No

Write data

[SDIC_BUF0]

Error occur?
[SDIC_INFO2]

Clear all error info

[SDIC_INFO2]

Error occur?

No

Error End

No

Yes

Yes

Note1

Figure A-10 Single Block Write in CPU mode

[Note]
1) During write operation, check SDIC_INFO2, if buffer write access error occur, end the write
operation and return with error information.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 54/65

A.4.13 Multiple Block Read

[Function Name]

em1_emmc_multi_read

[Format]

int em1_emmc_multi_read (uint address, uchar *read_buf, uint blk_num);

[Argument]

Parameter Type I/O Detail

address uint I block address to be read

read_buf uchar * I/O read out data buffer

blk_num uint I block number to be read

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Please refer to “figure2-2 EMMA Mobile 1 EMMC Data Transfer in DMA Mode” in “chapter 2.2

Data Transfer”.

[Note]

None.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 55/65

A.4.14 Multiple Block Write

[Function Name]

em1_emmc_multi_write

[Format]

int em1_emmc_multi_write (uint address, uchar * write_buf, uint blk_num);

[Argument]

Parameter Type I/O Detail

address uint I block address to be write

write_buf uchar * I/O write source data buffer

blk_num uint I block number to be write

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Please refer to “figure2-2 EMMA Mobile 1 EMMC Data Transfer in DMA Mode” in “chapter 2.2

Data Transfer”.

[Note]

None.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 56/65

A.4.15 Lock/Unlock Function

[Function Name]

em1_emmc_lock_unlock

[Format]

int em1_emmc_lock_unlock(uchar *data);

[Argument]

Parameter Type I/O Detail

data uchar* I Lock data structure buffer

[Function Return]

DRV_OK

Others: error end

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 57/65

[Flow Chart]

Start

Normal End

 Send lock/unlock command

 [em1_emmc_send_cmd()]

Send command Ok?

R/W transfer end?

No

Yes

Yes

No

Clear response and r/w end info

[SDIC_INFO1]

Wait for EMMC not busy
[SDIC_INFO2[14]]

Set sector enable and sector

number to be 1
SDIC_STOP
SDIC_SECCNT

Transfer prepare

Check device status

[em1_emmc_check_dev_status()]

Check parameter

Whether data buffer is null

Wait for write enable

[SDIC_INFO2]

Check response OK?
[_em1_emmc_check_rsp_status]

Yes

No

Write data

[SDIC_BUF0]

Error occur?
[SDIC_INFO2]

Clear all error info

[SDIC_INFO2]

Error occur?

No

Error End

No

Yes

Yes

Note1

Get the data transfer length

[SDIC_Size]

Figure A-11 Lock/Unlock Progress

[Note]
1) During write operation, check SDIC_INFO2, if buffer write access error occur, end the write
operation and return with error information.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 58/65

A.4.16 Write Protect Manage

[Function Name]

em1_emmc_wp_manage

[Format]

int em1_emmc_wp_manage(int cmd, uint addr) ;

[Argument]

Parameter Type I/O Detail

cmd int I Write protect command

addr uint I Address to be set write protect

[Function Return]

DRV_OK

Others: error end

[Flow Chart]

Set WP manage address
[SDIC_ARG0 SDIC_ARG1]

Send WP related command
[em1_emmc_send_cmd()]

Send command OK?

Normal End Error End

Start

No

Yse

Check whether command
supported

Figure A-12 Write Protect Management

[Note]

None.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 59/65

A.4.17 Transfer Prepare

[Function Name]

_em1_emmc_transfer_prepare

[Format]

void _em1_emmc_transfer_prepare(void);

[Argument]

None

[Function Return]

None

[Flow Chart]

End

Start

All information clear
[SDIC_INFO1 SDIC_INFO2]

Clear stop setting bit
[SDIC_STOP]

Enable all error occur
[SDIC_INFO2_MASK]

Enable R/W access end
[SDIC_INFO1_MASK]

Figure A-13 Register Prepare before Data transfer

[Note]

None.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 60/65

A.4.18 Decode CSD

[Function Name]

_em1_emmc_decode_csd

[Format]

void _em1_emmc_decode_csd(uint *raw_csd);

[Argument]

Parameter Type I/O Detail

raw_csd uint I Raw CSD value buffer

[Function Return]

None

[Flow Chart]

 None

[Note]

This function will decode the response of SEND_CSD command; get CSD members that

useful for data transfer.

Application Note S19904EJ1V0AN00

APPENDIX A EMMC Driver Function 61/65

A.4.19 Check Response Status

[Function Name]

_em1_emmc_check_rsp_status

[Format]

int _em1_emmc_check_rsp_status(void);

[Argument]

None

[Function Return]

DRV_OK

DRV_ERR_STATE

[Flow Chart]

Normal End Error End

Start

Yse

Read response value
[SDIC_RSP0 and SDIC_RSP1]

Check whether error occur

Error occured?

No

Figure A-14 Check Response Status

[Note]

None

Application Note S19904EJ1V0AN00

APPENDIX B COMMANDS 62/65

APPENDIX B COMMANDS

Following table shows the simple function of the EMMC chip command which used in this

document.

More details about the commands format and function please refer to “Chapter4.6 Commands”

of the EMMC chip user’s manual.

Table B-1 Command Description List

CMD

INDEX
Argument Abbreviation Command Description

CMD0 [31:0] stuff bits GO_IDLE_STATE Resets the EMMC chip to idle state

CMD1
[31:0] OCR

without busy
SEND_OP_COND

Ask chip send its Operating Conditions

Register contents.

CMD2 [31:0] stuff bits ALL_SEND_CID
Asks the EMMC chip to send its CID number

on the CMD line

CMD3
[31:16] RCA

[15:0] stuff bits

SET_RELATIVE_A

DDR
Assigns relative address to the EMMC chip

CMD4 Not Supported

CMD5 Reserved

CMD6

[31:26] Set to 0

[25:24] Access
[23:16] Index
[15:8] Value

[7:3] Set to 0
[2:0] Cmd Set

SWITCH
Switches operation mode of the selected

EMMC chip or modifies the EXT_CSD
registers.

CMD7
[31:16] RCA

[15:0] stuff bits
SELECT/DESELEC

T_CARD

Select device by its own relative address
and gets deselected by any other address;
address 0 deselects the EMMC chip.

CMD8 [31:0] stuff bits SEND_EXT_CSD
The EMMC chip sends its EXT_CSD
register as a block of data.

CMD9
[31:16] RCA

[15:0] stuff bits
SEND_CSD

Addressed EMMC chip sends its Card-
Specific Data (CSD) on the CMD line.

CMD10
[31:16] RCA

[15:0] stuff bits
SEND_CID

Addressed EMMC chip sends its Card
Identification (CID) on CMD the line.

CMD11 Not Supported

CMD12 [31:0] stuff bits
STOP_TRANSMIS

SION
Forces the EMMC chip to stop transmission

CMD13
[31:16] RCA

[15:0] stuff bits
SEND_STATUS

Addressed EMMC chip sends its status
register.

CMD14 [31:0] stuff bits BUSTEST_R
A host reads the reversed bus testing data
pattern from a EMMC chip.

CMD15
[31:16] RCA

[15:0] stuff bits
GO_INACTIVE_ST

ATE
Sets the EMMC chip to inactive state

CMD16 [31:0] block SET_BLOCKLEN Sets the block length (in bytes) for all

Application Note S19904EJ1V0AN00

APPENDIX B COMMANDS 63/65

length following block commands (read and write).

CMD17
[31:0] data

address
READ_SINGLE_BL

OCK
Reads a block of the size selected by the
SET_BLOCKLEN command

CMD18
[31:0] data

address
READ_MULTIPLE_

BLOCK
Multipile block read command

CMD19 [31:0] stuff bits BUSTEST_W
A host sends the bus test data pattern to a
EMMC chip

CMD20 Not supported

CMD21
CMD22

Reserved

CMD23
[31:16] set to 0
[15:0] number

of blocks

SET_BLOCK_COU
NT

Defines the number of blocks which are
going to be transferred in the immediately
succeeding multiple block read or write

command.

CMD24
[31:0] data

address
WRITE_BLOCK

Writes a block of the size selected by the

SET_BLOCKLEN command.

CMD25
[31:0] data

address

WRITE_MULTIPLE

_BLOCK

Continuously writes blocks of data until a

STOP_TRANSMISSION follows or the
requested number of block received

CMD26 Not applicable

CMD27 [31:0] stuff bits PROGRAM_CSD
Programming of the programmable bits of
the CSD

CMD28
[31:0] data

address
SET_WRITE_PROT

Sets the write protection bit of the addressed
group.

CMD29
[31:0] data

address
CLR_WRITE_PRO

T
Clears the write protection bit of the
addressed group

CMD30
[31:0] write
protect data

address

SEND_WRITE_PR
OT

Asks the EMMC chip to send the status of
the write protection bits.

CMD31
…

CMD34

Reserved

CMD35
[31:0] data

address

ERASE_GROUP_S

TART

Sets the address of the first erase group

within a range to be selected for erase

CMD36
[31:0] data

address

ERASE_GROUP_E

ND

Sets the address of the last erase group

within a continuous range to be selected for
erase

CMD37 Reserved

CMD38 [31:0] stuff bits ERASE Erases all previously selected write blocks

CMD39

[31:16] RCA
[15:15]register

write Flag

[14:8] register
address

[7:0] register

data

FAST_IO
Used to write and read 8 bit (register) data
fields.

CMD40 [31:0] stuff bits GO_IRQ_STATE Sets the system into interrupt mode

CMD41 Reserved

Application Note S19904EJ1V0AN00

APPENDIX B COMMANDS 64/65

Application Note S19904EJ1V0AN00

CMD42 [31:0] stuff bits. LOCK_UNLOCK

Used to set/reset the password or
lock/unlock the EMMC chip. The size of the

data block is set by the SET_BLOCK_LEN
command.

CMD43
…

CMD54
Reserved

CMD55 MMCA Optional Command, currently not supported.

CMD56
…

CMD59

Reserved

ANNEX Modification History 65/65

ANNEX Modification History

Number Modification Contents Author Date

Ver 1.00 New version Aug,4.2009

Application Note S19904EJ1V0AN00

	Chapter 1 Introduction
	1.1 Outline
	1.2 Development Environment

	Chapter 2 Usage of EMMC(SDM) Interface
	2.1 Initialization
	2.2 Data Transfer
	2.3 Erase
	2.4 Write Protect Management
	2.5 Lock/Unlock Operation

	Chapter 3 Example of EMMC Operation
	3.1 Outline of EMMC Operation
	3.2 Initialization
	3.2.1 Operation Flow
	3.2.2 Operation Detail

	3.3 Example of EMMC Single Block Read/Write
	3.3.1 Operation Flow
	3.3.2 Operation Detail

	3.4 Example of EMMC Multi Block Operation
	3.4.1 Operation Flow
	3.4.2 Operation Detail

	3.5 Example of EMMC Write Protect Operation
	3.5.1 Operation Flow
	3.5.2 Operation Detail

	3.6 Example of EMMC Lock/Unlock Operation
	3.6.1 Operation Flow
	3.6.2 Operation Detail

	APPENDIX A EMMC Driver Function
	A.1 Function List
	A.2 Global Variable Define
	A.3 Structure Define
	A.3.1 mmc_csd

	A.4 Function Details
	A.4.1 Hardware Initialization Function
	A.4.2 EMMC Init Operation
	A.4.3 Sector Setting
	A.4.4 Send Command
	A.4.5 Set Clock
	A.4.6 Set Block Length
	A.4.7 Select Card
	A.4.8 Configuration Extend CSD
	A.4.9 Check Device Status
	A.4.10 Erase Function
	A.4.11 Single Block Read
	A.4.12 Single Block Write
	A.4.13 Multiple Block Read
	A.4.14 Multiple Block Write
	A.4.15 Lock/Unlock Function
	A.4.16 Write Protect Manage
	A.4.17 Transfer Prepare
	A.4.18 Decode CSD
	A.4.19 Check Response Status

	APPENDIX B COMMANDS

