REN ESAS Application Note

Renesas RA8 Series
Multicore Setup and Running Hello World on Dual-Core

Introduction

This application note serves as a practical "How-To" guide to help users set up, build, and run multi-core
projects on the RA8P1 MCU using BareMetal and FreeRTOS. Specifically, it demonstrates how to execute a
basic "Blinky Hello World" application on both cores of the RA8P1 device, showcasing the capabilities of its
dual-core architecture.

The document provides an overview of the RA8P1 MCU’s dual-core design, which integrates Cortex-M85
and Cortex-M33 cores, and outlines the steps required to configure, build, and debug dual-core applications.
It also covers key topics such as CPU core selection (primary and secondary), core initialization, and the
allocation of MCU resources for concurrent core operation.

For theoretical background, this app note should be used in conjunction with the “Developing with RA8 Dual-
core MCU” and “Getting Started with IPC on Dual-Core RA8P1” app notes. These references provide deeper
insight into dual-core development and the mechanisms behind inter-core communication.

This application note covers:
e Overview of the RA8P1 dual-core MCU, setting up dual-core configurations, and sharing resources.

e Explanation of how to set up and build multicore projects and run hello world on both cores with
sample code examples.

e Techniques for managing core communication using semaphores, NMls, message FIFOs, and
FreeRTOS-based IPC.

e Step-by-step setup instructions, creating an application on both the cores, running the project on
both the cores, and debugging the program on both the cores.

e Leveraging tool support (e2 studio, Segger, GDB) for dual-core development.

Required Resources
e Flexible Software Package (FSP) v6.0.0

Target devices
e RA8P1

RO1AN7982EU0100 Rev.1.00 Page 1 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Contents

1. Dual-Core System ArChitECIUIEoooiiiiiiiiiie e 3
1.1 Overview of RABP1 DUAI-COre MCUooiiiiiiiiiiiie ettt ettt e e st e e e sntee e e s anreeeeens 3
1.1.1 Arm® Cortex®-M85 COre PrOCESSON.......cciiiuiiiieiitiiieeeiiiee e ettt ee e ettt e e eetteeeeateeeessbeeeeesbeeeeesbeeeesanbeeeanans 5
1.1.2 Arm® Cortex®-IM33 COre PrOCESSON.......cciiiiiiieiitiiieeeiieee e ettt e e ettt e e ettt e e e abeeeessbeeeaesbeeeeesbeeeesanseeeaeans 8
2. Procedure for Creating Dual-Core Projects........ccoooeiiiiiiiiiiiii e 11
2.1 Primary and Secondary CPU SeIECONooiiiiiiiiiiiiieie et e a e 12
2.2 Procedure for Creating Manual Dual-Core Projects and Their Configuration..............cccccccooeviininenn.n. 12
2.3 Procedure for Creating a Solution Project for Dual-Core and its Configuration..............cc.cccooiiiiiiee. 23
2.4 Procedure to Create Dual-Core Projects Using FreeRTOS for Both Coresccccoovvieiiiiiieiiiiieeens 27
3. Inter-Processor Communication (IPC) Mechanisms in RA8P1............iiiiiiiiiiiiiie e, 39
3.1 Reference to IPC App Note and Application Example ... 39
4. Running a Dual-Core Application on Both Coresccoeiiiiiiiiiiiii e, 39
4.1 Establish a Debugging Environment to Run the RA8 Dual-Core Project..........ccccceeivviiiiiiieiieecee 39
4.2 IMPOrtiNg the PrOJECLttt et e e e e e ane e s 44
L T = 101 (o o o] [=Tox £ PRSPPI 45
4.3.1 Compile Project Developed on CMB8S5 COre.ooiiiiiiiiiieie e a e e 45
4.3.2 Compile Project Developed 0n CM33 COre.uiiiiiiiiiiiiiiie ettt e e e e e e e 47
4.3.3 Build Process for Both Cores Using the Solution Project Approach.ccccoeeeeeeiiiiciiieeee e 49
4.4 Download and RUN ProjECES ..o 49
5. Import, Build, and Verify the FreeRTOS-Based Projects..........ccccooovviiiiiiiiiiiiiiieiiee e, 52
o0t B [o o T i £ TSN o 0 =T o £ PP PPPRPPRRNt 52
LA = U1 o B o =T o £ PSR SPPRPPRPNt 52
5.3 Download and Run and Verify the ProjECts ... 53
6. Debugging and TroublEeSNOOtINGuuuuuuiiiii e e e e e eeeeas 55
A 1= B] (T 0 L3RR 55
8. REIBIBNCES ...ttt e e e e e e e e e e e et e e e e e e ear b 55
REVISION HISTOIYot e e e e e e e e e e e e e e e e e e e st e eaaeas 56
RO1AN7982EU0100 Rev.1.00 Page 2 of 56

Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

1. Dual-Core System Architecture

RA dual-core MCUs integrate two processing cores within a single chip to enhance performance, parallel
processing, and power efficiency. These MCUs are commonly used in real-time applications, IoT devices,
industrial automation, and automotive control systems.

Renesas RA dual-core MCU RA8P1 architecture falls into heterogeneous Dual-core MCU, with Cortex-M85
(CM85) is designated as Core 0, serving as the high-performance processing unit, while Cortex-M33 (CM33)
is designated as Core 1, handling additional real-time control and system management tasks.

1.1 Overview of RA8P1 Dual-Core MCU

The Renesas RA8P1 is a next-generation MCU from the RA family, built on powerful dual-core Arm®
architecture. It targets high-performance and secure embedded applications, offering advanced processing
capabilities alongside robust security and low-power consumption.

1GHz Arm® Cortex®-M85 Core,
+ 250MHz Arm® Cortex®-M33 Core
Ethos™-U55 NPU

FPU | ARM MPU | NVIC | JTAG |
SWD | ETM |Boundary Scan

RAS8P1

@ Memory ¥~ Analog 0 Timers HMI
Code NVM 16-bit ADC 32-bit GPTE (High Resolution) (4ch) Graphics LCDC wi RGE iff
SMME,) (2units, 23ch, 3ch-S/H x2)))
(MRAM 0.5/1ME, Flash 4/5ME) (2units, 23ch, Jch-5/H x2) 32.bit GPTE (10ch) 2D DRW
Data SRAM wi ECC (1.6MB) 12-bit DAC (2ch)

TCM (256KE for Cortex-M35
+ 123KE for Cortex-M33)

32-bit ULPT (2ch)

High-speed Comparator (4ch) 16.bit AGT (2ch)
! l\ £l

Temperature Sensor

MIPIDSI | MIPICSI-2

CEU 16bit Camera Interface

I/D-Cache (32KB for Cortex-M85 WOT (2ch)
+ 32KB for Cortex-M33) RTC
ﬁ Security
. AES (128/192/256), GHACHA20
¢* Communication {6} Ssystem @ Safety A28
RSA 4K, ECC
Gigabit Ethernet MAC DMA (8ch x2) Memaory Protection Unit TRNG
' > i -
Wi TSN (x2) + 2 port switch DTC (x2) SRAM Parity Gheck SHA-2 (224/256/384/512), SHA3

CANFD (x2) Clock Generation ECC in SRAM Secure Debug

USB2.0 FS (x1), USBHS (x1) POE

On-chip Oscillator First Stage Boot Loader

SDHIMMC (x2) Clock Frequency
Accuracy Measurement

DC-DC Converter OTP {Immutable storage)

I3C (1), 12C (x3) Low Power Modes CRC Calculator TrustZone | EFP support
SCI (x10) - wDT CMACHMAC/GMAC
SPI(x2) Interrupt Controller Data Operation Circuit DPA/SPA Side Ch. Protection

MRAM Area Protection
ADC Self Test
Pemmanent Lock Function *

Pregrammable Voltage Detector

OSPI (x2, XIP&DOTF)
551 x2 & PDM 3ch x1
32-bit External Memory Bus

VBAT
Package

BGA 224/ 239/ 303

Figure 1. RA8P1 Dual-Core MCU Overview

Key Features:
» Dual-core architecture:
* Arm Cortex-M85 core for real-time and high-performance processing.
* Arm Cortex-M33 core for additional real-time tasks and secure operations.
* Upto 1GHz (CM85) and 250 MHz (CM33) clock speeds.
« TrustZone® support for hardware-enforced security domains.
- FPU, DSP, and Helium (MVE) support Cortex-M85.
» Rich set of peripherals, connectivity, and low-power modes.

« Integrated hardware security engine, cryptographic accelerators, and secure boot.

RO1AN7982EU0100 Rev.1.00 Page 3 of 56

Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

RA8P1 introduces a heterogeneous dual-core architecture that combines the Arm Cortex-M85 and Cortex-
M33 cores on a single die. This setup is designed to provide optimal performance and task partitioning:

+ Cortex-M85 Core (Primary CPU):

« Serves as the high-performance core with Arm Helium (MVE) vector extensions for machine
learning (ML) and digital signal processing (DSP).

» |deal for data-intensive tasks such as motor control, audio processing, and advanced ML
inference.

* Includes TrustZone for Secure/Non-Secure domain separation.

» Cortex-M33 Core (Secondary CPU):
* Optimized for low-latency real-time tasks and secure workload management.

« Often used for managing communication stacks, safety functions, or operating in an isolated
secure domain.

+ This asymmetric architecture allows developers to:
« Offload real-time or secure functions to the CM33, freeing the CM85 for compute-heavy tasks.
« Run independent software environments, including separate RTOS instances or bare-metal code.

« Leverage IPC to coordinate tasks between cores efficiently.

The architecture in the Renesas RA dual-core RA8P1 MCU is engineered to facilitate efficient
communication and data exchange between cores and connected peripherals. The system primarily employs
a shared bus architecture, where both cores interface with a common system bus linked to memory and
peripherals. To maintain orderly access and prevent conflicts, arbitration mechanisms are implemented to
manage resource sharing and prioritize requests fairly. In addition, dedicated buses are utilized for accessing
Instruction Tightly Coupled Memory (ITCM) and Data Tightly Coupled Memory (DTCM), enabling low-latency
and high-speed memory operations.

To manage shared resource access and coordinate operations between the two cores, the RA8P1
architecture utilizes IPC mechanisms. These include FIFO buffers, interrupt signaling, shared memory
regions, and semaphores, all of which support synchronization and efficient data exchange. IPC ensures that
both CPUs can work together effectively while preserving system stability and performance.

The underlying dual-core bus architecture is built on standard interconnects such as AXI, AHB, and APB
buses, which facilitate communication between the Cortex-M85 and Cortex-M33 cores, as well as with
memory and peripherals.

RO1AN7982EU0100 Rev.1.00 Page 4 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

@
I
CPUO ‘\ CPU1 :
. 2D MIPI
5 DMAC| | caHB S-AHR 3 DMAC DRW MIPI csl
DTC DTC NPU Ether cLcoc| | g CEU
I- D- SAHB | 1 cpup) (CPUA) ©
Cache | Cache 1 P 00 5 8 VIN
CPU1
M-AXI P-AHB (= S- |AHB Interconnect -
‘ .L l Cache | Cache % _
_ . =]
_ ~ = = Q - - Q g g z
g B HEIHEEH 3 g 5 = [
ES z Imcm |o|o|o|o & T I cTcMm | sTem| & 1. :
E: g ElIEI5I5] = 3 9 g| = ¢ AX1 Arbiter |
S g : I
AXI Interconnect |
al = sl 5 § & 5 o 2
DOTF | DOTF 5 5
MRAM |MRAM | | sSRAM | sRAM | sRAM | SRAM Eé‘”’:""f“s I I AHB Interconnect
(Code) | (Extra) 0 1 2 3 m:?'j e e‘r
Cs07, SDRAM | | xsPI0 | xSPI1 & & 7 _
cs01 | csoi 3 b) £y 3
=P 64-bit bus D 1GHz D 250Hz D 62.5MHz CI;:lJJO CI‘?&H Sylscl,em Peﬂ‘lgeral Ferllponera\ Penlponeral
— 32-bit bus O s00mHz [125MHz gisters| |registers| |regi registers| [reg o

Figure 2. RA8P1 Dual-Core System Architecture Overview

The RA8P1 MCU features a high-performance Arm® Cortex®-M85 core alongside an Arm® Cortex®-M33
core offers the following key features:

e Upto 1 MB of MRAM for non-volatile memory storage

e 2 MB of SRAM, including:

e 256 KB TCM RAM for the Cortex-M85 core

e 128 KB TCM RAM for the Cortex-M33 core

e 1.664 MB of user-accessible SRAM

e Integrated Arm® Ethos™-U55 Neural Processing Unit (NPU)

e Octal Serial Peripheral Interface (OSPI) for high-speed flash memory access

e Layer 3 Ethernet Switch Module (ESWM), USB Full-Speed (USBFS), USB High-Speed (USBHS),
and SD/MMC Host Interface

e Graphics LCD Controller (GLCDC) for advanced display support

e 2D Drawing Engine (DRW) for hardware-accelerated graphics rendering

e Support for MIPI DSI/CSI interfaces for display and camera connectivity

¢ Rich set of analog peripherals

e Comprehensive security and safety features for reliable operation

1.1.1 Arm® Cortex®-M85 Core Processor

The CMS85 core in the Renesas RA8P1 MCU family is built on Arm's high-performance Cortex®-M85
processor, delivering a significant boost in processing capabilities for next-generation embedded
applications. This core is based on the Arm®v8.1-M architecture and brings a combination of high-speed
execution, enhanced math processing, and improved security, making it well-suited for compute-intensive
tasks such as motor control, Al/ML, signal processing, and industrial automation.

RO1AN7982EU0100 Rev.1.00 Page 5 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Memory Bus Arm® Cortex®-M85 Am® Cortex®-M33 System
1 MB code
External S 5 i Clocks
MRAM | | DSP | | FPU | | DsP | | FPU | | PORPVD |
CsC MOSCISOSC
e N | |
(HMIL) OCO
5 MB Flash | MPU | | MPU |
| Mode control | | PLL1/PLL2 |
MPU
| NVIC | | NVIC |
| Power control | | CAC |
DMA | System timer | | System timer |
| ICUx2 | |Bartery backup|
DTC x2 Test and DBG Testand DBG
interface interface Register wits
DMAC = 16 protection
Timers Communication interfaces Human machine interfaces Meural
processing
| GPT3Z x 14 | | SClx10 | | liC =3 | | 13C | | CEU | | GLCDC |
Amm® Ethos™.-
PDG x4 Uss NPU
| QOSPI = 2 | | SDHI =2 | ESWM | | DRW | | MIFI D51 |
SPIx 2 | | CANFD x 2 | | USBHS | g V]
ULPT x 2 | =BHs MIPI CSl VIN
RTC | SSIEx2 | | USBFS | | FOMIF |
WDT = ZIWDT
Event link Security Data processing Analog
ELC | RSIP-ES0D | | CRC | | ADC16H x 2 | | DAC12 x 2
| DOTF x 2 | | Doc | | ACMPHS x 4 | TSN |
Mote: Not available on all part numbers.

Figure 3. RA8P1 Dual-Core System Block Overview

Developers can refer to the “High Performance with RA8 Helium” application note and Arm's official
documentation for detailed technical references.

Arm Cortex-M85 Processor
* A high-performance embedded processor designed for demanding applications.

+ Based on ARMv8.1-M architecture, which brings significant performance and security enhancements
over earlier Cortex-M cores like M4 and M7.

Floating-Point Unit (FPU)
+ |EEE 754-2008 compliant: Ensures accuracy and portability for floating-point math.
« Supports scalar half (16-bit), single (32-bit), and double (64-bit) precision floating-point operations.

+ FPU exceptions can raise interrupt notifications, allowing precise error detection (e.g., divide-by-
zero, overflow).

M-Profile Vector Extension (MVE)

« Also called Helium; introduces SIMD-like vector processing to Cortex-M.

* MVE-F: Supports integer, half-, and single-precision float vector operations.

» Useful for DSP, AlI/ML, and signal/image processing in real-time embedded systems.
Security Features

Armv8-M Security Extension

RO1AN7982EU0100 Rev.1.00 Page 6 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

+ Allows TrustZone, enabling secure and non-secure execution environments for isolating critical
code/data.

SAU (Security Attribution Unit)
* 8 programmable regions define which parts of memory are Secure vs. Non-Secure.
IDAU (Implementation Defined Attribution Unit)
* Works alongside the SAU, implemented by the SoC vendor to fine-tune secure attribution.
Memory Protection
MPU (Memory Protection Unit)
* Supports ARM’'s PMSAv8 (Protected Memory System Architecture).
+ Splitinto:
» Secure MPU (MPU_S): 8 regions for code/data running in secure state.
* Non-Secure MPU (MPU_NS): 8 regions for normal application-level code.
* Helps detect invalid memory access and isolate components.
System Timers
» SysTick
» Atimer for OS tick or periodic tasks.
+ Two instances:
» SysTick_S: Secure world
» SysTick NS: Non-Secure world
Reference Clock

* From CPUCLKO (core clock), or a 1 MHz clock derived from MOCO/8 (Middle-speed On-Chip
Oscillator divided by 8).

Low-Power Modes
+ Sleep Mode: CPU halts, but clocks and peripherals may stay active.
* Deep Sleep Mode: Further power reduction; clocks may be stopped or slowed.
CPU Reset
» Each CPU can be reset individually, enabling fine control in multicore systems.
Cache
Instruction Cache
* 16 KB with ECC: Speeds up instruction fetch; ECC (Error Correcting Code) improves reliability.
Data Cache
* 16 KB with ECC: Speeds up access to frequently used data.
Tightly Coupled Memory (TCM)
Low-latency memory mapped close to the CPU for real-time performance.
ITCM (Instruction TCM)
*+ 128 KB (16 x 8 KB blocks), ECC protected
DTCM (Data TCM)
128 KB (16 x 8 KB blocks), ECC protected

RO1AN7982EU0100 Rev.1.00 Page 7 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Interrupt Controller
NVIC (Nested Vectored Interrupt Controller)
+ Handles 96 interrupt sources with nested priorities.

* Key to real-time response.

EWIC IwIC IDAU)
interface interface interface TCM interface
o MCU leve
Core
wie FE_PB I]\;VI(E} ITCM DO D1 D2 D3TCM Processor leve
) —HEWICL i
interface [S AH§5 | . S-AHB
RQ | N subordinate nterface
MAU e e c : w
interface hVIE ﬁ_t?r_f i ore EPPB SBIST |
a | | | ! ControllerJ
OPrOCESSOr IFU J—j Lsu PIU DBGD-AHB | | ===
interface — DPU | |-_’\| 1 | AHBS P-AHB
1 ™ .
(CDE} Core ermar || || Manager interface
1 —— System | ||| | —————
] I i i ! -
EoEa Sl (o0]
Clock and o T APB EPPB
ficu —— | fDcu STB ST
Reset == s —bebug —— Manager-— interface
=== — | rerwrey
Power T IRAM | TDRAM ||| |PMC-100; ROM ROM
control | | | |emmeec U (N [[S—— { S ipalEs 1
PDRAMS M table [table |
[rastu.
To —1[cm _TETB !
I Trace
BIU |— [MBisT VDITCU = L LEEEETT nterface
PDCORE \— interface LETM AL“ATBA H_T_FiIEJ,: i
PDDEBUG |
JTAG or
APB L.
AXI5 r[nanager subo:r e L—D-AHB sSW
| !
M-AXI PMC-100 [] Configurable component
interface interface

fi\ Optional component

{1 Configurable and optional component

=

Figure 4. Arm Cortex-M85 Core System Overview

1.1.2 Arm® Cortex®-M33 Core Processor

* A mid-to-high performance embedded processor core based on the ARMv8-M architecture, targeting
secure loT and real-time applications.

* Supports TrustZone, DSP, and floating-point operations.

Architecture
e ARMv8-M Profile
¢ Includes enhancements for:
» Security (via TrustZone)
» Digital signal processing (DSP)
* Energy efficiency

e Focuses on low-latency interrupt handling and deterministic behavior.

RO1AN7982EU0100 Rev.1.00 Page 8 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Floating-Point Unit (FPU)
e Compliant with ANSI/IEEE Std 754-2008

+ Enables accurate and standardized floating-point math.
e Supports only single-precision (32-bit) floating point.

e FPU exception handling: Can trigger interrupts on faults (e.g., divide by zero, invalid operation).

Extensions
e Armv8-M Security Extension
e Enables TrustZone:
+ Separates execution into Secure and Non-Secure worlds.
» Used for protecting sensitive operations (e.g., crypto, boot code).
e Can be disabled permanently via OTP (One-Time Programmable) memory:
+ Ifdisabled, CPU1 loses TrustZone support.
* Also, CPU1 cannot act as the primary CPU unless this is enabled.
o Armv8-DSP Extension

+ Adds DSP instructions like MAC (Multiply-Accumulate), saturation arithmetic, and SIMD-like
parallelism for 16-bit and 8-bit data.

+ Enhances performance in signal processing, audio, control systems, and Al/ML inference.

Security and Memory Protection
e SAU (Security Attribution Unit)
+ Defines Secure/Non-Secure memory regions.
+ 8 programmable regions.
e IDAU (Implementation Defined Attribution Unit)
» Configured by the silicon vendor (not part of the core IP).
* Works with SAU to define fixed secure areas (e.g., bootloader, hardware registers).
o MPU (Memory Protection Unit)
+ Part of the PMSAvV8 (Protected Memory System Architecture).
+ Enforces access control, avoiding accidental corruption/misuse of memory.
e Split into:
» Secure MPU (MPU_S): 8 regions
* Non-Secure MPU (MPU_NS): 8 regions
System Timer
e SysTick
e A configurable timer typically used for OS tick (RTOS).
e Two separate instances:
» SysTick S for secure execution
» SysTick NS for non-secure tasks
e Clock source options:
+ CPUCLK1: Main clock driving CPU1
* 1 MHz clock from MOCO/8: A fixed internal oscillator divided by 8

RO1AN7982EU0100 Rev.1.00 Page 9 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Power Modes
e Sleep Mode
* CPU halts, but peripherals and clocks remain active.
* Fast wake up.
e Deep Sleep Mode
* Greater power savings than Sleep mode.
* Some clocks and power domains may be shut down.
Caches
e Code-bus Cache (C-Cache): 16 KB
* Optimizes code fetch performance from flash or external memory.
» ECC protected: detects and corrects bit errors.
e System-bus Cache (S-Cache): 16 KB
* Speeds up data transactions to/from system bus (e.g., peripherals or RAM).
* Also protected with ECC for data integrity.
Tightly Coupled Memory (TCM)
Ultra-fast SRAM is located close to the core for deterministic real-time performance.
e CTCM (Code TCM): 64 KB
« Used for storing time-critical code.
« With ECC.
e STCM (System/Data TCM): 64 KB
* Used for fast data access.
« Also ECC protected.
Interrupt Controller
e Nested Vectored Interrupt Controller (NVIC)
e Supports up to 96 IRQs (interrupt sources).
e Allows prioritization and preemption.

o Essential for real-time response and efficient task scheduling.

RO1AN7982EU0100 Rev.1.00 Page 10 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

M-AHB
interface
Processor
| epcoe | Floating Poit | |~ Micro Trace & p VT8 SRAM
PRPE Unit ____I | _I3_U_ffgl‘_(MII§)__' interface
Coprocessor
interface < P
Cross Trigger "—Q Cross
, Interface (CTI) P > Trigger
IRQ and “ e’ it Interface
power controld=— Core
interface e :
|Embedded Trace’-. -
External IDAU Macrocell (ETM)
interface < R e Gt H > Instruction

ATB

Bus Matrix — Instrumentation

D-AHB
interface

Debugger <« T

PPB bus
——————]
{ Processor |

|
| RoM able |

C-AHB S-AHB

Configurable interface interface External PPB
i_ I
N

Optional

* Flash Patching is not supported in the Cortex-M33 processor.

Figure 5. Arm Cortex-M33 Core System Overview

2. Procedure for Creating Dual-Core Projects

Developing dual-core projects for Renesas RA MCUs involves a slightly different approach compared to
creating standard single-core RA projects, even though many of the fundamental steps remain the same.

While both project types use the Renesas Flexible Software Package (FSP), board support packages
(BSPs), and e? studio IDE workflows, dual-core development introduces additional considerations. These
include managing inter-core communication, defining memory boundaries, coordinating startup sequences,
and configuring multicore debug environments.

In this section, a detailed, step-by-step guide is provided to walk you through the dual-core project creation
process. It covers the following key aspects:

e Selecting the appropriate RA dual-core device.

e Using the Multicore Solutions Project Wizard to generate CPUO and CPU1 projects.
¢ Initializing the device properly to set up security levels and TrustZone boundaries.

e Setting up Inter-Processor Communication (IPC) mechanisms.

e Creating and configuring a Launch Group for multicore debugging.

e Building and linking the projects to ensure synchronized execution.

By following this procedure, you can effectively create and manage dual-core applications tailored to your
system requirements, leveraging the full power of the RA MCU’s multicore architecture.

RO1AN7982EU0100 Rev.1.00 Page 11 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

2.1 Primary and Secondary CPU Selection

In a dual-core setup on the RA8P1 MCU, by default CPUO (Cortex-M85) is designated as the primary core,
while CPU1 (Cortex-M33) is the secondary core. The FSP and BSP, along with the e? studio IDE, support
project creation and configuration for both cores.

There are two main approaches to creating dual-core projects:

1) Manual Project Creation (Individual Projects and Linking Them)

This method involves creating separate projects for each core (CPUO and CPU1) and linking them using an
SBD (Solution Bundle) file. Although this approach requires more manual effort, it provides greater flexibility.

e Supports Bare Metal, RTOS-based, and TrustZone (Secure/Non-Secure) configurations

e Allows full control over memory maps, project structure, and build settings.

2) Solution Project Creation (Automated Dual-Core Setup)

The solution project method simplifies dual-core development by automatically generating the individual
projects for both cores under a unified solution.

o Generates a top-level solution project that manages both CPUO and CPU1 projects.

e Provides an integrated graphical memory configuration interface for peripheral and resource setup
across both cores.

e Currently it supports only Bare Metal configurations (no RTOS or TrustZone setup in initial versions).

2.2 Procedure for Creating Manual Dual-Core Projects and Their Configuration

This section outlines the detailed steps for creating a dual-core project on the RA8P1 MCU series. If needed,
refer to the FSP documentation for additional guidance.

During project creation, you will:

e Choose the project type

e Specify the project name and location

o Configure essential settings, including:
* FSP version
* Target board
» Selected core (Cortex-M85 or Cortex-M33)
* RTOS inclusion (if applicable)
+ Toolchain version

These instructions will walk you through the complete process using a simple Blinky application as an
example, ensuring you understand how to set up and configure a functional dual-core project.

Open €2 studio, then navigate to File > New = Renesas C/C++ Project > Renesas RA

Select Renesas RA C/C++ Project and click Next to proceed.

RO1AN7982EU0100 Rev.1.00 Page 12 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

8} FSP600_07012025 - EK_RABP1_Blinky_BM_CPUO/configuration.xml - € studio
File § Edit Source Refactor Mavigate Search Project Renesas Views Run Renesas Al Window Help

New Alt+5hift+N > I L Renesas C/C++ Project > I Renesas Debug

Open File... [64 Makefile Project with Existing Code Renesas RA ration =7
[, Open Projects from File System... [€] C/C++ Project

Recent Files > [Project.. Generate Project Content

Close Editor Ctrl+W Convert to a C/C++ Project (Adds C/C++ MNature) 7 Restore Defaults

Close All Editors Ctrl+Shift+W | &% Source Folder

Save Ctries | Folder

Save As... [¢" SourceFile Board Details

Save All Cirl+Shift+5 .f Header File Evaluation kit for RASPT MCU Group

Revert j File from Template Visit https://renesas.com/ra/ek-ralpl to get kit user's manual,

@ Class quick start guide, errata, design package, example projects, etc.

Move...

B B2 [Example... & New C/C++ Project [m] x

Refresh F5 [Other. Templates for Renesas RA Project

Convert Line Delimiters To >

Print... Ctrl+P

Renesas RA C/C+ + Project

£ Import. S+ + FS=™ Create an executable or static library C/C++
g Export.. project for Renesas RA.

Eorois Alt+Enter Renesas RA FSP Solution

g ﬁ\ Create an FSP Solution for Renesas RA

Switch Workspace > comprising a Solution Project and C/C++ projects

Restart

Exit

Summary | BSP | Clocks | Pins | Interrupts | Event Linl
Problems Console Properties
RAFsP @ <Back [New> | Fnih Cancel

Figure 6. Create an EK-RA8P1 CPUO Project using e? studio

Enter a name for your new project “EK_RA8P1_CPUOQ” and click Next.

&) Renesas RA C/C++ Project O x

Renesas RA C/C++ Project —_—

Project Mame and Location

Project name

I EK_RAZPT1_CPUD I

Usze default location

CANWS\FSPR00_07012025%EK_RABP1_CPLO Browse...

® < Back Finish Cancel

e =T

Figure 7. Project Name for EK-RA8P1 CPUO Project using e? studio

In the Device and Tools Selection window:
e Set the board to EK-RA8P1.
e Choose CPUO (Cortex-M85) as the target core.
e Select the LLVM Embedded Toolchain for Arm as the toolchain.

RO1AN7982EU0100 Rev.1.00 Page 13 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

e Renesas RA C/C++ Project O X
Renesas RA C/C++ Project —
Device and Tools Selection
Device Selection
ESP Version: » Board Description
Evaluation kit for RA8P1 MCU Group
Board: | Ex-ragP1 | -] - -
Visit https://renesas.com/ra/ek-ra8p1 to get kit user's manual,
Device: R7KASPTKFLCAC quick start guide, errata, design package, example projects, etc.
Core: lcruo {~
language. @C OCe+ Device Details
TrustZone Yes
Pins 289
Processor Cortex-M85
IDE Project Type Debugger
e* studio managed build ~ J-Link ARM ~
Toolchains
LLVM Embedded Toolchain for Arm
GNU ARM Embedded
IAR Toolchain for Arm - (9.x)
ARM Compiler 6.21
18.1.3 1 Manage Toolchains...
@ < Back Einish Cancel
Figure 8. Selecting from the Device and Tools Selection CPU0
Select Flat (Non-TrustZone) Project in Project Type Selection and click Next.
8 Renesas RA C/C++ Project] X
Renesas RA C/C++ Project B v

Project Type Selection

Project Type Selection

(® Flat (Non-TrustZone) Project
* Renesas RA device project without TrustZone separation
® All code, data and peripheral settings will be configured in this project
& Renesas RA device will remain in secure mode
s EDMAC RAM buffers will automatically be placed in non-secure RAM

O TrustZone Secure Project

» Renesas RA device project for TrustZone secure execution

® All code, data and peripherals placed in this project will be initialized
as secure

& Secure project settings such as TrustZone partitions, linker maps and a
list of secure peripherals will be passed to a selected non-secure
project

® After initialization, a call to the non-secure startup handler will be
made

(O TrustZone Non-secure Project
* Renesas RA device project for TrustZone non-secure execution
& All code, data and peripherals placed in this project will be initialized
as non-secure
® Must be associated with a secure project or smart bundle
* Non-secure startup handler will be called after secure code
initialization

®@ <Back Finish Cancel

Figure 9. Flat (Non-TrustZone) Project Type Selection
Select None for Preceding Project or Smart Bundle Selection and click Next.

RO1AN7982EU0100 Rev.1.00 Page 14 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Q Renesas RA C/C++ Project

Renesas RA C/C++ Project

Preceding Project or Smart Bundle Selection

Smart Bundle).

(® None Choose this option when creating a project for the primary processor core (no preceding project or

() Preceding Project:

() Smart Bundle:

Preceding Project/Smart Bundle Details

Workspace... File Systern... Variables...

FSP version
Toolchain
Toolchain version
Board

Device

@' < Back

Finizh

Figure 10. No preceding project or Smart Bundle Selection

Select Executable for Build Artifact Selection and No RTOS for RTOS Selection, and click Next.

&) Renesas RA C/C++ Project O

Build Artifact and RTOS Selection

Renesas RA C/C+ + Project I

Build Adifact Selection RTOS Selection
@ Executable No RTOS

& Project builds to an executable file

(O static Library
® Project builds to a static library file

(O Executable Using an RA Static Library
* Project builds to an executable file
® Project uses an existing RA static library
project

@ < Back Finish Cancel

Figure 11. Executable for Build Artifact and No RTOS Selection

Select Bare Metal - Blinky for this example and click Finish.

RO1AN7982EU0100 Rev.1.00
Aug.08.25 RENESAS

Page 15 of 56

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

8 Renesas RA C/C++ Project | X
Renesas RA C/C+ + Project —
Project Template Selection
Project Template Selection
S 5 .
@® (:) Bare Metal - Blinky
Bare metal FSP project that includgs BSP and will blink LEDs if available. This project will initialize clocks, pins, stacks, and the C
runtime environment.
o (3 Bare Metal - Minimal
w Bare metal FSP project that includes BSP. This project will initialize clocks, pins, stacks, and the C runtime environment,
Code Generation Settings
Use Renesas Code Formatter
~.
(?/.‘ < Back Next = Cancel

Figure 12. Blinky Project Template Selection
Generate Project Content and compile the project template.

Double-click Configuration.xml to open the configurator. Click Generate Project Content as shown in Figure
13.

=

¢ FSP Configuration = 0

0

Board Support Package Configuration Generate Project Content

. Restare Defaults

Device Selection

Board Details

FSP version: £
Evaluation kit for RASBPT MCU Group
Board: EK-RA8BP1 ~ [T . 3
Visit https://renesas.com/ra/ek-ra8p1 to get kit user's manual,
Device: R7KABPTKFLCAC quick start guide, errata, design package, example projects, etc.
Core: CPUO e
RTOS: No RTOS
Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

Figure 13. Generate Project Content

Note: Add the MACRO setting to define under the project settings > C/C++ Build > Settings > Compiler >
Includes - Macro Defines (-D) - “BSP_PARTITION_FLASH_CPU1_S_START” as shown in the snapshot
below to avoid the compiler/linker error.

RO1AN7982EU0100 Rev.1.00
Aug.08.25

Re Page 16 of 56
RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

O X
[type filter text Settings - 8
Resource
| Builders
'I w C/C++ Build I Configuration: | Debug [Active] ~ | | Manage Configurations...
| Build Variables
Environment
J50N Compilation Datak %) Tool Settings | &5 Toolchain | # Build Steps Build Artifact Binary Parsers| € Error Parsers
| Legging
I Settings | & cpy Include file directories (-) =R 2=
Tool Chain Edor (3 Optimization /${ProjName}/src}”
C/C++ General @ Debug i - e
Project Natures [Warnings "S{workspace_loc:/${ProjName}/ra/fsp/inc}"
Project References ~ B Compiler "S{workspace_loc:/${ProjName}/ra/fsp/inc/apil"
Renesas QF T3 Source "Sworkspace_loc:/${ProjName}/ra/fsp/inc/instances}”
Run/Debug Settings m "S{workspace_locifS{PrDJ.Name}fra)’arm)'”CMSIS_EICMSIS}'Core,"Include}
v & Assembler S{workspace,loc.fS{PrDJ_Name}fra,gen}
Task Tags iy "S{workspace_loc:/${ProjNamel/ra_cfg/fsp_cfg/bsp}"
Validation (2 Source "S{workspace_loc:/${ProjNamel/ra_cfg/fsp_cfg}”
| @ Includes
| ~ By Linker -
@ Source Macro Defines (-0
(% Archives _REMESAS_RA_ |
(# Miscellaneous _RA_CORE=CPUD
(% Other _RA_ORDINAL=1
v &) Objcopy
b5}
b_ Ger!eral & Enter Value *
~) Print Size
it}
2 General Macro Defines (-0
| BSP_PARTITION_FLASH_CPUT_S_START |
|
| Cancel
|
a 2 Restore Defaults Apply
?\ Apply and Close Cancel

Figure 14. Add the MACRO under the project settings - CPUO Blink Project
Right-click on the project and select the Build Project.

RO1AN7982EU0100 Rev.1.00
Aug.08.25

Re Page 17 of 56
RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

| SR ~ie kD mEM
Project Explorer < = <}§|; 7 8

EK_RAEM2_Blinky_CPUO
EK_RABM2_Blinky_CPU1
EK_RABMZ_UART_CPUD
EK_RAZM2_UART_CPUO_Blinky_CPL1
ek_ra8pl_blinky
ek_ralp1_blinky_CPUO
ek_ra8p1_blinky_CPU1
EK_RA8P1_CPUOD [Debug]
91;3 Binaries
ml Includes
2 ra
7= ra_gen
w 3 src
[hal_entry.c

= Debug

[= ra_cfg

[= script

sﬁ;" configuration.xml
EK_RAZP1_CPUD Debug_Flat.launch
EK_RAZP1_CPUT Debug_Multicore,jlink
ILinkLog.log

W

GOODDDODDE

X
(7) Developer Assistance
LJ EK_RABP1_CPU1
LI RAZP1_Dual_core

LJ RABP1_Dual_core CPUD
L] RAZP1_Dual_core_CPU1

| i

= 8

x

l;\ [./

MNew »

Go Into

Open in New Window

Show In Alt+Shift+W »
Copy Ctrl+C
Paste Chrl+V
Delete Delete
Source »
Move...

Rename... F2
Import...

Export...

Renesas FSP >
Build Project

Clean Project
Refresh

Incremental Build of Selec

Close Project

Close Unrelated Project

Build Targets b
Index »
Build Cenfigurations b
Source »

Figure 15. Compile the EK_RA8P1_CPUO0 Blinky Project

After successful compilation, the Smart bundle.sbd is generated as shown in Figure 16.

RO1AN7982EU0100 Rev.1.00
Aug.08.25

Page 18 of 56

RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

+ =5 EK_RASP1_CPUO [Debug]
gff Binaries
it Includes
2 ra
2 ra_gen
w [src
[£] hal_entry.c
w = Debug
= ra
= ra_gen
(= src
%5 EK_RASP1_CPUD.elf - [arm/le]
[£] bsp_linker_info.h
compile_commands.json
EK_RABP1_CPUD.cref
EK_RABP1_CPUD.elf.in
EK_RABP1_CPUD.map
=] EK_RASP1_CPUQ.rpd
I 4 EK_RABP1_CPUD.shd I
= EE_RAEPT_CPU.srec
[L] fsp_gen.lid
rakefile
= makefileinit

[L| memory_regions.lid

ohjects.mk

sources.mk
= ra_cfg
[= script
{54 configuratienxml
EK_RAZP1_CPUD Debug_Flat.launch
EK_RAZP1_CPUT Debug_Multicore,jlink
ILinkLog.log

(7) Developer Assistance

Figure 16. Smart Bundle Generated
Create a Flat Blinky Project with CM33 core

Click File > New > Renesas C/C++ Project > Renesas RA and select Renesas RA C/C++ Project - Click

[® < studio

File Edit Source Refactor Navigate Search Project RenesasViews Run Renesas Al Window Help
New Alt+Shift+N > Renesas C/C++ Project 5| Renesas Debug
Open File, [c] Makefile Project with Existing Code Renesas RA

(") Open Projects from File System... [c] C/C++ Project
Recent Files > 9 Project..
Close Editor Crl+W & Convert to a C/C++ Project (Adds C/C++ Nature)
Close All Editors Ctrl+Shift+W &9 Source Folder
Save Ctrl+§ Folder
Save As.. ¢ Source File & New C/C++ Project] X
Save Al Ctrl+Shift+S hi Header File .

. Templates for Renesas RA Project
Revert File from Template
Move... @ Class
Rename. 2 Example
Refresh R Renesas RA C/C++ Project
- 5
Oth CfC++
S = er. == Create an executable or static library C/C-++ project
for Renesas RA.

Print.. Curl+P

2 Import.

3 Export.
Properties Alt+Enter
Switch Workspace >
Restart
Exit

Figure 17. Create an EK-RA8P1 CPU1 Project using e? studio

Assign a name for this new project, “EK_RA8P1_CPU1". Selecting from the Device and Tools Selection.
Select Board type as EK-RA8P1, the core for this project is CPU1, and select the LLVM Embedded

Toolchain for Arm.

RO1AN7982EU0100 Rev.1.00

Aug.08.25 RENESAS

Page 19 of 56

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

Q Renesas RA C/C++ Project O X

Renesas RA C/C++ Project - A

Device and Tools Selection

Device Selection

FSP Version: o Board Description
Evaluation kit for RASP1 MCU Group
Board: | EK-RABP1 | v ’
Visit https://renesas.com/ra/ek-ra8p1 to get kit user's manual,
Device: R7KASP1KFLCAC quick start guide, errata, design package, example projects, etc.
Core: CPU1 =
LerseETE @C OC++ Device Details
TrustZone Yes
Pins 289
Processor Cortex-M33
IDE Project Type Debugger
e? studio managed build ~ J-Link ARM ~
Toolchains

LLVM Embedded Toolchain for Arm
GNU ARM Embedded

AR Toolchain for Arm - (9x)

ARM Compiler 6.21

1813 v Manage Toolchains...

® < Back Finish Cancel

Figure 18. Selecting from the Device and Tools Selection CPU1

Select Flat (Non-TrustZone) Project in Project Type Selection and click Next.

a Renesas RA C/C++ Project [m]

Renesas RA C/C++ Project

Project Type Selection

Project Type Selection

{® Flat (Non-TrustZone) Project
® Renesas RA device project without TrustZone separation
& All code, data and peripheral settings will be configured in this project
* Renesas RA device will remain in secure mode
®» EDMAC RAM buffers will automatically be placed in non-secure RAM

() TrustZone Secure Project

® Renesas RA device project for TrustZone secure execution

& All code, data and peripherals placed in this project will be initialized
as secure

® Secure project settings such as TrustZone partitions, linker maps and a
list of secure peripherals will be passed to a selected non-secure
project

® After initialization, a call to the non-secure startup handler will be
made

(O TrustZone Non-secure Project
* Renesas RA device project for TrustZone non-secure execution
& All code, data and peripherals placed in this project will be initialized
as non-secure
® Must be associated with a secure project or smart bundle
& Non-secure startup handler will be called after secure code
initialization

@ <ok Fis Conce

Select the previous project or the Smart Bundle file in the Debug folder of the previously created and built

CPUO project.

Figure 19. Flat Project Type Selection CPU1

RO1AN7982EU0100 Rev.1.00

Aug.08.25

RENESAS

Page 20 of 56

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

B Renesas RA C/C++ Project O >

Renesas RA C/C++ Project

Preceding Project or Smart Bundle Selection

(®) Preceding Project: | EK_RASP1_CPUD

Choose this option if you have access to the project source code of the bootloader, preceding processor core or
security context.

() Smart Bundle:

Workspace... File System... Variables...

Preceding Project/Smart Bundle Details

FSP version 6.0.0

Toolchain LLVM Embedded Toalchain for Arm

Toolchain version 181.3

Board EK-RABP1

Device R7KABP1KFLCAC

Core CPUD

Zones CPUOS
@ < Back | Finish Cancel

Figure 20. Preceding project or Smart Bundle Selection CPU1
Select Executable for Build Artifact Selection and No RTOS for RTOS Selection and click Next.

Q Renesas RA C/C++ Project O X

Renesas RA C/C++ Project &
Build Artifact and RTOS Selection

Build Ardifact Selection RTOS Selection

@ Executable No RTOS v
= Project builds to an executable file

(O static Library
* Project builds to a static library file

() Executable Using an RA Static Library
Project builds to an executable file
= Project uses an existing RA static library
project

@ < Back Finish Cancel

Figure 21. Executable for Build Artifact and No RTOS Selection
Select Bare Metal — Blinky for this example and click Finish.

RO1AN7982EU0100 Rev.1.00 Page 21 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

B8 Renesas RA C/C++ Project

Renesas RA C/C++ Project

Project Template Selection

Project Template Selection

@® (:) ' Bare Metal - Blinky

Bare metal FSP project that includ

s BSP and will blink LEDs if available. This project will initialize clocks, pins, stacks, and the C
runtime environment,

o (} ' Bare Metal - Minimal

Bare metal FSP project that includes BSP. This project will initialize clocks, pins, stacks, and the C runtime environment.

Code Generation Settings
Use Renesas Code Formatter

i

Figure 22. Blinky Project Template Selection CPU1
Generate Project Content and compile the project.

Double-click Configuration.xml to open the configurator. Click Generate Project Content as shown in Figure
23.

5 [CPU1_blinky] FSP Configuration X =g

; i (]
Board Support Package Configuration

F2 Restore Defaults

Device Selection

N Board Details
FSP version: ©
Evaluation kit for RABP1 MCU Group
Visit https;//renesas.com/ra/ek-ra8p1 to get kit user's
Device R7KASPTKFLCAC [':] manual, quick start guide, errata, design package,
example projects, etc
Core: CPU1 >
RTOS: No RTOS
Summary BSP| Clocks | Pins | Interrupts | Event Links | Stacks | Components

Figure 23. Generate Project Content CPU1
Right-click on the project and select the Build Project.

RO1AN7982EU0100 Rev.1.00

Page 22 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

LI EK_RABMZ2_Blinky CPUD : New 5
LI EK_RABM2_Blinky_CPU1
i Go Into
LJ EK_RABM2_UART_CPUD]
LI EK_RABMZ2_UART_CPUD_ Blinky_CPU1 I Open in Mew Window
W ek _radp1_blinky , Showln Alt+Shift+W >
LI ek_ra8p1_blinky_CPUQ
LI ek_ra8p1_blinky_CPU1 & Copy Ctrl+C
=5 EK_RAZP1_CPUD Paste Ctrl+V
<
w [EK_RASP1_CPU1 [Debug] 9 Delete Delete
jff Binaries E ,
[Includes ource
2 ra Move...
& ra_gen Rename... F2
g
B src
= Debug ity Import..
= ra_cfg g Export.
= seript Renesas FSP
45 configurationxml - -
X| EK_RAZP1_CPU1 Debug_Attach.launch §
¥| EK_RAZP1_CPU1 Debug_MulticareJaunch ! Clean Project [—————
¥ EK_RAZPT_CPU1 Debug_Multicore Launch GmuI:].IauI ; Refresh

{7) Developer Assistance !

L] RASP1_Dual_core
LJ RASP1_Dual_core_ CPUD
LJ RABP1_Dual_core_CPU1 Build Targets

Close Project

Close Unrelated Project

Index

Build Cenfigurations

w oW W ‘ w

Source

Figure 24. Compile the Template Project CPU1

After the building of projects for both CPUO and CPU1 successfully, make sure the image was generated in
Debug folder.

2.3 Procedure for Creating a Solution Project for Dual-Core and its Configuration

This section outlines the detailed steps for creating a solution-based approach for a dual-core project on the
RA8P1 MCU series. If needed, refer to the FSP documentation for additional guidance.

During project creation, you will:
e Choose the project type
e Specify the project name and location.
e Configure essential settings, including:
* FSP version
+ Target board
* Toolchain version

These instructions will walk you through the complete process using a simple Blinky application as an
example, ensuring you understand how to set up and configure a functional dual-core project.

Open €? studio, then navigate to File > New > Renesas C/C++ Project > Renesas RA.

Select Renesas RA FSP Solution and click Next to proceed.

RO1AN7982EU0100 Rev.1.00 Page 23 of 56
Aug.08.25 RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

&} FSP600_07012025 - EK_RASP1_Blinky_BM_CPUD/configuration.xml - ¥ studio

File | Edit Source Refactor Mavigate Search Project Renesas Views Run Renesas Al Window Help

New Alt-ShifteN > | L Renesas C/C++ Project 3|

Renesas Debug

Open File... [64 Makefile Project with Existing Code Renesas RA ration =7
() Open Projects from File System... [€] C/C++ Project

Recent Files > [Project.. Generate Project Content

Close Editor Ctrl+W Convertto a C/C++ Project (Adds C/C++ Nature) 7 Restore Defaults

Close All Editors Ctrl+Shift+W | &% Source Folder

Save Ctrles | Folder

Save As... [¢" SourceFile Board Details

Save All Ctrl+Shift+5 f Header File Evaluation kit for RABP1 MCU Group

Revert (% Filefrom Template Visit https://renesas.com;ra/ek-ralpl to get kit user's manual,

S L. = P : X N
o G s B New C/C++ Project] X
L 9 Example..

IR = Templates for Renesas RA Project

Refresh F5 | Other.

Convert Line Delimiters To >

Print... Ctrl+P Renesas RA C/C++ Project

C/C++ PSS~ Create an executable or static library C/C++
[Import... project for Renesas RA.
i Export. Renesas RA FSP Solution
. m‘ Create an FSP Sclution for Renesas RA

Properties Alt+Enter comprising a Solution Project and C/C++ projects

Switch Workspace >

Restart

Exit

Summary | BSP | Clocks | Pins| Interrupts | Event Link
Problems Console Properties @. < Back Cancel
RAF5P

Figure 25. Create an EK-RA8P1 CPUO Solution Project using e? studio

Enter a name for your new project “EK_RA8P1_SP” and click Next.

{3} Renesas RAFSP Solution O X
Renesas RA F5P Selutien —
Project Name and Location |
Project name
(ESEN
Use default location
C:AWS\FSPE00_D6292025\EK_RABP1_SP Browse...
You can download more Renesas packs here
@' < Back Finish Cancel

Figure 26. Solution Project Name for EK-RA8P1 using e? studio

In the Device and Tools Selection window:
e Set the board to EK-RA8P1.
e Language: C
e Select the LLVM Embedded Toolchain for Arm as the toolchain.
e Debugger : J-Link ARM

RO1AN7982EU0100 Rev.1.00

Aug.08.25 RENESAS

Page 24 of 56

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Q Renesas RA FSP Solution

Renesas RA FSP Solution

Device and Tools Selection

Device Selection

Board Description
Evaluation kit for RAZP1 MCU Group

FSP Version: | 6.0.0

e EEE - I Visit https;//renesas.com/ra/ek-ragp1 to get kit user's manual, quick
- R7KASPTKFLCAC start guide, errata, design package, example projects, etc.
language: @C OC+r Device Details
TrustZone Yes
Pins 289
Processor Cortex-M83
IDE Project Type Debugger
& studio managed build ~ | J-Link ARM ~
Toolchains
|| LLvM Embedded Toolchain for Arm |

GNU ARM Embedded

1813 v Manage Toclchains...

@- < Back Finish Cancel

Figure 27. Selecting from the Device and Tools Selection
Select Bare Metal — Blinky for this example and click Finish.

a Renesas RA FSP Solution

Renesas RA FSP Solution

Project Template Selection

Project Template Selection

® ' Bare Metal - Blinky
o]

- Bare metal FSP project that includes BSP and will blink LEDs if available, This project will initialize clocks, pins, stacks, and the
runtime environment,

[Renesas.RA6.0.0.pack]

O (} Bare Metal - Minimal

Bare metal F5P project that includes BSP, This project will initialize clocks, pins, stacks, and the C runtime environment,
[Renesas.RA.6.0.0.pack]

Code Generation Settings
Use Renesas Code Formatter

Mext >

Cancel

Figure 28. Blinky Project Template for Solution Project

RO1AN7982EU0100 Rev.1.00

Page 25 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

v = EK_RABP1_SP
w &, C/C++ Projects {Solution Project j

(25 EK_RASP1_SP_CPUD

& EK_RASP1_SP_CPU1Tist of CPU projects iﬂ
w = build Solution Container
H3 EK_RABP1_SP.shd
ﬂi}} solution.xml

€L
vie EE'R,ASELSP'CPUD CPUO Project in Solution
%%, Binaries

[Includes

= ra

2 ra_gen

B src

= Debug

= ra_cfg

(= script

11"0} cenfiguration.xml

|%| EK_RAZP1_SP_CPUD Debug_Flat.launch

{#) Developer Assistance
v == EK_RABP1_SP_CPU1

ff‘ Binaries

i Includes

E ra

22 ra_gen

& src

= Debug

= ra_cfg

= script

12t configurationaxml

|%| EK_RAZP1_SP_CPU1 Debug_Attach.launch

|%] EK_RAZP1_SP_CPU1 Debug_Multicore.launch

|%| EK_RAZP1_SP_CPU1 Debug_Multicere Launch Group.launch

{#) Developer Assistance

CPU1 Project in Solution I

Figure 29. Blinky Solution Project creation

After clicking on the Finish button in the wizard, this will cause a set of projects to be created, with
appropriate linkages between them. Two of the projects, “EK_RA8P1_SP_CPUO” and
“‘EK_RA8P1_SP_CPU1,” are “normal’ projects that contain source code and combined will generate the
overall multicore application that will be downloaded to the target MCU, with the appropriate code running on
each CPU. The third project is the “container” Solution project “EK_RA8P1_SP”, which contains and controls
configuration of the overall MCU and the CPU projects.

Note: After the project is created, an initial automated build of both CPU projects will be performed to
populate certain configuration data stored in the central solution project. The snapshot of the automated
compilation as part of the solution project creation is shown in Figure 30.

RO1AN7982EU0100 Rev.1.00 Page 26 of 56
Aug.08.25 RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

v = EK_RABP1_SP
v T C/C++ Projects
(2 EK_RASP1_SP_CPUD
(2 EK_RASP1_SP_CPU1
v [= build
3 EK_RASP1_SP.shd
5t solutionxml
v =% EK_RABP1_SP_CPUD
gff' Binaries
[Includes
= ra
2 ra_gen
2 src
(= Debug
(= ra_cfg
(= script
& configuration.xml
i EK_RASP1_SP_CPUD Debug_Flatlaunch
(%) Developer Assistance
v (5 EK_RABP1_SP_CPU1
i‘f‘ Binaries
[Includes
= ra
[ra_gen
2 src
== Debug
(= ra_cfg
(= script
{5 configurationxml
¥ EK_RASP1_SP_CPU1 Debug_Attach.launch
¥ EK_RABP1_SP_CPU1 Debug_Multicorelaunch
¥ EK_RABP1_SP_CPU1 Debug_Multicore Launch Group.launch
(?) Developer Assistance

Summary | Memories

Problems

Consale

Properties Smart Browser Smart Manual

CDT Build Console [EK_RABP1_SP_CPUQ]

CuLILiuLig
Building
Building
Building
Building
Building
Building

11vm-objcopy "EK_RAEPl_SP_CPUB.el‘F" -0 srec

file:
file:
file:
file:
file:
target:

ST ar ISP/ 51 Lf USPFRCUy GLL7 USP_SEUur Ly T
../ra/fsp/src/bsp/mcusall/bsp_sdram.c
../ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/startup.c
../ra/board/raspl_ek/board_init.c
..fra/fspfsrc/bsp/cmsis/Device/RENESAS/Source/system.c
../ra/board/ragpl_ek/board_leds.c

EK_RASP1_SP_CPU@.elf
"EK_RABP1_SP_CPUB.srec”

1lvm-size --format=berkeley “EK_RASP1_SP_CPU@.elf"

text
5858

data
e

hex filename
1b82 EK_RASPL_SP_CPUB.elf

dec
7e42

bss
1184

21:31:@1 Build Finished. @ errors, @ warnings. (tock 4s5.85ms)

Summary | Memories

Problems

Consale

Properties Smart Browser Smart Manual

CDT Build Console [EK_RABP1_SP_CPU1]

Building
Building
Building
Building
Building
Building
Building
Building
Building

file:
file:
file:
file:
file:
file:
file:
file:
target:

../ra/fsp/src/bsp/mcu/all/bsp_register_protection.c
../ra/fsp/src/bsp/mcusall/bsp_sbrk.c
../ra/fsp/src/bsp/mcusall/bsp_security.c
../ra/fsp/src/bsp/mcu/all/bsp_sdram.c
../ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/startup.c
../ra/board/raspl_ek/board_init.c
../ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/system.c
../ra/board/ra8pl_ek/board_leds.c

EK_RABP1_SP_CPUL.elf

1lvm-size --format=berkeley “EK_RASP1_SP_CPULl.elf™

text
2858

1lvm-objcopy “EK_RABP1_SP_CPULl.elf" -0 srec

data
e

hex filename
fca EK_RABP1_SP_CPUL.elf
"EK_RABP1_SP_CPUL.srec”

dec
4842

bss
1184

21:31:88 Build Finished. @ errors, @ warnings. (took 35.682ms)

Figure 30. Snapshot of Compiled project for CPU0 and CPU1 after solution project creation

Note: With this approach, users can adopt an RA solution-based method to create dual-core projects for
CPUO and CPU1. This approach is easier and more user-friendly. The solution project generated above
serves as a template for the Renesas RA Dual-Core; however, in actual application development, the "Bare
Metal - Minimal" option can be selected instead of "Bare Metal - Blinky." FSP modules required for the
application can then be added on top of the template project. Further details on adding FSP modules are
provided in the FSP User Manual, which users are encouraged to refer to for comprehensive guidance.

2.4 Procedure to Create Dual-Core Projects Using FreeRTOS for Both Cores

Creating RTOS-based projects on dual-core has the advantage that separate instances of RTOS will be
running on two cores. In this app note we will be covering how the FreeRTOS-based projects are created.
This section outlines the detailed steps for creating a dual-core project using FreeRTOS on the RA8P1 MCU

series.
During project creation, you will:
e Choose the project type

e Specify the project name and location

e Configure essential settings, including:

e FSP version

+ Target board

» Selected core (Cortex-M85 or Cortex-M33)

« RTOS inclusion - FreeRTOS

¢ Toolchain version

These instructions will walk you through the complete process using a simple Blinky application as an
example, ensuring you understand how to set up and configure a functional dual-core project.

Open e? studio, then navigate to File > New - Renesas C/C++ Project > Renesas RA.

RO1AN7982EU0100 Rev.1.00
Aug.08.25

Page 27 of 56

RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

Select Renesas RA C/C++ Project and click Next to proceed.

a F5SPE00_07012025 - EK_RABP1_Blinky_BM_CPUD/ configuration.xml - & studio

File § Edit Source Refactor Mavigate Search Project Renesas Views Run Renesas Al Window Help

New Alt+5hift+N > I L Renesas C/C++ Project > I Renesas Debug
Open File... [64 Makefile Project with Existing Code Renesas RA ration =7
[, Open Projects from File System... [€] C/C++ Project
Recent Files > [Project.. Generate Project Content
Close Editor Ctrl+W Convert to a C/C++ Project (Adds C/C++ MNature) 7 Restore Defaults
Close All Editors Ctrl+Shift+W | &% Source Folder
Save Ctries | Folder
Save As... [¢" SourceFile Board Details
Save All Cirl+Shift+5 _f Header File Evaluation kit for RASPT MCU Group
Revert f File from Template Visit https://renesas.com/ra/ek-ralpl to get kit user's manual,
@ Class quick start guide, errata, design package, example projects, etc.
Move...
Rename... F2 [Example.. Q Mew C/C++ Project] b
Refresh 5 [Other.. Templates for Renesas RA Project
Convert Line Delimiters To ¥
Print... Ctrl+P
Renesas RA C/C++ Project
g Import... S+ P Create an executable or static library C/C++
g Export.. project for Renesas RA.
: Renesas RA F5SP Solution
P i Alt+Ents
i e == Create an FSP Solution for Renesas RA
Switch Workspace ¥ comprising a Solution Project and C/C++ projecis
Restart
Exit
Summary | BSP | Clocks | Pins | Interrupts | Event Linl
Problems Console Properties
RAFsP @ <Back [New> | Fnih Cancel
Figure 31. Create an EK-RA8P1 CPUO Project using e? studio
H & ” H
Enter a name for your new project “‘EK_RA8P1_FREERTOS_CPUOQ” and click Next.
{3} Renesas RA C/C++ Project O X
Renesas RA C/C++ Project —
Project Mame and Location |
Project name
EK_RAZP1_FREERTOS_CPUD
Uze default location
CAWS\F5Pe00_06292025\EK_RABP1_FREERTOS_CPUO Browse...
You can download more Renesas packs here
,,"'\ .
f) < Back Mext = Finish Cancel

Figure 32. Project Name for FreeRTOS based EK-RA8P1 CPUO Project using e? studio

In the Device and Tools Selection window:

RO1AN7982EU0100 Rev.1.00
Aug.08.25

RENESAS

Page 28 of 56

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

e Set the board to EK-RA8P1.

e Choose CPUO (Cortex-M85) as the target core.
e Select the LLVM Embedded Toolchain for Arm as the toolchain.

Q Renesas RA C/C++ Project

Renesas RA C/C++ Project

Device and Tools Selection

Device Selection

Board Description

Toolchains

LLVM Embedded Toolchain for Arm
GNU ARM Embedded

IAR Toolchain for Arm - (9.%)

ARM Compiler 6.21

18.1.3 1 Manage Toolchains...

® < Back

FSP Version: =
Evaluation kit for RA8P1 MCU Group
Board: | Ex-ragp1 | -] -]
Visit https://renesas.com/ra/ek-ra8p1 to get kit user's manual,
Device: R7KABP1KFLCAC quick start guide, errata, design package, example projects, etc.
Core: lcruo {~
language. @C OC++ Device Details
TrustZone Yes
Pins 289
Processor Cortex-M85
IDE Project Type Debugger
e* studio managed build ~ J-Link ARM »

Cancel

Figure 33. Selecting from the Device and Tools Selection CPU0O

Select Flat (Non-TrustZone) Project in Project Type Selection and click Next.

8 Renesas RA C/C++ Project

Renesas RA C/C++ Project

Project Type Selection

Praject Type Selection

(® Flat (Non-TrustZone) Project
* Renesas RA device project without TrustZone separation
® All code, data and peripheral settings will be configured in this project
® Renesas RA device will remain in secure mode
® EDMAC RAM buffers will automatically be placed in non-secure RAM

(O TrustZone Secure Project

® Renesas RA device project for TrustZone secure execution

® All code, data and peripherals placed in this project will be initialized
as secure

® Secure project settings such as TrustZone partitions, linker maps and a
list of secure peripherals will be passed to a selected non-secure
project

e After initialization, a call to the non-secure startup handler will be
made

() TrustZone Non-secure Project
& Renesas RA device project for TrustZone non-secure execution
s All code, data and peripherals placed in this project will be i
as non-secure
® Must be associated with a secure project or smart bundle
® Non-secure startup handler will be called after secure code
initialization

® < Back

Cancel

Figure 34. Flat (Non-TrustZone) Project Type Selection

RO1AN7982EU0100 Rev.1.00

Aug.08.25

RENESAS

Page 29 of 56

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

Select None for Preceding Project or Smart Bundle Selection and click Next.

ﬁ Renesas RA C/C++ Project

O >
Renesas RA C/C++ Project —
Preceding Project or Smart Bundle Selection '
(®) None Choose this opticn when creating a project for the primary processor core (ne preceding project or
Smart Bundle).
() Preceding Project:
() Smart Bundle:
Workspace... File System... Variables...
Preceding Project/Smart Bundle Details
FSP version ~
Toolchain
Toeolchain version
Board
Device hd
?\ < Back Finish Cancel
Figure 35. No preceding project or Smart Bundle Selection
Select Executable for Build Artifact Selection and No RTOS for RTOS Selection and click Next.
&) Renesas RA C/C++ Project O *
Renesas RA C/C++ Project —
Build Artifact and RTOS 5election |
Build Artifact Selection RTOS Selection
© e
* Project builds to an executable file ORI
() Static Library Azu re RTOS ThreadX (v6.4.0+fsp.6.0.0)
® Project builds to a static library file
() Executable Using an RA Static Library
® Project builds to an executable file
® Project uses an existing RA static library project
® < Back | Einish Cancel
Figure 36. Snapshot of RTOS Selection
Select Bare Metal — Blinky for this example and click Finish.
RO1AN7982EU0100 Rev.1.00 Page 30 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

&) Renesas RA C/C++ Project O x

Renesas RA C/C++ Project —

Project Template Selection

Project Template Selection

@® (} '| FreeRTOS - Blinky - Static Allocation

FreeRTOS FSP project that includes BSP and will blink LEDs if available. FreeRTOS is pre-configured for static
memory allocation. This project will initialize the MCU using the BSP. FreeRTOS will also be initialized and a
single thread to blink the LEDs will be started.

[Renesas.RAE.0.0.pack]

O ()' FreeRTOS - Minimal - Static Allocation

Empty FreeRTOS FSP project with no threads. FreeRTOS is pre-configured for static memory allocation. This
project will initialize the MCU using the BSP,

[Renesas.RAE.D.0.pack]

Code Generation Settings
Uze Renesas Code Formatter

@' < Back Mext » || Cancel

Figure 37. FreeRTOS Blinky Project Template Selection
Generate Project Content and compile the project template.

Double-click Configuration.xml to open the configurator. Click Generate Project Content as shown in Figure
38.

¢ FSP Configuration b = 8

0

Generate Project Content

Board Support Package Configuration

[Restore Defaults

Device Selection

Board Details

FSP version: »

Evaluation kit for RABPT MCU Group
Board: EK-RABP1 v] .)

Visit https://renesas.com/ra/ek-ra8p1 to get kit user's manual,
Device: R7KABP1KFLCAC quick start guide, errata, design package, example projects, etc.
Core: CPUO >
RTOS: No RTOS

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

Figure 38. Generate Project Content

Note: As a workaround, add the MACRO setting to define under the project settings - C/C++ Build >
Settings > Compiler = Includes - Macro Defines (-D) - “BSP_PARTITION_FLASH_CPU1_S_START” as
shown in the snapshot below to avoid the compiler/linker error.

RO1AN7982EU0100 Rev.1.00 Page 31 of 56
Aug.08.25 RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

O X
[type filter text Settings - 8
Resource
| Builders
'I w C/C++ Build I Configuration: | Debug [Active] ~ | | Manage Configurations...
| Build Variables
Environment
J50N Compilation Datak %) Tool Settings | &5 Toolchain | # Build Steps Build Artifact Binary Parsers| € Error Parsers
| Legging
I Settings | & cpy Include file directories (-) =R 2=
Tool Chain Edor (3 Optimization /${ProjName}/src}”
C/C++ General @ Debug i - e
Project Natures [Warnings "S{workspace_loc:/${ProjName}/ra/fsp/inc}"
Project References ~ B Compiler "S{workspace_loc:/${ProjName}/ra/fsp/inc/apil"
Renesas QF T3 Source "Sworkspace_loc:/${ProjName}/ra/fsp/inc/instances}”
Run/Debug Settings m "S{workspace_locifS{PrDJ.Name}fra)’arm)'”CMSIS_EICMSIS}'Core,"Include}
v & Assembler S{workspace,loc.fS{PrDJ_Name}fra,gen}
Task Tags iy "S{workspace_loc:/${ProjNamel/ra_cfg/fsp_cfg/bsp}"
Validation (2 Source "S{workspace_loc:/${ProjNamel/ra_cfg/fsp_cfg}”
| @ Includes
| ~ By Linker -
@ Source Macro Defines (-0
(% Archives _REMESAS_RA_ |
(# Miscellaneous _RA_CORE=CPUD
(% Other _RA_ORDINAL=1
v &) Objcopy
b5}
b_ Ger!eral & Enter Value *
~) Print Size
it}
2 General Macro Defines (-0
| BSP_PARTITION_FLASH_CPUT_S_START |
|
| Cancel
|
a 2 Restore Defaults Apply
?\ Apply and Close Cancel

Figure 39. Add the MACRO under the project settings - CPUO Blink Project
Right-click on the project and select the Build Project.

RO1AN7982EU0100 Rev.1.00
Aug.08.25

Re Page 32 of 56
RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

ﬁ FSPE0D_06292025 - EK_RASP1_FREERTOS_CPUO/src/blinky_thread_entry.c - €° studio

File Edit Source Refactor Mavigate Search Project RenesasViews Run Rene

Project Explorer BES Y § =B §

=% EK_RASP1_CPUD
=% EK_RABP1_CPU1

£ ra Go Into
ra_gen
. g 5r;g Open in New Window
@ blinky_thread_ent Show In Alt+Shift+W >
€] hal_entry.c [E Copy Ctrl+C
== Debug)
B ra_cfg Paste Ctrl+V
= sc_ript L Delete Delete
14 configuration.xml Source *
(¥] EK_RABP1_FREERTOS Move...
{?) Developer Assistanci Renarme.. E2

= EK_RASP1_SP
=% EK_RASP1_SP_CPUD Fug Import..

£
&5 EKRASPISP.CPUT |+ byt

Fenesas F5P >

Build Project

Clean Project
Refresh F3

Close Project
Close Unrelated Projects

Build Targets ¥

Index >

Build Cenfigurations >

Properties Problems Source »
CDT Build Consele [EK_RASPT | ~ . _ .. .

Figure 40. Compile the EK_RA8P1_CPUO0 Blinky Project

After successful compilation, the Smart bundle.sbd is generated as shown in Figure 41.

RO1AN7982EU0100 Rev.1.00 Page 33 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

F bE EK_RASP1_FREERTOS_CPUO [Debug] I

33, DInaries
[Includes
2 ra
2 ra_gen
2 src
~ (= Debug
= ra
= ra_gen
= src
%5 EK_RABP1_FREERTOS_CPUD.elf - [arm/le]
[bsp_linker_info.h
coempile_commands.json
EK_RABP1_FREERTOS_CPUO.cref
EK_RABP1_FREERTOS_CPUO.elf.in
EK_RABP1_FREERTOS_CPUO.map
=| EK_RABP1 FREERTOS CPUD.rpd
|=| EK_RABP1_FREERTOS_CPUO.srec
[L| fsp_gen.lid
makefile

= makefile.init
|L| memory_regions./id
objects.mk
sources.mk
= ra_cfg
= script
ﬁ configuration.xml o

T

Figure 41. Smart Bundle Generated
Create a FreeRTOS Blinky Project with the CM33 core.

Click File > New - Renesas C/C++ Project > Renesas RA and select Renesas RA C/C++ Project - Click
Next.

B e? studio
File Edit Source Refactor Navigate Search Project RenesasViews Run Renesas Al Window Help
New Alt+Shift+N > Renesas C/C++ Project >| Renesas Debug |
Open File.. [5] Makefile Project with Existing Code Renesas RA
(L Open Projects from File System... [€] C/C++ Project |
Recent Files > 9 Project.
Close Editor Ctrl+W & Convert to a C/C++ Project (Adds C/C++ Nature)
Close All Editors Ctrl+Shift+W | 68 50rce Folder
Save Ctrl+S Folder
Save As.. ¢ Source File & New C/C++ Project m} X
Save Al Ctrl+Shift+5 hi Header File .
Revert File from Template Templates for Renesas RA Project
Move... & Class
Rename... F2 9 Example -
fefresn e Other. ++ o 2;3?:3: :2&(4:!5'5(: ;r :!::xlfe ﬁ;mfy C/C++ project
Convert Line Delimiters To > = RS for Renesas RA.
Print... Ctrl+P
g Import.
/1 Export.
Properties Alt+Enter
Switch Workspace >
Restart
Exit
® < Back Finish Cancel

Figure 42. Create an EK-RA8P1 CPU1 Project using e? studio

Assign a name for this new project: “EK_RA8P1_FREERTOS_CPU1”. Selecting from the Device and Tools
Selection. Select Board type as EK-RA8P1, the core for this project is CPU1, and select the LLVM
Embedded Toolchain for Arm.

RO1AN7982EU0100 Rev.1.00 Page 34 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on

Dual-Core

Renesas RA C/C++ Project O X
il
Renesas RA C/C++ Project —

Device and Tools Selection |

Device Selection

FSP Version: | 6.0.0 o Board Description

Evaluation kit for RASPT MCU Group

Board: I EK-RABP1 ML I Visit https://renesas.com/ra/ek-ralp1 to get kit user's manual, quick
Frefes R7KASPTKFLCAC start guide, errata, design package, example projects, etc.
Core: I;cpu1 " I
®c O Device Details
Language: C C++
L TrustZone Yes
Pins 289
Processor Cortex-M33
IDE Project Type Debugger
& studio managed build ~ J-Link ARM ~
Toolchains

LLVM Embedded Toolchain for Arm
GNU ARM Embedded

1813

~ Manage Toolchains...

< Back Einish Cancel

Figure 43. Selecting from the Device and Tools Selection CPU1

Select Flat (Non-TrustZone) Project in Project Type Selection and click Next.

8 Renesas RA C/C++ Project O X

Renesas RA C/C++ Project

Project Type Selection

Project Type Selection

i® Flat (Non-TrustZone) Project

Renesas RA device project without TrustZone separation

All code, data and peripheral settings will be configured in this project
Renesas RA device will remain in secure mode

EDMAC RAM buffers will automatically be placed in non-secure RAM

(O TrustZone Secure Project

(O TrustZone Non-secure Project

Renesas RA device project for TrustZone secure execution

All code, data and peripherals placed in this project will be initialized
as secure

Secure project settings such as TrustZone partitions, linker maps and a
list of secure peripherals will be passed to a selected non-secure
project

After initialization, a call to the non-secure startup handler will be
made

Renesas RA device project for TrustZone non-secure execution

All code, data and peripherals placed in this project will be initialized
as non-secure

Must be associated with a secure project or smart bundle

Non-secure startup handler will be called after secure code
initialization

<ok Foin Conce

Figure 44. Flat Project Type Selection CPU1

Select the previous project or the Smart Bundle file in the Debug folder of the previously created and built

CPUO project.

RO1AN7982EU0100
Aug.08.25

Rev.1.00 Page 35 of 56

RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

ﬁ Renesas RA C/C++ Project

Renesas RA C/C++ Project

Preceding Project or Smart Bundle Selection |

(®) Preceding Project: |EK_RABP1_FREERTOS_CPUD

Choose this option if you have access to the project source code of the bootloader, preceding processor core or
security context.

() Smart Bundle:

Workspace... File System... Variables...

Preceding Project/Smart Bundle Details

F5P version 8.0.0

Teolchain LLVM Embedded Teclchain for Arm
Toolchain version 18.1.3

Board EK-RAZP1

Device R7KAZP1KFLCAC

Core CPUD

Zones CPUO_S

@ = -

Figure 45. Preceding project or Smart Bundle Selection CPU1

Select Executable for Build Artifact Selection and FreeRTOS for RTOS Selection and click Next.

Q Renesas RA C/C++ Project

[m} =
Renesas RA C/C++ Project —
Build Artifact and RTO5 Selection |
RTO5 Selection

® Executable No RTOS ~

* Project builds to an executable file Mo RTOS

T e
* Project builds to a static library file FIEE AL Ry

() Executable Using an RA Static Library
* Project builds to an executable file
* Project uses an existing RA static library project

® < Back Finish Cancel

Figure 46. Executable for Build Artifact and No RTOS Selection

RO1AN7982EU0100 Rev.1.00

Aug.08.25

Re Page 36 of 56
RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

Select FreeRTOS - Blinky - Static Allocation for this example and click Finish.

ﬁ Renesas RA C/C++ Project

Renesas RA C/C++ Project

Project Template Selection

Project Template Selection

® (} FreeRTOS - Blinky - Static Allocation
_ FreeRTOS FSP project that includes BSP and will blink LEDs if available, FreeRTOS is pre-configured for static memory
allocation. This project will initialize the MCU using the BSP. FreeRTOS will also be initialized and a single thread to blink
the LEDs will be started,
[Renesas.RA.6.0.0.pack]
@)

o,

Code Generation Settings
Use Renesas Code Formatter

FreeRTOS - Minimal - Static Allocation

Empty FreeRTOS FSP project with no threads. FreeRTOS is pre-configured for static memory allecation. This project will
initialize the MCU using the BSP.

[Renesas.RA.6.0.0.pack]

< Back Mext = Cancel

Figure 47. Blinky Project Template Selection CPU1

Generate Project Content and compile the project template.

48.

Double-click Configuration.xml to open the configurator. Click Generate Project Content as shown in Figure

RO1AN7982EU0100 Rev.1.00

Aug.08.25

Re Page 37 of 56
RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

454 [EK_RASP1_FREERTOS_CPUT] FSP Configuration; = O
Summary Generate Project Content

Project Summary ~

RENESAS

Board: EK-RASP1

Device: R7TKABP1KFLCAC

Core: CPU1

Toolchain: LLVM for ARM

Toolchain Version: 18.1.3

FSP Version: 6.0.0

Project Type: Flat

Location: C:/\WS/FSP600_06292025/EK_RASP1_FREERTOS_CPU1 <+

Selected software components

Simple application that blinks an LED using FreeRTOS. v6.0.0

Board Support Package Commaon Files v6.0.0

1/0 Port v6.0.0

FreeRTOS v11.1.0+fsp.6.0.0

Arm CMSIS Version 6 - Core (M) v6.1.0+fsp.6.0.0

FreeRTOS Port v6.0.0

Board support package for RTKASP1KFLCAC v6.0.0 v

)HEO

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks | Components

Figure 48. Generate Project Content CPU1

Right-click on the project and select the Build Project.

= EK_RA8P1_FREERTOS_CPU1 [D - -

[} Includes Lo ’
G ra Go Into
g ra-gen Open in New Window
src
= ra_cfg Show In Alt+Shift+W >
[% script = Copy Ctrl+C
¢ configurationaml)
= Past Ctrl+V
[X] EK_RABP1_FREERTOS_CPU1 D e e
[¥] EK_RABP1_FREERTOS_CPUTD #6 Delete Delete
|x] EK_RABP1_FREERTOS_CPU1D Source >
{(7) Developer Assistance Move...
1= EK_RABP1_SP Rename.. F2
== EK_RASP1_SP_CPUD
== EK_RASP1_SP_CPUN fa Import.
&y Export..
Renesas FSP ¥
| Build Project |
| i P,
| Incremental Build of Selected Projects i
REIIE}H FS‘
Close Project
Close Unrelated Projects
Build Targets >
Index ¥
Build Cenfigurations >
Properties Problems Sm
CDT Build Conscole [EK_RABP1_FREERTOS Source 4

Figure 49. Compile the FreeRTOS Blinky Template Project for CPU1

RO1AN7982EU0100 Rev.1.00 Page 38 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

After the building of projects for both CPUO and CPU1 successfully, make sure the image was generated in
Debug folder.

Here, in the case of FreeRTOS-based dual-core projects, 2 instances of FreeRTOS will be created for CPUO
and CPU1, as the dual-core is heterogeneous in nature.

The CPUO starts by default, and user code can be viewed at blinky_thread_entry(). It also starts the CPU1
by calling the R_BSP_SecondaryCoreStart();

3. Inter-Processor Communication (IPC) Mechanisms in RA8P1

In the RA8P1 microcontroller, efficient inter-core communication is critical to maximizing system performance
and making optimal use of available resources in dual-core applications. The IPC mechanism serves as a
key in facilitating this coordination between CPU cores.

To streamline development, the FSP provides a dedicated IPC Hardware Abstraction Layer, which abstracts
low-level hardware complexities such as register configurations, FIFO handling, and interrupt control.
Instead, developers can utilize a set of well-defined, high-level APIs to implement reliable and efficient inter-
core communication.

These APls enable:

e Seamless message transmission between cores using hardware-backed FIFO queues, ensuring
low-latency, unidirectional data flow.

e The generation and handling of maskable interrupts, allowing one core to asynchronously signal
events or status changes to the other.

e Registration of user-defined callback functions for processing incoming messages or events in a
non-blocking, event-driven fashion.

This structured communication framework not only encourages modular and maintainable software
architecture but also minimizes risks related to race conditions and timing issues. As a result, it significantly
speeds up development cycles and improves system reliability, especially in complex applications such as
real-time control, industrial automation, and secure processing.

For further insights into IPC implementation and dual-core communication strategies on the RA8P1, refer to
the application note “Getting Started with IPC on Dual-Core RA8P1”.

3.1 Reference to IPC App Note and Application Example

Reference applications demonstrating the use of IPC and the dual-core architecture of the RA8P1
microcontroller are available in the application notes “Getting Started with IPC on Dual-Core RA8P1” and
“R0O1AN7881EU0100-Developing with RA8 Dual-Core MCU”. These resources provide practical examples of
how to implement efficient inter-core communication using the IPC HAL driver and APIs. Developers can use
these as a foundation to better understand core synchronization, message passing, and interrupt-driven
signaling, enabling them to build robust, scalable dual-core applications that fully leverage the performance
and parallel processing capabilities of the RA8P1 MCU.

4. Running a Dual-Core Application on Both Cores

4.1 Establish a Debugging Environment to Run the RA8 Dual-Core Project

To debug both cores simultaneously, it is required to begin by initializing your MCU using either the Renesas
Flash Programmer or the Renesas Device Partition Manager. This step ensures that the device is set to
Protection Level 2 and that the TrustZone boundary has not already been configured. If the boundary has
been previously set, you must reset it to establish a suitable environment for debugging.

Completing this initialization is essential; without it, you may encounter issues when downloading project
images or starting the debug session.

RO1AN7982EU0100 Rev.1.00 Page 39 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Initialize the device using the Renesas Device Partition Manager.

Renesas Miews Renesas Al Window Help

B Q- IRenesas Debug Tools > Renesas Device Partition Manager I
Q, Run Ctrl+F11 TraceX >
’3&7 Debug F11 B Tracealyzer >
C++ Exceptions >
£ {8 Renesas Device Partition Manager O X
Run History >
0 Run As >
Run Configurations.. (@ Enter a value for Action and Emulator type
Debug History >
%5 Debug As > 7 - - ~
Debug Configurations... Device Family:
@, External Tools > Action
Read current device information Change debug state
Set TrustZone secure / non-secure boundaries Initialize device
Target MCU connection: J-Link ~
Connection Type: SWD v
Emulator Connection: Serial No ~
Serial No/IP Address: []
Debugger supply voltage (V): 0

Connection Speed (bps for SCI, Hz for SWD): 9600
Debug state to change to: Secure Software Development

Memaory partition sizes v

Show Command Line Run

Close

@

C.

Figure 50. Initialize MCU with RDPM

Figure 51 shows the snapshot of the message displayed after successful device initialization.

{8 Renesas Device Partition Manager O X

SRAM NSC (KB) 0 ~

Display errors in : English

Connecting...
Loading library : SUCCESSFUL!
Establishing connection : SUCCESSFUL!
Checking the device's TrustZone type : SUCCESSFUL!
CONNECTED.

Initializing device and rolling back Protection Level to PL2...
SUCCESSFUL!

Disconnecting...

DISCONNECTED.

Connection : SUCCESSFUL!
Device initialization : SUCCESSFUL!

Show Command Line Run

® Lug ﬁ Close

Figure 51. Successful Device Initialization Message on RDPM
To initialize the device using Renesas Flash Programmer:

1. Open the Renesas Flash Programmer software.

RO1AN7982EU0100 Rev.1.00 Page 40 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

2. Create a new project and establish a connection to the target MCU.
3. Navigate to the Target Device tab.

4. Click Initialize Device to perform the initialization operation.

File | Target Device | Help

z Read Device Information
Operati flash Options Connect Settings Linique Code
Read Memory...

Pr Read Flash Options

Initialize Device
DLM Transition...

Program and User Key Files

Add/Remove Files...

Command

Program >> Verify

Start

Figure 52. Initialize MCU with RFP

The snapshot of the status message that will be displayed on the console is shown in Figure 53.

File Target Device Help

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code

Project Information
Curmrent Project: RAZP1.mpj
Microcontroller: R7KABP1ZFLCAC

Program and User Key Files

Add/Remove Files...

Device Code: 07 ~
Current state: OEM_PL2

Current Authentication Level: 4L2
AL2 Key Ihjection: Mo

BL1 Key Injection: Mo

FM& Key Ihjection: Mo

OEM Foot Public Key 0 Injection: Mo
OEM Foot Public Key 1 Injection: Mo
QEM Foot Public Key 2 Injection: No
OEM Root Public Key 3 Injection: Mo

Command

Program == Verify

Erasing the target device|
Ectting the target device

Dizcornecting the tool
Dperation completed. A

Clear status and message

Figure 53. Successful Device Initialization Message on RFP.

After initializing the device with RDPM or RFP, access the Debug Configuration. Select
EK_RA8P1_blinky_CPU1 Debug_Multicore Launch Group, then navigate to the Debugger tab and click on
Connection Settings. Ensure that the TrustZone boundary settings are disabled.

RO1AN7982EU0100 Rev.1.00 Page 41 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

&) Debug Configurations O *

Create, manage, and run configurations

I FeRX BT~ Mame: | EK_RABP1_Blinky_CPUT Debug_Multicore |
|t}-‘pefiltertext | [£] Main}| %% Debuggerl| = Startup | (] Common | &~ Source

[E] C/C++ Application :
[€] C/C++ Remote Application Debug hardware: |J-Link ARM ~ | Target Device: | RTKASPTKF_CPUO

EASE Script

[£] GDB Hardware Debugging GDE Settings Debug Tool Settings

[£7] GDB Simulator Debugging (RH250)

+ Connection L
v £ Launch Group) . Register initialization Mo v
8 EK RABP1_Blinky CPU1 Debug_MuItl(ore La Reset at the beginning of connection Yes Y]
R EK_RAZP1_SP_CPUT Debug_MuItlcore Launc Recset at the end of connection Mo v
w [£7 Renesas GDB Ha.rdware Debugging Reset before download Ves v
E EK_RASPT_I!nky_CPUD Debug Flat Reset after download Yes Y]
Bl L s = ID Code (Bytes) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
E EK_RAZP1_Blinky_CPU1 Debug_Multicore .
Held reset during connect Yes v
le T ER_RASTTSF_LFUD Um Set CPSR(5bit) after download Mo W
E EK_RABP1_SP_CPUT Debug_Attac.h Prevent Releasing the Reset of the CM3 Core Yes Y]
E EK_RABP1_SP_CPU1 Debug_Multicore
[E7 Renesas Simulator Debugging (RX, RL78) secure Vector Address
MNon-secure Vector Address
Hot Plug No w
Disconnection Mode Continue W
v SWV
Core clock (MHz) 0
I Set TrustZone secure/non-secure boundaries No k
Authenticate device to Authentication Level (A1) MNone "]
Authentication key
v

£ >
Filter matched 16 of 18 items

@ Close

Revert Apply

Figure 54. Snapshot of EK_RA8P1_CPU1 Debug Multicore

To run a dual-core application on the RA8P1 using e? studio, you can start by launching a debug session for
CPUO and then manually initiate a second session for CPU1. Also, a more convenient approach is to let e?
studio handle both operations automatically.

The Multicore Solutions Project Wizard facilitates this by creating a Launch Group within the CPU1 project.
This group includes individual launch configurations for both CPUO and CPU1. Instead of launching each
configuration separately, this Launch Group is used to initiate a combined multicore debug session.

RO1AN7982EU0100 Rev.1.00 Page 42 of 56
Aug.08.25 RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

Project Explorer
=% EK_RASP1_CPUD

v 2% EK_RABP1_CPU1 [Debug]
g@b Binaries
[l Includes
= ra
2 ra_gen
2 src
= Debug
(= ra_cfg
= script
5% configuration.ml

) ER RSP
|Z| JLinkLog.log

(7) Developer Assistance
=% EK_RABP1_FREERTOS_CPUO
=5 EK_RABP1_FREERTOS_CPUA
1= EK_RABP1_SP
=5 EK_RABP1_SP_CPUD
=5 EK_RABP1_SP_CPU1

El

EK_RASP1_CPU1 Debug_Attach,jlink
Racp p o}

Debug_Multicore Launch Group.launch

<===(> 7 § = 8 | New >
Open F3
Open With ¥
Show In Alt+Shift+W >
[[E Copy Ctrl+C
Paste Crl+V
Delete Delete
Move...
Rename... F2
fy Import...
g Export..
1 pe
Build Project Ctrl+B
Run As >
2)| %5 DebugAs >|
Team 5
Compare With >
Replace With b
A CIC oo Deniart Catbinac Chrle Al D

1 EK_RASP1_CPUT Debug_Multicore

2 GDB OpenOCD Hardware Debugging (D5F)
3 GDE Simulator Debugging (RH250)

4 Renesas GDB Hardware Debugging

5 Renesas Simulator Debugging (RX, RL78)

CIFIEIE &

3 % Debug Configurations...

E— —
6 EK_RABP1_CPU1 Debug_Attach (Renesas GDB Hardware Debugging)

Figure 55. Debugging via Launch Group for the Multicore Project

Q Debug Cenfigurations

Create, manage, and run configurations

Launch several other configurations sequentially

CReEX B Y-

| type filter text

[E] C/C++ Application

[E] C/C++ Remote Application

= EASE Script

[E] GDB Hardware Debugging

[£7 GDE Simulator Debugging (RHA50)

v Launch Grou
i EK_RA8P1_CPU1 Debug_Multicore Launch Group I
EE_RAZFT_FREERTUS_CPUT Debug_Multicore Launch Grou

. EK_RA8P1_5P_CPU1 Debug_Multicore Launch Group
w [c7] Renesas GDB Hardware Debugging

[c¥] EK_RABP1_CPU1 Debug_Attach
E EK_RABP1_C g_Multicore
o EK_ _ _CPUO Debug_Flat
[EK_RASP1_FREERTOS_CPU1 Debug_Attach
[E7] EK_RABP1_FREERTOS_CPU1 Debug_Multicore
[E7] EK_RA8P1_SP_CPUD Debug_Flat
[E7] EK_RABP1_SP_CPU1 Debug_Attach
E EK_RAZP1_SP_CPU1 Debug_Multicore
[E7 Renesas Simulator Debugging (R, RL7)

Filter matched 20 of 22 items

@

MName: | EK_RAZP1_CPU1 Debug_Multicore Launch Group

R Launches] Common

MName

—— E—
Renesas GDB Hardware Debugging:EK_RAEBP1_CPU1 Debug_Multicore
[E7 Renesas GDB Hardware Debugging:EK_RASP1_CPU1 Debug_Attach

Doy
Edity
Add

Remq

Revert

Apply

Figure 56. Sample Multicore Debug Launch Group

RO1AN7982EU0100 Rev.1.00
Aug.08.25

RENESAS

Page 43 of 56

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

4.2 Importing the Project
1. Launch the e?studio IDE.

2. Select any workspace in Workspace Launcher.
3. Close the Welcome window.
4. Select File = Import.
5. Select Existing Projects into Workspace from the Import dialog box.
6. Select archive file “EK_RA8P1_Dual_core_Projects.zip”
7. Select Dual-core project manually created project samples on each core as shown below; click Finish.
& import O *
Import Projects 1
Select a directory to search for existing Eclipse projects. .-_" A;
() Select root directory: Browse...
(®) Select archive file: core_Hello_world\EK_RASP1_Dual_core_Projects.zip i Browse...
Projects:
EK_RAZP1_CPUD (EK_RAZP1_CPUDS) Select All
EK_RASP1_CPUT (EK_RAZP1_CPU1S)
Deselect All
Refresh
Options
Search for nested projects
LCopy projects into workspace
L Clgse newly impeorted projects upon completion
[Hide projects that already exist in the workspace
Working sets
[] Add project to working sets Mew...
Select...

@' < Back Mext = Cancel

Figure 57. Example of Importing Projects into Workspace.

For the Solution Project, follow the similar steps from 1 to 5 as part of section 4.2 and continue the steps
listed below.

RO1AN7982EU0100 Rev.1.00 Page 44 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

1. Select archive file “EK_RA8P1_Dual_core_Solution_Projects.zip”.
2. Select the dual core solution, create project samples on each core as shown below, and click Finish.

& Import O it
Import Projects — 0
Select a directory to search for existing Eclipse projects. .-_’ “,
(D) Select root directory: Browse...
(®) Select archive file: _Dual_core_ a1 Browse...
Projects:
EK_RABP1_SP_CPUO (EK_RAZP1_SP_CPULDY) Select All
EK_RABP1_SP_CPU1 (EK_RABP1_SP_CPU1/)
EK_RABP1_SP (EK_RASP1_SP/) Deselect All
Refresh
Options
Search for nested projects
Copy projects inte workspace I
[_[Close newly imported projects upon completion
[Hide projects that already exist in the workspace
Working sets
[J Add project to working sets Mew...
Select...

@' < Back Mext > Cancel

Figure 58. Example of Importing Projects into Workspace.
4.3 Build Projects

When developing a dual-core application on the RA8P1 microcontroller, it is important to follow the correct
build sequence to ensure proper initialization and operation of both cores. The application associated with
the primary core must be created and built before the one for the secondary core.

By default, the CM85 core is designated as the primary core, and the CM33 core acts as the secondary core.
Therefore, the development process should begin with the CPUO project. Once the CPUO project is created
and successfully built, you can proceed with creating and building the CPU1 project.

This build order is crucial because the primary core typically handles the system initialization and brings up
the secondary core using the dedicated startup R_BSP_SecondaryCoreStart() API.

4.3.1 Compile Project Developed on CM85 Core.
Double-click on configuration.xml located in the EK_RA8P1_CPUO - Click “Generate Project Content.

RO1AN7982EU0100 Rev.1.00 Page 45 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

{8 FsP60D_07022025 - EK_RABP1_CPUD/configuration.xml - & studio
File Edit Source Refactor Mavigate Search Project RenesasViews Run Renesas Al Window Help

| @~ Rvimiter Q-

Project Explorer = B {8 [EK_RASP1_CPUD] FSP Configuration X = 8
. 8% 7 3 Summary
w =% EK_RAEP1_CPUQ Generate Project Content
[Includes
©Era Project Summary ~
[ra_gen RENESAS
5 src Board: EK-RABP1
(= Debug Device: R7KABP1KFLCAC
& ra_cfg Core: CPUO
= Toolchain: LLVM for ARM

configuration.xml N Toolchain Version: 1813
F_RAGH [_LPUU Uebug_Flat.launc A
EK_RABP1_CPU1 Debug_Multicore,j FSF: Version: 600
JlinkLoglog Project Type: Flat
Location: C./WS/FSP600_07022025/EK_RASP1_CPUQ 2

(?) Developer Assistance
=5 EK_RASP1_CPU1
= EK_RABPT_SP Selected software components
=5 EK_RASP1_SP_CPUD

125 EK_RAP1_SP_CPUI Simple application that blinks an LED. No RTOS included. v6.0.0

Board Support Package Common Files v6.0.0

1/0 Port v6.0.0

Arm CMSIS Version 6 - Core (M) vB.1.0+sp 6.0.0

Board support package for RTKASP1KFLCAC v6.0.0

Board support package for RASP1 v6.0.0

Board support package for RASP1 - FSP Data vG6.0.0

Board support package for RABP1 - Events v6.0.0

Board support package for RASP1 - Linker v6.0.0 v

> | I

Support ik =

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks | Components

Figure 59. Example of Generating Project Content on CPUO Project

After generating the project content, right-click on EK_RA8P1_CPUO, then select Build Project to compile the
CPUO core application.

RO1AN7982EU0100 Rev.1.00 Page 46 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Q FSPE00_07022025 - EK_RASP1_CPUD/configurationxml - & studio
File Edit Source Refactor Mavigate Search Project RenesasViews Run Renesas Al Window Help

| B Qi ide Q- | New >
Project Explorer =% Y ¢ = 8 Go Into - 5
~ == EK_RASP1_CPUO [Debug] Open in New Window
[t Includes Show In Alt+Shifts W > Generate Project Content
E ra
(2 ra_gen & Copy Ctrl+C A
5 sre Paste Crl+V RENESAS
8 1D=but5 3 Delete Delete
(= ra_cfg |
(= script | Source >
ﬁ‘-:;j configurationxml L Move...
|%] EK_RABP1_CPUD Debug_Flat.launch 1 Rename... F2
|=| EK_RABP1_CPU1 Debug_Multicore.jlink 1
|Z| JLinkLog.leg | fx3 Import...
() Developer Assistance g Export..
=5 EK_RABP1_CPU1 - Renesas FSP 5 [K_RABP1_CPUOD
1= EK_RABP1_SP : :
=5 EK_RABP1_SP_CPUD Build Project
=5 EK_RABP1_SP_CPU1 Clean Project
Refresh Incremental Build of Selected included. v6.0.0
v6.0.0
Close Project
ose Projec . vE.0.0
Close Unrelated Projects v6.1.0+fsp.6.0.0
Build Targets > v6.0.0
Index 3 v6.0.0
Build Configuraticns 3 v6.0.0
v6.0.0
Source > v6.0.0 v
@ FRunhs >
7%@: Debug As »

o) I &

Summary | BSP | Clocks | Pins| Interrupts | Event Links | Linker Sections | Stacks| Components

Figure 60. Example of Building CPUO Dual-Core Project
Verify that the build completes successfully by checking the output in the Build Log console.

4.3.2 Compile Project Developed on CM33 Core.

In the EK_RA8P1_CPU1 project, double-click on configuration.xml, then click Generate Project Content to
apply the configuration settings for the CPU1 core.

RO1AN7982EU0100 Rev.1.00 Page 47 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

a F5SP&00_07022025 - EK_RASP1_CPU1/configuration.xml - & studio
File Edit Source Refactor Mavigate Search Project Renesas Views Run Renesas Al Window Help

EXL SRS

Project Explorer ¢ 2% Y 8 = B % [EK_RASP1_CPUO] FSP Configuration 8k [EK_RABP1_CPU1] FSP Configuration = 8
v 2% EK_RASP1_CPUO
qff’ Binaries Summary Generate Project Content
[r Includes
Era Project Summary ~
(2 ra_gen RENESAS
B sre Board: EK-RABP1
& Deifug Device: RTKASP1KFLCAC
E’ i Core: cPU1
sCn
Y Toolchain: LLVM for ARM
1or configurationxml) L
[X] EK_RASP1_CPUD Debug_Flat.launch TD”":ha"T Version: 18.1.3
EK_RASP1_CPUT Debug_Multicore,jlink FSP Version: 6.0.0
2/ ILinkLog.log Project Type: Flat
() Developer Assistance Location: C:\WSIFSP600_07022025/EK_RABP1_CPU1 =
v =% EK_RABPT_CPUT
[Includes Selected software components
2 ra
2 src Simple application that blinks an LED. No RTOS included. v6.0.0
: i Board Support Package Common Files v6.0.0
/O Port v6.0.0
& EK_ K Debug_Attach.jlink Arm CMSIS Version 6 - Core (M) v6.1.0+fsp.6.0.0
[#] EK_RABP1_CPU1 Debug_Attach.launch Board support package for RTKASP1KFLCAC v6.0.0
|¥] EK_RASP1_CPUT Debug_Multicerelaunch Board support package for RABP1 v6.0.0
] EK_RASP1_CPU1 Debug Multicore Launch Grot Board support package for RABP1 - FSP Data v6.0.0
&5 JLinkLog.log Board support package for RASP1 - Events v6.0.0 v
(@) Developer Assistance Board support package for RASP1 - Linker v6.0.0
1= EK_RABP1_SP
=5 EK_RAZP1_SP_CPUO
=5 EK_RASP1_SP_CPU1 @ ﬁ
Support ik =
Summary | BSP | Clocks| Pins | Interrupts | Event Links| Linker Sections| Stacks| Components
Figure 61. Example of Generate Project Content on CPU1 Project
After the content is generated, right-click on EK_RA8P1_CPU1, then select Build Project to compile the
CPU1 core application.
ﬁ FSPE00_07022025 - EK_RASP1_CPU1/configurationxml - & studio
File Edit Source Refactor Mavigate Search Proi-— Mo-oo-sificee Poe Roooooe AL e L
Mew ¥
| MR ovin ity Q-
Go Into
Project Explorer BES Y 8 =8 . . | CPU1] FSP Configuration = B
~ 25 EKRASP1CPUD Open in New Window .
g-? Binaries Show In Alt+Shift+W > Generate Project Content
[t Includes 1 & Copy Crl+C
== Il past CarleV ~
£ ra_gen I aste e RENESAS
3 src 3 Delete Delete
= Debug Source]
(= ra_cfg] Move...
[f? SCI’Ip.t Rename... F2
5o configuration.xml
|¥| EK_RABP1_CPUO Debug_Flat.launch [y Import...
|Z| EK_RAZP1_CPU1 Debug_Multicore jlink 4 Export..
|£| MlinkLeg.log 1
Developer Assistance Renesas FSP g _RABP1_CPU1 ':El
Tlvﬁ EK_RA8P1_CPU1 [Debug] Build Project
It T uge Clean Project
Era -| Incremental Build of Selected Projects
@ src 2| Refresh ¥ included. v6.0.0
(= script Close Project v6.0.0
% configurationxml | Close Unrelated Projects v6.0.0
|2/ EK_RASP1_CPU1 Debug_Attach jlink 1 i v6.1.0+fsp 6.0.0
%] EK_RAZP1_CPU1 Debug_Attachlaunch | mdTEEs K v6.0.0
[] EK_RAZP1_CPU1 Debug_Multicorelaunch Index * v6.0.0
|¥| EK_RABP1_CPU1 Debug_Multicore Launch Grou Build Configuratiens > v 00
=/ JLinkLog.leg v6.0.0
(7) Developer Assistance SULCE e V600 v
(= EK_RASP1_SP O FRunas .
=5 EK_RASP1_SP_CPUO S s
S EK_RABP1_SP_CPU1 i ’E ”'9 m %
Summary | BSP | Clocks| Pins | Interrupts | Event Links | Linker Sections | Stacks| Compenents
Figure 62. Example of Build CPU1 Dual-Core Project
RO1AN7982EU0100 Rev.1.00 Page 48 of 56

Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Ensure that the build completes successfully by checking the output in the Build Log console.

4.3.3 Build Process for Both Cores Using the Solution Project Approach.

If the project was created using the Renesas solution-based approach, alternatively, the build process for
both cores can be executed through the solution project without manually building the CPUO and CPU1
projects. Right-click on the EK_RA8P1_SP solution project and select Build Project, as shown in Figure 63.
This command will sequentially build all projects within the solution, following the order: CPUO — CPU1.

g FSPED0_07022025 - EK_RAZP1_CPU1/configurationxml - & studio

File Edit Source Refactor Mavigate Search Proiect RenesasViews Run Renesas Al Window Heln

| - ~iwitpr Qv Mew 4
= - Go Into
Project Explorer A% Y § 5 07 _CPU1] FSP Configuration = 8
T S EK_RASP1_CPUD i Show In Alt+Shift+W > I
< -
T EK_RABP1_CPU1 B Copy ChrlsC Generate Project Content
& AR 5P CPU0 Paste Cirl+V ~
4% Binaries 3 Delete Delete RENESAS
[Includes Move...
Bra Rename... F2
2 ra_gen i
B src I fag Import.
= Debug 3 Export..
(& racfg Renesas FSP »
(= script
% configurationxml I Build Project Ctrl+B
¥ EK_RABP1_SP_CPUD Debug_Flat.launch Refresh Bn K_RABP1_CPU1 o+
(?) Developer Assistance X J Incremental Build of Selected Projects i
Close Project
~ (=5 EK_RABP1_SP_CPU1
B - Close Unrelated Projects
3, Binaries I
[l Includes Source 5 included. v6.0.0
 ra v6.0.0
A2 ra_gen ; Q Runas 4 v6.0.0
2 src I 45 Debug As » v6.1.0+sp.6.0.0
(z= Debug : T) v6.0.0
. ra_.cfg 1 Compare With » v6.0.0
= script . v6.0.0
4 configurationxral Restore from Local History... v6.0.0
¥ EK_RABP1_SP_CPU1 Debug_Attach.launch MISRA-C ¥ V600 W
| EK_RABP1_5P_CPU1 Debug_Multicaredaunch % C/C++ Project Settings Ctrl+Alt+P =
X EK_RASPLSP_.CPU‘I Debug_Multicore Launch € W System Explorer
(7) Developer Assistance _
B Command Prompt
v| Validate
Configure , | 3ections| Stacks| Compoenents
Figure 63. Example of Build RA Solution Project Dual-Core

4.4 Download and Run Projects

As described in the debug settings in section 4.1, the device must be initialized in the OEM_PL2 state, and
TrustZone boundary settings are not required for this configuration.

To start a dual-core debug session, open the Debug Configurations dialog as shown in Figure 64.

Select "EK_RA8P1_CPU1 Debug_Multicore Launch Group,” then click Debug as illustrated in Figure 65 to
simultaneously launch debug sessions for both cores.

RO1AN7982EU0100 Rev.1.00
Aug.08.25

Re Page 49 of 56
RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

ﬁ F5SPE00_07022025 - EK_RASP1_CPUT/configurationxml - & studio
File Edit Source Refactor MNavigate Search Project RenesasEiewsRenesasAl Window Help

Aug.08.25

RENESAS

| Br{rie it Renesas Debug Tools >
Project Explorer % BS W 8 = O §&[ECRasPICPUI R, Run Ctrl+F11 jnfiguration = 8
== EK_RASP1_CPUD Summary '-%ﬁ, Debug F11
T ER_) i Generate Project Content
it Inc ides Run Histery be
B Project Sum (s 2 .
2 src Run Configurations... R_ENESAS
& script Board:
1‘3} configuration.xml Device: Debug Histery 2
|£| EK_RASP1_CPU1 Debug_Attach.jlink Core: : 7{;: Debug As >
|| EK_RASP1_CPU1 Debug_Attach.launch TDDl[‘:hain' Debug Configurations...
|#] EK_RAZP1_CPU1 Debug_Multicore.launch o .
[¥] EK_RASP1_CPU1 Debug_Multicore Launch Grov T°°'°ha'“l Vers Breakpoint Types >
21 JLinkLog.log FSF: Verlen:. Toggle Breakpoint Ctrl+Shift+B
() Developer Assistance Project Type:) .
(= EK_RABP1 SP Location: Toggle Line Breakpoint PUA ¢>.:|
25 EK_RAZP1_SP_CPUO Toggle Watchpoint
=5 EK_RASP1_SP_CPUI Selected softwe Toggle Method Breakpoint
Simple applic ‘®m Skip All Breakpoints 00
Board Suppor Remove All Breakpoints 0.0
110 Port @ External Tools > p00
Arm CMSIS Versiomro=cure Ty v 1_0+f5p.5.0.ﬂ
Board support package for RTKABP1KFLCAC v6.0.0
Board support package for RABP1 v6.0.0
Board support package for RASP1 - FSP Data v6.0.0
Board support package for RABP1 - Events v6.0.0 v
Board support package for RASP1 - Linker v6.0.0
g Suppor‘t
Summary | BSP | Clocks | Pins| Interrupts | Event Links | Linker Sections | Stacks | Components
Figure 64. Example of Select Debug configuration on Toolbars
RO1AN7982EU0100 Rev.1.00 Page 50 of 56

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

&) Debug Configurations O X

Create, manage, and run configurations

Launch several other configurations sequentially

Iﬁ ¥ =R | = ? M MName: | EK_RASP1_CPU1 Debug_Multicore Launch Group

| type filter text | @ Launches | [£] Common
[E] C/C++ Application
[E] C/C++ Remote Application
= EASE Script
[£] GDB Hardware Debugging
[E7 GDB Simulator Debugging (RHA50) Edit...
~ i Launch Group
5 EK_RABP1_CPU1 Debug Multicore Launch Group i
L EK_RAZP1_SP_CPU1 Debug_Multicore Launch Group
w [t Renesas GDB Hardware Debugging
[E7] EK_RASP1_CPUO Debug_Flat
[E7] EK_RASP1_CPU1 Debug_Attach
E EK_RAZP1_CPU1 Debug_Multicore
[E7] EK_RASP1_SP_CPUD Debug_Flat
[E7] EK_RASP1_SP_CPU1 Debug_Attach
E EK_RAZP1_SP_CPU1 Debug_Multicore
[E7 Renesas Simulator Debugging (RX, RL7S)

Mame Mode

[E7 Renesas GDB Hardware Debugging:EK_RASP1_CPU1 Debug_Multicore Inherit
[] [£7] Renesas GDB Hardware Debugging:EK_RASP1_CPU1 Debug_Attach Inherit Down

Up

Remove

. . Revert Apply
Filter matched 16 of 18 items -

Figure 65. Example of Debug with Multicore Launch Group

The debugging information will appear on the debug console. Clicking Resume to start application execution,
the expected output and application behavior can be validated. In this sample application the LED blinking
LED1 (Blue) is being driven by CPUO, and LED2 (LED2(Green) is being driven by CPU1.

RO1AN7982EU0100 Rev.1.00 Page 51 of 56
Aug.08.25 RENESAS

Renesas RA8 Series

Multicore Setup and Running Hello World on Dual-Core

5. Import, Build, and Verify the FreeRTOS-Based Projects

5.1 Import the Projects
1. Launch the e?studio IDE.

Nooakwd

Finish.

Select any workspace in Workspace Launcher.
Close the Welcome window.

Select File > Import.

Select Existing Projects into Workspace from the Import dialog box.
Select archive file “EK_RA8P1_Dual_core_FreeRTOS.zip”
Select the solution project and developed project samples on each core as shown below, and click

Q Import

Import Projects

Select a directory to search for existing Eclipse projects,

(O Select root directory: | C:\WS\FSP600_07022025\EK_RAZP1_CPUA

(®) Select archive file: o_world\EK_RASP1_Dual_core_FreeRTOS.zip g

Projects:

EK_RASP1_FREERTOS_CPUD (EK_RABP1_FREERTOS_CPUD/)
EK_RASP1_FREERTOS_CPU1 (EK_RASP1_FREERTOS_CPU1/)

Options

Search for nested projects
_— —

Copy projects into workspace I

[Close newly imported projects upen completion
[[JHide projects that already exist in the workspace

Working sets

[Add project to working sets

Browse...

Browse...

Select All

Deselect All

Refresh

New...

Select...

Cancel

Figure 66. Example of Importing FreeRTOS based Example Project.

5.2 Build Projects

Build the projects sequentially in the order CPUO — CPU1, as detailed in section 4.3.

RO1AN7982EU0100 Rev.1.00

Aug.08.25

RENESAS

Page 52 of 56

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

ral] ITTIUT L

£ EK_RASP1_CPUD o
L= B - Export...

T=5 EK_RABP1_CPUT B

— EK_RABP1_FREERTOS_CPUO [Debug] § 4 Renesas F5P 3
= o 2 Build Project

2 ra
Clean Project
(B src g | Incrernental Build of Selected Projects i
= script Refresh
%% configuration.xml Close Project
|x| EK_RAZP1_FREERTOS_CPUD Debug_Flat.launch Close Unrelated Projects
g
. = Import
&y Export..
Renesas FSP]

£ script 4 Build Project

Clean Project

iﬂf:':f configuration.xml
|¥] EK_RAZPT_FREERTOS_CPU1 Debug_Attach.laun o Refresh

|x| EK_RAZP1_FREERTOS_CPUN Debug_Multicore.la Close Project
|x| EK_RAZP1_FREERTOS CPUN Debug_Multicore L:
(%) Developer Assistance

| Incremental Build of Selected Projec

Close Unrelated Projects

Figure 67. Example of Building FreeRTOS based Project.

Ensure that the build completes successfully for both CPUO and CPU1 projects by verifying the build status
in the Build Log console.

5.3 Download and Run and Verify the Projects

As described in section 4.1, the device must be initialized in the OEM_PL2 state, with no TrustZone
boundary settings required.

To start debugging both cores simultaneously:
1. Open Debug Configurations as shown in Figure 68.
2. Select “‘EK_RA8P1_FREERTOS_CPU1 Debug_Multicore Launch Group,” as shown in Figure 69.

3. Click Debug to launch the dual-core debug session.

RO1AN7982EU0100 Rev.1.00 Page 53 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

L

v (=% EK_RABP1_FREERTOS_CPUD REHESES Al Window Help

,ﬁp Binaries

: Renesas Debug Tools >
ml Includes
€ ra ! Step Into Selection Ctrl+F5
2 ra_gen
@8 sic Q. Run Ctrl+F11
(== Debug 3, Debug Fi1
= ra_cfg)
& script Run History ¥
15t configurationxm O RunAs *
|%| EK_RAZP1_FREERTOS_CPUD Debug_Flat.launch Run Configurations...
(%) Developer Assistance]

v 2% EK_RA8P1_FREERTOS_CPU1 [Debug] Lealg relin ?
qg-? Binaries Debug As >
! Includes Debug Configurations...

2 ra

(2 ra_gen Breakpoint Types >

€5 st @ Toggle Breakpoint Ctrl+Shift+B

(= Debug . .

& ra_cig @ Toggle Line Breakpoint

= script Toggle Watchpoint

15t configuration.xm @ Toggle Method Breakpoint
EK_RASP'I_FREERTDS_CPU'] DEbLIg_AttEChJEUHI (=] Skip.ﬂ” Ereakpoints

A

=

|¥| EK_RAZPT_FREERTOS_CPU1 Debug_Multicore.la e e
A

=

EK_RAZP1_FREERTOS CPU1 Debug_Multicore Le

Figure 68. Example of Open Debug Configuration in FreeRTOS Example

&) Debug Configurations O X

Create, manage, and run configurations

Launch several other configurations sequentially

[Iﬁ o i X | = l? M MName: | EK_RAZP1_FREERTOS_CPU1 Debug_Multicore Launch Group

| type filter text | 2 Launches| [£] Commen
w [€] C/C++ Application
5] * EK_RABP1_CPU1.elf [local]
[E] C/C++ Remote Application
=/ EASE Script
[£] GDB Hardware Debugging
[£7] GDB Simulator Debugging (RHA50)
w [Launch Group
i EK_RABPT_CPUT Debug

NName

[£7] Renesas GDB Hardware Debugging:EK_RASP1_FREERTOS_CPU1 Debug_Multicore
[E7] Renesas GDB Hardware Debugging:EK_RASP1_FREERTOS_CPU1 Debug_Attach

_Multicore Launch Gn

[E7] EK_RAZP1_CPUD Debug_Flat
[E7] EK_RABP1_CPU1 Debug_Attach
E EK_RABP1_CPU1 Debug_Multicore
[E7] EK_RASP1_FREERTOS_CPUD Debug_Flat
[£7] EK_RASP1_FREERTOS_CPU1 Debug_Attach
[E7] EK_RASP1_FREERTOS_CPU1 Debug_Multicore
[E7] EK_RASP1_SP_CPUD Debug_Flat
[E7] EK_RABP1_SP_CPU1 Debug_Attach
E EK_RABP1_5P_CPU1 Debug_Multicore
[E7] Renesas Simulator Debugging (RX, RL78)

£
< >
< >
; . Revert Apply
Filter matched 21 of 23 items —
@ [Debug || close

Figure 69. Example of Debug FreeRTOS Dual-Core Example

RO1AN7982EU0100 Rev.1.00 Page 54 of 56
Aug.08.25 RENESAS

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Return to e? studio and press the Resume button three times to execute the application across both cores.
Upon completion, the FreeRTOS example will blink the LED1 (Blue-CPUO) and LED2 (Green-CPU1)
successfully.

6. Debugging and Troubleshooting

1. As mentioned in the section 4.1, it is required to go through this step for initial image download and for
debugging purpose, not doing so may result in debug error or execution error.

2. Also, using the Launch group, which combines individual launch configurations, helps to run debug the
dual-core projects.

3. Additionally, make sure “R_BSP_SecondaryCoreStart()” gets called from the CPUO project to run the
CPU1 core. Sometimes it will not be called. Add a breakpoint to make sure this code is invoked.

7. Next Steps

e To learn more about the EK-RA8P1 kit, refer to the EK-RA8P1 user's manual and design package
available in the Documents and Download tabs respectively of the EK-RA8P1 webpage at
renesas.com/ek-ra8p1.

e Renesas provides several example projects that demonstrate different capabilities of the RA the MCUs.
These example projects can serve as a good starting point for users to develop custom applications.
Example projects (source code and project files) for other kits with RA8D1 are available in the Example
Project Bundle and can be reused with AIK-RA8D1. The example projects bundle is available in the
Downloads tab of the MCU Evaluation Kit webpage.

e Tolearn how to create a new e? studio project from scratch, refer to Chapter 2 Starting Development, in
the FSP User Manual (renesas.com/ra/fsp). To learn how to use e? studio, refer to the user manual
provided on the e? studio webpage (renesas.com/software-tool/e-studio).

8. References

e Renesas FSP User's Manual: https://renesas.qgithub.io/fsp

e https://www.renesas.com/us/en/document/apn/flash-memory-programming

e Renesas RA MCU Datasheets: See http://renesas.com/ra and select the relevant MCU

o RAS8 Example Projects on Renesas RA GitHub: https://github.com/renesas/ra-fsp-examples
o RAS8 Quick Design Guide (r01an7087eu0100)

e Getting Started with IPC on Dual-Core RA8P1

e Developing with Developing with RA8 Dual-Core MCU (R0O1AN7881EU0100)

Website and Support

Visit the following vanity URLSs to learn about key elements of the RA family, download components and
related documentation, and get support.

EK-RA8P1 Resources www.renesas.com/ek-ra8p1
RA Product Information renesas.com/ra
RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support
RO1AN7982EU0100 Rev.1.00 Page 55 of 56

Aug.08.25 RENESAS

https://renesas.github.io/fsp
https://www.renesas.com/us/en/document/apn/flash-memory-programming
http://renesas.com/ra
https://github.com/renesas/ra-fsp-examples
http://www.renesas.com/ra
https://renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA8 Series Multicore Setup and Running Hello World on Dual-Core

Revision History

Description
Rev. Date Page Summary
1.00 Aug.08.25 - Initial version

RO1AN7982EU0100 Rev.1.00 Page 56 of 56
Aug.08.25 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)
Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Dual-Core System Architecture
	1.1 Overview of RA8P1 Dual-Core MCU
	1.1.1 Arm® Cortex®-M85 Core Processor
	1.1.2 Arm® Cortex®-M33 Core Processor

	2. Procedure for Creating Dual-Core Projects
	2.1 Primary and Secondary CPU Selection
	2.2 Procedure for Creating Manual Dual-Core Projects and Their Configuration
	2.3 Procedure for Creating a Solution Project for Dual-Core and its Configuration
	2.4 Procedure to Create Dual-Core Projects Using FreeRTOS for Both Cores

	3. Inter-Processor Communication (IPC) Mechanisms in RA8P1
	3.1 Reference to IPC App Note and Application Example

	4. Running a Dual-Core Application on Both Cores
	4.1 Establish a Debugging Environment to Run the RA8 Dual-Core Project
	4.2 Importing the Project
	4.3 Build Projects
	4.3.1 Compile Project Developed on CM85 Core.
	4.3.2 Compile Project Developed on CM33 Core.
	4.3.3 Build Process for Both Cores Using the Solution Project Approach.

	4.4 Download and Run Projects

	5. Import, Build, and Verify the FreeRTOS-Based Projects
	5.1 Import the Projects
	5.2 Build Projects
	5.3 Download and Run and Verify the Projects

	6. Debugging and Troubleshooting
	7. Next Steps
	8. References
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

