

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Page 1 of 34

APPLICATION NOTE

REJ05B1339-0101/Rev.1.01

1. Abstract

The multi-master I2C-bus interface (I2C interface) is a serial communication circuit based on the I2C-bus data
transmit/receive format, and is equipped with arbitration lost detection that makes multi-master communication
possible.
This document describes how to use the I2C interface function.

Note: I2C-bus is a trademark of Phillips, Netherlands.

2. Introduction
The application example described in this document applies to the following microcomputers (MCUs):

• MCUs: M16C/64A Group
 M16C/65 Group

The sample program in this application note can be used with other R8C Family MCUs which have the same
special function registers (SFRs) as the above groups. Check the manual for any modifications to functions. Careful
evaluation is recommended before using this application note.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

REJ05B1339-0101/Rev.1.01 December 2009

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 2 of 34REJ05B1339-0101/Rev.1.01 December 2009

3. Overview

The I2C interface is a serial communication circuit based on the I2C-bus data transmit/receive format, and is
equipped with arbitration lost detection and clock synchronous functions.

3.1 General Call
A general call can be detected when the address data is all 0's (1).

Note:
1. The master transmits general call address 00h to all slaves.

3.2 Addressing Format
7-bit addressing format is supported.
Only the 7 high-order bits of the I2C address register (slave address) are compared with the address data.

3.3 I2C Interface Related Pins
• SCLMM pins: Clock I/O pins of the I2C interface.
• SDAMM pins: Data I/O pins of the I2C interface.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 3 of 34REJ05B1339-0101/Rev.1.01 December 2009

3.4 Selectable Functions
The functions below can be selected when using the I2C interface.

(1) Communication mode
There are four communication modes available when performing data communication:

• Master transmission: Start and stop conditions are generated (master mode). Address and control data are
output to the SDA in synchronization with the SCLMM clock generated by the master device.

• Master reception: Data from the transmitting device is received in synchronization with the SCLMM clock
generated by the master device.

• Slave transmission: Start and stop conditions generated by the master device are received (slave mode).
Control data is output in synchronization with the clock generated by the master device.

• Slave reception: Data from the transmitting device is received in synchronization with the clock generated by
the master device.

(2) SCL mode
SCL mode can be selected from the following:

• Standard clock mode: The bit rate can be selected in the range 16.1 to 100 kHz.
• High-speed clock mode: The bit rate can be selected in the range 32.3 to 400 kHz.

(3) ACK clock
ACK clock can be selected from the following:

• ACK clock not available: No ACK clocks are generated after a data transfer.
• ACK clock available: The master generates an ACK clock each time 1 byte of data is transferred.

(4) Data format
Data format can be selected from the following:

• Addressing format: The received slave address and bits SAD6 to SAD0 in the S0Di register are compared.
 (i = 0 to 2). When an address match is found, or when a general call is received, an interrupt request is
generated and additional data is transmitted and received.

• Free data format: An interrupt request is generated and additional data is transmitted and received regardless
of the received slave address.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 4 of 34REJ05B1339-0101/Rev.1.01 December 2009

4. Data Transmit/Receive Example
The data transmit/receive examples are described in this section. The conditions for the examples are below.

• Slave address: 7 bits
• Data: 8 bits
• ACK clock available
• Standard clock mode, bit rate: 100 kbps (fIIC: 20 MHz; fVIIC: 4 MHz)

 20 MHz (fIIC) divided-by-5 = 4 MHz (fVIIC),
 4 MHz (fVIIC) divided-by-8 and further divided-by-5 = 100 kbps (bit rate).

• In receive mode, ACK is returned for data other than the last data. NACK is returned after the last data is
received.

• When receiving data, I2C-bus interrupt at the eighth clock (before the ACK clock): Disabled
• Stop condition detection interrupt: Enabled
• Timeout detection interrupt: Disabled
• Set own slave address to the S0D0 register (do not use registers S0D1 or S0D2).

While receiving data, if an interrupt is enabled at the eighth clock, ACK or NACK can be set after each byte of
received data is checked.

4.1 Initial Settings

Follow the initial setting procedures below for 4.2 Master Transmission to 4.5 Slave Transmission.
(1) Write own slave address to bits SAD6 to SAD0 in the S0D0 register.
(2) Write 85h to the S20 register (CCR value: 5, standard clock mode selected, ACK clock available).
(3) Write 18h to the S4D0 register (fVIIC: fIIC divided-by-5, timeout detection, interrupt disabled).
(4) Write 01h to the S3D0 register (while receiving data, an I2C-bus interrupt is disabled at the eighth clock (before
the ACK clock) and a stop condition detection interrupt is enabled).
(5) Write 0Fh to the S10 register (slave receive mode).
(6) Write 98h to the S2D0 register (SSC value: 18h; start/stop condition generation timing: long mode).
(7) Write 08h to the S1D0 register (bit counter: 8, I2C interface enabled, addressing format; input level: I2C-bus
input).
If the MCU uses a single-master system and the MCU itself is the master, start the initial setting procedures from
step (2).

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 5 of 34REJ05B1339-0101/Rev.1.01 December 2009

4.2 Master Transmission
Master transmission is described in this section. The initial settings are described in 4.1 Initial Settings.
Initial settings are assumed to be completed. Programs (A) to (C) below refer to (A) to (C) in the following figure.

Figure 4.1 Example of Master Transmission

(A) Slave address transmission
(1) The BB bit in the S10 register must be 0 (bus free).
(2) Write E0h to the S10 register (start condition standby).
(3) Write a slave address to the upper 7 bits and set the least significant bit to 0 (start condition generated, then

slave address transmitted).
After a stop condition is generated and the BB bit becomes 0, the S10 register is write disabled for 1.5 cycles of
fVIIC. Therefore, when writing E0h to the S10 register and a slave address to the S00 register during the 1.5 fVIIC
cycles, a start condition is not generated.
When generating a start condition immediately after the BB bit changes from 1 to 0, confirm that both the TRX and
MST bits are 1 (transmission mode and master mode) after step (1), and then execute step (2).

(B) Data transmission (in the I2C-bus interrupt routine)
(1) Write transmit data to the S00 register (data transmission).

(C) Completion of master transmission (in the I2C-bus interrupt routine)
(1) Write C0h to the S10 register (stop condition standby).
(2) Write dummy data to the S00 register (stop condition generated).

When the transmission is completed or ACK is not returned from the slave device (NACK returned), master
transmission should be completed as shown in the example above.
If the slave device or other master device drives the SCLMM line low, use the countermeasure described in
technical update (TN-16C-176A/E). An I2C-bus interface interrupt generated by a stop condition will not be
generated.

SCLMM

SDAMM

IR bit in the IIC IC
register

(A) S lave address transm ission
(B) Data transm ission (C) End of master transm ission

Stop condition (1)

This signal is driven low by accepting an interrupt request or
by setting the bit to 0.

m s m s sm m

Slave address
(7 bits) WS A Data

(8 bits) A Data
(8 bits) A/A P

S: Start condition
P: Stop condition

A: ACK
A: NACK W : W rite

m: Master outputs to SDA
s: Slave outputs to SDA

Note:
 1. W hen using the countermeasure described in technical update TN-16C-176A/E, an interrupt generated by a stop
 condition w ill not be generated.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 6 of 34REJ05B1339-0101/Rev.1.01 December 2009

4.3 Master Reception
Master reception is described in this section. The initial settings are described in 4.1 Initial Settings.
Initial settings are assumed to be completed. Programs (A) to (D) below refer to (A) to (D) in the following figure.

Figure 4.2 Example of Master Reception

(A) Slave address transmission
(1) The BB bit in the S10 register must be 0 (bus free).
(2) Write E0h to the S10 register (start condition standby).
(3) Write a slave address to the upper 7 bits (MSB) and a 1 to the LSB (start condition generated, then slave

address transmitted).

(B) Data reception 1 (after slave address transmission) (in the I2C-bus interrupt routine)
(1) Write AFh to the S10 register (master receive mode).
(2) Set the ACKBIT bit in the S20 register to 0 (ACK is available) because the data is not the last one.
(3) Write dummy data to the S00 register.

(C) Data reception 2 (data reception) (in the I2C-bus interrupt routine)
(1) Read the received data from the S00 register.
(2) Set the ACKBIT bit in the S20 register to 1 (no ACK) because the data is the last one.
(3) Write dummy data to the S00 register.

(D) End of master reception (in the I2C-bus interrupt routine).
(1) Read the received data from the S00 register.
(2) Write C0h to the S10 register (stop condition standby state).
(3) Write dummy data to the S00 register (stop condition generated).

If the slave device or other master device drives the SCLMM line low, use the countermeasure described in
technical update TN-16C-176A/E. An I2C-bus interface interrupt generated by a stop condition will not be
generated.

SC LM M

SD A M M

IR b it in the IIC IC
reg ister

(A) S lave address transm iss ion

(B) D ata reception 1

(D) E nd o f m aste r reception

S top cond ition (1)

Th is s igna l is d riven low by accep ting an in te rrupt request o r
by se tting the b it to 0 .

m s m s m

S lave address
(7 b its) RS A D ata

(8 b its) A D ata
(8 b its) A P

S : S tart cond ition
P : S top cond ition

A : A C K
A : N AC K

R : R ead m : M aster outpu ts to SD A
s: S lave outpu ts to S D A

(C) D a ta recep tion 2

N ote :
 1 . W hen using the coun te rm easure described in techn ica l update TN -16C -176A/E , an in terrupt genera ted by a stop
cond ition w ill no t be generated .

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 7 of 34REJ05B1339-0101/Rev.1.01 December 2009

4.4 Slave Reception
Slave reception is described in this section. The initial settings are described in 4.1 Initial Settings.
Initial settings are assumed to be completed. Programs (A) to (C) below refer to (A) to (C) in the following
diagram.

Figure 4.3 Example of Slave Reception

(A) Start of slave reception (in the I2C-bus interrupt routine)
(1) Check the content of S10 register. When the TRX bit is 0, the I2C interface is in slave receive mode.
(2) Write dummy data to the S00 register.

(B) Data reception 1 (in the I2C-bus interrupt routine)
(1) Read the received data from the S00 register.
(2) Set the ACKBIT bit in the S20 register to 0 (ACK is available) because the data is not the last one.
(3) Write dummy data to the S00 register.

(C) Data reception 2 (in the I2C-bus interrupt routine)
(1) Read the received data from the S00 register
(2) Set the ACKBIT bit in the S20 register to 1 (no ACK) because the data is the last one.
(3) Write dummy data to the S00 register.

SCLMM

SDAMM

IR bit in the
IICIC register

(A) Start of slave reception

(C) Data reception 2

End of slave reception

This signal is driven low by accepting an interrupt request or
by setting the bit to 0.

m s m s sm m

Slave address
(7 bits) WS A Data

(8 bits) A Data
(8 bits) A/A P

S: Start condition
P: Stop condition

A: ACK
A: NACK W: Write

m: Master outputs to SDA
s: Slave outputs to SDA

(B) Data reception 1

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 8 of 34REJ05B1339-0101/Rev.1.01 December 2009

4.5 Slave Transmission
Slave transmission is described in this section. The initial settings are described in 4.1 Initial Settings.
Initial settings are assumed to be completed. Programs (A) and (B) below refer to (A) and (B) in the following
diagram.
When arbitration lost is detected, the TRX bit becomes 0 (receive mode) even when the bit after the slave address
is 1 (read). Therefore, after arbitration lost is detected, read the S00 register. When bit 0 in the S00 register is 1,
write 4Fh (slave transmit mode) to the S10 register and execute slave transmission.

Figure 4.4 Example of Slave Transmission

(A) Start of slave transmission (in the I2C-bus interrupt routine)
(1) Check the content of the S10 register. When the TRX bit is set to 1, the I2C interface is in slave transmit

mode.
(2) Write transmit data to the S00 register.

(B) Data transmission (in the I2C-bus interrupt routine)
(1) Write transmit data to the S00 register

Write dummy data to the S00 register even if an interrupt occurs at an ACK clock of the last transmit data. When
the S00 register is written, the SCLMM pin becomes high-impedance.

SCLMM

SDAMM

IR bit in the
IICIC register

(A) Start of slave transmission

Stop condition

This signal is driven low by accepting an interrupt request or
by setting the bit to 0.

m s m s m

Slave address
(7 bits) RS A Data

(8 bits) A Data
(8 bits) A P

S: Start condition
P: Stop condition

A: ACK
A: NACK

R: Read m: Master outputs to SDA
s: Slave outputs to SDA

(B) Data transmission

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 9 of 34REJ05B1339-0101/Rev.1.01 December 2009

5. Arbitration Lost

The following describes the operation of the I2C-bus interface when arbitration lost occurs. Figure 5.1 shows the
Operation Timing of the Arbitration Lost Detect Flag.

Figure 5.1 Operation Timing of the Arbitration Lost Detect Flag

When arbitration lost occurs, the arbitration lost detect flag becomes 1.

(1) Arbitration lost occurs while transmitting a slave address.
When arbitration lost is detected, the communication mode automatically changes to slave reception enabling the
slave address to be received.
If the selected data format is the addressing format, the slave address can be resolved by reading the AAS bit in the
S10 register.

(2) Arbitration lost occurs while transmitting data following the slave address.
When arbitration lost is detected, the communication mode automatically changes to slave reception, enabling the
data to be received.

SDA output of master device

SDA output of another master device

SDA is left open.

Arbitration lost occurs

SDA

SCL

Arbitration lost detect flag
1

0

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 10 of 34REJ05B1339-0101/Rev.1.01 December 2009

6. Interrupt

The I2C-bus interface has the following interrupt sources:

(1) Interrupt when 9-bit transmission/reception is completed (including ACK/NACK)
The interrupt source can be determined by reading the WIT bit in the S3D0 register. When the WIT bit is 0, it is
determined that the generated interrupt is attributable to this interrupt source.

(2) Interrupt when 8 bits are received
Setting the WIT bit to 1 enables this interrupt source.
The interrupt source can be determined by reading the WIT bit. When the WIT bit is 1, it is determined that the
generated interrupt is attributable to this interrupt source.
If no determination is made of ACK/NACK transmissions, there is no need to use this interrupt.

(3) Interrupt when a stop condition is detected
Setting the SIM bit in the S3D0 register to 1 enables this interrupt source.
The interrupt source can be determined by reading the SCPIN bit in the S4D0 register. When a stop condition is
detected, the SCPIN bit becomes 1.

(4) Interrupt when the SCL clock remains high for more than a predetermined time during communication
Setting the TOE bit in the S4D0 register to 1 enables this interrupt source.
The interrupt source can be determined by reading the TOF bit in the S4D0 register. When the SCL clock remains
high for more than a predetermined time during communication, the TOF bit becomes 1.

Figure 6.1 shows the I2C-bus Interface Interrupt Request Generation Timing.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 11 of 34REJ05B1339-0101/Rev.1.01 December 2009

Figure 6.1 I2C-bus Interface Interrupt Request Generation Timing

The above figure assumes the following:
1. The TRX bit in the S10 register is 0 (receive mode).
2. The ACKCLK bit in the S20 register is 1 (ACK is available).

IR bit in the
IICIC register

1
0

0
1

This signal is driven low by accepting an interrupt request or by setting the
bit to 0.

Timeout detected

Timeout detection interval

SCL clock stops oscillating (held
high)

WIT is 0, SIM is 0

2. I2C-bus interface interrupt attributed to timeout detection.

This signal is driven low by accepting an interrupt request or by setting
the bit to 0.

No interrupt request is generated at the 8th bit
in the address data received.

WIT is 1, SIM is 1

IR bit in the IICIC
register

IR bit in the IICIC
register

IR bit in the IICIC
register

IR bit in the IICIC
register

WIT is 0, SIM is 1

0

1

WIT is 1, SIM is 0

0

1

WIT is 0, SIM is 0

1

0

1. I2C-bus interface interrupt source attributed to setting bits WIT and SIM in the S3D0 register.

Stop condition

SCL

SDA

SDA

SCL

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 12 of 34REJ05B1339-0101/Rev.1.01 December 2009

7. Notes on I2C Interface

7.1 Generating Start Condition
After a stop condition is generated and the BB bit becomes 0 (bus free), the S10 register is write disabled for 1.5
cycles of fVIIC. Therefore, when writing E0h to the S10 register and a slave address to the S00 register during the
1.5 fVIIC cycles, and a start condition is not generated.
When generating a start condition immediately after the BB bit changes from 1 to 0, confirm that both the TRX and
MST bits are 1 after step (1), and then execute step (2).

Step:
(1) Write E0h to the S10 register.
The I2C interface enters the start condition standby state and the SDAMM pin is left open.
(2) Write a slave address to the S00 register.
A start condition is generated. Then, the bit counter becomes 000b, the SCL clock signal is output
for 1 byte, and the slave address is transmitted.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 13 of 34REJ05B1339-0101/Rev.1.01 December 2009

8. Sample Program
This sample program is provided for reference purposes only, and is not guaranteed to operate properly in all
systems.
When incorporating it into a system, careful examination is recommended before using this sample program.
Furthermore, since its functionality as integral part of a system cannot be evaluated with this program alone,
evaluation with the final system is indispensable.

8.1 Connection Example
Figure 8.1 shows the Sample Program Operating Environment.

Figure 8.1 Sample Program Operating Environment

8.2 Operation Conditions
Table 8.1 lists the Sample Program Operation Conditions

Table 8.1 Sample Program Operation Conditions

Item Content

Peripheral function clock
(fIIC) 24 MHz (XIN: 6 MHz; PLL clock: Divided-by-2, and then multiplied-by-8)

I2C-bus system clock (fVIIC) 4 MHz (fIIC divided-by-6)

Bit rate 100 kbps (fVIIC divided-by-8 and further divided-by-5)

SCL mode Standard clock mode

Data format Addressing mode

Slave address compare S0D0 register only

Stop condition detect interrupt Enabled

Data receive interrupt Enabled

Timeout detection function Enabled

Master Slave

MCUs
(M16C/65, M16C/64A)

MCUs
(M16C/65, M16C/64A)

SDAMM pin (P7_0)
SCLMM pin (P7_1)

Note
 1. Pins SCLMM and SDAMM are N-channel open drain output.
 When connecting, pull-up each pin.

(See Note 1)

SCLMM pin (P7_1)
SDAMM pin (P7_0)

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 14 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.3 Sample Program Setting
Four communication modes can be used in the sample program: master transmission, master reception, slave
reception, and slave transmission. When calling the “mode_ini” function, the communication modes can be
selected by setting arguments.
Set the other slave address and own slave address in define declaration area in the sample program.

Figure 8.2 shows the Setting Example of Master Transmission. Figure 8.3 shows the Setting Example of Slave
Address (0x09) and Own Slave Address (0x10).

Figure 8.2 Communication Mode Setting Example

Figure 8.3 Slave Address Setting Example

/*""func comment""***/
/* Main Program
/*""func comment end""**/
void main(void){

- Omitted -

/*==*/
/*= Modify start
/*==*/

 mode_ini(MASTER,SND); /* First argument */
/* MASTER : master */
/* SLAVE : slave */
/* Second argument */
/* SND : transfer */
/* REV : receive */

/*==*/
/*= Modify end
/*==*/

Set the master (MASTER)/slave (SLAVE) as the first
argument and send (SND)/receive (REV) as the second
argument.

/**/
/* DEFINE
/**/
/*==*/
/*= Modify start
/*==*/
#define SLAVE_ADD 0x09 /* Other slave address(7bit) */
#define SELF_ADD 0x10 /* My slave address(7bit) */

/*==*/
/*= Modify end
/*==*/

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 15 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.4 Operation Example
8.4.1 Master Transmission and Slave Reception

Figure 8.4 shows the Master Transmission and Slave Reception Operation Example

Figure 8.4 Master Transmission and Slave Reception Operation Example

Address (7 bits) W A A A

Address (7 bits) W

AAA

Data

Data Data

Data

SCLMM

SDAMM

Master
SDAMM

Slave
SDAMM

(1) (2) (4) (5) (7)

(1) Master: A start condition is generated after writing E0h to the S10 register and transmit data to the S00 register.
(2) Master: The slave address set to bits b7 to b1 in the S00 register and Write("0") set to b0 are output.

 Slave: ACK is output when a match is found between the received slave address and the value in the S0Di register.
(3) Master: After ACK reception, the IR bit in the IICIC register becomes 1.
 Slave: After ACK transmission, the IR bit becomes 1.
(4) Slave: After data reception, the IR bit becomes 1. During interrupt handling, set the ACKBIT bit to 0 and ACK is output.
(5) Master: After ACK reception, the IR bit becomes 1.
 Slave: After ACK transmission, the IR bit becomes 1.
(6) Slave: After receiving 5 bytes, set the ACKBIT bit to 1 and NACK is output.
(7) Master: A stop condition is generated.

The IR bit does not become 1 when a stop condition is generated, by using the countermeasure described in technical
update TN-16C-A176A/E.

 Slave: When detecting the stop condition, the IR bit becomes 1.

(3) (6)

Master
IR bit in the IICIC register

Slave
IR bit in the IICIC register

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 16 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.4.2 Master Reception and Slave Transmission
Figure 8.5 shows the Master Reception and Slave Transmission Operation

Figure 8.5 Master Reception and Slave Transmission Operation

Address (7 bits) R A A A

Address (7 bits) R A

A

Data

Data

Data

SCLMM

SDAMM

Master
SDAMM

Slave
SDAMM

(1) (2)

Master
IR bit in the IICIC register

Slave
IR bit in the IICIC register

(4) (5) (6) (7) (8)

Data

A

(1) Master: A start condition is generated after writing E0h to the S10 register and transmit data to the S00 register.
(2) Master: The slave address set to bits b7 to b1 in the S00 register and Read("1") set to b0 are output.

 Slave: ACK is output when a match is found between the received slave address and the value in the S0Di register.
 The TRX bit in the S10 register becomes 1 (transmit mode) (only when the ALS bit in the S1D0 register is 1 (addressing

mode)).
(3) Master: After ACK reception, the IR bit in the IICIC register becomes 1.
 Slave: After ACK transmission, the IR bit becomes 1.
(4) Slave: After data reception, the IR bit becomes 1. During interrupt handling, set the ACKBIT bit to 0 and ACK is output.
(5) Master: After ACK transmission, the IR bit becomes 1.
 Slave: After ACK reception, the IR bit becomes 1.
(6) Slave: After receiving 5 bytes, set the ACKBIT bit to 1 and NACK is output.
(7) Slave: After receiving NACK, the TRX bit becomes 0 (receive mode) only when the ALS bit is 1.
(8) Master: A stop condition is generated.

The IR bit does not become 1 when a stop condition is generated, by using the countermeasure described in technical
update TN-16C-A176A/E.

 Slave: When detecting the stop condition, the IR bit becomes 1.

(3)

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 17 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.5 Function Tables
Declaration void iic_ini(unsigned char ini, unsigned char sub_address)
Outline I2C-bus initialization function

Argument

Argument name Meaning

ini

I2C-bus function enabled/disabled

ENABLED: I2C-bus function enabled

DISABLED: I2C-bus function disabled
sub_address Slave address setting

Variable (global)
Variable name Content
iic_mode For selecting communication mode
iic_index For the number of transfers

Returned value None

Function

Argument ini = When ENABLED (I2C-bus function enabled), initialize the I2C-bus
before enabling interrupts.
Argument ini = When DISABLED (I2C-bus function disabled), disable the I2C-bus
interface and the I2C-bus interrupt.

Declaration void mode_ini(unsigned char ms, unsigned char sr)
Outline Function for setting respective communication modes

Argument

Argument name Meaning

ms
Select master or slave
MASTER: Master
SLAVE: Slave

sr
Select transmission or reception
SND: Transmission mode
REV: Reception mode

Variable (global)

Variable name Content

iic_ram[] Data storage alignment for master
transmit

iic_length For transmit and receive size
Returned value None
Function Set the respective communication modes.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 18 of 34REJ05B1339-0101/Rev.1.01 December 2009

Declaration unsigned char iic_master_start (unsigned char slave, unsigned char sr, unsigned
char *buf, unsigned char len)

Outline Master start function

Argument

Argument name Meaning
slave Specified slave address (0x00 to 0x7f)

sr
Select transmission or reception
SND: Transmission mode
REV: Reception mode

 *buf Pointer for transmit buffer

len Transmit/receive data size (0x00 to
0xff)

Variable (global)

Variable name Content
iic_slave Variable for storing slave address
iic_length For transmit and receive size
iic_pointer Pointer for transmission buffer
iic_mode For selecting communication mode
iic_rw READ/WRITE

Returned value

Type Meaning

unsigned char
Master start failure/start successful
FALSE: Master start failure
TRUE: Master start successful

Function Transmit the start condition and slave address after master setting.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 19 of 34REJ05B1339-0101/Rev.1.01 December 2009

Declaration void master_transfer(void)
Outline Master transmit function
Argument None

Variable (global)

Variable name Content
iic_mode For selecting communication mode
iic_length For transmit and receive size
iic_pointer Transmit buffer pointer

Returned value None
Function Detect arbitration lost, confirming ACK/NACK reception, and transmitting data.

Declaration void master_receive(void)
Outline Master receive function
Argument None

Variable (global)

Variable name Content
iic_mode For selecting communication mode
iic_length For transmit and receive size
iic_pointer Receive buffer pointer

Returned value None
Function Detecting arbitration lost, transmitting ACK/NACK, and receiving data.

Declaration void slave_receive(void)
Outline Slave receive function
Argument None

Variable (global)

Variable name Content
iic_length For transmit and receive size
iic_index Number of transfers
iic_pointer Receive buffer pointer

Returned value None
Function Receive data and transmit ACK/NACK.

Declaration void slave_transfer(void)
Outline Slave transmit function
Argument None

Variable (global)

Variable name Content
iic_length For transmit and receive size
iic_index Number of transfers
iic_pointer Transmit buffer pointer

Returned value None
Function After receiving ACK/NACK, transmit data.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 20 of 34REJ05B1339-0101/Rev.1.01 December 2009

Declaration void idle_mode(void)
Outline Transmit and receive mode select function
Argument None

Variable (global)
Variable name Content
iic_mode For selecting communication mode

Returned value None
Function Select transmit mode or receive mode when receiving data.

Declaration unsigned char* select_buffer(unsigned char RW)
Outline Function for obtaining transmit and receive buffer addresses

Argument

Variable name Meaning

RW
Select transmit and receive buffer
0: Slave receive buffer
1: Slave transmit buffer

Variable (global) None

Returned value
Type Meaning
unsigned char* Transmit and receive buffer address

Function Obtain transmit and receive buffer addresses.

Declaration void receive_stop_condition(void)
Outline Stop condition reception state processing function
Argument None

Variable (global)
Variable name Content
iic_mode For selecting communication mode
iic_index Number of transfers

Returned value None

Function Clear the stop condition detection interrupt request bit and initialize the
communication mode.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 21 of 34REJ05B1339-0101/Rev.1.01 December 2009

Declaration void iic_master_end(unsigned char status)
Outline Master control completion function

Argument

Argument name Meaning

status

Status after master control
0x10: Master transmission completed
0x11: Arbitration lost is detected during
master transmission.
0x12: NACK is received during master
transmission
0x20: Master reception completed
0x21: Arbitration lost is detected during
master reception.
0x22: NACK is received during master
reception

Variable (global) None
Returned value None

Function Carry out the processing after master control is completed.
This application note does not include any processing. Add if the need arises.

Declaration void iic_slave_end(unsigned char status)
Outline Slave control completion function

Argument
Argument name Meaning

status
Status after slave control completed
0x10: Slave transmission completed

Variable (global) None
Returned value None

Function Carry out the processing after slave control is completed.
This application note does not include any processing. Add if the need arises.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 22 of 34REJ05B1339-0101/Rev.1.01 December 2009

Declaration void stop_condition(void)
Outline Stop condition generation function
Argument None
Variable (global) None
Returned value None

Function A stop condition is generated using the countermeasure described in technical update
TN-16C-176A/E.

Declaration void soft_wait(unsigned int time)
Outline Software wait function

Argument

Argument name Meaning

time

Wait time
SETUP_TIME: Setup time for
generating a stop condition
WAIT_TIME: Wait time (approx. 5 μs)

Variable (global) None
Returned value None
Function Wait time is generated.

Declaration void reset_mmi2c(void)
Outline I2C-bus interface reset function
Argument None
Variable (global) None
Returned value None
Function Set the SDAMM pin to high and reset the I2C-bus interface.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 23 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.6 Flowcharts

8.6.1 I2C-bus Initialization Function

iic_ini (unsigned char ini, unsigned
char sub_address)

I2C-bus mode mode
enabled ?

Yes (ini is 1)

End

S1D0 register ← 0x00

asm(“pushc FLG”)

No (ini is 0)

Initialize S1D0 register.

S0D0 register ← sub_address << 1

S20 register ← 0x85

Set the slave address.

fVIIC divided-by-5,
Standard-clock mode (divide-by 8),
ACK is returned, ACK clock is
available.

S4D0 register ← 0x21 Time out detection function: Enabled
I2C-bus system clock: fIIC divided-by 6

S3D0 register ← 0x03
I2C-bus interrupt by stop condition detection enabled,
I2C-bus interrupt at 8th clock is enabled by stop condition
detection.

S10 register ← 0x0F Select communication mode: Slave receive mode

S2D0 register ← 0x98
Recommended value of 4 MHz (11000b)
Interrupt pin: SDAMM enabled
Polarity: Falling edge
Setup/hold time: long mode.

I flag ← 0 Disable interrupts.

IFSR2A register ← 0x0C Interrupt source: I2C-bus interface SCL/SDA described
in technical update TN-16C-A176A/E.

IICIC register ← 0x01 Set interrupt priority level to 1.

iic_mode ← MODE_IDLE Set to idle mode.

iic_index ← 0 Initialize the number of transfers.

ES0 bit in the S1D0 register ← 1 Enable I2C-bus interface.

I flag ← 0 Disable interrupts.

IICIC register ← 0x00 Interrupt priority level 0

iic_mode ← MODE_IDLE Set to idle mode.

S1D0 register ES0 bit ← 0 Disable I2C-bus interface.

asm(“popc FLG”)

Argument
ini: I2C-bus setting (0: Disabled, 1: Enabled)
sub_address: Slave address (7 bits)

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 24 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.6.2 Function for Setting Respective Communication Modes

mode_ini (unsigned char ms,
unsigned char sr)

Transmit mode ?
Receive mode ?

Transmit mode

Receive mode

End

Set master transmit data

Master mode ?
Slave mode ?

Master mode

Master start successful ?

TRUE

FALSE

(NG)(OK)

iic_length ← SEND_TIMES

Slave mode

Set transmit/
receive data size.

Argument
ms: Select communication mode (MASTER: Master mode; SLAVE; Slave
mode)
sr: Transmit/receive flag (SND: Transmit; REV: Receive)

iic_master_start (1)

Start master transmission
Note 1. SLAVE_ADD,
 sr, iic_ram, SEND_TIMES

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 25 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.6.3 Master Start Function

iic_master_start (1)

Bus busy ?

Yes

No (bus free)

result ← FALSE

return (result)

asm (“pushc FLG”)

I flag ← 0

iic_slave ← slave << 1

iic_length ← len

iic_pointer ← buf

Data transmitted ?

iic_mode ← MODE_M_T

iic_rw ← 0

Set master
transmit mode.

Disable interrupts.

iic_rw:
iic_slave b0

iic_mode ← MODE_M_R

iic_rw ← 1

Set master receive mode.

iic_rw: iic_slave b0

S10 register ← 0xE0 Start condition

 Are both bits TRX and MST
 in the S10 register 1 ?

S00 register ← iic_slave

asm (“popc FLG”)

result ← TRUE

Yes (both bits are 1)

No

Yes (sr is SND)

No (sr is not SND)

Argument
slave: Transmit slave address
sr: Transmit/receive flag (SND: Transmit, REV: Receive)
*buf: Transmit/receive buffer pointer
len: Transmit/receive size

Note 1. unsigned char slave,
 unsigned char sr,
 unsigned char *buf,
 unsigned char len

Set transmit/receive slave address
(set to b7 to b1).

Set transmit/receive size.

Set transmit/receive buffer pointer.

b7 to b1 in the S00 register: Transmit slave address
 b0: Read/Write

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 26 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.6.4 Master Transmit Function

master_transfer (void)

Arbitration lost detected ?

Yes (al is 1)

iic_mode ← MODE_IDLE

Address matched ?

Yes (AAS is 1)

b0 of the receive data

 is 1 ?

S10 register ← 0x4F

End

NACK received ?

No (al = 0)

No (AAS is 0)

No (lrb is 0)

Yes (Write receive)

No (read received)

iic_master_end (0x11)
Complete master control

stop_condition ()
Generate stop condition

Yes (lrb is 1)

iic_master_end (0x12)
Complete master control

Data transmit completed

iic_length--

stop_condition ()
Generate stop condition

iic_length--

S00 register ← *iic_pointer

iic_pointer++

Yes (iic_length is 0)

No (iic_length is not 0)

iic_master_end (0x10)
Complete master control

Set to idle
mode.

Slave transmit mode

Write
transmit data.

Increment transmit
buffer pointer.

idle_mode ()
Select transmit or receive

mode

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 27 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.6.5 Master Receive Function

master_receive (void)

Arbitration lost
detected ?

Yes (al is 1)

iic_mode ← MODE_IDLE

Address
matched ?

Yes (AAS is 1)

b0 of the receive
data is 1 ?

S10 register ← 0x4F

End

No (al = 0)

No
(AAS is 0)

Yes (Write received)

No
(Read received)

NACK received ?

Yes (lrb is 1)

No (lrb is 0)

Transmit mode

Yes (trx is 1)

S10 register ← 0xAF

S00 register ← 0xFF

No (trx is 0)

Data received ?

S00 register
← 0xFF

*iic_pointer
← S00 register

Yes
(iic_length is 0)

No (iic_length is not 0)

WIT bit is 1 ?

iic_length--

Data received ?

ACKBIT bit in the
S20 register ← 1

ACKBIT bit in the
S20 register ← 0

Yes
(I2C-bus interrupt at 8th clock)

No (I2C-bus interrupt by falling
edge of ACK clock)

iic_pointer++

ACKBIT bit in the
S20 register ← 0

Yes
(iic_length is 0)

No (iic_length is not 0)

Master
transmission

Slave
transmission

Write dummy
data

ACK is available Write dummy
data

ACK is available
ACK is not

returned

Set to idle
mode.

iic_master_end (0x20)

Complete master control

iic_master_end (0x21)

Complete master control

iic_master_end (0x22)

Complete master control

idle_mode ()

Select transmit or receive mode

stop_condition ()
Generate stop

condition

stop_condition ()
Generate stop condition

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 28 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.6.6 Slave Receive Function

slave_receive (void)

WIT bit is 1 ?

Yes (I2C-bus interrupt is enabled at 8th clock)

No (I2C-bus interrupt enabled at falling edge of ACK clock)

First transmission ?

iic_pointer is 0 ?

return
++iic_index

End

Yes (index is 0)

Yes
(failed to obtain the receive buffer)

No (index is not 0)

No (obtained the receive buffer
successfully)

S20 register
ACKBIT ← 1

*iic_pointer ← S00 register

++iic_pointer
NACK S20 register

ACKBIT ← 0

Data received ?

Yes

ACK

No

iic_length--

S00 register ← 0xFF

iic_pointer ← select_buffer(0)
Obtain the transmit and receive buffer addresses

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 29 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.6.7 Slave Transmit Function

slave_transfer (void)

NACK received ?

iic_slave_end (0x10)
Complete slave control

Yes (lrb is 1)

No (lrb is 0)

iic_index ← 0

First transmission ?

iic_pointer is 0 ?

return

End

Yes (iic_index is 0)

Yes (failed)

No (iic_index is not 0)

No (succeeded)

++iic_pointer

++iic_index

Initialize
number of
transfers.

iic_pointer ← select_buffer(1)
Obtain the transmit buffer address

S00 register ← 0xFF

S00 register ← 0x00

S00 register ← *iic_pointer

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 30 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.6.8 Transmit and Receive Mode Select Function

8.6.9 Function for Obtaining Transmit and Receive Buffer Addresses

8.6.10Stop Condition Reception State Processing Function

idle_mode(void)

Transmit mode ?

Yes: Transmit mode

No: Receive mode

End

iic_mode ← MODE_S_T

slave_transfer()
Transmit slave data

Set to slave
transmit mode. iic_mode ← MODE_S_R Set to slave receive mode.

slave_receive()
Receive slave data

select_buffer (unsigned char RW)

RW is 1 ? No

return(&sw_buf[0]) return(&sr_buf[0])
Transmit
buffer
address

Receive
buffer
address

Argument
RW: Select the transmit or receive buffer (0: Slave receive buffer; 1: Slave transmit buffer)

Yes

receive_stop_condition (void)

Slave receive mode ?

Yes

No

End

iic_index ← 0

iic_slave_end (0x20)
Complete slave control

SCPIN bit in the S4D0 register ← 0 No stop condition detect interrupt requested

Slave receive
completed

iic_mode ← MODE_IDLE Set to idle mode.

Initialize number of transfers.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 31 of 34REJ05B1339-0101/Rev.1.01 December 2009

8.6.11 I2C-bus Interface Interrupt Handling

i2c_bus_interface (void)

Stop condition detect
 interrupt ?

Yes

No

return

General call detected ?

return

Time out detected ?

return

Confirm mode

iic_mode =
MODE_M_T

master_transfer()
Transmit master data

master_receive()
Receive master data

slave_transfer()
Transmit slave data

slave_receive()
Receive slave data

iic_mode =
MODE_M_R

iic_mode =
MODE_S_T

iic_mode =
MODE_S_R

iic_mode =
MODE_IDLE

default

End

Yes

No

Yes

No

idle_mode()

Select transmit or receive
mode

receive_stop_condition()
Stop condition reception state processing

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 32 of 34REJ05B1339-0101/Rev.1.01 December 2009

9. Sample Program
A sample program can be downloaded from the Renesas Technology website.
To download, click “Application Notes” in the left-hand side menu of the M16C Family page.

10. Reference Documents
Hardware Manuals
M16C/64A Group Hardware Manual
M16C/65 Group Hardware Manual
The latest version can be downloaded from the Renesas Technology website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Technology website.

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 33 of 34REJ05B1339-0101/Rev.1.01 December 2009

 Website and Support
Renesas Technology Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

All trademarks and registered trademarks are the property of their respective owners

REVISION HISTORY M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Rev. Date
Description

Page Summary
1.00 Nov 30, 2009 − First Edition issued
1.01 Dec 01, 2009 4 “4.1 Initial Settings” (3),(4) enabled → disabled

M16C/64A, M16C/65 Group
Multi-Master I2C-bus Interface

Page 34 of 34REJ05B1339-0101/Rev.1.01 December 2009

.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
 Renesas products for their use. Renesas neither makes warranties or representations with respect to the
 accuracy or completeness of the information contained in this document nor grants any license to any
 intellectual property rights or any other rights of Renesas or any third party with respect to the information in
 this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
 out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
 programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
 applications such as the development of weapons of mass destruction or for the purpose of any other military
 use. When exporting the products or technology described herein, you should follow the applicable export
 control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
 application circuit examples, is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
 document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
 and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
 through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
 assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
 included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in
 light of the total system before deciding about the applicability of such information to the intended application.
 Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
 particular application and specifically disclaims any liability arising out of the application and use of the
 information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas
 products are not designed, manufactured or tested for applications or otherwise in systems the failure or
 malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
 especially high quality and reliability such as safety systems, or equipment or systems for transportation and
 traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
 transmission. If you are considering the use of our products for such purposes, please contact a Renesas
 sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
 elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
 Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect
 to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
 characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
 damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
 characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
 conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
 injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
 hardware and software including but not limited to redundancy, fire control and malfunction prevention,
 appropriate treatment for aging degradation or any other applicable measures. Among others, since the
 evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
 system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas
 products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
 high. You should implement safety measures so that Renesas products may not be easily detached from your
 products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
 approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
 document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

	1. Abstract
	2. Introduction
	3. Overview
	3.1 General Call
	3.2 Addressing Format
	3.3 I2C Interface Related Pins
	3.4 Selectable Functions

	4. Data Transmit/Receive Example
	4.1 Initial Settings
	4.2 Master Transmission
	4.3 Master Reception
	4.4 Slave Reception
	4.5 Slave Transmission

	5. Arbitration Lost
	6. Interrupt
	7. Notes on I2C Interface
	7.1 Generating Start Condition

	8. Sample Program
	8.1 Connection Example
	8.2 Operation Conditions
	8.3 Sample Program Setting
	8.4 Operation Example
	8.5 Function Tables
	8.6 Flowcharts

	9. Sample Program
	10. Reference Documents
	Website and Support
	REVISION HISTORY

