RENESAS Application Note

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System
Process

Introduction

This document describes additional modifications required to achieve the integration of the loT-Reader (Non-OS)
SDK v7.2.0 into a FreeRTOS-based system using E2Studio.

In the context of FreeRTOS scheduling, loT-Reader stack is used as one single thread solution which has the
advantages of using a simplified design, low resource consumption, and deterministic behavior of the NFC
component.

Contents
O T LU T =T 1 T=T o £ OO PP PP 2
ADOUL FTEERTOS ...ttt e ekt e e et oo st e ookt e e aa bt e oo s ee e e e e s R et e e ea b et e e s ane e e e e ne R e e e e anne e e e e e e e nnnneeean 2
3. Integration Process
3.1 How to Start a FreeRTOS-based Project USIiNG E2StUIO...........uuiiiiiiiiiiiiie et 2
3.2 Create a New Thread for [0T-REAIETN STACKuuiiiiiiiiiiiiee ettt e s e e 4
3.3 Configure Stacks for [0T-Reader TRIEAU.........ccoiiiiiiiiiiii et e e e 6
3.4 Import the loT-Reader (Non-OS) SDK v7.2.0 Code Content into the Projectccccovveeeiiiiieiniiiec e 6
3.5 loT-Reader (NON-OS) SDK v7.2.0 COUE UPUALESovviiiieieeiiiiieeiieie ettt s et snre e e e e e e 7
351 Implement “blocking-states” using Binary Semaphorescoccveiiiiiiiniiiic e 7
3.5.2 Link loT-Reader APIs to Thread ENtry FUNCLIONeiiiiiiiiiiiieee et e e 9
S [T e o NV =T 4 L= oL PO PPPPPPRRTT 11
(0] o To] [V E7 1o] o - OO T PP PP PP PPPRPTPIN 11
VA ET (o] T £ (0] PSP UPPRRIOt 11
Figures
Figure 1. E2Studio Project DeVICEe CONFIGUIALIONcuiiuieiieeiieeiieeiteete et et e ste e eteeteeae et esteesteesteesbeessesaseeaseeaeesbaesbeebeessesseesreas 3
Figure 2. Project FFee@RTOS CONTIGUIALIONciiiiiiiiiiiii ettt e et e e e e e e bttt e e e e e e e bbb et e e e e e e sanbbbeeeeaeeesannneneeeas 3
Figure 3. ProjeCt TEMPIAIE SEIECHION.ottt et e e st e e s b bt e e et bt e e e aabe e e e sbb e e e e anbeeeeanteeeesnneeas 4
Figure 4. 1oT-Reader Thread CONfIgUIALION............iiiiiiiiiie ettt e e et e e e e s et e e e e e e sa st b e e e eaaeeesssbaareeeeessanssrnneeeas 5
Figure 5. IoT-Reader Thread GENEIated FilES.........ccuuuiiiie ittt e e e e et e e e e s s st e e e e e e e e s atbaeeeeeeessassnenreeeas 5
Figure 6. 10T Reader StaCks CONfIGUIALION.ciiuiiiiiiiie ettt e e e bb e e e s bt e e s bb e e e aab e e e antneeennnees 6
Figure 7. I0T-Reader SOUrce Code IMPOIEAeiiiiiiiieiiiiie ittt a bbbt e s e e s bb et e s asbe e e e s bb e e e asbr e e e antneeenneeas 7
Figure 8. ptxPLAT_WaitForInterrupt IMPIEMENTALIONocueiiiiiiii ettt e e e b e e st e e s neeas 8
Figure 9. ptXPLAT_TIMER_Start IMpPIemMENTatiON............uiiiiiieiiiiee ettt s e e e e st e e s neeas 8
Figure 10. ptxPLAT_GPIO_IsrCallback IMpPIEMENTAtION..........cciiiiiiiiiiii et 9
Figure 11. ptxPLAT_TIMER_IsrCallback IMPIEMENTALIONccoiuriiiiiiiieiieie it 9
Figure 12, ptXAPP _ENTIY INTEOTALIONveeieiiiieeeeiiie ettt et s et e e st e e ettt e e s et e e s s b et e e e b b et e s nn et e e nnbr e e e annne e e nnreas 10
R35DS0101EEO0100 Rev.1.00 RENESAS Page 1

Jan 16, 2025 © 2025 Renesas Electronics

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System Process Application Note

1. Requirements
This document applies to:
= loT-Reader (Non-OS) SDK for PTX1xxR family v7.2.0

The full documentation of loT-Reader (Non-OS) SDK v7.2.0 can be found in the PTX1xxR NFC loT-Reader API
for OS Stack Integration (SDK v7.2.0) User Manual.

2. About FreeRTOS

FreeRTOS™ is a lightweight, open-source real-time operating system designed for embedded systems. It
provides a simple and efficient kernel to manage tasks, scheduling, and resources, making it ideal for
microcontrollers and small processors with limited resources.

The complete documentation for FreeRTOS is available at FreeRTOS documentation - FreeRTOS.

3. Integration Process

The integration process discussed in this document handles all aspects of correctly deploying the loT-Reader
(Non-0S) stack into a FreeRTOS-based system, starting with project creation and finishing with code adaptation
required to fulfill a real-time operating system compliance.

In order to keep the integration as simple as possible, the objective is to create a single thread for the whole I0T-
Reader stack. The one single thread solution provides numerous advantages. Beside simplified design which
does not require any synchronization mechanism or data exchange between internal components, there is also
the resources aspect and the deterministic behavior of the entire stack to be considered.

The required integration steps are summarized as follows:

1. Create and configure a FreeRTOS project using E2Studio and FSP.

Import loT-Reader (Non-OS) SDK v7.2.0 into the new created project.

Create the lIoT-Reader thread and configure required stacks(drivers).

Update the HAL layer of loT-Reader (Non-OS) SDK v7.2.0 to make it compliant with FreeRTOS.

Link loT-Reader thread to loT-Reader stack.

a s N

3.1 How to Start a FreeRTOS-based Project using E2Studio

If a FreeRTOS project is not yet created, the first step to integrate loT-Reader (Non-OS) SDK v7.2.0 into a
FreeRTOS-based system is to create a new E2Studio project proper configured for using FreeRTOS.

For demonstration purposes, an RA4M3 device is used as the host controller.

1. Open E2Studio and navigate to File > New > Renesas C/C++ Project and select Renesas RA.

2. Select the C/C++ Template and click Next.

3. Choose an appropriate project name and click Next.

R35DS0101EE0100 Rev.1.00 RENESAS Page 2
Jan 16, 2025

https://www.renesas.com/en/document/mas/ptx1xxr-nfc-iot-reader-api-os-stack-integration-sdk-v720-user-manual?language=en&r=25426186
https://www.renesas.com/en/document/mas/ptx1xxr-nfc-iot-reader-api-os-stack-integration-sdk-v720-user-manual?language=en&r=25426186
https://www.freertos.org/Documentation/00-Overview

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System Process Application Note

4. Select the desired device and desired settings and click Next.

Renecas BA 0O Droiact
nenesas A LfL++ Froject

Renesas RA C/C++ Project

Device and Tools Selection

Device Selection

F5P Version: 3.3.0

Board Description

Board: IEK-RA4M3 I

Evaluation kit for RA4M3 MCU Group

Visit httpsy/fwww.renesas.com/ra/ek-radm3 to get kit user's manual, quick

Device: IR?FA4M3AF3CFB I
Core: Ch33

Language: @ C (O C++
Toolchains

start guide, errata, design package, example projects, etc.

GMNU ARM Embedded
LLYM Embedded Toolchain for Arm

Device Details

TrustZone Yes

Pins 144
Processor Cortex-M33
Debugger

J-Link ARM

13.2.1.arm-13-7 ~

Manage Teolchains...

Figure 1. E?Studio Project Device Configuration

5. Select the project type and click Next.

Finish Cancel

6. Atthis step, it is necessary to select the build artifacts and RTOS, so this is the step were FreeRTOS
selection occurs. Select FreeRTOS and click Next.

= Renesas RA C/C++ Project

Renesas RA C/C++ Project
Build Artifact and FTOS Selection

Build Artifact Selection
0O Executable

#* Project builds to an executable file
() Static Library
* Project builds to a static library file

() Executable Using an RA Static Library
* Project builds to an executable file

* Project uses an existing RA static library project

@)

RTOS Selection
FreeRTOS (w10.6.1+fsp.5.5.00

< Back

Figure 2. Project FreeRTOS Configuration

Finish Cancel

R35DS0101EE0100 Rev.1.00
Jan 16, 2025

RENESAS

Page 3

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System Process Application Note

7. Atthis step it is recommended to choose the Blinky example as it will be more relevant for testing to have at
least two threads active. Click on Finish and the project configuration is ready.

B Renesas RA C/C++ Project O o
4
lenesas RA C/C++ Project ——

Project Template Selection

Project Template Selection

o (_—) ' FreeRTOS - Blinky - Static Allocation

FreeRTOS FSP project that includes BSP and will blink LEDs if available. FreeRTOS is pre-configured for static memery allocation. This project
will initialize the MCU using the BSP, FreeRTOS will alse be initialized and a single thread to blink the LEDs will be started.

[Renesas.RA.5.5.0.pack]

(—)c FreeRTOS - Minimal - Static Allocation

Empty FreeRTOS FSP project with no threads. FreeRTOS is pre-configured for static memory allocation. This project will initialize the MCU
using the B5P.

[Renesas.RA.3.5.0.pack]

Code Generation Settings
B Use Renesas Code Formatter

I:?} < Back Mext = Cancel

Figure 3. Project Template Selection

After completing the above steps the project is compilable and ready to be customized.

Note: The E2Studio project provides only static memory allocation for FreeRTOS projects.

3.2 Create a New Thread for loT-Reader Stack

New Threads can be created from the FSP Stacks tab. After creating the thread dedicated to loT-Reader the
most important configurations are priority and stack size.

The whole corresponding code to the thread configuration and thread initialization will be automatically
generated by FSP. In addition, all the allocated stacks(drivers) will be configured and initialized in the thread
context.

R35DS0101EE0100 Rev.1.00 RENESAS Page 4
Jan 16, 2025

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System Process Application Note

Threads I 4| New Thread I.a Remove =] PtxlotRd Stacks

@ Add stacks to the selected thread by using the 'New Stack' toolbar button (above), or by pasting here from the clipboard.

v & HAL/Common
47 g_ioport IO Port (r_ioport)
4% FreeRTOS Port (rm_freertos_port)

i Blinky Thread
PxlotRd

Objects 4] New Object>] Rermove

4] New Stack > —= Extend Stack > 3] Rernove

SummarleSP |C\ocks|Pins‘Interrupts|Event Links | Stacks | Components

._': Problems | @ Smart Browser | [C] Properties X |

ptxlotRd

JE—
Settings Property
I Enable Backward Compatibility
Mum Thread Local Storage Pointers
Stack Depth Type
Message Buffer Length Type
Library Max Syscall Interrupt Priority
Assert
Include Application Defined Privileged Functions
» Hocks
» Stats
> Memory Allocation
» Timers
» Optional Functions
» RA
» Logging
~ Thread
Symbol
Name
Stack size (bytes)
Priority
Thread Context

Value
Disabled
5
uint32_t
size_t
Priority 1
assert(x)
Disabled

PtxlotRdThread
PtxlotRd

8192

1

MULL

Figure 4. loT-Reader Thread Configuration

Use a stack size of at least 8192 bytes. Once the thread is created, the code can be generated. A new file will be

generated for each configured thread.

75 Project Explorer |

BES YW § 7

w 1= FreeRTOS loT Reader SDK w7 20

3 @] Includes
¥ 2 ra
5 2 ra_gen
w [sre
5 € blinky_thread_entry.c
hal entry.c

5 €] PtxlotRd_Thread_entry.c

ebug
» [= ra_cfg
% [= script

{ﬂ:} configuration.xml

|%] FreeRTOS5_|loT_Reader SDE_v7_20 Debug_Flat.launch

= ra_cfg.txt
s (7) Developer Assistance

Figure 5. loT-Reader Thread Generated Files

R35DS0101EE0100 Rev.1.00
Jan 16, 2025

RENESAS

Page 5

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System Process Application Note

3.3 Configure Stacks for loT-Reader Thread

In FSP Stacks tab, for each thread all the stacks(drivers) must be configured. For the loT-Reader Thread the
stacks(drivers) must be configured the same way as for the loT-Reader (Non-OS) SDK v7.2.0 project.

Note: The full documentation of loT-Reader (Non-OS) SDK v7.2.0 can be found in PTX1xxR NFC loT-Reader
API for OS Stack Integration (SDK v7.2.0) User Manual.

One thing worth noting, the stacks(drivers) allocated to a specific thread are “private” and cannot be accessed by
other threads. If it is the case to define a driver that can be consumed by multiple threads, the HAL/Common
section can be used. The recommendation is to try as much as possible to keep the project compact and well
separated by allocating correctly the hardware resources to threads.

Stacks Configuration

Generate Project Content

Threads 4| Mew Thread #-| Remove [= ptxlotRd Thread Stacks 4| New Stack »

v g HAL/Common
42 g_joport 1/0 Port (r_ioport) 4 g_gxt_irq External IRC & g_timerD Timer, & g_uart_debug UART (r_sci_uart)
A FreeRTOS Port (rm_freertos_port) (r_icu) General PWM (r_gpt)
47 FreeRTOS Heap 4)))
e g_adc ADC (r_adc) =

w g BLE Thread T T
ST DL e ipbamiamgil % Add DTC Driver for %1 Add DTC Driver for

v @& pixlotRd Thread Transmission Reception [Mot
4o g_ext_irq External IRQ) (r_jicu) [Re_commended but recommended]
e g_timer(Timer, General PWM (r_gpt) optional]
e g_uart_debug UART (r_sci_uart)

=5 g_timer1 Timer, General PWM (r_gpt)
e g_pmod1_12C 12C Master (r_sci_i2c)

Objects 4] New Object >

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components
Figure 6. IoT Reader Stacks Configuration

The stacks(drivers) content and detailed configuration can be found in the original loT-Reader (Non-OS) SDK
v7.2.0 project.

3.4 Import the loT-Reader (Non-OS) SDK v7.2.0 Code Content into the
Project

After all the FSP configurations, readying the code generation is possible. FSP will generate all necessary
infrastructure including the thread entry function for the newly created thread for loT-Reader.

The next step is to import into the project the code sources from IoT-Reader (Non-OS) SDK v7.2.0. This step
can be achieved by creating a new “Source folder” in the project and pasting the code folders inside. When
doing so, however, the user must ensure the following:

= The files are not excluded from build.
= To add the new added source files to compiler include paths.
= To add the same project Maros as for loT-Reader (Non-OS) SDK v7.2.0 project.

R35DS0101EE0100 Rev.1.00 RENESAS Page 6
Jan 16, 2025

https://www.renesas.com/en/document/mas/ptx1xxr-nfc-iot-reader-api-os-stack-integration-sdk-v720-user-manual?language=en&r=25426186
https://www.renesas.com/en/document/mas/ptx1xxr-nfc-iot-reader-api-os-stack-integration-sdk-v720-user-manual?language=en&r=25426186

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System Process Application Note

At the end of this section the whole project should compile, but from a functional point of view, it will not do
anything because the loT-Reader thread activity is not linked with loT-Reader stack activity.

=

2 =
| =S

1§75 Project Explorer > =

v (25 FreeRTOS_|oT_Reader_SDK_v7_20
> [Includes
» 3 ra
> (2 ra_gen
(8 src
w [src_PtxlotReader
w (= COMPS
3 = COMMON
» [= FELICA_DTE
3 = GPIO
» = HCE
» (= IOT_READER
» [= MNATIVE_TAG
» (= NDEF
3 [= NSC
» (= PERIPHERALS
3 [= PLAT
» [= RF_TEST
» = TDC
» (= TRANSPAREMT MODE
» ptxPlatform_Revision.h
» pheStatus.h
w (= EXAMPLE
3 = COMMON
» (= DEBUG_PORT
3 = IOT_APP
» (= IOT_APP_TEST_API
> [= Uebug
» = ra_cfg
» [= script
f;:} configurationxml
¥| FreeRTOS_loT_Reader_SDK_v7_20 Debug_Flat.launch
= ra_cfg.bet
5> (7) Developer Assistance

ik

Figure 7. loT-Reader Source Code Imported

3.5 loT-Reader (Non-OS) SDK v7.2.0 Code Updates

After following the above steps, the project should be compilable. In order to make it work, there are some
required updates to be completed.

FSP already generates the thread initialization and the thread entry point, so the loT-Reader thread entry is
already available. There are two design updates that should be completed in order to make the loT-Reader stack
working.

3.5.1 Implement “blocking-states” using Binary Semaphores

In the implementation of loT-Reader (Non-OS) SDK v7.2.0, there are some use-cases where the host controller
will wait for events in a blocking way, which effectively monopolizes the processor’s execution time and prevents
the FreeRTOS scheduler from executing other tasks. Of course, this implementation is forbidden in an RTOS-
based system because it will block the other tasks.

The simplest solution possible to achieve the expected behavior is to use the binary semaphore mechanism
offered by FreeRTOS. This mechanism is very simple: using a “Take” operation from any place of the task
context will block the task until the semaphore is freed from an ISR using a “Give” operation.

The semaphore must be declared and initialized before any usage, so before starting any activity make sure the
semaphore was initialized correctly.

R35DS0101EE0100 Rev.1.00 RENESAS Page 7
Jan 16, 2025

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System Process Application Note

= ptxPLAT_WaitForinterrupt is implemented, like the name suggests, to wait for interrupts (from internal
timers or external GPIO) in a closed loop, blocking the CPU. The new implementation just “takes” the
semaphore and informs the scheduler to block the current thread until the semaphore is free.

~ ptxStatus_t ptxPLAT WaitForInterrupt(ptxPlat_t *plat)
{
ptxStatus_t status = ptxStatus_Success;

if (PTX_COMP_CHECK(plat, ptxStatus Comp PLAT))

1
/* Wait for Interrupts */
_DSB();
TwFL();
“1s8();
} else
- {

status = PTX_STATUS(ptxStatus_Comp PLAT, ptxStatus InvalidParameter);

return status;

o ptxStatus_t ptxPLAT_WaitForInterrupt(ptxPlat_t *plat)
i

ptxStatus_t status = ptxStatus_Success;

if (PTX_COMP_CHECK(plat, ptxStatus Comp PLAT))

/

Wait for Interrupts */
//RTOS Implementation. Lock the thread until the interrupt occurs
xSemaphoreTake (xPtxIotRdSemaphore, portMAX DELAY);

} else

status = PTX_STATUS{ptxStatus_Comp PLAT, ptxStatus InvalidParameter);
¥

return status;

1

Figure 8. ptxPLAT_WaitForinterrupt Implementation

= ptxPLAT_TIMER_Start is used to start a timer in both blocking and non-blocking modes. For non-blocking
mode there is nothing to update. However, for the blocking mode, the same implementation strategy as for
previous function must be done. One important item worth noting is that the second implementation was

slightly modified to unlock the thread even if the semaphore is free from GPIO ISR. More about this item is
provided later in this section where the semaphore “give” strategy is discussed.

PtxStatus_t ptxPLAT_TIMER_Start(ptxPla

£Timer_t *timer, uint32_t ms, uintd

ptxStatus_t status = ptxStatus

i ((nuLL) 88 (ms > @) 88 ((8 == §salock)||(1u == izaleck)))
{

tiner >TsElapsed =

£ r_instance = (
tus = R_GPT_Stop(timer.

t *)tiner->TiserInstance;
- r_status)

k) >
ws) /

1000).

if (FSP_SUCCESS == r_status)
L

timer->IsRCallBack = fAISRCH;
timer->TSACxE RCxE ;
r_status = R_GPT_Start(timer_instance->p_ctrl);

1F(FSP_SUCCESS == r_status)
{

timer->TimerState = Timer_InUse;
if (lu == islock)
{

while(@ == t]mrr-v!sElnvsI:d]
_osa();
WEI();
Zrsa();
Tnoe);

_t i3Block, pptxPlat_TimerCallack_t fnlSACh, v © ptxStatus_t ptxPLAT_TIMER Start(ptxPlatTimer_t

> timer_instance->p_cfg->source_div;

*timer, uint32_t ms, uints_t isBlock, pptxPlat_TimerCallBack_t fnISRCb,
ptxStatus_t status = ptxStatus_Success;

if ((MULL != timer) B& (ms > @) 8& ((@ == isBlock)||(lu == isBlock)))
{ /** Clear IsElpased state *

timer->IsElapsed = 0;

/** Stop Timer, first. Then, s
timer_instance_t *timer_instance
fsp_err_t r_status = R_GPT_Stop(t:

ally, start timer counter. */
_instance_t *)timer->TimerInstance;
stance->p_ctrl);

if(FSP_SUCCESS == r_status)
{
uint32_t timer_freq_hz = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKD) »> timer_instance->p_cfg->source_div;
uint32_t period_counts = (uint32_t) (((uint64_t) timer_freq_hz * ms) / 1000);
r_status = R_GPT_PeriodSet(timer_instance->p_ctrl, period_counts);
}

if (FSP_SUCCESS == r_status)
{

timer->ISRCallBack = fnISRCh;
timer->ISRCxt = ISRCxt;

r_status = R_GPT_Start(timer_instance->p_ctrl);

if(F5P_SUCCESS == r_status)
{
timer->TimerState =

if (lu == isBlock)

{

Timer_InUse;

TOS Implementation. Lock the thread until the interrupt
xSemaphoreTake (xPtxIotRdSemaphore, portMAX_DELAY);

b
}

Figure 9. ptxPLAT_TIMER_Start Implementation

R35DS0101EE0100 Rev.1.00
Jan 16, 2025

RENESAS

Page 8

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System Process Application Note

= ptxPLAT_GPIO_lIsrCallback is used to handle any interrupt detected by the IRQ(INTPx) pin. On the non-OS
SDK, there is no specific action to do because the CPU is directly waked up by hardware mechanism;
however, on the FreeRTOS implementation the semaphore must be free. There is no need for complex
implementation to check if the semaphore is currently blocked before freeing it. It is very important here to use
xSemaphoreGiveFromISR instead of xSemaphoreGive.
= void ptxPLAT_GPIO_IsrCallback(external_irq_callback_args_t *p_args) - void ptxPLAT_GPIO_IsrCallback(external_irq_callback_args_t *p_args)
(void)p_args; (void)p args;:

BaseType_t xHigherPriorityTaskloken = pdFALSE;
xSemaphoreGiveFromISR(xPtxIotRdSemaphore, &xHigherPriorityTaskkoken);

}
Figure 10. ptxPLAT_GPIO_IsrCallback Implementation

= ptxPLAT_TIMER_IsrCallback is used to manage timer interrupts. One the same logic like for ISR callback, in
FreeRTOS version the semaphore must be freed.

= void ptxPLAT_TIMER_IsrCallback(timer_callback_args_t *p_args) void ptxPLAT_TIMER_IsrCallback(timer_callback_args_t *p_args)
* * PERIODIC_MODE is used for timer operation:[] * PERIC ime:
timer_ctx.IsElapsed = 1u; timer_ctx.IsElapsed = 1lu;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
*Let's call back if defined. * 11 if def
if (NULL != timer_ctx.ISRCallBack) £EE all back if defined
{ = if (NULL != timer_ctx.ISRCallBack)
{

timer_instance_t *timer_instance = (timer_instance_t *)timer_ctx.TimerInstance;

2 2 timer_instance_t *timer_instance = (timer_instance_t *)timer_ctx.TimerInstance;
R_GPT_Stop(timer_instance->p_ctrl); er_ ce_ — (timer_| e_t *)timer_ 3

R_GPT_Stop(timer_instance->p_ctrl);

= if (NULL != timer_ctx.ISRCxt) if (NULL != timer_ctx.ISRCxt)

timer_ctx.ISRCallBack(timer_ctx.ISRCxt); timer_ctx.ISRCallBack(timer_ctx.ISRCxt);

} }
} }

(void)p_args; (void)p ares:
IxSemaphoreGiveFromISR(thonthSemaphore, &xHigherPriorityTaskioken); |
}

~

Figure 11. ptxPLAT_TIMER_IsrCallback Implementation

3.5.2 Link loT-Reader APIs to Thread Entry Function

In the previous section all the required updates to make the loT-Reader stack compatible with a FreeRTOS-
based system were presented. Now, the final topic is how to link the thread entry function generated from FSP to
the actual APIs offered by the loT-Reader stack.

The first option is a basic one but will ensure the same behavior as for IoT-Reader non-OS version: a continuous
pooling loop. The only necessary update is to directly call ptxAPP_Entry from the generated thread entry
function, of course after initializing the semaphore.

The second proposed option is more complex, and it depends on the project needs and designer choices. The
proposal is to rework the ptx_IOT_RD_Main.c file to work with individual commands and “control” the closed
loop behavior using the Queue mechanism offered by FreeRTOS.

Queue mechanism provide a lot of advantages because it allows commands and data transfer from one thread
to another, in this way giving the user a solution to create complex applications.

R35DS0101EE0100 Rev.1.00 RENESAS Page 9
Jan 16, 2025

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System Process Application Note

The following is a simple example of how to start the polling loop using queue commands, but this is highly
dependent of the project needs. However, it is important to mention that this layer is outside of the loT-Reader
core functionality and is intended to be reworked by users.

= /* ptxIotRd Thread entry function */

/* pvParameters contains TaskHandle_t */ Eﬂ
= void ptxIotRdThread_entry(void *pvParameters)
1

FSP_PARAMETER_NOT_USED (pvParameters);

/* TODO: add your own code here */
xPtxIotRd_Queue = wQueueCreate(QUEUE_LENGTH, QUEUE_ITEM SIZE);
xPtxlotRdSemaphore = xSemaphoreCreateBinaryStatic(&xSemaphoreBuffer);

= if((xPtxIctRdSemaphore == NULL)
|| { xPtxIotRd_Queue == NULL }}
1

/* Critical Error */
ptxCommon_PrintF (" Critical error: Rescurces not allocated. ");

}

else

S 1

/* Initialize ptxlk */

/* This event is raised here just for example purpose. It shall be raised by higher application level */
ptxIcotRd_QueueCommand.callback = MNULL;

ptxIotRd_QueueCommand.ptxIotRd_QueueCommand = =_ptxTotRd Init;

= if(pdPAsSS != xQueueSend(xPtxIotRd_Queue, &ptxIotRd_QueusCommand, portMAX_DELAY))
/* Critical Error */

ptxCommon_PrintF(" Critical error: Enqueue event failed.™};

}

/* start Pooling */

/* This event is raised here just for example purpose. It shall be raised by higher application level */
ptxIotRd QueueCommand.callback = ptxIotRd_NdefTagDetectedCallback;
ptxIotRd_QueueCommand.ptxIotRd_QueueCommand = e_ptxIotRd StartPooling;

= if(pdPAsSS = wQueueSend(xPtxIotRd_Queue, &ptxIotRd_QueueCommand, portMAX DELAY))
1

/* Critical Error */
ptxCommon_PrintF(" Critical error: Enqueue event failed.™};

}
s while (1)

{
/* Wait for ewvents */
= if(pdPASS == wQueusReceive(xPtxIotRd_Queue, &ptxIctRd_QueusCommand, portMAX_DELAY))

Lo =g (ptxIotRd_QueueCommand) ;

Figure 12. ptxAPP_Entry Integration

In this example, the first step is to allocate the queue and the binary semaphore, and after successfully
initializing them start loading events into the queue.

ptxlotRd_QueueCommand is a custom build object that can transmit any desired data to the thread using the
queue mechanism.

Then in a closed loop, there should be a queue interrogation to check if there are any pending messages. The
FreeRTOS scheduler will manage the thread execution, so if there is no message pending, the task will not be
executed.

R35DS0101EE0100 Rev.1.00 RENESAS Page 10
Jan 16, 2025

loT-Reader (Non-OS) SDK V7.2.0 Integration to FreeRTOS-based System Process Application Note

4. Improvements

The currently implemented solution does not fully reimplement the ptxloTRdInt_Run_Demo_Loop function, so
it is only possible to initialize the NFC stack and start the polling loop, but it is not possible to stop it.

The current solution was tested for 12C and SPI communication between the host controller and a PTX1xxR
device. For the UART, because of the “push” mode implementation strategy, the FreeRTOS semaphore
mechanism does not work.

5. Conclusions

The integration of loT-Reader (Non-OS) SDK v7.2.0 into a FreeRTOS-based system can be easily achieved by
using binary semaphore mechanism, and even queue mechanism, if the project application layer requires
complex thread interactions.

The current solution was tested for I12C and SPI communication between the host controller and a PTX1xxR
device.

It is important to remember that this is just a single thread solution, and to allow the NFC integration into complex
RTOS-based projects, it is not a fully RTOS designed development.

6. Revision History

Revision Date Description
1.00 Jan 16, 2025 | Initial release.
R35DS0101EE0100 Rev.1.00 RENESAS Page 11

Jan 16, 2025

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit www.renesas.com/contact-us/.
Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1. Requirements
	2. About FreeRTOS
	3. Integration Process
	3.1 How to Start a FreeRTOS-based Project using E2Studio
	3.2 Create a New Thread for IoT-Reader Stack
	3.3 Configure Stacks for IoT-Reader Thread
	3.4 Import the IoT-Reader (Non-OS) SDK v7.2.0 Code Content into the Project
	3.5 IoT-Reader (Non-OS) SDK v7.2.0 Code Updates
	3.5.1 Implement “blocking-states” using Binary Semaphores
	3.5.2 Link IoT-Reader APIs to Thread Entry Function

	4. Improvements
	5. Conclusions
	6. Revision History

