
 APPLICATION NOTE

R01AN4823EJ0120 Rev.1.20 Page 1 of 57
May.20.24

RL78 Family
IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Introduction

Today, as automatic electronic controls systems continue to expand into many diverse applications, the
requirement of reliability and safety are becoming an ever increasing factor in system design.
For example, the introduction of the IEC60730 safety standard for household appliances requires
manufactures to design automatic electronic controls that ensure safe and reliable operation of their
products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for
design of Microcontroller based control systems. This provides three software classifications for
automatic electronic controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled
equipment.

Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards
Examples: Automatic burner controls and thermal cut-outs for closed.

Appliances such as washing machines, dishwashers, dryers, refrigerators, freezers, and Cookers /
Stoves will tend to fall under the classification of Class B.

This Application Note provides guidelines of how to use flexible sample software routines to assist with
compliance with IEC60730/60335 class B safety standards.

These software routines provided are designed to be used after the system power on or reset condition
and also during the application program execution. The end user has the flexibility of what routines are
included and how to integrate these routines into their overall application system design. This document
and the accompanying test harness code provide examples of how to do this.

Note. This document is based on the European Norm EN60335-1:2002/A1:2004 Annex R, in which the
Norm IEC 60730-1 (EN60730-1:2000) is used in some points. The Annex R of the mentioned Norm
contains just a single sheet that jumps to the IEC 60730-1 for definitions, information, and applicable
paragraphs.

Target Devices
 RL78/G14 Microcontroller

R01AN4823EJ0120
Rev.1.20

May.20.24

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 2 of 57
May.20.24

Contents

1. Self Test Libraries Introduction .. 3

2. Self Test Library Functions .. 4
2.1. CPU Register Tests ... 4
2.2. Invariable Memory Test – Flash ROM ... 12
2.3. Variable memory - SRAM .. 17
2.4. System Clock Test ... 27
2.5. A/D Converter .. 32
2.6. Digital Output ... 34
2.7. Watchdog .. 35
2.8. Voltage .. 37

3. Example Usage ... 39
3.1. CPU Verification .. 40
3.2. Flash ROM Verification.. 40
3.3. RAM Verification .. 41
3.4. System Clock Verification .. 42
3.5. A/D Converter .. 42
3.6. Digital Output ... 42
3.7. Watchdog ... 42
3.8. Voltage ... 43
3.9. Code Coverage ... 44

4. Benchmarking ... 45
4.1. Development Environment .. 45
4.2. CS+ Settings ... 45

5. Additional Hardware Resources .. 49
5.1. Additional Safety Functions ... 49

6. Related Application Note ... 54

7. VDE certification status ... 55

Revision Record .. 56

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products 57

Notice... 58

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 3 of 57
May.20.24

1. Self Test Libraries Introduction
The self test library (STL) provides self test functions covering the CPU registers, internal memory, and
system clock. The library test harness provides an Application Programmers Interface (API) for each of
the self test modules, which are described in this application note. These can be used in customer’s
application wherever required.
For the purposes of VDE certification, the self test library functions are built as separate modules. The
CS+ test harness allows each of the test functions to be selected in turn and run as a stand-alone
function.
The system hardware requirements include that at least two independent clock sources are available,
e.g. Crystal / ceramic oscillator and an independent oscillator or external input source. The requirement
is needed to provide an independent clock reference for monitoring the system clock. The RL78 is able
to provide these using the High speed and Low speed internal oscillators which are independent of
each other.
Equally the application can provide a more accurate external reference clock or external
crystal/resonators for the main system clock can equally be used.

Figure 1: Self Test Library (STL) Configuration

The following CPU self test functions are included in the RL78 self test library.
• CPU Registers

The following CPU registers tests are included in this library.
All CPU working Registers in all four register banks, Stack Pointer (SP), Processor Status word
(PSW), Extension registers ES and CS, Program Counter (PC).
Internal data path is verified as part of the correct operation of these register tests.
IEC Reference - IEC 60730: 1999+A1:2003 Annex H - Table H.11.12.1 CPU.

• Invariable Memory
This tests the MCU internal Flash memory.
IEC Reference - IEC 60730: 1999+A1:2003 Annex H – H2.19.4.1 CRC – Single Word.

• Variable Memory
This tests the Internal SRAM memory.
IEC Reference - IEC 60730: 1999+A1:2003 Annex H – H2.19.4.1 CRC – Single Word.

• System Clock

Verifies the system clock operation and correct frequency against a reference clock source (Note
this test requires the use of an internal or external independent reference clock).
IEC Reference - IEC 60730: 1999+A1:2003 Annex H – H2.19.4.1 CRC – Single Word.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 4 of 57
May.20.24

2. Self Test Library Functions

2.1. CPU Register Tests
This section describes CPU register tests routines. The test harness control file ‘main.c’ provides
examples of the API for each of the CPU register tests using “C” language.
These modules test the fundamental aspects of the CPU operation. Each of the API functions has a
return value in order to indicate the result of a test.
Each of the test modules saves the original contents of the register(s) under test and restores the
contents on completion.
The following CPU registers are tested:

• Working registers and Accumulator: AX, HL, DE, BC in Register Banks 0-3

Figure 2: Working Register Configuration

• Stack Pointer (SP)

Figure 3: Stack Pointer Configuration

• Processor Status Word (PSW)

Figure 4: PSW Register Configuration

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 5 of 57
May.20.24

• Code Address Extension Register (CS)

Figure 5: Working Register Configuration

• Data Address Extension Register (ES)

Figure 6: Working Register Configuration

• Program Counter (PC)

Figure 7: Program Counter Configuration

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 6 of 57
May.20.24

2.1.1. CPU Register Tests - Software API

Table 1: Source files: CPU Working Registers Tests

STL File name Header Files
stl_RL78_registertest.asm None
Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

stl.h
main.h
stl_gobal_data_example.h

Syntax
char stl_RL78_registertest(void)

Description

This module tests the RL78 working registers and accumulators.
Registers AX, HL, DE, BC in all three register banks (Banks 0, 1, 2, 3)
These registers are tested as16bit registers.
The following tests are performed for each register:

1. Write h'5555 to the register being tested.
2. Read back and check they are equal.
3. Write h'AAAA to the register being tested.
4. Read back and check they are equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test. In addition, Register
Bank 0 (RB0) must be selected when this test starts.
The original register contents are restored on completion of the test.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process the
test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters
NONE N/A

Output Parameters
NONE N/A
Return Values

char
Test result of CPU register C
0 = Test passed.
1 = Test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 7 of 57
May.20.24

Table 2: Source files: CPU Registers Tests – PSW

STL File name Header Files
stl_RL78_registertest_psw.asm stl.h
Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h
stl_gobal_data_example.h

Syntax
char stl_RL78_registertest_psw(void)

Description

Test the 8bit Processor Status Word (PSW) register.
The following tests are performed:

1. Write h'55 to the register being tested.
2. Read back and check it is equal.
3. Write h'AA to the register being tested.
4. Read back and check that it is equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.
The original register content is restored on completion of the test.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process the
test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters
NONE N/A

Output Parameters
NONE N/A
Return Values

char
Test result of CPU register C
0 = Test passed.
1 = Test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 8 of 57
May.20.24

Table 3: Source files: CPU Registers Tests – SP

STL File name Header Files
stl_RL78_registertest_stack.asm stl.h
Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h
stl_gobal_data_example.h

Syntax
char stl_RL78_registertest_stack(void)

Description

Test the 16bit Stack Pointer (SP) register.
The following tests are performed:

1. Write h'5555 to the register being tested.
2. Read back and check it is equal to h'5554.
3. Write h'AAAA to the register being tested.
4. Read back and check that it is equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.
The original register content is restored on completion of the test.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process the
test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters
NONE N/A

Output Parameters
NONE N/A
Return Values

char
Test result of CPU register C
0 = Test passed.
1 = Test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 9 of 57
May.20.24

Table 4: Source files: CPU Registers Tests – CS

STL File name Header Files
stl_RL78_registertest_cs.asm stl.h
Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h
stl_gobal_data_example.h

Syntax
char stl_RL78_registertest_cs(void)

Description
Test the 8bit code extension (CS) register.
The following tests are performed:

1. Write h'05 to the register being tested.
2. Read back and check it is equal.
3. Write h'0A to the register being tested.
4. Read back and check that it is equal.

Please note that the top 4 bit are fixed to “0”
It is the calling function’s responsibility to ensure no interrupts occur during this test.
The original register content is restored on completion of the test.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process the
test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters
NONE N/A

Output Parameters
NONE N/A
Return Values

char
Test result of CPU register C
0 = Test passed.
1 = Test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 10 of 57
May.20.24

Table 5: Source files: CPU Registers Tests – ES

STL File name Header Files
stl_RL78_registertest_es.asm stl.h
Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h
stl_gobal_data_example.h

Syntax
char stl_RL78_registertest_es(void)

Description

Test the 8bit data extension (ES) register.
The following tests are performed:

1. Write h'05 to the register being tested.
2. Read back and check it is equal.
3. Write h'0A to the register being tested.
4. Read back and check that it is equal.

Please note that the top 4 bit are fixed to “0”
It is the calling function’s responsibility to ensure no interrupts occur during this test.
The original register content is restored on completion of the test.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process the
test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters
NONE N/A

Output Parameters
NONE N/A
Return Values

char
Test result of CPU register C
0 = Test passed.
1 = Test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 11 of 57
May.20.24

Table 6: Source files: CPU Registers Tests – PC

STL File name Header Files
stl_RL78_registertest_pc.asm stl.h
Test Harness File Names Header Files
main.c main.h

Syntax
char stl_RL78_registertest_pc(void)

Description
Test the program counter (PC) register.
The following tests are performed:

1. Call the program counter (PC) test function with call instruction.
2. The test function sets return address saved on the stack in the L register · DE register and

returns.
3. After calling the test function with the call instruction, confirm that the address (PC) of the

instruction placed next to the call instruction is equal to the return value (L-DE).
The first 4 bits of the L register are fixed "0" values.
It is the calling function’s responsibility to ensure no interrupts occur during this test.
The original register content is restored on completion of the test.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process the
test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters
NONE N/A

Output Parameters
NONE N/A
Return Values

char
Test result of CPU register C
0 = Test passed.
1 = Test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 12 of 57
May.20.24

2.2. Invariable Memory Test – Flash ROM
This section describes the Flash memory test using CRC routines. CRC is a fault / error control
technique which generates a single word or checksum to represent the contents of memory. A CRC
checksum is the remainder of a binary division with no bit carry (XOR used instead of subtraction), of
the message bit stream, by a predefined (short) bit stream of length n + 1, which represents the
coefficients of a polynomial with degree n. Before the division ’n’ zeros are appended to the message
stream. CRCs are popular because they are simple to implement in binary hardware and are easy to
analyse mathematically.
The Flash ROM test can be verified by generating a reference CRC value for the contents of the ROM
and storing this in memory. During the memory self test the same CRC algorithm is used to generate a
CRC value, which is compared with the reference CRC value. The technique recognises all one-bit
errors and a high percentage of multi-bit errors.
The complicated part of using CRCs is if you need to generate a CRC value that will then be compared
with other CRC values produced by other CRC generators. This proves difficult because there are a
number of factors that can change the resulting CRC value even if the basic CRC algorithm is the same.
This includes the combination of the order that the data is supplied to the algorithm, the assumed bit
order in any look-up table used and the required order of the bits of the actual CRC value. Both the
hardware and software self test functions are able to be executed iteratively, thus allowing the option of
a full CRC calculation to be made or a CRC calculation of a smaller segments suitable to the operation
of the end application. For a full calculation (or first part of an iterative calculation), a starting value of
h’0000 is used or the previous partial result is provided as the starting point for the next calculation
stage.
The hardware module is “the general-purpose CRC function” embedded in RL78 device. The hardware
module while using the same fundamental CRC algorithm uses a different data format for calculating
the reference CRC value. Here a compatible CRC calculation routine is provided as part of the test
harness for reference.

2.2.1. CRC16-CCITT Algorithm
The RL78 includes a CRC module that includes support for the CRC16-CCITT. Using this software to
drive the CRC module produces this 16-bit CRC16-CCITT:

Software Algorithm

• CCITT 16 Polynomial = 0x1021 (x16 + x12 + x5 + 1)
• Input Data Width = 8 bits
• Data Input = Not Bit Reversed
• Initial value = 0x0000 or 16-bit previous partial result
• Calculated Result = 16 bits (not bit reversed)

Hardware Algorithm

• CCITT 16 Polynomial = 0x1021 (x16 + x12 + x5 + 1)
• Input Data Width = 8 bits
• Data Input = Bit Reversed
• Initial value = 0x0000 or 16-bit previous partial result
• Calculated Result = 16 bits (Bit reversed)

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 13 of 57
May.20.24

2.2.2. Software CRC - Software API
The functions in the remainder of this section are used to calculate a CRC value and verify its
correctness against a reference value stored in Flash ROM.

Table 7: Source files: Software CRC

 STL File name Header Files
stl_RL78_sw_crc.asm stl.h
Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h
stl_gobal_data_example.h

 Syntax

unsigned short stl_RL78_sw_crc_asm (unsigned short crc, CHECKSUM_CRC_TEST_AREA *p);

Description
This function calculates a CRC value over the address range supplied using the software CRC
calculation module. The start address and calculation range (Length) are passed by the calling
function via the structure shown in the table below. The partial or full calculated result is returned for
verification (if required) against the reference CRC value.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process
the test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters

unsigned short crc Value for starting the CRC calculation

CHECKSUM_CRC_TEST_AREA *p Pointer to the structure where the start address and calculation
range is located

Output Parameters

NONE N/A

Return Values

Unsigned short 16-bit calculated CRC value (Full or partial result)
CPU Register BC

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 14 of 57
May.20.24

Source files: Software CRC Parameter Structure
The following structure is implemented in the files stl.h and main.c and is used to provide calculation
parameters for the for the CRC function.

Syntax
static CHECKSUM_CRC_TEST_AREA checksum_crc;

Description
Structure declaration and instance providing the parameters to be passed to software CRC module
(stl_RL78_sw_crc.asm) by the calling function in main.c
Input Parameters

Unsigned long length; Range (length = number of bytes) of memory to be tested.

Unsigned long start_address Start address for CRC calculation
Output Parameters

NONE N/A

Return Values
NONE N/A

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 15 of 57
May.20.24

2.2.3. Hardware CRC - Software API

Table 8: Source files: Hardware CRC Calculation

STL File name Header Files
stl_RL78_peripheral_crc.asm <ior5f100le.h>

<ior5f100le_ext.h>
stl.h

Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h
stl_gobal_data_example.h

Syntax

unsigned short stl_RL78_peripheral_crc(unsigned short gcrc, CHECKSUM_CRC_TEST_AREA *p)

Description
This function calculates a CRC value over the address range supplied using the hardware CRC
peripheral (general-purpose CRC). The start address and calculation range (Length) are passed by
the calling function via the structure detailed in the table below. The calculated result is returned. This
can be a partial result of full result depending upon the parameters provided.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process
the test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters

unsigned short gcrc Value for starting the CRC calculation

CHECKSUM_CRC_TEST_AREA *p Pointer to the structure where the start address and calculation
range is located

Output Parameters

NONE N/A

Return Values

unsigned short 16-bit calculated CRC value (Full or partial result)
CPU Register BC

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 16 of 57
May.20.24

Source files: Hardware CRC Parameter Structure

Syntax
static CHECKSUM_CRC_TEST_AREA checksum_crc;

Description
Structure declaration and instance providing the parameters to be passed to the hardware CRC
module (stl_RL78_peripheral_crc.asm) by the calling function in main.c.
Note: This is the same structure as used by the software CRC function.
Input Parameters

unsigned int length; Range (length = number of bytes) of memory to be tested.

unsigned int start_address Start address for CRC calculation
Output Parameters

NONE N/A

Return Values
NONE N/A

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 17 of 57
May.20.24

2.3. Variable memory - SRAM
March Tests are a family of tests that are well recognised as an effective way of testing RAM.
A March test consists of a finite sequence of March elements, where a March element is a finite
sequence of operations applied to every cell in the memory array before proceeding to the next cell.
In general, the more March elements the algorithm consists of, the better will be its fault coverage but at
the expense of a slower execution time.
The algorithms themselves are destructive (they do not preserve the current RAM values). It is the
user’s responsibility to preserve the RAM contents during testing after the application system has been
initialised or while in operation The system March C and March X test modules are design such that
small parts of the RAM area can be tested, thus minimising the need to provide a large temporary area
to save the data under test. Additional version of the test module (“stl_RL78_march_c_initial” and
“stl_RL78_march_x_initial”), are included that are designed to run before the system has been
initialised, so that the complete memory area can be tested before starting the main application.
As the area of RAM being tested can not be used for anything else while it is being tested, making the
testing of RAM used for the stack particularly difficult. Practically this area can only be tested before the
application C-Stack is initialised or after the application operation is complete.
The following section introduces the specific March Tests.

2.3.1. Algorithms

1) March C
The March C algorithm (van de Goor 1991) consists of 6 March elements with a total of 10 operations.
It detects the following faults:

1. Stuck At Faults (SAF)
• The logic value of a cell or a line is always 0 or 1.

2. Transition Faults (TF)
• A cell or a line that fails to undergo a 0→1 or a 1→0 transition.

3. Coupling Faults (CF)
• A write operation to one cell changes the content of a second cell.

4. Address Decoder Faults (AF)
• Any fault that affects address decoding.
• With a certain address, no cells can be accessed.
• A certain cell is never accessed.
• With a certain address, multiple cells are accessed simultaneously.
• A certain cell can be accessed by multiple addresses.

The usual March C algorithm employs 6 March elements:

1. Write all zeros to array (<>(w0))
2. Starting at lowest address, read zeros, write ones, increment up array bit by bit. (>(r0, w1))
3. Starting at lowest address, read ones, write zeros, increment up array bit by bit. (>(r1, w0))
4. Starting at highest address, read zeros, write ones, decrement down array bit by bit. (<(r0, w1))
5. Starting at highest address, read ones, write zeros, decrement down array bit by bit. (<(r1, w0))
6. Read all zeros from array. (<>(r0))

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 18 of 57
May.20.24

2) March X
The March X algorithm is a simpler and therefore faster algorithm, but not as thorough as it consists of
only four March elements with a total of four operations.

1. Stuck At Faults (SAF)
2. Transition Faults (TF)
3. Inversion Coupling Faults (Cfin)
4. Address Decoder Faults (AF)

These are the 4 March elements:
1. Write all zeros to array (<>(w0))
2. Starting at lowest address, read zeros, write ones, increment up array bit by bit. (>(r0,w1))
3. Starting at highest address, read ones, write zeros, decrement down array bit by bit. (<(r1,w0))
4. Read all zeros from array. (<>(r0))

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 19 of 57
May.20.24

2.3.2. Variable Memory Test - Software API

2.3.2.1. System March C
The system March C test is designed to run after the application system has been initialised and is
executed using normal function call from the test harness, thus using some C stack resources. The
module can be used to test part or all of the RAM area, but as the test is destructive, care should be
taken to buffer the area being tested Therefore it is not advised to use this module to test the whole
RAM memory area in a single operation. In addition, make sure not to destroy the RAM area used by
this test itself as the stack area.
This test is configured to use 8-bit RAM accesses and can allow a single byte to be tested. However, for
all fault types to be detected it is important to test a data range bigger than one byte.

Table 9: Source files: System March C

STL File name Header Files
stl_RL78_march_c.asm stl.h
Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h
stl_gobal_data_example.h

Declaration

char stl_RL78_march_c(unsigned char __far *addr, unsigned short num)

Description
This function tests the RAM memory using the March C algorithm over the address range supplied by
the calling function. The result status (Pass / Fail) is returned. This module is designed to be
executed after the application system has been initialised.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process
the test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters

unsigned char __far *addr Pointer to the start address of the RAM to be tested.

unsigned short num The range (Number of bytes) of the RAM to be tested.

Output Parameters
NONE N/A
Return Values

char
Test status result contained in CPU register C
0 = Test passed.
1 = Test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 20 of 57
May.20.24

2.3.2.2. System March X
The system March X self test function is the essentially the same as the system March C module
except that it only implements the reduced March X algorithm. The module is designed to run after the
application system has been initialised and so should not be used to test the whole memory area in a
single operation. In addition, make sure not to destroy the RAM area used by this test itself as the stack
area.
This test is configured to use 8-bit RAM accesses and can allow a single byte to be tested. However, for
all fault types to be detected it is important to test a data range bigger than one byte.

Table 10: Source files: System March X

STL File name Header Files
stl_RL78_march_x.asm stl.h
Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h
stl_gobal_data_example.h

Declaration

char stl_RL78_march_x(unsigned char __far *addr, unsigned short num)

Description
This function tests the RAM memory using the March X algorithm over the address range supplied by
the calling function. The result status (Pass / Fail) is returned. This module is designed to be
executed after the application system has been initialised.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process
the test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters

unsigned char __far *addr Pointer to the start address of the RAM to be tested.

unsigned short num The range (Number of bytes) of the RAM to be tested.

Output Parameters
NONE N/A
Return Values

char
Test result of CPU register C
0 = Test passed.
1 = Test or parameter check failed

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 21 of 57
May.20.24

2.3.2.3. Initial March C
The initial March C test is designed to run before the application system has been initialised and is
executed without using function calls from the test harness. Entry to the self test is made by a “jump”
from the modified “startup.asm” module and return to “startup.asm” module is also made with a “jump”.
The test status result is contained in the 8bit accumulator (A). Therefore, this module is designed to
provide a complete RAM test before the system is started and the “C” environment is initialised.
This test function is configured to use 8-bit RAM accesses.

Table 11: Source files: Initial March C

STL File name Header Files
stl_RL78_march_c_initial.asm None
Test Harness File Names Header Files
startup.asm None

Declaration

stl_RL78_march_c_initial

Description
This function tests the RAM memory using the March C algorithm over the address range supplied by
the calling function. The result status (Pass / Fail) is returned. This module is designed to be
executed before the application system has been initialised and therefore does not use any function
calls.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process
the test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters

CPU Register AX 16bit Register holding the start address of the RAM to be tested.

CPU Register BC 16bit Register holding the range (Number of bytes) of the RAM to be tested.

Output Parameters
NONE N/A
Return Values

CPU Register A
Test status result
0 = Test passed.
1 = Test or parameter check failed

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 22 of 57
May.20.24

2.3.2.4. Initial March X
The initial March C test is designed to run before the application system has been initialised and is
executed without using function calls from the test harness. Entry to the self test is made by a “jump”
from the modified “startup.asm” module and return to “startup.asm” module is also made with a “jump”.
The test status result is contained in the 8bit accumulator (A). Therefore, this module is designed to
provide a complete RAM test before the system is started and the “C” environment is initialised.
This test function is configured to use 8-bit RAM accesses.

Table 12: Source files: Initial March X

STL File name Header Files
stl_RL78_march_x_initial.asm None
Test Harness File Names Header Files
startup.asm None

Declaration

stl_RL78_march_x_initial

Description
This function tests the Ram memory using the March X algorithm over the address range supplied by
the calling function. The result status (Pass / Fail) is returned. This module is designed to be
executed before the application system has been initialised and therefore does not use any function
calls.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process
the test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters

CPU Register AX 16bit Register holding the start address of the RAM to be tested.

CPU Register BC 16bit Register holding the range (Number of bytes) of the RAM to be tested.

Output Parameters
NONE N/A
Return Values

CPU Register A
Test result of CPU register A
0 = Test passed.
1 = Test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 23 of 57
May.20.24

2.3.2.5. Stack area test (March C)
Use C stack resource to execute with normal function call from test harness. It is possible to test all the
STACK area. Since the test is destructive, test after saving the current state to the buffer. It is possible
to partially test by switching the offset of the STACK_TEST_AREA parameter for each test.
RAM test is performed using System March C.

Table 13: Source files: Stack area test (March C)

STL File name Header Files
stl_RL78_RamTest_Stacks_c.asm None
Test Harness File Names Header Files
main.c main.h

Declaration

char stl_RL78_RamTest_Stacks_c(STACK_TEST_AREA *p)

Description
Switch the stack pointer (SP) to the specified area, test the address range of the specified buffer
RAM using the March C algorithm, and if the result (pass / fail) is normal, the contents of the stack
area to the buffer RAM. Next, we use the March C algorithm to test the stack area and restore the
contents saved in the buffer RAM and the stack pointer (SP). And it returns the test result (pass / fail).
This module is executed after initialization of the application system.
The test harness control file (main.c) calls the function "indicate_test_result" to process the test
result.
Note: The function "indicate_test_result" is in the module stl_main_example_support function.c.
Input Parameters

STACK_TEST_AREA *p Pointer to structure storing buffer RAM / size / new stack area

Output Parameters
NONE N/A
Return Values

char
Test result of CPU register C
0 = Test passed.
1 = Test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 24 of 57
May.20.24

Source files: Stack area test parameter structure

Declaration

static STACK_TEST_AREA stack_test

Description
Structure declarations and instances that provide the parameters passed from the main.c caller
function to the stack area test module (stl_RL78_RamTest_Stacks_c.asm).
Note: This is the same as the structure of the stl_RL78_RamTest_Stacks_x function.
Input Parameters

char *pWork; Start address of the area to save the contents of the stack

unsigned short length Size of test target

unsigned short offset Stack area to be tested (offset from stack TOP)

char *pNewSp Stack pointer to temporarily use during testing

Output Parameters
NONE N/A
Return Values
NONE N/A

STACK
AREA length

*pWork

offset
STACK Top

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 25 of 57
May.20.24

2.3.2.6. Stack area test (March X)
Use C stack resource to execute with normal function call from test harness. It is possible to test all of
the STACK area. Since the test is destructive, test the current state after saving it to the buffer. You can
partially test by switching the offset of the STACK_TEST_AREA parameter for each test.
RAM test is performed using System March C.

Table 14: Source files: Stack area test (March X)

STL File name Header Files
stl_RL78_RamTest_Stacks_x.asm None
Test Harness File Names Header Files
main.c main.h

Syntax
char stl_RL78_RamTest_Stacks_x(STACK_TEST_AREA *p)

Description
Switch the stack pointer (SP) to the specified area, test the address range of the specified buffer RAM
using the March X algorithm, and if the result (pass / fail) is normal, the contents of the stack area. To
the buffer RAM. Next, we use the March X algorithm to test the stack area and restore the contents
saved in the buffer RAM and the stack pointer (SP). And it returns the test result (pass / fail). This
module is executed after initialization of the application system. The test harness control file (main.c)
calls the function "indicate_test_result" to process the test result.
Note: The function "indicate_test_result" is in the module stl_main_example_support function.c.
Input Parameters
STACK_TEST_AREA *p Pointer to structure storing buffer RAM / size / new stack area

Output Parameters
NONE N/A
Return Values

char
Test result of CPU register C
0 = Test passed.
1 = Test or parameter check failed

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 26 of 57
May.20.24

Source files: Stack area test parameter structure

Declaration

static STACK_TEST_AREA stack_test

Description
Structure declarations and instances that provide the parameters passed from the main.c caller
function to the stack area test module (stl_RL78_RamTest_Stacks_x.asm).
Note: This is the same as the structure of the stl_RL78_RamTest_Stacks_c function.
Input Parameters

char *pWork; Start address of the area to save the contents of the stack

unsigned short length Size of test target

unsigned short offset Stack area to be tested (offset from stack TOP)

char *pNewSp Stack pointer to temporarily use during testing

Output Parameters
NONE N/A
Return Values
NONE N/A

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 27 of 57
May.20.24

2.4. System Clock Test
Two self test modules (hardware and software base) are provided for the RL78 self test library in order
to be able to test the internal system clock (CPU and Peripheral clocks). The software measurement
module is included for backward compatibility with previous products and also to allow for any RL78
devices where the Timer Array does not include the additional hardware capability, or that the timer is
used by the application and is not available to be used as part of the MCU self tests. These modules
can be used by the application to detect the correct operation and deviation in the main system clock
during operation of the application. Please note that if the internal low speed oscillator is used for
measurement, the accuracy of the system clock measurement will be reduced due the greater
tolerance of the internal low speed oscillator. Therefore, only the relative operation of the system clock
can be obtained, which should still be sufficient to establish that the system clock is operating correctly
and within acceptable limits.
The principle behind both measurement approaches is that if the operation frequency of the main clock
deviates during runtime from a predefined range, then this can be detected by the system. The
accuracy of the measurement obviously depends on the accuracy of the reference clock source. For
example an external signal input or 32 KHz crystal can provide a more accurate measurement of the
system clock than the internal low speed oscillator. This however does require the extra components.
A “Pass / Fail” status of the test is returned. Also implemented is a “No Reference Clock” detection
scheme which returns a different status value to the normal test, in order to identify the appropriate fault
state. Both the software and hardware measurement function use the same return status format.
The modules compare the measured (captured) time is within a reference window (upper and lower
limit values) using the user defined reference values set in the “stl_clocktest_h” header file. This header
file defines the reference values for both software and hardware measurements and the input test port
pin for the software measurement.

2.4.1. Hardware Measurement
All current RL78 devices include an option in the Timer Array Unit (TAU) channel 5 that provides
additional input capture sources that are designed to be able to test the system clock operation. The
extra capture inputs are selected as part of the “safety” register (TIS0) and include the following:
Please change according to the microcomputer to be used because the channel from which the input
source for clock test can be selected differs depending on the microcomputer.

• The internal Low-speed oscillator (fiL)
• External 32KHz Oscillator (Sub Clock) (fsub)
• External signal input (TIO5)

Figure 8 Timer Array Unit Channel 5 Configuration

Figure 8: Timer Array Unit Channel 5 Configuration

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 28 of 57
May.20.24

The principle behind the hardware measurement is based on the input capture measurement of the
reference clock in TAU channel 5. As this is a hardware capture measurement the time captured is the
“period” of the reference clock as that of the system clock. This is a more accurate method of
measurement than the software approach.
The measurement sequence is:

• Synchronise to the reference clock (Wait for first capture event)
• Wait for the next capture event.
• Compare the value in the capture register against the high and lower limit reference values.

The test harness provides an example based on the following settings:
System clock = 32MHz
Reference Clock = 32KHz
Therefore the calculation is simply 32000000 / 32768 = 976 (h’3D0)
An allowance should be made for capture value variances in the upper and lower reference values.

2.4.2. Software Measurement
The principle behind the software measurement is based on a software counter measuring the
transition on the test port pin. The actual comparison values can be a mix of calculation and
measurement as it is difficult to fully calculate the measurement value due to variances in the
synchronisation and monitoring of the input state.
The measurement sequence is:

• Synchronise to the reference clock (high to low transition on the input pin)
• Wait for the next low to high transition and then start the software counter.
• Increment the software count until the next high to low transition.
• Compare the software count value against the high and lower limit reference values.

The basic calculation is based on the following equation:

System Clock / (Reference Clock / 2) x the number of clock cycles executed in the count loop
Note: The measurement period of the software counter is based on half the reference clock

Using the example settings provided in the test harness project.
The System clock is 32MHz and the reference clock is the Sub Clock 32KHz then the calculation is:

32000000 / (32768 / 2) x Loop Count

The cycle count can be calculated as shown in the code extract in Figure 9 below:

½ the reference clock = 15.26uS (32KHz / 2)

The loop count of the measurement period (measure high time) is 9 clock cycles:
At 32MHz this is 281.25nS (9 x 31.25nS)

Therefore the approximate software count for the test harness example is 15.26uS / 281nS = 55 (h’37)

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 29 of 57
May.20.24

Figure 9: Timer Array Unit Channel 5 Configuration

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 30 of 57
May.20.24

Table 15: Source files: Software Clock test

STL File name Header Files
stl_RL78_sw_clocktest.asm stl_clocktest.h

stl.h
Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h
stl_gobal_data_example.h

Declaration

char stl_RL78_sw_clocktest(void)

Description
This function tests the system clock using a software measurement (software counter) process. The
measured result (software count) is compared against the upper and lower limit values defined in the
clock test header file (stl_clocktest.h), and the result status (Pass / Fail / No reference clock) is
returned to the calling function.
The reference limits calculation is based on the following:

System Clock / (Reference Clock / 2) x times the number of clock cycles executed in the count loop
The function “indicate_test_result” will be called by the test harness control files (main.c) to process
the test result.
Note Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters
swMAXTIME Upper time limit compare value (Defined in stl_clocktest.h)
swMINTIME Lower time limit compare value (Defined in stl_clocktest.h)

TESTPORT Test Port Input Pin for external reference signal input (Defined in
stl_clocktest.h)

Output Parameters
NONE N/A
Return Values

char

Test result of CPU register C
0 = Test passed.
1 = Test measurement failed (Outside the reference window)
2 = Test measurement failed (No reference clock detected)

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 31 of 57
May.20.24

Table 16: Source files: Hardware Clock test

STL File name Header Files
stl_RL78_hw_clocktest.asm stl_clocktest.h

stl.h
Test Harness File Names Header Files
main.c
stl_global_data_example.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h
stl_gobal_data_example.h

Declaration

char stl_RL78_hw_clocktest(void)

Description
This function tests the system clock using the hardware measurement (TAU channel 5) feature. The
measured result (capture value) is compared against the upper and lower limit values defined in the
clock test header file (stl_clocktest.h) and the result status (Pass / Fail / No reference clock) is
returned to the calling function.
The function “indicate_test_result” will be called by the test harness control files (main.c) to process
the test result.
Note Function “indicate_test_result” is located in the module stl_main_example_support function.c
Input Parameters
hwMAXTIME Upper time limit compare value (Defined in stl_clocktest.h)
hwMINTIME Lower time limit compare value (Defined in stl_clocktest.h)
CAPTURE_interrupt_FLAG Timer channel Capture Interrupt Flag (Defined in stl_clocktest.h)
Output Parameters
NONE N/A
Return Values

Char

Test result of CPU register C
0 = Test passed.
1 = Test measurement failed (Outside the reference window)
2 = Test measurement failed (No reference clock detected)

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 32 of 57
May.20.24

2.5. A/D Converter
2.5.1. A/D Converter Tests
RL78/G14 is equipped with an A/D conversion function for converting to positive reference voltage,
negative reference voltage, and internal reference voltage (1.45V). This function can be used to check
whether the A/D converter is operating normally.

Table 17: Source File: AD Converter Test

STL File name Header Files
stl_adc.c stl_adc.h

stl.h
Test Harness File Names Header Files
main.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h

Declaration

char stl_ADC_Create (void)

Description

Initialize ADC and clear static variable (TEST_DATA).

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 33 of 57
May.20.24

Declaration

char stl_ADC_Check_TestVoltage (void)

Description
This module converts positive reference voltage, negative reference voltage, and internal reference
voltage (1.45V) based on the static variable (testVoltageIndex). The conversion result (capture value)
is compared to the upper and lower limit values defined in header file (stl_adc.h), and the result
status (pass/fail) returned to the original calling function.
The function “indicate_test_result” will be called by the test harness control file (main.c) to process
the test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c.
Input Parameters
VSS_RANGE_MAX Upper VSS limit compare value (defined in stl_adc.h)
VDD_RANGE_MIN Lower VDD limit compare value (defined in stl_adc.h)
AD_RESOLUTION_HEX Upper VDD limit compare value (defined in stl_adc.h)
VBGR_RANGE_MIN Lower internal reference voltage compare value (defined in stl_adc.h)
VBGR_RANGE_MAX Upper internal reference voltage compare value (defined in stl_adc.h)

testVoltageIndex Static variable
Convert to 0, 1, 2, 0... for each call.

Output Parameters
NONE N/A
Return Values

Char
Test result of CPU register C
0 = Test passed.

1 = Test measurement failed (Outside the reference window)

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 34 of 57
May.20.24

2.6. Digital Output
RL78/G14 is equipped with a function for reading the digital output level of a port in output mode. This
function can be used to check whether digital output is operating normally.
The target test port is defined in stl_RL78_GpioTest.h.

Table 18: Source File: Digital output test

STL File name Header Files
stl_RL78_GpioTest.asm stl_RL78_GpioTest.h

stl.h
Test Harness File Names Header Files
main.c
stl_main_example_support function.c
stl_peripheralinit.c

main.h

Declaration

char stl_RL78_GpioTest (void)

Description
This function outputs 0 or 1 based on the static variable (TEST_DATA). The output value and port
level are compared, and the result is returned to the original calling function.
The function “indicate_test_result” will be called by the test harness control file (main.c) to process
the test result.
Note: Function “indicate_test_result” is located in the module stl_main_example_support function.c.
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values

Char
Test result of CPU register C
0 = Test passed.
1 = Test measurement failed

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 35 of 57
May.20.24

2.6. Watchdog
The Watchdog is used to detect abnormal program execution. When a program is not operating as
expected, the watchdog will not refresh the software when required, and an error is detected.
The RL78/G14 watchdog timer (WDT) module is used for this purpose. Rather than refreshing just
before the specified period, the WDT has a window function that always carries out a refresh within the
specified window. The user can set the program so that when an error is detected, an internal reset is
generated. The module also includes a function to determine whether a reset was carried out by the
WDT.
Watchdog values are set in Option Bytes (000C0H/010C0H).

Address：000C0/010C0H

 <7> <6> <5> <4> <3> <2> <1> <0>

 WDTINT WINDOW1 WINDOW0 WDTON WDCS2 WDCS1 WDCS0 WDSTBYO

N

 WDTINT Use of interval interrupt of watchdog timer

 0 Interval interrupt is not used.
 1 Interval interrupt is generated when 75% + 1/2 fIL of the overflow time is reached.

 WINDOW1 WINDOW0 Watchdog timer window open period

 0 0 Setting prohibited.

 0 1 50%

 1 0 75%

 1 1 100%

 WDTON Watchdog timer counter operation control

 0 Disable counter operation (stop counter after reset release)

 1 Enable counter operation (start counter after reset release)

 WDCS2 WDCS1 WDCS0 Watchdog timer overflow time

(fIL = 17.25 kHz (MAX.))

 0 0 0 26/fIL (3.71 ms)

 0 0 1 27/fIL (7.42 ms)

 0 1 0 28/fIL (14.84 ms)

 0 1 1 29/fIL (29.68 ms)

 1 0 0 211/fIL (118.72 ms)

 1 0 1 213/fIL (474.90 ms)

 1 1 0 214/fIL (949.80 ms)

 1 1 1 216/fIL (3799.19 ms)

 WDSTBYO

N

Watchdog timer counter operation control (HALT/STOP)

 0 Disable counter operation when in HALT/STOP mode.

 1 Enable counter operation when in HALT/STOP mode.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 36 of 57
May.20.24

 Table 19: Source file: watchdog timer test

STL File name Header Files
stl_wdt.c stl_wdt.h

stl.h
Test Harness File Names Header Files
main.c
stl_main_example_support function.c

main.h
stl_gobal_data_example.h

Declaration

void stl_wdt_Kick(void)

Description

Refreshes the watchdog count.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 37 of 57
May.20.24

2.7. Voltage
RL78/G14 is equipped with a voltage detection circuit which can detect when supply voltage (Vcc) falls
below the specified voltage level. The sample code included with this application note shows how to
generate an interrupt when Vcc goes below the specified level.
Supply voltage monitoring values are set in Option Bytes (000C1H/010C1H).

Address：000C1/010C1H

 <7> <6> <5> 4 <3> <2> <1> <0>

 VPOC2 VPOC1 VPOC0 1 LVIS1 LVIS0 LVIMDS1 LVIMDS0

LVD setting (interrupt mode)
 Detection Voltage Option byte setting value

VLVD VPOC2 VPOC1 VPOC0 LVIS1 LVIS0 Mode setting

Rising edge Falling edge LVIMDS1 LVIMDS0

 1.67 V 1.63 V 0 0 0 1 1 0 1
 1.77 V 1.73 V 0 0 1 0

 1.88 V 1.84 V 0 1 1 1

 1.98 V 1.94 V 0 1 1 0

 2.09 V 2.04 V 0 1 0 1

 2.50 V 2.45 V 1 0 1 1

 2.61 V 2.55 V 1 0 1 0

 2.71 V 2.65 V 1 0 0 1

 2.81 V 2.75 V 1 1 1 1

 2.92 V 2.86 V 1 1 1 0
 3.02 V 2.96 V 1 1 0 1

 3.13 V 3.06 V 0 1 0 0

 3.75 V 3.67 V 1 0 0 0

 4.06 V 3.98 V 1 1 0 0

 - Settings other than the above are prohibited

Table 20 Source file: watchdog timer test

STL File name Header Files
stl_vdc.c stl_vdc.h

stl.h
Test Harness File Names Header Files
main.c main.h

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 38 of 57
May.20.24

Declaration

void Stl_VDC_Create (void)

Description

Enable low voltage interrupt. An interrupt is generated when Vcc drops below the specified voltage.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Declaration

void Stl_VDC_Interrupt (void)

Description
Vcc voltage drop interrupt handler.
Call Voltage_Test_Failure_interrupt (user-defined function).
Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 39 of 57
May.20.24

3. Example Usage
In addition to the actual test software source files, the CS+ test harness workspace is provided which
includes application examples demonstrating how the tests can be run. This code should be examined
in conjunction with this document to see how the various test functions are used.

The testing can be split into two parts:

1. Power-Up Tests.
These are tests can be run following a power on or reset. They should be run as soon as possible
to ensure that the system is working correctly. These tests are
• All RAM using Initial March C (or initial March X)
• All register tests
• Flash Memory CRC Test
The clock test may be run at a later time depending on the initial clock speed if the clock is to
establish that the maximum clock speed is to be measured.

2. Periodic Tests.

These are tests that are run regularly throughout normal program operation. This document does
not provide a judgment of how often a particular test should be ran. How the scheduling of the
periodic tests is performed is up to the user depending upon how their application is structured.
• RAM tests: These tests should use the “system” RAM test modules as these are designed to

test the memory in small once the system is initialised. They can be used in small in order to
minimise the size of the buffer area needed to save the application data.

• Register Tests: These are dependent upon the application timing.
• Flash memory test: These modules are designed to be able to accumulate a CRC result over a

number of passes. In this way they can be used to suit the system operation
• The clock test modules can be run at any time to suit the application timing.

The following sections provide an example of how each test can be used.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 40 of 57
May.20.24

3.1. CPU Verification
If a fault is detected by any of the CPU test then this is very serious. The aim of this test should be to
get to a safe operating point, where software execution is not relied upon, as soon as possible.

3.1.1. Power- Up Tests
All the CPU tests should be run as soon as possible following a reset.

3.1.2. Periodic
If testing the CPU registers periodically the function are designed to be run independently and so can
be operated at any time to suit the application. Each function restores the original register data on
completion of test so as not to corrupt the operation of the application system. It is important that
interrupts are disabled during these tests.

3.2. Flash ROM Verification
The ROM is tested by calculating a CRC value over a certain range of the Flash memory contents and
comparing with a reference CRC value that must be added to a specific location in the ROM not
included in the CRC calculation.
The CS + tool chain can be used to calculate and add a CRC value and place at a location specified by
the user. CS + grants three types of CRC: “general-purpose CRC”, “high-speed CRC (CCR-16-CCITT)”,
and “high-speed CRC (SENT)”. Hardware CRC calculation provide in this library (function
“stl_RL78_peripheral”) and the C-language function to generate the reference CRC value (function
“reference_crc_calculation”) correspond to the CS+’s “general-purpose CRC”.
The reference value of the software CRC adopted in this library (function “stl_RL78_sw_crc_asm) can
NOT be generated by CS +. It has to be made by the users themselves referring to the algorithm shown
in the source files.
See Figure 16: CS + object convert option.

The reference CRC value of the software CRC (stl_RL78_sw_crc_asm function) implemented in this
library cannot be generated with CS +. Please refer to reference_crc_CCIT16_Msb_calculation.
See Figure 10: Adding Reference CRC.

Figure 10 Adding Reference CRC

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 41 of 57
May.20.24

3.2.1. Power- Up Tests
All the ROM memory used must be tested at power up. Both hardware and software CRC modules are
capable of calculating the CRC value over the whole memory range.

3.2.2. Periodic
It is suggested that the periodic testing of Flash memory is done in stages, depending on the time
available to the application. The application will need to save the partially calculated result if using the
software module. This value can then be set as starting point for the next stage of the CRC calculation.
When using the hardware peripheral unit, the partial CRC result value could be left in the result register
of the hardware CRC peripheral unit, but it is advised to save this value and compare it before starting
the next part of the calculation.
In this way all of the Flash memory can be verified in time slots convenient to the application.

3.3. RAM Verification
When verifying the RAM it is important to remember the following points:

1. RAM being tested can not be used for anything else including the current stack.
2. Any test requires a RAM buffer where memory contents can be safely copied to and restored from.
3. Copy / test / restore the stack area by specifying the backup area and the stack area to be used

during the test period. However, interrupt processing can not be performed during this operation.

3.3.1. Power-Up
It is recommended to use the “initial RAM test modules (march C or March X), as these are specifically
design for testing all of the RAM area at power on or Reset. The modules have been designed without
any function call and so are suitable to be executed before the system and C-Stack are initialised as
any contents of the RAM memory will be destroyed. In this library, those initial RAM test modules are
implemented in assembler file ‘startup.asm’.

3.3.2. Periodic
Periodic testing of the RAM memory is usually done in small stages, depending on the time available to
the application and the available space necessary to buffer the system RAM contents during testing.
Each stage provides a pass / fail status over the range specified, in this way all of the RAM memory can
be verified time slots convenient to the application.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 42 of 57
May.20.24

3.4. System Clock Verification
If a fault is detected with the system clock then this is very serious. The aim of this test should be to get
to a safe operating point, where system can be controlled using a different known clock.

3.4.1. Power-Up
The system clock should be verified at power on or reset. It may be necessary to test the clock once the
system has been initialised and the full system clock frequency has been set and stabilised.

3.4.2. Periodic
Periodic testing of the system clock can be made at any time where the application has the time
available. This is because the reference clock is typically much slower that the system clock in order to
increase the accuracy of the clock measurement.
(i.e. System clock = 32 MHZ, Reference clock = 15KHz)

3.5. A/D Converter
3.5.1. Power-Up
The ADC module can be tested using the “stl_ADC_Check_TestVoltage” function at power-up in the
same manner as the periodic test. This function carries out A/D conversion on either the positive
reference voltage, negative reference voltage, or internal reference voltage (1.45V).

3.5.2. Periodic
The “stl_ADC_Check_TestVoltage” function must be called up regularly to perform periodic tests. The
reference voltage switched between the negative, positive and internal reference voltages.

3.6. Digital Output
3.6.1. Power-Up
Digital output can be tested using the “stl_RL78_GpioTest” function at power-up in the same manner as
the periodic test. This function is executed to determine whether the output value is 0 output or 1 output.

3.6.2. Periodic
The “stl_RL78_GpioTest” function must be called up regularly to perform periodic tests. Output switches
between 0 and 1.

3.7. Watchdog
The watchdog timer function is set in Option Bytes (000C0H/010C0H). Following reset release, the
watchdog timer starts the count operation. After this, the watchdog needs to be refreshed on a regular
basis to prevent timeout and reset. Note that, when using the window function, not only does the
watchdog need to be regularly refreshed, it must be conducted within a time period that matches the
specified window. Watchdog refresh is executed by calling the following function.

/*regularly refresh the watchdog to prevent a reset from occurring*/
stl_wdt_Kick ();
If the watchdog is configured to generate a reset when an error is detected, the user program needs to
process the interrupt generated by the reset. The sample program is configured to call the
Watchdog_Test_Failure function when an error is detected.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 43 of 57
May.20.24

3.8. Voltage
The voltage detection circuit is configured in Option Bytes (000C1H/010C1H) to monitor the main power
supply voltage. In the sample, voltage monitoring is set up so that if the voltage falls below 2.86V, an
interrupt is generated.
The sample program is set to call the Voltage_Test_Failure_interrupt function when a voltage drop is
detected.

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 44 of 57
May.20.24

3.9. Code Coverage
The code coverage can be checked by observing the function list section in simulator mode.

Figure 11: Function list section

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 45 of 57
May.20.24

4. Benchmarking

4.1. Development Environment

• E1(R0E000010KCE00) On-chip debugging emulator
• QB-R5F104PJ-TB RL78/G14 Target Board (100pin LQFP, 14 x 14mm)
• Tool chain CS+ for CA/CX V4.03.00 CA78K0R V1.72

• MCU: R5F104PJAFB
• Internal Clock: 32 MHz High Speed Oscillator

System Clock = 32 MHz
• External Sub Clock: 32 KHz

4.2. CS+ Settings
The following show the specific options and setting set for the test project. The graphics only show
those options and settings that have been changed. All others are the default project settings set by the
CS+.

4.2.1. General Options

Figure 12: CS+ common Options - Target Device

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 46 of 57
May.20.24

Figure 13: CS+ link option

Figure 14: CS+ Common Options

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 47 of 57
May.20.24

4.2.2. Complier Settings

Figure 15: CS+ Compiler Options

Figure 16: CS + Object Convert Options

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 48 of 57
May.20.24

4.2.3. Benchmark test results

Library functions Number of bytes tested Processing time
CPU Register Tests - Software API
stl_RL78_registertest

- 10.312µs

CPU Registers Tests – PSW
stl_RL78_registertest_psw

- 1.375µs

CPU Registers Tests - SP
stl_RL78_registertest_stack

- 1.156µs

CPU Registers Tests - CS
stl_RL78_registertest_cs

- 1.062µs

CPU Registers Tests - ES
stl_RL78_registertest_es

- 1.062µs

CPU Registers Tests - PC
stl_RL78_registertest_pc

- 2.218µs

Software CRC
stl_RL78_sw_crc_asm

257072byte 394200µs(394.200ms)

Hardware CRC
stl_RL78_peripheral_crc

257072byte 185000µs (185.000ms)

System March C
stl_RL78_march_c

128byte 1434µs(1.434ms)

System March X
stl_RL78_march_x

128byte 797.906µs

Initial March C
stl_RL78_march_c_initia

24540byte 274542µs (274.542ms)

Initial March X
stl_RL78_march_x_initial

24540byte 152609µs(152.609ms)

Hardware Clock test
stl_RL78_hw_clocktest

- 56.40µs

Software Clock test
stl_RL78_sw_clocktest

- 5700µs (5.700ms)

Stack area test (March C)
stl_RL78_RamTest_Stacks_c

512byte+512byte 11782µs (11.782ms)

Stack area test (March X)
stl_RL78_RamTest_Stacks_x

512byte+512byte 6694µs(6.694ms)

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 49 of 57
May.20.24

5. Additional Hardware Resources
The following additional safety and self test features have been included in the RL78 series to provide
support for the user. While these additional functions have not been certified by VDE, they provide a
valuable extra resource to the user and are included here for reference.

5.1. Additional Safety Functions
The following additional safety functions have been included in the RL78 series MCU devices.

5.1.1. RAM Memory Parity Generator Checker
When enabled the function includes a parity check for each byte written to any location of the RAM
memory area. The Parity is generated when data is written to the RAM memory and checked when a
location is read from memory.
Please note that this function is available only for data accesses and does not apply to code executed
from RAM.
If a RAM parity error is detected, then an internal Reset is generated. The Reset source can be
determined by examining the “RESF” register. The “IAWRF” bit will be set if the invalid memory access
was the source of the Reset.

Figure 17: RAM Parity Error Checking

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 50 of 57
May.20.24

5.1.2. RAM Guard Protection
This is a write protection feature that when enabled allows data to be read from the selected RAM area,
but prohibits a write to these locations. No error is generated if a write occurs to this area
The RAM area available for this feature is limited and can be selected by the “GRAM0, GRAM1” bits as
shown in Figure 22 below:

Figure 18: RAM Guard Protection

5.1.3. Invalid Memory Access Protection
This is a feature that provides additional protection for detection of an invalid memory access.
Please note that once the “IAWEN” bit is set in the “IAWCTL” register, it cannot be disabled except for a
Reset. Also if the Watchdog is enabled in the Flash memory Option Bytes registers, then the invalid
memory protection automatically enabled.
If an invalid memory access is detected, then an internal Reset is generated. The Reset source can be
determined by examining the “RESF” register. The “IAWRF” bit will be set if the invalid memory access
was the source of the Reset.

Figure 19: Invalid Memory Access Protection

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 51 of 57
May.20.24

5.1.4. I/O Port SFR Protection
This is a write protection feature that prohibits a write to the SFR registers. No error is generated if a
write occurs, but the write operation does not change the state of the registers involved.
Please note that the data port register (Pxx) cannot be protected.
The protection can be turned off, if a change is required for the SFR registers or for safety reasons the
SFR settings are refreshed by the application.
The following I/O port SFR registers can be protected with this function:

PMxx, PUxx, PIMxx, POMxx, PMCxx, ADPC, and PIOR
Pxx cannot be guarded.

The Port I/O SFR registers can be guarded by the “GPORT” bit as shown in Figure 20 below.

Figure 20: I/O Port SFR Guard Protection

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 52 of 57
May.20.24

5.1.5. Interrupt SFR Protection
This is a write protection feature that prohibits a write to the Interrupt SFR registers. No error is
generated if a write occurs to this area, but the write operation does not change the state of the
registers involved. The protection can be turned off, if a change is required for the SFR registers or for
safety reasons the SFR settings are refreshed by the application.

The following interrupt registers can be protected with this function:

IFxx, MKxx, PRxx, EGPx, and EGNx

The interrupt SFR registers can be guarded by the “GINT” bit as shown in Figure 21 below.

Figure 21: Interrupt SFR Guard Protection

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 53 of 57
May.20.24

5.1.6. Control Register Protection
This is a write protection feature that prohibits a write to the control registers. No error is generated if a
write occurs to this area, but the write operation does not change the state of the registers involved. The
protection can be turned off, if a change is required for the SFR registers or for safety reasons the SFR
settings are refreshed by the application.

The following control registers can be protected with this function:

CMC, CSC, OSTS, CKC, PERx, OSMC, LVIM, LVIS, and RPECTL

The interrupt SFR registers can be guarded by the “GCSC” bit as shown in Figure 22 below.

Figure 22: Invalid Memory Access Protection

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 54 of 57
May.20.24

6. Related Application Note
The application note related to this application note is listed below for reference.

• RL78 Family VDE Certified IEC60730/60335 Self Test Library APPLICATION NOTE（R01AN0749E）

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

RL78 Family IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

R01AN4823EJ0120 May.20.24 Page 55 of 57
May.20.24

7. VDE certification status
Table 21 show the VDE certification status of each module (assembler file) constituting a library.

Table 21 VDE certification status of each module

Module Ver. VDE certification status
stl_RL78_registertest.asm 3.00 Valid (code part is the same as VDE certified

module) stl_RL78_registertest_psw.asm 3.00
stl_RL78_registertest_stack.asm 3.00
stl_RL78_registertest_cs.asm 3.00
stl_RL78_registertest_es.asm 3.00
stl_RL78_registertest_pc.asm 3.00
stl_RL78_sw_crc.asm 3.00
stl_RL78_peripheral_crc.asm 3.00
stl_RL78_march_c.asm 3.00
stl_RL78_march_x.asm 3.00
stl_RL78_march_c_initial.asm 3.00
stl_RL78_march_x_initial.asm 3.00
stl_RL78_sw_clocktest.asm 3.00
stl_RL78_hw_clocktest.asm 3.00
stl_adc.c 3.00
stl_RL78_GpioTest.asm 3.00
stl_RL78_RamTest_Stacks_c.asm 3.01
stl_RL78_RamTest_Stacks_x.asm 3.01

Revision Record

Rev.

Date

Description
Page Summary

1.00 Mar. 11, 2019 — First edition issued
1.10 Oct. 09, 2019 33, -36,

40
A/D Converter
Digital Output
Watchdog
Voltage

1.20 May. 20, 2024 52 Table 21: VDE certification status of each module

© 2019 Renesas Electronics Corporation. All rights reserved.

 General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Self Test Libraries Introduction
	2. Self Test Library Functions
	2.1. CPU Register Tests
	2.1.1. CPU Register Tests - Software API

	2.2. Invariable Memory Test – Flash ROM
	2.2.1. CRC16-CCITT Algorithm
	2.2.2. Software CRC - Software API
	2.2.3. Hardware CRC - Software API

	2.3. Variable memory - SRAM
	2.3.1. Algorithms
	2.3.2. Variable Memory Test - Software API
	2.3.2.1. System March C
	2.3.2.2. System March X
	2.3.2.3. Initial March C
	2.3.2.4. Initial March X
	2.3.2.5. Stack area test (March C)
	2.3.2.6. Stack area test (March X)

	2.4. System Clock Test
	2.4.1. Hardware Measurement
	2.4.2. Software Measurement

	2.5. A/D Converter
	2.5.1. A/D Converter Tests

	2.6. Digital Output
	2.6. Watchdog
	2.7. Voltage

	3. Example Usage
	3.1. CPU Verification
	3.1.1. Power- Up Tests
	3.1.2. Periodic

	3.2. Flash ROM Verification
	3.2.1. Power- Up Tests
	3.2.2. Periodic

	3.3. RAM Verification
	3.3.1. Power-Up
	3.3.2. Periodic

	3.4. System Clock Verification
	3.4.1. Power-Up
	3.4.2. Periodic

	3.5. A/D Converter
	3.5.1. Power-Up
	3.5.2. Periodic

	3.6. Digital Output
	3.6.1. Power-Up
	3.6.2. Periodic

	3.7. Watchdog
	3.8. Voltage
	3.9. Code Coverage

	4. Benchmarking
	4.1. Development Environment
	4.2. CS+ Settings
	4.2.1. General Options
	4.2.2. Complier Settings
	4.2.3. Benchmark test results

	5. Additional Hardware Resources
	5.1. Additional Safety Functions
	5.1.1. RAM Memory Parity Generator Checker
	5.1.2. RAM Guard Protection
	5.1.3. Invalid Memory Access Protection
	5.1.4. I/O Port SFR Protection
	5.1.5. Interrupt SFR Protection
	5.1.6. Control Register Protection

	6. Related Application Note
	7. VDE certification status

