
 Application Note

R01AN5888EJ0100 Rev.1.00 Page 1 of 48
Nov.01.21

RL78/G14
I2C Bus Control Using Simplified IIC (Arduino API)
Introduction
In this application note, a program written in a language such as Arduino is used to control the
temperature/humidity sensor HDC1080 connected to the I2C bus of the Pmod connector on the RL78/G14
Fast Prototyping Board (FPB).

Target Device
RL78/G14

When applying the sample program covered in this application note to another microcomputer, modify the
program according to the specifications for the target microcomputer and conduct an extensive evaluation of
the modified program.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 2 of 48
Nov.01.21

Contents

1. Specifications .. 3
1.1 Program Execution Environment ... 4
1.2 Program (Sketch) Configuration .. 6
1.3 Preparations for Project Startup .. 6
1.4 Definitions in the Program (sketch) ... 7
1.5 Initial Setting Processing ... 8
1.6 Main Processing Part .. 8
1.7 Data Processing Performed by HDC1080 .. 9

2. Operating Conditions ... 10

3. Related Application Notes.. 11

4. Hardware ... 12
4.1 Example of Hardware Configuration ... 12
4.2 List of Pins Used .. 12

5. Software .. 13
5.1 Summary of Operation .. 13
5.2 List of Constants .. 14
5.3 List of Variables ... 15
5.4 List of Functions .. 19
5.5 Specification of Functions ... 21
5.6 Flowcharts ... 37
5.6.1 Initial setting function ... 37
5.6.2 Main Processing Function ... 38
5.6.3 LCD Indicator Initialization Function .. 42
5.6.4 Function that Sets Full-Screen Display for the LCD Indicator ... 43
5.6.5 Function that Sets the Data Display Position for the LCD Indicator .. 45
5.6.6 Function that Sets a Command for the LCD Indicator .. 45
5.6.7 Function that Sets Data for the LCD Indicator .. 46

6. Sample Code ... 47

7. Reference Documents ... 47

Revision History .. 48

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 3 of 48
Nov.01.21

1. Specifications
This application note describes how the temperature/humidity sensor HDC1080 is controlled in Fast mode
(at 380 kbps) by using a program coded in a language such as Arduino via the I2C bus of Pmod connector 1
on the FPB. This application note also describes how the data obtained from the temperature/humidity
sensor is displayed on the LCD indicator (16 chars x 2 lines) in Standard mode (at 85 kbps) via the I2C bus
of the Arduino connector.

Data is obtained from the temperature/humidity sensor and displayed on the LCD indicator on a regular basis
at one-minute intervals or by pressing a switch.

Pmod connectors 1 and 2 on the RL78/G14 FPB use different pin positions for SCL and SDA signals on the
I2C bus from those pin positions on the standard Pmod connector. To connect to an I2C module that supports
Pmod, as shown in Figure 1.1, prepare a separate conversion board that exchanges SCL and SDA signals.

Figure 1.1 Signal conversion

The RL78/G14 FPB is equipped with two Pmod connectors. The temperature/humidity sensor HDC1080 is
controlled by using Wire1 allocated to Pmod connector 1.

To use Wire2 allocated to Pmod connector 2, processing to enable Wire2 must be performed. In
r_cg_userdefine.h, comment out line 50, and then uncomment line 51 and change the name of the API
function used in AR_SKETCH.c from Wire1 to Wire2 (see the lines surrounded in a red frame in Figure 1.2).

Figure 1.2 Lines where the WireAPI function to be used is defined

Table 1.1 lists peripheral functions to be used.

Table 1.1 Peripheral functions used and their uses

Peripheral Function Use
Digital input Reads the status of the switch (SW_USR).
IICA0 Controls the LCD indicator via the I2C bus.
IIC00 Controls the sensor via the I2C bus of the Pmod1 connector.
IIC20 Controls the sensor via the I2C bus of the Pmod2 connector.
Timer array unit Measures the elapsed time.

RL78/G14 FPB
Pmod connector

PORT
PORT
SDA
SCL

GND

VCC

Pmod

PORT
PORT
SCL
SDA

GND
VCC

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 4 of 48
Nov.01.21

1.1 Program Execution Environment
In this application note, a program in an Arduino language is executed in a development environment
specific to the RL78 family. A conceptual diagram of the program execution environment is shown in Figure
1.3.

Arduino language program (sketch)

Function library for an Arduino language (Arduino API)

RL78 family development environment

Hardware (FPB)

Figure 1.3 Program execution environment

Library functions that can be used in this application note are shown in Table1.2 to Table 1.4.

Table1.2 Library functions (1/3)

Item Library Function Function

Digital I/O pinMode(pin, mode) Specifies the operation mode (input mode/output mode/input
mode with internal pull-up resistor enabled) for the pin
specified by “pin”.

digitalWrite (pin, value) Sets the pin specified by “pin” to the state specified by “value”
(high level/low level).

digitalRead(pin) Reads out the state of the pin specified by “pin”.

Time control millis() Returns, in millisecond units, the time from the start of
program execution to the present time.

micros() Returns, in microsecond units, the time from the start of
program execution to the present time.

delay (ms) Stops the program for the specified time in millisecond units.

delayMicroseconds (us) Stops the program for the specified time in microsecond units.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 5 of 48
Nov.01.21

Table1.3 Library functions (2/3)

Item Library Function Function

I2C control

(Wire)

Wire.begin() Initializes IICA0 and connects to the I2C bus as the
master.

Wire.requestFrom(saddr7, bytes,
stop)

Wire.requestFrom(saddr7, bytes)

Receives data with the size specified by "bytes" from
the specified slave.

The Wire.available() function is used to obtain the
number of bytes and the Wire.read() function is used
to read data.

Wire.beginTransmission(saddr7) Prepares for sending data to the specified slave.

Then, the Wire.write() function is used to enqueue
data and the Wire.endTransmission() function is used
to send the data.

Wire.endTransmission(stop) Sends data from the queue to the slave, and then
ends processing.

Wire.write(data) Enqueues data that is to be sent to the slave.

Wire.available() Uses the Wire.read() function to check the number of
bytes that can be read.

Wire.read() Reads receive data from the slave.

Simplified IIC
control

(Wire1)

Wire1.begin() Initializes IIC00 (Wire1) connected to Pmod connector
1 and connects to the I2C bus as the master.

Wire1.requestFrom(saddr7,
bytes, stop)

Wire1.requestFrom(saddr7,
bytes)

Receives data with the size specified by "bytes" from
the specified slave.

The Wire1.available() function is used to obtain the
number of bytes and the Wire1.read() function is used
to read data.

Wire1.beginTransmission(saddr7) Prepares for sending data to the specified slave.

Then, the Wire1.write() function is used to enqueue
data and the Wire1.endTransmission() function is
used to send the data.

Wire1.endTransmission(stop)

As Wire1, sends data from the queue to the slave,
and then ends processing.

Wire1.write(data) Enqueues data that is to be sent to the slave of Wire1.

Wire1.available() Uses the Wire1.read() function to check the number of
bytes that can be read.

Wire1.read() Dequeues data that was received from the slave of
Wire1.

Note: The slave function of the I2C bus is not supported. For some functions, a limit is placed on the
arguments that can be specified or the number of arguments that can be specified.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 6 of 48
Nov.01.21

Table 1.4 Library functions (3/3)

Simplified IIC
control

(Wire2)

Wire2.begin() Initializes IIC00 (Wire2) connected to Pmod connector
1 and connects to the I2C bus as the master.

Wire2.requestFrom(saddr7,
bytes, stop)

Wire2.requestFrom(saddr7,
bytes)

Receives data with the size specified by "bytes" from
the specified slave.

The Wire2.available() function is used to obtain the
number of bytes and the Wire2.read() function is used
to read data.

Wire2.beginTransmission(saddr7) Prepares for sending data to the specified slave.

Then, the Wire2.write() function is used to enqueue
data and the Wire2.endTransmission() function is
used to send the data.

Wire2.endTransmission(stop)

As Wire2, sends data from the queue to the slave,
and then ends processing.

Wire2.write(data) Enqueues data that is to be sent to the slave of Wire2.

Wire2.available() Uses the Wire2.read() function to check the number of
bytes that can be read.

Wire2.read() Dequeues data that was received from the slave of
Wire2.

Note: The slave function of the I2C bus is not supported. For some functions, a limit is placed on the
arguments that can be specified or the number of arguments that can be specified.

1.2 Program (Sketch) Configuration
Subfolders are prepared for each integrated development environment below the folder (workspace) in which
the project is stored. In the folders for each of the integrated development environments the files are stored
that are used in the RL78 family development environment.

In each sketch subfolder, AR_SKETCH.c is stored which is the Arduino language program (sketch). When
viewing or modifying sketch, the "AR_SKETCH.c" file in the sketch subfolder is used.

1.3 Preparations for Project Startup
Preparations for project startup are different depending on the integrated development environment used.
For details, refer to the following application note.

RL78 Family Arduino API Introduction Guide (R01AN5413)

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 7 of 48
Nov.01.21

1.4 Definitions in the Program (sketch)
Definitions in the program (sketch) are indicated in Figure 1.4.

Figure 1.4 Program definition details

1) "18" is set for the swPin pin that controls the on-board SW_USR switch so that the pin is assigned to
D18.

2) Then, the following items are defined: the "old_time" 16-bit variable to check the elapsed time (in
milliseconds), the "hdc1080_buff" 4-byte array for communication use to control the HDC1080 sensor,
the "humid" variable to store the humidity data obtained, and the "temp" variable to store temperature
data in units of 0.1 degrees.

3) In the display data area for the LCD indicator, the following 40-byte arrays are defined: the "disp_line1"
variable to store the data for line 1, the "disp_line2" variable to store the data for line 2.
In addition, the "count16ms" counter to obtain 1 minute by counting 16-ms intervals and the "sw_work"
variable to check the switch are defined.
The "Wire1" API_Wire-type structure is used to reference any objects that are defined by
AR_LIB_WIRE1.c that provides Wire-related API functions.

1)

2)

3)

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 8 of 48
Nov.01.21

1.5 Initial Setting Processing
The initial settings section of the program (sketch) is shown in Figure 1.5.

The "setup" function specifies that the switch input pin be used for input. Also, IICA0 and IIC00 are set as the
I2C bus master. Then, the initial display data is set for the LCD indicator.

Figure 1.5 Initial setting processing section

1.6 Main Processing Part
The leading section of the main processing, which is executed repeatedly, is shown in Figure 1.6. When
preparations for project startup have been set correctly, the sketch will be downloaded, then executed until
the leading section of the main processing.

Figure 1.6 The leading section of the main process

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 9 of 48
Nov.01.21

1.7 Data Processing Performed by HDC1080
Normally, HDC1080 is placed in sleep mode. To obtain the humidity data and temperature data, a
measurement request must be issued.

The measurement request is issued by writing the slave address of HDC1080 followed by 0x00.

To obtain 14-bit humidity/temperature data from HDC1080, measurement takes 6.5 ms (TYP.) to complete.

In this application note, after issuing an measurement request, the software waits for 32 ms and then reads
the measurement results.

エラー! 参照元が見つかりません。 shows an example of 4-byte data read from HDC1080. In the example,
temperature data is indicated in red and humidity data is indicated in blue.

hdc1080_buff[0] hdc1080_buff[1] hdc1080_buff[2] hdc1080_buff[3]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 1.7 HDC1080 Data Format

Temperature is obtained by using the following expressions. Expression  is used to get 16-bit length data.
 is used to convert the resulting data to a value in 0.1°C degrees.  is used to subtract 40°C as the offset.
The temperature in units of 0.1°C degrees is obtained in this way.

① long_work = (hdc1080_buff[0] * 0x100UL + (hdc1080_buff[1]);

② long_work *= 1650; // multiply 10 times of Maximum temperature

③ temp = (int)((long_work >> 16) - 400); // adjust offset (40degreeC)

Humidity is obtained by using the following expressions. Expression  is used to get 16-bit length data.
Expression  is used to multiply the value by 100.  is used to obtain the humidity data. The humidity data
in percentage is obtained in this way.

① long_work = (hdc1080_buff[2] * 0x100UL + hdc1080_buff[3]);

② long_work *= 100UL; // get percentage

③ humid = (unsigned char)(long_work >>16); // get humidity

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 10 of 48
Nov.01.21

2. Operating Conditions
The operation of the sample code provided with this application note has been tested under the following
conditions.

Table 2.1 Operating conditions

Item Description
Microcontroller used RL78/G14 (R5F104MLAFB：RL78G14_FPB)
Operating frequency  High-speed on-chip oscillator clock (fIH): 32 MHz

 CPU/peripheral hardware clock: 32 MHz
Operating voltage 3.3 V (can be operated at 2.75 V to 5.5 V)

LVD operation: Reset mode
LVD detection voltage (VLVD)

At rising edge: 2.81 V typ. (2.76 V to 2.87 V)
At falling edge: 2.75 V typ. (2.70 V to 2.81 V)

Integrated development
environment

Renesas Electronics
CS+ for CC V8.05.00

Renesas Electronics
e² studio V7.7.0

IAR Systems
IAR Embedded Workbench for RL78

C compiler Renesas Electronics
CC-RL V1.10.00

IAR Systems
IAR C/C++ Compiler v4.20.1 for RL78

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 11 of 48
Nov.01.21

3. Related Application Notes
The application notes related to this application note are shown below.

Refer to these together with this application note.

RL78 Family Arduino API Introduction Guide (R01AN5413)

RL78/G14 Onboard LED Flashing Control (Arduino API) (R01AN5384)

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 12 of 48
Nov.01.21

4. Hardware
4.1 Example of Hardware Configuration
エラー! 参照元が見つかりません。 shows the hardware (FPB) that is used in this application note.

Figure 4.1 Hardware configuration example
Note: This conceptual diagram is simplified in order to summarize the connections.

As the power supply voltage, 3.3 V is supplied via USB.

4.2 List of Pins Used
Table 4.1 shows the pins used and their functions.

Table 4.1 Pins used and their functions

Pin Port Name I/O Function
D14 P61 Input/Output SDA (Data line of I2C-bus)
D15 P60 Input/Output SCL (Clock line of I2C-bus)
- P50 Input/Output SDA of PMOD1 connector (Data line of I2C-bus)
- P30 Input/Output SCL of PMOD1 connector (Clock line of I2C-bus)
- P14 Input/Output SDA of PMOD2 connector (Data line of I2C-bus)
- P15 Input/Output SCL of PMOD2 connector (Clock line of I2C-bus)
D18 P137 Input Switch (SW_USR) input

Pmod module

SW_USR

TERGET
VCC

10kΩ

TERGET VCC RL78/G14

D18 (P137)

D14 (P61)
D15 (P60)

VDD，EVDD

VSS，EVSS

SDA
SCL

SDA SCL

16x2 Character
 LCD Display

TERGET
VCC

3.3kΩ×2

SCL (P30)
SDA (P50)

HC1080
SDA

SCL

Pmod connector 1

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 13 of 48
Nov.01.21

5. Software
5.1 Summary of Operation
In this application note, when the software completes initial setup (pin setup) and the main processing (loop)
starts, the LCD indicator is placed in the initial display status.

Data is obtained from the temperature/humidity sensor HDC1080 on a regular basis at one-minute intervals
or by pressing a switch. The temperature and humidity are calculated from the obtained data, and then the
calculation results are displayed on the LCD indicator.

Details are explained in (1) to (2) below.

(1) Use the "setup" function to specify the settings of the pins to be used.
 The software sets the read pin of the on-board SW_USR (swPin) to digital input.

 To control the I2C bus by using the D14 and D15 pins, the software sets IICA0 to Master.

 To control the I2C bus by using Pmod connector 1, the software sets IIC00.

 The software initializes the LCD indicator connected to the I2C bus to reset the indication.

(2) Use the "loop" function to perform the main processing.
 The software obtains the data of 12 bits (in units of 16 milliseconds) from bits 15 to 4 as the time

elapsed since startup in milliseconds.

 The software checks whether the obtained data has changed from the old data (old_time).

 If the data has not changed, the software terminates processing and returns control to the beginning
of the "loop" function.

 If the data has changed (16 milliseconds elapsed), the software replaces the data in old_time by the
obtained data.

 The software starts the counter that is reset at one-minute intervals (0xEA6).

 The software checks the status of the switch connected to D18.

 If the switch is not pressed and one minute has not elapsed, the software returns control to the
beginning of the "loop" function. Note

 If the switch is pressed or one minute has elapsed, the software measures the temperature and
humidity. Note

 The temperature/humidity sensor HDC1080 exits standby mode and the software starts
measurement.

 The software waits for about 16 milliseconds until the data that can be obtained becomes stable.

 The software reads data from the sensor.

 The software calculates the temperature and humidity from the data that was read.

 The software transfers the calculation results to the LCD indicator.

 The software returns control to the beginning of the "loop" function.

Note: Immediately after startup, the software uses the sensor to measure the temperature and humidity.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 14 of 48
Nov.01.21

5.2 List of Constants
Table 5.1 エラー! 参照元が見つかりません。Table 5.1 shows constants that are used in the sample code.

Table 5.1 Constants used in sample code

Constant Name Setting Value Description
swPin 18 Number of the pin from which SW_USR is read
DUMMY_DATA 0xFF Data to be written for starting reception during master reception
RELEASE 1 Specifies that stop conditions are generated when

communication is completed.
RESTART 0 Specifies that restart conditions are generated when

communication is completed.
SLADDR_HC1080 0x40 Slave address of the sensor (7 bits)
SLADDR_LCD 0x50 Slave address of the LCD indicator (7 bits)
COMBYTE 0x00 Data specifying that a command is sent to the LCD indicator
DATABYTE 0x80 Data specifying that data is transferred to the LCD indicator
CLRDISP 0x01 Command that clears the indication of the LCD indicator
HOMEPOSI 0x02 Moves the cursor of the LCD indicator to the home position.
LCD_Mode 0x38 Specifies that each character is displayed with 5x8 dots on two

lines.
DISPON 0x0F Turns on and blinks the cursor.
ENTRY_Mode 0x06 Moves the display position each time one character is

transferred.
LOOPLIMIT 1000 Sets the maximum number of times starts and stops can be

detected to 1,000.
SUCCESS 0x00 Indicates that processing of the I2C bus terminated normally.
BUS_FREE 0x00 The I2C bus is idle.
BUS_ERROR 0x8F The I2C bus could not be secured.
GET_BUS 0x10 The I2C bus was secured.
GET_BUS4TX 0x20 The I2C bus was secured for transmission.
TX_MODE 0x30 Transmission mode
TX_END 0x40 Transmission was completed.
GET_BUS4RX 0x50 The I2C bus was secured for reception.
RX_MODE 0x60 Reception mode
RX_END 0x70 Reception was completed.
BUFF_OVER 0x81 The number of bytes that were sent exceeded the buffer

capacity.
NO_SLAVE 0x82 The relevant slave does not exist.
NO_ACK 0x83 NACK was replied to the data that was sent.
NO_DATA 0x84 The number of bytes that were received is 0.
MINUTE 60000/16 The counter is incremented by16 milliseconds to obtain 1

minute.
TX_DELAY1 1 Transmission interval of Wire1 of Pmod connector 1 (1 μs)
RX_DELAY1 10 Reception interval of Wire1 of Pmod connector 1 (10 μs)
TX_DELAY2 1 Transmission interval of Wire2 of Pmod connector 2 (1 μs)
RX_DELAY2 10 Reception interval of Wire2 of Pmod connector 2 (10 μs)

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 15 of 48
Nov.01.21

5.3 List of Variables
Table 5.2 to Note: This is shown by the name of the internal processing function, not the Arduino API.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 16 of 48
Nov.01.21

Table 5.4 lists global variables.

Table 5.2 Global variables (1/3)

Type Variable Name Description Function used Note
unsigned int old_time Time elapsed since the previous startup (in

milliseconds)
loop()

unsigned char hdc1080_buff[4] Buffer for the data read from the sensor loop()
unsigned char humid Humidity data loop()
unsigned int temp Temperature data in units of 0.1 °C loop()
char disp_line1[40] Data displayed on the LCD indicator (line 1) loop()
char disp_line2[40] Data displayed on the LCD indicator (line 2) loop()
int count16ms The counter is incremented by 16 milliseconds to

obtain 1 minute.
loop()

char sw_work Variable for checking the switch status every 16
milliseconds

loop()

unsigned char g_lcd_command[2] Variable for setting a command on the LCD indicator set_command()
unsigned char g_lcd_data[2] Variable for setting data on the LCD indicator set_dat()
uint8_t gp_tx_set Pointer for writing data to the transmission buffer

(maximum: 255)
Wire_begin(),
Wire_beginTransmission(),
Wire_write()

uint8_t gp_tx_get Pointer for reading data from the transmission buffer Wire_begin(),
Wire_beginTransmission(),
r_IICA0_interrupt()

uint8_t g_tx_buff[256] Transmission buffer Wire_write(),
r_IICA0_interrupt()

uint8_t gp_rx_set Pointer for writing data to the transmission buffer
(maximum: 255)

Wire_begin(),
Wire_requestFrom(),
r_IICA0_interrupt()

uint8_t gp_rx_get Pointer for reading data from the reception buffer Wire_begin(),
Wire_requestFrom(),
Wire_read()

uint8_t g_rx_buff[256] Reception buffer r_IICA0_interrupt(),
Wire_read()

uint16_t g_rx_num Number of bytes received Wire_requestFrom(),
r_IICA0_interrupt()

uint8_t sladdr8 8-bit slave address Wire_beginTransmission(),
Wire_requestFromSub(),
Wire_requestFromb()

uint8_t g_stop_flag Flag indicating whether to generate stop conditions
at termination
0: Performs nothing.
1: Generates stop conditions at termination.

Wire_endTransmission(),
Wire_requestFrom(),
r_IICA0_interrupt(),
r_operation_end()

uint8_t g_status IICA0 status flag
 0x00: BUS FREE
 0x8F: BUS Error
 0x10: Get bus
 0x20: Get bus to transmit
 0x30: Transmit operation
 0x40: Transmit end
 0x50: Get bus to receive
 0x60: Receive operation
 0x70: Receive end
 0x81: Data size over buffer size
 0x82: NACK for slave address
0x83 : No ACK for data

r_IICA0_interrupt(),
Wire_beginTransmission(),
Wire_endTransmission(),
Wire_requestFromb(),
Wire_requestFromSub(),
r_IICA0_interrupt(),
r_operation_end()

uint8_t g_erflag 0x00: Success
0x01: Buffer overflow
0x02: No slave exists.
0x03: NACK was replied to the data that was sent.
0x04: Other errors

Wire_endTransmission()

Note: This is shown by the name of the internal processing function, not the Arduino API.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 17 of 48
Nov.01.21

Table 5.3 Global variables (2/3)

Type Variable Name Description Function used Note
uint8_t gp_tx1_set Pointer for writing data to the

transmission buffer (max: 255)
Wire1_begin(),
Wire1_beginTransmission(),
Wire1_write()

uint8_t gp_tx1_get Pointer for reading data from the
transmission buffer

Wire1_begin(),
Wire1_beginTransmission(),
r_IIC00_interrupt()

uint8_t g_tx1_buff[256] Transmission buffer Wire1_write(),
r_IIC00_interrupt()

uint8_t gp_rx1_set Pointer for writing data to the reception buffer
(max: 255)

Wire1_begin(),
Wire1_requestFrom(),
r_IIC00_interrupt()

uint8_t gp_rx1_get Pointer for reading data from the
reception buffer

Wire1_begin(),
Wire1_requestFrom(),
Wire1_read()

uint8_t g_rx1_buff[256] Reception buffer r_IIC00_interrupt(),
Wire1_read()

uint16_t g_rx1_num Number of bytes received Wire1_requestFrom(),
r_IIC00_interrupt()

uint8_t sladdr8_1 8-bit slave address Wire1_beginTransmission(),
Wire1_requestFromSub(),
Wire1_requestFromb()

uint8_t g_stop_flag_1 Flag indicating whether to generate stop
conditions at termination
0: Generates restart conditions at
termination.
1: Generates stop conditions at termination.

Wire1_endTransmission(),
Wire1_requestFrom(),
r_IIC00_interrupt(),
r_operation_end_1()

uint8_t g_status_1 IIC00 status flag
 0x00: BUS FREE
 0x8F: BUS Error
 0x10: Get bus
 0x20: Get bus to transmit
 0x30: Transmit operation
 0x40: Transmit end
 0x50: Get bus to receive
 0x60: Receive operation
 0x70: Receive end
 0x81: Data size over buffer size
 0x82: NACK for slave address
0x83: No ACK for data

Wire1_beginTransmission(),
Wire1_endTransmission(),
Wire1_requestFromb(),
Wire1_requestFromSub(),
r_IIC00_interrupt(),
r_operation_end_1()

uint8_t g_erflag_1 0x00: Success
0x01: Buffer overflow
0x02: No slave exists.
0x03: NACK was replied to the data that
was sent.
0x04: Other errors

Wire1_endTransmission()

Note: This is shown by the name of the internal processing function, not the Arduino API.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 18 of 48
Nov.01.21

Table 5.4 Global variables (3/3)

Type Variable Name Description Function used Note
uint8_t gp_tx2_set Pointer for writing data to the

transmission buffer (max: 255)
Wire2_begin(),
Wire2_beginTransmission(),
Wire2_write()

uint8_t gp_tx2_get Pointer for reading data from the
transmission buffer

Wire2_begin(),
Wire2_beginTransmission(),
r_IIC20_interrupt()

uint8_t g_tx2_buff[256] Transmission buffer Wire2_write(),
r_IIC20_interrupt()

uint8_t gp_rx2_set Pointer for writing data to the reception buffer
(max: 255)

Wire2_begin(),
Wire2_requestFrom(),
r_IIC20_interrupt()

uint8_t gp_rx2_get Pointer for reading data from the reception
buffer

Wire2_begin(),
Wire2_requestFrom(),
Wire2_read()

uint8_t g_rx2_buff[256] Reception buffer r_IIC20_interrupt(),
Wire2_read()

uint16_t g_rx2_num Number of bytes received Wire2_requestFrom(),
r_IIC20_interrupt()

uint8_t sladdr8_2 8-bit slave address Wire2_beginTransmission(),
Wire2_requestFromSub(),
Wire2_requestFromb()

uint8_t g_stop_flag_2 Flag indicating whether to generate stop
conditions at termination
0: Generates restart conditions at
termination.
1: Generates stop conditions at termination.

Wire2_endTransmission(),
Wire2_requestFrom(),
r_IIC20_interrupt(),
r_operation_end_2()

uint8_t g_status_2 IIC00 status flag
 0x00: BUS FREE
 0x8F: BUS Error
 0x10: Get bus
 0x20: Get bus to transmit
 0x30: Transmit operation
 0x40: Transmit end
 0x50: Get bus to receive
 0x60: Receive operation
 0x70: Receive end
 0x81: Data size over buffer size
 0x82: NACK for slave address
0x83: No ACK for data

Wire2_beginTransmission(),
Wire2_endTransmission(),
Wire2_requestFromb(),
Wire2_requestFromSub(),
r_IIC20_interrupt(),
r_operation_end_2()

uint8_t g_erflag_2 0x00: Success
0x01: Buffer overflow
0x02: No slave exists.
0x03: NACK was replied to the data that
was sent.
0x04: Other errors

Wire2_endTransmission()

Note: This is shown by the name of the internal processing function, not the Arduino API.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 19 of 48
Nov.01.21

5.4 List of Functions
Table 5.5 to Table 5.6 shows a list of functions.

Table 5.5 List of functions (1/2)

Function Name Overview
loop Main processing (sketch)
setup Initialization function (sketch)
pinMode Specifies the operation mode (input mode, output mode, or input mode with

an internal pull-up resistor enabled) for the pin.
digitalWrite Outputs data to the pin.
digitalRead Reads the pin state.
micros Returns the time in microseconds from the start of program execution to the

present time.
millis Returns the time in milliseconds from the start of program execution to the

present time.
delay Stops the program for the time specified in milliseconds.
delayMicroseconds Stops the program for the time specified in microseconds.
Wire.begin Initializes the I2C library and connects it as the master.
Wire.requestFrom Starts reading data from the specified slave. The read operation is processed

as an interrupt.
Wire_requestFromS Starts reading data from the specified slave. The read operation is processed

as an interrupt. It is possible to specify that stop conditions are generated
when reception is completed.
This is an internal processing function for Wire.requestFrom.

Wire_requestFromSub This is an internal processing function for Wire.requestFrom.
Wire.available Returns the number of bytes that can be read by using Wire.read from the

reception buffer.
Wire.read Reads data from the reception buffer.
Wire.beginTransmission Prepares for sending data to the specified slave.
Wire.write Writes the send data to the transmission buffer.
Wire_writec Adds one-character data to the transmission buffer.

This is an internal processing function for Wire.write.
Wire_writeb Adds a data block to the transmission buffer.

This is an internal processing function for Wire.write.
Wire.endTransmission Actually sends the send data that is set in the buffer via the I2C bus. It is

possible to specify that stop conditions are generated when transmission is
completed.

init_LCD Initializes the LCD indicator.
print_LCD Displays 1-screen data (16 characters x 2 lines) for the LCD indicator.
move_cursor Specifies the cursor position at which to set the data to be displayed on the

LCD indicator.
set_2digit Displays 1-byte data with 2 digits.
set_1digit Displays the lower-bit data with one digit.
set_command Sends a command to the LCD indicator.
set_data Sends the data to be displayed to the LCD indicator.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 20 of 48
Nov.01.21

Table 5.6 List of functions (2/2)

Function Name Overview
Wire1.begin Initializes the I2C library of Pmod connector 1 and connects it as the master.
Wire1.requestFrom Starts reading data from the specified slave. The read operation is processed

as an interrupt.
Wire1_requestFromS Starts reading data from the specified slave. The read operation is processed

as an interrupt. It is possible to specify that stop conditions are generated
when reception is completed.
This is an internal processing function for Wire1.requestFrom.

Wire1_requestFromSub This is an internal processing function for Wire1.requestFrom.
Wire1.available Returns the number of bytes that can be read by using Wire1.read from the

reception buffer.
Wire1.read Reads data from the reception buffer.
Wire1.beginTransmission Prepares for sending data to the specified slave.
Wire1.write Writes the send data to the transmission buffer.
Wire1_writec Adds one-character data to the transmission buffer.

This is an internal processing function for Wire1.write.
Wire1_writeb Adds a data block to the transmission buffer.

This is an internal processing function for Wire1.write.
Wire1.endTransmission Actually sends the send data that is set in the buffer via the I2C bus. It is

possible to specify that stop conditions are generated when transmission is
completed.

Wire2.begin Initializes the I2C library of Pmod connector 2 and connects it as the master.
Wire2.requestFrom Starts reading data from the specified slave. The read operation is processed

as an interrupt.
Wire2_requestFromS Starts reading data from the specified slave. The read operation is processed

as an interrupt. It is possible to specify that stop conditions are generated
when reception is completed.
This is an internal processing function for Wire2.requestFrom.

Wire2_requestFromSub This is an internal processing function for Wire2.requestFrom.
Wire2.available Returns the number of bytes that can be read by using Wire2.read from the

reception buffer.
Wire2.read Reads data from the reception buffer.
Wire2.beginTransmission Prepares for sending data to the specified slave.
Wire2.write Writes the send data to the transmission buffer.
Wire2_writec Adds one-character data to the transmission buffer.

This is an internal processing function for Wire2.write.
Wire2_writeb Adds a data block to the transmission buffer.

This is an internal processing function for Wire2.write.
Wire2.endTransmission Actually sends the send data that is set in the buffer via the I2C bus. It is

possible to specify that stop conditions are generated when transmission is
completed.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 21 of 48
Nov.01.21

5.5 Specification of Functions
The function specifications of the sample code are shown below.

[Function name] loop
Overview Main function
Header AR_LIB_PORT.h, AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h、

AR_SKETCH.h, r_cg_userdefine.h, LCD_LIB.h
Declaration void loop(void);
Description After startup, this function checks the status of the switch at 16-ms intervals. If the

switch is pressed or 1 minute elapses, the function starts the sensor (HDC1080).
After the sensor starts, when about 16 milliseconds elapse, the function reads the
measurement results of the sensor. The function then calculates the temperature and
humidity from the measurement results and displays the calculation results on the
LCD indicator.

Argument None
Return value None

[Function name] setup
Overview Initialization function
Header AR_LIB_PORT.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void setup(void);
Description This function sets up the pins, IICA0, and LCD indicator used by the program

(sketch).
Argument None
Return value None

[Function name] pinMode
Overview Function to set the pin function
Header AR_LIB_PORT.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration void pinMode(uint8_t pin,uint8_t mode);
Description The pin indicated by the first argument is set to the mode indicated by the second

argument.
Argument uint8_t pin

uint8_t mode
Number of the pin to be specified
Specifies the pin mode with
OUTPUT/INPUT/INPUT_PULLUP

Return value None

[Function Name] digitalWrite
Overview Function to output digital data to a pin
Header AR_LIB_PORT.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration void digitalWrite(uint8_t pin, uint8_t value);
Description The data indicated by the second argument is output to the pin indicated by the first

argument.
Argument uint8_t pin :

uint8_t value :
Number of the pin for data output
Data to output (HIGH/LOW)

Return value None

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 22 of 48
Nov.01.21

[Function Name] digitalRead
Overview Function to read out digital data from a pin
Header AR_LIB_PORT.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration uint8_t digitalRead(uint8_t pin);
Description The state of the pin specified by the argument is read out
Argument uint8_t pin : Number of the pin to be read out
Return value uint8_t : Data that was red out (HIGH/LOW)

[Function Name] micros
Overview Function to obtain the elapsed time in microsecond units
Header AR_LIB_TIME.h、r_cg_macrodriver.h、r_cg_userdefine.h
Declaration uint32_t micros(void);
Description Returns the time elapsed from startup, in microsecond units.
Argument None
Return value uint32_t Elapsed time in microsecond units

[Function name] millis
Overview Function to obtain the elapsed time in millisecond units
Header AR_LIB_TIME.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration uint32_t millis (void);
Description Returns the time elapsed from startup, in millisecond units.
Argument None
Return value uint32_t : Elapsed time in millisecond units

[Function Name] delay
Overview A function that waits for a certain length of time in milliseconds
Header AR_LIB_TIME.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration uint32_t delay(uint32_t time);
Description This function waits for the length of time specified for an argument in milliseconds.
Argument uint32_t time Wait time (in milliseconds)
Return value None

[Function Name] delayMicroseconds
Overview A function that waits for a certain length of time in microseconds
Header AR_LIB_TIME.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration void delayMicroseconds(uint32_t time);
Description This function waits for the length of time specified for an argument in microseconds.
Argument uint32_t time Wait time (in microseconds)
Return value None

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 23 of 48
Nov.01.21

[Function Name] Wire.begin
Overview Function that prepares for using the I2C bus
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void Wire.begin(void);
Description This function initializes IICA0 as a preparation for using the I2C bus.
Argument None
Return value None

[Function Name] Wire.requestFrom
Overview Function that prepares for receiving data from the slave
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void Wire.requestFrom(uint8_t saddr7, uint16_t bytes, uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 24 of 48
Nov.01.21

[Function Name] Wire_requestFromS
Overview Function that prepares for receiving data from the slave
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void Wire_requestFromS(uint8_t saddr7, uint16_t bytes);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it issues the
stop condition and releases the bus.
(This function is used for the internal processing of Wire.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes

7-bit slave address
Number of bytes to be received

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

[Function Name] Wire_requestFromSub
Overview Internal function that prepares for receiving data from the slave
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void Wire_requestFromSub(uint8_t saddr7, uint16_t bytes , uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.
(This function is an internal function for Wire.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value None
Remarks g_status: Communication status

If the value that is set is 0x50, startup is successful. Afterward, the value changes
to 0x60 (now receiving), and then to 0x70 (reception completed).

The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:
startup failed
g_erflag: Error flag

0x00: normal, 0x01: buffer overflow, 0x04: other errors
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 25 of 48
Nov.01.21

[Function Name] Wire.available
Overview Function that returns the number of bytes that can be read
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration uint8_t Wire.available(void);
Description This function uses the Wire.requestFrom function to receive data and then returns

the number of bytes of the data stored in a buffer.
Argument None
Return value uint8_t Number of bytes that can be read from the buffer

[Function Name] Wire.read
Overview Function that reads data from the receive buffer
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration uint8_t Wire.read(void);
Description This function reads data from the buffer.
Argument None
Return value uint8_t Data read from the buffer (or 0x00)

[Function Name] Wire.beginTransmission
Overview Function that prepares for sending data to the slave
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void Wire.beginTransmission(uint8_t saddr7);
Description This function converts the slave address to an 8-bit address, stores it in the "sladdr8"

variable, and then issues the start condition to secure the bus.
Argument uint8_t saddr7 7-bit slave address
Return value uint8_t 0x00: Normal

0x04: Other errors
Remarks g_erflag: Communication status

If the value that is set is 0x00, startup is successful.
If the value is 0x04, the function failed to secure the I2C bus.

[Function Name] Wire.write
Overview Function that sets the send data
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration uint8_t Wire.write(uint8_t data); uint8_t Wire.write(uint8_t *buff, uint8_t bytes);
Description This function stores one character specified for argument 1 or the data block

specified for argument 2 in the send buffer.
Argument 1 uint8_t data Data to be sent
Argument 2 uint8_t *buff

uint8_t byte
Data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 26 of 48
Nov.01.21

[Function Name] Wire_writec
Overview Function that sets the send data
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration uint8_t Wire_writec(uint8_t data);
Description This function stores one character specified for argument 1.

(This function is an internal function that processes 1 character in the Wire.write
function.)

Argument uint8_t data Data to be sent
Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire_writeb
Overview Function that sets the send data
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, and r_cg_userdefine.h
Declaration uint8_t Wire_writeb(uint8_t *buff, uint8_t bytes);
Description This function stores the data of the block specified for an argument in the send

buffer.
(This function is an internal function that processes a block in the Wire.write
function.)

Argument uint8_t *buff
uint8_t bytes

Address of the data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire.endTransmission
Overview Function that sends data to the slave
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, and r_cg_userdefine.h
Declaration void Wire_ endTransmission(uint8_t STOP);
Description This function sends data from the send buffer to the slave.
Argument uint8_t STOP Processing performed when sending is completed:

0: Issues the restart condition to secure the bus.
1: Releases the bus.

Return value uint8_t Result of sending:
0: Success
1: The number of bytes exceeded the buffer size.
2: NACK was replied to the slave address.
3: NACK was replied to the send data.
4: Other errors

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 27 of 48
Nov.01.21

[Function Name] init_LCD
Overview Function that initializes the LCD indicator
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, and r_cg_userdefine.h
Declaration uint8_t init_LCD(void);
Description This function sets the LCD indicator in 16 (characters) x 2 (lines) mode and clears

the display.
Argument None
Return value uint8_t Communication result:

0: Success
2: The LCD indicator does not respond.

[Function Name] print_LCD
Overview Function that sets 1-screen data (16 characters x 2 lines) for the LCD indicator
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, and r_cg_userdefine.h
Declaration void print_LCD(uint8_t *point, uint8_t *point2);
Description This function displays 32 characters from the address passed by an argument on two

lines of the LCD indicator.
Argument uint8_t *point

uint8_t *point2
Specifies the start address of disp_line1.
Specifies the start address of disp_line2.

Return value None

[Function Name] move_cursor
Overview Function that sets the cursor position on the LCD indicator
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, and r_cg_userdefine.h
Declaration void move_cursor(uint8_t col, uint8_t row);
Description This function moves the cursor to the position passed by an argument.
Argument uint8_t col

uint8_t row
Specifies the column position on the line.
Specifies the line position.

Return value None
Remarks After this function is run, the next write operation must not be performed before 60

microseconds elapse.

[Function Name] set_2digit
Overview Function that displays a numeric value with 2-digit ASCII codes on the LCD indicator
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, and r_cg_userdefine.h
Declaration void set_2digit(uint8_t datacode);
Description This function receives hexadecimal or BCD data via arguments, converts the data to

2-digit ASCII codes, and then sends the ASCII codes as display data to the LCD
indicator.

Argument uint8_t datacode 8-bit data code (hexadecimal or BCD data) to be sent to
the LCD indicator

Return value None

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 28 of 48
Nov.01.21

[Function Name] set_1digit
Overview Function that displays a numeric value with a 1-digit ASCII code on the LCD indicator
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, and r_cg_userdefine.h
Declaration void set_1digit(uint8_t datacode);
Description This function receives data via an argument, converts the last 4 bits of the data to an

ASCII code, and then sends the conversion results as display data to the LCD
indicator.

Argument uint8_t datacode Data code to be sent to the LCD indicator (hexadecimal
or BCD data)

Return value None

[Function Name] set_command
Overview Function that sends a command to the LCD indicator
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration uint8_t set_command(uint8_t lcd_command);
Description This function receives a command code via an argument and sends it as a command

to the LCD indicator.
Argument uint8_t lcd_command Command code to be sent to the LCD indicator
Return value uint8_t Communication result:

0: Success
2: The LCD indicator does not respond.

Remarks After this function is run, the next write operation must not be performed before 60
microseconds elapse.

[Function Name] set_data
Overview Function that sends display data to the LCD indicator
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration uint8_t set_data(uint8_t datacode);
Description This function receives a data code via an argument and sends it as data to the LCD

indicator.
Argument uint8_t datacode Data code to be sent to the LCD indicator
Return value uint8_t Communication result:

0: Success
2: The LCD indicator does not respond.

Remarks After this function is run, the next write operation must not be performed before 60
microseconds elapse.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 29 of 48
Nov.01.21

[Function Name] Wire1.begin
Overview Function that prepares for using the I2C bus of PMOD1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1.begin(void);
Description This function initializes IICA0 as a preparation for using the I2C bus.
Argument None
Return value None

[Function Name] Wire1.requestFrom
Overview Function that prepares for receiving data from the slave using the I2C bus of PMOD1

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1.requestFrom(uint8_t saddr7, uint16_t bytes, uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 30 of 48
Nov.01.21

[Function Name] Wire1_requestFromS
Overview Function that prepares for receiving data from the slave using the I2C bus of PMOD1

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1_requestFromS(uint8_t saddr7, uint16_t bytes);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it issues the
stop condition and releases the bus.
(This function is used for the internal processing of Wire1.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes

7-bit slave address
Number of bytes to be received

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

[Function Name] Wire1_requestFromSub
Overview Internal function that prepares for receiving data from the slave using the I2C bus of

PMOD1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1_requestFromSub(uint8_t saddr7, uint16_t bytes, uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.
(This function is an internal function for Wire1.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value None
Remarks g_status: Communication status

If the value that is set is 0x50, startup is successful. Afterward, the value changes
to 0x60 (now receiving), and then to 0x70 (reception completed).

The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:
startup failed
g_erflag: Error flag

0x00: normal, 0x01: buffer overflow, 0x04: other errors
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 31 of 48
Nov.01.21

[Function Name] Wire1.available
Overview Function that returns the number of bytes that can be read from the receive buffer of

Wire1.
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration uint8_t Wire1.available(void);
Description This function uses the Wire1.requestFrom function to receive data and then returns

the number of bytes of the data stored in a buffer.
Argument None
Return value uint8_t Number of bytes that can be read from the buffer

[Function Name] Wire1.read
Overview Function that reads data from the receive buffer
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration uint8_t Wire1.read(void);
Description This function reads data from the buffer.
Argument None
Return value uint8_t Data read from the buffer (or 0x00)

[Function Name] Wire1.beginTransmission
Overview Function that prepares for sending data to the slave on the I2C bus of the Pmod1

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1.beginTransmission(uint8_t saddr7);
Description This function converts the slave address to an 8-bit address, stores it in the "sladdr8"

variable, and then issues the start condition to secure the bus.
Argument uint8_t saddr7 7-bit slave address
Return value uint8_t 0x00: Normal

0x04: Other errors
Remarks g_erflag: Communication status

If the value that is set is 0x00, startup is successful.
If the value is 0x04, the function failed to secure the I2C bus.

[Function Name] Wire1.write
Overview Function that sets the send data to the slave on the I2C bus of the Pmod1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration uint8_t Wire1.write(uint8_t data); uint8_t Wire1.write(uint8_t *buff, uint8_t bytes);
Description This function stores one character specified for argument 1 or the data block

specified for argument 2 in the send buffer.
Argument 1 uint8_t data Data to be sent
Argument 2 uint8_t *buff

uint8_t byte
Data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 32 of 48
Nov.01.21

[Function Name] Wire1_writec
Overview Function that sets the send data to the slave on the I2C bus of the Pmod1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration uint8_t Wire1_writec(uint8_t data);
Description This function stores one character specified for argument 1.

(This function is an internal function that processes 1 character in the Wire1.write
function.)

Argument uint8_t data Data to be sent
Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire1_writeb
Overview Function that sets the send data to the slave on the I2C bus of the Pmod1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration uint8_t Wire1_writeb(uint8_t *buff, uint8_t bytes);
Description This function stores the data of the block specified for an argument in the send

buffer.
(This function is an internal function that processes a block in the Wire1.write
function.)

Argument uint8_t *buff
uint8_t bytes

Address of the data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire1.endTransmission
Overview Function that sends data to the slave on the I2C bus of the Pmod1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1_ endTransmission(uint8_t STOP);
Description This function sends data from the send buffer to the slave.
Argument uint8_t STOP Processing performed when sending is completed:

0: Issues the restart condition to secure the bus.
1: Releases the bus.

Return value uint8_t Result of sending:
0: Success
1: The number of bytes exceeded the buffer size.
2: NACK was replied to the slave address.
3: NACK was replied to the send data.
4: Other errors

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 33 of 48
Nov.01.21

[Function Name] Wire2.begin
Overview Function that prepares for using the I2C bus of PMOD1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2.begin(void);
Description This function initializes IICA0 as a preparation for using the I2C bus.
Argument None
Return value None

[Function Name] Wire2.requestFrom
Overview Function that prepares for receiving data from the slave using the I2C bus of PMOD1

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2.requestFrom(uint8_t saddr7, uint16_t bytes, uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 34 of 48
Nov.01.21

[Function Name] Wire2_requestFromS
Overview Function that prepares for receiving data from the slave using the I2C bus of PMOD1

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2_requestFromS(uint8_t saddr7, uint16_t bytes);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it issues the
stop condition and releases the bus.
(This function is used for the internal processing of Wire2.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes

7-bit slave address
Number of bytes to be received

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

[Function Name] Wire2_requestFromSub
Overview Internal function that prepares for receiving data from the slave using the I2C bus of

PMOD1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2_requestFromSub(uint8_t saddr7, uint16_t bytes, uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.
(This function is an internal function for Wire2.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value None
Remarks g_status: Communication status

If the value that is set is 0x50, startup is successful. Afterward, the value changes
to 0x60 (now receiving), and then to 0x70 (reception completed).

The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:
startup failed
g_erflag: Error flag

0x00: normal, 0x01: buffer overflow, 0x04: other errors
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 35 of 48
Nov.01.21

[Function Name] Wire2.available
Overview Function that returns the number of bytes that can be read from the receive buffer of

Wire2.
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration uint8_t Wire2.available(void);
Description This function uses the Wire2.requestFrom function to receive data and then returns

the number of bytes of the data stored in a buffer.
Argument None
Return value uint8_t Number of bytes that can be read from the buffer

[Function Name] Wire2.read
Overview Function that reads data from the receive buffer
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration uint8_t Wire2.read(void);
Description This function reads data from the buffer.
Argument None
Return value uint8_t Data read from the buffer (or 0x00)

[Function Name] Wire2.beginTransmission
Overview Function that prepares for sending data to the slave on the I2C bus of the Pmod2

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2.beginTransmission(uint8_t saddr7);
Description This function converts the slave address to an 8-bit address, stores it in the "sladdr8"

variable, and then issues the start condition to secure the bus.
Argument uint8_t saddr7 7-bit slave address
Return value uint8_t 0x00: Normal

0x04: Other errors
Remarks g_erflag: Communication status

If the value that is set is 0x00, startup is successful.
If the value is 0x04, the function failed to secure the I2C bus.

[Function Name] Wire2.write
Overview Function that sets the send data to the slave on the I2C bus of the Pmod2 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration uint8_t Wire2.write(uint8_t data); uint8_t Wire2.write(uint8_t *buff, uint8_t bytes);
Description This function stores one character specified for argument 1 or the data block

specified for argument 2 in the send buffer.
Argument 1 uint8_t data Data to be sent
Argument 2 uint8_t *buff

uint8_t byte
Data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 36 of 48
Nov.01.21

[Function Name] Wire2_writec
Overview Function that sets the send data to the slave on the I2C bus of the Pmod2 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration uint8_t Wire2_writec(uint8_t data);
Description This function stores one character specified for argument 1.

(This function is an internal function that processes 1 character in the Wire2.write
function.)

Argument uint8_t data Data to be sent
Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire2_writeb
Overview Function that sets the send data to the slave on the I2C bus of the Pmod2 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration uint8_t Wire2_writeb(uint8_t *buff, uint8_t bytes);
Description This function stores the data of the block specified for an argument in the send

buffer.
(This function is an internal function that processes a block in the Wire2.write
function.)

Argument uint8_t *buff
uint8_t bytes

Address of the data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire2.endTransmission
Overview Function that sends data to the slave on the I2C bus of the Pmod2 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2_ endTransmission(uint8_t STOP);
Description This function sends data from the send buffer to the slave.
Argument uint8_t STOP Processing performed when sending is completed:

0: Issues the restart condition to secure the bus.
1: Releases the bus.

Return value uint8_t Result of sending:
0: Success
1: The number of bytes exceeded the buffer size.
2: NACK was replied to the slave address.
3: NACK was replied to the send data.
4: Other errors

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 37 of 48
Nov.01.21

5.6 Flowcharts
5.6.1 Initial setting function
Figure 5.1 shows the flowchart of the initial setting.

Figure 5.1 Initial setting function

setup

Set the internal switch
control pin:
pinMode()

Set the I2C bus to the master:
Wire.begin()

swPin is set to INPUT.

The I2C bus is set to the master in standard
mode.

Initialize the LCD indicator:
init_LCD()

The LCD indicator is set to 16 (chars) x 2 (lines)
mode.

0xDF is assigned to variable disp_line1[14].

Display the initial values on the
LCD indicator:
print LCD()

15°C is displayed as the temperature and 50%
is displayed as the humidity.

return

Set the font for the degree
display:

Set the I2C bus to the master:
Wire1.begin()

The I2C bus of the Pmod1 connector is set to
380 kbps.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 38 of 48
Nov.01.21

5.6.2 Main Processing Function
Figure 5.2 to Figure 5.5 show a flowchart of the main processing function.

Figure 5.2 Main Function (1/4)

loop

A

Is the value different from
the previous value?

No

Yes

Bits 15 to 4 are read as the elapsed time in
milliseconds.
"millis() & 0x0FFF0" is assigned to variable
time_work.

Update the previous value

Read the elapsed time:
millis()

H

If the difference from the previous value is less than
16 ms, the function ends without performing
processing.

Variable time_work is assigned to variable
old_time.

 Increment the counter by 16 ms "count16ms + 1" is assigned to variable count16ms.

0x01 0x02

B

Receive the switch status Variable sw_work shifted to the left by 1 bit.
"sw_work + swPin" is assigned to variable sw_work.

Extract the change of the switch
status

"sw_work & 0x03" is assigned to variable sw_data:
Lower 2 bits are extracted.

Was an edge detected?

No

Yes

Set the measurement start flag 0x01 is assigned to variable m_time:
The measurement start flag is set.

Has 1 min. elapsed?
No

Yes

Set the measurement start flag
0x01 is assigned to variable m_time:
The measurement start flag is set.

Clear the 1-minute counter
0x0000 is assigned to variable count16ms:
The counter is cleared.

Start flag

Other
values

G

0x03

C

0x04

D

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 39 of 48
Nov.01.21

Figure 5.3 Main Function (2/4)

A

Transmission start processing is performed for
HDC1080.

Update the measurement flag 0x02 is assigned to variable m_time.

H

Start Wire1:
Wire1.beginTransmission()

0x00 is written to the HDC1080 register pointer
(measurement start processing of H1080)

Start transmission:
Wire.endTransmission()

Processing that starts HDC1080 (m_time=1)

0x00 is set as the data to be sent to HDC1080.

Set the sensor start command:
Wire1.write()

C

H

HDC1080 processing that starts reading the
conversion results (m_time=3)

Processing to read 4 bytes is started from
HDC1080.

Start reading from the sensor:
Wire1.requestFrom()

Update the measurement flag 0x04 is assigned to variable m_time.

D

E

HDC1080 processing that reads the conversion
results (m_time=4)

Check the number of bytes
received:

Wire.available()

If 4-byte measurement data has been received, the
measurement data is read.

The number of bytes in the reception buffer is
checked.

H

Was reception
completed?

No

Yes

Read measurement data:
Wire.read()

4-byte measurement data is read by 4 operations.

B

H

Update the measurement flag 0x03 is assigned to variable m_time.

Wait for a specific length of time (m_time=2)

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 40 of 48
Nov.01.21

Figure 5.4 Main Function (3/4)

E

Calculate the humidity data

The calculation result (in units of 0.1°C) obtained
from the 1st and 2nd data is assigned to variable
"humid".

Calculate the temperature data

"-" is assigned to variable disp_line1[9]: A minus
sign (-) is set.

Below zero?

No

Yes

Set a minus sign (-)

100°C or higher?
No

Yes
"1" is assigned to variable disp_line1[9]: The
hundreds place (°C) is set to 1.

Set the tens and subsequent
places

"Variable Work_int - 1000" is assigned to variable
Work_int.

F

Calculating the temperature and humidity from
the measurement data

The calculation result (in units of 0.1°C) obtained
from the 1st and 2nd data is assigned to variable
"temp".

Creating an image of temperature indication
displayed on the LCD indicator

Obtain the absolute value

"0 - variable temp" is assigned to Work_int.

Initialize the working variables Variable temp is assigned to Work_int: The value is
copied.
" " is assigned to variable disp_line1[9]: The

Set the hundreds place to 1

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 41 of 48
Nov.01.21

Figure 5.5 Main Function (4/4)

F

"(work_int + 0x30)" is assigned to variable
disp_line1[10].

"((work_int % 10) + 0x30)" is assigned to variable
disp_line1[13].
"work_int / 10" is assigned to variable work_int.

If variable "humid" is 100, the 100% indication is
displayed.
"1" is assigned to variable disp_line2[12].
"0" is assigned to variable disp_line2[13].
"0" is assigned to variable disp_line2[14].

0x00 is assigned to variable m_time: It is not
when to perform measurement.

G
Creating an image of temperature indication
displayed on the LCD indicator

Set the 1st decimal place (°C)

Set the ones place (°C)

"((work_int % 10) + 0x30)" is assigned to variable
disp_line1[11].
"work_int / 10" is assigned to variable work_int.

Set the tens place (°C)

100%?
No

Yes

Creating an image of humidity indication
displayed on the LCD indicator

Set the indication of 100%

Clear the hundreds place (%)
" " is set for variable disp_line2[12]: A blank
is set.

Set the tens and subsequent
places (%)

"(humid % 10) + 0x30" is assigned to variable
disp_line2[14].
"(humid / 10) + 0x30" is assigned to variable
disp_line2[13].

Clear the measurement start
flag

return

The information displayed on the LCD indicator is
updated.

Transfer the data to be displayed:
print_LCD()

H

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 42 of 48
Nov.01.21

5.6.3 LCD Indicator Initialization Function
Figure 5.6 shows a flowchart of the LCD indicator initialization function.

Figure 5.6 LCD Indicator Initialization Function

init_LCD

The CLRDISP command is set for the LCD indicator.

2 is set as the return value and processing ends.

Set a return value indicating an
error

The function waits for a time longer than the timeout
value of the clear command.

Processing ends with the return value 0.

Clear the LCD indicator:
set_command()

Communication error
occurred?

No

Yes

Wait for 3 ms:
delay()

return

The LCD_Mode command is set for the LCD
indicator: 5x8 dots on 2 lines

Set the operation mode:
set_command()

The function waits for a time longer than the timeout
value of the operation mode command.

Wait for 60 µs:
delayMicroseconds()

The DISPON command is set for the LCD indicator:
Indication is turned on but no cursor is displayed.

Permit display:
set_command()

The function waits for a time longer than the timeout
value of the DISPON command.

Wait for 60 µs:
delayMicroseconds()

The ENTRY_Mode command is set for the LCD
indicator: After data is set, control moves to the right.

Set the input mode:
set_command()

The function waits for a time longer than the timeout
value of the ENTRY_Mode command.

Wait for 60 µs:
delayMicroseconds()

return

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 43 of 48
Nov.01.21

5.6.4 Function that Sets Full-Screen Display for the LCD Indicator
Figure 5.7 and Figure 5.8 show a flowchart of the function that sets full-screen display for the LCD indicator.

Figure 5.7 Function that Sets Full-Screen Display for the LCD Indicator (1/2)

The argument is assigned to variable p_addr.

Set a data display pointer

Move the pointer to the
beginning of line 1:

move_cursor()

Set the data display pointer at the beginning of
line 1.

*p_addr is assigned to variable data. Read the data to be displayed

print_LCD

Transfer the data to be displayed:
work = 0,work =16,+1

Is the data null?
No

Yes
Replace the indication by a

space
" " is assigned to variable "data": The value is
replaced by a space (0x20).

Send the data to be displayed:
set_data()

The data to be displayed is sent to the LCD
indicator.

Update the pointer "p_addr + 1" is assigned to variable p_addr.

"Argument + 40" is assigned to variable p_addr.

Set a data display pointer

Move the pointer to the
beginning of line 2:

move cursor()

Set the data display pointer at the beginning of
line 2.

 A

Wait for 60 µs:
delayMicroseconds()

The function waits until a data write becomes
possible again.

The function continues to send data to be displayed
while the "work" counter is incremented from 0 to 15
and exits the loop when the counter value becomes
16.

Transfer the data to be
displayed:

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 44 of 48
Nov.01.21

Figure 5.8 Function that Sets Full-Screen Display for the LCD Indicator (2/2)

return

*p_addr is assigned to variable data. Read the data to be displayed

Transfer the data to be displayed:

work = 0, work = 16,+1

 Transfer the data to be
displayed:

Is the data null?
No

Yes
Replace the indication by a

space
" " is assigned to variable "data": The value is
replaced by a space (0x20).

Send the data to be displayed:
set_data()

The data to be displayed is sent to the LCD
indicator.

Update the pointer "p_addr + 1" is assigned to variable p_addr.

A

Wait for 60 µs:
delayMicroseconds()

The function waits until a data write becomes
possible again.

The function continues to send data to be displayed
while the "work" counter is incremented from 0 to
15 and exits the loop when the counter value
becomes 16.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 45 of 48
Nov.01.21

5.6.5 Function that Sets the Data Display Position for the LCD Indicator
Figure 5.9 shows a flowchart of the function that sets the data display position for the LCD indicator.

Figure 5.9 Function that Sets the Data Display Position for the LCD Indicator

5.6.6 Function that Sets a Command for the LCD Indicator
Figure 5.10 shows a flowchart of the function that sets a command for the LCD indicator.

Figure 5.10 Function that Sets a Command for the LCD Indicator

set_command

COMBYTE is assigned to variable
g_lcd_commmand[0]. Set the command byte

Set the send data:
Wire.write()

return

The argument is assigned to variable
g_lcd_commmand[1].

Set the command code

Specify the slave:
Wire.beginTransmission()

The slave address of the LCD indicator is specified.

The content of variable g_lcd_commmand is set in
the buffer.

Send data to the LCD indicator:
Wire.endTransmission()

Transmission to the LCD indicator is performed.

The function sets the processing status (transmission
result) as a return value and control returns.

move_cursor

The DDRAM address specification command is set
for the LCD indicator.

The argument is included in the DDRAM address
specification command of the LCD indicator.

Create a cursor movement
command

Send the command:
set_command()

return

The function waits until a data write becomes
possible again.

Wait for 60 µs:
delayMicroseconds()

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 46 of 48
Nov.01.21

5.6.7 Function that Sets Data for the LCD Indicator
Figure 5.11 shows a flowchart of the function that sets data for the LCD indicator.

Figure 5.11 Function that Sets Data for the LCD Indicator

set_data

DATABYTE is assigned to variable g_lcd_data[0].

Set the command byte

Set the send data:
Wire.write()

return

The argument is assigned to variable g_lcd_data[1].

Set the command code

Specify the slave:
Wire.beginTransmission()

The slave address of the LCD indicator is specified.

The content of variable g_lcd_data is set in the
buffer.

Send data to the LCD indicator:

Wire.endTransmission()
The content of variable g_lcd_data is set in the
buffer.

The function sets the processing status (transmission
result) as a return value and control returns.

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 47 of 48
Nov.01.21

6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
RL78/G14 User's Manual: Hardware (R01UH0186)
RL78 family User's Manual: Software (R01US0015)
RL78/G14 Fast Prototyping Board User’s Manual (R20UT4573)
(The latest versions can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest versions can be downloaded from the Renesas Electronics website.)

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

RL78/G14 I2C Bus Control Using Simplified IIC (Arduino API)

R01AN5888EJ0100 Rev.1.00 Page 48 of 48
Nov.01.21

Revision History

Rev. Date
Description
Page Summary

1.00 2021.11.01 — First Edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	1.1 Program Execution Environment
	1.2 Program (Sketch) Configuration
	1.3 Preparations for Project Startup
	1.4 Definitions in the Program (sketch)
	1.5 Initial Setting Processing
	1.6 Main Processing Part
	1.7 Data Processing Performed by HDC1080

	2. Operating Conditions
	3. Related Application Notes
	4. Hardware
	4.1 Example of Hardware Configuration
	4.2 List of Pins Used

	5. Software
	5.1 Summary of Operation
	5.2 List of Constants
	5.3 List of Variables
	5.4 List of Functions
	5.5 Specification of Functions
	5.6 Flowcharts
	5.6.1 Initial setting function
	5.6.2 Main Processing Function
	5.6.3 LCD Indicator Initialization Function
	5.6.4 Function that Sets Full-Screen Display for the LCD Indicator
	5.6.5 Function that Sets the Data Display Position for the LCD Indicator
	5.6.6 Function that Sets a Command for the LCD Indicator
	5.6.7 Function that Sets Data for the LCD Indicator

	6. Sample Code
	7. Reference Documents
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

