REN ESAS Application Note

Integrated Development Environment e? studio
How to use CUnit in e? studio (GCC for RX)

Introduction

CUnit is a system for writing, administering, and running unit tests in C. It is built as a library (static or
dynamic) which is linked with the user's testing code.

CUnit uses a simple framework for building test structures and provides a rich set of assertions for testing
common data types. In addition, several different interfaces are provided for running tests and reporting
results.

This document describes how to use CUnit to automate unit testing using Renesas GCC Executable projects
created in e? studio.

Contents

1 OVEBIVIBW ...ttt oot e et ettt e et e e e e e e e e e e e e e e e e s 2
PRt O U o o1 PSR 2
1.2 Operating ENVIFONMENToiiii et e e eb e e e bre e e e 2
R I O U 11 = =T =T o= PRSP 2
2. Getting started With CUNIT ... 3
b2 B = 101 o [To T @ 8 o1y AT o] = Y PP EP PR 3
2.2 Performing unit testing using CUNIt...........ooiiiiii e 5
3. Reference iNfOrmMation e 13
1 Tt B A= o 113 (=Y T U o] Lo) o USRS 13
3.2 When using other devices or compiler or debUQJET........coouuiiiiiiiiii i 13
REVISION HISTOMY ...t e e e et e e e e e e e e et e e e e e e e e e e e aaae 15

R20ANO0525EE0102 Rev.1.02 Page 1 of 15
Jul.12.22 RENESAS

Integrated Development Environment e? studio

How to use CUnit in e? studio (GCC for RX)

1. Overview

1.1 Purpose

This document describes how to use CUnit to automate unit testing using Renesas GCC Executable projects
created in e? studio.

1.2 Operating Environment

Target device

RX610

IDE

e? studio 2021-07

Toolchains

GCC for Renesas RX C/C++ Toolchain v 8.3.0.202102

CUnit version

21.2

1.3 CuUnit references

Further information about CUnit can be referred in http://cunit.sourceforge.net/doc/index.html.

R20AN0525EE0102 Rev.1.02

Jul.12.22

RENESAS

Page 2 of 15

http://cunit.sourceforge.net/doc/index.html

Integrated Development Environment e? studio How to use CUnit in e? studio (GCC for RX)

2. Getting started with Cunit
This section shows how to setup CUnit to e? studio.
[Important notes]

. Download and use CUnit-2.1-2. CUnit--2.1-3 has some problems which causes build errors.
Besides, CUnit-2.1-2 package lacks header file “ExampleTests.h”. Don’t build examples.

. The compiler (and Windows system) does not support “curse” module. Don’t build “curse”.

2.1 Building CUnit library

CUnit can be built to be a static library to be linked to user’s code. This section shows how to build the static
library.

1) Download CUnit-2.1.2 from https://sourceforge.net/projects/cunit/files/CUnit/2.1-2/. Extract compressed
file to get CUnit package.

2) Launch e? studio. In "C/C++" perspective, click [File] > [New] > [Renesas C/C++ Project] > [Renesas
RX].

3) Inthe [Templates for New C/C++ Project] dialog, choose Renesas RX in the left-hand margin and "GCC
for Renesas RX C/C++ Library Project" and click [Next >] button.

¢’ New C/C++ Project

Templates for Renesas RX Project

GCC for Renesas RX C/C++ Executable Project A~
C/C++ &\ A C/C++ Executable Project for Renesas RX using the
GCC for Renesas RX Toolchain.

GCC for Renesas RX C/C++ Library Project
= A O/C++ Library Project for Renesas RX using the GCC
for Renesas RX Toolchain.

Renesas CC-RX C/C++ Executable Project
PN A (/C++# Project for Renesas RX using the Renesas

A he -
L4 >

Figure 1 New C/C++ Library Project
4) In [Project name:] enter the name "CUnit" and click [Next >] button.

5) In the [Select toolchain, device & debug settings] page, enter the following information (other values can
remain at default):

e Toolchain: "GCC for Renesas RX"
. Toolchain Version: "8.3.0.202102" or later version
e Target Device: e.g.; "R5F56107VxFP"

R20ANO0525EE0102 Rev.1.02 Page 3 of 15
Jul.12.22 RENESAS

https://sourceforge.net/projects/cunit/files/CUnit/2.1-2/

Integrated Development Environment e? studio How to use CUnit in e? studio (GCC for RX)

GCC for Renesas RX —

Select toolchain, device debug settings

Toolchain Settings

Language: ®C O C++

Toolchain: GCC for Renesas RX b

Toolchain Version: | 8.3.0.202102 ~
Manage Toolchains...

Device Settings

Target Board: |Custom v

Download additional boards...

Target Device: | RSFS6107VxFP

Unlock Devices...
Endian: |Little v

Project Type: | Default

‘:?,\‘ < Back Next > | Cancel

Figure 2 Toolchain and device settings

6) Click [Finish] button.
7) In the Project Explorer view, expand the CUnit project and delete files in the folder "src".

8) From the CUnit directory, downloaded and extracted previously, copy Headers and Sources
subdirectories in CUnit into the "src" folder in CUnit library project. This can be accomplished, in
Windows, using either the clipboard or by drag and drop from a File Explorer into e€? studio.

9) In the CUnit library project "Sources" folder, delete the "Curses", "Test" and "Win" folders. Optionally,
delete all files called "Makefile.*" from the "Sources" folder.

10) The project should resemble the figure below:

Pl Project Explorer X
v =% CUnit [Debug]
[t Includes

v (@ src
> Headers
v (= Sources
(&= Automated
&= Basic
= Console
&= Framework

Figure 3 Copied files to e? studio project

11) Open project properties, select [C/C++ Build] > [Settings], [Compiler] > [Includes], then in [Include file
directories (-1)] click [Add...] button and add include file directory
"${workspace_loc:/${ProjName}/src/Headers}". Next click [Apply and Close] button.

R20ANO0525EE0102 Rev.1.02 Page 4 of 15
Jul.12.22 RENESAS

Integrated Development Environment e? studio How to use CUnit in e? studio (GCC for RX)

e Properties for CUnit

type filter text ‘ Settings
Resource A
~
Builders
v C/C++ Build Configuration: |Debug [Active] ~ | Manage Configurations...

Build Variables
Environment

Logging ® Tool Settings) Toolchain & Device # Build Steps Build Artifact iy Binary Parsers |+ *
Settings
Tool Chain Editor & cru Include file directories (1) 885
C/C++ General (2 Optimization
Mcu (= Debug
Project Natures 2 Wamnings
Project References v 1§ Compiler
Renesas QF (# Source
Run/Debug Settings (2 Includes
Task Tags 5 List :
LV | . = | e O] e
.f-\
kg,‘ Apply and Close Cancel

Figure 4 Add CUnit Header files directory to build setting

12) Build the project. The file “libCUnit.a” will appear inside the “Archives” folder, as shown in the figure
below.

v =% CUnit [Debug]
v H_% Archives
O libCUnit.a
(st Includes

2 src
&= Debug

Figure 5 Output static library

The CUnit library file, “libCUnit.a”, can now be used in any C/C++ project to provide a CUnit test framework.

2.2 Performing unit testing using CUnit
1) In"C/C++" perspective, click [File] > [New] > [Renesas C/C++ Project] > [Renesas RX].

2) Inthe [Templates for New C/C++ Project] dialog, choose Renesas RX in the left-hand margin and "GCC
for Renesas RX C/C++ Executable Project" and click [Next >] button.

R20ANO0525EE0102 Rev.1.02 Page 5 of 15
Jul.12.22 RENESAS

Integrated Development Environment e? studio How to use CUnit in e? studio (GCC for RX)

e’ New C/C++ Project

Templates for Renesas RX Project

GCC for Renesas RX C/C++ Executable Project A
C/C++ (== A (/C++ Executable Project for Renesas RX using the
GCC for Renesas RX Toolchain.

GCC for Renesas RX C/C++ Library Project
PN A (/C++ Library Project for Renesas RX using the GCC
for Renesas RX Toolchain.

Renesas CC-RX C/C++ Executable Project
RN A+ Pr?rbcr for Renesas RX using the Renesas

ANV he o

< >

Figure 6 New Executable C/C++ project
3) In[Project name:] enter the name "SampleCUnit" and click [Next >] button.

4) In the [Select toolchain, device & debug settings] page, enter the following information (other values can
remain at default):

* Toolchain: "GCC for Renesas RX"

* Toolchain Version: "8.3.0.202102"

e Target Device: e.g.; "R5F56107VxFP"

* Uncheck [Create Hardware Debug Configuration]

e Check [Create Debug Configuration] for “RX Simulator”.

R20ANO0525EE0102 Rev.1.02 Page 6 of 15
Jul.12.22 RENESAS

Integrated Development Environment e? studio

How to use CUnit in e? studio (GCC for RX)

GCC for Renesas RX

Select toolchain, device debug settings

Toolchain Version:

Toolchain Settings
Language: @®C O)Ce++
Toolchain: GCC for Renesas RX w

8.3.0.202102 b

Manage Toolchains...

RTOS: None N

RTOS Version:

Device Settings Configurations

Target Board: | Custom v ‘ I [] Create Hardware Debug Configuration I

Download additional boards...

E1(RX) v

Target Device: | RSFS6107VxFP

[Create Debug Configuration

Endian: | Little

)

Project Type: ' Default

Unlock Devices...
RX Simulator v

v

[] Create Release Configuration

< Back Finish Cancel

Figure 7 Toolchain and device settings

5) Keep clicking [Next >] button until the [Select library generator settings] page is reached. In [Select
Library Source] choose "Newlib" and in [Select Library Type] choose the default "Project-Built". Click
[Finish] button.

GCC for Renesas RX —
Select library generator settings '
Select Library Source:
Optimized ® Newlib
Use this for further code size optimization.
Select Library Ty pe:
|© Project-Built () Pre-Built
Build the library with user specified options
@' < Back Next > Cancel
Figure 8 Select library generator settings
6) Create the following new files to be tested in “src” folder:

. source.h

#ifndef SOURCE H_
#define SOURCE H

R20AN0525EE0102 Rev.1.02
Jul.12.22

Re Page 7 of 15
RENESAS

Integrated Development Environment e? studio How to use CUnit in e? studio (GCC for RX)

int add(int a, int b);
int subtract (int a, int b);

#endif
/* SOURCE H */

source.c

#include "source.h"
int add(int a, int b) {

return a + b;

int subtract (int a, int b) {
return a - b;

testsource.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "CUnit.h"
#include "source.h"

// This is a test case used to test add() function in source.c
static void test Add 01 (void) {
// Equal Assertion is used in this test case.
// 1 is expected value, and add(1l,0) is actual return value.
// If expected value is not same, assertion occurs.
// We can refer the Reference document for the other useful
assertion.
CU _ASSERT EQUAL (1, add(1,0));
}

static void test Add 02 (void) {
CU_ASSERT EQUAL (10, add(1,9));
}

// This is a test case used to test subtract() function in source.c
static void test Subtract (void) {
// 0 is expected value, and subtract(l,1) is actual return value.
// If expected value is not same, assertion occurs.
CU_ASSERT EQUAL (0, subtract(l,1));
}

// This is a test suite

static CU TestInfo tests Add[] = {
// Register test case to test suite
{"test Add 01", test Add 01},
{"test Add 02", test Add 02},
CU TEST INFO NULL,

bi

static CU TestInfo tests Subtract[] = {
{"test Subtract", test Subtract},

R20AN0525EE0102 Rev.1.02 Page 8 of 15

Jul.12.22

RENESAS

Integrated Development Environment e? studio How to use CUnit in e? studio (GCC for RX)

CU TEST INFO NULL,
}s

// Declare the test suite in SuitelInfo

static CU SuiteInfo suites[] = {
{"TestSimpleAssert AddSuite", NULL, NULL, tests Add},
{"TestSimpleAssert SubtractSuite", NULL, NULL, tests Subtract},
CU SUITE INFO NULL,

}i

void AddTests (void) {
// Retrieve a pointer to the current test registry

assert (NULL != CU get registry()):;

// Flag for whether a test run is in progress
assert (!CU_is test running()):;

// Register the suites in a single CU SuiteInfo array

if (CU_register suites(suites) != CUE_SUCCESS) {
// Get the error message
printf ("Suite registration failed - %s\n", CU get error msg());

exit (EXIT FAILURE) ;
}

7) Replace the contents of the existing source file, “SampleCUnit.c”, and add code to run the test

e SampleCUnit.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "Basic.h"

int main (void);
extern void AddTests () ;

int main (void)

{
// Define the run mode for the basic interface
// Verbose mode - maximum output of run details
CU BasicRunMode mode = CU BRM VERBOSE;

// Define error action

// Runs should be continued when an error condition occurs (if
possible)

CU ErrorAction error action = CUEA IGNORE;

// Initialize the framework test registry
if (CU_initialize registry()) {
printf ("Initialization of Test Registry failed.\n");
}
else {
// Call add test function
AddTests () ;

// Set the basic run mode, which controls the output during test
runs

R20ANO0525EE0102 Rev.1.02 Page 9 of 15
Jul.12.22 RENESAS

Integrated Development Environment e? studio

How to use CUnit in e? studio (GCC for RX)

CU basic set mode (mode) ;

// Set the error action

CU basic run tests());

CU cleanup registry();
}

return O;

}

CU set error action(error action);

// Run all tests in all registered suites
printf ("Tests completed with return value %d.\n",

// Clean up and release memory used by the framework

8) Create the following new files to be tested in “generate” folder:

J sbrk.c

void*
sbrk (int incr)

{

static char * heap end;
char * prev _heap end;

if (heap end == 0)
heap end = &end;

prev_heap end = heap end;
heap end += incr;

extern char end; /* Set by linker. */

return (void *)prev heap end;

9) Edit the file generate/start.S and change the definition of _exit: so it is empty. This will allow the program

to terminate at the end of the test run.

. Generate/start.S

/* call to exit*/

_exit:
brk
/*
mov #0, r2
mov # call exitprocs, r7
jsr r7

_loop here:
bra loop here
*/

.text
.end

R20AN0525EE0102 Rev.1.02

Page 10 of 15

Jul.12.22 RENESAS

Integrated Development Environment e? studio

How to use CUnit in e? studio (GCC for RX)

10) Open project properties, select [C/C++ Build] > [Settings], [Compiler] — [Includes], then in [Include file
directories (-1)] click [Add...] button and add the include file directory from the CUnit project,
"${workspace_loc:/CUnit/src/Headers}".

¢’ Properties for SampleCUnit

type filter text ‘

» Resource
Builders
w (/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
MCU
Project Natures
Project References
Renesas QE
Run/Debug Settings
Task Tags
Validation

@

Settings

Configuration:

& Tool Settings & Toolchain & Device # Build Steps

& cru
(% Optimization
(33 Debug
Warnings
» B3 Library Generator
v 83 Compiler
(2 Source
(2 Includes
(=2 List

Debug [Active]

Include file directories (-1)

~ | | Manage Configurations...

Build Artifact [} Binary Parsers | ! -_'

"${workspace_loc:/CUnit/src/Headers}"

Apply and Close

Cancel

11) In [Linker] > [Source], [Additional input files], add the CUnit library
"${workspace_loc:/CUnit/Debug/libCUnit.a}".

¢’ Properties for SampleCUnit

Figure 9 Add CUnit header files to build

|b,-pe filter text ‘

» Resource ~
Builders
v /C++ Build
Build Variables
Environment

Settings
e,
v 18 Linker
l:% Source
(2 Archives
(2 Miscellaneous

Logging (2 Other Additional input files
S o R
el ® Objcopy "${workspace loc:/CUnit/Debug/libCUnit.a}"
Tool Chain Editor B Print Size
C/C++ General y
s AACLL >

¢))

Apply and Close

Cancel

¢’ Properties for SampleCUnit

Figure 10 Add CUnit library to linker

12) In [Optimization], tick the [No common uninitialized (-fno-common)] checkbox, as in the figure below,
and click [Apply and Close] button.

|v,-pe filter text

Resource ~
Builders
v C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
» MCU
Project Natures v

@

Settings

& cru
(%2 Optimization
(2 Debug
(# Wamnings
B Library Generator
> B Compiler
&) Assembler
» B3 Linker
» & Objcopy
» B Print Size

Optimization Level None(-00)

[Function sections (-ffunction-sections)

EI Data sections (-fdata-sections)

[[] Link-time optimizer (-flito)

Section anchors

fsection-anchors)

[No commen uninitialized (-fno-commaon) I

] Enable linker relaxation (-mrelax)

— -

[[] Perform the loop unrolling optimization (-funroll-loops)

Apply and Close

2
- ~ §
)
w
v
Cancel

Figure 11 Check Optimization setting

R20AN0525EE0102 Rev.1.02
Jul.12.22

RENESAS

Page 11 of 15

Integrated Development Environment e? studio How to use CUnit in e? studio (GCC for RX)

13) In [Link] > [Other], [User defined options], click [Add...] button and add option "-msim". Then, click [Apply
and Close] button.

¢ Properties for SampleCUnit

Settings

w 183 Linker

» Resource A -
Builders &? Optimization User defined options o)
v /C++ Build g Debug
Build Variables 2 Wamings
Environment) Library Generator
Logging » B Compiler
Settings i Assembler

Tool Chain Editor
C/C++ General
Mcu
Project Natures

&4 Source
(2 Archives
L,?_-"E Miscellaneous

Project References & _Other
Renesas QF v | » & Objcopy L
(?:‘J Apply and Close Cancel

Figure 12 Add user defined option

14) Build the project.

15) To run the test harness on a GDB simulator use rx-elf-run in the Terminal view. To do this, expand the
Binaries node in the Project Explorer, select the SampleCUnit.elf file, and from the context menu choose
[Show In Local Terminal] > [Terminal]. The Terminal view opens in the directory containing the
SampleCUnit.elf file.

16) In the Terminal view, enter "rx-elf-run SampleCUnit.elf" and press enter. The test result is displayed in
the Terminal view, as shown in the figure below:

There is "rx-elf-run.exe" in the "<GCC for Renesas RX install folder>\rx-elf\rx-elf\bin" folder. Be sure
to add that folder to the "Path" environment variables.

e.g.; set PATH=<GCC for Renesas RX install folder>\rx-elf\rx-elf\bin;%PATH%

s Terminal X

E:\e2_studio\workspace_cunit\SampleCUnit\Debug>rx-elf-run SampleCUnit.elf "

CUnit - A unit testing framework for C - Version 2.1-2
http://cunit.sourceforge.net/

Suite: TestSimpleAssert_AddSuite
Test: test_Add_@l1 ...passed

Test: test_Add_@2 ...passed

Suite: TestSimpleAssert_SubtractSuite

Test: test_Subtract ...passed
Run Summary: Type Total Ran Passed Failed Inactive
suites 2 2 n/a -] e
tests 3 3 3 2] e
asserts 3 3 3 e n/a

Elapsed time = -4293394.500 sec
Tests completed with return value 8.

E:\e2_studio\workspace_cunit\SampleCUnit\Debug:f]

Figure 13 Executing test program in Terminal view

R20AN0525EE0102 Rev.1.02 Page 12 of 15

Jul.12.22 RENESAS

Integrated Development Environment e? studio

How to use CUnit in e? studio (GCC for RX)

3. Reference information
3.1 Website and Support

3.2 When using other devices or compiler or debugger

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

GNU Tools for Renesas RX/RL78
https://llvm-gcc-renesas.com

This document assumes an environment that combines rx-elf-run (simulation environment for GCC RX) and
printf, but in the debugger for Arm cores, console output is possible by semi-hosting function etc. In addition,
even if the emulator does not have a console output function and output with printf cannot be performed, it is
possible to display on the console by using "Dynamic printf".

You can see how to use "Dynamic printf" in the video on the following page.

e? studio Tips - How to Use Printf Debugging Without Changing the Source Code (Using Dynamic Printf) |

Renesas

[Example]

If you create your own printf as shown below and specify "dynamic printf" there, you can get the same result

as in this

document.

xprintf.h

#ifndef XPRINTF H
#define XPRINTF H

#define printf xPrintf

#endif

void xPrintf (const char* format,

L)

xprintf.c

{
static char szBuf[512];
va_list ap;
va_start (ap, format);

vsprintf (szBuf, format, ap);

void xPrintf (const char* format,

void xPrintf (const char* format,

L)

.)

va_end (ap) ; /* here place Dynamic Printf as "%s",szBuf */

R20AN0525EE0102 Rev.1.02

Jul.12.22

RENESAS

Page 13 of 15

http://www.renesas.com/
https://llvm-gcc-renesas.com/
https://www.renesas.com/us/en/video/e-studio-tips-how-use-printf-debugging-without-changing-source-code-using-dynamic-printf
https://www.renesas.com/us/en/video/e-studio-tips-how-use-printf-debugging-without-changing-source-code-using-dynamic-printf

Integrated Development Environment e? studio How to use CUnit in e? studio (GCC for RX)

R20ANO0525EE0102 Rev.1.02 Page 14 of 15
Jul.12.22 RENESAS

Integrated Development Environment e? studio How to use CUnit in e? studio (GCC for RX)

Revision History

Description

Rev. Date Page Summary

1.00 Oct 29,2018 - First edition issued

1.01 Jul 26, 2021 All Update all according with e? studio 2021-07 environment.

1.02 Jul 12,2022 Page 1,2 | - Delete the procedure for the combination with Jenkins since it
is insufficient description of it. (That procedure in detail will be
described by other application note.)

Page 13 - Add the explanation of “Dynamic printf”.

R20AN0525EE0102 Rev.1.02

Jul.12.22

ReNEs Page 15 of 15
| | IS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi. (Max.) and Vix (Min.).
7. Pronhibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2022 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Purpose
	1.2 Operating Environment
	1.3 CUnit references

	2. Getting started with Cunit
	2.1 Building CUnit library
	2.2 Performing unit testing using CUnit

	3. Reference information
	3.1 Website and Support
	3.2 When using other devices or compiler or debugger

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

