

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0090-0100/Rev.1.00 February 2010 Page 1 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

Summary
This document describes how to use the real-time OS aware debugging making use of High-performance
Embedded Workshop.

The real-time OS aware debugging can be used for the following real-time OSes.

Corresponding Real-Time OS:

• HI7200/MP
• HI7750/4
• HI7700/4
• HI7000/4
• RI600/4
• M3T-MR30/4
• HI1000/4
• Smalight OS
• ThreadX
• NORTi
• osCAN
• μC/OS-II
• embOS
• μT-Kernel
• TOPPERS/ASP
• TOPPERS/JSP

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 2 of 33

Contents

1. Introduction ...3

2. Overview of Real-time OS aware debugging ...4

2.1 Operating Environment ..4

3. Quick Start Guide..7

3.1 Downloading a Program using Real-time OS..7
3.2 Selecting the OS Definition File ...8
3.3 Executing the Program ..9
3.4 Referring to the Task State ..10
3.5 Displaying the Task Execution History ..11
3.6 Displaying the Task Execution Time..11

4. Functions ..12

4.1 List of Functions...12
4.2 Functional Descriptions..14

5. Notes...28

6. FAQ...30

7. Website and Support ..31

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 3 of 33

1. Introduction
This application note is for customers using the real-time OS aware debugging of High-performance
Embedded Workshop.

This document describes the functions using the following environment. It is assumed that the real-time OS
and High-performance Embedded Workshop have been installed in the host PC in advance. For the
installation method, refer to the manual for each product.

[Environment in which operation was confirmed]

(1) Host PC: Windows Vista®, Windows®XP, Windows®2000

(2) High-performance Embedded Workshop V.4.06.00

(3) Real-time OS for SuperH Family manufactured by Renesas Technology Corp.
 [HI7000/4 V.2.02 Release 05]

(4) SuperH Family RISC engine simulator/debugger V.9.09.00

High-performance Embedded Workshop
Real-time OS aware debugging

2. Overview of the Real-time OS aware debugging
The real-time OS aware debugging are functions for supporting task-level debugging of the real-time OS
application on High-performance Embedded Workshop. High-performance Embedded Workshop
incorporates these functions as standard functions. The real-time OS does not have to be built again and it
does not have an overhead. (Debug patches are unnecessary.)

Figure 2.1 Real-time OS aware debugging

2.1 Operating Environment
The operating environment of the real-time OS aware debugging is as follows:

• Host machine

Windows Vista®, Windows®XP, Windows®2000

• High-performance Embedded Workshop

V.4.06.00 or later

REJ06J0090-0100/Rev.1.00 February 2010 Page 4 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 5 of 33

• Corresponding Real-Time OS

Table 2.1 List of Corresponding Real-Time OS

Real-time OS Microcomputers

Real-time OS for SuperH Family
manufactured by Renesas [HI7200/MP]

V.1.00 Release 03 or later SH2A-DUAL

Real-time OS for SuperH Family
manufactured by Renesas [HI7750/4]

V.2.02 Release 04 or later SH-4, SH-4A

Real-time OS for SuperH Family
manufactured by Renesas [HI7700/4]

V.2.03 Release 02 or later SH4AL-DSP, SH-3, SH3-DSP

Real-time OS for SuperH Family
manufactured by Renesas [HI7000/4]

V.2.02 Release 04 or later SH-2, SH2-DSP, SH-2A, SH-1

Real-time OS for RX Family manufactured
by Renesas [RI600/4]

V.1.00 Release 00 or later RX Family*

M16C/60, M16C/50, M16C/30,
M16C/20, M16C/10, M16C/Tiny Series

Real-time OS for M16C Series, R8C
Family manufactured by Renesas
[M3T-MR30/4]

V.4.00 Release 00 or later

R8C Family

H8SX Family Real-time OS for H8SX, H8S Family
manufactured by Renesas [HI1000/4]

V.1.05 Release 01 or later

H8S Family

SH-2

RX Family*

M16C/60, M16C/30, M16C/Tiny Series

R8C Family

H8SX Family

H8S Family

Smalight OS manufactured by Renesas
Northern Japan Semiconductor, Inc.

V3.10 or later

H8 Family

ThreadX manufactured by Express Logic,
Inc.

G5.1.5.0 SH-2A

Version4 Release 1.20 SH-4A, SH-2A

H8SX Family

NORTi manufactured by MiSPO Co., Ltd.

Version4 Release 1.14

H8S Family

M16C/60, M16C/Tiny Series osCAN manufactured by Vector Informatik
GmbH

Version 3.05

R8C Family

V2.86 (AN-Renesas-SH7201) SH-2A

V2.89 RX Family*

V2.83 (AN-1662) M16C/60 Series

H8SX Family

μC/OS-II manufactured by Micrium

V2.86
(AN-Renesas-H8S2215R,
AN-Renesas-H8S2472,
AN-Renesas-H8SX1664)

H8S Family

embOS* manufactured by SEGGER
Microcontroller

Version 3.80g SH-2A

μT-Kernel by T-Engine Forum v1.00.00 M16C/62P Group

Release 1.3.1 SH-2A TOPPERS/ASP by TOPPERS Project

Release 1.3.2 M16C/60 Series

H8/3048 Group TOPPERS/JSP by TOPPERS Project Release 1.4.3

H8S/2350 Group

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 6 of 33

Corresponding Debuggers Table 2.2 List of Corresponding Debuggers

Debugger Supported Microcomputers Debugger Version Support Status

SuperH Family V.9.08.00 or later

RX Family* V.1.00.00 or later

Simulator/debugger

H8SX, H8S, H8 Family V.5.07.00 or later

Already
supported

E1 emulator debugger RX Family* ⎯ Planned to be
supported

E20 emulator debugger RX Family* ⎯ Planned to be
supported

SuperH Family, H8SX Family,
H8S Family

V.3.00 Release 00 or
later

Already
supported

E10A-USB emulator debugger

SH2A-DUAL, SH4A-MULTI ⎯ Planned to be
supported

E8a emulator debugger M16C Series, R8C Family,
H8 Family

V.1.02 Release 00 or
later

Already
supported

E100 emulator debugger M16C Series, R8C Family,
H8SX Family

V.1.00 Release 00 or
later

Already
supported

E200F emulator debugger SH-2A ⎯ Planned to be
supported

• Corresponding Compilers
⎯ C/C++ compiler package for SuperH Family V.9.02 Release 00 or later
⎯ C/C++ compiler package for RX Family V.1.00 Release 00 or later
⎯ C/C++ compiler package for M16C Series, R8C Family [M3T-NC30WA] V.5.43 Release 00 or later
⎯ C/C++ compiler package for H8SX, H8S, H8 Family V.6.02 Release 00 or later

Note: * Supported by High-performance Embedded Workshop V.4.07.00 or later.

High-performance Embedded Workshop
Real-time OS aware debugging

3. Quick Start Guide
This section describes how to use the basic functions (refer to the object state, display the task execution
history, etc.) of the real-time OS aware debugging of High-performance Embedded Workshop.

Workspaces of High-performance Embedded Workshop using the real-time OS should be prepared in
advance. For the method of creating a workspace, refer to the manual or online help of both the real-time
OS and High-performance Embedded Workshop.

In the subsequent descriptions, the real-time OS "HI7000/4" and the SuperH Family simulator/debugger
which are both manufactured by Renesas Technology Corp. are used. The real-time OS aware debugging is
used in a similar manner even when using other real-time OS products or debuggers.

3.1 Downloading a Program using Real-time OS
Launch High-performance Embedded Workshop, open a workspace (a file whose extension is "hws") using
HI7000/4, and select [Download Modules] from the [Debug] menu in High-performance Embedded
Workshop to download programs to the simulator/debugger.

Figure 3.1 Downloading a Program

REJ06J0090-0100/Rev.1.00 February 2010 Page 7 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

3.2 Selecting the OS Definition File
When program download is executed, the Select OS Definition File dialog box is automatically displayed.
Select the relevant real-time OS and click the [OK] button.

Figure 3.2 Selecting the OS Definition File

REJ06J0090-0100/Rev.1.00 February 2010 Page 8 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

3.3 Executing the Program
Select [Reset Go] from the [Debug] menu to execute the program. Then, to complete initialization of the
HI7000/4 kernel, wait for a specific period before selecting [Halt Program] from the [Debug] menu to stop the
program.

Figure 3.3 Executing the Program

REJ06J0090-0100/Rev.1.00 February 2010 Page 9 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

Figure 3.4 Halting the Program

REJ06J0090-0100/Rev.1.00 February 2010 Page 10 of 33

3.4 Referring to the Task State
Select [RTOS]->[OS Object] from the [View] menu to open the OS Object window in which the task state can
be referenced. In this example, it is obvious that task ID 2 is in the RUNNING state.

Figure 3.5 Referring to the Task State

High-performance Embedded Workshop
Real-time OS aware debugging

3.5 Displaying the Task Execution History
The Task Trace window displays the task execution history using the trace data of the simulator/debugger or
emulator debugger. To implement the trace settings, open the Task Trace window once by selecting
[RTOS]->[Task Trace] from the [View] menu. After that, execute the program again. Thus, the task execution
history will be displayed in the Task Trace window. In this example, it is obvious that task ID 1 and task ID 2
are operating.

Figure 3.6 Displaying the Task Execution History

3.6 Displaying the Task Execution Time
The Task Analyze window opened by selecting [RTOS]->[Task Analyze] from the [View] menu displays the
task execution time and CPU occupancy taken up by it using the trace data of the simulator/debugger or
emulator debugger.

Figure 3.7 Displaying the Task Execution Time

REJ06J0090-0100/Rev.1.00 February 2010 Page 11 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

4. Functions
This section describes each function in detail.

4.1 List of Functions
Table 4.1 lists the functions that can be used by each real-time OS. Table 4.2 lists the functions supported in
each debugger.

Table 4.1 Function Relationship (Real-time OS)

Function

HI7200/MP,
HI7750/4,
HI7700/4,
HI7000/4

RI600/4,
M3T-MR30/4 HI1000/4

Smalight
OS

ThreadX,
embOS,

TOPPERS/JS
P

NORTi,
μC/OS-II,
μT-Kernel

osCAN,
TOPPERS/ASP

OS object

Task trace

Task analyze

Task step ⎯ ⎯ ⎯ ⎯

Currently executed task
display ⎯ ⎯

Execution history text
display ⎯ ⎯

Real-time profile ⎯ ⎯

Task specification for
each condition ⎯ ⎯

Stack coverage ⎯ ⎯ ⎯ ⎯

Memory protection ⎯ ⎯ ⎯ ⎯ ⎯

Dispatch detection ⎯ ⎯ ⎯ ⎯

REJ06J0090-0100/Rev.1.00 February 2010 Page 12 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

Table 4.2 Function Relationship (Debugger)

Function Simulator E1 E20 E10A-USB E8a E100 E200F

OS object

（RAM monitoring
supported）

Task trace
(Large capacity)

 *
⎯

(Large capacity)

Task analyze
(Large capacity)

 * ⎯
(Large capacity)

Task step ⎯ ⎯ ⎯ ⎯

Currently executed task
display

⎯ ⎯ ⎯ ⎯

Execution history text
display

⎯ ⎯ ⎯ ⎯ ⎯ ⎯

Real-time profile ⎯ ⎯ ⎯ ⎯ ⎯ ⎯

Task specification for
each condition

⎯ ⎯ ⎯ ⎯ ⎯ ⎯

Stack coverage ⎯ ⎯ ⎯ ⎯ ⎯ ⎯

Memory protection ⎯ ⎯ ⎯ ⎯ ⎯ ⎯

Dispatch detection ⎯ ⎯ ⎯ ⎯ ⎯ ⎯

Note: * Use a 36-pin or 38-pin cable (14-pin cable cannot be used).
The time is not displayed (except for SH2A-DUAL).

REJ06J0090-0100/Rev.1.00 February 2010 Page 13 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

4.2 Functional Descriptions
4.2.1 OS Object Window (Reference of Object State)

Figure 4.1 OS Object Window

How to Open

• Select [View->RTOS->OS Object].

• Click the [OS Object] toolbar button.

Description

The OS Object window displays the state of OS objects, such as tasks and semaphores.
When this window is opened for the first time, the states of all tasks are displayed automatically. Add display
items using [Add objects] in the popup menu as required. The number of display items and the displayed
contents differ in each OS.
When the object has an entry address (task, handler, etc.), the [Editor] window can be opened from the
popup menu. If the displayed contents are updated, the updated values are displayed in red.
If RAM monitoring is specified for the area of the object values, [In] is displayed in the [RAM monitor]
column.

REJ06J0090-0100/Rev.1.00 February 2010 Page 14 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

 Notes
• Real-time performance is not achieved while this window is opened because memory accesses will

occur.
• The window may not be displayed correctly when execution is halted in the midst of program

execution or OS kernel execution.

Popup Menu

The usable options are shown below.

Add Object (A)... Displays the [Select Object Data] dialog box.

The added OS object is inserted before the selected
line.

Delete Object (D) Deletes the selected OS object.

Delete All Objects (L) Deletes all OS objects in the currently displayed
sheet.

Edit Object (E)... Displays the [Select Object Data] dialog box.
Another OS object can be selected here.

Up (U) Moves the selected OS object one line up.

Down (D) Moves the selected OS object one line down.

Refresh (R) Forces a manual update of the displayed contents.

Update During
Execution (A)

Updates the displayed contents while the user
program is being executed and when it has stopped.

Update Only At Stop (B) Updates the displayed contents when the user
program has stopped.

Auto
Update (U)

No Update (L) Does not update the displayed contents.

Display Source (W) Opens the [Editor] window corresponding to the entry
address.

Select All (A) Selects all lines.

Save Displayed
Contents (D)...

Saves the displayed contents of all sheets in a file. Save (S)

Save Display Items (I) Saves the display items of all sheets in a file.
Read (L)... Reads the settings of all sheets from a file.

Display Toolbar Switches between display and nondisplay of the
toolbar.

Customize Toolbar... Customizes the toolbar buttons.

REJ06J0090-0100/Rev.1.00 February 2010 Page 15 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

4.2.2 Task Trace Window (Graphical Display of Task Execution History)

Figure 4.2 Task Trace Window

How to Open

• Select [View->RTOS->Task Trace].

• Click the [Task Trace] toolbar button.

Description

The Task Trace window graphically displays the result of measuring the task execution history of a program
using the real-time OS. The items to be displayed are as follows:

Item Description
ID Displays the task ID.

(name) Displays the task entry label name.

Moving the mouse to each information shown in the window opens a popup menu for displaying detailed
information.
The status bar displays the following information.

• Time value of starting point marker's location
• Time value of ending point marker's location

• Duration between starting point and ending point markers

• Time value of current position marker's location

• Display magnification

• Duration of grid line interval

• Measurement (trace) range

REJ06J0090-0100/Rev.1.00 February 2010 Page 16 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 17 of 33

Grid lines are displayed with the starting point marker as the base point.
Scales are displayed with the time where the starting point marker is located as 0, the left side (forward in
terms of time) as negative, and the right side (backward in terms of time) as positive.
The generation cycle and processing time of interrupts can be roughly grasped by grid lines.
The duration of the displayed grid line interval is shown in the "Grid" area of the status bar.

The time values in the Task Trace window all mean the execution elapsed time with the program execution
start point assumed to be 0.
In contrast, the numbers at the upper side of the grid lines (scales) in the Task Trace window are relative
values (grid line interval is specified in the Value dialog box) with the starting point marker assumed to be 0,
and they have nothing to do with time values (they are to facilitate visualization of the window).

Popup Menu

The usable options are shown below.

Starting Point Marker Moves the starting point marker to the display area.

Ending Point Marker Moves the ending point marker to the display area.

Current Position Marker Moves the current position marker to the display area.

Adjust Display Magnification Displays the range between the starting point and ending
point markers using the entire horizontal width of the window.

Enlarge Display Magnification Enlarges the display magnification.

Reduce Display Magnification Reduces the display magnification.

Halt Measure Halts trace measurement and displays the result.

Re-measure Re-measures the trace data.

Full Stops trace acquisition when the trace memory has become
full.

Measurement
Range Condition

Free Continues trace acquisition until program execution is
stopped.

Set Sets the grid line interval and display magnification.

Display Toolbar Switches between display and nondisplay of the toolbar.

Customize Toolbar... Customizes the toolbar buttons.

High-performance Embedded Workshop
Real-time OS aware debugging

4.2.3 Task Analyze Window (Graphical Display of Task Execution Time)

Figure 4.3 Task Analyze Window

How to Open

• Select [View->RTOS->Task Analyze].

• Click the [Task Analyze] toolbar button.

Description

The Task Analyze window displays the status of CPU occupation.
The Task Analyze window functions in collaboration with the Task Trace window.
The Task Analyze window displays the result of statistically processing the data measured for the range
specified by the starting point and ending point markers of the Task Trace window.
Clicking the maximum execution time and minimum execution time display areas in each line enables
searching for the processing history of the maximum execution time and minimum execution time of the task
corresponding to the clicked line.
The search result is indicated by the current position marker of the Task Trace window moving to the target
location.

REJ06J0090-0100/Rev.1.00 February 2010 Page 18 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 19 of 33

Popup Menu

The usable options are shown below.

Save In File (S)... Saves the displayed contents in a file in the text format or CSV format.

Initialize Display Order (D) Returns the display order of the tasks to the way they were displayed first. The
display order in the beginning is the order in which the tasks were executed.

Display Toolbar Switches between display and nondisplay of the toolbar.

Customize Toolbar... Customizes the toolbar buttons.

4.2.4 Task Step (Step Execution Focused on a Specific Task)

• [Debug]->[RTOS Debug]->[Go To Cursor]

Executes the current task until it reaches the cursor's position.
The user program is executed from the current PC value and execution is continued until the PC value
reaches the address indicated by the current text cursor's position (not the mouse cursor).
If the task at execution stop differs from the task at execution start, execution will continue until the
tasks become the same.

• [Debug]->[RTOS Debug]->[Step In]

Steps into the current task.
A single block of the user program is executed and then execution stops. The size of this block is
normally a single instruction but the user can specify multiple instructions or a C/C++ source line
(Step...).
When a subroutine is called, execution is halted after entering the subroutine, and the subroutine code
is displayed.
If the task at execution stop differs from the task at execution start, execution will continue until the
tasks become the same.
When step-in execution is performed to a system call, processing may not end correctly. In such a
case, perform step-over execution.

• [Debug]->[RTOS Debug]->[Step Over]

Steps over the current task.
A single block of the user program is executed and then execution stops. The size of this block is
normally a single instruction but the user can specify multiple instructions or a C/C++ source line
(Step...).
When a subroutine is called, the subroutine is not entered, and the user program continues to be
executed until the current PC location moves to the next line of the current display.
If the task at execution stop differs from the task at execution start, execution will continue until the
tasks become the same.

• [Debug]->[RTOS Debug]->[Step Out]

Steps out of the current task.
The user program is executed until the end of the current function is reached, and execution is stopped
with the PC set to the next line of the calling function.
If the task at execution stop differs from the task at execution start, execution will continue until the
tasks become the same.

High-performance Embedded Workshop
Real-time OS aware debugging

4.2.5 Currently Executed Task Display in Status Bar

The task ID of the currently executed task is automatically displayed in the status bar.

4.2.6 Text Display of Task Execution History

Figure 4.4 Trace Window

How to Open

• Select [Display Execution History->Display Function Execution History] from the popup menu of the
[Trace] window.
(The upper-stage window is displayed.)

• Select [Analyze Execution History] from the popup menu of the [Trace] window.
(The analysis result is displayed in the upper-stage window.)

Description

The task execution history can be displayed only when debugging real-time OS programs.
To display the task execution history, the task ID needs to be selected in the [Options] page of the [Set
Trace Conditions] dialog box which can be displayed from the [Set Trace...] menu.
The task execution history of the trace result is shown in the upper-stage window. The default is nondisplay.
When [Analyze Execution History] is selected from the popup menu of the upper-stage window, analysis of
function execution history is started and the result is displayed.
If the branch destination address is not a function or if there is no corresponding debugging information for
that address, an address is displayed (label and address are displayed when a label is set) instead of a
function name.
The lower-stage window displays the trace result from the cycle in which the task selected in the
upper-stage window was called.

REJ06J0090-0100/Rev.1.00 February 2010 Page 20 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

<Display format of task execution history>
(1) The following is displayed when the task ID changes.
 TaskID = Task ID number (entry name corresponding to task ID)
 Example: TaskID = 1 (_main)
(2) A function called within a task is displayed in the following format.
 Function name (function start address) <- Address of function caller

Note
The task execution history cannot be displayed when extracting or deleting conditions for trace are

specified.

Upper-stage window:
Displays the execution history for individual tasks.
For the task execution history, the functions called within a task are not displayed in the tree structure.
These functions only appear in the display of the execution order of the functions.
Expanded display or collapsed display can be selected for each task. The default is expanded display.
When analysis takes time, it can be canceled from the progress dialog box. When canceled, the task
execution history is displayed up to the point where analysis was completed.
When the task entry label is double-clicked in the upper-stage window, the bus information on the point
where that task was called is displayed in the lower-stage window.

Lower-stage window:

Displays the trace result from the cycle of the task selected in the upper-stage window.
Disassembly display, source display, and mixed display are also possible.

Popup Menu

The options usable in the upper-stage window are shown below.

Analyze Execution History Analyzes the execution history of functions and displays the analysis

result in the upper-stage window.
Functions called within a task are not displayed in the tree structure.
They only appear in the displayed function execution order.

Execution History
Nondisplay

Closes the upper-stage window. The analysis result is cleared.

Function Search... Displays the [Function Search] dialog box. The function name specified
in this dialog box will be searched for.

Function Forward Search Searches forward from the line in which the function name specified in
the [Function Search...] menu was selected.

Function Backward Search Searches backward from the line in which the function name specified in
the [Function Search...] menu was selected.

Jump To List Displays the trace result from the cycle of the selected function.

REJ06J0090-0100/Rev.1.00 February 2010 Page 21 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

4.2.7 Real-time Profile Window (Display of CPU Occupancy for a Non-Stop Long Period)

Figure 4.5 Realtime Profile Window

How to Open

• Select [View->Performance->Realtime Profile].

• Click the [Realtime Profile] toolbar button.

Description

The two modes of function mode and task mode are available.
This function can acquire profile information for all functions (or tasks) in a maximum of eight block areas,
with 128 Kbytes as one block.
Adjacent address areas can be set as blocks.

Task mode:
E100 emulator automatically collects task information when a load module including an OS has been
downloaded.
128-Kbyte blocks are automatically assigned to tasks, starting from the lowest task ID.
This function can usually be used without changing any settings.
If there is a task ID that exceeds the block, the block can be put off by clearing the selected state of the
task ID with a low number.

REJ06J0090-0100/Rev.1.00 February 2010 Page 22 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

Column contents:

Block Block number

Task ID Task ID and task entry label name

Count Number of times the task was called

Time Accumulated task execution time
The display format of the time stamp is as follows:
 hour:minute:second.millisecond.microsecond.nanosecond

Statistic Ratio of the Go-Break execution time to the task's Time

Average Average execution time for one time of execution

When measurement of Count or Time overflows, "overflow" is displayed. In this case, Average is not
shown.
Clicking a column header sorts the displayed contents in the ascending order or descending order of that
column.

 Note
Up to 8K - 1(= 8191) functions (tasks) can be measured. When the number of functions (tasks) to be
measured exceeds 8K - 1(= 8191), that function (task) will not be measured. In this case, that function
(task) is grayed.

Popup Menu

The usable options are shown below.

Set Range (S)... Displays the [Set Realtime Profile] dialog box.

Either function profile or task profile should be set here (they cannot be
measured simultaneously).

Clear All Data (L) Clears all measured results.

Property (P)... Displays the [Property] dialog box. 10 ns, 20 ns, 40 ns, 80 ns, 160 ns, or 1.6
us can be selected here. This setting will take effect the next time the
execution time is measured.

Search (F)... Searches for the specified function. The line where the function was found is
highlighted.
In task display, the task ID or task entry label is searched for.

Search Next (N) Searches for the next function/task.

Save In File (V)... Saves all measured results in a file in the text format.

REJ06J0090-0100/Rev.1.00 February 2010 Page 23 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

4.2.8 Task Specification for Each Condition

The task ID can be specified in the hardware break, trace, and performance analysis functions.
Debugging can be performed while focusing on a specific task by using this specification.
For details, refer to the help file of the E100 emulator.

4.2.9 Stack Coverage (Graphical Display of Task Stack Used Size)

Figure 4.6 Data Coverage Window

How to Open

• Select [View->Code->Data Coverage].

• Click the [Data Coverage] toolbar button.

REJ06J0090-0100/Rev.1.00 February 2010 Page 24 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 25 of 33

Description

This window consists of three sheets.

<Address Range> sheet

Data coverage information is collected for the address range specified by the user, and the result is
displayed.

<Section> sheet

Data coverage information is collected for the section specified by the user, and the result is displayed.

<Task Stack> sheet

Data coverage information is collected for the task stack specified by the user, and the result is displayed.

For this sheet, the window is divided into upper and lower windows by the splitter.

Upper-side Window

[Task] Task stack for which coverage information is acquired

[Access Rate] Displays the percentage and graph of the access rate.

Lower-side Window
[Address] Address value

[Label] Label corresponding to the address (displayed only when a label is set)

[Area] Memory area
This column is blank for areas for which coverage information cannot be
acquired.

[Data] Data value
Displayed in bytes. Example: 00 00 FF FF

Read/write access is indicated by the background color of the data value.
 Has been accessed: Purple

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 26 of 33

Popup Menu

The usable options are shown below.

Upper-side window:
Percentage (P) Calculates and displays the percentage.
Add Range (A)... Adds a new measurement range.
Edit Range (E)... Changes the selected measurement range.
Delete Range (D) Deletes the selected measurement range.

Lower-side window:
Refresh (R) Forces a manual update of the displayed contents.

Update is performed even when auto update is disabled.
Disable Auto Update (K) When this is selected, the window is not automatically updated at execution

stop.
Click this when the window does not have to be updated at each step, such
as in the case of continuous step execution.

Display Address (A)... Displays the [Display Address] dialog box. A new start address can be input
here.

Byte Count Per Line (D)... The number of bytes to be displayed in one line can be specified.
Save (V)... Displays the [Save Coverage Information] dialog box. The location and name

of the coverage information file to be saved can be specified here.
Load (L)... Displays the [Load Coverage Information] dialog box. The location and name

of the coverage information file to be loaded can be specified here.
The only loadable file extension is ".cdv".

Set Hardware (H)... Displays the [Allocate Data Coverage Memory] dialog box. The area in which
coverage information is collected should be set here.

Clear Coverage Range (C)... Displays the [Clear Coverage Range] dialog box. The range to be cleared
can be specified here.

Clear All Coverage (E) Clears all data coverage information.

High-performance Embedded Workshop
Real-time OS aware debugging

4.2.10 Memory Protection

Figure 4.7 Memory Protection

This function detects stack access violation by another task and access violation to the data area of the
real-time OS.
Displaying a warning with the balloon of the status bar or setting hardware breakpoints can be done.
For details, refer to the help file of the E100 emulator.

4.2.11 Dispatch Detection

This function detects dispatching of a task.
Displaying a warning with the balloon of the status bar or setting hardware breakpoints can be done.
For details, refer to the help file of the E100 emulator.

REJ06J0090-0100/Rev.1.00 February 2010 Page 27 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 28 of 33

5. Notes
This section describes the notes on the real-time OS aware debugging.

Common Notes for Real-time OS

General 1. When a task is created or deleted during program execution, the task ID may not be
displayed correctly.

Select OS Definition File
dialog box

1. When an OS different from the OS in use is selected from the list in the dialog box,
operation cannot be performed correctly. In some cases, the debugger does not
respond.

OS Object window 1. Real-time performance is not achieved while this window is opened because memory
accesses will occur (when RAM monitoring is not used).

2. This window may not be displayed correctly in cases, such as, before completion of
OS kernel initialization, during program execution, and execution stop in the OS
kernel.

3. The maximum number of lines that can be displayed in one sheet is 1023.
4. When using RAM monitoring, this window should be updated to the latest information

after the settings have been changed.
5. If there is no valid information, this window may not be displayed correctly

(dynamically created task, nonexistent task, nonexistent message, etc.).
Task Trace window and
Task Analyze window

1. These windows are displayed based on the information of the task that is managed
within the OS kernel and currently being executed. Therefore, the timing for task
switching or task execution time differs depending on the OS.

2. The time and cycle count are not displayed for some debuggers.
3. When these windows are used, other trace windows or event functions cannot be

used in some cases. In turn, when other trace windows or event functions are used,
these windows cannot be used in some cases.

4. When these windows are used, real-time performance of the program may be
deteriorated. In this case, change the settings in the trace window of each debugger
to perform real-time trace or give priority to the CPU, in order to achieve real-time
performance. However, note that when real-time performance is achieved, part of the
trace information may be lost.

Task execution history,
task execution time, and
real-time profile

1. These items are displayed based on the information of the task that is managed
within the OS kernel and currently being executed. Therefore, the timing for task
switching or task execution time differs depending on the OS.

Memory protection 1. The OS areas in which illegal access is to be detected differ depending on the OS.

Toolchain 1. When the build options of the toolchain (compiler, assembler, etc.) have been
changed from those at real-time OS delivery, the real-time OS aware debugging may
not operate correctly.

Emulator debugger 1. When memory access during program execution is inhibited by the emulator
debugger setting, the task ID of windows are not displayed correctly in some cases.

E100 emulator debugger 1. In step execution that was started by selecting [Debug]->[RTOS Debug], step
execution may not halt depending on the user program.

SH-2A microcomputer 1. After a CPU reset, if execution stops before OS kernel initialization was completed,
the debugger may not respond.

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 29 of 33

Notes for Individual Real-time OS

HI7200/MP 1. The profile ID displayed in Profile in the OS Object window stands for the ID of each task.
However note that profile ID 0 indicates the kernel idling state while the maximum profile
ID indicates the entire system.

Smalight OS 1. Among the task IDs displayed in each window, 255 means that the OS kernel is idling.

ThreadX 1. The task ID displayed in the debugger is the debugger internal ID and is not the same as
the thread ID of the ThreadX.

2. The maximum number of threads that can be displayed in the OS Object window is 255.
NORTi 1. Among the IDs displayed in the Task Trace window and Task Analyze window, adding 1

to the maximum task ID means that the OS kernel is idling.

osCAN 1. The task ID displayed in the debugger is the debugger internal ID and is not the same as
the task ID of the osCAN.

2. When using task stack coverage, click the WithStackCheck check box of the
OIL-configurator.

μC/OS-II 1. The task ID displayed in the debugger is the debugger internal ID and is not the same as
the task ID of the μC/OS-II. In addition, the task entry address displayed in the debugger
represents the task name.

2. When the contents of the configuration file (os_cfg.h) are changed from the initial values,
the real-time OS aware debugging may not operate correctly.

3. The maximum number of tasks that can be displayed in the OS Object window is 255.
4. "Ready" shown in Task State in the OS Object window stands for "task is executable",

"task is not created", or "task is delayed".
embOS 1. The task ID displayed in the debugger is the debugger internal ID and is not the same as

the task ID of the embOS. In addition, the task entry address displayed in the debugger
represents the task name.

2. The maximum number of tasks that can be displayed in the OS Object window is 255.
3. The task name is not displayed when the XR libraries are used.

μT-Kernel 1. Do not change the contents of the system configuration definition file (config¥config.h)
from the initial values.

2. The maximum task ID that can be displayed in the OS Object window is 32.

High-performance Embedded Workshop
Real-time OS aware debugging

6. FAQ

No. Question Answer
1 The time is not displayed in the Task

Trace window and Task Analyze
window.

When using the E10A-USB emulator, the time
cannot be displayed (except for SH2A-DUAL).

2 The Task Trace window and Task
Analyze window are not displayed.

The Task Trace window and Task Analyze window
cannot be displayed when using E8a emulator or
when using a 14-pin cable with the E10A-USB
emulator. When using the E10A-USB emulator, a
36-pin or 38-pin cable should be used.

REJ06J0090-0100/Rev.1.00 February 2010 Page 30 of 33

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 31 of 33

7. Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

High-performance Embedded Workshop
Real-time OS aware debugging

REJ06J0090-0100/Rev.1.00 February 2010 Page 32 of 33

Revision Record
Description

Rev.

Date Page Summary

1.00 Feb.16.10 — First edition issued

• All trademarks and registered trademarks are the property of their respective owners.
• The copyright of the µITRON specification belongs to TRON Association.
• The copyright of the µT-Kernel specification belongs to the T-Engine Forum.
• The copyright of the OSEK/VDX specification belongs to the OSEK/VDX Steering Committee.
• TOPPERS is a registered trademark of the TOPPERS Project.
• OSEK is a registered trademark of Siemens AG.
• ThreadX is a registered trademark of Express Logic, Inc.
• NORTi is a registered trademark of MiSPO Co., Ltd.
• osCAN is a registered trademark of Vector Informatik GmbH.
• Smalight is a registered trademark of Renesas Northern Japan Semiconductor, Inc.
• µC/OS-II is a trademark of Micrium.
• embOS is a trademark of SEGGER Microcontroller.
• All other product names are trademarks or registered trademarks of the respective holders.
• TRON, ITRON, μITRON, and OSEK/VDX are the names of computer specifications and do not

indicate a specific group of the commodity or the commodity.

High-performance Embedded Workshop
Real-time OS aware debugging

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2010. Renesas Technology Corp., All rights reserved.

REJ06J0090-0100/Rev.1.00 February 2010 Page 33 of 33

	Summary
	1. Introduction
	2. Overview of the Real-time OS aware debugging
	2.1 Operating Environment

	3. Quick Start Guide
	3.1 Downloading a Program using Real-time OS
	3.2 Selecting the OS Definition File
	3.3 Executing the Program
	3.4 Referring to the Task State
	3.5 Displaying the Task Execution History
	3.6 Displaying the Task Execution Time

	4. Functions
	4.1 List of Functions
	4.2 Functional Descriptions
	4.2.1 OS Object Window (Reference of Object State)
	4.2.2 Task Trace Window (Graphical Display of Task Execution History)
	4.2.3 Task Analyze Window (Graphical Display of Task Execution Time)
	4.2.4 Task Step (Step Execution Focused on a Specific Task)
	4.2.5 Currently Executed Task Display in Status Bar
	4.2.6 Text Display of Task Execution History
	4.2.7 Real-time Profile Window (Display of CPU Occupancy for a Non-Stop Long Period)
	4.2.8 Task Specification for Each Condition
	4.2.9 Stack Coverage (Graphical Display of Task Stack Used Size)
	4.2.10 Memory Protection
	4.2.11 Dispatch Detection

	5. Notes
	6. FAQ
	7. Website and Support

	Renesas_blue:

