

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before
making a final decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

USB Function Module
USB Serial Conversion
Application Notes

16

A
pplication N

otes

Rev.1.0 2002.04

Renesas 16-Bit Single-Chip
Microcomputer

H8S/2215
HD64F2215

Rev. 1.0, 04/02, page ii of vi

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document

without written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi

semiconductor products.

Rev. 1.0, 04/02, page iii of vi

Preface

These application notes describe the USB serial conversion firmware which uses the USB
Function Module that incorporates the H8S/2215. They are provided to be used as a reference
when the user creates USB Function Module firmware.

These application notes and the described software are application examples of the USB Function
Module, and their contents and operation are not guaranteed.

In addition to these application notes, the manuals listed below are also available for reference
when developing applications.

[Related manuals]

• Universal Serial Bus Specification Revision 1.1

• H8S/2215 Series Hardware Manual

• H8S/2215 CPU Board (MS2215CP01-C/S) Instruction Manual

• H8S/2215 Series TFP-120 User System Interface Cable (HS2215ECN61H) Instruction Manual

• E6000 (HS2214EPI61H) Emulator User’s Manual

[Caution] The sample programs described in these application notes do not include firmware
related to interrupt transfer and isochronous transfer, which are USB transport types.
When using either of these transfer types (see section 15 in the H8S/2215 Series
Hardware Manual), the user needs to create the program for it.

Also, the hardware specifications of the H8S/2215 and H8S/2215 CPU board, which
will be necessary when developing the system described above, are described in these
application notes, but more detailed information is available in the H8S/2215 Series
Hardware Manual and the H8S/2215 CPU Board Instruction Manual.

Rev. 1.0, 04/02, page iv of vi

Rev. 1.0, 04/02, Page v of vi

Contents

Section 1 Overview ...1
1.1 Overview ...1
1.2 Purpose of this System ..3

Section 2 Development Environment..7
2.1 Hardware Environment ...7
2.2 Software Environment...8

2.2.1 Sample Program...8
2.2.2 Compiling and Linking ..9
2.2.3 USB Serial Conversion Driver ...10

2.3 Loading and Executing the Program ...11
2.3.1 Loading and Executing the Program ..11

2.4 Method of Communication between PCs..12
2.4.1 Setting Up the USB Host PC..12
2.4.2 Setting Up the Serially-Connected PC ...18
2.4.3 Communication between PCs...18

Section 3 Overview of Sample Program ...19
3.1 State Transition Diagram...19
3.2 Overview of Communication between PCs...22
3.3 File Structure ...23
3.4 Purposes of Functions ...24

Section 4 Sample Program Operation ...29
4.1 Main Loop...29
4.2 Types of Interrupts ..31

4.2.1 Branching to Transfer Function ...33
4.3 Interrupt by Detection of USB Operating Clock Stabilization ..37

4.3.1 EPINFO..37
4.4 Interrupt by Cable Connection (BRST, VBUS) ..39
4.5 Control Transfers...40

4.5.1 Setup Stage...42
4.5.2 Data Stage ..44
4.5.3 Status Stage ..46

4.6 Bulk Transfers ...48
4.6.1 Bulk-Out Transfers...48
4.6.2 Bulk-in Transfers..49

4.7 Serial Transfer ...50
4.7.1 Serial-Out Transfer...50

Rev. 1.0, 04/02, page vi of vi

4.7.2 Serial-In Transfer ...52
4.8 Vendor Command ...53

4.8.1 SetLineCoding..54
4.8.2 GetLineCoding...55
4.8.3 SetControlLineState ...56
4.8.4 SendBreak ..56

Section 5 Analyzer Data.. 57
5.1 Control Transfer when Device is Connected...57
5.2 Control Transfer when Vendor Command is Transmitted ..62

Rev. 1.0, 04/02, page 1 of 68

Section 1 Overview

1.1 Overview

These application notes describe how to use the USB Function Module that is built into the
H8S/2215, and examples of firmware programs.

The features of the USB Function Module contained in the H8S/2215 are listed below.

• An internal UDC (USB Device Controller) conforming to USB 1.1

• Automatic processing of USB protocols

• Automatic processing of USB standard commands for endpoint 0 (some commands need to be
processed through the firmware)

• Full-speed (12 Mbps) transfer supported

• Various interrupt signals needed for USB transmission and reception are generated

• Internal system clock (16 MHz) multiplied by three or external input clock (48 MHz) can be
selected as the USB operating clock by the USB clock selector in the clock pulse generator

• Low power consumption mode provided

• An internal bus transceiver

Endpoint Configurations

Endpoint Name Name Transfer
Type

Max. Packet
Size

FIFO Buffer
Capacity

DMA
Transfer

Endpoint 0 EP0s Setup 8 bytes 8 bytes 

EP0i Control In 64 bytes 64 bytes 

EP0o Control Out 64 bytes 64 bytes 

Endpoint (optional) EPn Interrupt (in) 64 bytes 64 bytes (variable) 

Endpoint (optional) EPn Bulk-in 64 bytes 64 x 2 (128 bytes) Possible

Endpoint (optional) EPn Bulk-out 64 bytes 64 x 2 (128 bytes) Possible

Endpoint (optional) EPn Isochronous
(in)

128 bytes 128 x 2 (variable) 

Endpoint (optional) EPn Isochronous
(out)

128 bytes 128 x 2 (variable) 

Endpoint (optional) EPn Bulk-in 64 bytes 64 x 2 (128 bytes) Possible

Endpoint (optional) EPn Bulk-out 64 bytes 64 x 2 (128 bytes) Possible

Endpoint (optional) EPn Interrupt (in) 64 bytes 64 bytes (variable) 

Figure 1.1 shows an example of a system configuration.

Rev. 1.0, 04/02, page 2 of 68

Figure 1.1 System Configuration Example

This system is configured of the H8S/2215 CPU board manufactured by Hitachi ULSI Systems
Co., Ltd. (hereafter referred to as the MS2215CP) on which the H8S/2215 is mounted, a serially-
connected PC, and a USB host PC (Windows 2000) containing the USB serial conversion driver*1

(manufactured by Hitachi ULSI Systems Co., Ltd.).

In this system, the MS2215CP can receive the USB packet data transmitted from the USB host PC
and transmit it to the serially-connected PC after converting it into serial data. Also, its reverse is
possible, that is, the MS2215CP can receive serial data from the serially-connected PC and
transmit it to the USB host PC after converting it into USB packet data.

This system offers the following features.

1. The sample program can be used to evaluate the USB module of the H8S/2215 quickly.

2. The sample program supports USB control transfer and bulk transport.

3. An E6000 (full-spec emulator) can be used, enabling efficient debugging.

4. Additional programs can be created to support interrupt transfer and isochronous transfer.*2

Notes: 1. For inquiries on this system (sample program and USB serial conversion driver),
contact your Hitachi sales agency.
The USB serial conversion driver operates only with a vendor ID of 045B
manufactured by Hitachi, Ltd. To use the USB serial conversion driver in your product,
a contract concerning the USB serial conversion driver must be separately made with
Hitachi ULSI Systems Co., Ltd.

USB Function

USB cable

Serial cable

USB host PC

MS2215CP

•Windows2000

•USB serial conversion deriver

(manufactured by Hitachi ULSI Systems Co., Ltd.)

Serial connection

Rev. 1.0, 04/02, page 3 of 68

2. Interrupt transfer and isochronous transfer programs are not provided, and will need to
be created by the user.

1.2 Purpose of this System

The price reduction of PCs has been accelerated in recent days, and at the same time, the legacy-
free PCs (equipped only with new standard ports compliant to Plug & Play such as USB
(Universal Serial Bus), but not with old standard ports such as a serial port) have started to arrive
on the market in large numbers. With this market trend, it may become impossible for the existing
serial devices to be connected with PCs and many existing serial devices to be used. In order to
solve this problem, a device which converts the existing serial line into the USB is required.

These application notes aim at providing an example of realizing the USB serial conversion
function to solve this problem.

In this system, the USB does not exist when seen from the existing serial application. This is
realized by providing the serial API when the existing serial devices are replaced by the new USB
devices. This allows the application program to be used without changes.

Figure 1.2 shows the hardware and software configurations when the PC and serial devices are
connected via the existing serial line. Figure 1.3 shows the hardware and software configurations
when the PC and serial devices are connected via the USB serial conversion device.

As shown in figure 1.2 (a), the serial devices are connected to the PC via the serial cable in the
existing system. However, as shown in figure 1.3 (a), the USB serial conversion device is
required between the PC and serial devices when the existing serial devices are connected to the
PC via the USB. The USB serial conversion device has a function to convert USB signals and
serial signals mutually. The PC and USB serial conversion device are connected by the USB
cable, and the USB serial conversion device and serial devices are connected via the serial cable.
This makes it possible for the PC and serial applications to communicate with each other.

Figure 1.2 (b) and 1.3 (b) show the software configuration expressed in hierarchical structure. The
connection indicated by a dotted line shows the image of logical connection.

Rev. 1.0, 04/02, page 4 of 68

Figure 1.2 Example of Connecting PC and Serial Devices via Existing Serial Line

Figure 1.3 Example of Connecting PC and Serial Devices via USB

In figure 1.2 (b), transmit data from the serial application in the PC is sent to the serial port driver,
which then sends the data to the serial hardware of the PC. The serial hardware sends this data to
the serial hardware of the other end via a serial line. The serial port firmware of the serial device
extracts the data from the hardware that received the data and sends it to the serial application.
Herewith the data can be exchanged between serial applications.

Serial port driver

Hardware

Serial

application

Serial port farmware

Hardware

(b) Software configuration

Serial devices

(PC, measuring device, TA, etc.)

Serial cable

(a) Hardware configurationPC

SerialSerial

Serial

application

Virtual serial port deriver

USB driver

Serial port farmware

USB farmware

Serial port

farmware

(b) Software configuration

USB cable

USB serial conversion device (MS2215CP)

USB B connector Serial connector

Serial devices

(PC, mesuring device, TA, etc)

Serial cable

PC
(a) Hardware configuration

USB serial conversion chip (H8S/2215)

Existing serial

application

Hardware Hardware

USB USB Serial Serial

Hardware

Existing serial

application

Hardware

Rev. 1.0, 04/02, page 5 of 68

As in figure 1.3 (b), the transmit data from the serial application in the PC is sent to the virtual
serial port driver. This virtual serial port driver has the same application interface as the existing
serial port driver. This allows the USB to not be recognized from the existing serial application,
thus enabling data communication without having to change the existing serial application. The
virtual serial port driver passes the data from the application to the lower USB driver. The USB
driver then passes the data to the USB hardware in the PC. The USB hardware transmits the data
through the USB bus to the USB hardware in the USB serial conversion device. The USB serial
conversion device converts the received USB data into serial data and transmits it to the serial
devices. The communication between the USB serial conversion device and serial devices has the
same configuration as in figure 1.2. This makes it possible for the existing serial applications to
exchange data with each other.

These application notes give an example for realizing the firmware operating on the MS2215CP,
which is equivalent to the firmware in the USB serial conversion device in figure 1.3 (b).

Rev. 1.0, 04/02, page 6 of 68

Rev. 1.0, 04/02, page 7 of 68

Section 2 Development Environment

This section describes the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

• H8S/2215 CPU board (type number: MS2215CP01-C/S) manufactured by Hitachi ULSI
Systems Co., Ltd.

• H8S/2215 Series TFP-120 user system interface cable (hereafter called H8S/2215 user cable;
type number: HS2215ECN61H) manufactured by Hitachi, Ltd.

• E6000 Emulator (type number: HS2214EPI61H) manufactured by Hitachi, Ltd.

• PC (Windows 95/98) equipped with an ISA (or PCI/PCMCIA) slot

• PC (Windows 2000) to serve as the USB host

• USB serial conversion driver manufactured by Hitachi ULSI Systems Co., Ltd.

• Serially-connected PC

• USB cable

• Serial cable (cross cable)

• Hitachi Debugging Interface (hereafter called HDI) manufactured by Hitachi, Ltd.

• Hitachi Embedded Workshop (hereafter called HEW) manufactured by Hitachi, Ltd.

2.1 Hardware Environment

Figure 2.1 shows device connections.

Figure 2.1 Device Connections

E6000 PC (Windows 95/98)

USB host PC (Windows 2000)

USB cable

Serially-connected PC

Serial cable

USB serial

conversion driver

E6000

H8S/2215 user cable

Rev. 1.0, 04/02, page 8 of 68

1. MS2215CP

The jumper setting on the MS2215CP board shown in table 2.1 must be changed from that at
shipment. Before turning on the power, ensure that the jumper is set as shown in table 2.1.
There is no need to change any other jumpers or DIP switches.

Table 2.1 Jumper Setting

At Time of Shipment After Change Jumper Function

J9 1-2 closed J9 2-3 closed Switches PLLVCC pin level

2. USB host PC

A PC with Windows 2000 installed, and with a USB port, is used as the USB host. A USB
serial conversion driver (manufactured by Hitachi ULSI Systems Co., Ltd.) should be installed
in this PC.

3. Serially-connected PC

A PC with a serial port is used for transferring serial data.

4. E6000 PC

The E6000 I/F board should be inserted into an ISA slot and connected to the E6000 via an
interface cable. Then, the E6000 should be connected to the MS2215CP via an H8S/2215 user
cable. After connection, start the HDI and perform emulation.

2.2 Software Environment

A sample program, the compiler and linker used, and the USB serial conversion driver are
explained.

2.2.1 Sample Program

Files required for the sample program are all stored in the H8S2215 folder. When this entire folder
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are shown in figure 2.2.

Rev. 1.0, 04/02, page 9 of 68

H8S2215

CatProType.h CatTypedef.h SetMacro.h SetSystemSwitch.h
SetUsbInfo.h H8S2215.h SysMemMap.h

DoBulk.c DoControl.c DoRequest.c DoSerial.c
StartUp.c UsbMain.c DoReqestVenderCommand.c sct.src

debugger.ABS debugger.MAP debugger.MOT log.txt dwfinf(
BuildOfHew.bat InkSet1.sub

Debugger.hds Debugger.HDT Debugger.hdw

Figure 2.2 Files Included in H8S2215 Folder

2.2.2 Compiling and Linking

The sample program is compiled and linked using the following software.

Hitachi Embedded Workshop Version 1.0 (release 9) (hereafter called HEW)

When HEW is installed in C:\Hew*, the procedure for compiling and linking the program is as
follows.

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling (figure
2.3).

C:\

\Hew

\Tmp

Figure 2.3 Creating a Working Folder

Next, the folder in which the sample program is stored (H8S2215) should be copied to C:\Usr (or
can be copied to any location, then “C:\Usr\h8s2215” written in the debugger.hds file in the folder
should be changed to the path to the copied folder). In addition to the sample program, this folder
contains a batch file named BuildOfHew.bat. This batch file sets the path, specifies compile
options, specifies a log file indicating the compile and linking results, and performs other
operations. When BuildOfHew.bat is executed, compiling and linking are performed. As a result, a
Motorola S-type format file named debugger.MOT, which is an executable file, is created within
the folder. At the same time, a map file named debugger.MAP and a log file named log.txt are
created. The map file indicates the program size and variable addresses. The compile results
(whether there are any errors, etc.) are recorded in the log file.

Note: * If HEW is installed to a folder other than C:\Hew, the compiler path setting and settings
for environment variables used by the compiler in BuildOfHew.bat, as well as the library

Rev. 1.0, 04/02, page 10 of 68

settings in InkSet1.sub, must be changed. Here the compiler path setting should be
changed to the path of ch38.exe, and the setting for the environment variable ch38 used
by the compiler should be set to the folder of machine.h and the setting of ch38_tmp
should specify the working folder for the compiler. The library setting should specify the
path of c8s26a.lib.

BuildOfHew.bat debugger.ABS

debugger.MOT

debugger.MAP

log.txt

H8S/2215

Figure 2.4 Compile Results

2.2.3 USB Serial Conversion Driver

Files required for the USB serial conversion driver are all stored in the UST-03 folder.

UST-03

UST-03.inf UST-03.sys

Figure 2.5 Files Included in UST-03 Folder

Rev. 1.0, 04/02, page 11 of 68

2.3 Loading and Executing the Program

Figure 2.6 shows the memory map for the sample program.

MD2215CP

Vector area and StartUp area

P, C, and D areas

Empty area

Empty area

Stack area

R and B areas

Control transfer data area

Bulk-out transfer data area

Bulk-in transfer data area

0000 0000

0000 01BF
0000 0200

0000 1DBA

00FF B000

00FF B047

00FF B050

00FF B24F

00FF B14F

00FF EC40

00FF EE46

00FF EFC0

Note: The memory map differs according to the compiler version, compiling conditions,
 firmware upgrade, etc.

760 bytes

7098 bytes

256 bytes

256 bytes

518 bytes

72 bytes

Figure 2.6 Memory Map

As shown in figure 2.6, this sample program allocates areas P, C, and D to on-chip flash memory,
and areas R and B to the on-chip RAM area. These memory allocations are specified by the
InkSet1.sub file in the H8S2215 folder.

2.3.1 Loading and Executing the Program

In order to load the sample program, the following procedure is used.

• Connect the E6000 PC in which the HDI has been installed to the E6000.

• Connect the E6000 to the MS2215CP via an H8S/2215 user cable.

• Connect the serially-connected PC to the MS2215CP via a serial cable.

• Turn on the power to the E6000 PC, serially-connected PC, and USB host PC for start up.

• Turn on the power to the E6000 and MS2215CP.

• Execute debugger.hds in the H8S2215 folder.

Rev. 1.0, 04/02, page 12 of 68

Through the above procedure, the sample program can be loaded into the MS2215CP.

After making the above settings, select Go from the Run menu to execute the program.

2.4 Method of Communication between PCs

2.4.1 Setting Up the USB Host PC

• Following the procedures in section 2.3.1, execute the sample program. When the sample
program is activated properly, the 8-bit LED on the MS2215CP displays 0xAA.

• Insert a series B connector of the USB cable to the MS2215CP, and connect a series A
connector on the opposite side to the USB host PC.

• The dialog box is displayed on the screen as below, and click “Next”.

Rev. 1.0, 04/02, page 13 of 68

• Select “Search for a suitable driver for my devide (recommended)”, and then click “Next”.

• Select “Floppy disk drives”, and then click “Next”.

Rev. 1.0, 04/02, page 14 of 68

• Make sure “UST-03.inf” is to be installed, and then click “Next”.

• Click “Finish”.

The installment of the driver has thus been completed and the MS2215CP is recognized as the
serial COM port by the USB host PC.

Next, a hyper terminal, a communication software which is a standard attachment of WindowsOS,
is initiated.

• Press the Windows key and select “Start → Program → Accessory (or under Communicaton)”
to activate the hyper terminal.

Rev. 1.0, 04/02, page 15 of 68

• Input the file name (It can be random. USB-Serial has been input in the following screen.) and
click “OK”.

• Select “COM3” for connection and click “OK”.

Rev. 1.0, 04/02, page 16 of 68

• The serial port is set within the range shown in table 2.2. The figure below is an example with
the default values of this program entered. After the setting, click “OK”.

The hyper terminal has thus been initiated. If a value other than those shown in table 2.2 is
entered, the 8-bit LED of the MS2215CP displays 0x30, and the default values of this program
shown in table 2.2 are entered. If a value within the range is entered, the 8-bit LED keeps
displaying 0xAA.

Table 2.2 Range of Possible Serial Port Settings

Item Default Setting of This Program Possible Settings

Bit/s [bps] 38400 9600, 19200, 38400*

Data bits 8 8 or 7

Parity None None, odd number, even number

Stop bit 1 1 or 2

Flow control Xon/Xoff Only Xon/Xoff

Note: * Since this sample program operates the CPU at 16 MHz, the error with a setting of 57600
bps or 115200 bps is too large, and may cause erroneous operation. Though a setting of
57600 bps or 115200 bps is possible in this sample program, the operation for such kind
of a setting is not guaranteed.

Rev. 1.0, 04/02, page 17 of 68

• After the hyper terminal has been initiated, and before the communication begins, select “File
Menu → Property → Setting” and click “ASCII Setup…”.

• Check the box for “Send line ends with line feeds” in ASCII Sending and then click “OK”.

Rev. 1.0, 04/02, page 18 of 68

2.4.2 Setting Up the Serially-Connected PC

The hyper terminal is initiated similarly as with the USB host PC. Make sure to enter the same
values as the USB host PC to set the serial communication (bit/s, data bits, parity, stop bit, and
flow control).

2.4.3 Communication between PCs

Once the hyper terminals for both the USB host PC and serially-connected PC are initiated, the
characters input from the keyboard, text files, and binary files can be exchanged between the two
PCs.

The characters input from the keyboard of the USB host PC side are transferred to the serially-
connected PC. Also, the characters input from the keyboard of the serially-connected PC side are
transferred to the USB host PC.

The text files can be transmitted to the other by selecting “Transfer → Transfer of text file”.

After selecting “Transfer → Reception of file → ZMODEM” in the receiving PC to make the
receiving PC wait for file reception, the text files and binary files can be transmitted to the
receiving PC by selecting “Transfer → Transmission of file → ZMODEM” in the transmitting PC.

Note: These application notes use a hyper terminal as a serial application to run on the PC.
When using other serial applications, whether operation is correct must be confirmed
separately.
This sample program performs flow control (Xon/Xoff). Therefore, a protocol supporting
flow control (Xon/Xoff), e.g. ZMODEM, must be selected for file transmission.

Rev. 1.0, 04/02, page 19 of 68

Section 3 Overview of Sample Program

In this section, features of the sample program and its structure are explained. This sample
program runs on the MS2215CP, and initiates USB transfers by means of interrupts from the USB
function module or branches from the main loop. In addition, it initiates serial transfer by means
of interrupts from the SCI1 or branches from the main loop. Of the interrupts from the on-chip
modules in the H8S/2215, there are three interrupts related to the USB function module: EXIRQ0,
EXIRQ1, and IRQ6. However, this sample program uses only the EXIRQ0. Even though there are
four interrupts related to the SCI1 module: ERI1 (reception error), RXI1 (receive data full), TXI1
(transmit data empty), and TEI1 (transmit end), this sample program uses two interrupts: ERI1 and
RXI1.

Features of this sample program are as follows.

• Control transfer can be performed.

• Bulk-out transfer can be used to receive data from the host controller.

• Bulk-in transfer can be used to send data to the host controller.

• Serial data can be received from the serially-connected PC.

• Serial data can be sent to the serially-connected PC.

• Serial transfer can be used to send data received by bulk-out transfer.

• Bulk-in transfer can be used to send data received serially.

3.1 State Transition Diagram

Figure 3.1 shows a state transition diagram for this sample program. In this sample program, as
shown in figure 3.1, there are transitions between four states.

• Reset State

Upon power-on reset and manual reset, this state is entered. In this reset state, the H8S/2215
mainly performs initial settings.

• Stationary State

When initial settings are completed, a stationary state is entered in the main loop. In this
stationary state, the data from the USB host PC and the serially-connected PC are monitored
all the time, and if a data is detected, it is output to each of the other end PC. In other words,
input data to the MS2215CP is monitored constantly, and if a data is detected, it is output to
each of the other end PC.

Rev. 1.0, 04/02, page 20 of 68

• USB Communication State

In the stationary state, when an interrupt from the USB module occurs, this state is entered. In
the USB communication state, data transfer is performed by a transfer method according the
type of interrupt. The interrupt sources used in this sample program are indicated by the
interrupt flag registers 0 to 3 (UIFR0 to UIFR3), and there are five interrupt sources in all.
When an interrupt source occurs, the corresponding bits in UIFR0 to UIFR3 are set to 1.

• Serial Communication State

In the stationary state, when an interrupt from the SCI1 module occurs, this state is entered.
The interrupt sources used in this sample program are indicated by the serial status register
(SSR1), and there are two interrupt sources in all: ERI1 and RXI1.

Rev. 1.0, 04/02, page 21 of 68

StartUp.c
DoSerial.c
DoBulk.c DoSerial.c

USBMain.c
DoControl.c
DoBulk.c

Reset state

Stationary state

USB
communication state

Serial
communication state

Serial output
state

Serial output state

Serial output state

SCI1 interrupt priority: 7

Serial communication
completed

Interrupt generated (RXI2, ERI2)

USB interrupt priority: 6

Bulk-in transfer
state

Bulk-in transfer
state

Interrupt generated
(EXIRQ0)

USB communication
completed

Initial setting
completed

Figure 3.1 State Transition Diagram

In this sample program, the interrupt priority of the USB is set to 6 and that of the SCI1 to 7. This
setting does not accept the USB interrupt during the SCI1 interrupt processing and prevents the
serial receive processing from being delayed by the USB interrupt.

Rev. 1.0, 04/02, page 22 of 68

3.2 Overview of Communication between PCs

Figure 3.2 shows the overview of the communication between PCs. In this sample program, there
are roughly two kinds of communication modes; USB communication and serial communication.
Considering the data transmission and reception, the USB communication can be categorized by
bulk-in and bulk-out transfer, and the serial communication can be categorized by serial input and
serial output. Therefore there are a total of four communication modes in this sample program.

The data flow in this sample program can be categorized by two directions; from bulk-out transfer
to serial output, and from serial input to bulk-in transfer, each of which is given 256-byte buffer.
The input to the buffer of each direction handles interrupt operation and the output from the buffer
controls the output on branching from the main loop. In the main loop, the RAM area for bulk-
in/bulk-out transfers, which is a buffer for both directions, is monitored consistantly and, if any
data exist, it is output from the buffer.

MS2215CPUSB host PC

Bulk-out transfer
RAM area for bulk-out
transfer 256 bytes

RAM area for bulk-in
transfer 256 bytes

Bulk-in transfer

Serial output

Serial input

Serially-connected PC

Serial

Serial

USB

USB

Figure 3.2 Communication between PCs

Rev. 1.0, 04/02, page 23 of 68

3.3 File Structure

This sample program consists of seven source files and seven header files. The overall file
structure is shown in table 3.1. Each function is arranged in one file by transfer method or function
type.

Table 3.1 File Structure

File Name Principle Role

StartUp.c
Vector table settings, microcomputer initial setttings, and clearing
ring buffer

DoSerial.c
Executing serial transmission/reception., and controlling SCI1
module

UsbMain.c
Determination of interrupt sources, and sending and receiving
packets

DoRequest.c Processing setup command issued by the host

DoControl.c Executing control transfer

DoBulk.c Executing bulk transfer

DoRequestVenderCommand.c Processing vendor command

SysMemMap.h Defining MS2215CP memory map addresses

SetUsbInfo.h Defining USB structure

SetMacro.h Defining macros

SetSystemSwitch.h System operation settings

H8S2215.h Defining H8S/2215 registers

CatTypedef.h Defining structures

CatProType.h Prototype declarations

Rev. 1.0, 04/02, page 24 of 68

3.4 Purposes of Functions

Table 3.2 shows functions contained in each file and their purposes.

Table 3.2-1 UsbMain.c

File in Which
Stored

Function Name Purpose

BranchOfInt Determination of interrupt sources, and call function
according to interrupt

GetPacket Write data transferred from the host controller to RAM

PutPacket Write data for transfer to the host controller to the USB
module

SetControlOutCont
ents

Overwrite data sent from the host

BE2ByteRead Convert 2-byte data to big endian

LE2ByteRead Convert 2-byte data to little endian

ActBusReset Clear buffer, flag, and FIFO on receiving bus reset

SetUsbModule Initial setting of USB module

UsbMain.c

USBclear Clear ring buffer and flag

In UsbMain.c, interrupt sources are determined by the USB interrupt flag register, and functions
are called according to the interrupt type. Also, packets are sent and received between the host
controller and function modules.

Table 3.2-2 StartUp.c

File in Which
Stored

Function Name Purpose

SetPowerOnSectio
n

BSC settings, module and memory initialization, and shift
to main loop

_INITSCT Copies variables that have initial settings to the RAM
work area

InitMemory Clears RAM area used in bulk communicatuion

InitSystem Pull-up control of the USB bus

Error Shifts CPU to sleep mode when error occurs

Scilnit SCI1 initialization

Set_SMR Initial setting of SMR1 of SCI1

StartUp.c

ActBusVcc Processing when VBUS is received

Rev. 1.0, 04/02, page 25 of 68

When a power-on reset or manual reset is carried out, SetPowerOnSection of the StartUp.c file is
called. At this point, the RAM area used for the H8S/2215 initial settings, control transfer, and
bulk transfer is cleared.

Table 3.2-3 DoSerial.c

File in Which
Stored

Function Name Purpose

ActSerialOut Data is read from the read pointer and passed to
ExSerialOut by 1 byte as parameter

ActSerialIn Write serially-input data to the area for bulk-in transfers

WriteBulkInArea Write data to the area for bulk-in transfers

DoSerial.c

ExSerialOut 1-byte data is serially output from SCI1

In DoSerial.c, serial transmission and reception are executed as well as SCI1 module control.

Table 3.2-4 DoRequest.c

File in Which
Stored

Function Name Purpose

DoRequest.c
DecStandardComm
ands

Decode command issued by host controller, and process
those which are standard commands

During control transfer, commands sent from the host controller are decoded, and commands are
processed. In this sample program, a vendor ID of 045B (vendor: Hitachi) is used. When the
customer develops a product, the customer should obtain a vendor ID at the USB Implementers’
Forum.

Table 3.2-5 DoControl.c

File in Which
Stored

Function Name Purpose

ActControl Carries out the setup stage of control transfer

ActControlIn
Carries out the data stage and status stage of control IN
transfer (transfer in which the data stage is in the IN
direction)DoControl.c

ActControlOut
Carries out the data stage and status stage of control
OUT transfer (transfer in which the data stage is in the
OUT direction)

When the control transfer interrupt (EP0oTS) is generated, ActControl obtains the command, and
decoding is carried out by DecStandardCommands. Next, the data stage and status stage are
carried out using either ActControlIn or ActControlOut, depending on the type of command.

Rev. 1.0, 04/02, page 26 of 68

Table 3.2-6 DoBulk.c

File in Which
Stored

Function Name Purpose

ActBulkOut Controls bulk-out-transfer

ActBulkIn Controls bulk-in transfer

ExBulkOut Execute GetPacket
DoBulk.c

ExBulkIn Execute PutPacket

These functions carry out processing involving bulk transfer as well as sending and receiving the
data, and controlling the flow.

Table 3.2-7 DoRequestVenderCommand.c

File in Which
Stored

Function Name Purpose

DoRequestVen
derCommand.c

DecVenderComma
nds

Responds to vendor commands

These functions carry out processing according to the vendor commands. In this sample program,
processing is executed for the four vendor commands supported by the USB serial conversion
driver manufactured by Hitachi ULSI Systems Co., Ltd. For details, refer to section 4.8, Vendor
Command.

Figure 3.3 shows the interrelations between the functions explained in table 3.2. The upper-side
functions call the lower-side functions. Also, multiple functions may call the same function. In
the stationary state, SetPowerOnSection calls other functions, and in the case of a transition to the
USB communication state which occurs on an interrupt, BranchOfInt calls other functions. In the
SCI1 interrupt, ActSerialIn is called. Figure 3.3 shows the hierarchical relation of functions; there
is no order for function calling. For information on the order in which functions are called, refer
to the flowcharts in section 4, Sample Program Operation.

Rev. 1.0, 04/02, page 27 of 68

SetPowerOnSection

BranchOfInt

EXIRQ0 interrupt input

ERI1 or RXI1 interrput input

InitSystemActBulkIn

ExBulkIn

PutPacket

InitMemory INITSCT

ActControlOut ActControlIn

PutPacket

ActControl ActBulkOut

ExBulkOutDecStandardCommands

DecVenderCommands GetPacket

ActSerialOut

ExSerialOut

LE2ByteRead

ActSerialIn

Figure 3.3 Interrelationship between Functions

Rev. 1.0, 04/02, page 28 of 68

Rev. 1.0, 04/02, page 29 of 68

Section 4 Sample Program Operation

In this section, the operation of the sample program is explained, relating it to the operation of the
USB function module.

4.1 Main Loop

When the microcomputer is in the reset state, the internal state of the CPU and the registers of
internal peripheral modules are initialized. Next, the function SetPowerOnSection in StartUp.c is
called, and the CPU is initialized. Figure 4.1 is a flow chart for the SetPowerOnSection.

Rev. 1.0, 04/02, page 30 of 68

Start

After initialization, this program is entered in the main
loop. In the main loop, whether or not data to be
output is in the RAM area is monitored constantly.
If any data is detected, the data is output to the PC
by bulk-in or serial-out transfer.

An SCI1 interrupt notifies the data reception and the
data received with the SCI1 module is stored in the
RAM area for bulk-in transfer.
If any data detected in this area, it is transferred to
the USB-host PC using bulk-in pipe.

An USB interrupt notifies the data reception and the
data received using bulk-out transfer for the USB
module is stored in the RAM area for bulk-out
transfer.
If any data is detected in this area, it is transmitted
to the PC connected with serial interface.

NO

YES

Initialize microcomputer

RAM cleared

Initialize variables

Initialize SCI1

Data
detected in RAM area

for bulk-in transfer

Output to USB host PC
(bulk-in transfer)

StartUp.c <SetPowerOnSection>

Data
detected in RAM area
for bulk-out transfer?

Output to PC connected
with serial interface
(serial transmission)

NO

YES

NO

A clock generated by tripling 16-MHz clock is
selected as a USB operating clock.

Select USB clock (tripled
16 MHz/48-MHz input)

Figure 4.1 Main Loop

Rev. 1.0, 04/02, page 31 of 68

4.2 Types of Interrupts

As explained in section 3.1, the interrupts used in this sample program are indicated by the USB
interrupt flag registers (UIFR0 to UIFR3) and serial status register (SSR1); there are five types of
USB interrupts and two type of serial interrupts.

When a USB interrupt occurs, the corresponding bit in the interrupt flag register is set to 1 and a
EXIRQ0 interrupt request is sent to the CPU. In the sample program, when the interrupt occurs,
the CPU reads the interrupt flag register to perform the corresponding USB communication.
Figure 4.2 shows correspondence between the interrupt flag registers and USB communications.

Bulk-in transfer is supported in this sample program. It, however, is enabled not by an interrupt
operation, but by branching from the main routine. Therefore, bulk-in interrupt should be disabled
and monitoring the EP2i EMPTY flag activates bulk-in transfer. The EP2i TR bit is not be used.

Rev. 1.0, 04/02, page 32 of 68

BRST

Bit:

Bit name:

Bit:

Bit name:

This sample program does not support interrupt and isochronous transfers.

EP1i
TR

EP1i
TS

EP0o
TS

EP0i
TR

EP0i
TS

SETUP
TS

7 6 5 4 3 2 1 0

Bulk-out transfer

Cable connection
(bus reset)

Control transfer

USB interrupt flag register 0 (UIFR0)

USB interrupt flag register 1 (UIFR1)

EP2o
READY

EP2i
TR

EP2i
EMPTY

7 6 5 4 3 2 1 0

Not used

EP3o
TF

EP3o
TS

EP3i
TF

EP3i
TR

Not used

Bulk-in transfer

Note:

Not used Not used

USB interrupt flag register 0 (UIFR2)

USB interrupt flag register 1 (UIFR3)

Bit:

Bit name:

Bit:

Bit name:

EP5i
TR

EP5i
TS

EP4o
READY

EP4i
TR

EP4i
EMPTY

7 6 5 4 3 2 1 0

Cable connection (VBUS)

SPRSi VBUSs VBUSi

7 6 5 4 3 2 1 0

CK48
READY

SOF SETC SETI SPRSs

USB clock stabilization
detection interrupt

Not used

Not used

Rev. 1.0, 04/02, page 33 of 68

Figure 4.2 Types of USB Interrupt Flags

When an SCI1 interrupt occurs, the corresponding bit in the serial status register is set to 1 and an
interrupt request is sent to the CPU. In this sample program, the transmit data empty and receive
data full, that is, serial transmission and serial reception functions are supported. However, since
the serial transmission is executed not by an interrupt operation, but by branching from the main
loop, it is used only as a flag and the interrupt function is not used.

Bit:

Bit name:

Transmit FIFO data empty

Serial status register (SSR1)

TEND MPB MPBT

7 6 5 4 3 2 1 0

TORE RDRF ORER FER

Receive data FIFO full Receive error
(overrun, framing, parity)

PER

Figure 4.3 Types of Serial Interrupt Flags

4.2.1 Branching to Transfer Function

In this sample program, the transfer type is determined by method of calling each transfer
function. The calling methods are a branch from the main loop and an interrupt from the USB
function or SCI1 module. Table 4.1 shows correspondence between transfer types and methods of
calling each transfer function.

When branching from the main loop, the function is directly called. This method corresponds to
serial-out transfer (ActSerialOut) and bulk-in transfer (ActBulkIn). When branching by a USB
interrupt, the branch is carried out by the BranchOfInt in UsbMain.c. This method corresponds to
detection of USB operating clock stabilization (SetUsbModule), cable connection (ActBusReset,
ActBusVcc), control transfer (ActControl) and bulk-out transfer (ActBulkOut). When branching
by an SCI1 interrupt, the function is directly called because transfer functions are determined by
interrupt sources in the SCI1 module, such as ERI2, RXI2 and TXI2. This method corresponds to
serial-in transfer (ActSerialIn).

Rev. 1.0, 04/02, page 34 of 68

Table 4.1 Transfer Type and Method of Calling Function

Module Transfer type Method of calling

USB Detection of USB operating clock
stabilization time

USB interrupt

Cable connection (bus reset) USB interrupt

Cable connection (BusVcc) USB interrupt

Control transfer USB interrupt

Bulk-out transfer USB interrupt

Bulk-in transfer Branch from main loop

SCI1 Serial-in transfer SCI1 interrupt

Serial-out transfer Branch from main loop

Table 4.2 shows the correspondence between the USB interrupt types and the function called by
BranchOfInt.

Rev. 1.0, 04/02, page 35 of 68

Table 4.2 USB Interrupt Types and Called Functions

Register Name Bit Bit Name Name of Function Called

UIFR0 0 BRST ActBusReset

1  

2 EP1i TR 

3 EP1i TS 

4 EP0o TS ActControlIn, ActControlOut

5 EP0i TR ActControlOut

6 EP0i TS ActControlIn, ActControlOut

7 SETUP TS ActControl

UIFR1 7 EP3o TE 

6 EP3o TS 

5 EP3i TF 

4 EP3i TR

3  

2 EP2o Ready ActBulkOut

1 EP2i TB 

0 EP2i EMPTY  (branch from main loop)

UIFR3 7 CK48 Ready SetUSBModule

6 SOF 

5 SETC 

4 SETI 

3 SPRSs 

2 SPRSi 

1 VBUSs 

0 VBUSi ActBusVcc

The EP0i TS and EP0o Ts interrupts are used both for control-in and control-out transfers. Hence
in order to manage the direction and stage of control transfer, the sample program has three states:
TRANS_IN, TRANS_OUT, and WAIT. For more details, refer to section 4.4, Control Transfers.

Table 4.3 shows SCI1 interrupt types and called functions.

Rev. 1.0, 04/02, page 36 of 68

Table 4.3 SCI1 Interrupt Types and Called Functions

Register Name Bit Bit Name Name of Function Called

SSR1 7 TDRE  (branch from main loop)

6 RDRF ActSerialOut

5 ORER ActSerialOut

4 FER ActSerialOut

3 PER ActSerialOut

2 TEND 

1 MPB 

0 MPBT 

From the next section, details of application-side firmware are explained for each USB and SCI1
transfer type.

Rev. 1.0, 04/02, page 37 of 68

4.3 Interrupt by Detection of USB Operating Clock Stabilization

This interrupt is generated when the 48-MHz USB operating clock stabilization time has been
automatically counted after USB module stop mode cancellation. When endpoint information is
written to UEPIR00_0 to UEPIR22_4 and each interrupt is specified after reception of the
interrupt, the USB function module is entered in the USB cable-connection-wait state.

USB operating clock selected
UCTLR/UCK3 to UCK0 write

USB operating clock
stabilization wait

USB function module

USB operating clock started

USB operating
clock stabilzation time wait

completed?

USB operating clock
stabilization time detection

interrupt generated

Sample program

SetUSBModule

NO

YES

EPINFO specified
115-byte data written to

UEPIR00_0 to UEPIR22_4

EXIRQ0 interrupt
generated USB interface reset cancelled

UCTLR/UIFRST cleared

UIFR3/CK48READY cleared

USB cable connected

Interrupts specified

EPINFO specified

Interrupts specified

USB interface operation
checked

USB cable wait

USB module stop cancelled
MSTPCRB/MSTPB cleared

Figure 4.4 Interrupt at Detection of USB Operating Clock Stabilization

4.3.1 EPINFO

The USB function module incorporated in the H8S/2215 supports the following transfer types: one
pipe for control transfer, two pipes for bulk-in transfer, two pipes for bulk-out transfer, two pipes
for interrupt-in transfer, one pipe for isochronous-in transfer, and one pipe for isochronous-out

Rev. 1.0, 04/02, page 38 of 68

transfer. The transfer types are shown in table 4.4. Any endpoint number, interface number,
alternate number, and maximum packet size for each transfer type except for control transfer are
specifiable.

Table 4.4 Correspondence between Transfer Type and UEPIR

Transfer Type Number of Pipes UEPIR

Control transfer 1 00

Interrupt-in transfer 2 01, 22

Bulk-in transfer 2 02, 20

Bulk-out transfer 2 03, 21

Isochronous-in transfer 1 04, 06, 08, 10, 12, 14, 16, 18

Isochronous-out transfer 1 05, 07, 09, 11, 13, 15, 17, 19

In this application note, endpoints are configured shown in figure 4.5.

The endpoint configuration in the H8S/2215 hardware manual is described in the way which
conforms to Bluetooth standard. Their correspondence is shown in figure 4.5.

Configuration 1 Interface 0 Alternate 0
EP0 control transfer
EP1 bulk-out transfer
EP2 bulk-in transfer
EP3 interrupt-in transfer

(EP0)
(EP2o)
(EP2i)
(EP1i)

(Endpoint number
conforming to
Bluetooth
specification)

Figure 4.5 Endpoint Configuration for this Application Note

The settings for UEPIR00_0 to UEPIR22_4 are shown to configure the endpoints in figure 4.5.
Dammy data should be written to endpoints which are not used.

Rev. 1.0, 04/02, page 39 of 68

Table 4.5 UEPIR Settings

UEPIR Setting (Hex) Transfer Type EP
Number

Interface
Number

Alternate
Number

MaxPacket
Size (Byte)

00 00_00_40_00_00 Control 0 0 0 64

01 34_1C_08_00_01 Interrupt-in 3 0 0 8

02 24_14_40_00_02 Bulk-in 2 0 0 64

03 14_10_40_00_03 Bulk-out 1 0 0 64

04 04_1C_00_00_04 Isochronous-in 0 0 0 0

05 04_08_00_00_05 Isochronous-out 0 0 0 0

06 04_1C_00_00_06 Isochronous-in 0 0 0 0

07 04_08_00_00_07 Isochronous-out 0 0 0 0

08 04_1C_00_00_08 Isochronous-in 0 0 0 0

09 04_08_00_00_09 Isochronous-out 0 0 0 0

10 04_1C_00_00_0A Isochronous-in 0 0 0 0

11 04_08_00_00_0B Isochronous-out 0 0 0 0

12 04_1C_00_00_0C Isochronous-in 0 0 0 0

13 04_08_00_00_0D Isochronous-out 0 0 0 0

14 04_1C_00_00_0E Isochronous-in 0 0 0 0

15 04_08_00_00_0F Isochronous-out 0 0 0 0

16 04_1C_00_00_10 Isochronous-in 0 0 0 0

17 04_08_00_00_11 Isochronous-out 0 0 0 0

18 04_1C_00_00_12 Isochronous-in 0 0 0 0

19 04_08_00_00_13 Isochronous-out 0 0 0 0

20 04_14_00_00_14 Bulk-in 0 0 0 0

21 04_10_00_00_15 Bulk-out 0 0 0 0

22 04_10_00_00_16 Interrupt-in 0 0 0 0

4.4 Interrupt by Cable Connection (BRST, VBUS)

This interrupt occurs when a USB cable is connected to the host controller. After completion of
initializing the microcomputer, the application side pulls up the USB data bus D+ using general-
purpose output port. By means of this pull-up, the host controller detects that the device has been
connected (figure 4.6).

Rev. 1.0, 04/02, page 40 of 68

ActBusVcc

Initializing
microcomputer

All FIFOs cleared

USB function module

VBUS interrupt generated

EXIRQ0 interrupt
generated

USB
cable connection check

UIFR3/VBUSs = 1?

Sample program

ActBusReset

NO

YES

All FIFOs cleared

EXIRQ0 interrupt
generated

Buffer and flags in
firmware cleared

Bus reset flag cleared
(UIFR0/BRST)

Settings for USB

USB cable connected

UDC core reset

VBUS flag cleared
(UIFR3/VBUSi)

D+ pulled up by
port (P36)

UDC core reset cancelled
UCTLR/UDCRST cleared

USB modle initialization
completed

EPFIFO automatic loded
to UDC core

UDC core reset
cancelled

Bus reset interrupt
generated

Wait for setup command
receive completion interrupt

USB interrupt priority level
specified to 6

Port (P36) specified as
output

D+ pull-up disabled

UDC core reset

Waiting for USB
cable connection

Figure 4.6 Interrupt by Cable Connection

4.5 Control Transfers

Control transfers are performed using bits 0 to 3 of the interrupt flag registers. Control transfers
are divided into two types according to the direction of data in the data stage (see figure 4.7). In

Rev. 1.0, 04/02, page 41 of 68

the data stage, data transfer from the host controller to the USB function module is control-out
transfer and transfer in the opposite direction is control-in transfers.

Control-out transfer

Control-in transfer

Host controller USB function module

Data (Data stage)

(Data stage)Data

Host controller USB function module

Figure 4.7 Control Transfers

Control transfers consist of three stages: setup, data (no data is possible), and status (see figure
4.8). Furthermore, a data stage consists of multiple bus transactions.

In control transfers, stage changes are detected by inverting the data direction. Hence the same
interrupt flag for either control-in or control out transfer is used to call a function (see table 4.1).
For this reason, the firmware must manage the control transfer type currently being performed,
control-in or control-out transfer, in each state (see figure 4.8) and must call the appropriate
function. States in the data stage (TRANS_IN, TRANS_OUT) are determined by commands
received in the setup stage.

Rev. 1.0, 04/02, page 42 of 68

DATA0

SETUP (0)Control-in

Firmware state

Control-out

Firmware state

No data

Firmware state

IN (1) OUT (1)IN (0)

SETUP (0)

SETUP (0)

OUT (1) OUT (0)

IN (0/1)

IN (1)

IN (1)

OUT (0/1)

...

...

Setup stage Data stage Status stage

DATA1 DATA0 DATA0/1 DATA1

WAITWAIT TRANS_IN

DATA0 DATA1 DATA0 DATA0/1 DATA1

WAITWAIT TRANS_OUT

DATA0 DATA1

WAITWAIT TRANS_OUT

Figure 4.8 Stages in Control Transfers

4.5.1 Setup Stage

In the setup stage, commands are transferred between the host controller and USB function
module. The firmware is entered in the WAIT state on both control-in and control-out transfers.
Whether control-in transfer or control-out transfer is performed is determined by the type of the
issued command and the state of the firmware in the data stage (TRANS_IN or TRANS_OUT) is
also determined.

• Commands for control-in transfer: GetDescriptor (TRANS_IN) standard command
GetLineCoding (TRANS_IN) vendor command

• Commands for control-in transfer: SetLineCoding (TRANS_OUT) vendor command
SetControlLineState (TRANS_OUT) vendor command
SendBreak (TRANS_OUT) vendor command

Figure 4.9 shows operation of the sample program in the setup stage. The figure on the left shows
operation of the USB function module.

Rev. 1.0, 04/02, page 43 of 68

BranchOfInt

YES

ActControl

GetPacket

DecStandardCommands

DecVenderClassCommands

PutPacket

Firmware state changed to
TRANS_IN

EP0s read complete flag set to 1
(UTRG0/EP0s RDFN = 1)

To contro-in data stage To contro-out data stage

Firmware state changed to
TRANS_OUT

EP0i TR interrupt disabled

NO

YES

NO

Setup token received

8-byte command data
received at EP0s

Application processing
command?

Automatic
processing by
USB module

EXIRQ0 interrupt genaratedSetup command receive
complete flag set

(UIFR0/SETUP TS = 1)

To control-in data stage

USB function module Sample program

SETUP TS flag cleared
EP0o FIFO cleared
EP0i FIFO cleared

Firmware state changed to
WAIT

Read pointer and write pointer
for command buffer initialized

Printer class command?

Control-out transfer
from host to device

Control-in transfer
from device to host

Data written to FIFO

Data direction determined
by command type

EP0 transfer request interrupt
enabled (UIFR0/EP0 TR = 1)

EP0s read complete flag set to 1
(UTRG/EP0s RDFN = 1)

Figure 4.9 Setup Stage

Rev. 1.0, 04/02, page 44 of 68

4.5.2 Data Stage

In the data stage, data is transferred between the host controller and USB function module. The
firmware is entered in the TRANS_IN state for control-in transfer or in the TRANS_OUT state for
control-out transfer according to the result of decoding the command in the setup stage. Figures
4.10 and 4.11 show the operation of the sample program in the data stage on control transfers.

BranchOfInt

When firmware is in TRANS_IN state

When data direction changes,
data stage is terminated and
status stage is entered.

U function module

In-token received

UTRG0/EP0s RDFN
set to 1?

Valid data in
EP0i FIFO?

EP0i transmit flag set
(UIFR0/EP0i TS = 1)

Data sent to host

EXIRQ0 interrupt generated

Sample program

YES

YES

ActControlIn

Status stage

PutPacket

NO

NO

YES

NO

ACK

NAK

NAK

Receive complete interrupt?
(UIFR0/EP0o TS)

UIFR0/EP0i TS
interrupt flag cleared

Data write to
UEDR0i data register

EP0i packet enable bit set to 1
(UTRG0/EP0i PKTE = 1)

Figure 4.10 Data Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 45 of 68

BranchOfInt

When firmware is in TRANS_OUT state

Out-token received

Out-token received

Data received from host

EXIRQ0
interrupt generatedEP0o receive complete flag set

(UIFR0/EP0o TS = 1)

UTRG0/EP0s RDFN
set to 1?

U function module Sample program

YES

YES

ActControlOut

Status stage

GetPacket

Data read from EP0o receive
data size register (UESZ0o)

Data read from EP0o
data register (UEDR0o)

EP0o read complete bit set to 1
(UTRG0/EP0o RDFN = 1)

YES

NO

NO

ACK

NAK

NAK

NO

Receive complete
interrupt?

(UIFR0/EP0o TS)

When data direction changes,
data stage is completed and
status stage is entered.

EP0o receive complete
flag cleared

(UIFR0/EP0o TS = 0)

UTRG0/EP0s RDFN
set to 1?

Figure 4.11 Data Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 46 of 68

4.5.3 Status Stage

The status stage is started by a token with the opposite direction of the data stage, that is, the status
stage is started by an out-token from the host controller on control-in transfer and is started by an
in-token from the host controller on control-out transfer.

BranchOfInt

When firmware is in TRANS_IN state

USB function module

Out-token received

0 byte received from host

Control transfer end

EP0o receive complete flag set
(UIFR0/EP0o TS = 1)

Sample program

ActControlIn

YES

NO

ACK

EXIRQ0 interrupt generated

Receive complete interrupt?
(UIFR0/EP0o TS)

EP0o-related interrupt
flags excluding SETUP

flag cleared

Firmware state
changed to WAIT

EP0o receive complete flag set to 1
(UTRG0/EP0o RDFN = 1)

Control-in transfer end

To data stage

Figure 4.12 Status Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 47 of 68

BranchOfInt

When firmware is in TRANS_OUT state

USB function module

In-token received

0 byte sent to host

Control transfer end

EP0i transmit complete flag
set (UIFR0/EP0i TS = 1)

Valid data in
EP0i FIFO?

Sample program

ActControlOut

SetControlOutContents

YES

YES

YES

NO

NO

NO

ACK

NAK

EXIRQ0 interrupt generated

EXIRQ0 interrupt generated

EP0o
receive complete interrupt?

(UIFR0/EP0o TS)

EP0i
receive complete interrupt?

(UIFR0/EP0i TS)

To data stage

EP0i transfer request flag cleared
(UIFR0/EP0i TR = 0)

EP0i packet enable bit set to 1
(UTRG0/EP0i PKTE = 1)

EP0o transmit complete flag
cleared (UIFR0/EP0i TS = 0)

Firmware state
changed to WAIT

YES

NOSet_Line_Coding
command?

SciInit

Control-out transfer end

Figure 4.13 Status Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 48 of 68

4.6 Bulk Transfers

Bulk transfers are performed using bits 0 to 2 of the interrupt flag register 1 (bits 0 and 1 are not
used because a bulk-in transfer is not enabled by an interrupt in this program). Bulk transfers are
also be divided into two types according to the direction of data transfer (figure 4.14).

Data transfer from the host controller to the USB function module is bulk-out transfer and data
transfer in the opposite direction is bulk-in transfer.

USB function moduleHost controller

Bulk-out transfers

Bulk-in transfers

Data

Data

USB function moduleHost controller

Figure 4.14 Bulk Transfers

4.6.1 Bulk-Out Transfers

Figure 4.15 shows the operations of the sample program when bulk-out transfer is carried out.

Rev. 1.0, 04/02, page 49 of 68

BranchOfInt

UIFR0/EP2o READY

Out-token received

Any space in EP2o FIFO?

Data received from host

EXIRQ0
interrupt generatedEP2o FIFO full status set

(UIFR0/EP2o READY = 1)

Any space
in both EP2o FIFOs?

USB function module Sample program

YES

YES

ActBulkOut

ExBulkOut

Data read from EP2o
data register (UEPDR2o)
 is stored in RAM area

for bulk-out transfer

EP2o read complete bit set to 1
(UTRG0/EP2o RDFN = 1)

YES

NO

NO

ACK

NAK

NO

Any space
in RAM area for bulk-out

transfer?

Data read from EP2o
receive data size register

(UESZ2o)

EP2o FIFO full status cleared
(UIFR0/EP2o READY = 0)

EP2o READY interrupt disabled
(UIFR1/EP2o READY = 0)

EXIRQ0 interrupt occurred

Figure 4.15 Bulk-Out Transfers

4.6.2 Bulk-in Transfers

Figure 4.16 shows the operation of the sample program when bulk-in transfer is carried out.
Unlike bulk-out transfer, bulk-in transfer is not started by an interrupt and is started by a branch
from the main loop.

When there is no space in the RAM area and the serial-in transfer is disabled, data stored in the
RAM area for bulk-in transfer can be written to the UEDR2i data register. Whether or not the
RAM area is made available by this write operation can be checked. When the RAM area is made
available, serial-in transfer can be enabled.

Rev. 1.0, 04/02, page 50 of 68

Main loop

In-token received

Valid data in EP2i FIFO?

Data transferred to host

Any space
in EP2i FIFO?

USB function module Sample program

YES

YES

ActBulkIn

ExBulkIn

YES

NO
NO

ACK

NAK

NO

Data
in RAM area for bulk-in

transfer?

Data write to EP2i data register
(UEDR2i)

EP2i empty status cleared
(UIFR0/EP2i EMPTY = 0)

EP2i empty status set
(UIFR0/EP2i EMPTY = 1)

NO

Any space
in EP2i FIFO?
(UIFR0/EP2i
EMPTY = 1)

YES

EP2i packet enable bit set to 1
(UTRG0/EP2i PKTE = 1)

Serial-in disabled?

Data
in RAM area for bulk-in

transfer?

NO

YES

NO

YES

Serial-in enabled (Xon transferred
by serial-out transfer)

Figure 4.16 Bulk-In Transfer

4.7 Serial Transfer

The SCI1 module is used for serial transfer. Serial-out transfer is performed by branching from the
main loop and serial-in transfer is performed by an interrupt. The RDRF flag of the serial status
register (SSR1) is used on serial-in transfer.

4.7.1 Serial-Out Transfer

Figure 4.17 shows the operation of the sample program on serial-out transfer. When any data is in
the RAM area for bulk-out transfer, the ActSerialOut function is called to branch from the main

Rev. 1.0, 04/02, page 51 of 68

loop and the SCI1 module is used to transfer the data. When data is not in the RAM area for bulk-
out transfer and the bulk-out transfer is disabled, whether or not the RAM area is made available
by this serial-out transfer can be checked. When the RAM area is made available, bulk-out transfer
can be enabled.

Main loop

ActSerialOut

ExSerialOut

EP2o READY interrupt enabled
(UIER1/EP2o READY = 1)

NOData for serial-out
transfer?

Transmssion Data write
to TDR1

NOSSR2 TDRE = 1?

YES

Bulk-out disabled?

Any space
in RAM area for bulk-out

transfer?

NO

YES

NO

YES

Calculate byte size
of transfer data

YES

SSR1 TDFE/TEND
cleared

Figure 4.17 Serial-Out Transfer

Rev. 1.0, 04/02, page 52 of 68

4.7.2 Serial-In Transfer

Figures 4.18 and 4.19 show the operation of the sample program on serial-in transfer. When ERI1
or RXI1 reception interrupt occur, the ActSerialIn function is called.

Serial-in transfer end

ActSerialIn

To error processing

NO

Receive error
data interrupt?

Serial-in disabled (Xoff
transferred by serial-out transfer)

NO

Any space
in RAM area for bulk-in

transfer?

YES

ERI2 or RXI2 interrupt occurred

Received data stored in
RAM area for bulk-in transfer

NO

YES
ORER = 1? SSR0 ORER/PER/FER

cleared

SSR1 RDRF cleared

Received data read from RDR1

YES

Figure 4.18 Serial-In Transfer (Receive Data Processing)

When an ERI1 interrupt which is caused by an overrun error (ORER) occurs, data is read from
RDR1 in the same way as an RXI interrupt occurs. When an ERI1 interrupt which is not caused by
an overrun error occurs, data in RDR1 is read to be discarded and the error flag is cleared. At this
time, when a break interrupt is also received, serial reception is disabled to exit the function
without clearing the FER flag. In this case, since the FER flag hold the value 1, consecutive
interrupts occur and the ActSerialIn function continues to be called until a break interrupt is
stopped. During these conditions, the interrupt priorities for the USB function and SCI1 modules
are switched in order to enabling reception of USB interrupts.

Rev. 1.0, 04/02, page 53 of 68

When an overrun error occurs or data is successfully received, the data is read from RDR1 and is
stored in the RAM area for bulk-in transfer. After this, the size of which the RAM area is not used
is checked. When there is no area left to use, Xoff is sent to the host PC connected with serial
interface in order to avoid data missing. Sending Xoff disables serial-in transfer.

Serial-in transfer end

ActSerialIn

To flow in figure 4.18

NOORER = 0 and
PER = 1?

Interrupt priority level changed
USB: 7 to 6, SCI1: 6 to 7

NOBreak input?
(RxD1 = 0?)

YES

NO

YES

ORER = 0 and
FER = 1?

Dummy read from RDR

YES

Error processing

PER flag cleared

Dummy read from RDR

Serial transfer enabled

FER flag cleared

Serial-in transfer end

Interrupt priority level changed
USB: 6 to 7, SCI1: 7 to 6

Serial transfer disabled

Figure 4.19 Serial-In Transfer (Error Processing)

4.8 Vendor Command

In this sample program, four vendor commands, supported by USB serial conversion driver
manufactured by Hitachi ULSI Systems Co., Ltd., are decoded.

Rev. 1.0, 04/02, page 54 of 68

Table 4.6 shows the four vendor commands that are supported by the USB serial conversion
driver.

Table 4.6(a) Vendor Request

bmRequestType bRequest wValue wIndex wLength Data

01000001b SET_LINE_CODING Zero Interface 8 Line Coding
Structure

11000001b GET_LINE_CODING Zero Interface 8 Line Coding
Structure

01000001b SET_CONTROL_LINE
_STATE

Control Signal
Bitmap

Interface Zero None

01000001b SEND_BREAK Duration of Break Interface Zero None

Table 4.6(b) Vendor Request Code

bRequest Value

SET_LINE_CODING 0

GET_LINE_CODING 1

SET_CONTROL_LINE_STATE 2

SEND_BREAK 3

More details of each command are explained in the following sections.

4.8.1 SetLineCoding

This request specifies parameters which are used for asynchronous data transfer.

bmRequestType bRequest wValue wIndex wLength Data

01000001b SET_LINE_CODING Zero Interface 8 Line Coding Structure

Table 4.7 shows the definition of Line Coding Structure.

In this sample program, SCI1 is restarted with the settings of received Line Coding Structure on
reception of this command.

Rev. 1.0, 04/02, page 55 of 68

Table 4.7 Line Coding Structure

Offset Field Size Value Description

0 DwDTERate 4 Number Data terminal speed (bps)

4 BcharFormat 1 Number Stop bit

0: 1 stop bit

1: 1.5 stop bits

2: 2 stop bits

5 BparityType 1 Number Parity

0: None

1: Odd

2: Even

3: Mask

4: Space

6 BdataBits 1 Number Data bits (5, 6, 7, 8)

7 BflowType 1 Number Flow control

0: Software or none

1: Hardware

4.8.2 GetLineCoding

This request is for the host to check out the current parameter of the device. When this sample
program receives this command, it returns the initial values shown in table 4.8 to the host.

bmRequest
Type

bRequest wValue wIndex wLength Data

11000001b GET_LINE_
CODING

Zero Interface 8 Line Coding
Structure

Table 4.8 Initial Values of Line Coding Structure

Offset Field Size Value Description

0 DwDTERate 4 0x1C200 Data terminal speed (38400bps)

4 BcharFormat 1 0x0 Stop bit (1 stop bit)

5 BparityType 1 0x0 Parity (None)

6 BdataBits 1 0x8 Data bit (8)

7 BflowType 1 0x0 Flow control (Software or none)

Rev. 1.0, 04/02, page 56 of 68

4.8.3 SetControlLineState

This request sets the control signal.

bmRequestType bRrequest wValue wIndex wLength Data

01000001b SET_CONTROL_
LINE_STATE

Control Signal
Bitmap

Interface Zero None

Table 4.9 Control Signal Bitmap

Bit Position Description

D15 to D2 Reserved (initialized to 0)

D1 Controls transmit function of DCE

0: RTS off

1: RTS on

D0 Monitors whether or not DTE is in ready state

0: DTR off

1: DTR on

Since the H8S/2215 does not have RTS and DTR signals, only decode is carried out for this
request and the DCE is not controlled.

In this sample program, it is recognized that setting the hyper terminal on the USB host PC side
for communication is completed by detecting D1 = 1 and D0 = 1. At this time, a pointer that
indicates the data area for bulk-in and bulk-out transfers and an internal flag in this sample
program are initialized.

4.8.4 SendBreak

This request generates the break signal in device.

bmRequestType bRequest wValue wIndex wLength Data

01000001b SEND_BREAK Duration of Break Interface Zero None

The break signal transmission time (msec) is written to the wValue field. When wValue is
0xFFFF, the device continues to output the break signal until receiving the SendBreak request
with wValue of 0x0000.

In this sample program, this request is decoded. A break signal, however, is not output.

Rev. 1.0, 04/02, page 57 of 68

Section 5 Analyzer Data

In this section, we look at how measurement is carried out with the USB Advisor, a USB protocol
analyzer manufactured by CATC (http://www.catc.com), using the USB function module in the
H8S/2215, and at what happens to the data as it actually flows along the bus. The following gives
the description for control transfer when a device is connected and control transfer when the
vendor command is transmitted as examples.

Note: The Packet # found in front of each packet is the packet number used when measuring.

The Idle found at the end of each packet indicates the idle between packets.

5.1 Control Transfer when Device is Connected

Figure 5.1 shows the measurement made, with a device connected to the host controller, while
shifting from the power-on state (the power is supplied to Vbus) until the configuration state
(device is ready for being used).

Though the packet scheduling may differ depending on the host controller, the command flow to
the configuration state is always the same.

←Out-token packet (default address used)

←Data packet (0 byte)

←SOF pcket

←Setup token packets (default address used)

←ACK Handshake packet
Data packet (8 bytes)
(Get_Descriptor (Device) command)

Frame
(1ms)

Setup
stage

Data
stage (in)

←In-token packet (default address used)

Data packet (18 bytes)
(device descriptor information)

* Only SOF packets continue in this period.

←Reset signal. A transition is made from power-on
 state to default state.

Frame
(1ms)

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_D

es
cr

ip
to

r(
D

ev
ic

e)
)

* Continued on next page

Frame
(1ms)

Frame
(1ms)

Status
stage

Frame
(1ms)

Rev. 1.0, 04/02, page 58 of 68

Reset signal is input again.

Data packet (8 bytes)
(Set_Address (Address: 2) command)

Setup
stage

Status
stage

←In-token packet (default address used)

* Only SOF packets continue in this period.

←Setup token packets (default address used)

C
on

tr
ol

 tr
an

sf
er

 (
S

et
_A

dd
re

ss
)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)←Data packet (0 byte)

←ACK Handshake packet

* Only SOF packets continue in this period.

* Transits to address state, hereafter.

←Setup token packet (Address: 2)

Setup
stage

Frame
(1ms)

Data packet (8 bytes)
(Set_Descriptor (Device) command)

Data
stage (in)

←In-token pacekt (Address: 2)

Data packet (18 bytes)
(device descriptor information)

Frame
(1ms)

Frame
(1ms)

Status
stage←Data packet (0 byte)

←Out-token packet (Address: 2)

* Continued on next page

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_D

es
cr

ip
to

r(
D

ev
ic

e)
)

Rev. 1.0, 04/02, page 59 of 68

←In-token packet (Address: 2)

Data packet (9 bytes)
(configuration descriptor information)

Data
stage (in)

Status
stage

←Out-token packet (Address: 2)

←Data packet (0 byte)

C
on

to
rl

tr
an

sf
er

 (
G

et
_D

es
cr

ip
to

r(
C

on
fig

))

Data packet (8 bytes)
(Get_Descriptor (Config) command)

←Setup token packet (Address: 2)

Setup
stage

Data packet (8 bytes)
(Get_Descriptor (Config) command)

←In token packet (Address: 2)

Data packet (39 bytes)
(configuration descriptor information)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

←Setup token packet (Address: 2)

Frame
(1ms)

Frame
(1ms)Setup

stage

Status
stage

Frame
(1ms)

Frame
(1ms)

Data
stage (in)

Frame
(1ms)

←Out-token packet (Address: 2)

←Data packet (0 byte)

* Continued on next page

* Only SOF packets continue in this period.

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_D

es
cr

ip
to

r(
C

on
fig

))

Frame
(1ms)

Rev. 1.0, 04/02, page 60 of 68

←Setup token packet (Address:

Data packet (8 bytes)
(Get_Descriptor (Device) command)

Setup
stage

Data
stage (in)

←In-token packet (Address: 2)

Data packet (18 bytes)
(device descriptor information)

Status
stage

←Out-token packet (Address: 2)

←Data packet (0 byte)

Data packet (8 bytes)
(Get_Descriptor (Device) command)

←Setup token packet (Address: 2)

Setup
stage

←In-token packet (Address: 2)

Data packet (18 bytes)
(configuration descriptor information)

Data
stage (in)

←Out-token packet (Address: 2)

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_D

es
cr

ip
to

r(
D

ev
ic

e)
)

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_D

es
cr

ip
to

r(
D

ev
ic

e)
)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

←Data packet (0 byte)

Frame
(1ms)Status

stage

Frame
(1ms)* Continued on next page

Rev. 1.0, 04/02, page 61 of 68

Figure 5.1 Control Transfer when Device is Connected

Data packet (8 bytes)
(Set_Configuration command)

←Setup token packet (Address: 2)

Setup
stage

←In-token packet (Address: 2)

←Data packet

* Transits to configration state, hereafter.

C
on

tr
ol

 tr
an

sf
er

 (
S

et
_C

on
fig

ur
at

io
n)

Data packet (8 bytes)
(Get_Descriptor (Config command)

←Setup token packet (Address: 2)

Setup
stage

←In-token packet (Address: 2)

Data packet (39 bytes)
(configuration descriptor information)

Data
stage (in)

Status
stage

←Out-token packet (Address: 2)

←Data packet (0 byte)

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_D

es
cr

ip
to

r(
C

on
fig

))
Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)Status

stage

* The stationary state continues until a control transfer (vendor command) is performed.

Rev. 1.0, 04/02, page 62 of 68

5.2 Control Transfer when Vendor Command is Transmitted

Figure 5.2 shows the measurement results when the vendor command is transmitted by control
transfer between the host controller and this device. (For the vendor command, refer to section
4.7.)

Frame
(1ms)

Data packet (8 bytes)
(Get_Line_Coding command (vendor command))

←Setup token packet (Address: 2)

Setup
stage

Status
stage

←Out-token packet (Address: 2)

←Data packet (0 byte)

↑ Data packet (8 bytes)

←In-token packet (Address: 2)

Data
stage (in)

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_L

in
e_

C
od

in
g)

Data padket (8 bytes)
(Get_Line_Coding command (vendor command))

←Setup token packet (Address: 2)

Setup
stage

←Out-token packet (Address: 2)

←Data packet (0 byte)

←In-token packet (Address: 2)

Data
stage (in)

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_L

in
e_

C
od

in
g)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms))

↑ Data packet (8 bytes)

Frame
(1ms)Status

stage

* Continued on next page

Rev. 1.0, 04/02, page 63 of 68

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_L

in
e_

C
od

in
g)

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_L

in
e_

C
od

in
g)

Frame
(1ms)

Data packet (8 bytes)
(Get_Line_Coding command (vendor command)

←Setup token packet (Address: 2)

Setup
stage

Status
stage

←Out-token packet (Address: 2)

←Data packet (0 byte)

↑Data packet (8 bytes)

←In-token packet (Address: 2)

Data
stage (in)

Data packet (8 bytes)
(Get_Line_Coding command (vendor command)

←Setup token packet (Address: 2)

Setup
stage

Status
stage

←Out-token packet (Address: 2)

←Data packet (0 byte)

↑ Data packet (8 bytes)

←In-token packet (Address: 2)

Data
stage (in)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

* Contrinued on next page

Rev. 1.0, 04/02, page 64 of 68

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_L

in
e_

C
od

in
g)

C
on

tr
ol

 tr
an

sf
er

 (
G

et
_L

in
e_

C
od

in
g)

Frame
(1ms)

Data packet (8 bytes)
(Get_Line_Coding command (vendor command)

←Setup token packet (Address:

Setup
stage

Status
stage

←Out-token packet (Address: 2)

←Data packet (0 byte)

↑Data packet (8 bytes)

←In-token packet (Addresss: 2)

Data
stage (in)

Data packet (8 bytes)
(Get_Line_Coding command (vendor command)

←Setup token packet (Address: 2)

Setup
stage

Status
stage

←Out-token packet (Address: 2)

↑ Data packet (8 bytes)

←Setup token packet (Address: 2)

Data
stage (in)

* Continued on next page

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

← Data packet (0 byte)

2)

Rev. 1.0, 04/02, page 65

C
on

tr
ol

 tr
an

sf
er

 (
S

et
_L

in
e_

C
od

in
g)

C
on

tr
ol

 tr
an

sf
er

 (
S

et
_C

on
tr

ol
_L

in
e_

S
ta

te
)

Frame
(1ms)

Data packet (8 bytes)
(Set_Line_Coding command (vendor command)

←Setup token packet (Address: 2)

Setup
stage

Status
stage

←Data packet (0 byte)

↑Data packet (8 bytes)

←Out-token packet (Address: 2)

Data
stage (out)

←In-token packet (Address: 2)

Data packet (8 bytes)
(Set_Control_Line_State command (vendor command)

←Setup token packet (Address: 2)

Setup
stage

Status
stage

←Data packet (0 byte)

←In-token packet (Address: 2)

Frame
(1ms)

←In-token packet (Address: 2)

Fram
(1ms

←In-token packet (Address: 2)

* Continued on next page
 of 68

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

e
)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Rev. 1.0, 04/02, page 66 of 68

C
on

tr
ol

 tr
an

sf
er

 (
S

et
_C

on
tr

ol
_L

in
e_

S
ta

te
)

C
on

tr
ol

 tr
an

sf
er

 (
S

et
_L

in
e_

C
od

in
g)

Data packet (8 bytes)
(Set_Control_Line_State command (vendor command)

←Setup token packet (Address: 2)

Setup
stage

Status
stage

←Data packet (0 byte)

←In-token packet (Address: 2)

Data packet (8 bytes)
(Set_Line_Coding command (vendor command)

←Setup token packet (Address: 2)

←In-token packet (Address: 2)

←Data packet (0 byte)

↑Data packet (8 bytes)

←Out-token packet (Address: 2)

Data
stage (out)

rame

←In-token packet (Address: 2)

Setup
stage

←In-token packet (Address: 2)

Status
stage

* Continued on next page
F

Frame
(1ms)

(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

Rev. 1.0, 04/02, page 67 of 68

Figure 5.2 Control Transfer when Vendor Command is Transmitted

* The stationary state continues until a control transfer (vendor command) is performed.

C
on

tr
ol

 tr
an

sf
er

 (
S

et
_L

in
e_

C
od

in
g)

Frame
(1ms)

Data packet (8 bytes)

←Setup token packet (Address: 2)

Status
stage

←In-token packet (Address: 2)

←Data packet (0 byte)

↑Data packet (8 bytes)

←Out-token packet (Address: 2)

Data
stage (out)

Frame
(1ms)

Setup
stage

Frame
(1ms)

Frame
(1ms)

Frame
(1ms)

←In-token packet (Address: 2)

Rev. 1.0, 04/02, page 68 of 68

H8S/2215 USB Function Module

USB Serial Conversion Application Note

Publication Date: 1st Edition, April 2002
Published by: Business Operation Division

Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	1.1	Overview
	1.2	Purpose of this System

	Section 2 Development Environment
	2.1	Hardware Environment
	2.2	Software Environment
	2.2.1	Sample Program
	2.2.2	Compiling and Linking
	2.2.3	USB Serial Conversion Driver

	2.3	Loading and Executing the Program
	2.3.1	Loading and Executing the Program

	2.4	Method of Communication between PCs
	2.4.1	Setting Up the USB Host PC
	2.4.2	Setting Up the Serially-Connected PC
	2.4.3	Communication between PCs

	Section 3 Overview of Sample Program
	3.1	State Transition Diagram
	3.2	Overview of Communication between PCs
	3.3	File Structure
	3.4	Purposes of Functions

	Section 4 Sample Program Operation
	4.1	Main Loop
	4.2	Types of Interrupts
	4.2.1	Branching to Transfer Function

	4.3	Interrupt by Detection of USB Operating Clock Stabilization
	4.3.1	EPINFO

	4.4 Interrupt by Cable Connection (BRST, VBUS)
	4.5	Control Transfers
	4.5.1	Setup Stage
	4.5.2	Data Stage
	4.5.3	Status Stage

	4.6	Bulk Transfers
	4.6.1	Bulk-Out Transfers
	4.6.2	Bulk-in Transfers

	4.7	Serial Transfer
	4.7.1	Serial-Out Transfer
	4.7.2	Serial-In Transfer

	4.8	Vendor Command
	4.8.1	SetLineCoding
	4.8.2	GetLineCoding
	4.8.3	SetControlLineState
	4.8.4	SendBreak

	Section 5 Analyzer Data
	5.1	Control Transfer when Device is Connected
	5.2	Control Transfer when Vendor Command is Transmitted

	Colophon

