To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMSs (flash memory, SRAMs €tc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is aways the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as areference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party'srights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or al of theinformation contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as atota system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for usein adevice
or system that is used under circumstances in which human lifeis potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

LENESAS

>
©
S
=
Q
=
o
-
Z
)
—+
)
7))

USB Function Module
USB Serial Conversion
Application Notes

—
(@)

Renesas 16-Bit Single-Chip

Microcomputer

H8S/2215
HD64F2215

Renesas Electronics Rev.1.0 2002.04

www.renesas.com

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party'$
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that
have received the latest product standards or specifications before final design, purchase ol
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’'s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directl
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment fo
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristic
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation o
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this docume
without written approval from Hitachi.

7. Contact Hitachi’'s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 1.0, 04/02, page ii of vi
RENESAS

Preface

These application notes describe the USB serial conversion firmware which uses the USB
Function Module that incorporates the H8S/2215. They are provided to be used as a referenc
when the user creates USB Function Module firmware.

These application notes and the described software are application examples of the USB Fun
Module, and their contents and operation are not guaranteed.

In addition to these application notes, the manuals listed below are also available for referenc
when developing applications.

[Related manuals]

* Universal Serial Bus Specification Revision 1.1

* HB8S/2215 Series Hardware Manual

e HB8S/2215 CPU Board (MS2215CP01-C/S) Instruction Manual

e HB8S/2215 Series TFP-120 User System Interface Cable (HS2215ECN61H) Instruction Ma
« EB6000 (HS2214EPI61H) Emulator User's Manual

[Caution] The sample programs described in these application notes do not include firmware
related to interrupt transfer and isochronous transfer, which are USB transport type:
When using either of these transfer types (see section 15 in the H8S/2215 Series
Hardware Manual), the user needs to create the program for it.
Also, the hardware specifications of the H8S/2215 and H8S/2215 CPU board, whicl
will be necessary when developing the system described above, are described in th
application notes, but more detailed information is available in the H8S/2215 Series
Hardware Manual and the H8S/2215 CPU Board Instruction Manual.

Rev. 1.0, 04/02, page iii of vi
RENESAS

Rev. 1.0, 04/02, page iv of vi
RENESAS

Contents

SECHON 1 OVEIVIEW ..uuuiiiiiiiii ettt e e e e et e e e e e e e e e e e e e eaaa e eas
Lol OVEIVIBW ..ttt ettt ettt e e e e e e e e e e e e e e aeeaa e e annbnnb b et e s s mmmmnn 1...
1.2 PUurpose of thiS SYSIEIMo.uuiiiiiiiiiiie e kSR
Section 2 Development ENVIFONMENT........coiiiiiiiiiiieeiiiiiiee et e e e e
2.1 Hardware ENVIFONMENTooiiiiiiiiiiitie ettt e e e e e e e e e e e e e e e e e e s e s annnaes
2.2 SOftWAre ENVIFONMENT.. ..ottt e s annnnaes
A R - 1 a1 o] (= (oo =T o S
2.2.2 Compiling and LINKINGcooouveeiiieiiiiee e 9
2.2.3 USB Serial CONVErSiON DIVELccccciiiiiiiiiiiiiieeiteeteeee e e e e e e s e s e s seeeeeeeeeeeeeeeeees i
2.3 Loading and Executing the Programcccoiiiiiiiiiiiiiiiiece e
2.3.1 Loading and Executing the Programccccceeeeeiiiiiiiiiiiiceis e
2.4 Method of Communication DEtWEEN PCS........coiiiiiiiiiiiiii et
2.4.1 Setting Upthe USB HOSEt PC.....cco oo
2.4.2 Setting Up the Serially-Connected PC ...
2.4.3 Communication DEIWEEN PCS......uuiiiiiiiiiiiiieeee e
Section 3 Overview of Sample Program ...
3.1 State Transition Diagram........ccooveiiiiiiiiiiiie e e e e e e e 9.
3.2 Overview of Communication DetWeen PCS..........cccuuuiiiiiiiiiiieiiee e,
B T T [T {0 od 11] - SRR 23..
3.4 PUrpoSes Of FUNCHONSooiiiiiiiiiiie et 24.........
Section 4 Sample Program OPerationcooeeeeeiiiiiiiiiiiiiiiiiiiieeieeeeeee e
R |V = 1 I 1o o T o PP 29...
4.2 TYPES Of INEITUPLS ..o e e e e s e e e e e e e e e e e e aeeeesnas 3l......
4.2.1 Branching to Transfer FUNCLONc.uuiiiiiiiiiic e
4.3 Interrupt by Detection of USB Operating Clock Stabilizationccccccceevniiiiiiinnnnnne. 3
Nt R | N | 0 N
4.4 Interrupt by Cable Connection (BRST, VBUS)coooiiiiiiecii e
A5 CONrOl TraNSIEIS. ..ot e e e e e e e e e e e e e e ammae 40.....
N RS 1= (U] o IS = o [PP TUPTPRTRPPPIY
4.5.2 DA STAGE ..ooeieeeeiiiiie it e e e e e
4.5.3 STAIUS STAGE ...oeiiiiiiiieee ittt e e et a e e e e
T = 10 112G I = 1] 1= SRR 48....
4.6.1 BUIK-OUL TFANSTEIS....ceiiiiiiiiie i A
4.6.2 BUIK-IN TranSTErS. ..ot ,
A7 Serial TrANSTOE .ttt e e e e e e e 50...
4.7.1 Serial-Out TraNSTEI......ueuieiiiiiiiiiee e eee e

Rev. 1.0, 04/02, Page V of vi

4.7.2 SEHAIIN TIANSTEI vt et e e e e e e et eeaaaas 5

/T V7= o Vo [o] g @0] 4 0 =1 o [o [3.
4.8.1 SetLINECOUING. ... ttieieie ittt e e e et e e e e e b b ee e e e e 5
4.8.2 GetLINECOAINGiettiiiieei ittt 5
4.8.3 SetCoONtIOILINESIALEccvvieieiiiitci e e et e e e et e e eaaen 5
4.8.4 SENUBIEAK ...t ittt e e e e e et aeraan !
Section 5 ANalyzer Data............coiiiiiiiiiii e
5.1 Control Transfer when Device iS CONNECIEA...........cuuuiiiiiiiiii e !
5.2 Control Transfer when Vendor Command is Transmittedccceeeeiiivieeeeeveeiieeeeeennnnn. 6

Rev. 1.0, 04/02, page Vi of vi
RENESAS

Section 1 Overview

1.1 Overview

These application notes describe how to use the USB Function Module that is built into the
H8S/2215, and examples of firmware programs.

The features of the USB Function Module contained in the H8S/2215 are listed below.

* Aninternal UDC (USB Device Controller) conforming to USB 1.1
» Automatic processing of USB protocols

» Automatic processing of USB standard commands for endpoint 0 (some commands need
processed through the firmware)

e Full-speed (12 Mbps) transfer supported
» Various interrupt signals needed for USB transmission and reception are generated

* Internal system clock (16 MHz) multiplied by three or external input clock (48 MHz) can be
selected as the USB operating clock by the USB clock selector in the clock pulse generato

* Low power consumption mode provided
e Aninternal bus transceiver

Endpoint Configurations

Endpoint Name Name Transfer Max. Packet FIFO Buffer DMA
Type Size Capacity Transfer
Endpoint 0 EPOs Setup 8 bytes 8 bytes d
EPOI Control In 64 bytes 64 bytes ad
EPOO Control Out 64 bytes 64 bytes ad
Endpoint (optional) EPn Interrupt (in) 64 bytes 64 bytes (variable) O
Endpoint (optional) EPn Bulk-in 64 bytes 64 x 2 (128 bytes) Possible
Endpoint (optional) EPn Bulk-out 64 bytes 64 x 2 (128 bytes) Possible
Endpoint (optional) EPn Isochronous 128 bytes 128 x 2 (variable) O
(in)
Endpoint (optional) EPn Isochronous 128 bytes 128 x 2 (variable) O
(out)
Endpoint (optional) EPn Bulk-in 64 bytes 64 x 2 (128 bytes) Possible
Endpoint (optional) EPn Bulk-out 64 bytes 64 x 2 (128 bytes) Possible
Endpoint (optional) EPn Interrupt (in) 64 bytes 64 bytes (variable) O

Figure 1.1 shows an example of a system configuration.

Rev. 1.0, 04/02, page 1 of 68
RENESAS

USB Function

USB cable

Serial cable

MS2215CP

1ISR hnst PC

*Windows2000
*USB serial conversion deriver

(manufactured by Hitachi ULSI Systems Co., Ltd.)

Figure 1.1 System Configuration Example

This system is configured of the H8S/2215 CPU board manufactured by Hitachi ULSI Systems
Co., Ltd. (hereafter referred to as the MS2215CP) on which the H8S/2215 is mounted, a seriall
connected PC, and a USB host PC (Windows 2000) containing the USB serial conversioh drive
(manufactured by Hitachi ULSI Systems Co., Ltd.).

In this system, the MS2215CP can receive the USB packet data transmitted from the USB host
and transmit it to the serially-connected PC after converting it into serial data. Also, its reverse |
possible, that is, the MS2215CP can receive serial data from the serially-connected PC and
transmit it to the USB host PC after converting it into USB packet data.

This system offers the following features.

The sample program can be used to evaluate the USB module of the H8S/2215 quickly.
The sample program supports USB control transfer and bulk transport.

An E6000 (full-spec emulator) can be used, enabling efficient debugging.

Additional programs can be created to support interrupt transfer and isochronous tfansfer.*

A owbdpE

Notes: 1. For inquiries on this system (sample program and USB serial conversion driver),
contact your Hitachi sales agency.
The USB serial conversion driver operates only with a vendor ID of 045B
manufactured by Hitachi, Ltd. To use the USB serial conversion driver in your produc
a contract concerning the USB serial conversion driver must be separately made witl
Hitachi ULSI Systems Co., Ltd.

Rev. 1.0, 04/02, page 2 of 68
RENESAS

2. Interrupt transfer and isochronous transfer programs are not provided, and will neec
be created by the user.

1.2 Purpose of this System

The price reduction of PCs has been accelerated in recent days, and at the same time, the lec
free PCs (equipped only with new standard ports compliant to Plug & Play such as USB
(Universal Serial Bus), but not with old standard ports such as a serial port) have started to ar
on the market in large numbers. With this market trend, it may become impossible for the exis
serial devices to be connected with PCs and many existing serial devices to be used. In orde
solve this problem, a device which converts the existing serial line into the USB is required.

These application notes aim at providing an example of realizing the USB serial conversion
function to solve this problem.

In this system, the USB does not exist when seen from the existing serial application. This is
realized by providing the serial APl when the existing serial devices are replaced by the new |
devices. This allows the application program to be used without changes.

Figure 1.2 shows the hardware and software configurations when the PC and serial devices a
connected via the existing serial line. Figure 1.3 shows the hardware and software configurat
when the PC and serial devices are connected via the USB serial conversion device.

As shown in figure 1.2 (a), the serial devices are connected to the PC via the serial cable in tt
existing system. However, as shown in figure 1.3 (a), the USB serial conversion device is

required between the PC and serial devices when the existing serial devices are connected tc
PC via the USB. The USB serial conversion device has a function to convert USB signals anc
serial signals mutually. The PC and USB serial conversion device are connected by the USB
cable, and the USB serial conversion device and serial devices are connected via the serial c:
This makes it possible for the PC and serial applications to communicate with each other.

Figure 1.2 (b) and 1.3 (b) show the software configuration expressed in hierarchical structure.
connection indicated by a dotted line shows the image of logical connection.

Rev. 1.0, 04/02, page 3 of 68
RENESAS

Serial cable I |

I | Serial devices

% (PC, measuring device, TA, etc.)
pC (a) Hardware configuration
Serial Serial
application application
| Serial port driver | ------------------------ Serial port farmware |
| Hardware : : Hardware |
Serial Serial

(b) Software configuration

Figure 1.2 Example of Connecting PC and Serial Devices via Existing Serial Line

4 I

USB serial conversion chip (H8S/2215)

E ISR R connector
‘ ! USB cable J Serial cable I |

USB serial conversion device (MS2215CP) Serial devices
PC (PC, mesuring device, TA, etc)

(a) Hardware configuration

Serjal connector

Existing serial Existing serial
Mclation application
| Virtual serial port deriver I ----- | Serial port farmware } .- Serial port
1 1
| USB driver I ----- | USB farmware | farmv;/are
1 1
| Hardware |_| Hardware | Hardware |_| Hardware |
usB usB Serial Serial
\ (b) Software configuration /

Figure 1.3 Example of Connecting PC and Serial Devices via USB

In figure 1.2 (b), transmit data from the serial application in the PC is sent to the serial port driv
which then sends the data to the serial hardware of the PC. The serial hardware sends this da
the serial hardware of the other end via a serial line. The serial port firmware of the serial devic
extracts the data from the hardware that received the data and sends it to the serial application
Herewith the data can be exchanged between serial applications.

Rev. 1.0, 04/02, page 4 of 68
RENESAS

As in figure 1.3 (b), the transmit data from the serial application in the PC is sent to the virtual
serial port driver. This virtual serial port driver has the same application interface as the existi
serial port driver. This allows the USB to not be recognized from the existing serial application
thus enabling data communication without having to change the existing serial application. Tt
virtual serial port driver passes the data from the application to the lower USB driver. The US|
driver then passes the data to the USB hardware in the PC. The USB hardware transmits the
through the USB bus to the USB hardware in the USB serial conversion device. The USB ser
conversion device converts the received USB data into serial data and transmits it to the seria
devices. The communication between the USB serial conversion device and serial devices h:
same configuration as in figure 1.2. This makes it possible for the existing serial applications
exchange data with each other.

These application notes give an example for realizing the firmware operating on the MS2215C
which is equivalent to the firmware in the USB serial conversion device in figure 1.3 (b).

Rev. 1.0, 04/02, page 5 of 68
RENESAS

Rev. 1.0, 04/02, page 6 of 68
RENESAS

Section 2 Development Environment

This section describes the development environment used to develop this system. The device
(tools) listed below were used when developing the system.

H8S/2215 CPU board (type number: MS2215CP01-C/S) manufactured by Hitachi ULSI
Systems Co., Ltd.

H8S/2215 Series TFP-120 user system interface cable (hereafter called H8S/2215 user ca
type number: HS2215ECN61H) manufactured by Hitachi, Ltd.

E6000 Emulator (type number: HS2214EPI61H) manufactured by Hitachi, Ltd.

PC (Windows 95/98) equipped with an ISA (or PCI/PCMCIA) slot

PC (Windows 2000) to serve as the USB host

USB serial conversion driver manufactured by Hitachi ULSI Systems Co., Ltd.
Serially-connected PC

USB cable

Serial cable (cross cable)

Hitachi Debugging Interface (hereafter called HDI) manufactured by Hitachi, Ltd.
Hitachi Embedded Workshop (hereafter called HEW) manufactured by Hitachi, Ltd.

2.1 Hardware Environment

Figure 2.1 shows device connections.

USB host PC (Windows 2000)
Serially-connected PC

USB cable
USB serial

conversion driver

H8S/2215 user cable,

Figure 2.1 Device Connections

Rev. 1.0, 04/02, page 7 of 68
RENESAS

1. MS2215CP
The jumper setting on the MS2215CP board shown in table 2.1 must be changed from that
shipment. Before turning on the power, ensure that the jumper is set as shown in table 2.1.
There is no need to change any other jumpers or DIP switches.

Table 2.1 Jumper Setting

At Time of Shipment After Change Jumper Function
J9 1-2 closed J9 2-3 closed Switches PLLVCC pin level

2. USB host PC
A PC with Windows 2000 installed, and with a USB port, is used as the USB host. A USB
serial conversion driver (manufactured by Hitachi ULSI Systems Co., Ltd.) should be installe
in this PC.

3. Serially-connected PC
A PC with a serial port is used for transferring serial data.

4. E6000 PC

The E6000 I/F board should be inserted into an ISA slot and connected to the E6000 via an
interface cable. Then, the E6000 should be connected to the MS2215CP via an H8S/2215 t
cable. After connection, start the HDI and perform emulation.

2.2 Software Environment

A sample program, the compiler and linker used, and the USB serial conversion driver are
explained.

221 Sample Program

Files required for the sample program are all stored in the H8S2215 folder. When this entire fol
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are shown in figure 2.2.

Rev. 1.0, 04/02, page 8 of 68
RENESAS

| H8S2215 |

/CatProType.h CatTypedef.h SetMacro.h SetSystemSwitch.h\
SetUsblInfo.h H8S2215.h SysMemMap.h

DoBulk.c DoControl.c DoRequest.c DoSerial.c
StartUp.c UsbMain.c DoRegestVenderCommand.c sct.src
debugger.ABS debugger.MAP debugger.MOT log.txt dwfinf(folder)
BuildOfHew.bat InkSetl.sub

Debugger.hds Debugger.HDT Debugger.hdw

Figure 2.2 Files Included in H8S2215 Folder

2.2.2 Compiling and Linking
The sample program is compiled and linked using the following software.
Hitachi Embedded Workshop Version 1.0 (release 9) (hereafter called HEW)

When HEW is installed in C:\Hew*, the procedure for compiling and linking the program is as
follows.

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling (figt
2.3).

C:\
L \Hew

\Tmp

Figure 2.3 Creating a Working Folder

Next, the folder in which the sample program is stored (H8S2215) should be copied to C:\Usr
can be copied to any location, then “C:\Usr\h8s2215” written in the debugger.hds file in the fol
should be changed to the path to the copied folder). In addition to the sample program, this fol
contains a batch file named BuildOfHew.bat. This batch file sets the path, specifies compile
options, specifies a log file indicating the compile and linking results, and performs other
operations. When BuildOfHew.bat is executed, compiling and linking are performed. As a rest
Motorola S-type format file named debugger.MOT, which is an executable file, is created withi
the folder. At the same time, a map file named debugger.MAP and a log file named log.txt are
created. The map file indicates the program size and variable addresses. The compile results
(whether there are any errors, etc.) are recorded in the log file.

Note: * If HEW is installed to a folder other than C:\Hew, the compiler path setting and setting
for environment variables used by the compiler in BuildOfHew.bat, as well as the libra

Rev. 1.0, 04/02, page 9 of 68
RENESAS

settings in InkSetl.sub, must be changed. Here the compiler path setting should be
changed to the path of ch38.exe, and the setting for the environment variable ch38 use
by the compiler should be set to the folder of machine.h and the setting of ch38_tmp

should specify the working folder for the compiler. The library setting should specify the
path of c8s26a.lib.

/I HSS/2215I \
Batch file Execution result
BuildOfHew.bat — debugger.ABS

Execution debugger.MOT
debugger.MAP
log.txt

Figure 2.4 Compile Results

2.2.3 USB Serial Conversion Driver

Files required for the USB serial conversion driver are all stored in the UST-03 folder.

UST-03
C UST-03.inf UST-03.sys)

Figure 2.5 Files Included in UST-03 Folder

Rev. 1.0, 04/02, page 10 of 68
RENESAS

2.3 Loading and Executing the Program

Figure 2.6 shows the memory map for the sample program.

MD2215CP
0000 0000
Vector area and StartUp area 760 bytes
0000 01BF
0000 0200
P, C, and D areas 7098 bytes
0000 1DBA
Empty area
00FF B0O0O
72 bytes
Control transfer data area
OOFF B047
00FF B050 Bulk-out transfer data area 256 bytes
OOFF B14F
Bulk-in transfer data area 256 bytes
O0FF B24F
Stack area
OOFF EC40
R and B areas 518 bytes
OOFF EE46
Empty area
00FF EFCO
Note: The memory map differs according to the compiler version, compiling conditions,
firmware upgrade, etc.

Figure 2.6 Memory Map

As shown in figure 2.6, this sample program allocates areas P, C, and D to on-chip flash men
and areas R and B to the on-chip RAM area. These memory allocations are specified by the
InkSetl.sub file in the H8S2215 folder.

231 Loading and Executing the Program

In order to load the sample program, the following procedure is used.

Connect the E6000 PC in which the HDI has been installed to the E6000.

Connect the E6000 to the MS2215CP via an H8S/2215 user cable.

Connect the serially-connected PC to the MS2215CP via a serial cable.

Turn on the power to the E6000 PC, serially-connected PC, and USB host PC for start up.
Turn on the power to the E6000 and MS2215CP.

Execute debugger.hds in the H8S2215 folder.

Rev. 1.0, 04/02, page 11 of 68
RENESAS

Through the above procedure, the sample program can be loaded into the MS2215CP.

After making the above settings, select Go from the Run menu to execute the program.

2.4 Method of Communication between PCs

24.1 Setting Up the USB Host PC

« Following the procedures in section 2.3.1, execute the sample program. When the sample
program is activated properly, the 8-bit LED on the MS2215CP displays OxAA.

* Insert a series B connector of the USB cable to the MS2215CP, and connect a series A
connector on the opposite side to the USB host PC.

« The dialog box is displayed on the screen as below, and click “Next”".

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard
Thiz wizard hglps you install a device driver for a

hardware device.

To continue, click Mext

Cancel

Rev. 1.0, 04/02, page 12 of 68
RENESAS

Select “Search for a suitable driver for my devide (recommended)”, and then click “Next”.

Found New Hardware Wizard

Install Hardware Device Drivers
A device driver is a software program that enables a hardware device ta work with

an operating system.

Thiz wizard will complete the installation for this device:

@) UUSE Device

A device driver is a software program that makes a hardware device work. ‘windows
needs driver files for your new device. To locate driver files and complete the
installation click Mext.

‘what do you want the wizard to do?

* Search for a suitable driver for my device [recommendedk

Dizplay a list of the known diivers for this device so that | can choose a specific
driver

< Back Cancel

Select “Floppy disk drives”, and then click “Next”.

Found New Hardware Wizard
Locate Driver Files
Wwhere do you want Windows to search for driver files?

Search for driver files for the following hardware device:

@ LUSE Device

The wizard zearches for suitable drivers in itz driver databasze on your computer and in
any of the following optional search locations that you specify.

To start the gearch, click Mest. If you are searching on a floppy disk or CD-ROM drive,
inzert the floppy dizk or CD before clicking Mext.

Optional zearch locations:

v Floppy disk driv
LCD-ROM drives

Specify a location

< Back Cancel

Rev. 1.0, 04/02, page 13 of 68
RENESAS

* Make sure “UST-03.inf" is to be installed, and then click “Next”.

Found New Hardware Wizard

Driver Files Search Results
The wizard haz finished searching for driver files for your hardware device.

The wizard found a driver for the following device:

@ LUSE Device

Windows found a driver for this device. Ta install the driver Windows found, click Mext.

ﬁj aust-03hust_03.inf

< Back Cancel

¢ Click “Finish”.

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

USE Serial Port Driver

‘wiindows has finished installing the software for this device

To close this wizard, click Finish

The installment of the driver has thus been completed and the MS2215CP is recognized as the

serial COM port by the USB host PC.

Next, a hyper terminal, a communication software which is a standard attachment of Windows(

is initiated.

* Press the Windows key and select “StarProgram— Accessory (or under Communicaton)”

to activate the hyper terminal.

Rev. 1.0, 04/02, page 14 of 68
RENESAS

« Input the file name (It can be random. USB-Serial has been input in the following screen.) «
click “OK”.

Connection Description

% Mew Connection

Enter a name ahd chooze an icoh for the connection;

Hame:
USE-Sernal

Ss4HEEE

Caricel

lcon;

* Select “COMS3” for connection and click “OK".

Connect To

% ISE-Serial

Enter detailz for the phone number that you want ba diak

Coauntry/reqion:

Area code:

Phone number:

Cornect usiy | E NI ~
Cancel

Rev. 1.0, 04/02, page 15 of 68
RENESAS

* The serial port is set within the range shown in table 2.2. The figure below is an example w
the default values of this program entered. After the setting, click “OK”.

The hyper terminal has thus been initiated. If a value other than those shown in table 2.2 is
entered, the 8-bit LED of the MS2215CP displays 0x30, and the default values of this program
shown in table 2.2 are entered. If a value within the range is entered, the 8-bit LED keeps
displaying OxAA.

Table 2.2 Range of Possible Serial Port Settings

Item Default Setting of This Program Possible Settings

Bit/s [bps] 38400 9600, 19200, 38400*

Data bits 8 8or7

Parity None None, odd number, even number
Stop bit 1 lor2

Flow control Xon/Xoff Only Xon/Xoff

Note: * Since this sample program operates the CPU at 16 MHz, the error with a setting of 57600
bps or 115200 bps is too large, and may cause erroneous operation. Though a setting of
57600 bps or 115200 bps is possible in this sample program, the operation for such kind
of a setting is not guaranteed.

COM3 Properties EHE
Port Settings |
Bits per second: | 38400 =l
Data bits: |a =l
Baiity: |None =l
Stop bits: |1 =
Elow cortral; |¥an / ¥off =

Bestore Defaults |
Ok, I Cancel | Lpply |

Rev. 1.0, 04/02, page 16 of 68
RENESAS

After the hyper terminal has been initiated, and before the communication begins, select “F
Menu - Property— Setting” and click “ASCII Setup...”.

UsB-Serial Properties 7]
Connect To Settings

Function, arrow, and ctil keys act as

. Windows keps

Backspace key sends
* Chl+H Del Cti+H. Space, Ctil+H

E rwilation:

Auto detect =

Telnet terminal 10: AMNSI

Backseroll buffer lineg: 500 =

Play sound when connecting or disconnecting

Input Translation. .. LS Setup. .

Cancel

Check the box for “Send line ends with line feeds” in ASCII Sending and then click “OK”.

ASCII Setup
ASCI Sending

v : Send line ends with line feeds

Echo typed characters locally

Line delay: |0 millizeconds.

Character delay: |0 millizeconds.

ASCI Beceiving

Append line feeds ta incoming line ends
Force incoming data to 7-bit ASCH|

v Wwirap lines that exceed terminal width

Cancel

Rev. 1.0, 04/02, page 17 of 68
RENESAS

2.4.2 Setting Up the Serially-Connected PC

The hyper terminal is initiated similarly as with the USB host PC. Make sure to enter the same
values as the USB host PC to set the serial communication (bit/s, data bits, parity, stop bit, anc
flow control).

2.4.3 Communication between PCs

Once the hyper terminals for both the USB host PC and serially-connected PC are initiated, the
characters input from the keyboard, text files, and binary files can be exchanged between the t
PCs.

The characters input from the keyboard of the USB host PC side are transferred to the serially-
connected PC. Also, the characters input from the keyboard of the serially-connected PC side
transferred to the USB host PC.

The text files can be transmitted to the other by selecting “TransfEransfer of text file”.

After selecting “Transfer- Reception of file- ZMODEM?” in the receiving PC to make the
receiving PC wait for file reception, the text files and binary files can be transmitted to the
receiving PC by selecting “Transfer Transmission of files ZMODEM?” in the transmitting PC.

Note: These application notes use a hyper terminal as a serial application to run on the PC.
When using other serial applications, whether operation is correct must be confirmed
separately.

This sample program performs flow control (Xon/Xoff). Therefore, a protocol supporting
flow control (Xon/Xoff), e.g. ZMODEM, must be selected for file transmission.

Rev. 1.0, 04/02, page 18 of 68
RENESAS

Section 3 Overview of Sample Program

In this section, features of the sample program and its structure are explained. This sample
program runs on the MS2215CP, and initiates USB transfers by means of interrupts from the |
function module or branches from the main loop. In addition, it initiates serial transfer by mea
of interrupts from the SCI1 or branches from the main loop. Of the interrupts from the on-chip
modules in the H8S/2215, there are three interrupts related to the USB function module: EXIR
EXIRQ1, and IRQ6. However, this sample program uses only the EXIRQO. Even though there
four interrupts related to the SCI1 module: ERI1 (reception error), RXI1 (receive data full), TXI
(transmit data empty), and TEI1 (transmit end), this sample program uses two interrupts: ERI
RXI1.

Features of this sample program are as follows.

« Control transfer can be performed.

« Bulk-out transfer can be used to receive data from the host controller.
« Bulk-in transfer can be used to send data to the host controller.

« Serial data can be received from the serially-connected PC.

« Serial data can be sent to the serially-connected PC.

« Serial transfer can be used to send data received by bulk-out transfer.
» Bulk-in transfer can be used to send data received serially.

3.1 State Transition Diagram

Figure 3.1 shows a state transition diagram for this sample program. In this sample program, :
shown in figure 3.1, there are transitions between four states.

* Reset State
Upon power-on reset and manual reset, this state is entered. In this reset state, the H8S/Z
mainly performs initial settings.

« Stationary State
When initial settings are completed, a stationary state is entered in the main loop. In this
stationary state, the data from the USB host PC and the serially-connected PC are monitot
all the time, and if a data is detected, it is output to each of the other end PC. In other wor
input data to the MS2215CP is monitored constantly, and if a data is detected, it is output t
each of the other end PC.

Rev. 1.0, 04/02, page 19 of 68
RENESAS

e USB Communication State
In the stationary state, when an interrupt from the USB module occurs, this state is entered.
the USB communication state, data transfer is performed by a transfer method according th
type of interrupt. The interrupt sources used in this sample program are indicated by the
interrupt flag registers 0 to 3 (UIFRO to UIFR3), and there are five interrupt sources in all.
When an interrupt source occurs, the corresponding bits in UIFRO to UIFR3 are set to 1.

« Serial Communication State
In the stationary state, when an interrupt from the SCI1 module occurs, this state is entered
The interrupt sources used in this sample program are indicated by the serial status registel
(SSR1), and there are two interrupt sources in all: ERI1 and RXI1.

Rev. 1.0, 04/02, page 20 of 68
RENESAS

Reset state

Initial setting
completed

StartUp.c
DoSerial.c
DoBulk.c

Serial communication
completed

Stationary state

Serial output state
Bulk-in transfer
state

=
/s

Interrupt generated USB communication;
(EXIRQO) completed

USBMain.c
DoControl.c

communication state
DoBulk.c -

Serial output state
Bulk-in transfer
state

- USB interrupt priority: 6 =========="

Figure 3.1 State Transition Diagram

In this sample program, the interrupt priority of the USB is set to 6 and that of the SCI1to 7. T
setting does not accept the USB interrupt during the SCI1 interrupt processing and prevents tl
serial receive processing from being delayed by the USB interrupt.

Rev. 1.0, 04/02, page 21 of 68
RENESAS

3.2 Overview of Communication between PCs

Figure 3.2 shows the overview of the communication between PCs. In this sample program, th
are roughly two kinds of communication modes; USB communication and serial communicatior
Considering the data transmission and reception, the USB communication can be categorized |
bulk-in and bulk-out transfer, and the serial communication can be categorized by serial input a
serial output. Therefore there are a total of four communication modes in this sample program.

The data flow in this sample program can be categorized by two directions; from bulk-out trans
to serial output, and from serial input to bulk-in transfer, each of which is given 256-byte buffer.
The input to the buffer of each direction handles interrupt operation and the output from the buf
controls the output on branching from the main loop. In the main loop, the RAM area for bulk-
in/bulk-out transfers, which is a buffer for both directions, is monitored consistantly and, if any
data exist, it is output from the buffer.

USB host PC | MS2215CP Serially-connected PC

RAM area for bulk-out i Serial outout
transfer 256 bytes ! eriat outpu

! Serial -
<—:I— Serial input

Bulk-out transfer

RAM area for bulk-in

Bulk-in transfer transfer 256 bytes

Figure 3.2 Communication between PCs

Rev. 1.0, 04/02, page 22 of 68
RENESAS

3.3 File Structure

This sample program consists of seven source files and seven header files. The overall file
structure is shown in table 3.1. Each function is arranged in one file by transfer method or fun

type.

Table 3.1 File Structure

File Name Principle Role
Vector tabl ttings, microcomputer initial setttin nd clearin
StartUp.c /ecto able settings, microcompute al setttings, and clearing
ring buffer
. Executing serial transmission/reception., and controlling SCI1
DoSerial.c
module
. Determination of interrupt r n nding and receivin
UsbMain.c ete ation of interrupt sources, and sending and receiving

packets

DoRequest.c

Processing setup command issued by the host

DoControl.c

Executing control transfer

DoBulk.c

Executing bulk transfer

DoRequestVenderCommand.c

Processing vendor command

SysMemMap.h

Defining MS2215CP memory map addresses

SetUsblInfo.h

Defining USB structure

SetMacro.h Defining macros
SetSystemSwitch.h System operation settings
H8S2215.h Defining H8S/2215 registers
CatTypedef.h Defining structures

CatProType.h

Prototype declarations

Rev. 1.0, 04/02, page 23 of 68
RENESAS

3.4 Purposes of Functions

Table 3.2 shows functions contained in each file and their purposes.

Table 3.2-1 UsbMain.c

File in Which

Stored Function Name

Purpose

UsbMain.c BranchOfint

Determination of interrupt sources, and call function
according to interrupt

GetPacket Write data transferred from the host controller to RAM

PutPacket Write data for transfer to the host controller to the USB
module

SetControlOutCont Overwrite data sent from the host

ents

BE2ByteRead Convert 2-byte data to big endian

LE2ByteRead Convert 2-byte data to little endian

ActBusReset Clear buffer, flag, and FIFO on receiving bus reset

SetUsbModule Initial setting of USB module

USBclear Clear ring buffer and flag

In UsbMain.c, interrupt sources are determined by the USB interrupt flag register, and function:
are called according to the interrupt type. Also, packets are sent and received between the hos

controller and function modules.

Table 3.2-2 StartUp.c

File in Which

Stored Function Name Purpose
StartUp.c SetPowerOnSectio BSC settings, module and memory initialization, and shift
n to main loop
_INITSCT Copies variables that have initial settings to the RAM
work area
InitMemory Clears RAM area used in bulk communicatuion
InitSystem Pull-up control of the USB bus
Error Shifts CPU to sleep mode when error occurs
Scilnit SCI1 initialization
Set_ SMR Initial setting of SMR1 of SCI1
ActBusVcc Processing when VBUS is received

Rev. 1.0, 04/02, page 24 of 68

RENESAS

When a power-on reset or manual reset is carried out, SetPowerOnSection of the StartUp.c fi
called. At this point, the RAM area used for the H8S/2215 initial settings, control transfer, and
bulk transfer is cleared.

Table 3.2-3 DoSerial.c

gitlsni:dWhiCh Function Name Purpose
DoSerial.c ActSerialOut Data is read from the read pointer and passed to
ExSerialOut by 1 byte as parameter
ActSerialln Write serially-input data to the area for bulk-in transfers
WriteBulkinArea Write data to the area for bulk-in transfers
ExSerialOut 1-byte data is serially output from SCI1

In DoSerial.c, serial transmission and reception are executed as well as SCI1 module control.

Table 3.2-4 DoRequest.c

File in Which

Stored Function Name Purpose

DecStandardComm Decode command issued by host controller, and process

DoR t. .
orequest.c ands those which are standard commands

During control transfer, commands sent from the host controller are decoded, and commands
processed. In this sample program, a vendor ID of 045B (vendor: Hitachi) is used. When the
customer develops a product, the customer should obtain a vendor ID at the USB Implemente
Forum.

Table 3.2-5 DoControl.c

File in Which .
Stored Function Name Purpose
ActControl Carries out the setup stage of control transfer
Carries out the data stage and status stage of control IN
ActControlin transfer (transfer in which the data stage is in the IN
DoControl.c direction)

Carries out the data stage and status stage of control
ActControlOut OUT transfer (transfer in which the data stage is in the
OUT direction)

When the control transfer interrupt (EPO0TS) is generated, ActControl obtains the command,
decoding is carried out by DecStandardCommands. Next, the data stage and status stage art
carried out using either ActControlin or ActControlOut, depending on the type of command.

Rev. 1.0, 04/02, page 25 of 68
RENESAS

Table 3.2-6 DoBulk.c

File in Which .
Stored Function Name Purpose
ActBulkOut Controls bulk-out-transfer
ActBulkin Controls bulk-in transfer
DoBulk.c
ExBulkOut Execute GetPacket
ExBulkin Execute PutPacket

These functions carry out processing involving bulk transfer as well as sending and receiving tr
data, and controlling the flow.

Table 3.2-7 DoRequestVenderCommand.c

File in Which

Stored Function Name Purpose

DoRequestVen DecVenderComma

derCommand.c nds Responds to vendor commands

These functions carry out processing according to the vendor commands. In this sample progr
processing is executed for the four vendor commands supported by the USB serial conversion
driver manufactured by Hitachi ULSI Systems Co., Ltd. For details, refer to section 4.8, Vendo
Command.

Figure 3.3 shows the interrelations between the functions explained in table 3.2. The upper-sic
functions call the lower-side functions. Also, multiple functions may call the same function. In
the stationary state, SetPowerOnSection calls other functions, and in the case of a transition to
USB communication state which occurs on an interrupt, BranchOfInt calls other functions. In t
SCI1 interrupt, ActSerialln is called. Figure 3.3 shows the hierarchical relation of functions; the
is no order for function calling. For information on the order in which functions are called, refer
to the flowcharts in section 4, Sample Program Operation.

Rev. 1.0, 04/02, page 26 of 68
RENESAS

SetPowerOnSection

ActSerialOut ActBulkin InitSystem InitMemory INITSCT
ExSerialOut ExBulkin
PutPacket
EXIRQO interrupt input
/—/ ERI1 or RXI1 interrput input
BranchOfint ’/_/
ActSerialln
ActControl ActBulkOut ActControlOut ActControlln
DecStandardCommands ExBulkOut PutPacket
LE2ByteRead DecVenderCommands GetPacket
Figure 3.3 Interrelationship between Functions

Rev. 1.0, 04/02, page 27 of 68
RENESAS

Rev. 1.0, 04/02, page 28 of 68
RENESAS

Section 4 Sample Program Operation

In this section, the operation of the sample program is explained, relating it to the operation of
USB function module.

4.1 Main Loop

When the microcomputer is in the reset state, the internal state of the CPU and the registers c
internal peripheral modules are initialized. Next, the function SetPowerOnSection in StartUp.c
called, and the CPU is initialized. Figure 4.1 is a flow chart for the SetPowerOnSection.

Rev. 1.0, 04/02, page 29 of 68
RENESAS

Initialize microcomputer

v

Initialize SCI1

v

RAM cleared

v

Initialize variables

A 4

Select USB clock (tripled
16 MHz/48-MHz input)

Data
detected in RAM area
for bulk-in transfer

Output to USB host PC
(bulk-in transfer)

detected in RAM area
for bulk-out transfer?

Output to PC connected
with serial interface
(serial transmission)

StartUp.c <SetPowerOnSection>

After initialization, this program is entered in the main
loop. In the main loop, whether or not data to be
output is in the RAM area is monitored constantly.

If any data is detected, the data is output to the PC
by bulk-in or serial-out transfer.

A clock generated by tripling 16-MHz clock is
selected as a USB operating clock.

An SCI1 interrupt notifies the data reception and the
data received with the SCI1 module is stored in the
RAM area for bulk-in transfer.

If any data detected in this area, it is transferred to
the USB-host PC using bulk-in pipe.

An USB interrupt notifies the data reception and the
data received using bulk-out transfer for the USB
module is stored in the RAM area for bulk-out
transfer.

If any data is detected in this area, it is transmitted
to the PC connected with serial interface.

Rev. 1.0, 04/02, page 30 of 68

Figure 4.1 Main Loop

RENESAS

4.2 Types of Interrupts

As explained in section 3.1, the interrupts used in this sample program are indicated by the U
interrupt flag registers (UIFRO to UIFR3) and serial status register (SSR1); there are five types
USB interrupts and two type of serial interrupts.

When a USB interrupt occurs, the corresponding bit in the interrupt flag register is set to 1 anc
EXIRQO interrupt request is sent to the CPU. In the sample program, when the interrupt occur
the CPU reads the interrupt flag register to perform the corresponding USB communication.

Figure 4.2 shows correspondence between the interrupt flag registers and USB communicatic

Bulk-in transfer is supported in this sample program. It, however, is enabled not by an interrug
operation, but by branching from the main routine. Therefore, bulk-in interrupt should be disak
and monitoring the EP2i EMPTY flag activates bulk-in transfer. The EP2i TR bit is not be usec

Rev. 1.0, 04/02, page 31 of 68
RENESAS

USB interrupt flag register 0 (UIFR0)

Bit: 7 6 5 4 3 2 1 0

EP1i | EP1li | EPOo | EPOi | EPOi |SETUP

Bitname:) BRST| — | 4p [ts | 1s | R | 75 | Ts

Cable connection Not used Control transfer
(bus reset)

USB interrupt flag register 1 (UIFR1)

Bit: 7 6 5] 4 3 2 1 0
Bit name: EP3o | EP30 | EP3i EP3i o EP20 | EP2i EP2i
’ TF TS = TR READY| TR EMPTY
Not used Bulk-out transfer Not used Bulk-in transfer

USB interrupt flag register 0 (UIFR2)

Bit: 7 6 5] 4 3 2 1 0
Bit name: o o EP5i EP5i o EP40 | EP4i EP4i
’ TR TS READY| TR |EMPTY
Not used Not used

USB interrupt flag register 1 (UIFR3)

Bit: 7 6 5 4 3 2 1 0
Bi | S SOF | SETC | SETI [SPRSs| SPRSi|VBUSs | VBUSI
it name: { o ey
USB clock stabilization Not used Cable connection (VBUS)

detection interrupt

Note; This sample program does not support interrupt and isochronous transfers.

Rev. 1.0, 04/02, page 32 of 68

RENESAS

Figure 4.2 Types of USB Interrupt Flags

When an SCI1 interrupt occurs, the corresponding bit in the serial status register is set to 1 an
interrupt request is sent to the CPU. In this sample program, the transmit data empty and rece
data full, that is, serial transmission and serial reception functions are supported. However, sir
the serial transmission is executed not by an interrupt operation, but by branching from the me
loop, it is used only as a flag and the interrupt function is not used.

Serial status register (SSR1)

Bit: 7 6 5 4 3 2 1 0

Bit name: | TORE | RDRF | ORER | FER PER | TEND | MPB | MPBT

Transmit FIFO data empty Receive data FIFO full Receive error
(overrun, framing, parity)

Figure 4.3 Types of Serial Interrupt Flags

4.2.1 Branching to Transfer Function

In this sample program, the transfer type is determined by method of calling each transfer
function. The calling methods are a branch from the main loop and an interrupt from the USB
function or SCI1 module. Table 4.1 shows correspondence between transfer types and metho
calling each transfer function.

When branching from the main loop, the function is directly called. This method corresponds t
serial-out transfer (ActSerialOut) and bulk-in transfer (ActBulkin). When branching by a USB
interrupt, the branch is carried out by the BranchOfInt in UsbMain.c. This method corresponds
detection of USB operating clock stabilization (SetUsbModule), cable connection (ActBusRest
ActBusVcc), control transfer (ActControl) and bulk-out transfer (ActBulkOut). When branching
by an SCI1 interrupt, the function is directly called because transfer functions are determined |
interrupt sources in the SCI1 module, such as ERI2, RXI2 and TXI2. This method correspond:
serial-in transfer (ActSerialln).

Rev. 1.0, 04/02, page 33 of 68
RENESAS

Table 4.1 Transfer Type and Method of Calling Function

Module Transfer type Method of calling
USB Detection of USB operating clock USB interrupt
stabilization time
Cable connection (bus reset) USB interrupt
Cable connection (BusVcc) USB interrupt
Control transfer USB interrupt
Bulk-out transfer USB interrupt
Bulk-in transfer Branch from main loop
SCI1 Serial-in transfer SCI1 interrupt
Serial-out transfer Branch from main loop

Table 4.2 shows the correspondence between the USB interrupt types and the function called |
BranchOfint.

Rev. 1.0, 04/02, page 34 of 68
RENESAS

Table 4.2

USB Interrupt Types and Called Functions

Register Name Bit Bit Name Name of Function Called
UIFRO 0 BRST ActBusReset

1 a O

2 EP1li TR O

3 EP1i TS d

4 EPO0 TS ActControlin, ActControlOut

5 EPOi TR ActControlOut

6 EPOI TS ActControlin, ActControlOut

7 SETUP TS ActControl
UIFR1 7 EP30 TE u

6 EP30 TS 0

5 EP3i TF d

4 EP3i TR

3 g d

2 EP20 Ready ActBulkOut

1 EP2i TB O

0 EP2i EMPTY O (branch from main loop)
UIFR3 7 CK48 Ready SetUSBModule

6 SOF O

5 SETC 0

4 SETI d

3 SPRSs O

2 SPRSi O

1 VBUSs d

0 VBUSI ActBusVcc

The EPOIi TS and EPQo Ts interrupts are used both for control-in and control-out transfers. He
in order to manage the direction and stage of control transfer, the sample program has three <
TRANS _IN, TRANS_OUT, and WAIT. For more details, refer to section 4.4, Control Transfers

Table 4.3 shows SCI1 interrupt types and called functions.

Rev. 1.0, 04/02, page 35 of 68

RENESAS

Table 4.3 SCI1 Interrupt Types and Called Functions

Register Name Bit Bit Name Name of Function Called
SSR1 7 TDRE O (branch from main loop)

6 RDRF ActSerialOut

5 ORER ActSerialOut

4 FER ActSerialOut

3 PER ActSerialOut

2 TEND u

1 MPB O

0 MPBT u

From the next section, details of application-side firmware are explained for each USB and SCI
transfer type.

Rev. 1.0, 04/02, page 36 of 68
RENESAS

4.3 Interrupt by Detection of USB Operating Clock Stabilization

This interrupt is generated when the 48-MHz USB operating clock stabilization time has been
automatically counted after USB module stop mode cancellation. When endpoint information i
written to UEPIR00_0 to UEPIR22_4 and each interrupt is specified after reception of the
interrupt, the USB function module is entered in the USB cable-connection-wait state.

USB function module Sample program

USB operating clock selected

| USB cable connected | 3
UCTLR/UCK3 to UCKO write

USB module stop cancelled

|USB operating clock sra”edl MSTPCRB/MSTPB cleared

USB operating clock
stabilization wait

USB operating
clock stabilzation time wait
completed?

[Seusaom]|

USB interface reset cancelled
UCTLR/UIFRST cleared

v

UIFR3/CK48READY cleared

EXIRQO interrupt
USB operating clock generated

stabilization time detection : »
interrupt generated

USB interface operation
checked

EPINFO specified
115-byte data written to
UEPIR00_0 to UEPIR22_4

| Interrupts specified I{—v— Interrupts specified

E USB cable wait

| EPINFO specified I{

Figure 4.4 Interrupt at Detection of USB Operating Clock Stabilization

43.1 EPINFO

The USB function module incorporated in the H8S/2215 supports the following transfer types:
pipe for control transfer, two pipes for bulk-in transfer, two pipes for bulk-out transfer, two pipe
for interrupt-in transfer, one pipe for isochronous-in transfer, and one pipe for isochronous-out

Rev. 1.0, 04/02, page 37 of 68
RENESAS

transfer. The transfer types are shown in table 4.4. Any endpoint number, interface number,
alternate number, and maximum packet size for each transfer type except for control transfer a
specifiable.

Table 4.4 Correspondence between Transfer Type and UEPIR

Transfer Type Number of Pipes UEPIR

Control transfer 1 00

Interrupt-in transfer 2 01, 22

Bulk-in transfer 2 02, 20

Bulk-out transfer 2 03,21

Isochronous-in transfer 1 04, 06, 08, 10, 12, 14, 16, 18
Isochronous-out transfer 1 05, 07, 09, 11, 13, 15,17, 19

In this application note, endpoints are configured shown in figure 4.5.

The endpoint configuration in the H8S/2215 hardware manual is described in the way which
conforms to Bluetooth standard. Their correspondence is shown in figure 4.5.

(Endpoint number
conforming to
Bluetooth
specification)
EPO control transfer (EPO)
Configuration 1 Interface 0 —— Alternate O EP1 bulk-out transfer (EP20)
—E EP2 bulk-in transfer (EP2i)
EP3 interrupt-in transfer (EP1i)

Figure 4.5 Endpoint Configuration for this Application Note

The settings for UEPIR00_O to UEPIR22_4 are shown to configure the endpoints in figure 4.5.
Dammy data should be written to endpoints which are not used.

Rev. 1.0, 04/02, page 38 of 68
RENESAS

Table 4.5

UEPIR Settings

UEPIR Setting (Hex) Transfer Type EP Interface Alternate MaxPacket

Number Number Number Size (Byte)
00 00_00_40_00_00 Control 0 0 0 64
01 34_1C_08_00_01 Interrupt-in 3 0 0 8
02 24 14 40 _00_02 Bulk-in 2 0 0 64
03 14_10_40_00_03 Bulk-out 1 0 0 64
04 04_1C_00_00_04 Isochronous-in 0 0 0 0
05 04_08 00_00_05 Isochronous-out 0 0 0 0
06 04_1C_00_00_06 Isochronous-in 0 0 0 0
07 04_08 00_00_07 Isochronous-out 0 0 0 0
08 04_1C_00_00_08 Isochronous-in 0 0 0 0
09 04_08 00_00_09 Isochronous-out 0 0 0 0
10 04_1C _00_00_OA Isochronous-in 0 0 0 0
11 04_08_00_00_0B Isochronous-out 0 0 0 0
12 04_1C _00_00_0C Isochronous-in 0 0 0 0
13 04_08_00_00_0D Isochronous-out 0 0 0 0
14 04_1C _00_00_OE Isochronous-in 0 0 0 0
15 04_08_00_00_OF lIsochronous-out 0 0 0 0
16 04_1C_00_00_10 Isochronous-in 0 0 0 0
17 04_08 00 00 11 Isochronous-out 0 0 0 0
18 04_1C_00_00_12 Isochronous-in 0 0 0 0
19 04_08 00_00_13 Isochronous-out 0 0 0 0
20 04_14 00_00_14 Bulk-in 0 0 0 0
21 04_10_00_00_15 Bulk-out 0 0 0 0
22 04_10_00_00_16 Interrupt-in 0 0 0 0
4.4 Interrupt by Cable Connection (BRST, VBUS)

This interrupt occurs when a USB cable is connected to the host controller. After completion o
initializing the microcomputer, the application side pulls up the USB data bus D+ using geners
purpose output port. By means of this pull-up, the host controller detects that the device has b
connected (figure 4.6).

Rev. 1.0, 04/02, page 39 of 68
RENESAS

USB function module Sample program

—{| AcBusvee | R

Initializing
microcomputer
¢ Port (P36) specified as

Settings for USB

| USB cable connectedl

EXIRQO interrupt output

1 generated VBUS fla ¢
. . g cleared
| VBUS interrupt generated I—v——> (UIFR3VBUSI)
USB interrupt priority level
specified to 6

|

— UDC core reset
All FIFOs cleared ¢

v

D+ pulled up by
port (P36)

cable connection check
UIFR3/VBUSs = 1?

D+ pull-up disabled

EPFIFO automatic loded

to UDC core \

~—_|UDC core reset cancelled

E UCTLR/UDCRST cleared
USB modle initialization !
completed !
- ExtRQ0 e romusreser]|
UDC core reset generated -
cancelled : P Buffer and flags in

firmware cleared

v

Bus reset flag cleared
(UIFRO/BRST)

v

All FIFOs cleared

v

Bus reset interrupt
generated

Wait for setup command
receive completion interrupt

UDC core reset

v

Waiting for USB
cable connection

Figure 4.6 Interrupt by Cable Connection

4.5 Control Transfers

Control transfers are performed using bits 0 to 3 of the interrupt flag registers. Control transfers
are divided into two types according to the direction of data in the data stage (see figure 4.7). I

Rev. 1.0, 04/02, page 40 of 68
RENESAS

the data stage, data transfer from the host controller to the USB function module is control-ou
transfer and transfer in the opposite direction is control-in transfers.

Control-out transfer

Host controller USB function module

il

Data | (Data stage)

Control-in transfer

[

Host controller USB function module

Data

g

(Data stage)

Figure 4.7 Control Transfers

Control transfers consist of three stages: setup, data (no data is possible), and status (see figt
4.8). Furthermore, a data stage consists of multiple bus transactions.

In control transfers, stage changes are detected by inverting the data direction. Hence the sar
interrupt flag for either control-in or control out transfer is used to call a function (see table 4.1
For this reason, the firmware must manage the control transfer type currently being performec
control-in or control-out transfer, in each state (see figure 4.8) and must call the appropriate
function. States in the data stage (TRANS_IN, TRANS_OUT) are determined by commands
received in the setup stage.

Rev. 1.0, 04/02, page 41 of 68
RENESAS

E Setup stage : Data stage : Status stage
i i i

Control-in | SETUP (0) | Nw | [wNo | | N || ouT (1) |
DATAO DATA1 DATAO DATAO/L 1 DATAL
Firmware state il WAIT |§| TRANS_IN E:.-VEI’;E-E.-E
Control-out | SETUP (0) || oot || our@ | [outom | wew |
DATAO DATAL DATAO DATAO0/1 DATAL
Firmware state il WAIT |§| TRANS_OUT E- -V;/';\;":-E

No data SETUP (0) | : IN (1)
'\ DATA0 ! ! DATAL

Firmware state | WAIT [:| TRANS_ouT 'WAIT |

Figure 4.8 Stages in Control Transfers

45.1 Setup Stage

In the setup stage, commands are transferred between the host controller and USB function
module. The firmware is entered in the WAIT state on both control-in and control-out transfers.
Whether control-in transfer or control-out transfer is performed is determined by the type of the
issued command and the state of the firmware in the data stage (TRANS_IN or TRANS_OUT)
also determined.

« Commands for control-in transfer: GetDescriptor (TRANS_IN) standard command
GetLineCoding (TRANS_IN) vendor command

« Commands for control-in transfer: SetLineCoding (TRANS_OUT) vendor command
SetControlLineState (TRANS_OUT) vendor command
SendBreak (TRANS_OUT) vendor command

Figure 4.9 shows operation of the sample program in the setup stage. The figure on the left shc
operation of the USB function module.

Rev. 1.0, 04/02, page 42 of 68
RENESAS

USB function module

Setup token received

y

8-byte command data
received at EPOs

- X Automatic
Application processin .
PP colmm';nd’) g processing by
) USB module

Setup command receive

complete flag set EXIRQO interrupt genarated

(UIFRO/SETUP TS = 1)

To control-in data stage

[ermeron |

Sample program

v

SETUP TS flag cleared
EPOo FIFO cleared
EPOI FIFO cleared

’

Firmware state changed to
WAIT

'

Read pointer and write pointer
for command buffer initialized

[ceraaer ||

I DecStandardCommands ”—

YES

Printer class command?,

I I DecVenderClassCommands I I

Data direction determined

Control-out transfer
from host to device

by command type

Control-in transfer
from device to host

Firmware state changed to
TRANS_IN

EPOIi TR interrupt disabled

Data written to FIFO

PutPacket

A

Firmware state changed to
TRANS_OUT

'

EPO transfer request interrupt
enabled (UIFRO/EPO TR = 1)

!

EPOs read complete flag set to 1
(UTRG/EPOs RDFN = 1)

EPOs read complete flag set to 1
(UTRGO/EPOs RDFN = 1)

v

I To contro-in data stage I

I To contro-out data stage

Figure 4.9 Setup Stage

RENESAS

Rev. 1.0, 04/02, page 43 of 68

452 Data Stage

In the data stage, data is transferred between the host controller and USB function module. Th
firmware is entered in the TRANS_IN state for control-in transfer or in the TRANS_OUT state f
control-out transfer according to the result of decoding the command in the setup stage. Figure
4.10 and 4.11 show the operation of the sample program in the data stage on control transfers.

U function module

In-token received

Sample program

BranchOfint

When firmware is in TRANS_IN state

ActControlin I
v

When data direction changes,
data stage is terminated and
status stage is entered.

YES

A
| Status stage I

UTRGO/EPOs RDFN
setto 1?

Receive complete interrupt?
(UIFRO/EPQO TS)

Valid data in
EPOi FIFO?

UIFRO/EPOI TS
interrupt flag cleared

PutPacket I

v

Data write to
UEDROi data register

v

EPOi packet enable bit set to 1
(UTRGO/EPOi PKTE = 1)

EXIRQO interrupt generated

EPOi transmit flag set
(UIFRO/EPOI TS = 1)

Figure 4.10 Data Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 44 of 68
RENESAS

U function module

Out-token received

Sample program

BranchOfint

When firmware is in TRANS_OUT state

ActControlOut I

When data direction changes,
data stage is completed and
status stage is entered.

UTRGO/EPOs RDFN
setto 1?

Receive complete’
interrupt?
(UIFRO/EPOO TS)

|Data received from hostl Status stage

1
EXIRQO

[EPOO receive complete flag set| _interrupt generated
(UIFRO/EPOO TS = 1)

EPOo receive complete
flag cleared
(UIFRO/EPO0 TS = 0)

oo ||

v

Data read from EPOo receive
data size register (UESZ00)

v

Data read from EPOo
data register (UEDROO)

v

EPOo read complete bit set to 1
(UTRGO/EPO0 RDFN = 1)

Out-token received

UTRGO/EPOs RDFN
setto 1?

Figure 4.11 Data Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 45 of 68
RENESAS

453 Status Stage

The status stage is started by a token with the opposite direction of the data stage, that is, the
stage is started by an out-token from the host controller on control-in transfer and is started by
in-token from the host controller on control-out transfer.

USB function module Sample program

| Out-token received |

A
IO byte received from hostl

<>

EPOo receive complete flag set] EXIRQO interrupt generated |
(UIFRO/EPO0 TS = 1) 'i | BranchOfint | |

When firmware is in TRANS_IN state

I ActControlin | I—
v

v
Control transfer end

Receive complete interrupt?

(UIFRO/EPOO TS) YES

y
EPOo-related interrupt
flags excluding SETUP

flag cleared

Firmware state
changed to WAIT

v

EPOo receive complete flag set to 1
(UTRGO/EPO0 RDFN = 1)

v

| Control-in transfer end

To data stage

Figure 4.12 Status Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 46 of 68
RENESAS

USB function module

In-token received

Valid data in

Sample program

EPOi FIFO?

EPOi transmit complete flag

set (UIFRO/EPOI TS = 1)

Control transfer end

EXIRQO interrupt generated

EXIRQOlnterruptge[\lerated ;” Branchofint ”

When firmware is in TRANS_OUT state

EPOo
receive complete interrupt?
(UIFRO/EPO0 TS)

To data stage
EPOI

receive complete interrupt?
(UIFRO/EPOI TS)

YES

EPOo transmit complete flag
cleared (UIFRO/EPOI TS = 0)

EPOi transfer request flag cleared

(UIFRO/EPOI TR = 0)

Firmware state
changed to WAIT

I SetControlOutContents I

EPOi packet enable bit set to 1
(UTRGO/EPOI PKTE = 1)

}

Set_Line_Coding
command?

| |

<

v

|Contro|—out transfer endl

Figure 4.13

Status Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 47 of 68

RENESAS

4.6 Bulk Transfers

Bulk transfers are performed using bits 0 to 2 of the interrupt flag register 1 (bits 0 and 1 are no
used because a bulk-in transfer is not enabled by an interrupt in this program). Bulk transfers a
also be divided into two types according to the direction of data transfer (figure 4.14).

Data transfer from the host controller to the USB function module is bulk-out transfer and data
transfer in the opposite direction is bulk-in transfer.

Bulk-out transfers

Host controller ———> | usB function module

| Data |

Bulk-in transfers

Host controller <:| USB function module

| Data I

Figure 4.14 Bulk Transfers

46.1 Bulk-Out Transfers

Figure 4.15 shows the operations of the sample program when bulk-out transfer is carried out.

Rev. 1.0, 04/02, page 48 of 68
RENESAS

USB function module

Out-token received

Sample program

EXIRQO interrupt occurred

—-—>” BranchOfInt ”

UIFRO/EP20 READY

ActBulkOut I

Any space in EP20 FIFO?

Any space
in RAM area for bulk-out
transfer?

EP20 READY interrupt disabled
(UIFR1/EP20 READY = 0)

YE
S ExBulkOut I

v .

EXIRQO A
EP20 FIFO full status set interrupt generated Data read from EP20
(UIFRO/EP20 READY = 1) A receive data size register
(UESZ20)

Data read from EP20
data register (UEPDR20)
is stored in RAM area
for bulk-out transfer

Any space
in both EP20 FIFOs?,

N

EP2o0 read complete bit set to 1
(UTRGO/EP20 RDFN =1)

EP20 FIFO full status cleared
(UIFRO/EP20 READY = 0)

Figure 4.15 Bulk-Out Transfers

4.6.2 Bulk-in Transfers

Figure 4.16 shows the operation of the sample program when bulk-in transfer is carried out.
Unlike bulk-out transfer, bulk-in transfer is not started by an interrupt and is started by a branc
from the main loop.

When there is no space in the RAM area and the serial-in transfer is disabled, data stored in t
RAM area for bulk-in transfer can be written to the UEDRZ2i data register. Whether or not the
RAM area is made available by this write operation can be checked. When the RAM area is n
available, serial-in transfer can be enabled.

Rev. 1.0, 04/02, page 49 of 68
RENESAS

USB function module

In-token received

Sample program

Data
in RAM area for bulk-in
transfer?

Valid data in EP2i FIFO? NO

ActBulkin I

Any space
in EP2i FIFO?
(UIFRO/EP2i

EMPTY =1

NO

A ExBulkin I

v

Any space
in EP2i FIFO?

EP2i empty status set
(UIFRO/EP2i EMPTY = 1)

Data write to EP2i data register
(UEDR2i)

-

EP2i packet enable bit set to 1
(UTRGO/EP2i PKTE = 1)

EP2i empty status cleared
(UIFRO/EP2i EMPTY = 0)

Serial-in disabled?

Data
in RAM area for bulk-in
transfer?

Serial-in enabled (Xon transferred
by serial-out transfer)

%

Figure 4.16 Bulk-In Transfer

4.7 Serial Transfer

The SCI1 module is used for serial transfer. Serial-out transfer is performed by branching from
main loop and serial-in transfer is performed by an interrupt. The RDRF flag of the serial status
register (SSR1) is used on serial-in transfer.

4.7.1 Serial-Out Transfer

Figure 4.17 shows the operation of the sample program on serial-out transfer. When any data i
the RAM area for bulk-out transfer, the ActSerialOut function is called to branch from the main

Rev. 1.0, 04/02, page 50 of 68
RENESAS

loop and the SCI1 module is used to transfer the data. When data is not in the RAM area for &
out transfer and the bulk-out transfer is disabled, whether or not the RAM area is made availa
by this serial-out transfer can be checked. When the RAM area is made available, bulk-out tra
can be enabled.

Data for serial-out
transfer?

YES

ActSerialOut I

y

Calculate byte size
of transfer data

ExSerialOut I

A

SSR2 TDRE = 1?

Transmssion Data write
to TDR1

+

SSR1 TDFE/TEND
cleared

Bulk-out disabled?

Any space
in RAM area for bulk-out
transfer?

NO

EP20 READY interrupt enabled
(UIER1/EP20 READY = 1)

I’

<

Figure 4.17 Serial-Out Transfer

Rev. 1.0, 04/02, page 51 of 68
RENESAS

4.7.2 Serial-In Transfer

Figures 4.18 and 4.19 show the operation of the sample program on serial-in transfer. When E|
or RXI1 reception interrupt occur, the ActSerialln function is called.

ERI2 or RXI2 interrupt occurred

l ActSerialln I

YES

Receive error
data interrupt?

¢NO

Received data read from RDR1

v

SSR1 RDRF cleared

To error processing

orer=17 S | [SsroORERPERIFER

cleared

NO

&

Received data stored in
RAM area for bulk-in transfer

Any space
in RAM area for bulk-in
transfer?

YES

Serial-in disabled (Xoff
transferred by serial-out transfer)

A 4

| Serial-in transfer end I

Figure 4.18 Serial-In Transfer (Receive Data Processing)

When an ERI1 interrupt which is caused by an overrun error (ORER) occurs, data is read from
RDR1 in the same way as an RXI interrupt occurs. When an ERI1 interrupt which is not causec
an overrun error occurs, data in RDR1 is read to be discarded and the error flag is cleared. At t
time, when a break interrupt is also received, serial reception is disabled to exit the function
without clearing the FER flag. In this case, since the FER flag hold the value 1, consecutive
interrupts occur and the ActSerialln function continues to be called until a break interrupt is
stopped. During these conditions, the interrupt priorities for the USB function and SCI1 module
are switched in order to enabling reception of USB interrupts.

Rev. 1.0, 04/02, page 52 of 68
RENESAS

When an overrun error occurs or data is successfully received, the data is read from RDR1 ar
stored in the RAM area for bulk-in transfer. After this, the size of which the RAM area is not us
is checked. When there is no area left to use, Xoff is sent to the host PC connected with seria
interface in order to avoid data missing. Sending Xoff disables serial-in transfer.

ActSerialln I

ORER =0 and
PER =17

| Dummy read from RDR |

v

| PER flag cleared |

&
<
4

ORER =0 and
FER=17?

To flow in figure 4.18

Dummy read from RDR |

Break input?

(RXD1 = 0?) Serial transfer disabled |

v

Interrupt priority level changed
| USB:6to 7,SCI1:7to 6

Serial transfer enabled
¢ Serial-in transfer end
Interrupt priority level changed

USB:7t06,SCI1:6t0 7

v

| FER flag cleared |

Serial-in transfer end

Figure 4.19 Serial-In Transfer (Error Processing)

4.8 Vendor Command
In this sample program, four vendor commands, supported by USB serial conversion driver

manufactured by Hitachi ULSI Systems Co., Ltd., are decoded.

Rev. 1.0, 04/02, page 53 of 68
RENESAS

Table 4.6 shows the four vendor commands that are supported by the USB serial conversion
driver.

Table 4.6(a) Vendor Request

bmRequestType bRequest wValue windex wLength Data

01000001b SET_LINE_CODING Zero Interface 8 Line Coding
Structure

11000001b GET_LINE_CODING Zero Interface 8 Line Coding
Structure

01000001b SET_CONTROL_LINE Control Signal Interface Zero None

_STATE Bitmap
01000001b SEND_BREAK Duration of Break Interface Zero None

Table 4.6(b) Vendor Request Code

bRequest Value
SET_LINE_CODING 0
GET_LINE_CODING
SET_CONTROL_LINE_STATE
SEND_BREAK

WIN| -

More details of each command are explained in the following sections.

48.1 SetLineCoding
This request specifies parameters which are used for asynchronous data transfer.

bmRequestType bRequest wValue windex wLength Data

01000001b SET_LINE_CODING Zero Interface 8 Line Coding Structure

Table 4.7 shows the definition of Line Coding Structure.

In this sample program, SCI1 is restarted with the settings of received Line Coding Structure or
reception of this command.

Rev. 1.0, 04/02, page 54 of 68
RENESAS

Table 4.7 Line Coding Structure

Offset Field Size Value Description

0 DwDTERate 4 Number Data terminal speed (bps)

4 BcharFormat 1 Number Stop bit
0: 1 stop bit
1: 1.5 stop bits
2: 2 stop bits
5 BparityType 1 Number Parity

0: None

1: Odd

2: Even

3: Mask

4: Space
BdataBits 1 Number Data bits (5, 6, 7, 8)
BflowType

[EEN

Number Flow control
0: Software or none
1: Hardware

4.8.2 GetLineCoding

This request is for the host to check out the current parameter of the device. When this sampl
program receives this command, it returns the initial values shown in table 4.8 to the host.

bmRequest bRequest wValue windex wLength Data

Type

11000001b GET_LINE_ Zero Interface 8 Line Coding
CODING Structure

Table 4.8 Initial Values of Line Coding Structure

Offset Field Size Value Description

0 DwDTERate 4 0x1C200 Data terminal speed (38400bps)
4 BcharFormat 1 0x0 Stop bit (1 stop bit)

5 BparityType 1 0x0 Parity (None)

6 BdataBits 1 0x8 Data bit (8)

7 BflowType 1 0x0 Flow control (Software or none)

Rev. 1.0, 04/02, page 55 of 68
RENESAS

4.8.3 SetControlLineState

This request sets the control signal.

bmRequestType bRrequest wValue windex wLength Data
01000001b SET_CONTROL_ Control Signal Interface Zero None
LINE_STATE Bitmap

Table 4.9 Control Signal Bitmap

Bit Position Description
D15 to D2 Reserved (initialized to 0)
D1 Controls transmit function of DCE
0: RTS off
1: RTS on
DO Monitors whether or not DTE is in ready state
0: DTR off
1: DTR on

Since the H8S/2215 does not have RTS and DTR signals, only decode is carried out for this
request and the DCE is not controlled.

In this sample program, it is recognized that setting the hyper terminal on the USB host PC sid
for communication is completed by detecting D1 = 1 and DO = 1. At this time, a pointer that
indicates the data area for bulk-in and bulk-out transfers and an internal flag in this sample
program are initialized.

48.4 SendBreak
This request generates the break signal in device.

bmRequestType bRequest wValue windex wLength Data

01000001b SEND_BREAK Duration of Break Interface Zero None

The break signal transmission time (msec) is written to the wValue field. When wValue is
OxFFFF, the device continues to output the break signal until receiving the SendBreak request
with wValue of 0x0000.

In this sample program, this request is decoded. A break signal, however, is not output.

Rev. 1.0, 04/02, page 56 of 68
RENESAS

Section 5 Analyzer Data

In this section, we look at how measurement is carried out with the USB Advisor, a USB proto
analyzer manufactured by CATC (http://www.catc.com), using the USB function module in the
H8S/2215, and at what happens to the data as it actually flows along the bus. The following g
the description for control transfer when a device is connected and control transfer when the
vendor command is transmitted as examples.

Note: The Packet # found in front of each packet is the packet number used when measurin
The Idle found at the end of each packet indicates the idle between packets.

51 Control Transfer when Device is Connected

Figure 5.1 shows the measurement made, with a device connected to the host controller, whil
shifting from the power-on state (the power is supplied to Vbus) until the configuration state
(device is ready for being used).

Though the packet scheduling may differ depending on the host controller, the command flow
the configuration state is always the same.

~Reset signal. A transition is made from power-on
state to default state.

[Packet [swme | soF [ourhalics Frame
[z || ooooooot | owes 131 | w07 ||ovessdops| SOF pcket (1ms)
[Packet | swme [soF [HCacEls
| 3 || oooooooi | owas 132 | Ox19 |[996.950 ps
* Only SOF packets continue in this period.
[Packet |[swme [soOF
/ | a5 || ooooooni | oxas 221 | o5 |33 ns
A00R S ERES — Setup token packets (default address used) *
93 OO00o0O4 OxBet [0 | oeos |[143ns Frame
[Packst |[ISwme | oaTAD Setup (1ms)
= | 100 || ooooooni [oecz [0 0& 00 01 00 00 40 00 [0xBB29|[416 ns ,[
B : i : Data packet (8 bytes) stage
2 Packet myne ALK . .
> -
3 [w1 || ooooooot [oxds |[s53.300ps ACK Handshake packet (Get_Descriptor (Device) command) v
g [Pachet [swme | soF [ouchkaloics A
= | w2 || ooooooot | owas 222 |17 |[316ns
=
a anor BN ERES ~In-token packet (default address used)
a 102 OOnoooo [[0 | D02 |[7500s F
| rame
. AT
@ LAT A ' Data
o 104 oonoong{ 0xD2 |0000: 1# 0L 10 0L 00 00 00 &0 56 0% 04 00 00 01 00 00 07436 |[500 ns) (Ims)
g 0016 00 01 stage (in)
) [coze: oo 01
% Data packet (18 bytes)
I [Pachet [sme | Ack device d iptor inf i
g [s || ooooooot | owaB ||976.367 ps (device descriptor information) \ 4
°© [Packet | swme [soF [HCucElc Frame
‘g | 108 || _ooooni | oxas 227 | oxn3 |[205.350 ps (1ms)
o [Packet [swme | S0F [Hourkalics ‘
| w7 || ooooooot | owas 224 | Ox0E ||333 ns
[Packet [swme [our P EnoR S
[z || oooomar | wee - T ooz |lieens| < Qut-token packet (default address used)
Frame
e CRCIE Status
DATAl VData |[BREHE m - Data packet (0 byte) (1ms)
103 0O00o0o 0xD2 0x0000 || 450 ns stage
[Packet |[swme AcKE | l
[t |[ooopooot | oxd4B |[985.567 ps

* Continued on next page
Rev. 1.0, 04/02, page 57 of 68
RENESAS

Frame
(Ims)

| packet |[Syme | [l Frem= ¢ B
111 || ooooooot 225 | oxnt |[Frasaps
[Packet | Reset signal is input again.
112 15.976 ms 40567 i
packet |[Syme 50F
| 113 || _ooooot | [241 | Ox16 |[395.933 ps

* Only SOF packets continue in this period.

s | SOF
_moooot | owes

| Packet |
133 |

332 ns

(m B <CC R & ~ Setup token packets (default address used)
194 00ooooo1 Ox B a 1] 0x03 |[166 NS

Control transfer (Set_Address)

* Frame
[Pachet [&wme | oatAn Setup (1ms)
| 195 || oooooooi [oecz Joo 0§ oz o0 0o 00 o0 oo |0x0768 (416 ns éI stage
e, B Data packet (8 bytes) ¢
[126 || vooooooi | oees |[sge.267 ps (Set_Address (Address: 2) command)
[Packet |[Sme [s0OF
[1s7 || ooooooot | owes 333 ns
[Packet |
a‘cgs 356 n= In-token packet (default address used)
Status Frame
TS :
155 sssns| < Data packet (0 byte) stage (Ams)
[Packet | ®me | Ack i
\ [200 || oooooooi | owas ||sss.2e7 ps | —ACK Handshake packet
[Packet |[0 ®wme [soF E m
[201 || oooooooi | oxes 323 | 0x04 |[256.973 ps * Transits to address state, hereafter.

* Only SOF packets continue in this period.

350 ns

~ Setup token packet (Address: 2) *
183 ns
Frame

Control transfer (Get_Descriptor(Device))

210 00000001 2
[Packet |[Ewme | DaTA Setup (1ms)
| || ooooooot [oxcs [s0 06 oo 0l oo oo 1z oo [oxoreF (483 ns é[stage

Data packet (8 bytes)

[Packet [Eme | AcK . g
|21z || ooooooot | omam [[semaivps (Set_Descriptor (Device) command)
[Packet |[[swme [sOF
IEEE || ooompont | owas
< In-token pacekt (Address: 2)

214

Frame

DAT A Data @ms)

215 00000001 Ox02 [0000: 1F 01 1o 01 00 00 00 40 56 04 04 00 00 01 00 00 |0x7A%E .

00l6: 00 01 /t Stage (in)

| Datg packet (}8 b){t S) .
|26 || ooooooot | owaB |[o7e 367 ps (device descriptor information)
[Packet |[sme [soF M
R || ooooooot | owes 333 ns
[Packet |[sme T our — Out-token packet (Address: 2)
| 218 |[ooooooot | oxE7 166 ns
Staius - Frame

218 nonoooni — Data packet (0 byte) stage (Ims)
[Packet Syme ACK

220 00000001 048|395 500 ps

| |
I |
[Packet |[Sme [soF e [B
| || oooooooi | owas 334 | Ox09 |[996.950 ps

* Continued on next page

Rev. 1.0, 04/02, page 58 of 68
RENESAS

Contorl transfer (Get_Descriptor(Config))

Control transfer (Get_Descriptor(Config))

Frame

(Ams)
[Packet [sme | soOF
[222 || oooooomi | owas 335 | ox16 |[3330s
SHlD SETuP Anor Sl M ~Setup token packet (Address: 2)
233 onnonoo § Oxfd Ox15 |[150 ns Frame
[Packet |[SWme] oaTAn él Setup (1ms)
[224 [oooooooi | oxcz [s0 o0& o0 02 00 00 0g 00 |ox?s20||466 ns stage
[Facket |[DEme] Ack “ Data packet (8 bytes)
[225 |[ooooooot | oxae |[sez.23 s (Get_Descriptor (Config) command)
[Packet |[®me | SOF
| 226 | ooooooot | 335 | ox01 |[333 ns
Syme N Apor BN ~In-token packet (Address: 2)
237 oononoo 4 [Ox15 |[316 ns Frame
ST = Gt} o | Data (ms)
225 00000001 OxD2 _ [o0000: 08 0F &7 00 01 0L 00 CO |Ox2<42E |[439 s stage (in)
[oooz: 0] Data packet (9 bytes)
[Packet [sme] Ack (configuration descriptor information)
[228 || ooooooot | owdB |[ss2.367 ps
[Packet |[[swme | soF
[230 || _oooooi [owas 337 [ox1E|[333 05
[Packet [mme] out ENDR] | — Out-token packet (Address: 2)
I || ooooooot | oxsw 2 0 [oxis |[156 s Erame
H B paTAL 4oata [ERESI Status (1ms)
232 onnono § Ox 2 o |15 ns| < D@t@ packet (O byte) stage
[Packet |[[sme | ack
[232 || oooonomi | owam 453600 ps
[Packet |[®me | =0F
[24 || oooooooi | owas 338 |Oxic |[336.950 ps Frame
(Ims)
[Packet [swme [soF
| 235 || oooooooi | osas 378 [0«03 |[333 05
syme SETUR | ~0oR EXER ~Setup token packet (Address: 2)
236 oonoon Ox Bt Ox15 |[166 ns Frame
[Packet |0 Eme | DATA él Setup (1ms)
[237 |[oooooooi [oxc3 [s0 0 00 02 00 00 FF 00 |0xe75 |[466 ns stage
: I : Data packet (8 bytes) g
Packet yme ALK .)
[28 || ooonoont | owem Msmsu s (Get_Descriptor (Config) command)
[Packet |[swme [soF
| 238 || ooooooot | owas 340 |Ox1D |[333 ns
syne in »oor EXEN ~In token packet (Address: 2)
240 OODooo | Oxag 2 0 [oxis |[7160s Frame
Packet DIAT A Data Data (Ams)
21 DODooo | UxD2 |oogo: 09 0 27 o0 0l 0L 00 CO 10 0F 04 00 00 03 T FF|0s0912|[s00ns stage (in)
O01E: FF 00 07 05 01 02 &0 00 00 07 05 &2 02 40 00 00
00EE: 07 05 $2 0% 0§ 00 04 *
[Packet |[Ewme] AcK Data packet (39 bytes)
| 242 || ooopooot | oxdB |[ss2.033 ps ’
(configuration descriptor information)
[Packer [sme T sarF Frame
[24 || oooooooi | owas 341 | 0x02 |[996.950 ps (Ims)
e o T o Dt
| 244 || oooooooi | oxas 342 | ox00 |[350ns
[Pachet |[sme [out ENDR | ~ .
| 245 || ooooooot | oxs? 2 0 |oxis |[182 ns « Out-token packet (Address: 2) Frame
AT Status
SIIE EE {0t M — Data packet (0 byte) (Ims)
245 OODooo | 0xC2 0=0000 |[473 ns stage
[Packet |[Eme [AcK ﬁ
| za¢ || ooooooot | oxdB |[ssE.583 ws
[Packet |[" swme [soF . .
[245 | oooooooi | owas 343 [DxtF |[996 950 ps Continued on next page

* Only SOF packets continue in this period.

Rev. 1.0, 04/02, page 59 of 68
RENESAS

Control transfer (Get_Descriptor(Device))

Control transfer (Get_Descriptor(Device))

Frame

(Ims)
[Packet |[[sme [sOF
= || ooooooot | owas 350 | O0E |[333 ns
sme SETURN ~oor EIEE ~Setup token packet (Address:
256 00000001 [Ox15 |[166 ns Frame
[Packet |[[Sme | DaTAD Setup (1ms)
= |[ooooooot [mec: [se o0& oo ol oo oo 12 oo [ox072F |[450 ns
stage
[| e “ Data packet (8 bytes)
| 28 || _ooooot | owae |(983.2s0ps (Get_Descriptor (Device) command)
[Packet |[Sme [soF
| 258 |[ooooooot | owas 351 | Ox11 |[333ns
syme »nor [EEE .
260 000O00o0 4 [2 0 | Ot |[366ns «In-token packet (Address: 2) Frame
S T cata (1ms)
261 __oonooi Ox02 [O0000: 1# 01 10 01 00 00 00 &0 56 04 04 00 00 01 00 00 07436 |[550 ns Data
0016: 00 01 /[\ stage (in)
Data packet (18 bytes)
[Packet [®me | AcK
[22z || ooooooot | owae | [ave.200 ps (device descriptor information)
[Packet |[[sme [sOF
= |[_moooot | owes 352 | Oxi7 |[333 08
[Packet |[ewme] our ENDF | — Out-token packet (Address: 2)
| 264 |[ooooooot | owe? 2 0 | mnis |[166 ns Frame
g
yne DaTal Data m - Data packet (0 byte) Status (1ms)
265 00000001 0x02 %0000 |[456 n= stage
[Packet [Eme [Ack i
= || ooooooot | oxds 353550 ps
[Facket |[sme] sor m:‘ﬁ Frame :
267 00000001 [387 | Oe05 |[208.033 ps
| | ! b 1me)
[Packet |[swme | soF
[265 || oooooooi | owas 354 | oena (333 ns
Syme SETUR ~00F [EIED ~ Setup token packet (Address: 2)
263 00000001 OxE z 0 | ot |[156 s Frame
[Packet [Sme [DATAD Setup (Ams)
[_ze0 || oooooont | oxcs g0 06 00 0l 00 00 1# 00 |Ox072F |[433 ns stage
T | W Data packet (8 bytes) i
[271 |[ooooooot | owaB |[283.250 s (Get_Descriptor (Device) command)
[Packet |[®me | =0F
|27z || oooooooi | owas 355 | ox1s |[3s0ns
Syne N AnoR [N ~In-token packet (Address: 2)
773 00000001 [T Ox15 ||366 ns Frame
S oata croie. Data (ims)
274 __Dooooi OxD2_ [0000: 1 0L 10 01 00 00 00 40 SE 0% 0% 00 00 01 00 00 [ow7ass |[s66 ns)
QOlE: o0 ol stage (in)
e N Data packet (18 bytes) *
25 || oooooooi | owam |[a7s.2s7 ps (configuration descriptor information)
[Packet |[swme | soF
[276 || oooooooi | owas 356 | oxne |[3s0 ns
[Packet [mme] our ENDE | — Out-token packet (Address: 2)
| 2f¢ || oooooooi | owar 2 0 [oxis |[1530s
Frame
Syme DATAl YData [GRGHEI Status
775 no000oo %02 %0000 | 455 ns ~ Data packet (0 byte) stage (Ims)
[Packet |[[sme | ack
[27a || oooonomi | owan 453,550 ps
[Packet |[®me | =0F
|20 || oooooooi | owas 357 | ox14 |[336 950 ps
Frame
* Continued on next page (1ms)

Rev. 1.0, 04/02, page 60 of 68

RENESAS

Control transfer (Get_Descriptor(Config))

Control transfer (Set_Configuration)

Frame

(Ams)
[Packet [swme [soF
I || ooomooot | owas 358 | Dxis |[350ns
Syne sETUR | ~oor R — Setup token packet (Address: 2)

252 0O00o00 1 [0x15 |[153 ns Frame
[pasket |[Sime] coav “:‘m < Sewp - (1ms)
[253 |[oooooooi [oxc3 [s0 0 00 02 00 00 00 04|0x9SES |[450ns Data packet (8 bytes) stage
[Packer |[sme T ack (Get_Descriptor (Config command)
| 284 | oooooomi [owx4m |[sE.250ps
[Packet |[" Swme [=0F
| 285 || oooooooi | oxas 359 | ox03 |[350ns
Sy N s00R BN K

256 00000001 [H | mus |[smans| © N-token packet (Address: 2) Frame
DaTAl 1 otz (1ms)

257 00000001 OxD2__ |o000: 0F 0 27 00 01 01 00 E0 10 0F 0% 00 00 03 FF FE|Ox1111 (550 ns Data

U0LE: FF 00 07 05 01 0F 40 00 00 07 05 82 02 40 00 00] stage (in)

002E: 07 05 52 02 08 00 0&

l /hData packet (39 bytes)

[Packet [mwme [aAck ’)) - .
[z || ooooooat | meas |ostoms s (configuration descriptor information)
[Packet |[" Swme [=0F
| 2ss || oooooooi | oxas 360 | 0x13 |[936.950 ps
[Packet |[" swme [soF
[2o0 || oooooooi | owas 361 [Ox06 |[333ns Frame
[[Packet |Msyme] out L iCRes|| — Out-token packet (Address: 2) + (Ims)
I || ooooooot | oxsr 2 0 [oxis |[156 s
sync CATAl Data |GRIGHE] Status

252 DODoono 1 0x 0z oxoonn |[41sns |~ Data packet (0 byte) stage
[Packet |[sme [Ack
[23 | oooooooi [owxam |[sms.600 ps
[Packet [mwme [=oF Frame
| 294 || oooooooi | oxas 362 | x4 |[3396.933 ps

(Ims)
[Packet |[swme [soOF
[25 || _ooooni | oxas %3 | miB |3 ns
Syne SETUR . ~00R [— Setup token packet (Address: 2) +

796 0O00o004 OxBet ox15 |[166 ns Frame
[Facket |[0SWme] CaTAD Setup (Ims)
[297 || ooooooot | oxcs [oo 09 01 00 00 00 00 00 |OxEdad|[<S0ns él stage

Data packet (8 bytes)
[Packet |[swme [ack))
| 298 || ooooooot | oxde |[383.233 ps (Set_Configuration command)
[Packet | syme [s0F
[2es || oooooooi | oeas 364 | Ox0s |[333 ns
Sync 1N falElsl EHOP ~In-token packet (Address: 2) +

300 0O00o004 [] 0 | oxis |[zo2ns Frame
B DATAl fData Status (1ms)

301 Oooooan | 0x02 n<oomn ||533 ns [Data packet stage
[Packet |[Eme [Ack
ET || oooooooi [oxas |[385.283 ps
[Packet |[swme [soF
| 303 || _ooooot | owas 365 | Oxia |[996.933 ps

* Transits to configration state, hereafter.

* The stationary state continues until a control transfer (vendor command) is performed.

Figure 5.1 Control Transfer when Device is Connected

Rev. 1.0, 04/02, page 61 of 68
RENESAS

Control transfer (Get_Line_Coding)

5.2 Control Transfer when Vendor Command is Transmitted

Figure 5.2 shows the measurement results when the vendor command is transmitted by contro
transfer between the host controller and this device. (For the vendor command, refer to sectiol
4.7))

[Packet |[Sme [s0F
| @ssn || ooooooot | oess 557 | Ox1E |[350 ns

SETURN ~oor EIE ~ Setup token packet (Address: 2) f
4851 00000001 0xB4 2 0 | mxis |[166 ns
[Packet |[[&me | DaTAD Setup Frame
| _4ss2 || oooooomi [owc: |1 0l o0 00 00 00 0F 00 [oxssis|[456 ns él stage (Ams)
Data packet (8 bytes)
[Packet [Eme | AcK . X
[_@sss__ || nooooomi | oxde |(sE3.2i7ps (Get_Line_Coding command (vendor command))
[Facket |[Sme [soF
| _4ss4 || ooooooot | owss 558 | OwiC |[350ns
i soor [EIEGEERES) «In-token packet (Address: 2) f Frame
4585 00n0ooo | x5 2 0 | mxis |[333ns
Data (1ms)
DATA Data ELET)
4556 00000001 Ox02 |00 cz 0l 00 00 00 0§ 00 [oxseed (533 ns stage (in)
Packet || myme ALK 1 Data packet (8 bytes)
4387 || nooooooi Ox4B 953.047 ps

Packet || Syme
4558 || Dooonood

[|
[|
[Packet |[sme [soF
| _4sss || ooooooot | owes 559 | On03 |[333 08
I [auT ENDP | ~Out-token packet (Address: 2) Frame
| | a7 2 0 | mnis |[166 ns
(Ims)
[tatl
DATA1 {Data m - Data packet (0 byte) Status
4390 00000001 0xD32 0+0000 |[415 ns stage
[Packet |[sme | i
| _@ss1 || ooooooot | 353600 ps
[Packet |[Sme [soF
| sz |[omooooot | owas 560 | Ox1d |[996.950 ps
Frame
[[sorF
[| muss 551 | Ox0B |[350 ns (1ms)
SETUR +00R [EXET M ~ Setup token packet (Address: 2) f
4554 00000001 0xB4 F] 0| oxis |[165ms

DATAD Setup Frame
OCF |1 0l 00 00 00 00 0F 00 |OxAE16 |[486 ns stage (Ams)

ACK
OxdB

Packet |[Syme
4363 |[Dooooooi

[Packet |[swms |
4mas no000oo

l | l ata padket (8 bytes)

[Packet [sme | aAck . .

[e || oowmommi | e |sazirs (Get_Line_Coding command (vendor command))

[Packet |[[sme | =0OF

| _ase7 || oooooooi | owas s62 | oxoa |[333 05

IN »0oR B ~In-token packet (Address: 2) f
4508 00000001 [F 0| Otz |[316ns

DATAL ¢ pata crcis | Data Frame
PEET) no00ooo1 O«D2 |00 Cz 0L 00 00 00 0F 00 |Ox54a4|[533 ns stage (in) (1ms))
Packet |[Syme ACK 1 Data packet (8 bytes)
4900 || OOoDoooi OxdB |[953.017 ps

Control transfer (Get_Line_Coding)

| |

| |

[Packet [swme | soOF

[_4soi || oooooooi | owas 563 | mwte |[333ns $
| |

| |

Facket |[syme ouT ENDE | | — Out-token packet (Address: 2) Erame
4902 |[ooooooot 0x57 2 0 [oxis |[156ns (1ms)
ms
paTAl {oata [ERETS] Data packet (0 byte) Status
4903 nonooon { 0xD02 oxooon |[416 05| T p Y stage
[Packet |[[sme | ack
|_4so4 || oooonomi | owdn 452,600 ps
[Packet |[®me | =0F
|_4sos || oooooooi | owas 564 | 0x0g |[336 950 ps

* Continued on next page

Rev. 1.0, 04/02, page 62 of 68
RENESAS

Control transfer (Get_Line_Coding)

Control transfer (Get_Line_Coding)

Frame
[Packet [sme [soOF
[o6 || ooooooot | oxee 555 | Oxi7 |32 08 (Ims)
Byne SETUR ~00R XL ~ Setup token packet (Address: 2)
48007 non0oon § 0xB4 Oxi5 |[166 ns
[Packet | ®wme | oaTAan Setup Erame
[#sos [oooooooi | oxez [Rl ol 00 00 00 00 0% 00 |0AS1E |[466 NS stage
T I o Data packet (8 bytes) (1ms)
[%02 || oooooooi | oxaB ‘ 383,217 s (Get_Line_Coding command (vendor command)
[Packet |[®wme | %0OF
| _4smm || oooooooi | 565 | Ox15 ||333 ns
Syne N soor EIEE —In-token packet (Address: 2)
4911 nonnoon 1 0x96 Ox15 |[316 ns
Dat Frame
ST oaras pata CRet) ata
4312 000000 § Ox02 |00 Cz 01 00 00 00 05 00 |OxS494)[533 na stage (in) (ms)
[packet | ®me | ~ck 1 Data packet (8 bytes)
| 4813 || ooooooot | owdB (983017 ps
[Packet [sme | soF
[4s1a || oooooooi | mwas s67 | Dwna|[333 ns
[Packet [sme] out m ENDF | m — Out-token packet (Address: 2) Frame
4315 || oooooooi | ows? 2 0 |oxis [[156 s (1ms)
H BT *Data_[ERGTE] Status
4916 00000001 0x02 moomn ||aiens | — Data packet (0 byte)
stage
[Packet [sme | ack
[4s17 || oooooomi | owdn 452,600 ps
[Packet |[mme | sOF
[4315 || oooooooi | owas 568 | Dxta |[996.933 ps
Frame
[Packet | mme [soF
| as1a || ooooooot | owas 564 | Ox05 ||333 ns (Ims)
Sync sETUR | aoorR BN ~ Setup token packet (Address: 2) ?
4920 n00oooo OxB4 Ox15 || 165 ns *
Frame
[Packst |[DSWme | CaTAD Setup 1
[4s21 || oooooomi [oxc3 [l 0l 00 00 00 00 08 00 |0xast16 |[456 ns sta (Ims)
ge
Data packet (8 bytes)
[Packet [Eme [Ack . X
[@azz || oooooooi | owas |[ags.2i7 s (Get_Line_Coding command (vendor command)
[Packet | swme [soF
| a2z || ooooooot | owas 570 | ox07 ||333 ns
syne N A00R N ~In-token packet (Address: 2)
4024 noooooa+ Ox3E Ox15_|[316 ns
o DAT A bata ‘CRE5 | Data Frame
4325 0000000 0«02 |00 C2 01 00 00 00 05 00 |0xsAad (533 ns stage (in) (1ms)
[Packet [®wme | Ack | 1 Data packet (8 bytes)
| 4oz || ooopooot | owd4B |[383.017 ps
e I sor I
| 4s2r || ooooooni | oeas 571 | otz |33 s
[Packet |[7syme T our L [ERES — Out-token packet (Address: 2) Frame
| 4s2s || oooooooi | owsR 2 0 [ox1s |[166 ns
Stat (1ms)
Symc DATAl YDaa [SiGis] atus
4aza ODODaog1 ox02 mwomma [[415 05| — Data packet (0 byte) stage
[Packet |[swme [ack
| _4s30 || oooooomi [owdE |[3%5.500ps
[Packet |[syme [s0F
| 4931 || oooooooi | oxas 572 | ox06 |[295.933 ps

* Contrinued on next page

?

Rev. 1.0, 04/02, page 63 of 68

RENESAS

Control transfer (Get_Line_Coding)

Control transfer (Get_Line_Coding)

Frame

[Packet |[swme [soF

[@ss2 || ooooooot | owes 573 | onie |[z3zns (1ms)

SETURL ~00R BB ~ Setup token packet (Address: 2) f
4537 0O0oDao+ 0xB4 2 0 |ox15 |[156 ns

CATAD él Setup Frame
OxC3 C1l 0l 00 00 00 00 05 00 |0cAs16 ||d56 ns stage (1ms)

| Packet || Syme |
| s34 || ooooooot |
e T Data packet (8 bytes)
[__#e3s || oooooomi | owas |[sE2.233 ps (Get_Line_Coding command (vendor command)
[Packet | myme [soF
| 4s36 || oooooomi | oxas 574 | Ox16 |[333 0=
N aoor [, f
4337 00000001 0xgs 2 0 |oxs |[316ns «~In-token packet (Addresss: 2)
DATAL 1 = oRcis Data Frame
4333 nooo0oa | 0«02 |00 C2 0L 00 00 00 0% 00 |Ox5Agd|[$33 ns stage (in) (1ms)
[raet |DEme] Aok | 1 Data packet (8 bytes)
| 4s3s || oooooomi [oxas |[283.017 ps
[Packet |[swme [soF
[4san || oooooooi [owas 575 | oxd4 |[333 0
[Packer |["eyme] aour EnDR] — Out-token packet (Address: 2) Frame
| 4341 || oooooooi | ows? 2 0 |oxis |[166 s
i |cReis) Status @ams)
H DAl dData
4942 0000000+ 0xD02 oemomn |[ais ne| — D@ta packet (0 byte) stage
[Packet |[swme [ack
| 4343 | oooooomi [owam |[385.517 ps
[Packet | syme [s0OF
| 4sa4 || oooooomi | oeas 576 | Ox15 |[995.933 ps

Fram
[Packet [mme | =0F ame
[|| oooooooi | oxss 577 | oun7 |[333 ns (Ims)

a5
SETUR | »0or B .
m ooooooo OxBa 2 0 [oxis |[186 s « Setup token packet (Address: 2)
[Packet |[EWme] oaTan Setup Frame
| 4s47 || oooooomi | oxe? [Rl 01 00 00 00 00 05 00 |Ondsi1s 456 ns é|
stage 1ms;
Data packet (8 bytes) g (Ams)
[Packet |[Eme [AcK .)
[#ses || oooooooi | owas |[983.235 ps (Get_Line_Coding command (vendor command)
[Packet |[swme | soF
[4sas || oooooooi [owas 578 | oens |[316 ns
in Apor B ~ Setup token packet (Address: 2) Frame
4250 oooooooi Oxag 2 a Ox15 [|333 ns
1ms;
DaTAL Diata ERCHE Data ams)
4951 nooooooi kD2 00 CE 01 00 00 00 0& 00 |0xSsad |[S16 ns stage (in)
Packet Symc ACK + Data packet (8 bytes)
4952 oooooooi Ox4B 933.023 ps

| | |

| I |

[Packet [mme | =0F

[4ss3 || _oooooi | oeas 579 | ox1a(316 s f
| I |

| I |

Packet Symc ouT ENDF | | ~ Out-token packet (Address: 2) Frame
4954 noonnoo OxE7 2 0 [oxis |[166 ns

Do fDta [SREIE) Data packet (0 byt Status (Ams)
4855 0onoooo | 0xD2 00000 |[473 ns - p (0 byte) stage

[Packet |[®me [AcK

| 4ss6 || oooooont | w4 |[s@.600ps

[Packet |[[swme | soF

[#ss7 || oooooooi | owas 520 | oxn4 |[996 933 ps

* Continued on next page

Rev. 1.0, 04/02, page 64 of 68

RENESAS

9)

t_Line_Codin

Control transfer (Se

Control transfer (Set_Control_Line_State)

Frame
[Packet |[swme [soOF
| 4958 || ooooooor | owas 581 | Ox1B |[316ns (1ms)
syne SETUR | ~oor EfEH — Setup token packet (Address: 2)
4959 0O00o0o+4 OxBet 0x15 |[166 ns
Setup
[Packet |[[" Sme | DATAD él Frame
[4ssn || ooopooni [oec3 |41 00 o0 00 00 00 08 00 [0«BE1Z|[466 ns stage
Data packet (8 byt (1ms)
[Packet [Ewme [aAck | . ?a packet (8 bytes)
[@951 || ooopooor | owae |[s83.233 ps (Set_Line_Coding command (vendor command)
[Packet |[Sme [S0OF
| assz || ooooooot | owes 552 | Ox19 |[333 ns
[Packet |[Syme’ [our ENDR] — Out-token packet (Address: 2) *
| 4ss3 || oooooooi | owEz 2 0 |oxis |[156 ns
DATAL pata CRCTS | Data Frame
4364 0000000+ Ox02 |00 96 00 00 00 00 04 00|0x72AG|[416 05 stage (out) (1ms)
[Pachet [®wme | Ack 1 Data packet (8 bytes)
| _ases || ooopooot | owaB |[983.267 ps
[Packet |[swme [soOF
| 4ses || oooooooi | owas 553 | Ow05 |[350ns
syne i ~oor SR ERES < In-token packet (Address: 2) f Frame
4967 0O00o0o+4 [2 0 | oxis |[see s (ms)
e Status
H Sync hAkK m
4058 00000004 Omss |[291.767 ps stage
[Packet [sme [soF
| 4ssa || oooooooi | owes 554 | Oxts |[3330s
Syne A00R EET ERES] —In-token packet (Address: 2)
4570 0O00o004 [2 0 | oxis |[see s
Frame
H syme DaTAl ‘Data [EREIE|
4071 __Oooood 0xD02 Dx0000 |[SE6 ns | Data packet (0 byte) (Ams)
[Packet [Eme [Ack
|| _4srz || oooooooi [owas |[385.267 ps
[Packet |[sme [soF
| ao73 || ooooooot | owas 585 | Ox09 |[996.933 ps
[Packet |[Swme [S0OF Frame
[__4e7a || oooooom | owes 586 | oene |[333 s (Ims)
Sync SETUR Y 0ok [T ~ Setup token packet (Address: 2)
075 00000004 Ox B 2 ox1s |[166 ns
[Packet |0 Ssme | DaTAD él Setup Frame
| _4avs || oooooomi [oxcs |41 0g 0z 00 00 00 00 00 |0x1As4](433 ns stage (1ms)
Data packet (8 bytes)
[Packet [sme | Ack i
[@77 || ooooooot | owxaB ||93.283 ps (Set_Control_Line_State command (vendor command)
[Packet |[swme [soOF
| _4s7s || oooooomi | owas 557 | Oxid |[332 0=
Sync N aoor EXET —In-token packet (Address: 2)
4379 00000004 [2 0 |oeis |[34ens
- Frame
symc Ak m Status 1
ms
480 00000004 Omss |[291.767 ps stage ()
[Packet |[mwme [soF
| 4ss1 || oooooomi | owas 553 | OndaA |[333 ns |
Sy »~0or BN EREE ~In-token packet (Address: 2) ?
4952 0O00O004 [2 0 |oeis |36 ns
Frame
Symc DATA1 ‘Data [BRECIE|
03 __Dooom 0x02 mwoomn |seens| — Data packet (O byte) (1ms)
[Packet [Eme [Ack
|| 4984 || oooooomi [oxas |[355.253 ps
[Packet |[swme [soF
| aess || ooooooot | owas 589 | Ox15 ||996.933 ps

* Continued on next page

Rev. 1.0, 04/02, page 65 of 68

RENESAS

Frame

Control transfer (Set_Control_Line_State)

Control transfer (Set_Line_Coding)

[Packet |[Sme [s0OF (1ms)
| as86 || ooooooot | owes 590 | Ox17 |[333 s
577 nonoonoi OxBet 2 o |oxis |[1s6ns| < Setup token packet (Address: 2)
[Packet |[Eme] DaTAD él Setup Frame
| 4sss || oooooomi | oxcs [21 0z 0z 00 oo 00 o0 oofoxsacF [[453 ns
Data packet (8 bytes) stage (Ims)
[Packet | Eme [Ack) ata packe yies
[@ || DoooooDi | owaB |[eE3.28E ps (Set_Control_Line_State command (vendor command)
[Packet |[sme [soF
| 4ss0 || oooooooi | owas 591 | Ox0% |[333 0=
N Aoor EIEG Fﬂﬂ —In-token packet (Address: 2) * ?
4asi n0ooooo+ Ox36 2 0 | oxis |[366 ns
Fram
Status ame
4992 noooooot Oxsa |[991.750 ps stage (1ms)
[Packet |[sme [soF
| 4993 || oooooooi | owss 592 | OxiF |[333 nm
N ~oor EXT EREE ~In-token packet (Address: 2) ?
4394 n0ooooo+ Ox3E 2 0 | oxis |[366ns
Frame
4995 __oooooi Ox02 Oxoomo |[seens | Data packet (0 byte) (1ms)
[Packet | Eme [AcK
| 496 || ooooooot | owaB |[#ss.283 us
[Packet |[sme [soF
[4se?7 || oooooooi [owas 593 | owxon |[296.950 ps
| I I Frame
Packet 5yne 50F m M
| 4ss || oooooooi | owas s34 | Ox02 |[333 05 (Ams)
SETURN ~0or I ﬂ — Setup token packet (Address: 2) f ?
4393 nonoooot OxBd 2 0 |oxis |[183ns
[Packet |[[&me | DaTAQ él Setup Frame
[sooo][ooopooot [oec3 [41 oo oo oo oo o0 os oo|0cBE1Z |[416 ns stage (Ims)
Data packet (8 bytes)
[racket [Eme] Ack . .
[som || oooooooi | owes |[ses 283 ps (Set_Line_Coding command (vendor command)
[Packet |[Sme [soF
| sopz |[ooooooot | owas 595 |Ox1D |[350 ns
[Packet |[Fsme [our ENDF | — Out-token packet (Address: 2)
| sooz || ooomoooi | mwm? 2 0 |oxis [[183ns
Data Frame
! DATA ¢ ata = 1
5004 nonoooot Ox02 |00 96 00 00 00 00 05 00 |0x72AG |[ddd ns stage (out) (Ims)
| | s T t Data packet (8 bytes)
[soos || ooopoooi [owds 953.250 ps
[Packet [sme [soF
| soos || oooooooi | owes 596 | Ox03 |[350ns
I »00R [EXg ~In-token packet (Address: 2) Frame
5007 nonoooot Ox96 2 0 | oxis |[383ns (ms)
Status
5008 __noooot D54 |[991.750 ps stage
[Packet |[sme [soF
| soos || oooooooi | owes 597 | Ox1c |[350ns
N ~oor EIEGEIERSS ~In-token packet (Address: 2) f
s010 nonoooot Ox9E 2 0 | oxis |[400 ns
DATAl {0zt [ERBIE] o ket (0 b Frame
soi1 Doooooi 0v02 memnmn||ssons| — Data packet (0 byte) (1ms)
[Packet | Eme [AcK
[smiz || ooooooot | owdB |[#s%.283 us
[Packet |[sme [soF
[so1z || ooooooot [owas 598 | Ow1E |[9965.950 ps
* Continued on next page ?

Rev. 1.0, 04/02, page 66 of 68
RENESAS

Control transfer (Set_Line_Coding)

Frame

| Packet || Fyme | (1ms)
| sota || ooooooot |
— Setup token packet (Address: 2) *
015
[Packet [Ewme | DaTA él Setup F
| _soi6 || oooooomt | oxcs |21 o0 o0 00 00 00 05 00|0xBE1S (433 ns stage rame
e N o< Data packet (8 bytes) (1ms)
[soi7 || ooopooot | owaB |[983.267 ps
[Packet |[swme [soF
| soi || oooooooi | owas 350 s
[Packet |mme] aur — Out-token packet (Address: 2) *
| so1a || oooooooi | owsw 183 N5
) Data Frame
5020 00000001 Ox02 |00 96 00 00 00 00 0800|0728 ||450 ns stage (out) (Ims)
[Packet |[Ewme] Aok | 1 Data packet (8 bytes)
| so21 || _oooomi [owas |[sF3.233 s
[Pachet || I +
[smzz | |
Frame
] ~In-token packet (Address: 2)
5023 00000001 2 A00 ns (Ams)
na Status
s0z4 0000000+ Omss |[391.733 ps stage
[Packet |[sme [soF
| sozs || ooooooot | owas
~In-token packet (Address: 2) Frame
s026
(Ims)
DATAl ‘Data |[BREIE
S027 nonoonoi Ox 2 moooo ||s3zns |~ Data packet (O byte)
[Packet [sme [Ack |
[so2s || oooooomi [owaB |[9%8.350 ps
[Packet |[sme [soF
| soza || oooooooi | owes 503 | Ox13 |[2965.950 ps

* The stationary state continues until a control transfer (vendor command) is performed.

Figure 5.2 Control Transfer when Vendor Command is Transmitted

Rev. 1.0, 04/02, page 67 of 68

RENESAS

Rev. 1.0, 04/02, page 68 of 68
RENESAS

H8S5/2215 USB Function Module
USB Serial Conversion Application Note

Publication Date: 1st Edition, April 2002
Published by: Business Operation Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.
Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	1.1	Overview
	1.2	Purpose of this System

	Section 2 Development Environment
	2.1	Hardware Environment
	2.2	Software Environment
	2.2.1	Sample Program
	2.2.2	Compiling and Linking
	2.2.3	USB Serial Conversion Driver

	2.3	Loading and Executing the Program
	2.3.1	Loading and Executing the Program

	2.4	Method of Communication between PCs
	2.4.1	Setting Up the USB Host PC
	2.4.2	Setting Up the Serially-Connected PC
	2.4.3	Communication between PCs

	Section 3 Overview of Sample Program
	3.1	State Transition Diagram
	3.2	Overview of Communication between PCs
	3.3	File Structure
	3.4	Purposes of Functions

	Section 4 Sample Program Operation
	4.1	Main Loop
	4.2	Types of Interrupts
	4.2.1	Branching to Transfer Function

	4.3	Interrupt by Detection of USB Operating Clock Stabilization
	4.3.1	EPINFO

	4.4 Interrupt by Cable Connection (BRST, VBUS)
	4.5	Control Transfers
	4.5.1	Setup Stage
	4.5.2	Data Stage
	4.5.3	Status Stage

	4.6	Bulk Transfers
	4.6.1	Bulk-Out Transfers
	4.6.2	Bulk-in Transfers

	4.7	Serial Transfer
	4.7.1	Serial-Out Transfer
	4.7.2	Serial-In Transfer

	4.8	Vendor Command
	4.8.1	SetLineCoding
	4.8.2	GetLineCoding
	4.8.3	SetControlLineState
	4.8.4	SendBreak

	Section 5 Analyzer Data
	5.1	Control Transfer when Device is Connected
	5.2	Control Transfer when Vendor Command is Transmitted

	Colophon

