To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

>
e
j=2
=
Q
=
o
)
Z
)
—t
D

H8S/2215 USB Function Module
Human Interface Devices (HID)
Class

Application Note

Renesas 16-Bit Single-Chip
Microcomputer
H8S Family / H8S/2200 Series

Renesas Electronics Rev.1.00 2003.10

www.renesas.com

Rev. 1.00, 10/03, page i of vi
RENESAS

Cautions

Keep safety first in your circuit designs!

1.

Renesas Technology Corp. puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them.
Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1.

These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for
the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various
means, including the Renesas Technology Corp. Semiconductor home page
(http://www.renesas.com).

When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products.
Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss
resulting from the information contained herein.

Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product
distributor when considering the use of a product contained herein for any specific purposes,
such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or
undersea repeater use.

The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported into a
country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or
the country of destination is prohibited.

Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

Rev. 1.00, 10/03, page ii of vi

RENESAS

Preface

These application notes describe the HID class firmware that uses the USB Function Module in
the H8S/2215. They are provided to be used as a reference when the user creates USB Function
Module firmware.

These application notes describe a system configuration example for HID class communications
based on the USB Function Module, and do not guarantee the contents of the configuration.

In addition to these application notes, the manuals listed below are also available for reference
when developing applications.

[Related manuals]

e Universal Serial Bus Specification Revision 1.1

e Universal Serial Bus Device Class Definition for Human Interface Devices (HID)
e HS8S/2215 Group Hardware Manual

e HS8S/2215 Solution Engine CPU Board (MS2215CP01-C/S) Instruction Manual

e HS8S Family E6000 Emulator User’s Manual

[Caution]

[Trademark]

The sample programs described in these application notes do not include firmware
related to bulk transfer and isochronous transfer, which are USB transfer types.
When using these transfer types (see section 15.5.6 to section 15.5.9 of the
H8S/2215 Group Hardware Manual), the user needs to create the programs for
them.

Also, the hardware specifications of the H8S/2215 and H8S/2215 Solution Engine,
which will be necessary when developing the system described above, are described
in these application notes, but more detailed information is available in the
H8S/2215 Group Hardware Manual and the H8S/2215 Solution Engine Instruction
Manual.

Microsoft Windows® 95, Microsoft Windows® 98, Microsoft Windows® Me,
Microsoft Windows® 2000, and Microsoft Windows® XP are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Rev. 1.00, 10/03, page iii of vi
:{ENESAS

Contents

SECION 1 OVEIVIEW ..ottt 1
Section 2 Overview of the USB Human Interface Devices (HID) Class........... 3
2.1 HID ClASS..uiiirieeiieietenierteete ettt sttt ettt ettt st b ettt st bt sae bt et esae e e e nbe e 3
2.2 SUDCIASS COUL ..ttt ettt ettt e sttt e st e st e sabe e st e sabeesane s 3
2.3 ProtoCOl COURcuiiuieiiiiiiiiiiiiitictctete ettt st s et e 3
2.4 Descriptors for HID Class.......cocerieiiriiriiniiniieieeieeie sttt sttt seae s 4
2.5 HID DeSCIIPLOL. c..eeuttiiiiiieiieiiteritenttett ettt ettt ettt st sttt e bt et ebtesbt e bt e b e eaaesaees 4
2.6 ReEPOIt DESCIIPLOT ... ccuuiiiiiiiiieiieiiett ettt sttt et e 5
2.6.1 MaIn TEEIMS cuvieiiie ittt st st s e 6
2.6.2 GlODAL TLEMIS....ceoueiiiiiieiieiiteeee ettt ettt sttt s 10
2.6.3 LOCAI TEEIMS «..ouiiiiiciicieieieccceeet e 11
2.6.4 Sample Report DeSCIIPLOL....ccc.eiuiiiiriiniieiieiieieeiterit ettt 12
2.6.5 Description of Report DeSCIiptor........ccoeerieriiriirienienienieeieeecete et 13
2.7 PhySiCal DESCTIPLOTcouiiuiieiiiiiiiiieieettete ettt et e sttt e 15
2.8 HID Data Transfer FOrmat...........ccccoiiiiiiiiiiiiiiieieeec ettt 15
2.9 Class COMMANAS....cc.ueertiiriieiiieeieentte ettt ettt e et e st e sateesbee s bt e sabeesateesabeesateesabeesaseas 16
Section 3 Development ENvironment............cooveeeriieenieeiiieeniiieeniieesieeeseeeene 19
3.1 Hardware ENVIFONMENT......cc.ccciiiiiiiiiiniiiiiiieieteiee sttt s 20
3.2 Software ENVITONMENTccc.eeriiiiiiiiiieeiee ettt ettt ettt et e e s 22
3.2.1 Sample Program.......c..ccooooiiiiiiiiiiiiieeccee e 22
3.2.2 Compiling and LIinKingc.cccoceeiiiiiiiiiiiiiiiienieeeeteeee e 22
3.3 Loading and Executing the Program.............ccoceoieiiiiiiniininiiniiiciececececee e 24
3.3.1 Loading the Programccccoceiiiiiiiiiiiiiiciiteneececetese et 25
3.3.2 Executing the Program...........ccccccocieiiiniiiiiiiiiiiiiinceneeeeieeteste e 25
3.4 Demonstrating Mouse Pointer MOVEMENLS........c...ccceeruiiniiriiiiiiinienieneeeeieere e 26
Section 4 Overview of the Sample Programc.cceceveeeeiieniiiiniieeiiieeieens 27
4.1 State Transition DIaGIamc..ccoeereriiiiiiiiiiiiceieeteeetest ettt 27
4.2 USB CommuniCation STALEc.cccuerueueriirririieiiiieieieietesteste ettt saesaesresaeeneene 28
4.3 FILE SIUCIUIE. ...cuiiiieiieiiiieieiet ettt sttt sa e s 29
4.4 Purposes Of FUNCHONSc..cooiioiiiiieiiiiiiiieneececetc et 30
Section 5 Sample Program OPerationcccccveeveveeerieeeiveesiieenieeesveeesveeenns 35
5.1 M LOOP ettt ettt 35
5.2 TYPeS Of INIEITUPLS ..cuveruieitiiienieeteete ettt sttt ettt sttt et et e 36
5.2.1 Method of Branching to Different Transfer Processes...........ccccoceereeneeneenucnnnen. 38
5.3 USB Operating Clock Stabilization INterruptcccccoceerieniiiieiinienieneeeeeee e 39

Rev. 1.00, 10/03, page iv of vi
:{ENESAS

5.3.1 Endpoint Configuration Information...........ccccceeeevieerennenniininienienieneeneeneee 40

5.4 Interrupt on Cable Connection (VBUS)cccccoiiiiiiiiiiiiniiiniteneeeeeeeeeeee e 42
5.5 Bus Reset Interrupt (BRST) ...cccuuiiiiiiiie ettt 43
5.6 CONIOl TTANSTEIS ..eeecueviiiiiiiie ettt et e e re e e et eeeetaeeesstbaeesssbeeeessaeeesnnseeens 44
5.0.1 SEHUP STAZE oottt et ettt ettt s 45
5.60.2 DAt STAZE c.eevvveiieiieieete ettt ettt e et 47
5.0.3 StAtUS STAZE .c.vveiieiieiieie ettt sttt ettt ettt et 49
5.7 Interrupt TranSTETS.....cc.cooiiiiiiiei ettt e e 51
5.7.1 Interrupt-In Transfers.........cccooiiiiiiiniiiieieeeee e 51
5.8 Pseudo Mouse Data GENeTationccveeeeriiieeeiiireesiieeesereeesssreeessreeeessseeesssseeessssees 53
Section 6 AnalyzZer Datacooouiiiiiiiiiiiinieeee e 55
6.1 Control Transfer when Device is CONNECtedcccvervuiierierriierieeiie e e 55
6.2 Interrupt-In Transfer of HID Data...........cccooiiiniiiiiniiiiiiiicccececeseeeeeeee e 60

Rev. 1.00, 10/03, page v of vi
:{ENESAS

Section 1 Overview

This application note describes how to use the USB Function Module that is built into the
H8S/2215, and contain examples of firmware programs.

The features of the USB Function Module contained in the H8S/2215 are listed below.

e An on-chip UDC (USB Device Controller) conforming to USB 1.1
e Automatic processing of USB protocol

e Automatic processing of USB standard commands for endpoint 0 (some commands need to be
processed through the firmware)

e Full-speed (12 Mbps) transfer supported
e Various interrupt signals needed for USB transmission and reception are generated.

¢ Internal system clock (16 MHz) multiplied by three or external input clock (48 MHz) can be
selected as the USB operating clock by the USB clock selector in the clock pulse generator.

e An on-chip bus transceiver

¢ Endpoint configuration selectable

Endpoint Configurations

Max. Packet FIFO Buffer DMA

Endpoint Name Name Transfer Type Size Capacity Transfer
Endpoint 0 EPOs Setup 8 bytes 8 bytes —

EPOi Control-in 64 bytes 64 bytes —

EPOo Control-out 64 bytes 64 bytes —
Endpoint EPn Interrupt (in) 64 bytes 64 bytes (variable) —
(optional)
Endpoint EPn Bulk-in 64 bytes 64 x 2 (128 bytes) Possible
(optional)
Endpoint EPn Bulk-out 64 bytes 64 x 2 (128 bytes) Possible
(optional)
Endpoint EPn Isochronous 128 bytes 128 x 2 (variable) —
(optional) (in)
Endpoint EPn Isochronous 128 bytes 128 x 2 (variable) —
(optional) (out)
Endpoint EPn Bulk-in 64 bytes 64 x 2 (128 bytes) Possible
(optional)
Endpoint EPn Bulk-out 64 bytes 64 x 2 (128 bytes) Possible
(optional)
Endpoint EPn Interrupt (in) 64 bytes 64 bytes (variable) —
(optional)

Rev. 1.00, 10/03, page 1 of 60
:{ENESAS

Figure 1.1 shows an example of a system configuration.

USB cable

USB host PC

Windows® Me/
Windows® 2000/
Windows® XP

H8S/2215 Solution Engine

Figure 1.1 System Configuration Example

This system is configured of the H8S/2215 Solution Engine manufactured by Hitachi ULSI
Systems Co., Ltd. (hereafter referred to as the MS2215CP) and a PC containing Windows® Me/
Windows® 2000/Windows® XP operating system.

This system is an HID class firmware that automatically generates pseudo mouse data on the
MS2215CP board and outputs the mouse data (hereafter called the HID data) to the host PC
through the USB.

It is also possible to use the USB HID class device driver that comes as an accessory with the
operating systems listed above.

This system offers the following features.

The sample program can be used to evaluate the USB module of the H8S/2215 quickly.
The sample program supports USB control transfer and interrupt transfer.
An E6000 can be used, enabling efficient debugging.

Sl S

Additional programs can be created to support bulk transfer and isochronous transfer. *

Note: * Bulk transfer and isochronous transfer programs are not provided, and will need to be
created by the user.

Rev. 1.00, 10/03, page 2 of 60
RENESAS

Section 2 Overview of the USB Human Interface Devices
(HID) Class

This section describes the USB Human Interface Devices (HID) Class.

We hope that it will provide a convenient reference for use when developing USB HID class
devices. For more detailed information on standards, please see the following:

e Device Class Definition for Human Interface Devices (HID) Version 1.11
e HID Usage Tables Version 1.11

2.1 HID Class

USB HID class is a class of standards that apply to devices through which humans operate PCs.
Typical examples include mouse devices, keyboards, and joysticks.

To notify the host PC of this class of function, the bInterfaceClass filed of the Interface descriptor
must be 0x03.

2.2 Subclass Code

Subclasses were intended to be used to identify the specific protocols of different HID class
devices. However, as there are many types of devices used by humans, subclass protocol
definitions are impractical, and subclasses are not used to define most protocols in the HID class.
Instead, the protocol is identified by the Report descriptor in HID class devices.

As for BIOS-support devices (boot devices), a simple method to identify the protocol is needed.
For this purpose, subclasses are used to indicate devices that support the predefined protocol (boot
protocol) for mouse devices or keyboards (that is, devices that can be used for boot devices).

To notify the host PC that the device supports the boot protocol, the bInterfaceSubClass filed of
the Interface descriptor must be 0x01.

2.3 Protocol Code

When a device supports the boot protocol (subclass code other than 0), a protocol code is used to
indicate the device type. The protocol code is 0x01 for a keyboard, and 0x02 for a mouse.
Specifying the device type by the protocol code indicates that the device can use the protocol for
the device type.

To notify the host PC of the device type, the bInterfaceProtocol filed of the Interface descriptor
must be a value corresponding to the device type.

Rev. 1.00, 10/03, page 3 of 60
RENESAS

24 Descriptors for HID Class

HID class function devices need an HID descriptor, a Report descriptor, and a Physical descriptor
(optional) in addition to descriptor information that other USB function devices need. Figure 2.1
shows the HID device descriptor configuration.

Device descriptor String descriptor

l

Configuration descriptor

l

Interface descriptor
1 [
¥
Endpoint descriptor HID descriptor

| I
' !

Report descriptor Physical descriptor

Figure 2.1 Descriptor Configuration

2.5 HID Descriptor

The HID descriptor combines the Report descriptor and Physical descriptor (optional). Table 2.1
shows the format of the HID descriptor.

Table 2.1 HID Descriptor

Field Size (bytes) Description

bLength 1 Descriptor size (fixed to 0x09)

bDescriptorType 1 Descriptor type (fixed to 0x21)

bcdHID 2 HID version in BCD

bCountryCode 1 Country ID for devices specific to a particular country (0 unless
necessary)

bNumDescriptors 1 Number of class descriptors

bDescriptorType 1 Type of class descriptor (0x22 for HIDREPORT)

wDescriptorLength 2 Size of Report descriptor

Rev. 1.00, 10/03, page 4 of 60
RENESAS

2.6 Report Descriptor

The Report descriptor specifies the format of data to be transferred between the host PC and the

device. Unlike other descriptors, the Report descriptor has no standardized format, but the length
and contents of the Report descriptor vary depending on the device’s report or the number of data
fields required for the device’s report.

The Report descriptor consists of items that provide information about the device. There are two
types of items, short and long items. The following describes the short item.

Bits: 3908 7654 32 10
Parts: [data] bTag E bType E bSize
Byte: 4t01 0

bType and bSize indicate the following meaning.

item type item size
bType Value Type bSize Value | Data Size
00 Main 00 0 byte
01 Global 01 1 byte
10 Local 10 2 bytes
11 Reserve 11 4 bytes

Figure 2.2 Report Descriptor Item

An item consists of four fields: data, item tag, item type, and itemSize. The item uses these fields

to indicate the information.

There are three item types: Main, Global, and Local. The Main item type (defining or grouping the
data fields in a Report descriptor) has five types of item tags, the Global item type (describing
data) has 12, and the Local item type (defining the characteristics) has ten.

By combining these item tags, the Report descriptor specifies the format of data to be transferred

between the host PC and the device.

Rev. 1.00, 10/03, page 5 of 60

RENESAS

2.6.1 Main Items

Table 2.2 shows five item tags for the Main item type.

Table 2.2 Item Tags for Main Item Type

Item Tag bTag bType bSize Description

Input 1000 00 nn Describes information about data provided by
one or more physical controls

Output 1001 00 nn Defines output data field

Feature 1011 00 nn Describes device configuration information that
can be sent to the device

Collection 1010 00 nn Starts collecting relations between two or more
data item tags (Input, Output, or Feature)

End Collection 1100 00 nn Ends collecting relations between two or more

data item tags (Input, Output, or Feature) in
response to Collection

Rev. 1.00, 10/03, page 6 of 60

RENESAS

Input Item Tag: The input item tag has eight parameters (data fields), which are set in 1-bit units,
as shown in table 2.3.

Table 2.3 Input Item Tag Parameters
Bit Value Contents Description
0 0 Data The item reports data
1 Constant The item reports a constant
1 0 Array The item reports an array data field
1 Variable The item reports a variable
2 0 Absolute The item reports an absolute value
1 Relative The item reports a relative value from the last report
3 0 No Wrap The value reported by the item does not roll over
1 Wrap The value reported by the item rolls over (for example,
for a dial to output a value from 0 to 10, if dialing is
continued, 0 is output after 10)
4 0 Linear The item reports the state of the target control linearly
Non Linear The item processes raw data and does not report the
state of the target linearly
5 0 Preferred State The item has a state to which it returns when it is not
controlled by the user
1 No Preferred The item does not have a state to which it returns when it
is not controlled by the user
6 0 No Null position The item has a state in which it does not send
meaningful data
1 Null state The item does not have a state in which it does not send
meaningful data
0 Reserved Reserved
8 0 Bit Field The item issues a bit field
1 Buffered Bytes The item issues a stream fixed to 1-byte size
9-31 0 Reserved Reserved

Rev. 1.00, 10/03, page 7 of 60
RENESAS

Output and Feature Item Tags: The output and feature item tags have nine parameters (data
fields), which are the same as the input item tag except bit 7, as shown in table 2.4.

Table 2.4 Output and Feature Item Tag Parameters

Bit Value Contents Description
1-6 — — Same as the input item tag
7 0 Non Volatile The item value cannot change with or without host
interactions
1 Volatile The item value can change with or without host
interactions
8-31 — — Same as the input item tag

Rev. 1.00, 10/03, page 8 of 60
RENESAS

Collection Item Tag: The collection item tag has eight parameters (data fields), which are set in
one byte, as shown in table 2.5.

Table 2.5

Value

Contents

Collection Item Tag Parameters

Description

0x00

Physical

Used for data items collected into one. This is used for
devices which need to associate correct or sensed data with a
single point.

It does not indicate that data comes from a single device such
as a keyboard. It indicates that the device reports multiple
sensor positions and data comes from different sensors.

0x01

Application

Identifies the Usage only used for the application level. It
indicates that the collection is a functionally subordinate group
of an HID device or a complex device. The operating system
uses the Usage associated with this collection to link to the
application or driver that controls the device.

0x02

Logical

Used when data items compose a composite data structure.

0x03

Report

Defines a logical collection that includes all fields.

A report ID is included in this collection. An application can
easily determine whether to support a certain function of the
device.

0x04

Named Array

Used when data items compose a composite data structure
and it is named.

0x05

Usage Switch

A logical collection that modifies the meaning of the included
Usage.

It identifies the Usage applied for logical collection to modify
the purpose of the Usage being collected.

0x06

Usage Modifier

Modifies the meaning of the Usage attached to the including
collection. The Usage typically defines a single operating
mode for control, which enables the operating method of
control to be expanded.

0x07-7F

Reserved

Reserved.

0x80-FF

Vendor-defined.

Defined by the vendor.

Rev. 1.00, 10/03, page 9 of 60
RENESAS

2.6.2 Global Items

Table 2.6 shows 12 item tags for the Global item type.

Table 2.6 Item Tags for Global Item Type

Item Tag bTag bType bSize Description

Usage Page 0000 01 nn A value specifying the current Usage Page. It
defines the index to the item usage.

Logical Minimum 0001 01 nn The minimum value to be reported by a variable
or array item. For example, the mouse that
reports an X position value from 0 to 128 will
have a minimum logical value of 0.

Logical Maximum 0010 01 nn The maximum value to be reported by variable
or array items. For example, the mouse that
reports an X position value from 0 to 128 will
have a maximum logical value of 128.

Physical Minimum 0011 01 nn Minimum value of physical range for a variable
item

Physical Maximum 0100 01 nn Maximum value of physical range for a variable
item

Unit Exponent 0101 01 nn Unit exponent in base 10

Unit 0110 01 nn Unit value

Report Size 0101 01 nn Unsigned value that specifies the report field
size in bits

Report ID 1000 01 nn Unsigned value that specifies the report ID

Report Count 1001 01 nn Specifies the number of data fields for the item.
An unsigned integer specifies how many fields
can be included in the report for the particular
item (accordingly, how many bits are added to
the report).

Push 1010 01 nn Places a copy of the Global Item state table in
the stack

Pop 1011 01 nn Replaces the item state table with the top data

in the stack.

Rev. 1.00, 10/03, page 10 of 60

RENESAS

2.6.3

Local Items

Table 2.7 shows ten item tags for the Local item type.

Table 2.7 Item Tags for Local Item Type

Item Tag bTag bType bSize Description

Usage 0000 10 nn A value specifying the current Usage. It defines
the index to the items usage.

Usage Minimum 0001 10 nn Defines the start of Usage associated with an
array or a bitmap.

Usage Maximum 0010 10 nn Defines the end of Usage associated with an
array or a bitmap.

Designator Index 0011 10 nn Determines the body part used for control.

Designator 0100 10 nn Defines the start index to the designator

Minimum associated with an array or a bitmap.

Designator 0101 10 nn Defines the end index to the designator

Maximum associated with an array or a bitmap.

String Index 0111 10 nn Index to the String descriptor, which enables the
string to be associated with a particular item or
control

String Minimum 1000 10 nn Specifies the first string index when associating
a group of sequential strings to the control in an
array or a bitmap.

String Maximum 1001 10 nn Specifies the end string index when associating
a group of sequential strings to the control in an
array or a bitmap.

Delimiter 1010 10 nn Defines the start or end of a set of Local items.

Rev. 1.00, 10/03, page 11 of 60

RENESAS

2.6.4 Sample Report Descriptor

Figure 2.3 shows the Report descriptor of this sample program.

Usage Page (Generic Desktop),

Usage (Mouse),

Collection (Application),

Usage (Pointer),
Collection (Physical),

Usage Page (Buttons),
Usage Minimum (01),
Usage Maximum (03),
Logical Minimum (0),
Logical Maximum (1),
Report Count (3),
Report Size (1),
Input (Data, Variable, Absolute), ; 3 button bits
Report Count (1),
Report Size (5),
Input (Constant), ; 5 bit padding
Usage Page (Generic Desktop),
Usage (X),
Usage (Y),
Usage (Wheel),
Logical Minimum (-127),
Logical Maximum (127),
Report Size (8),
Report Count (3),

Input (Data, Variable, Relative), ; 2 position bytes (X & Y)

End Collection,

End Collection

105 01
109 02
:A1 01
109 01
:A1 00
:05 09
:19 01
129 03
:15 00
125 01
195 03
175 01
181 02
195 01
175 05
:81 01
105 01
:09 30
109 31
:09 38
115 81
125 7F
175 08
195 03
:81 06
:CO

:CO

Rev. 1.00, 10/03, page 12 of 60

Figure 2.3 Report Descriptor

RENESAS

2.6.5 Description of Report Descriptor

Table 2.8 shows the Report descriptor used by the sample program.

Table 2.8 Report Descriptor

Value Item

Item (hex.) Classification Description

Usage Page (Generic 0x05 01 Global A value specifying the Usage Page. 0x01

Desktop Control) indicates Generic Desktop Control.

Usage (Mouse) 0x09 02 Local Index to the item Usage. 0x02 indicates
Mouse. The operating system links the device
as a mouse to the active application or driver.
The Usage type of Mouse is Collection
Application.

Collection (Application) 0xA1 01 Main Notifies the application of Pointer as a mouse.

Usage (Pointer) 0x09 01 Local Index to the item Usage. 0x01 indicates
Pointer. The Usage type of Pointer is
Collection Physical.

Collection (Physical) 0xA1 00 Main Collects multiple sensor positions (button, X
axis, Y axis, and rotary control) to one as a
pointer.

Usage Page (Button) 0x05 09 Global A value specifying the Usage Page. 0x09
indicates Button.

Usage Minimum (1) 0x19 01 Local Defines that the Usage associated with an
array or a bitmap starts from 1.

Usage Maximum (3) 0x29 03 Local Defines that the Usage associated with an
array or a bitmap ends at 3.

Logical Minimum (0) 0x15 00 Global The minimum value to be reported by the item
is 0.

Logical Maximum (1) 0x25 01 Global The maximum value to be reported by the item
is 1.

Report Count (3) 0x95 03 Global Indicates the number of data fields to be used
for the item. This example indicates that three
report fields are to be used.

Report Size (1) 0x75 01 Global Indicates the report field size. This example
indicates that 1-bit field is to be used.

Input (Data, Variable, 0x81 02 Main Indicates the type of input item. This example

Absolute)

indicates that the input is variable data and
reports an absolute value.

Rev. 1.00, 10/03, page 13 of 60

RENESAS

Value
Item (hex.)

Item

Classification Description

Report Count (1) 0x95 01

Global

Indicates the number of data fields to be used
for the item. This example indicates that one
report field is to be used.

Report Size (5) 0x75 05

Global

Indicates the report field size. This example
indicates that 5-bit field is to be used.

Input (Constant) 0x81 01

Main

Indicates the type of input item. This example
indicates that the input reports a constant.

Usage Page (Generic 0x05 01
Desktop Control)

Global

A value specifying the Usage Page. 0x01
indicates Generic Desktop Control.

Usage (X) 0x09 30

Local

Index to the item Usage. 0x30 indicates X. The
controller reports X-direction values, and when
the controller moves from left to right from the
user's viewpoint, a value increases linearly.

Usage (Y) 0x09 31

Local

Index to the item Usage. 0x31 indicates Y. The
controller reports Y-direction values, and when
the controller moves from the far side to the
near side from the user's viewpoint, a value
increases linearly.

Usage (Wheel) 0x09 38

Local

Index to the item Usage. 0x38 indicates
Wheel. It is different from a dial; it is a rotary
control that generates a variable value when
rotated. When the controller rotates toward the
front (the far side from the user), a value
increases.

Logical Minimum (-127) 0x15 81

Global

The minimum value to be reported by the item
is -127.

Logical Maximum (127) 0x25 7F

Global

The maximum value to be reported by the item
is 127.

Report Size (8) 0x75 08

Global

Indicates the report field size. This example
indicates that 8-bit field is to be used.

Report Count (3) 0x95 03

Global

Indicates the number of data fields to be used
for the item. This example indicates that three
report fields are to be used.

Input (Data, Variable, = 0x81 06
Relative)

Main

Indicates the type of input item. This example
indicates that the input is variable data and
reports the change from the last input.

End Collection 0xCO0

Main

Indicates the end of collection of data set
(physical).

End Collection 0xCO0

Main

Indicates the end of collection of data set
(application).

Rev. 1.00, 10/03, page 14 of 60

RENESAS

2.7 Physical Descriptor

The physical descriptor provides information about the human body (or a specific part of the
human body) that is controlling the device. This descriptor is optional, and it is omitted in the
sample program.

2.8 HID Data Transfer Format

HID data is transferred between the host PC and the USB function module mainly through
interrupt transfers (control transfers are also available).

The boot device can use two types of protocols: report protocol and boot protocol. Other devices
can only use one protocol: report protocol.

The format of data transfer used by the report protocol is described by a Report descriptor. The
format used by the boot protocol is prescribed in the USB standard.

The default protocol for the boot device is the report protocol, but a class command can select
either the boot or report protocol. Figure 2.4 shows the report protocol format used by the sample
program.

Bits: 7103 2 1 0

_ ! Wheel | Right | Left
Parts: | 00000 ») iion ! button | button

Byte: 0 1 2 3

X axis Y axis Wheel

Figure 2.4 Report Protocol Format

Rev. 1.00, 10/03, page 15 of 60
RENESAS

29 Class Commands
Class commands are defined by each USB class. They use control transfer.
There are six commands for the USB HID class. Table 2.9 shows the class commands.

Table 2.9 Class Commands

bRequest Field Value Command Meaning of Command

0x01 GET_REPORT Transfers HID data from the device to the host
PC through control transfer

0x02 GET_IDLE Returns the current value for the rate of time
for which interrupt transfer stops

0x03 GET_PROTOCOL Reports the current active protocol (boot
protocol or report protocol)

0x09 SET_REPORT Transfers HID data from the host PC to the
device through control transfer

0x0A SET_IDLE Specifies the rate of time for which interrupt
transfer stops

0x0B SET_PROTOCOL Specifies the active protocol (boot protocol or

report protocol)

Notes: 1. All devices must support GET_REPORT.
2. Boot devices must support GET_PROTOCOL and SET_PROTOCOL.

When the GET REPORT command is received, the function sends HID data to the host through
the data stage of control transfer. The report type must be specified in the upper one byte of the
wValue field in the setup data and the report ID in the lower one byte of the wValue field.

When the GET IDLE command is received, the function returns the time for which interrupt
transfer stops. The time should be expressed in time rate in 4-ms units. The host specifies the ID
for the report that the host requests in the lower one byte of the wValue field in the setup data. If
this value is 0, the time rates for all interrupt transfers of the target device are returned.

When the GET PROTOCOL command is received, the function returns the current active
protocol (boot protocol or report protocol) to the host through the data state of control transfer.
Value 0 indicates the boot protocol, and value 1 indicates the report protocol.

When the SET REPORT command is received, the function receives HID data through the data
stage of control transfer. However, the function may ignore the command from the host.

When the SET IDLE command is received, the function stops interrupt transfer for the time
specified in the upper one byte of the wValue field in the setup data. The time is expressed in time
rate in 4-ms units. The lower one byte of the wValue field specifies the report ID. If this value is

Rev. 1.00, 10/03, page 16 of 60
RENESAS

not 0, the transfer of the specified report ID is stopped. If this value is 0, all interrupt transfers of
the target device are stopped.

When the SET PROTOCOL command is received, the function specifies the protocol (boot
protocol or report protocol) to be used from that time on. The protocol is specified in the wValue
filed in the setup data (value 0 indicates the boot protocol and value 1 indicates the report
protocol). Note that the report protocol is the default protocol of the function.

Rev. 1.00, 10/03, page 17 of 60
RENESAS

Rev. 1.00, 10/03, page 18 of 60
RENESAS

Section 3 Development Environment

This section looks at the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

e HS8S/2215 Solution Engine (hereafter called the MS2215CP; type number: MS2215CP01-C/S)
manufactured by Hitachi ULSI Systems Co., Ltd.

e E6000 (type number: HS2214EPI61H) Emulator manufactured by Renesas Technology Corp.

e HS8S/2215 Group TFP120 User System Interface Cable (hereafter called the H8S/2215 user
cable; type number: HS2215ECN61H) manufactured by Renesas Technology Corp.

e PC (Windows® 95/Windows®98) equipped with an ISA, PCI, or PCMCIA slot

e PC (Windows® Me/Windows® 2000/Windows® XP) to serve as the USB host

e USB cable

e Debugging Interface (hereafter called the HDI) manufactured by Renesas Technology Corp.

e High-Performance Embedded Workshop (hereafter called the HEW) manufactured by Renesas
Technology Corp.

Rev. 1.00, 10/03, page 19 of 60
RENESAS

3.1 Har dwar e Environment

Figure 3.1 shows device connections.

H8S/2215 Solution Engine

USB cable

The solution engine
generates pseudo mouse
data and outputs the data
to the host PC through
the USB.

USB host PC

H8S/2215 user cable

== nn-J ~

- E6000 PC
- (Windows® 95/Windows® 98)

and HEW.

Figure3.1 Device Connections

1. MS2215CP
Some jumper settings on the MS2215CP board must be changed from those at shipment.

(Windows® ME/Windows® 2000/Windows® XP)
Used as the USB host to receive the mouse data.

User firmware can be developed using the HDI

Before turning on the power, ensure that the jumpers are set as follows. There is no need to

change any other jumpers.

Table3.1 Jumper Settings

At Shipment After Change Jumper Function

J9 1-2: Closed J9 2-3: Closed Switches the EXTAL48 pin level
(to use PLL)

Rev. 1.00, 10/03, page 20 of 60
RENESAS

2. USB host PC

A PC with Windows® XP/Windows® 2000/Windows® Millennium Edition installed, and
with a USB port, is used as the USB host. This system uses the HID class device driver
installed as a standard part of the Windows® XP/Windows® 2000/Windows Millennium
Edition system, and so there is no need to install new drivers.

3. E6000
The ISA is used for the communication interface between the E6000 PC and the E6000
emulator.

The E6000 I/F board should be inserted into an ISA slot and connected to the E6000 via an
interface cable. Then, the E6000 should be connected to the MS2215CP via an H8S/2215 user
cable. After connection, start the HDI and perform emulation.

Rev. 1.00, 10/03, page 21 of 60
RENESAS

3.2 Softwar e Environment

A sample program, as well as the compiler and linker used, are explained.

321 Sample Program

Files required for the sample program are all stored in the H8S2215 folder. When this entire folder
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are shown in figure 3.2 below.

| H8S2215 |

f CatHidTypedef.h CatProTypedef.h CatTypedef.h h8s2215.h \
SetHidInfo.h SetMacro.h SetSystemSwich.h SetUsblnfo.h
SysMemMap.h
DoControl.c DoHidDataFormat.c Dolnterrupt.c DoMouse.c
DoRequest.c StartUp.c UsbMain.c DoRequest HIDClass.c
ch38iop (folder) dwfinf (folder) log.txt InkSet1.sub
sct.src debugger.MOT debugger.MAP debugger.HDW
debugger.HDT debugger.hds debugger.ABS BuildOfHew.bat

Figure3.2 FilesIncluded in the Folder

322 Compiling and Linking
The sample program is compiled and linked using the following software.
High-Performance Embedded Workshop Version 1.0 (release 9) (hereafter HEW)

When HEW is installed in C:\Hew*, the procedure for compiling and linking the program is as
follows.

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling. (figure
3.3)

C:\
I— \Hew

\Tmp

Figure3.3 Creating a Working Folder

Rev. 1.00, 10/03, page 22 of 60
RENESAS

Next, the folder in which the sample program is stored (H8S2215) should be copied to C:\Usr (or
can be copied to any location, then "C:\Usr\h8s2215" written in the debugger.hds file should be
modified to the path to the copied folder). In addition to the sample program, this folder contains a
batch file named BuildOfHew.bat. This batch file sets the path, specifies compile options,
specifies a log file indicating the compile and linking results, and performs other operations. When
BuildOfHew.bat is executed, compiling and linking are performed. As a result, an executable file
named debugger.MOT, which is a file in the Motorola S-type format, is created within the folder.
At the same time, a map file named debugger.MAP and a log file named log.txt are created. The
map file indicates the program size and addresses of variables. The compile results (whether there
are any errors etc.) are recorded in the log file (figure 3.4).

Note: If HEW is installed in a folder other than C:\Hew, the compiler path setting and settings
for environment variables used by the compiler in BuildOfHew.bat, as well as the library
settings in InkSet1.sub, must be changed. Here the compiler path setting should be
changed to the path of ch38.exe, the setting for the environment variable ch38 used by the
compiler should be set to the folder of machine.h, and the setting of ch38tmp should
specify the work folder for the compiler. The library setting should specify the path of
c8s26a.lib.

/I H8S2215 l ™\

Batch file Execution result
BuildOfHew.bat —> debugger.ABS
Execution debugger.MOT
debugger.MAP
log.txt

Figure3.4 Compile Results

Rev. 1.00, 10/03, page 23 of 60
RENESAS

3.3 L oading and Executing the Program

Figure 3.5 shows the memory map for the sample program.

0000 0000 Vector area 448 bytes
0000 01BF
0000 0200 P, C, and D areas 6933 bytes
0000 1D14

Empty area
00FF B00O Stack
00FF EC50 ack area 15441 bytes
00FF EC50
00FF EE7A B and R areas 555 bytes
00FF FFCO

Interrupt transfer area 16 bytes

00FF FFCF

Empty area
00FF FFFF

Note: The memory map differs according to the compiler version,
compiling conditions, firmware upgrade, etc.

Figure3.5 Memory Map

Rev. 1.00, 10/03, page 24 of 60
RENESAS

As shown in figure 3.5, this sample program allocates areas for vectors, P, C, and D to the on-chip
ROM area (E6000 emulation memory) in area 0, and the stack, B, and R areas to the on-chip
RAM. These memory allocations are specified by the InkSet1.sub file in the H8S2215 folder.
When modifying the program allocation, this file must be modified.

331 Loading the Program
In order to load the sample program into the MS2215CP, the following procedure is used.

e Connect the E6000 PC in which the HDI has been installed to the E6000.
e Connect the E6000 to the MS2215CP through an H8S/2215 user cable.

e Turn on the power to the E6000 PC to start up the machine.

e Execute debugger.hds in the H8§S2215 folder.

Through the above procedure, the sample program can be loaded into the emulation memory in the
E6000.

332 Executing the Program

In order to execute the program which was loaded in section 3.3.1 above, the program counter
(PC) must be set appropriately.

Select Register Window from the View menu to open the Registers window. On double-clicking
the numerical area of the register (PC) in the window, a dialog box appears, and the register value
can be changed. Use this dialog box to set the PC to H'0000 0200.

After making the above settings, select Go from the Run menu to execute the program.

Rev. 1.00, 10/03, page 25 of 60
RENESAS

34 Demonstrating M ouse Pointer M ovements

The sample program demonstrates movements of the host PC mouse pointer without a mouse
connected.

While the program is running, connect series-B connector of the USB cable to the MS2215CP,
and series-A connector to the USB host PC. After control transfer is completed, the human
interface devices and USB human interface devices are displayed in the device manager window,
and the host PC recognizes the MS2215CP as a mouse device.

After the MS2215CP is connected to the host PC, the system starts demonstrating mouse pointer
movements. The MS2215CP sends data for mouse pointer movements to the host PC in response
to interrupt-in transfer from the host PC. As a result, the mouse pointer on the USB host PC
automatically starts moving.

Rev. 1.00, 10/03, page 26 of 60
RENESAS

Section 4 Overview of the Sample Program

In this section, features of the sample program and its structure are explained. This sample
program is an HID class firmware, which runs on the MS2215CP and generates data for mouse
pointer movements to enable the movements to be emulated on the host PC. The sample program
initiates USB transfers by means of tokens from the host PC. Of the interrupts from modules in the
H8S/2215, there are three interrupts related to the USB function module: EXIRQO, EXIRQ1, and
IRQ6, but in this sample program, only EXIRQO is used.

Features of this program are as follows.

e Control transfer can be performed.

e Interrupt-in transfer can be used to send data of mouse pointer movements to the host PC.
4.1 State Transition Diagram

Figure 4.1 shows a state transition diagram for this sample program. In this sample program, as
shown in figure 4.1, there are transitions between four states.

Immediately after the power supply has been turned on,

the system is in reset state. After the initial settings have
Reset state been completed, it returns to the stationary state.

Initial settings completed Interrupt generated
(EXIRQO)

USB communication state

Control transfer
<
pt transport
Mousg data USB communication
generation state completed

Stationary state

Timer interrupt generated

Figure 4.1 State Transition Diagram

e Reset State

Upon power-on reset and manual reset, this state is entered. In the reset state, the H8S/2215
mainly performs initial settings.

e Stationary State

When initial settings are completed, a stationary state is entered in the main loop.

Rev. 1.00, 10/03, page 27 of 60
RENESAS

e USB Communication State
In the stationary state, when an interrupt from the USB module occurs, this state is entered. In
the USB communication state, data transfer is performed by a transfer method according to the
type of interrupt. The interrupts used in this sample program are indicated by interrupt flag
registers 0 to 3 (UIFRO to UIFR3), and there are nine interrupt types in all. When an interrupt
factor occurs, the corresponding bits in UIFRO to UIFR3 are set to 1.

e Mouse Data Generation State
In the stationary state, when a compare match interrupt from 16-bit timer TGRA_2 occurs, this
state is entered. In the mouse data generation state, data of mouse pointer movements is
automatically generated. A compare match interrupt occurs every 10 ms.

4.2 USB Communication State

The USB communication state can be further divided into two states according to the transfer type
(see figure 4.2). When an interrupt occurs, first there is a transition to the USB communication
state, and then there is further branching to a transfer state according to the interrupt type. The
branching method is explained in section 5, Sample Program Operation.

USB communication state

Interrupt-in transfer

Control transfer

DoControl.c Dolnterrupt.c
DoRequest.c

DoRequestHIDClass.c

Figure 4.2 USB Communication State

Rev. 1.00, 10/03, page 28 of 60
RENESAS

4.3 File Structure

This sample program consists of eight source files and nine header files. The overall file structure
is shown in table 4.1. Each function is arranged in one file by transfer method or function type.

Table 4.1 File Structure

File Name Principle Role
StartUp.c Microcomputer default settings
) Judging the causes of interrupts
UsbMain.c
Sending and receiving packets
DoControl.c Executing control transfer

Dolnterrupt.c

Executing interrupt-in transfer

DoRequest.c

Processing setup commands issued by the host

DoRequestHIDClass.c

Processing HID class commands

DoHidDataFormat.c Formatting HID data to be transferred

DoMouse.c Generating mouse data

CatHidTypedef.h Defining types and structures specific to HID class
CatProType.h Declaring prototypes

CatTypedef.h Defining the basic structures used in USB firmware
h8s2215.h Defining H8S/2215 registers

SetHidInfo.h Default settings of variables needed to support HID class
SetMacro.h Defining macros

SetSystemSwitch.h

System operation settings

SetUsblinfo.h

Default settings of variables needed to support USB firmware

SysMemMap.h

Defining MS2215CP memory map addresses

Rev. 1.00, 10/03, page 29 of 60
RENESAS

4.4 Purposes of Functions

Tables 4.2 to 4.9 show functions contained in each file and their purposes.

Table 4.2 UsbMain.c

File in Which Stored Function Name

Purpose

Discriminates interrupt factors, and calls function

BranchOfint according to interrupt

Writes data transferred from the host controller to
GetPacket

RAM

Writes data transferred from the host controller to
GetPacket4 RAM in longwords (ring buffer supported, not used

by this sample program)

Writes data transferred from the host controller to
GetPacket4S RAM in longwords (ring buffer not supported, high-

speed version)

Writes data for transfer to the host controller to the
PutPacket

USB module

Writes data for transfer to the host controller to the

. PutPacket4 USB module in longwords (ring buffer supported,
UsbMain.c ,

not used by this sample program)

Writes data for transfer to the host controller to the
PutPacket4S USB module in longwords (ring buffer not

supported, high-speed version)
SetControlOutContents Overwrites data with that sent from the host
SetUsbModule Makes USB module initial settings
ActBusReset Clears FIFO on receiving bus reset
ActBusVee Pulls up D+ and controls USB module when the

USB cable is connected or disconnected
ConvRealn Read§ data of a specified byte length from a

specified address
ConvReflexn Reads data of a specified byte length from

specified addresses, in reverse order

In UsbMain.c, interrupt factors are discriminated by the USB interrupt flag registers, and functions
are called according to the interrupt type. Also, packets are sent and received between the host

controller and function modules.

Rev. 1.00, 10/03, page 30 of 60

RENESAS

Table 4.3 StartUp.c

File in Which Stored Function Name Purpose
Sets BSC, terminals, and interrupt controller,
SetPowerOnSection calls initialization routines, and shifts to the
main loop
Copies variables that have default settings to
StartUp.c _INITSCT the RAM work area
InitMemory Allocates memory areas
InitSystem Specifies the USB clock, system interrupt

masks, and timers

When a power-on reset or manual reset is carried out, the SetPowerOnSection of the StartUp.c file
is called. At this point, initial settings for the H8S/2215 registers or USB clock are performed.

Table 4.4 DoRequest.c

File in Which Stored Function Name Purpose
DecStandardCommands Decodes command issued by host controller,
DoRequest.c and processes standard commands

DecVenderCommands Processes vendor commands

During control transfer, commands sent from the host controller are decoded and processed. In this
sample program, a vendor ID of 045B is used. When the customer develops a product, the
customer should obtain a vendor ID at the USB Implementers' Forum. Because vendor commands
are not used, DecVenderCommands does not perform any action. In order to use a vendor
command, the customer should develop a program.

Table 4.5 DoRequestHIDClass.c

File in Which Stored Function Name Purpose

DecHIDClassCommands Processes HID class commands

DoRequestHIDClass.c This is called by an SOF interrupt, and counts
ActldleCount . T
the time for which interrupt transfer stops

These functions carry out processing according to the HID class commands (GET _REPORT,
GET _IDLE, GET PROTOCOL, SET _REPORT, SET_IDLE, and SET PROTOCOL).

The GET REPORT command sends HID data from the device to the host PC through control
transfer.

The GET IDLE command returns the rate for the time for which interrupt transfer stops.

The GET PROTOCOL command returns the current active protocol (boot protocol or report
protocol).

Rev. 1.00, 10/03, page 31 of 60
RENESAS

The SET REPORT command sends HID data from the host PC to the device through control
transfer, but this sample program does not support out-direction communications of HID data and
only receives data.

The SET IDLE command specifies the rate for the time for which interrupt transfer stops.

The SET PROTOCOL command specifies the active protocol (boot protocol or report protocol).

Table 4.6 DoControl.c

File in Which Stored Function Name Purpose

ActControl Controls the setup stage of control transfer

Controls the data stage and status stage of control-in
ActControlin transfer (transfer in which the data stage is in the IN
direction)

DoControl.c Controls the data stage and status stage of control-out
ActControlOut transfer (transfer in which the data stage is in the OUT
direction)

Sorts the data stage and status stage of control transfers

ActControlinOut and direct them to ActControlln and ActControlOut.

When control transfer interrupt SETUP TS is generated, ActControl obtains the command, and
decoding is carried out by DecStandardCommands to determine the transfer direction. Next, when
control transfer interrupt EPOo TS, EPOi TR, or EP0i TS is generated, ActControllnOut calls either
ActControlln or ActControlOut depending on the transfer direction, and the data stage and status
stage are carried out by the called function.

Table 4.7 Dolnterrupt.c

File in Which Stored Function Name Purpose

On receiving the in-token of the interrupt transfer, gets
Dolnterrupt.c Actinterruptin data from the data transfer buffer as soon as FIFO has
an empty space and prepares for interrupt transfer

On receiving the in-token of the interrupt transfer from the host PC, this function prepares next
data to be sent as soon as the interrupt transfer buffer becomes empty.

Rev. 1.00, 10/03, page 32 of 60
RENESAS

Table 4.8 DoHidDataFormat.c

File in Which Stored Function Name Purpose

A program interface for HID data communications.

ActMakeHidData Calls Actinterruptin if interrupt transfer stops after

DoHidDataFormat.c ActReportProtocol is called.

Arranges transfer data according to the format specified
ActReportProtocol by the Report descriptor, and writes the data to the
transmit buffer.

These functions prepare HID data to be transmitted to the host PC.

Table 4.9 DoMouse.c

File in Which Stored Function Name Purpose

MousePushed This is initiated by a timer interrupt, and generates data

DoMouse.c Datalnput2 Ir)nrq;nouse pointer movements according to the elapsed

This function uses a timer interrupt and generates data for mouse pointer movements.

Figure 4.3 shows the interrelationship between the functions explained in tables 4.2 to 4.9. The
upper-side functions can call the lower-side functions. Also, multiple functions can call the same
function. In the stationary state, SetPowerOnSection calls other functions, and in the USB
communication state which occurs on an interrupt, BranchOfInt calls other functions. Figure 4.3
shows the hierarchical relation of functions; there is no order for function calling. For information
on the order in which functions are called, please refer to the flow charts of section 5, Sample
Program Operation.

Rev. 1.00, 10/03, page 33 of 60
RENESAS

SetPowerOnSection

InitMemory _INITSCT InitSystem
BranchOflInt
|
ActControl ActControllnOut
[[
[| [|
DecStandardCommands GetPacket4S ActControlOut ActControlln
GetPacket SetControlOutContents PutPacket
| |
ConvReflexn DecVenderCommands DecHIDClassCommands
[[| |
Actinterruptin ActBusReset SetUsbModule ActBusVce ActldleCount
PutPacket Actinterruptin

Mouse Pushed Data Input 2

ActMakeHidData

Actinterruptin ActReportProtocol

Figure 4.3 Interrelationship between Functions

Rev. 1.00, 10/03, page 34 of 60
RENESAS

Section 5 Sample Program Operation

In this section, the operation of the sample program is explained, relating it to the operation of the
USB function module.

51 Main L oop

When the microcomputer is in the reset state, the internal state of the CPU and the registers of on-
chip peripheral modules are initialized. Next, the function SetPowerOnSection in StartUp.c is
called, and the CPU is initialized. Figure 5.1 is a flow chart for the SetPowerOnSection function
operation.

START StartUp.c <SetPowerOnSection>

Microcomputer
default settings
¢ After the various default settings have been

entered, the program enters the stationary
mode.

RAM is
cleared

v

Variables
are initialized

Constant

status
inifinite loop

Figure5.1 Main Loop

Rev. 1.00, 10/03, page 35 of 60
:{ENESAS

52 Typesof Interrupts

As explained in section 4, the interrupts used in this sample program are indicated by the interrupt
flag registers O to 3 (UIFRO to UIFR3); there are a total of nine types of interrupts. When an
interrupt factor occurs, the corresponding bits in the interrupt flag registers are set to 1, and an
EXIRQO interrupt request is sent to the CPU. In the sample program, the interrupt flag registers
are read as a result of this interrupt request, and the corresponding USB communication is
performed. Figure 5.2 shows the interrupt flag registers and their relation to USB communication.

Rev. 1.00, 10/03, page 36 of 60
:{ENESAS

USB interrupt flag register 0 (UIFR0)

Bit: 7 6 5 4 3 2 1 0
)) _ EP1i | EP1i | EPOo | EPOi | EPOi | Setup
Bitname: [BRST TR || 1| TWR| TS| TS
Bus reset [/ Interrupt transfer Control transfer
Not used

USB interrupt flag register1(UIFR1)

Bit: 7 6 5 4 3 2 1 0
Bit . | EP30 | EP30 | EP3i | EP3i [| EP20 | EP2i | EP2i
it name: TF TS TF TR READY| TR |EMPTY
Not used Not used

USB interrupt flag register 2 (UIFR2)

Bit: 7 6 5 4 3 2 1 0
Bi _ . | Epsi | EP5i | | EP40 | EP4i | EP4i
it name: TR TS READY| TR |EMPTY
Not used Not used

USB interrupt flag register 3 (UIFR3)

Bit: 7 6 5 4 3 2 1 0
Bit name: e SOF | SETC | SETI | SPRSs| SPRSi | VBUSs| VBUSI
READY

USB clock Idle time count Not used Cable connection
stabilization detection

Note: This sample program does not support bulk transfers and isochronous transfers.

Figure5.2 Typesof Interrupt Flags

Rev. 1.00, 10/03, page 37 of 60
:{ENESAS

521

Method of Branching to Different Transfer Processes

In this sample program, the transfer method is determined by the type of interrupt from the USB
module. Branching to each transfer method is executed by BranchOfInt in UsbMain.c. Table 5.1
shows the relations between the types of interrupts and the functions called by BranchOflInt.

Table5.1 Interrupt Typesand Functions Called on Branching
Register Name Bit Bit Name Name of Function Called
7 BRST ActBusReset
6 — —
5 EP1i TR —
4 EP1i TS Actinterruptin
UIFRO
3 EPOo TS ActControlInOut
2 EPOi TR ActControlInOut
1 EPOI TS ActControlinOut
0 SETUP TS ActControl
7 CK48 READY SetUSBModule
6 SOF ActldleCount
5 SETC —
UIFR3 : SET! —
3 SPRSs —
2 SPRSi —
1 VBUSs —
0 VBUSI ActBusVcc

The EPOiTS and EPOoTS interrupts are used both for control-in and control-out transfer. Hence in
order to manage the direction and stage of control transfer, the sample program has three states:
TRANS_IN, TRANS_OUT, and WAIT. For details, refer to section 5.6, Control Transfers.

In the H8S/2215 hardware manual, operation of the USB function module when an interrupt
occurs, and a summary of operation on the application side are described. From the next section,
details of application-side firmware are explained for each USB transfer method.

Rev. 1.00, 10/03, page 38 of 60

RENESAS

53 USB Operating Clock Stabilization Interrupt

This interrupt occurs when the USB operating clock (48 MHz) stabilization time is automatically
counted after USB module stop is canceled. After receiving the interrupt, the sample program
writes the endpoint configuration information to the USB endpoint information registers
(UEPIR00_O to 22_4), makes necessary interrupt settings, and waits for USB cable connection.

USB function module Sample program

Power-on reset state canceled > USB operating clock selected

UCTLR/UCKS3-0 written

USB operating clock E ¢
oscillation started '
| USB module stop canceled

MSTPCRB/MSTPB =0

v

. Wait for USB operating clock

USB operating clock
stabilization time waited?

stabilization

{ [setusBmodule ||

EXIRQO
interrupt
generated

USB interface reset canceled
4 UCTLR/UIFRST = 0

v

UIFR3/CK48Ready = 0

I
h 4

EPINFO setting
115-byte data written to
UEPIR00_0 to 22_4

v

Interrupt settings

v

Wait for USB cable connection

USB operating clock stabilization
interrupt generated

v

USB interface is ready

EPINFO setting <

Interrupt settings <

Figure5.3 USB Operating Clock Stabilization Interrupt

Rev. 1.00, 10/03, page 39 of 60
:{ENESAS

531 Endpoint Configuration Information

In the USB function module in the H8S/2215, the endpoint configuration can be specified at
initialization by software. The following transfer types can be specified:

e Control transfer: One pipe

e Bulk-in transfer: Two pipes

e Bulk-out transfer: Two pipes

e Interrupt-in transfer: Two pipes

e Isochronous-in transfer: One pipe

e Isochronous-out transfer: One pipe

The endpoint number, interface number, alternate number, and maximum packet size can be
specified for the above transfers (excluding control transfer) with the USB endpoint information
registers (UEPIRs).

Table 5.2 shows transfer types and their corresponding UEPIRs.

Table5.2 Transfer Typesand UEPIRs

Transfer Type Endpoints Corresponding UEPIRs

Control transfer 1 00

Interrupt-in transfer 2 01 and 02

Bulk-in transfer 2 02 and 20

Bulk-out transfer 2 03 and 21

Isochronous-in transfer 1 04, 06, 08, 10, 12, 14, 16, and 18
Isochronous-out transfer 1 05, 07,09, 11,13,15,17,and 19

The H8S/2215 Hardware Manual assumes that endpoint information is configured based on the
Bluetooth standard. Figure 5.4 shows the comparison between the endpoint configuration used by
this sample program and the endpoint numbers described in the H8S/2215 Hardware Manual.

(Endpoint number
in the Bluetooth standard)

EPO Contro transfer (EPO)

Configuration1 Interface0 —— Alternate0 EP1 BulkOut transfer (EP20)
EP2 BulkIn transfer (EP2i)

EP3 Interrupt In transfer (EP1i)

Figure5.4 Endpoint Configuration in the Sample Program

Rev. 1.00, 10/03, page 40 of 60
:{ENESAS

Table 5.3 shows the UEPIR00_O to 22_4 settings for the endpoint configuration shown in figure
5.4. Dummy data (0) must be written to the unused endpoints.

Table5.3 UEPIR Settings
Maximum
Set Value Interface Alternate Packet Size
UEPIR (Hexadecimal) Transfer Type EP No. No. No. (Byte)
00 00_00_40_00_00 Control 0 0 0 64
01 34_1C_08_00_01 InterruptIn 3 0 0 8
02 24_14_40_00_02 Bulkin 2 0 0 64
03 14_10_40_00_03 BulkOut 1 0 0 64
04 04_1C_00_00_04 Isochronous In 0 0 0 0
05 04_08_00_00_05 Isochronous Out O 0 0 0
06 04_1C_00_00_06 Isochronous In 0 0 0 0
07 04_08_00_00_07 Isochronous Out 0 0 0 0
08 04_1C_00_00_08 Isochronous In 0 0 0 0
09 04_08_00_00_09 Isochronous Out 0 0 0 0
10 04_1C_00_00_OA Isochronous In 0 0 0 0
11 04_08_00_00_0B Isochronous Out 0 0 0 0
12 04_1C_00_00_0C Isochronous In 0 0 0 0
13 04_08_00_00_0D Isochronous Out 0 0 0 0
14 04_1C_00_00_OE Isochronous In 0 0 0 0
15 04_08_00_00_OF Isochronous Out 0 0 0 0
16 04_1C_00_00_10 Isochronous In 0 0 0 0
17 04_08_00_00_11 Isochronous Out 0 0 0 0
18 04_1C_00_00_12 Isochronous In 0 0 0 0
19 04_08_00_00_13 Isochronous Out 0 0 0 0
20 04_14_00_00_14 Bulkin 0 0 0 0
21 04_10_00_00_15 BulkOut 0 0 0 0
22 04_10_00_00_16 Interrupt In 0 0 0 0

RENESAS

Rev. 1.00, 10/03, page 41 of 60

54 Interrupt on Cable Connection (VBUS)

This interrupt occurs when the cable of the USB function module is connected to the host

controller. On the application side, after completion of initial microcomputer settings, a general-
purpose output port is employed to pull-up the USB data bus D+. By means of this pull-up, the

host controller recognizes that the device has been connected (figure 5.5).

USB function module

USB cable
connected/disconnected

EXIRQO interrupt
generated

Sample program

|VBUS interrupt generated H

>

VBUSi flag cleared

Connected

USB cable status
checked

: ActBusVcc I.

Disconnected

EPINFO automatically <
loaded to UDC core

v

USB module initialization
completed

v

Wait for bus reset signal

| All FIFOs cleared | | UDC core reset |
D+ pull-up enabled D+ pull-up disabled
UDC core reset
canceled

| UDC core reset |<

v

Wait for UBC cable
connection

Figure5.5 Interrupt on Cable Connection

Rev. 1.00, 10/03, page 42 of 60

RENESAS

55 BusReset Interrupt (BRST)

When the host controller detects that a device has been connected to the USB data bus, it outputs a
bus reset signal. When receiving this bus reset signal, the USB function module generates a bus
reset interrupt.

USB function module Sample program

Bus reset received
from the host

: ActBusReset I

p-| BRST flag cleared

v

All FIFOs cleared

¢ EXIRQO interrupt
generated

BRST interrupt
generated

v

Wait for setup token

All endpoint stall
canceled

- J

Figure5.6 BusReset Interrupt

Rev. 1.00, 10/03, page 43 of 60
:{ENESAS

5.6 Control Transfers

In control transfers, bits O to 3 of the interrupt flag registers are used. Control transfers can be
divided into two types according to the direction of data in the data stage (figure 5.7). In the data
stage, data transfers from the host controller to the USB function module are control-out transfers,
and transfers in the opposite direction are control-in transfers.

Control-out transfers

ﬂ,

Host controller

USB function module

M (Data stage)

Control-in transfers

ﬂ

Host controller USB function module

M (Data stage)

Figure5.7 Control Transfers

Control transfers consist of three stages: setup, data (no data is possible), and status (figure 5.8).
Further, the data stage consists of multiple bus transactions.

In control transfers, stage changes are recognized through the reversal of the data direction. Hence
the same interrupt flag is used to call a function to perform control-in or control-out transfers
(table 5.1). For this reason, the firmware must use states to manage the type of control transfer
currently being performed, whether control-in or control-out (figure 5.8), and must call the

appropriate function. States in the data stage (TRANS_IN and TRANS_OUT) are determined by
commands received in the setup stage.

Rev. 1.00, 10/03, page 44 of 60
:{ENESAS

' Setup stage ' Data stage ' Status stage
Control-in | SETUP (0) || IN (1) | | IN (0) | | IN (0/1) || OUT (1) |
DATAO DATA1 DATAO DATAO/ DATA1
Firmware state il WAIT |§| TRANS_IN Ej’?{-\ﬁ_—i
Control-out [seTup (0) || out() || ouro) | - | outon || NGt |
| DATAO | DATA1 DATAO DATAO/T | DATA1
Firmware state il WAIT |§| TRANS_OUT EWN-I_:_—E
No data i i i
| DATA0 ! ! DATA
Firmware state || WAIT |:[TRANS_ouT | WAIT

Figure5.8 Statusin Control Transfers

5.6.1 Setup Stage

In the setup stage, the host and function modules exchange commands. For both control-in and
control-out transfer, the firmware goes into the WAIT state. Depending on the type of command
issued, discrimination between control-in transfer and control-out transfer is performed, and the
state of the firmware in the data stage (TRANS_IN or TRANS_OUT) is determined.

e Command for control-in transfers: GetDescriptor (Standard command)

Figure 5.9 shows operation of the sample program in the setup stage. The figure on the left shows
operation of the USB function module.

Rev. 1.00, 10/03, page 45 of 60
:{ENESAS

USB function module

Setup token received

8-byte command data
received at EPOs

Application processing NO

command?

YES

Sample program

bll | BranchOflnt ”

Automatic
processing
by USB module

Setup command receive

complete flag set
(UIFRO/SETUP TS = 1)

EXIRQO interrupt

I II | ActControl | I-

SETUP TS flag cleared
EPOi TR flag cleared
EPO0/EPQi FIFO cleared

| State changed to WAIT |

Read pointer and write pointer to
the command buffer initialized

v

Data read
from EPOs FIFO

v

: | GetPacket4S | I

generated EPOs read complete bit set to 1
(UTRG/EPOs RDFN=1)
Data stage
| IDecStandardCommandsI |_
A4
ES Vendor command? >
v NG
DecVender
Commands
NO
YES Supported Supported standard
v command? ommand to be processed?,
Upported O b9 YES
command? /

YES

A

State changed

Get and Set Descriptor
processing prepared

to STALL

v

IN direction?

2

<

Firmware in STALL state?>

NO

!

YES

State changed
to TRANS_IN

State changed
to TRANS_OUT

EPOi and EPOo
interrupts masked
v

EPO STALL
bit set to 1

Y

A4

Interrupt enable bit

for control-in transfer

setto 1 Interrupt enable bit set to 1

for control-out transfer

Data written
to FIFO

[Fareal]

T VES |nterruplt masked
Es T
[Dpatastage | | Statusstage |

Rev. 1.00, 10/03, page 46 of 60

Figure5.9 Setup Stage

RENESAS

5.6.2 Data Stage

In the data stage, the host and function module exchange data. The firmware state becomes
TRANS_IN for control-in transfers, and TRANS_OUT for control-out transfers, according to the
result of decoding of the command in the setup stage. Figures 5.10 and 5.11 show the operation of
the sample program in the data stage of control transfer.

USB function module Sample program

In-token received BranchOfint
ActControllnOut I

Firmware in
TRANS_OUT state?

UTRGO/EPOs RDFN
setto 1?

Control-out transfer
(figure 5.11)

NO

Valid data in
FPOi FIFO?

ActControlln I
b 4

When data direction changes,
data stage is completed and
status stage is entered.

Receive complete
interrupt?

UIFRO/EP00 TS YES

Data sent to host

,

y

UIFRO/EPOI TS interrupt | Status stage I

3 EXIRQO interrupt flag cleared
EPOi transmit flag set|—denerated |
(UIFRO/EPOITS = 1) T [PutPacket ||

Data written to
UEDRQOi data register

v

EPOi packet enable bit set to 1
(UTRGO/EPOi PKTE = 1)

MaxPacketSize?
YES

EPOI TS interrupt flag
masked

[P

4

Figure5.10 Data Stage (Control-In Transfer)

Rev. 1.00, 10/03, page 47 of 60
:{ENESAS

USB function module

Out-token received

Any space
in EPOo FIFO?

P YES

A
Data received from hostl

EXIRQO

interrupt
EPOo receive complete flag set| 9enerated

A

l’

(UIFRO/EP00 TS = 1)

v
Out-token received

Any space
in EPOo FIFO?

Sample program

| | BranchOfint | I

Firmware in
TRANS_OUT state?

YES

When firmware state is

Control-in transfer
(figure 5.10)

eceive complete
interrupt?
IFRO/EPO0 T

NO

ActControlOut I

When data direction changes,
data stage is completed and
status stage is entered.

y

EPOo receive complete
flag cleared
(UIFRO/EPO0 TS = 0)

v
Data read from EPOo
receive data size register
(UESZ00)

v

Data read from
data register (UEDROo)

v

| Status stage I
[Goracer |

EPOo read complete bit set to 1
(UTRGO/EPOo RDFN = 1)

Figure5.11 Data Stage (Control-Out Transfer)

Rev. 1.00, 10/03, page 48 of 60

RENESAS

5.6.3 Status Stage

The status stage begins with a token for the opposite direction from the data stage. That is, in
control-in transfer, the status stage begins with an out-token from the host controller; in control-
out transfer, it begins with an in-token from the host controller. Figures 5.12 and 5.13 show the
operation of the sample program in the status stage of control transfer.

USB functi

on module

| Out-token received |

A

| 0 byte received from host |

, O

Sample program

A
EPOo receive complete flag set
(UIFRO/EPOO TS = 1)
A 4

Control transfer end

EXIRQO
interrupt
generated

BranchOfint When firmware state is
TRANS_IN

ActControllnOut I

Firmware in
TRANS_OUT state?

Control-out transfer
(figure 5.13)

NO

” ActControlln ”_

NO

Receive complete
interrupt?
(UIFRO/EPO0 TS

y
EPOo-related interrupt | Data stage I
flags excluding SETUP

flag cleared

Firmware state
changed to WAIT

v

EPOo receive complete
flag set to 1
(UTRGO/EPOo RDFN = 1)

| Control-in transfer end |

Figure5.12 Status Stage (Control-In Transfer)

Rev. 1.00, 10/03, page 49 of 60
:{ENESAS

USB function module

In-token received

Valid data in

EXIRQO

interrupt

gen

EPOi FIFO?

EPOi transmit complete

flag set
(UIFRO/EPOI TS = 1)

Control transfer end

m’l | BranchOfint | I
ActControlinOut

Firmware in
TRANS_OUT state?

YES

Sample program

When firmware state is
TRANS_OUT

Control-in transfer
(figure 5.12)

ActControlOut

eceive complet
interrupt?
UIFRO/EPOO T:

YES

eceive complete NO

A 4

| Data stage I

interrupt?
UIFRO/EPOI T

Data (received at data stage)
written

’

EPOi packet enable
bit set to 1
(UTRGO/EPQi PKTE = 1)

EPOi transfer request
flag cleared
(UIFRO/EPQI TR = 0)

I | SetControIOutContentsl I

y

EPOi transmit complete
flag cleared
(UIFRO/EPQi TS = 0)

Firmware state
changed to WAIT

Figure5.13

Rev. 1.00, 10/03, page 50 of 60

Status Stage (Control-Out Transfer)

RENESAS

5.7 Interrupt Transfers

Interrupt transfers can also be classified into two types according to the direction of data
transmission. Data transfers from the USB function module to the host controller are interrupt-in
transfers, and transfers in the opposite direction are interrupt-out transfers. The H8S/2215 only
supports interrupt-in transfers (figure 5.14).

Host controller USB function module

<=
| Data I

Figure5.14 Interrupt Transfers

57.1 Interrupt-In Transfers

In interrupt-in transfers, bit 4 (EP1iTS) of interrupt flag register O is used. On receiving an in-
token from the USB host controller, the USB function module sends the NAK handshake and sets
the EP1iTR flag if no valid data is found in the EP1i FIFO. If valid data is found in the FIFO, the
USB function module sends data to the USB host controller, and sets the EP1iTS flag when
receiving the ACK handshake from the USB host controller.

After the EP1iTS flag is set, the USB function module executes the Actlnterruptln function. When
there is HID data to be sent, this function writes the data to USB endpoint data register 1
(UEDRI1i) and waits for an in-token to be sent from the USB host controller. At this point, the
firmware is in either WAIT or TRANS_IN state. Figure 5.15 shows operation of the sample
program in interrupt-in transfer. The figure on the left shows operation of the USB function
module.

Rev. 1.00, 10/03, page 51 of 60
:{ENESAS

USB function module Sample program

EXIRQO interrupt
generated

Actinterrputin I

y

UIFRO/EP1i TS
interrupt flag cleared

Y

Any data
to send?

Valid data
in EP3 FIFO?

y

State changed State changed
EP3 transfer request set to TRANS_IN to WAIT
(UIFRO/EP1iTS=1)
v

| Data sent to host I E

Data written to PutPacket
transmit register and sent

Figure5.15 Interrupt-In Transfer

Rev. 1.00, 10/03, page 52 of 60
:{ENESAS

58 Pseudo M ouse Data Generation

As no mouse can be connected to the MS2215CP, the sample program generates pseudo data (HID
data) of the USB mouse and demonstrates automatic mouse pointer movements.

To generate HID data, a 16-bit timer interrupt in the H8S/2215 is used to read data of mouse
pointer movements from the data table. The generated data is passed to the ActMakeHidData
function, and the HID data is sent to the host PC by using interrupt transfer. Figure 5.16 shows
HID data generation of the sample program.

(Timer interrupt generated)

! MousePushedDatalnput2

Mouse pointer
movement data generated

l I ActMakeHidData |

Data written
to transfer buffer

1
(rw)

Figure5.16 HID Data Generation

Rev. 1.00, 10/03, page 53 of 60
:{ENESAS

Rev. 1.00, 10/03, page 54 of 60
:{ENESAS

Section 6 Analyzer Data

In this section, we look at how measurement is carried out with the USB Advisor, a USB protocol
analyzer manufactured by CATC (http://www.catc.com), using the USB function module in the
HS8S/2215, and at what happens to the data as it actually flows along the bus. The following gives
the description for control transfer when a device is connected and interrupt-in transfer of HID
data as examples.

Note: The Packet # found in front of each packet is the packet number used when measuring.
The Idle found at the end of each packet indicates the idle between packets.

6.1 Control Transfer when Device is Connected

Figure 6.1 shows the measurement made, with a device connected to the host controller, while
shifting from the power-on state (the power is supplied to Vbus) until the configuration state
(device is ready for being used).

Though the packet scheduling may differ depending on the host controller, the command flow to
the configuration state is always the same.

F Frame | [BREB| UEOP
s 1

agoognnt

r SETUPYY 40D [[ERES] EDRR | Disle Setup token packet
Gl noooonni | 0xB4 | 0 | 0 |0xD8|25% ns |26 ns Frame
Packel Sync DATAD m Setup (1 ms)
I| opooaand | o0xcs [0 0B 00 01 00 00 40 00(0xBB23[238 ns][433 ns « Data packet stage
el e AGH Fﬂ! « ACK handshake packet ¢
3] 0000007 | 4B £33 ns|[843.117 us
= Fackel ¥ ETa v} [ORES]ENF Id)e
8 [7o 00000001 [0xA8
> [Facket |3 IN ADDR [N IGREE] ETPI | DiEiE
3 71 ol oooonnat | 0xsE | 0| 0 |0xie|z88 nslssn ng| < IM-token packet
Q s Frame
5 [Packet [I3 ik Data (1 ng)
e 7z | vooooom 0xD2 D: 12 01 10 01 00 00 00 4D 58 04 10 00 00 01 00 00 Ux?AES 250 ns||333 ns stage
2
5 oo ol T Data packet (18 bytes)
2 [Packel Svne FE!FE!H ACK handshake packet (Device Descriptor information) L
a | 0008001 | Ux4E 233 ns|[971.367 us
= I Packel Syne I Frane 1§ [CRCSINEDP A
8 I 000000071 | DxAB 126 |0x0B|216 ns||987.050 us Frame (1 ms)
g [Packst Svnc S Frane § [BREEINEDR
% s 00000001 | _0x&k
c I Pan:kel Svno TR <00 (005 GRS IEP | s e
g I I 0000007 | Ux87 | 0 | 0 |0x08]28% ns||z86 ns| ¢ Out-token packet 4+
° F DATAI *Dats |JEREHEN[VEDP « Data packet (0 byte) zttztues
£ 77 [l vooooond | owp2 120000233 nz|[466 ns 9
3 ‘ P“"E‘ syne Fﬂ! « ACK handshake packet L
S| oogonant deE 250 _ns|[164.817 us

[Packet | « Reset input
?3 27.979 ms 844,500 us
[Packet Svnc | &OF Frawe § [BREE] EOP
[a0 S 00000001 | 0xAS 158 0x10]233 ns|[887.100 ps=

Continued on next page

Rev. 1.00, 10/03, page 55 of 60

RENESAS

Control transfer (Set_Address)

Control transfer (Get_Descriptor (Device))

Control transfer (Get_Descriptor (Configuration))

Only SOF packets continue in this period.

[Packet

Syne | sOF = i
00000001 | 0xhS 197 [0x1F]233 ns 6.517 us

« Setup token packet

11
[[Pecket |E SETUPRY A0DR [EINEI IERES IIEDPIN [IalE
112 00000001 | 0xBA | 0 | 0 |0x08|233 ns| 266 ns

F

Svne | DATAD « Data packet
noooooot [oxcd |00 05 07 00 00 00 00 00foxb7éd[288 ns|[416 ns

f Frame

Setup
stage (1ms)

+

Sync [ACK Fﬂ!e ACK handshake packet
00000001 | 0x4B | 260_ns|[877.200 us
F [OF

A Swne [sOF
000000071 |

158 6.783 us

0000001

Status Frame
stage (1 ms)

+ |

Sene | ACK Fﬂ_e ACK handshake packet
00000001 | 0x4B | 216_ns|[883.583 us
1

Facket |3 [DVEPRENN] &OF
10000001 | 0xAG

Only SOF packets continue in this period.

Transits to address state, hereafter.

%
| 0xhb 249 0x18|283 nz 8.850 ps

SETUP

0xB4

DATAD
181 00000001 | 0xc3 (B0 0B 00 01 00 00 12 00]0x072F|233 ns|[466 ns| < Data packet

Packet Syne

—

F Frame

Setup (1 ms)
stage

F DATAI

o <« Data packet (0 byte)

[T T 0:=0000]233 ns|[400 ns

[
[
[Packet S¥ne | ACR
| 000001 | 0x4E 250 ns| 375517 us| < ACK handshake packet
[Facket Sync | S0F |SEUTEE 1
| IEE 00000007 | 0xh
[Packet |3 IN A00R [EIEREE EDF Idle
164 1 0 |0x17[218 ns|[399 nz| < In-token packet Frame
[Focket T3 g Bl Data (1'ms)
185 [ETH 12 01 10 01 00 00 00 40 58 04 10 00 00 01 00 00{0x7AC5[233 ns[[316 ns stage
16: 00 01 T Data packet (18 bytes)
I T ere 1 Aoy Bl ERETEE . ACK handshake packet (Device Descriptor information)
i ﬂ 00000001 i 0%9E |223 ns|[967.783 us P
[Syne | SOF
[00000007 | 0xA5 251 |0x05]233 ns|| 8.600 us T
B ouT
I mﬁggm I Txa7 « Out-token packet Frame

Status (1Ms)
stage

[Facket |3 [Sne] ACE
\| 190 00000001 [0x4B 250 ns|[360.450 us « ACK handshake packet
[Packet Syne | SO 0
| EX 00000001 | 0xA5 Frame (1 ms)
[Packet Svne | SOF
(IR 00000001 | 0x45
r T SETUE M[IH « Setup token packet
Frame
[Packel [DaTAD Setup (1 ms)
[19 [oxce_|a0 06 00 02 00 00 09 00]0x620]233 ns|(423 ne| < Data packet stage
[Packet Sync | ACK
s 00000007 | 018 2% s ||9713. 117 ue|< ' CK handshake packet
[Packet Syne | SOF 4 5]
[ED 00000001 | 0x45
[Facket [I3 1N 5
157 7]288 ns|[433 ns|< In-token packet Frame
ATh ot a = Data 1ms
[Packel T2 IEIED Me Data packet (9 bytes) stage ™
158 08 0 833 ns (Cfon |glt4rat|)on Déscriptor
[Packet S¥ne | ACK information
19 T0000001 | 045 {293 no [674. 100 yo] < ACK NANdshake packet -
[Packet Svne | SOF
[_zon 00000001 | 0x45
[Packst Synen] oot
[zm 00000007 | 0x87 s Frame
- tatus (1 ms)
F DATAL 0
« Data packet (0 byte
202 00000007 [0=D2 0x0000(233 ns|[d66 ns P (0 byte) stage
[Packet Syne] Ack « ACK handshake packet e
k\ HE 00000007 | 0x48 |23 ns|[980.667 us P +
[Packet Syne | SOF 5
[_tua 00000001 | 0x45

Control transfer (Get_Descriptor (Configuration))

Control transfer (Get_Descriptor (Device))

Control transfer (Get_Descriptor (Configuration))

R L 2 « Setup token packet

RC16
aonoonot 0x03 80 06 00 D2 00 00 FF 00f0x8726[233 ns|[400 ns
[Facket |3 EOF F‘ﬂ!(— ACK handshake packet
200 [0 00000001 | 0=48 293 ns|[975.967 ue

« Data packet

3

Setup
stage

Frame
(1 ms)

205 |

710 |

ik

D
08 02 22 00 01 01 00 CO 32 04 04 00 00 01 03 DI

I 02 00 09 21 00 01 00 01 22 34 00 07 05 83 03 04
32: 00 I Data packet (34 bytes)

(Configuration

08
F EOP « ACK handshake packet igurati X
212 I 00000001 | 0x4B8_|293 ns||957.700 us Descriptor information)

Frame
(1 ms)

213 [0 00001001

Frame (1 ms)

[Packet |3
214

aonoonot

215 |

218 g 002

[[Packel |3 E0P Fﬂ!e ACK handshake packet
217 e ooooonot 0x48 260 _ns||877.600 ps — I

Status

stage

Frame
(1 ms)

[Packet [3
718 |

Only SOF packets continue in this period.

F I [CRC5| EOF
441 S

noongoot OxA6 484 |0x0R]238 ns 8.017 ns

SETUPL ADDR [0
LIV S [

EEER &

[[Pecket |3 EQP Fﬂq « ACK handshake packet
444 S| nooooont 0x4B 260 ns||976.633 ps

Setup
stage

—

Frame
(1 ms)

445

425 |

EOP

2 D1 0040 5
001

< ACK handshake packet T Data packet (18 bytes)

Data
stage

(Device Descriptor information) ¢

I
[Packet 3 EQP Idle
448 00000001 | 0x4B [?83 ns||887.867 ps

—

Frame
(1 ms)

£
443

noonooot OxA5 486 0x1B]233 ns 6.850 us

[Packel [
450 || 000000t | 0xa7 T | 0 |uxi7[228 ns| esk ns| < Out-token packet

[Packet 3
451 |

noongoot

452 noonooot 0x48 [260 ns||982. 183 ps

\ E0P « ACK handshake packet

Status
stage

¥

[Packei [
453

Frame (1 ms)

[[Packet [3
[N S

4586
[Pasket |3

458

80 0
[Facket |3 EOF m<— ACK handshake packet
457 |oH|[00000001 | 0xdE 238 ns|[978.350 us

?

Setup
stage

2

Frame
(1 ms)

[Packet J§
458 |

Packet |3 ‘ E 5 I
3 D '« In-token packet

468
« Data packet (9 bytes)
F DATAT Fﬂq i ;
343605 S [000000 [FH 04 07 316 ng frnggpggﬂlé)ar?)on Descrlptor

Data
stage

¥

Frame
(1 ms)

{

£ E0P P]g_e ACK handshake packet
461 onoonont 048 233 _ns|[976.833 ps
- =

F

Frame
(1 ms)

v

3 Status
464 =] onoonont 0xD2 0x0000[233 ns||483 ns stage
[Packet |3 EOP IETEl<— ACK handshake packet +
486 o[Oooon0oi 0348 238 ns|[987. 488 ps)
[Packet |3
466 S| TN

Rev. 1.00, 10/03, page 57 of 60

Swnc | &OF
00000001 [0xAS

« Setup token packet * T

Frame

. SUnEL DATAD Data packet gtea'tug (1 ms)
= 00000081 | 0xC3 A0 0B 00 02 00 00 22 00[0%002F|216 ns|[433 ns 9
2 Sunc | ACK « ACK handshake packet
© 00000001 | 0x4B__ 238 ns|[475.200 us
> Sync__ | SOF rame TR ldle
= 00000001 | DxAB
S

_Packel F _Sync IN 400R |3 5 1
Q FET) 10000001 « In-token packet
S Frame
= [Packet [T avne T ate I (1 ms)
2 F5E] 00008001 : C0 92 09 04 00 00 01 09 O 316 ns Data
3 01 22 34 00 07 05 83 03 04 stage .
8 T Data packet (34 bytes)

(Configuration
| [Packet Syne | ACK « ACK handshake packet btor i i

3 4t 10000001 | 048|293 ns | 957.450 us Descriofor informafion)
9/ [Packet Svne | &OF 3
5 415 00000001 | _0xAG 334 [0x16]238 ns] 8.017 us
2
@ [Fackel SRGI OuT
= « Out-token packet
g [4 00000001 | Dxer p * Frame
= F DATAT *Data DEREIE « Data packet (0 byte) Status (1 ms)
IS 477 00000001 | 0xD2 450 ns stage
5 [Packet SERE] ACH « ACK handshake oacket ¢
(&] [48 10000001 | 0x4B 238 ns|[468.017 us

[Packel Sync [SOF

] 00000001 | 0xds Fra<m<e (1 ms)

[Facksl Sync__ | SOF

I 00000001 | 0xAb
= « Setup token packet f
] Frame
© Fackel Syne | DATAD « Data packet Setup (1 ms)
= 182 00000001 | 0xc8 [00 09 01 00 00 00 00 00foxE444]288 ns|[488 ns stage

I
[
= [Fackel i Fﬂ! « ACK handshake packet ¢
8 R 00000001 | 048|285 ns|[477. 067 us
l [Fackst Syno | SOF 0 Idls
3 T D000000T | UxkE
g [Packet [I3
o 138 f Z"an’;f;‘;
2 [Packel |G Status
[458 00000001 | 0xD2 stage
=
e [Packet Sunc. | ACK Fﬂ! « ACK handshake packet
£ K\ 487 0000001 | 045|299 ns|[901, 617 u
8 [Packet Svne | sOF
[aus D000000T | 0xbE 987,117 us
Only SOF packets continue in this period.
Syno | SOF
U00DI0T | Dxdb B16 |0x00(23% na|| 10.017 us
SETUP « Setup token packet
T0000001 | 0xB4 0 [0x17]216 ns|[263 ns Frame
[Facket |3 [INGwRenm OATAD « Data packet Setup (1 ms)
507 00000001 | 0xCE Of 00 00 00 00 00 O0]J0xeE04]218 ns|[433 ns stage
[Syne [ACK Fﬂ_ « ACK handshake packet ‘
R I 00000001 | 0xAB | 250 ns||973.683 us
2 [Syne | _SOF I
= [U00DI0T | Dxdb
o
@ 4 Frame
25 10000001 « In-token packet ('ms)
5)
2 F HAk EQP « NAK handshake packet
] U0UDIOT | DxbA | 283 ns|984.367 s
© [Packet Swnc | cOF | 1 Idle
= e T0000001 | Dk
[<] Status
£ F « In-token packet stage
S 513 Frame
(@] T - (1 ms)
F Syne DATAI 3 « Data packet (0 byte)
HE 00000001 | 0xD2 1x0000 233 ns|[333 ns

Packet [[0Ewne 0] ACK
\ 515 I T000000T | T8 1758 ns||378.367 us| ¢ ACKhandshake packet

[
[
[Pecket | [ISEREmN] SOF
[=16 00000001 | 0xA% | 518 [0x03|216 ns|[987.139 us Continued on next page

Rev. 1.00, 10/03, page 58 of 60
RENESAS

Get_Descriptor (Report))

Control transfer (

[Facksl Sync__ | SOF
517 10000001 | 0xAb
« Setup token packet f
518 00000001 | O0xB4 | 1 Frame
[Packel UGN DATAT Setup (1 ms)
[519 00000001 | 0xC3 |31 OB 00 22 00 00 74 O0f0xF3FA[233 ns|[466 ns « Data packet stage
[Packet SunE] ACK Fﬂqm « ACK handshake packet ¢
s 00000001 | Dx4B 233 ns||972.567 us
[Packet Svne | SOF e
[_sal 00000001 | 0xAb
[Packet [
522 1000000t « In-token packet T
[Packe_ |2 (ENSTmEn Data |4ome
[%23 [paj[00000001 | 05 01 04 02 A1 U1 DY D1 Al DO D5 DY 19 D1 29 D3[0«70F1]250 ns[283 ns stage (1 ms)
1 165 00 25 01 95 03 75 01 81 02 95 01 75 0% 81 01 g
32: 05 01 09 30 09 31 09 38 16 81 25 FF 75 0% 95 03 c -
48: 81 06 CO cO T Data packet (52 bytes)
Re|
Sync [ACK Fﬂ!m « ACK handshake packet f)es%nptormformatlon)
00000001 | Dx4B 233 ns||945.617 us N -
Swne | sOF 0
10000001 | 0xhb Frame (1 ms)
Syne | SOF
00000001 | DxAS
- I
00000001 | 07 <« Out-token packet Frame
Status (1 ms)
DATAT « Data packet (0 byte
00000001 | 0xD2 P (0 byte) stage
Syne | ACK
00000001 | Dx4B |250 ns||978.767 us <_A,CK haﬁQshqu [ia,dfe,t ¢ L
Swnc | &OF
00000001 | 0xA5 523 [0x0E[283 ns|[497. 117 us

Figure 6.1 Control Transfer when Device is Connected

Rev. 1.00, 10/03, page 59 of 60
RENESAS

6.2 Interrupt-In Transfer of HID Data

Figure 6.2 shows the measurement results when HID data is sent from the device to the USB host
controller through interrupt-in transfer. In response to the interrupt-in transfer from the USB host
controller, the device returns a NAK if no data can be sent. If there is data to be sent, the device
sends 4-byte HID data. On receiving HID data, the USB host controller issues an ACK.

[Packet 3
475 A.B0D us
F s o] < In-token packet
ns
« NAK handshake packet
477 [T Oxhiéh 260 ns|[88E.BB7 us
[Packet [3
478 897.117 us
[Packet 3
473 897.117 s

[Packet [
350 [io]| 00000007 | %8 571 000|233 ns|(387.117 ps

[[Packet T 20
a8l 00000007 | 0xA8 | 872 [0:x13[216 ns|(897.13% us

[Pecket T3
892 00000007 | 0xA8 973 [0x0G[23% ns|[987.100 s
893 00000001 | 0xA8 974 [0x0E[23% ns|[987.117 us

F

484 & | ELTITITE] [ETH 975 |0x11]233 ne|{997.117 us
4.517 us

EOF

233 ns||400 ne| < IN-token packet

s« NAK handshake packet

897.117 us

The above pattern continues until
transmit data is generated.

[Packel T3
4465 | 5.617 us

[[Packet 3 g
ECETIN TX0E 216 no|350 ns] < IN-token packet

]
[Facket |3 CAFTEN' Dais CRC1B
4457 [5d|| 00000001 00 00 00]0xFODD]238 ns

=3 g

4488 [ooooooot 0x4B [?1E ns|[980.700 ps < ACK handshake paCKEt
P | VT T e ff pEEEns gy
4489 H aooooont [ELH 1713 02081233 ns[[997.117 us

Packet

F . 5 Fﬂ!
4470 [i3)[00000001 | 0xA% | 1714 [0x01]239 ns|[337.117 us

i Data packet (4 bytes)

[[Packet T3

EESII S] 887.083 us
[[Packet [=

447z ||| 00000001 987.100 us

Packet |2

4473 =) oonnoont 0x1F 288 ne|[8987.088 ps
Packet |Ig CRCS EOP

4474 & | EITITITE] 18 |0x10f233 ne][397. 117 us

[Fooel

4475 3 [13 [0x02]233 ns|[997.100 us
[Focket 3

4478 S 5.933 ps

Packet
4477

A0DR [HITAICRES T EQP

00F |233 ns ||366 ns

P

<« In-token packet

Packet |7

2|
=

987.117 us

The above pattern continues until
transmit data is generated.

Figure 6.2 Interrupt-In Transfer of HID Data

Rev. 1.00, 10/03, page 60 of 60
RENESAS

H8S/2215 USB Function Module
Human Interface Devices (HID) Class Application Note

Publication Date: Rev.1.00, October 20, 2003

Published by: Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Technical Documentation & Information Department
Renesas Kodaira Semiconductor Co., Ltd.

©2003 Renesas Technology Corp. All rights reserved. Printed in Japan.

RenesasTech nOIOgy Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS SALES OFFICES

http://www.renesas.com

RENESANS
Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1>(408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd.
FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Colophon 1.0

H8S/2215 USB Function Module
Human Interface Devices (HID) Class

Application Note

LENESAS

Renesas Electronics Corporation
1758, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJO6B0211-0100Z

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	Section 2 Overview of the USB Human Interface Devices (HID) Class
	2.1	HID Class
	2.2	Subclass Code
	2.3	Protocol Code
	2.4	Descriptors for HID Class
	2.5	HID Descriptor
	2.6	Report Descriptor
	2.6.1	Main Items
	2.6.2	Global Items
	2.6.3	Local Items
	2.6.4	Sample Report Descriptor
	2.6.5	Description of Report Descriptor

	2.7	Physical Descriptor
	2.8	HID Data Transfer Format
	2.9	Class Commands

	Section 3 Development Environment
	3.1	Hardware Environment
	3.2	Software Environment
	3.2.1	Sample Program
	3.2.2	Compiling and Linking

	3.3	Loading and Executing the Program
	3.3.1	Loading the Program
	3.3.2	Executing the Program

	3.4	Demonstrating Mouse Pointer Movements

	Section 4 Overview of the Sample Program
	4.1	State Transition Diagram
	4.2	USB Communication State
	4.3	File Structure
	4.4	Purposes of Functions

	Section 5 Sample Program Operation
	5.1	Main Loop
	5.2	Types of Interrupts
	5.2.1	Method of Branching to Different Transfer Processes

	5.3	USB Operating Clock Stabilization Interrupt
	5.3.1	Endpoint Configuration Information

	5.4	Interrupt on Cable Connection (VBUS)
	5.5	Bus Reset Interrupt (BRST)
	5.6	Control Transfers
	5.6.1	Setup Stage
	5.6.2	Data Stage
	5.6.3	Status Stage

	5.7	Interrupt Transfers
	5.7.1	Interrupt-In Transfers

	5.8	Pseudo Mouse Data Generation

	Section 6 Analyzer Data
	6.1	Control Transfer when Device is Connected
	6.2	Interrupt-In Transfer of HID Data

	Colophon
	Address List
	Back Cover

