

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ05B0650-0100 July 2005 Page 1 of 36

H8S Family
Sample Firmware for the M66592 USB ASSP

Introduction
This Application Note consists of two parts: Part I, Connection of the H8S/2218 and the M66592, and Part II, Sample
Firmware for the M66592.

This Application Note describes how to use the Renesas generally applicable sample firmware for the M66592 ASSP
(hereafter called USB firmware), a sample program for controlling the USB interface of the M66592.

The H8S/2218 is used for control.

Target Device
H8S/2218

Contents

Connection of the H8S/2218 and the M66592

1. Overview .. 2

2. Development Tools for the USB Firmware.. 4

3. Programming the Internal Flash Memory.. 12

4. Restrictions... 14

Sample Firmware for the M66592

1. Overview .. 15

2. Executing the USB Firmware.. 17

3. Data Transfer.. 18

4. Class/Vendor Requests .. 23

5. User-Defined Information.. 24

6. User-Defined Macro Directives (macusr.h) ... 26

7. Pipe Definition (def_ep.h) ... 28

8. Descriptor Definitions (descrip.h).. 31

9. Low Power Sleep Function (PCUT) .. 33

10. Restrictions... 34

 H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 2 of 36

Connection of the H8S/2218 and the M66592

1. Overview
Related Documents:

1. H8S, H8/300 Series High-performance Embedded Workshop 3 User’s Manual
2. H8S, H8/300 Series High-performance Embedded Workshop 3 Tutorial Manual
3. H8S, H8/300 Series C/C++ Compiler Package Application Note
4. Solution EngineTM H8S/2218 CPU Board Overview
5. Universal Serial Bus Revision 2.0 specification

1.1 Features of the USB Firmware for the H8S/2218
The USB firmware for the H8S/2218 (hereafter referred to as the USB firmware) has the following features:

• Configuration does not include specification of the peripherals; so the user can define them individually.
• The connection can be checked by using the USBCommandVerifier.exe (hereafter called USBCV; it can be

downloaded from: http://www.usb.org/developers/developers/tools/).
• Sample programs for bulk and interrupt-driven input and output data transfer.
• Files are divided into functional groups (refer to the list under section 1.4, File Configuration).
• The USB firmware runs on the H8S/2218, and evaluation can be conducted by connecting the M66592 to the

H8S/2218 CPU board (M2218CP01 Solution Engine manufactured by Hitachi ULSI Systems, Co., Ltd.) via a
signal connection board (created by the user), or the H8S/2218 E10A-USB emulator.

Note: Solution Engine is a registered trademark of Hitachi ULSI Systems Co., Ltd.

1.2 Objectives of the USB Firmware
The USB firmware was developed with the following objectives:

• to facilitate the development of USB communications programs for the M66592; and
• to give a specific example of M66592 control as a supplementary description.

1.3 Services Provided by the USB Firmware
The services provided by the USB firmware to the upper layer (user-program layer) are:

• initialization of the M66592 (reset, oscillation control, pipe initialization, etc.);
• response to requests (standard requests defined in the USB Revision 2.0 specification);
• handling of data transfer (bulk, interrupt-driven, CPU access);
• status notification (status notification function); and
• request notification (request notification function).

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 3 of 36

1.4 File Configuration
Files for the USB firmware for the H8S/2218 can be categorized as main files, modified or added files, and the
workspace files for the H8S/2218 (generated by using High-performance Embedded Workshop 3, or HEW).

Table 1 File Configuration List

Category File Name Description
changeep.c User application processing
classvender.c Processing of class/vendor requests
controlrw.c Control of reading and writing
dataio.c Processing to read or write data
datable.h Definition of the user buffer for use in transmission and

reception
def592.h Definitions of M66592 register addresses and bits
def_ep.h Data definition for pipe setting
descrip.h Descriptor data definition
extern.h Definitions of external references
global.c Processing of global variables
Intrn.c Handlers for the INTR, INTN, and BEMP interrupts
usbsig.c USB signal processing
libassp.c Processing of USB ASSP register manipulation
lib592.c Processing of USB ASSP register manipulation
libassp.h Definitions of USB ASSP register manipulation
macurs.h Definitions of user macros
status.c Processing to manipulate the internal state
stdreqget.c Processing of standard requests
stdreqset.c Processing of standard requests
typedef.h Definitions of variable types

Main files

version.h Definition of the version information
usbint.c Handler for USB interrupts
Main.c Pseudo user application

Modified files

defusr.h Definitions of user settings
Added file 2218S.H Definitions of H8S/2218 registers

dbsct.c Settings of sections B and R
resetprg.c Reset program
Sbrk.c Program of sbrk
Sbrk.h Header file for sbrk
stacksct.h Setting of stack area
Fw592_H8S2218.hws(.hbp/.tws) Workspace file
Fw592_H8S2218.hwp(.pgs/.tps) HEW project file
defaultSession.hsf Session file

HEW3
workspace
files for the
H8S/2218

\debug, \relase Absolute file generation folders

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 4 of 36

2. Development Tools for the USB Firmware
The USB firmware for the H8S/2218 was developed and evaluated with the development tools below.

Table 2 Tools Used in Developing the USB Firmware for the H8S/2218

Category Type No. Name Remark
M3A-0038G01 M66592 utility board 
MS2218CP01 H8S/2218 Solution Engine (CPU board) 
 Signal connection board Created by the

user

Hardware

HS0005KCU01H E10A-USB Emulator
 High-performance Embedded Workshop ver.3.0.06 (release 2) Development

tool
 H8S, H8/300H Standard Toolchain (V.6.0.3.0) Toolchain

Software

HS0005KCU01SR HDI Emulator
software

2.1 Hardware Configuration
2.1.1 CPU Board and Utility Board

USB I/F

connector

10BASE-T

RJ-45

connector

Reset SW

Abort SW

SW‚P SW4

H-UDI port connector

Expansion

I/F
Host I/F

connector

Power-supply

connector

Microco-

mputer

H8S/2218

Figure 1 MS2218CPU01 CPU Board

Note: Set the switches only after turning the power supply OFF.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 5 of 36

Table 3 MS2218CPU01 SW1 Setting Contents

SW Name Function Setting
SW1-1 MD0 On
SW1-2 MD1 Off
SW1-3 MD2

MCU mode switchover (MCU mode: 6)

Off
SW1-4 FEW Flash write enable Off
SW1-5 EMLE H-UDI function enable Off
SW1-6  Not used Off
SW1-7  Not used Off
SW1-8  Not used Off
Note: Refer to the Solution Engine H8S/2218 CPU Board Overview.

Table 4 Pin Assignment of Expansion Slot CN12 on the MS2218CP01 CPU Board

Pin Signal Name Terminal No. Pin Signal Name Terminal No.
1 GND  2 φ 89
3 GND  4 D0 64
5 D1 65 6 D2 66
7 D3 67 8 GND 
9 D4 68 10 D5 69
11 D6 70 12 D7 71
13 GND  14 D8 72
15 D9 73 16 D10 74
17 D11 75 18 GND 
19 D12 76 20 D13 77
21 D14 78 22 D15 79
23 GND  24 3.3 V 
24 3.3 V  26 GND 
27 A0 10 28 A1 11
29 A2 12 30 A3 13
31 GND  32 A4 17
33 A5 18 34 A6 19
35 A7 20 36 GND 
37 A8 37 38 A9 38
39 A10 39 40 A11 40
41 GND  42 A12 49
43 A13 50 44 A14 51
45 A15 52 46 GND 
47 A16 1 48 A17 100
49 nCS1 27 50 nCS3 25
51 GND  52 nWAIT 95
53 3.3 V  54 nRD 92
55 nIRQ0 6 56 nIRQ1 8
57 nIRQ2 97 58 nRES 58
59 GND  60 nHWR 93
61 nLWR 94 62 nAS 91
63 GND  64 3.3 V 
Note: Type No.: 14-5014-064-102-861 (female type) manufactured by Kyocera Elco Ltd.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 6 of 36

2.1.2 Utility Board to be Used

Figure 2 M3A-0038G01 Utility Board

Table 5 Pin Assignment of CN2 on the M3A-0038G01 Utility Board

Pin 16-bit sep.*1 16-bit mult.*2 Pin 16-bit sep.*1 16-bit mult.*2
1 GND GND 2 D15 D15
3 D14 D14 4 D13 D13
5 D12 D12 6 D11 D11
7 D10 D10 8 D9 D9
9 D8 D8 10 GND GND
11 D7 D7 12 D6 D6/AD6
13 D5 D5/AD5 14 D4 D4/AD4
15 D3 D3/AD3 16 D2 D2/AD2
17 D1 D1/AD1 18 D0 D0
19 GND GND 20 GND GND
21 Not used Not used 22 Not used Not used
23 WR1_N WR1_N 24 VBUS VBUS
24 EXIOVcc EXIOVcc 26 EXIOVcc EXIOVcc
27   28  
29 GND GND 30 GND GND
31   32  
33   34  
35   36  
37   38  
39   40  
41 SD7 SD7 42 SD6 SD6
43 SD5 SD5 44 SD4 SD4
45 SD3 SD3 46 SD2 SD2
47 SD1 SD1 48 SD0 SD0
49 GND GND 50 GND GND
Note: 16-bit sep.*1: When a separate 16-bit bus is in use. 16bit-mult.*2: When a 16-bit multiplexed bus is in use.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 7 of 36

Table 6 Pin Assignment of CN3 on the M3A-0038G01 Utility Board

Pin 16-bit sep.*1 16-bit mult.*2 Pin 16-bit sep.*1 16-bit mult.*2
1 WR0_N WR0_N 2 GND GND
3 RD_N RD_N 4 GND GND
5 CS_N CS_N 6 RST_N RST_N
7 DREQ_0 DREQ_0 8 DACK0_N DACK0_N
9 INT_N INT_N 10 GND GND
11 GND GND 12 A1 Not used
13 A2 Not used 14 A3 Not used
15 A4 Not used 16 A5 Not used
17 A6 ALE 18 GND GND
19 EXVcc EXVcc 20 EXVcc EXVcc
21 Not used (JP7-ALE) 22  
23   24 SOF_N SOF_N
24 DACK1_N/DSTB0_N DACK1_N/DSTB0_N 26 DREQ1_N DREQ1_N
27   28  
29 GND GND 30 GND GND
31 JP6-EXT (external 1.5-

V input)
JP6-EXT (external 1.5-
V input)

32  

33   34  
35 DACK1_N/DSTB0_N DACK1_N/DSTB0_N 36 DEND0_N DEND0_N
37   38  
39   40 DEND1_N DEND1_N
41   42  
43   44  
45   46  
47   48  
49 GND GND 50 GND GND
Note: 16-bit sep.*1: When a separate 16-bit bus is in use. 16bit-mult.*2: When a 16-bit multiplexed bus is in use.

2.1.3 Connecting the Utility Board with the CPU Board
The first step towards developing with and evaluating the USB firmware for the H8S/2218 is to connect the CPU board
with the utility board via the signal connection board.

H8S Solution Engine (H8S/2218)

Note *1 Some Vdd are dropped to 1.5 V by the M3A-0038.

6

3.3 V CN12

Signal
connection

board

CN2,
CN3

M3A-0038G01 (for M66592) board

H8S/2218 M66592

A1 to A6
D0 to D15

*nCS3
*nRD
*LWR
*HWR

*nIRQ0

*nRES

Various NVdd*1

VIF
A1 to A6
D0 to D15
*CS_N
*RD_N
*WR0_N
*WR1_N
*INT_N

*RST_N

16

Figure 3 Wiring Connections

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 8 of 36

2.1.4 Configuring the System
The user system (target system) is connected to the host computer via the E10A-USB emulator.

CD-R

Host computer
(PC with USB interface)

Connected to USB connector

Connected to USB connector

USB cable (1.5 m)

E10A-USB emulator (body)

High-performance

Embedded Workshop

User system interface cable

User system connector

User system

Figure 4 System Configuration

2.2 Software Configuration
The next step towards developing with and evaluating the USB firmware is to create a project with the following
settings in the High-performance Embedded Workshop 3.

2.2.1 Settings in the High-performance Embedded Workshop 3
1. Setting the workspace file for the H8S/2218

Generate a workspace file for the H8S/2218 by specifying “Create a new project workspace” in the High-
performance Embedded Workshop 3 and make the settings shown below on the displayed input screens to.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 9 of 36

Table 7 High-performance Embedded Workshop 3 Settings

Input Screen Item Setting Remarks
“Application” selected Application
Workspace Name Fw592_H8S2218 Input
Project Name Fw592_H8S2218 Input
CPU Family H8S, H8/300

Toolchain Hitachi H8S, H8/300 Standard
H8S, H8/300 C/C++ library generator
(V.2.00.01)
H8S, H8/300 C/C++ compiler (V. 6.00.03)
H8S, H8/300 assembler (V.6.01.00)

Toolchain version 6.0.3.0

Optimizing linkage editor (V.8.00.07)
CPU Series 2000

1/9

CPU Type Other 2218 is not selectable (when Other is
specified for CPU Type, files containing
information on the CPU and I/O register
definitions must be created)

Operating Mode Advanced
Address Space 16 Mbyte
Merit of Library Code Size

2/9

Stack calculation Medium (2 bytes)
Use I/O Library Not checked
Use Heap Memory Checked
[Heap Size] H’420
[Generate main()
Function]

None

3/9

I/O Register Definition
Files

Not checked

4/9 Library [Disable all] is checked
5/9 Stack Pointer Address H’00FFE800
 Stack Size H’200
6/9 Vector Definition Files Checked
7/9 Targets All unchecked

Target name H8S/2218F E10A-USB System
(CPU2000)

 8/9

Configuration name Debug_H8S_2218F_E10A-
USB System (CPU2000)

9/9 The following source
files will be generated.

 Pressing the Finish button ends the
settings.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 10 of 36

2. Section settings
Section settings required for developing and evaluating the USB firmware for the H8S/2218 are shown below.
Select HEW-[Tools]-[Options]-[H8S, H8/300 Standard Toolchain]-[Optimizing Linkage Editor]-Category: Section.

Table 8 Section Settings

Address Section Name Description
PResetPRG Reset function 0x00000400
PIntPRG Exception processing function
P Program area
C Constants area
C$BSEC For the _INITSCT function
C$DSEC For the _INITSCT function
CIntPRG For exception processing

0x00001000

D Initialization data area (ROM)
B Non-initialization data area 0x00FFC000
R Initialization data area (RAM)

0x00FFE800 S Stack area

3. CPU information creation

The CPU information has to be created for use in debugging. Select HEW-[Tools]-[Options]-[H8S, H8/300
Standard Toolchain]-[Optimizing Linkage Editor]-Category: Verification Creation.

Table 9 CPU Information

Device Start End
ROM 0x00000000 0x001FFFFF
RAM 0x00FFC000 0x00FFFFFF

For details, please refer to the H8S, H8/300 Series C/C++ Compiler Package Application Note. The USB firmware for
the H8S/2218 should be set as shown above since it is to be used with the H8S/2218 Solution Engine.

http://documentation.renesas.com/eng/products/tool/apn/rej05b0464_h8s.pdf

2.2.2 H8S/2218 Settings
Changes have been made to certain files of the Renesas generally applicable. Sample firmware for the M66592 USB
ASSP (Version 1.00) and one file has been added to make the set usable with the H8S/2218 Solution Engine by the
USB firmware.

Table 10 Additions and Changes to Renesas Generally Applicable Sample Firmware for the M66592
USB ASSP

File Name Additions and Changes Remarks
main.c delay_1ms(), delay_10us() are changed.

CPU_init() is set to be used for the H8S/2218.
Time adjustment. Bus and software interrupt
settings.

Defusr.h Changed according to the contents Details are given in section 2.2.3.
Usbint.c Method of function declaration was changed.

#pragma section IntPRG _interrupt (vect=16) void
usbint (void)

Interrupt function is declared together with the
vector (set by the compiler function).

2218S.H H8S/2218 register definition file was added.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 11 of 36

1. Address map
The address map used by the USB firmware for the H8S/2218 is from address H’000000 to H’1FFFFF, H’780000
to H’78007F, and H’C00000 to H’FFFFFF.

On-chip flash memory
256 Kbytes

Address
H'000000

H'1FFFFF
H'200000

H'3FFFFF
H'400000

H'5FFFFF
H'600000

H'7FFFFF
H'800000

H'9FFFFF
H'A00000

H'BFFFFF
H'C00000

H'DFFFFF
H'E00000

H'FFFFFF

H'000000

H'000400

H'001000

H'002FDE

H'1FFFFF

H'780000

H'78007F

On-chip flash memory
16 bits 2 Mbytes

SRAM
16 bits 2 Mbytes

USR area

PCMCIA (1/2)
16 bits 2 Mbytes

PCMCIA (1/2)
16 bits 2 Mbytes

Internal USB area
16 bits 2 Mbytes

Internal RTC area
Internal I/O area
16 bits 2 Mbytes

Vector address

On-chip flash memory

External address area

M66592 area

Program area

Constant area

Initialization data area

H'FFC000

H'FFC5B0

Uninitialization data
area

Internal RAM

Initialization data area

H'FFE800Stack area

Figure 5 H8S/2218 Solution Engine Address Map

2. Bus width and inserted wait-state settings
Bus width and inserted wait-state settings of the USB firmware for the H8S/2218 for controller MCU is as follows
(set in the main.c: CPU_init()).

Table 11 Bus Width and the Number of Wait States

Area No. Area Name Bus Width Access State Wait State
CS3 (H’780000 to H’78007F) The M66592 area 16 bits 3 states 1 state

2.2.3 User Defined Items in the USB Firmware for the H8S/2218

The USB firmware for the H8S/2218 includes the following settings for the H8S/2218 Solution Engine.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 12 of 36

Table 12 User Defined Items in the USB Firmware for the H8S/2218

Item Settings Remarks
Low-power sleep function
specification

#define PCUT_MODE
PCUT_USE

Brings the low-power sleep function into use

Automatic clock supply
function specification

#define ATCKM_MODE
ATCKM_USE

-

FIFO endian specification #define FIFO_ENDIAN
BIG_ENDIAN

Big endian specification (required for connection
of the H8S/2218 with the M66592)

I/O power supply specification #define VIF_SET VIF3 3.3 V is used
M66592 address #define USB_BASE (0x780000) H8S/2218 area 3 specification (Solution Engine

setting)
Type declaration of pointer for
M66592 address

typdef volatile U16 REGP; Note that near or far declaration is not required in
the case of the H8S/2218.

Oscillation frequency of
connected oscillator

#define XIN XTAL24 24-MHz setting

Remote wakeup specification #define RWUP_MODE
RWUP_NOT_USE

Selects non-usage of remote wakeup

2.3 Precautions
The USB for the H8S/2218 supports only standard requests, and data communications between the USB firmware for
the H8S/2218 and pseudo user applications are performed through an informal interface. Accordingly, the user must
customize the interface by making required class definitions and responses to vendor-specific requests, to take
communications speed, program size, and other factors into account, and to make individual settings for a particular
user interface. Furthermore, to pass verification by USBCV, the user needs to set the vendor ID and the product ID in
descrip.h.

Note: The USB firmware does not guarantee USB communications operations. When applying the firmware in
a system, the user must verify operation and confirm the connections between various host controllers.

3. Programming the Internal Flash Memory
This section covers programming of the H8S/2218’s internal flash memory with the user program.

3.1 Flash Memory Programming via the Serial Communication Interface
Set the switches and jumpers of the CPU board as shown below. Programming is handled by the attached zip file.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 13 of 36

Table 13 Settings of Switches and Jumpers on the MS2218CP01 CPU Board

SW, JP Name Function Setting Remarks
SW1-1 MD0 On
SW1-2 MD1 On
SW1-3 MD2

Switch operating mode to SCI boot mode

Off
SW1-4 FEW Flash memory programming is valid Off
SW1-5 EMLE Port function is enabled On
JP1 JP1 TxD2 is output from JP4 Short pins 1-2
JP2 JP2 RxD2 is output from JP5 Short pins 1-2
JP4 JP4 TxD2 is output from CN3 Short pins 1-2
JP5 JP5 RxD2 is output from CN3 Short pins 1-2
Notes:
1. Refer to Solution Engine H8S/2218 CPU Board Overview.
2. Turn the power supply off before setting the switches and jumpers.

3.2 Using the E10A-USB for Flash Memory Programming
Set the switches on the CPU board as shown below, then start up the High-performance Embedded Workshop 3. After
initiating the project, connect by selecting “Writing Flash memory”. The flash memory is programmed by downloading
the download module.

Table 14 Settings of Switches on the MS2218CP01 CPU Board

SW, JP Name Function Setting Remarks
SW1-1 MD0 On
SW1-2 MD1 Off
SW1-3 MD2

Switch to MCU mode 6

Off
SW1-4 FEW Flash memory programming is valid Off
SW1-5 EMLE H-UDI function enabled Off
Notes:
1. Refer to Solution Engine H8S/2218 CPU Board Overview.
2. Turn the power supply off before setting the switches or jumpers.

To run the user program, disconnect the CPU board and terminate the High-performance Embedded Workshop 3. Set
the switches on the CPU board as follows, supply power to the CPU board, and run the user program.

Table 15 Settings of Switches on the MS2218CP01 CPU Board

SW, JP Name Function Setting Remarks
SW1-1 MD0 On
SW1-2 MD1 Off
SW1-3 MD2

Switch to MCU mode 6

Off
SW1-4 FEW Flash memory programming is valid Off
SW1-5 EMLE Port function enabled On
Notes:
1. Refer to Solution Engine H8S/2218 CPU Board Overview.
2. Turn the power supply off before setting the switches or jumpers.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 14 of 36

4. Restrictions
The following restrictions apply to the USB firmware for the H8S/2218.

1. The isochronous transfer may not operate correctly (in certain operating states, CPU processing becomes a
bottleneck and packets are lost).

2. Operation with a split bus is not supported.
3. Multiple instances of the same endpoint number cannot be used simultaneously. For example, , normal operation is

not guaranteed when endpoint 1 is specified for BULK IN at pipe 1 and endpoint 1 is specified for BULK OUT at
pipe 2.

4. DMA transfer is not supported.

 H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 15 of 36

Sample Firmware for the M66592

1. Overview
Related Documents:

1. Universal Serial Bus Revision 2.0 specification
http://www.usb.org/developers/docs

1.1 Features of the USB Firmware
The USB firmware has the following features:

• Configuration in which the controller MCU and the peripherals are not specified (individually defined by the
user).

• The connection can be checked by using USBCommandVerifier.exe (hereafter called USBCV; this program is
available for downloading from: http://www.usb.org/developers/docs)

• Sample program demonstrating bulk and interrupt-driven input and output data transfer
• Files are divided into functional groups (refer to the file configuration list).
• The firmware eliminates the need for the user program to directly access the registers of the M66592.

1.2 Layers
The USB firmware includes the layers shown below.

Application

M66592 hardware

Create and
analyze data

Analyze requests

Requests,
setting

Requests,
setting

Confirm
status

Confirm
status

Requests,
setting

Requests,
setting

Requests,
setting

Requests,
setting

Requests,
setting

Confirm
status

Confirm
status

Notification

Notification

IF library

Register control

User program

USB firmware

User firmware

User application

Vender/class
request

User firmware

User - Sample
interface

(Control library)

Standard
request

Hardware
Notification

USB Host

Figure 1 USB Firmware Configuration

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 16 of 36

1.3 File Configuration List
Table 1 File Configuration List

File Name Description
changeep.c User application processing
classvender.c Processing of class/vendor requests
controlrw.c Control of reading and writing
dataio.c Processing to read or write data
datable.h Definition of the user buffer for use in transmission and reception
def592.h Definitions of M66592 register addresses and bits
def_ep.h Data definition for pipe setting
defusr.h User setting definition
descrip.h Descriptor data definition
extern.h Definitions of external references
global.c Processing of global variables
intrn.c Handlers for the INTR, INTN, and BEMP interrupts
usbsig.c USB signal processing
libassp.c Processing of USB ASSP register manipulation
lib592.c Processing of USB ASSP register manipulation
libassp.h Definitions of USB ASSP register manipulation
macusr.h Definitions of user macros
main.c Pseudo user application
status.c Processing to manipulate the internal state
stdereqget.c Processing of standard requests
stdreqset.c Processing of standard requests
typedef.h Definitions of variable types
usbint.c Handler for USB interrupts
version.h Definition of the version information

1.4 Objectives in Developing the USB Firmware
The USB firmware was developed with the following objectives:

• to facilitate the development of USB communications programs for the M66592; and
• to give a specific example of M66592 control as a supplementary description.

1.5 Service Outline
The USB firmware provides the following services to the upper layer (user program layer):

• initialization of the M66592 (reset, oscillation control, pipe initialization, etc.);
• response to requests (standard requests defined in the USB Revision 2.0 specification);
• handling of data transfer (bulk, interrupt-driven, CPU access);
• status notification (status notification function); and
• request notification (request notification function).

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 17 of 36

1.6 Processing Flow in Outline
In the USB firmware, the control functions for sending and receiving USB data are implemented in a set of
interrupt handlers. The interrupt events take the form of external interrupts generated by the M66592 for the
controller MCU. The interrupt source is determined by the external interrupt handler and the corresponding
processing is performed.

Special Signal Processing: Vbus interrupts, resume interrupts, SOF detection interrupts*, device state transition
interrupts.

Note: * This processing is not implemented in the USB firmware. The user needs to create code to handle this
processing as required.

Control Transfer Processing: Control-transfer stage-transition interrupts and device state-transition interrupts
provide the triggers for data transfer.

Pipe Transfer Processing: Buffer-empty/size-error interrupts, buffer-not-ready interrupts, and buffer-ready
interrupts provide the triggers for data transfer.

Thus, USB control processing by the USB firmware is handled by a set of USB interrupt routines. The main
function performs the initial settings for the controller MCU and the M66592-related registers, then places the
MCU in an endless loop.

An outline of the flow of the USB firmware is given below.

Initial setting

USB interrupt processing

USB operation enabled

Connector set/remove

Special signal processing

Control transfer processing

Pipe 1 to 7

communication processing

Determine

source

Main loop

Pseudo user

application

Figure 2 Flow Outline

2. Executing the USB Firmware
Initialization of The controller MCU and peripherals (in main.c) must be initialized, and the user definition
information file (defusr.h) and user definition macro file (macusr.h) must be modified to enable transfer by the
USB firmware, and is capable of passing verification by the USBCV program.

2.1 Changing the USB Firmware
The following program files and header files need to be changed so that the USB firmware is operable and the setup
is capable of passing verification by USBCV.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 18 of 36

1. The below functions within main.c have to be changed:
 initialization of the controller MCU (CPUInit function);
 initialization of the peripherals (PeripheralInit function);
 enabling of controller MCU interrupts (enableINT function); and
 adjusting the time setting in the function that waits for a specified time (functions delay_1ms and

delay_10us).
The wait for a specified time is implemented by loop processing, so the number of loops must be adjusted to
obtain times that suit the user system.

2. Certain files require user customization.
 Vendor ID and product ID in descrip.h (for details, refer to section 5, User-Defined Information).

VenderID and ProductID
 Endian, I/O voltage, register base address, ‘far’ declaration if required, constant representing the frequency

of oscillation, and interrupt function specifications in defusr.h (for details, refer to section 5, User-Defined
Information).
FIFO_ENDIAN, VIF_SET, USB_BASE, REGP, XIN, and INTERRUPT.

3. Requirements before building
 Specification of section areas
 Creation of a startup routine

4. Others
 Special signal processing (not necessary at the level of confirming firmware operation (passing verification

by USBCV))

2.2 Precautions
The USB firmware is generally applicable firmware in that the controller MCU and peripherals are not specified.
Only the standard requests are supported. Data communications proceed via a virtual interface between the USB
firmware and the user application. Accordingly, the user must customize the interface by making required class
definitions and responses to vendor-specific requests, to take communications speed, program size, and other
factors into account, and to make individual settings for a particular user interface.

Note: The USB firmware does not guarantee the USB communications operation. Before applying the
firmware in a system, the user must verify operation and confirm the connections between various
host controllers.

3. Data Transfer
The USB firmware facilitates simple data communications between a host computer and the device. The user must
prepare a USB driver for the host computer and a data-transfer application. For details on USB firmware device
configuration, refer to section 8, Descriptor Definitions.

By changing the necessary information for device configuration (descriptor definitions (descrip.h) and pipe
definitions (def_ep.h), and the pseudo user application (main.c), a simple data-communications application that is
specifically for the user system (system on the host computer side) can be achieved.

Note that data communication clearly requires a set of user-specific functions. Accordingly, the user has to modify
specifications such as the transfer method, requests for start and end of communications, and buffer configuration.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 19 of 36

3.1 Basic Specifications of the USB Firmware
• The USB firmware achieves data transfer between the user buffers and a FIFO port register by CPU access. The

flow of data is shown in the figure below.
• An area of at least 512 bytes is reserved for the user buffer of each pipe (the area of the user buffers should be

greater than that of the FIFO buffers).
• Transfer through a pipe of larger amounts of data than the size of the FIFO buffer is realized by changing the

size of the user buffer.
• Fixed data corresponding to each pipe is used as data for transmission to the host.
• The user-buffer address-notification function (DI_Start/DO_Start) is for common access in both CPU- and

DMA-driven transfer.
• The buffer-ready interrupt of each pipe is enabled before the start of data transmission or reception, since these

interrupts are used in the transmission and reception of data.

Device

RAM

Pipe 1 user buffer

Pipe 2 user buffer

Pipe 7 user buffer

M66592

Pipe 1 FIFO buffer

Host PC

Pipe 2 FIFO buffer

Pipe 7 FIFO buffer

Transfer by CPU access

USB

F
IF

O
 p

o
rt

 r
e

g
is

te
r

Figure 3 Data Flow

3.2 Data Transmission Operation (with IN token)
The USB firmware follows the below procedure in transmitting data to the host computer (i.e. data with the IN
token).

1. Checks whether the user buffer is available for use (the buffer is available when Buffer_Write_Data_Flag is
DATA_NONE). If the first user buffer to be tried is not available, the processing is performed on another pipe.

2. Checks whether there is data to be transmitted (a value other than DATA_NONE returned by the
Create_In_Data function indicates that there is data to be transmitted).

3. Sets the user buffer address and the number of bytes to be transmitted (dcnt), disables the user buffer (sets
DATA_WAIT in Buffer_Write_Data_Flag), and enables buffer-ready interrupts (the DI_Start function).

4. When a buffer-ready interrupt occurs, the data in the user buffer is written to a FIFO port register.
 When the number of bytes to be transmitted (dtcnt) > FIFO buffer size: Data is written to the FIFO buffer

until it is full, and the FIFO buffer size is subtracted from the number of bytes to be transmitted (dtcnt =
dtcnt – FIFO buffer size).

 When the number of bytes to be transmitted (dtcnt) ≤ FIFO buffer size: The bytes for transmission are
written to the FIFO, buffer ready interrupts are disabled, and the user buffer is re-enabled (the
Buffer_Write_Data_Flag is set to DATA_NONE).

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 20 of 36

main

User buffer
usable?

Usable

Not usable

Transmit data
exists?

Yes

No

DI_Start()

main

All
transmit data

written?

Yes

No

DI_Start

return

User buffer
address setting

User buffer
not usable

Buffer ready
interrupt enabled

Use buffer usable

Buffer ready
interrupt disabled

INTR_int

return

return

Buffer ready
interrupt

status clear

Write data in
user buffer to FIFO

port register

Data_In()

Figure 4 Flow of Control in Data Transmission

Device

RAM

User buffer

M66592

FIFO buffer

First INTR

Second INTR

nth INTR

Host PC

USB

F
IF

O
 p

o
rt

 r
e

g
is

te
r

Figure 5 Flow of Data in Data Transmission

3.3 Data Reception Operation (with OUT token)
The USB firmware receives data that has the OUT token from the host computer according to the following
procedure.

1. Checks whether the user buffer is available for use (availability is indicated by Buffer_Read_Data_Flag being
set to DATA_NONE).
 If a user buffer is available, checks whether data can be read from the user buffer (enabled when the

Buffer_Read_Data_Flag is DATA_OK). When reading from the user buffer is disabled, processing for other
pipes proceeds.

 When the user buffer is enabled, sets the user buffer address and the number of bytes to be received (dtcnt),
and enables the user buffer (sets Buffer_Read_Data_Flag to DATA_WAIT), and enables buffer ready
interrupts (the DO_Start function).

2. When a buffer ready interrupt occurs, the data is read from a FIFO port register and written to the user buffer.
 When the number of received bytes (dtcnt) > FIFO buffer size: All data is read from the FIFO buffer, and its

size is subtracted from the number of bytes to be received (dtcnt = dtcnt – FIFO buffer size)
 When the number of received bytes (dtcnt) ≤ FIFO buffer size: All data is read from the FIFO buffer, the

buffer-read interrupts are disabled, and the user buffer is enabled (Buffer_Read_Data_Flag is set to
DATA_OK).

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 21 of 36

main

User buffer
usable?

Usable

Not usable

DO_Start()

main

Read all
transmit data?

Yes

No

DO_Start

return

User buffer
address setting

User buffer
not usable

Buffer ready
interrupt enabled

User buffer
read enabled

Buffer ready
interrupt disabled

INTR_int

return

return

Buffer ready
interrupt

status clear

Data in FIFO port
register is read
to user buffer

Data_Out()User buffer
read enabled?

Enabled

Disabled

Received data
processing

User buffer
usable

Figure 6 Flow of Control in Data Reception

Device

RAM

User buffer

M66592

FIFO buffer

First INTR

Second INTR

nth INTR

Host PC

USB

F
IF

O
 p

o
rt

 r
e

g
is

te
r

Figure 7 Flow of Data in Data Reception

3.4 Pipe Settings for Data Transfer
Requests such as Set_Configuration and Set_Interface are used when pipe settings must be changed to enable USB
communications.

On receiving the above request, the USB firmware uses the descriptor table to find the pipe table index number
corresponding to the pipe for which the configuration or interface is to be changed, and then automatically sets the
pipe configuration register in conformance with other aspects of the pipe definition.

Pipe Setting: The Esrch function is called with the configuration number, current interface numbers, and
replacement settings as parameters as follows.
void Esrch (configuration number, interface number, replacement settings);
void resetEP (configuration number).
The Esrch function searches for the index numbers of the definitions of all pipes used by the interface of the
specified configuration. resetEP makes new settings in the pipe configuration register for all pipes found by Esrch.
To change the pipe specifications, pipes on which transfer is currently in progress may have to be disabled in order
to avoid the input of invalid data or input errors as the changes are made. Accordingly, the corresponding pipe
interrupts are disabled in resetEP.

Descriptor Table: The USB firmware uses virtual descriptor definitions. The user must create user-specific
descriptor definitions (descrip.h) that suit the Windows driver and applications on the host side. When changing a
descriptor definition, also change the pipe definition (def_ep.h). Moreover, change the pseudo user application (the
Change_Config and Change_Interface function) as required.

Note: Define descriptor and pipe definitions in the same order as pipe information is defined. For details,
refer to section 7, Pipe Definition.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 22 of 36

The Change_Config and Change_Interface Functions: When the Set_Configuration or Set_Interface request is
received, the corresponding function is called by the USB firmware. Additional processing may also be required for
the user application.

3.5 Precautions in Making Changes to Descriptors, Usage, and Buffer
Configuration

1. The user buffer must be larger than the max. packet size (FIFO buffer in continuous transmission and reception).
2. To facilitate the confirmation of communications, a dummy area is allocated in each user buffer.
3. When changing a descriptor definition (descrip.h), be sure to change the corresponding pipe definitions

(def_ep.h).
4. When changing the usage or configuration of the user buffer, it may be necessary to change the library

functions.

3.6 User Buffer Specifications
An area for counting the number of accesses is also allocated. The user buffers for each pipe are initialized to
different sets of values.

typedef struct {
U16 size; /* Buffer size */
U16 count; /* Buffer access counter */
U8 Dummy[12]; /* Data area position adjustment */
U8 buff[EP1_DATA_SIZE]; /* Data buffer area */
} ep_buff1;
ep_buff1 EP_Buff1 = {
EP1_DATA_SIZE,
0,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,
0x0F,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,
0x1F,
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,
0x2F,
� �
ep_buff2 EP_Buff2 = {
EP2_DATA_SIZE,
0,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,
0x0F,0x0E,0x0D,0x0C,0x0B,0x0A,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x01,
0xFF,
0x1F,0x1E,0x1D,0x1C,0x1B,0x1A,0x19,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,
0x10,
0x2F,0x2E,0x2D,0x2C,0x2B,0x2A,0x29,0x28,0x27,0x26,0x25,0x24,0x23,0x22,0x21,
0x20,
� � � � �
ep_buff7 EP_Buff7 = {
EP7_DATA_SIZE,
0,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,
0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,
0x10,
0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,
0x20,

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 23 of 36

4. Class/Vendor Requests
Responses to class/vendor requests are only possible when the USB firmware is used together with the user-
provided Windows driver and application on the host computer, and user firmware on the device side. The USB
firmware only provides an entrance when the basic structure of data communications at the data stage is the same
as the structure of data communications at an individual pipe.

4.1 Basic Specifications
• The following functions provide for the notification of user-buffer addresses:

CR_Start (control read: user buffer address notification)
CW_Start (control write: user buffer address notification function)

• The following functions provide for the reading and writing of data:
Control_Read (control read: data write function)
Control_Write (control write: data read function)

• The user buffer must be larger than the amounts of data sent in each round of transmission from the data stage
(that is, the user buffer must be larger than the amount of data transferred in a single control transfer operation).

4.2 Detailed Specifications
• The USB firmware and the user firmware communicate via the user buffer. The USB firmware handles CPU

access to realize data transfer between the user buffer and the FIFO port register. Call the CR_Start or
CW_Start function from the user application.

• The direction of transfer in the data stage is determined by the INTR_int and BEMP_int functions.
• During transmission and reception, interrupts drive the continuous transfer of data by the Control_Read and

Control_Write functions.
• The user firmware must handle the creation of data for transmission to the host (providing data for

Control_Read).
Method 1: Make the data in response to the results of requests within an interrupt handler (similar to a standard
request)
Method 2: Create the data within the application (with an interrupt used to notify the user application of
reception).

• The user firmware must handle the analysis of data sent from the host (support for Control_Write)
Method 1: Judge requests to receive data from within an interrupt handler (similar to a standard request)
Method 2: Have the application handle reception (with an interrupt used for notification to the user application)

4.3 Example of a User Firmware Interface with Control Read (IN direction)
An example of the approach to class/vendor requests within the user firmware is given below.

1. Control-read data stage (the ClassTrans1 function) calls the CR_Start function.
2. A buffer empty/size over interrupt is generated (the BEMP_int function).

Note: This is an example. Create the actual firmware to suit the user specifications.

Data stage

Return

CR_Start

BEMP_int

Return

Cntrol_Read

Figure 8 Flow of Transmission

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 24 of 36

Points to Note:

• After the data for transmission has been created, call the transmission start notification function (the CR_Start
function).

• In the same process of notification (the CR_Start function), indicate the user buffer address and the data size.
• As the user buffer, secure a capacity larger than the amount of data (wLength) for transmission in the control

read data stage.
• Use a call of the Control_End function to indicate that the control transfer is completed by the control read

status stage transition of the USB interrupt function.
• The user firmware needs to store the request type (control-read setup stage information) to indicate that the data

for transmission is to be created.

4.4 Example of Control Write (OUT direction) User Firmware Interface
An example of the approach to class/vendor requests within the user firmware is given below.

1. Control write data stage (the ClassTrans2 function) calls the CW_Start function.
2. After data has been received from the host PC, a buffer-ready interrupt is generated (the INTR_int function).

The Control_Write function then transfers the received data to the user buffer.
3. The data that has been received into the user buffer is processed by the control write status stage (the

ClassTrans5 function).

Note: This is an example. Create the actual firmware to suit the user specifications.

Data stage

Return

CW_Start

Buffer ready

Return

Cntrol_Write

Status stage

Return

Receive data
processing

Figure 9 Flow of Reception

Points to Note:

• Indicate the buffer address and data size by calling the function for reception-start notification (the CW_Start
function).

• In the same process of notification, indicate the user buffer address and the data size.
• After analysis of the received data, call the Control_End function to notify the USB firmware that the control

transfer is complete.

5. User-Defined Information
The USB firmware is intended to be versatile. Accordingly, the user-definition information file is to be altered to
create user-specific executable files. Change the following twelve items according to the user system.

Note: Some controller MCUs may require definitions beyond those listed below.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 25 of 36

1. Vendor ID
2. Product ID
3. Low-power sleep function (PCUT) specification
4. Automatic clock supply function (ATCKM) specification
5. FIFO endian specification
6. I/O power supply specification
7. Address of the M66592
8. Type declaration of the pointer to the address of the M66592
9. Frequency of oscillation for the oscillator connected to the M66592
10. Declaration of interrupt vectors
11. Enabling of multiple interrupts
12. Specification of remote wakeup

5.1 Vendor ID (descrip.h)
Specify the same vendor ID as that of the user system.

E.g. To set 0x1234:

#define Vendor ID 0x1234

5.2 Product ID (descrip.h)
Specify the same product ID as that of the user system.

E.g. To set 0x5678:

#define Product ID 0x5678

5.3 Low-Power Sleep Function (PCUT) Specification
Specify whether or not to use the M66592’s low-power sleep function. When PCUT_USE is specified, the
automatic clock supply function is used (ATCKM_USE) regardless of the ATCKM_MODE specification.

To specify use of the M66592’s low-power sleep function:

#define PCUT_MODE PCUT_USE

5.4 Automatic Clock Supply Function (ATCKM) Specification
If the low-power sleep function is not to be used, specify whether or not the M66592’s automatic clock supply
function is to be used.

E.g. To specify use of the M66592’s automatic clock supply function:

#define ATCKM_MODE ATCKM_USE

5.5 FIFO Endian Specification (defusr.h)
Specify the byte endian for accessing the M66592’s FIFO port.

E.g. To specify little endian:

#define FIFO_ENDIAN LITTLE_ENDIAN

5.6 I/O Power Supply Specification (defusr.h)
Specify the voltage on the I/O terminals of the M66592.

E.g. To set 3.3 V:

#define VIF_SET VIF3

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 26 of 36

5.7 M66592 Address (defusr.h)
Specify the base address for access to the M66592. The addresses of all registers are specified as offsets from this
reference address.

E.g. To set the address 0x8000:

#define USB_BASE (0x8000)

5.8 Type Declaration of the Pointer for M66592 Register Addresses
Specify the pointer type for access to the M66592. To support MCUs that require near and far declaration, the
individual registers of the M66592 are cast with the REGP type. According to the type of the controller MCU,
comment out the declaration with whichever of near or far applies.

E.g. When the M66592 is allocated to the near area for an MCU which requires near or far declaration:

typedef volatile U16 REGP;
/* typedef volatile far U16 REGP; */

5.9 Frequency of Oscillation for the Connected Oscillator (defusr. h)
Select one of the three possible values for oscillation frequency of the oscillator connected to the M66592.

E.g. To use a 24-MHz oscillator:

#define XIN XTAL24

5.10 Interrupt Vector Declaration (defusr.h)
For MCUs where the interrupt processing functions must be declared, the relevant statement must also be issued for
the interrupts for USB communications provided by the USB firmware. Remove comments as required. This
applies to declarations other than the #pragma directive.

E.g. When a #pragma directive is required for the interrupt processing function (usbint):

#pragma INTERRUPT usbint

5.11 Multiple Interrupts Enabled
To enable multiple interrupts during USB interrupt processing, the instruction for enabling the interrupts must be
set. When the M3A-0033 and the KD308 are used, operation of the KD308 may be illegally terminated because the
USB interrupt processing is judged to be taking too long. In such cases, multiple interrupts must be enabled.

E.g. To enable multiple interrupts with the M16C/80:

#define MULTI_INT_ENABLE() asm(“fset i”)

5.12 Remote Wakeup Specification (defusr.h)
Specify whether or not to use the remote wakeup function.

To specify non-usage of the remote wakeup function:

#define RWUP_MODE RWUP_NOT_USE

6. User-Defined Macro Directives (macusr.h)
The M66592 conforms to the USB Revision 2.0 specification, so registers must be accessed in little endian format.
Since the USB firmware is intended to be versatile, we must assume that the endian of the controller MCU may
differ from that of the M66592. Since the methods of access to registers and FIFO registers are specified in macro
directives, it is possible to create a user-specific executable file by rewriting the user-defined macro header file.
Change the macros used to access the registers and FIFO registers to suit the user system.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 27 of 36

Nine macros of the following four types are used in register accesses:

• Register and FIFO data register read/write macros
• Register bit set/clear/modify macros
• Status register bit clear macro
• Status register bit set macro

6.1 Register and FIFO Data Register Read/Write Macros
These macros are used for reading or writing the data in the registers and FIFO port registers. The controller MCU
and the M66592 must be connected so that DMA transfer between memory and the FIFO port registers is correctly
enabled. For specifying the endian of the controller MCU refer to section 5.5, FIFO Endian Specification.

#define USBRD_FF(r,v) do{(v)=(r);}while(0)
#define USBWD_FF(r,v) do{(r)=(v);}while(0)
#define USBRD(r,v) do{(v)=(r);} while(0)
#define USBWD(r,v) do{(r)=(v);} while(0)

Note: Consider the system configuration when connecting the controller MCU, memory, and the MM66592.

6.2 Register Bit Set/Cear/Modify Macros
These macros are used in setting, clearing, or modifying the bits of registers. The macros have a RMW (read-
modify-write) approach, and take advantage of the macros for reading or writing data from and to registers and
FIFO registers that were described in the previous section.

Notes: 1. These macros will not need to be changed by the user.
 2. Do not use the above register bit-clearing macro to clear bits of the status register; instead, use the

status-register bit-clearing macro described in the following section.

/* set bit(s) of USB register */
/* r : USB register */
/* v : value to set */
#define USB_SET_PAT(r, v) do{ register U16 tmp; \
USBRD(r, tmp); \
tmp |= (v); \
USBWR(r, tmp); }while(0)
/* reset bit(s) of USB register */
/* r : USB register */
/* m : bit pattern to reset */
#define USB_CLR_PAT(r, m) do{ register U16 tmp; \
USBRD(r, tmp); \
tmp &= (~(m)); \
USBWR(r, tmp); }while(0)
/* modify bit(s) of USB register */
/* r : USB register */
/* v : value to set */
/* m : bit pattern to modify */
#define USB_MDF_PAT(r, v, m) do{ register U16 tmp; \
USBRD(r, tmp); \
tmp &= (~(m)); \
tmp |= v; \
USBWR(r, tmp); }while(0)

6.3 Status Register Bit Clear Macro
This macro has a RMW (read-modify-write) approach, and takes advantage of the macro used to write data to the
registers and FIFO registers. This macro is used to avoid erasure of status changed during instruction execution by
the RMW instruction.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 28 of 36

Notes: 1. This macro will not need to be changed by the user.
 2. Only use this macro with status registers to which 1 cannot be written.

/* reset bit(s) of USB status */
/* r : USB register */
/* m : bit pattern to reset */
#define USB_CLR_STS(r, m) USBWR(r, (~(m)))

6.4 Status Register Bit Set Macro
This macro is used to set bits in the status register. This macro takes advantage of the register-write macro
described in section 6.1, Register and FIFO Data Register Read/Write Macros. This macro is used to avoid erasure
of status changed during instruction execution by the RMW instruction. Use this macro when writing 1 by clearing
VBUSINT in the internal-clock-stopped state.

Notes: 1. This macro will not need to be changed by the user.
 2. Only use this macro with status registers to which 1 cannot be written.

/* set bit(s) of USB status */
/* r : USB register */
/* m : dummy */
#define USB_SET_STS(r, m) USBWR(r, 0xffff)

7. Pipe Definition (def_ep.h)
The configuration registers of the M66592 are used to make various settings for the pipes. Since the USB firmware
has been written as generally applicable firmware, the possibility of changes in pipe settings due to changes in
configuration and replacement have been taken into account. The pipe information (usage) is configured as a set of
data tables in the pipe-definition header file (def_ep.h), and the user creates the user-specific execution file by
rewriting the definitions in the file.

The various settings for pipes require settings for speed, one for FULL speed (Eptbl_Full_n) and one for HIGH
speed (Eptbl_Hi_n). Change the definitions of pipes to suit the user system.

Note: When the definitions of pipes are changed, descriptor definitions (descrip.h) must be changed
accordingly.

The default control-pipe definitions include the following two items (U16 x 2):

• CFIFO port selection (address 0x1E)
• DCP configuration register (address 0x5C)

Definition of pipes 1 to 7 consist of the following five items (U16 x 5):

• Pipe window selection register (address 0x64)
• Pipe configuration register (address 0x64)
• Pipe buffer setting register (address 0x68)
• Pipe maximum packet size register (address 0x6A)
• Pipe period control register (address 0x6C)

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 29 of 36

7.1 Default Control-Pipe Definition
Default control-pipe definitions are configured of tables. The table for default control pipe information which is
given as a sample in USB firmware is shown below.

E.g.

const U16 DCPtbl[] = {
/* CFIFOSEL (0x1E) */

MBW_16, Defined item 1
/* DCPCFG (0x5C) */

CNTMD Defined item 2
};

7.1.1 Default Control-Pipe Defined Item 1
Specify a setting for the CFIFO port selection register as follows:

FIFO port access bit width: If port is accessed is in 8-bit units, specify MBW_8; if it is in 16-bit units, specify
MBW_16.

E.g. When the FIFO port is accessed with a 16-bit width:

MBW_16,

7.1.2 Default Control-Pipe Defined Item 2
Specify a setting for the DCP configuration register as follows:

Continuous transmission/reception mode: for continuous reception, specify CNTMD.

E.g. For continuous reception:

CNTMD

Note: For specification of the max. packet size of the default control pipe, refer to section 8, Descriptor
Definitions.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 30 of 36

7.2 Definition of Pipes 1 to 7
In a similar way to the descriptor definitions, each pipe definition is configured of tables, and is described in order
of related interfaces and replacement settings. The pipe definitions given as a sample in USB firmware are shown
below. The items defined for each pipe are described in the following sections.

E.g.

/* Configuration 1 */
const U16 EPtbl_Full_1[] = { For full speed
/* Interface 1-0-0 */
/* Endpoint 1-0-0-0 */
/* Pipe Window Select Register (0x64) */
PIPE1, Pipe definition item 1
/* Pipe Configuration Register (0x66) */
BULK | DBLB | CNTMD | DIR_IN | EP1, Pipe definition item 2
/* Pipe Buffer Configuration Register (0x68) */
BUF_SIZE(512) | 6, Pipe definition item 3
/* Pipe Maxpacket Size Register (0x6A) */
64, Pipe definition item 4
/* Pipe Cycle Configuration Register (0x6C) */
OFF | 0, Pipe definition item 5
: : :
};
/* Configuration 1 */
const U16 EPtbl_Hi_1[] = { For high speed
/* Interface 1-0-0 */
/* Endpoint 1-0-0-0 */
/* Pipe Window Select Register (0x64) */
PIPE1,
/* Pipe Configuration Register (0x66) */
BULK | DBLB | CNTMD | DIR_IN | EP1,
/* Pipe Buffer Configuration Register (0x68) */
BUF_SIZE(512) | 6,
/* Pipe Maxpacket Size Register (0x6A) */
512,
/* Pipe Cycle Configuration Register (0x6C) */
OFF | 0,
: : :
};

7.2.1 Pipe Definition Item 1
Specify a value for setting in the pipe window selection register as follows.

Pipe Selection: Specify the pipe to be selected (PIPE1 to PIPE7).

E.g. To specify pipe 1:

PIPE1,

7.2.2 Pipe Definition Item 2
Specify pipe configuration register settings as follows.

Transfer Type: Specify either BULK, INT, or ISO.

Double Buffer Mode: To specify double-buffering, set DBLB; for a single buffer, set this to OFF.

Continuous Transmission/Reception Mode: For the single transmission/reception mode, set this to OFF; for the
continuous transmission/reception mode, set CNTMD.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 31 of 36

Transfer Direction: If the pipe is to be an input, set DIR_IN; if it is to be an output, set DIR_OUT.

Endpoint Number: Specify the endpoint number (EP1 to EP15).

E.g. To specify bulk transfer, double-buffered mode, continuous transmission/reception, input, and EP1:

BULK  DBLB  CNTMD  DIR_IN  EP1,

7.2.3 Pipe Definition Item 3
Settings for the pipe buffer setting register are as follows:

Buffer Size: Specify the PIPE buffer size in 64-byte units.

Buffer Start Number: Specify the start number of the buffer.

E.g. To specify 512 bytes for the buffer size, and the buffer start number is 6:

BUF_SIZE(512)  6

7.2.4 Pipe Definition Item 4
Specify pipe maximum packet size register settings as follows:

Max Packet Size: Specify the maximum packet size of the pipe.

E.g. To specify the max. packet size as 64:

64

7.2.5 Pipe Definition Item 5
Specify the pipe period control register as follows:

Isochronous IN Transfer Buffer Flush: To enable flushing, specify IFIS; to disable flushing, specify OFF.

Interval Error Detection Time: Specify the interval.

E.g. To disable buffer flushing and select an interval value of 0:

OFF  0,

8. Descriptor Definitions (descrip.h)
Since the USB firmware is written as generally applicable firmware, the descriptor header file must be edited to set
up user-specific descriptor definitions for use in device configuration.

There are four types of descriptor definitions.

Notes: 1. For details on the individual descriptors, refer to Chapter 9 of the USB Revision 2.0 specification.
 2. When changing the descriptor definitions, also change the pipe definitions (def_ep.h) to match the

descriptor definitions.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 32 of 36

1. Standard Device Descriptors
The USB firmware uses the table below for these definitions:
U8 DeviceDescriptor[]

2. Device Qualifier Descriptors
The USB firmware uses the table below for these definitions:
U8 QualifierDescriptor[]

3. Configuration/Other_Speed_Configuration/Interface/Endpoint
The USB firmware uses the tables below for these definitions:
U8 Configuration_Full_1[]

U8 Configuration_Hi_1[]

4. String Descriptors
The USB firmware uses the tables below for these definitions:
U8 StringDescriptor_tbl0[]

U8 StringDescriptor_tbl1[]

U8 StringDescriptor_tbl2[]

U8 StringDescriptor_tbl3[]

U8 StringDescriptor_tbl4[]

U8 StringDescriptor_tbl5[]

8.1 Creating the Descriptors
The USB firmware uses the tables described in items 1 to 3 and, according to the current M66592 operating mode,
copies DT_CONFIGURATION or DT_OTHER_SPEED_CONFIGURATION to Configuration_Full_n[1] or
Configuration_Hi_n[1], and creates the descriptor in RAM. Parts of the program to be changed are written as
SOFTWARE_CHANGE. The flow of creation is shown below.

Device state transition

interrupt processing

End

Configuration_Hi_1[1] = DT_CONFIGURATION;

Configuration_Full_1[1] = DT_OTHER_SPEED_CONFIGURATION;

Device state is
default

No

Yes

Current speed is
Hi-Speed

No

Yes

Configuration_Hi_1[1] = DT_OTHER_SPEED_CONFIGURATION;

Configuration_Full_1[1] = DT_CONFIGURATION;

Figure 10 Creating the Descriptors

8.2 Setting the Default Control Pipes
After creating the descriptor on RAM, the USB firmware sets the registers to use the M66592’s pipes as default.

The following M66592 registers have to be set:

1. CFIFO port selection register (address 0x1E)
2. DCP configuration register (address 0x5C)
3. DCP maximum packet size register (address 0x5E)

Of the above items, 1 and 2 involve setting data in the constant table DCPtbl[] in the register. For details, refer to
section 7, Pipe Definition. Item 3 involves setting data in the table DeviceDescriptor[7] on RAM in the register, so
set the max. packet size to be used.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 33 of 36

8.3 USB Firmware Sample Descriptor Configuration
The configuration of descriptors for the USB firmware is shown below.

/*
* |--- Configuration 1
* | |--- Interface 1-0-0
* | | |--- Endpoint 1-0-0-0
* | | |--- Endpoint 1-0-0-1
* | | |--- Endpoint 1-0-0-2
* | | |--- Endpoint 1-0-0-3
* | | |--- Endpoint 1-0-0-4
* | | |--- Endpoint 1-0-0-5
* | | |--- Endpoint 1-0-0-6
*/

9. Low Power Sleep Function (PCUT)
The USB firmware comprises the following three types of processing samples.

1. When the low power sleep mode and automatic clock supply function are both in use.
2. When the low power sleep mode is not in use but the automatic clock supply function is in use.
3. When neither the low power sleep mode nor the automatic clock supply function is in use.

The PCUT_MODE declaration in defusr.h must be changed as described below according to whether or not the low
power sleep function is in use.

9.1 When the Low Power Sleep Function is in Use
The PCUT_MODE declaration in defusr.h should be PCUT_USE. Here, when suspend or detach function is used,
the clock stops, and the low power sleep function is activated. The clock is started up by hardware.

9.2 When the Low Power Sleep Function is not in Use (but the Automatic
Clock Supply Function is)

The PCUT_MODE declaration in defusr.h should be PCUT_NOT_USE. The ATCKM_MODE declaration in the
same file should be ATCKM_USE. Here, when suspend or detach function is used, the clock stops. The clock is
started up by hardware.

9.3 When the Low Power Sleep Function is not in Used (but the Automatic
Clock Supply Function is)

The PCUT_MODE declaration in defusr.h should be PCUT_NOT_USE. The ATCKM_MODE declaration in
defusr.h should be ATCKM_NOT_MODE. Here, when suspend or detach function is used, the clock stops. Restart
the clock by software.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 34 of 36

10. Restrictions
The following restrictions apply to usage of the USB firmware.

1. The isochronous transfer may not operate correctly (in certain operating states, CPU processing becomes a
bottleneck and packets are lost).

2. Operation with a split bus is not supported.
3. Multiple instances of the same endpoint number cannot be used simultaneously. For example, normal operation

is not guaranteed when endpoint 1 is specified for BULK IN at pipe 1 and endpoint 1 is specified for BULK
OUT at pipe 2.

4. DMA transfer is not supported.

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 35 of 36

Revision Record
Description

Rev.

Date Page Summary

1.00 Jul.13.05 — First edition issued

H8S Family
Sample Firmware for the M66592 USB ASSP

REJ05B0650-0100 July 2005 Page 36 of 36

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Cover
	Connection of the H8S/2218 and the M66592
	1. Overview
	1.1 Features of the USB Firmware for the H8S/2218
	1.2 Objectives of the USB Firmware
	1.3 Services Provided by the USB Firmware
	1.4 File Configuration

	2. Development Tools for the USB Firmware
	2.1 Hardware Configuration
	2.1.1 CPU Board and Utility Board
	2.1.2 Utility Board to be Used
	2.1.3 Connecting the Utility Board with the CPU Board
	2.1.4 Configuring the System

	2.2 Software Configuration
	2.2.1 Settings in the High-performance Embedded Workshop 3
	2.2.2 H8S/2218 Settings
	2.2.3 User Defined Items in the USB Firmware for the H8S/2218

	2.3 Precautions

	3. Programming the Internal Flash Memory
	3.1 Flash Memory Programming via the Serial Communication Interface

	4. Restrictions
	Sample Firmware for the M66592
	1. Overview
	1.1 Features of the USB Firmware
	1.2 Layers
	1.3 File Configuration List
	1.4 Objectives in Developing the USB Firmware
	1.5 Service Outline
	1.6 Processing Flow in Outline

	2. Executing the USB Firmware
	2.1 Changing the USB Firmware
	2.2 Precautions

	3. Data Transfer
	3.1 Basic Specifications of the USB Firmware
	3.2 Data Transmission Operation (with IN token)
	3.3 Data Reception Operation (with OUT token)
	3.4 Pipe Settings for Data Transfer
	3.5 Precautions in Making Changes to Descriptors, Usage, and Buffer Configuration
	3.6 User Buffer Specifications

	4. Class/Vendor Requests
	4.1 Basic Specifications
	4.2 Detailed Specifications
	4.3 Example of a User Firmware Interface with Control Read (IN direction)
	4.4 Example of Control Write (OUT direction) User Firmware Interface

	5. User-Defined Information
	5.1 Vendor ID (descrip.h)
	5.2 Product ID (descrip.h)
	5.3 Low-Power Sleep Function (PCUT) Specification
	5.4 Automatic Clock Supply Function (ATCKM) Specification
	5.5 FIFO Endian Specification (defusr.h)
	5.6 I/O Power Supply Specification (defusr.h)
	5.7 M66592 Address (defusr.h)
	5.8 Type Declaration of the Pointer for M66592 Register Addresses
	5.9 Frequency of Oscillation for the Connected Oscillator (defusr. h)
	5.10 Interrupt Vector Declaration (defusr.h)
	5.11 Multiple Interrupts Enabled
	5.12 Remote Wakeup Specification (defusr.h)

	6. User-Defined Macro Directives (macusr.h)
	6.1 Register and FIFO Data Register Read/Write Macros
	6.2 Register Bit Set/Cear/Modify Macros
	6.3 Status Register Bit Clear Macro
	6.4 Status Register Bit Set Macro

	7. Pipe Definition (def_ep.h)
	7.1 Default Control-Pipe Definition
	7.1.1 Default Control-Pipe Defined Item 1
	7.1.2 Default Control-Pipe Defined Item 2

	7.2 Definition of Pipes 1 to 7
	7.2.1 Pipe Definition Item 1
	7.2.2 Pipe Definition Item 2
	7.2.3 Pipe Definition Item 3
	7.2.4 Pipe Definition Item 4
	7.2.5 Pipe Definition Item 5

	8. Descriptor Definitions (descrip.h)
	8.1 Creating the Descriptors
	8.2 Setting the Default Control Pipes
	8.3 USB Firmware Sample Descriptor Configuration

	9. Low Power Sleep Function (PCUT)
	9.1 When the Low Power Sleep Function is in Use
	9.2 When the Low Power Sleep Function is not in Use (but the Automatic Clock Supply Function is)
	9.3 When the Low Power Sleep Function is not in Used (but the Automatic Clock Supply Function is)

	10. Restrictions
	Revision Record
	Keep safety first in your circuit designs!
	Notes regarding these materials

