To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

ENESANS
Application Note

Guide to Porting from
CC78K4 to CA850

Target Devices

V850 Family™
Target Tools

CA850 Ver. 2.40
CC78K4 Ver. 2.20
RA78K4 Ver. 1.30

Document No. U15653EJ1VOANOO (1st edition)
Date Published September 2001 N CP(K)

© NEC Corporation 2001
Printed in Japan

[MEMO]

2 Application Note U15653EJ1VOAN

V800 Series, V850 Family, V851, V852, V853, V854, V850/SA1, V850/SB1, V850/SB2, V850/SV1, V850/SF1,
V850E/MS1, V850E/MS2, V850E/MA1, V850E/MA2, V850E/IA1, and V850E/IA2 are trademarks of NEC
Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States
and/or other countries.

Application Note U15653EJ1VOAN

The information in this document is current as of July, 2001. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

MSE 00.4

Application Note U15653EJ1VOAN

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

« Device availability
« Ordering information

e Product release schedule

« Availability of related technical literature

» Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

« Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-3067-5800

Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 091-504-2787

Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

Application Note U15653EJ1VOAN

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810

Fax: 11-6462-6829

Jo01.2

Target Readers

Purpose

Organization

How to Read This Manual

Conversions

INTRODUCTION

This Application Note is intended for users who understand the functions of the
78K/IV Series microcontrollers, V800 Series™ microcontrollers, 78K/IV Series
CC78K4 C compiler (CC78K4), and RA78K4 assembler package (RA78K4).

This Application Note explains the points to be noted and basic method of
description when replacing a program described for the CC78K4 by the V850 Family
CA850 C compiler package (CA850).

This Application Note consists of the following chapters.

CHAPTER 1 OVERVIEW
Compares the CC78K4, RA78K4, and CA850.
CHAPTER 2 C LANGUAGE
Explains how to replace compiler-dependent description in C language from
CC78K4 to CA850.
CHAPTER 3 ASSEMBLY LANGUAGE
Explains how to replace assembler control instructions and quasi-directives
from RA78K4 to CA850.
CHAPTER 4 LINK DIRECTIVES
Explains how to replace link directives from CC78K4 to CA850.
CHAPTER 5 TRANSLATION LIMIT
Explains the maximum performance of the CC78K4, RA78K4, and CA850.

This Application Note does not explain instructions. For details of instructions, refer
to the manual of each microcontroller.

Read this Application Note from CHAPTER 1 OVERVIEW. If your program is not
described in C language, you may skip CHAPTER 2 C LANGUAGE. If your
program is not described in assembler language, you may skip CHAPTER 3
ASSEMBLY LANGAUGE. To change a link directive file, read CHAPTER 4 LINK
DIRECTIVES.

[May be omitted.

“r Reference destination

[CC78K4]: Function and description format in CC78K4
[RA78KA4]: Function and description format in RA78K4
[CA850]: Function and description format in CA850
<Example>: Description example

Application Note U15653EJ1VOAN

Related Documents When using this Application Note, also refer to the following related documents.
The related documents indicated in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

Documents Related to 78K/IV Series (User’s Manuals)

Document Name Document No.

IE-78K4-NS U13356E

RA78K4 Assembler Package Operation U11334E
Language U11162E
Structured Assembler U11743E
Preprocessor

CC78K4 C Compiler Operation U11572E
Language U11571E

SM78K4 System Simulator Ver. 1.40 or Later Windows™ Based Reference U10093E

SM78K Series System Simulator Ver. 1.40 or Later External Part User Open U10092E
Interface Specifications

ID78K Series Integrated Debugger Ver. 2.30 or Later Windows Operation U15185E

Based

ID78K4 Integrated Debugger Windows Based Reference U10440E

RX78K4 Real-Time OS Basics U10603E
Installation U10604E

Application Note U15653EJ1VOAN 7

Documents Related to V850 Family (User’s Manuals) (Hardware Tools)

Document Name

Document No.

IE-703002-MC (In-Circuit Emulator for V851™, V852™, V853™, v854™, V850/SA1™, V850/SB1™, U11595E
Vv850/SB2™, V850/SV1™, V850/SF1™)

IE-703003-MC-EM1 (In-Circuit Emulator Option Board for V853) U11596E
IE-703008-MC-EM1 (In-Circuit Emulator Option Board for V854) U12420E
IE-703017-MC-EM1 (In-Circuit Emulator Option Board for V850/SA1) U12898E
|IE-703037-MC-EM1 (In-Circuit Emulator Option Board for V850/SB1, V850/SB2) U14151E
IE-703040-MC-EM1 (In-Circuit Emulator Option Board for V850/SV1) U14337E
|IE-703079-MC-EM1 (In-Circuit Emulator Option Board for V850/SF1) U15447E
IE-703102-MC (In-Circuit Emulator for V850E/MS1™, V850E/MS2™) U13875E
IE-703102-MC-EM1 (In-Circuit Emulator Option Board for VB50E/MS1, V850E/MS2) U13876E
IE-703102-MC-EM1-A (In-Circuit Emulator Option Board for VB50E/MS1)

IE-V850E-MC (In-Circuit Emulator for V850E/IA1™, V850E/IA2™) U14487E

IE-V850E-MC-A (In-Circuit Emulator for VB50E1 (NB85E Core), V850E/MA1™, VB50E/MA2™)

IE-V850E-MC-EM1-A (In-Circuit Emulator Option Board for V850E1 (NB85E Core))

To be prepared

|IE-V850E-MC-EM1-B, |IE-V850E-MC-MM2 (In-Circuit Emulator Option Board for V850E1 (NB85E U14482E
Core))

IE-703107-MC-EM1 (In-Circuit Emulator Option Board for VB50E/MA1, V850E/MA2) U14481E
IE-703116-MC-EM1 (In-Circuit Emulator Option Board for V850E/IA1) U14700E

IE-703114-MC-EM1 (In-Circuit Emulator Option Board for V850E/IA2)

To be prepared

Application Note U15653EJ1VOAN

Documents Related to V850 Family (User’s Manuals) (Software Tools)

Document Name

Document No.

CA850 C Compiler Package Ver. 2.40 or Later

Operation U15024E
C Language U15025E
Project Manager U15026E
Assembly Language U15027E

ID850 Integrated Debugger Ver. 2.40 Windows Based Operation To be prepared
ID850NW Integrated Debugger Ver. 1.10 or Later Windows Based Operation U14891E
SMB850 System Simulator Ver. 2.40 Windows Based Operation To be prepared
SM850 System Simulator Ver. 2.00 or Later External Part User Open U14873E
Interface Specifications
RX850 Real-Time OS Ver. 3.13 or Later Basics U13430E
Installation U13410E
Technical U13431E
RX850 Pro Real-Time OS Ver. 3.13 Basics U13773E
Installation U13774E
Technical U13772E
RD850 Task Debugger Ver. 3.01 U13737E
RD850 Pro Task Debugger Ver. 3.01 U13916E
AZ850 System Performance Analyzer Ver. 3.0 U14410E
PG-FP3 Flash Memory Programmer U13502E
CA850 C Compiler Package Ver. 2.40 (Application Note) Coding Technique U15184E
V800 Series Development Tools (32 bits) Ver. 2.40 Windows Tutorial Guide U15196E
Based (Application Note)
Guide to Porting from CC78K4 to CA850 (Application Note) This manual

Application Note U15653EJ1VOAN

CONTENTS

CHAPTER 1 OVERVIEW......coiiiiiiiiiiiiissss s sssssss s s s s sss s s s s s ms s e ssmss nssmns snsssmns snsssmnnnnssannnns 15
IR T oo 11T G o o ¢ 15
B o Tod e T =TS T o T 16

CHAPTER 2 C LANGUAGEccooerieecirrrssmmeressssersssssmessssssmesenssmeneesssmsssesssnmenesssnmeneassnmsnsassannnsssannens 18
2.1 Compiler-Defined MaCIOS........cocuuurmirrmrisiasnismssssmsssssss s s s ssmssssms s ssn s s smsasssns s sms e s ams s smnensanssnnas 18
2.2 HPragma DIrECHIVEcuiiiiriiirir s e e n e e 19

2.2.1 Use of special function register name (peripheral function register name)cc.ccccecceerievenenns 20
2.2.2 Description of assembler iINSTTUCIONcooiiii e s 20
P22 B 101 (=Y U o 8 {11 o3 1) o [P UPPPP 22
2.2.4 Specification of interrupt disabled fUNCHON............cciiiiiiiii e 24
2.2.5 Control of interrupt diSablINGcoiiuiiiiiieie e 25
2.2.6 CPU cOoNtrol iNSTIUCHIONScoiviiiiiiiitie ettt ettt e st e e re e s ereeenne e e 26
2.2.7 ADSOIULE QAAIESS GCCESS ...eeiiureieiiieieeeireee e et e s e e st e e s s s e e e e s s e e e s e nre e e s annr e e e snre e e eare e e e nnnees 27
2.2.8 Change Of SECHON NAMEcciiiiiiiiiee ettt et sae e et e e e sae e e saneesaeeesbeeenanee e 29
2.2.9 Change Of MOAUIE NAME...... ..ottt ettt s sbe e e e s bb e e e e abb e e e sanneeesanneeeean 30
2.2.10 Specification of iNiNE EXPANSIONeiiitiiiiiiiiie ettt sabe e sne e sreeesaeee e 30
2.2.11 Use Of rotate fUNCHION.........oeiieeie e e 31
2.2.12 Use of multiplication fUNCHIONcoiiiiiiiie et e e e e e e e e e e e sraaeeeaaeeeas 34
2.2.13 Use of diVISION FUNCHONooiiiiie e 35
2.2.14 Use of data insSertion fUNCHIONooiiiiii e 35
2.2.15 Specification of interrupt handler supporting real-time OS..........ccooiiiiiiiiiii e 36
2.2.16 Specification of real-time OS fUNCHONcoiiiiii e e 37
2.2.17 Specification Of AEVICE tYPEceiiiiieiiie ittt st sr e st esn e bn e e naeee e 37
2.2.18 SHrUCIUIE PACKING eeiiiiiiie ittt sttt e e bt e e ettt e e s ane e e e sabb e e e e anbee e sneeeesanbeeeean 38
2.3 Extended DeSCHPLIONSccccccieimirsmmrmmiisssrmsssss s ssssss s rssssss s sssssss s sssssss s snssssss nsssnss nssnnnssnssnns 38
P T I o= 10 {01 o7 o o PP 39
2.3.2 RegiSter VariabIESscooii i e e e 39
P B U L= g To JE=T=To [o [= = SRR PP 40
2.3.4 NOAUTO FUNCHION ...t et e e nre e e e e e nnnees 41
2.3.5 NOIEC FUNCHON ... e et s re e b e e be e e srneenree e 41
2.3.6 Bt type VariabIeoooiiiiieee e 42
P A = 11 = Te = PO PP 43
2.3.8 Callf fUNCHON ...ttt e r e e ere e e e 44
2.3.9 BiINArY CONSTANT ...t e e e e s e n e nnnes 45
2.3.10 Specification Of INtEITUPT IEVELcoiuiiiiiieeie e e 46
2.3.11 PasCal fFUNCHON ..ottt re e re e e nnee e 46
2.4 Size and Alignment Conditions of Variables..........ccccciiiminismnnssinsn s s 47
2.4.1 Size Of VArADIE TYPE ...c.ueeiiiieiiee et naee e 47
2.4.2 AlGNMENE CONAITIONS....eeiiiiiiiiiiie et e e e e e e e e s e et e e e e e e ann e n e e e e e e e aannnneeeeeeeaan 48
2.5 Startup Routine (Startup ModUIE)........cccoiiiiriiiimrissrnims s s s s s s 50
2.5.1 Setting module name and [0ading iNCIUAE fil€..........ccuiiiiiiiiie e 51
2.5.2 Setting lIDrary SWItCHoi e e 51
2.5.3 DefiniNg SYMDOISoeiiiiiiieie e 51
2.5.4 Reserving area for DI ... e 52
10 Application Note U15653EJ1VOAN

2.5.5 RESEIVING SLACK @Iueeeiiiiiiiiiiiii ettt e et e e e e e e e e e e e e s e e e e e e e 53

2.5.8 SEtlNG rESEE VECIONottt ettt b et e st e e be e e be e e ebeeene e sbeeeneeen 53
P T A S 1= 1 g Yol (oTor= o] o PO OO UU PP PPRTPON 53
2.5.8 Setting regiSter DANK........c.uuiiiiiiie e 54
2.5.9 Setting SACK POINTET ...c..tiiiiiietii ettt bbbt e st e st e e be e e be e e sbeeebeesbeeeneeens 54
2.5.10 Setting general-purPOSE FEQISTEIS.iiiueieitiieiieeriiteetee sttt ettt se et sr e sbeesbe e sbeesneesbeesneeens 54
2.5.11 Setting SPECIAl FEGISTEISoiiieiiii it e 55
2.5.12 Calling hardware initialization fUNCHION............ociiiiiiiiie e 55
2.5.13 Setting default value of standard lIDrary ..o 56
2.5.14 ROMIZatioN PrOCESSING ...uvveieiiueieiiitiiee ettt ettt e ettt e e e sbe e e e saaee e e e sbe e e e aasbe e e s aaseeeesanseeeesabeeeesanseeessanees 56
2.5.15 |Initializing variable area without default valueccoorriiii e 58
2.5.16 Calling Main fUNCHONooiiiiii ettt e e bt aeeebe e s beeeneeens 59
2.5.17 Calling ©Xit FUNCHIONciiiiiie ittt e e bt e e s e b e e s abe e e e sbb e e e enbeee e sanes 59
2.5.18 Defining SEGMENt (SECHON)eiiiiiiitii ettt ettt e e sbe e s ae e e san e beeeneeens 60
2.6 Segment (Section) Output by COMPIIEr.......ccciiiiiiiiimnrisn s 61
2.6.1 Segment OULPUL DY COTBKAooo ittt e et e e e b e e s b e e e sanes 61
2.6.2 SeCtion OULPUL DY CABBO......coiueiiiiiieiiiieetee ettt sttt bt e bt e st e et e s bt e eabe e e nbeeebeeebeeeneeens 62
2.7 Library and Header File ... s ssssss s s snssss s s sssssss s snssassnnnss 63
CHAPTER 3 ASSEMBLY LANGUAGEccociiicerresccrressmeerssssmme s essmms s ssssmmesesssmmssssssamessesssmnssessnnes 65
3.1 Segment Quasi-Directive (Section Definition Quasi-Directive)......c.cc.ceccerrrrreerrrsscerrsscecennas 68
3.1.1 (0251 =L C TN (=) o0] =] R ToTo) o 1] AR 68

3.1.2 DSEG, .bss, .data, .sbss, .sdata, .sebss, .sedata, .sibss, .sidata, .tibss, .tidata, .tibss.byte,
idata.byte, .tibss.word, .tidata.Wordo 70
313 BOEG ittt bbb e b e e b e b e e re e e 75
70 I S o (=Y [o T U T =T= o1 1 o) o 1 PR 76
G T I T © 1= T o o SR 77
G T LG T 1o [o F PP SO PP PUPPPPR ORI 78
3.2 Symbol Definition Quasi-Directives (Symbol Control Quasi-Directives).......c..cousemrrrnrranns 78
3.2.1 T S 79
B.2.2 SET, 8B it e e e e e e 79
2 T V(- TN i = ¢ 41 YA] <Y SRR 80
3.3 Object Module Name Declaration QUasi-DireCtivesccuremrismrisssrsssmsssssssssssssssssnssnsns 80
B30T NAME e e b e b et e b e r e e sr e b e s e re e e 81

3.4 Memory Initialization and Area Reservation Quasi-Directives (Area Reservation

L@ T T D 1] =Y o Y=Y U 81
I T B = T o (= TP TSSO UP P PPROPPTPPROTIN 81
I~ B 1A o 1717 (o R SSRRT 82
G 7 T I T S 83
R N o] (o FO TP PP U TP P PRP PP PRPTT 84
R TS T o - Vo = OO 84
G T 4110 (o RSP 85
I S A I 1 T (oo 1 o 1 o T 85
LT N =] N PR 86
IS T (o Y- | A | GOSN 87
3.5 Linkage Quasi-Directives (Program Linkage Quasi-Directives)cccuemrvsrrnsenrisnnssnnnnnes 87
B.5.1 PUBLIC, .QI0DI ...ttt ettt sb ettt b et ae e sbe e s e b e neeeneeen 87
O~ =l o1\ T4 (= 1 o SRR 88

Application Note U15653EJ1VOAN 11

3.5.3 EXTBIT o 89

T N oo 1 1 o S PP PPPPPPPPPPPPPRPIE 89
3.6 Automatic Selection QUasi-DireCtivesc.ccuremireminiiminssrnsrns s s 90
BuB.1 BR, CALL ..t e bbbt e e b e e e e e nr e e e et e e e e anbeeeaan 90
3.7 General-Purpose Register Selection Quasi-Directiveccccceivmiiscmmncsmmnsss s sssessscaeas 91
3.71 LT S 91
3.8 Macro Quasi-Directives (Macro, Skip, Repeat Assemble Quasi-Directives).........ccceecurrrrunes 92
3.8.1 7Y@ = {0 TR s o= Vo7 ¢ o X 92
B.8.2 LOCAL, OCAL ... 93
B.8.3 REPT, crePeaL ...t e e e raaes 94
O | e | (=T o == | S S UURRPR 95
3.8.5 EXITM, .eXIitm, c8XITMA.....ccoeeitiiie ettt e e e e e e e e e e e e e e essa e e eeeeessaanaeeeeseeesranaeaaes 96
3.8.6 ENDIM, c8NAM .ttt e e e e e e e e e e e e et e e e e e r e e e e e e e e rr e e e e e e e s 98
3.9 Assemble End QUAasi-DireCtiVecccecuiiiiminssrisnmsimsissssssssssssms s s s ssss s sms s sssssasms snssssssnns 98
3.9.1] N U SURT 98
3.10 Assembler Target Model Specification Control Instructions

(Assembler Control QUaSi-DIreCtiVes)cocuiirammrismissrmissmnssssissss s s s s s s mn s sane s 99
3.10.1 SPROCESSOR, .0PHON ..eeiutieiieeciieesieeetee e ee et e st e e ste e e s tee e tee e staeesteeesseeeaseeessaeeaseeessseeaseeesseeenseneses 99
3.11 Debug Information Output Control INStructions..........ccccccmiriiriminnnsnrn s 100
3.11.1 $DEBUG, $SNODEBUG, $DEBUGA, SNODEBUGA........ccciieieereeieeieeeeenie e eee e seee e eneeeee e 100
3.12 Cross-Reference List Output Specification Control Instructionscccceciiccniiccnniiennnnas 100
3.12.1 $XREF, SNOXREF, $SYMLIST, SNOSYMLIST ...oceiiieiieieeite ettt ettt snae e snees 100
3.13 Include Control Instructions (File Input Control Quasi-Directives)ccccuscmrrisrrssamnrnans 101
T I T 1N (@ U1] T 1 Tod (U [101
B.A8.2 LDINCIUAE ... e 101
3.14 Assemble List Control INStruCtiONScccccciiiiiiiiisciiicr s s 102

3.14.1 $EJECT, $TITLE, $SUBTITLE, $LIST, $NOLIST, $GEN, $NOGEN, $COND, $SNOCOND,
$FORMFEED, $SNOFORMFEED, $WIDTH, SLENGTH, $TABccciiiieieee e 102
3.15 Conditional Assembly Control Instructions (Conditional Assembly Quasi-Directives)...103
o T T] I = S 103
T T~ | o 1= SRR 104
1 T TR N 1 0T 1= RSO UPRTR 104
T T | RS 105
1T S N 1 o B PSP RPP PR 105
3.15.6 SELSEIF, §_ELSEIF, .€ISEIf......cciiiieiieeciie ettt et e e e st e et e e s teesnreesraeennee s 106
O T TR A= =TT { o RSO UPRTR 107
Bu15.8 BELSE, (IS ..ecuiiii ittt ettt te e ate e teete e e eae e Rt e beeteenteenaenraenneas 107
o BT T N =Y o o S 108
3.16 SFR Area Change Control INStructionsccccuceminiimnnmmnnssinsss s sssesssssmssses 108
3.16.1 FCHGSFR, SCHGSFRA ...ttt ettt st teete s saesseesreesseenseeneesseesseenseenseenneas 108
CHAPTER 4 LINK DIRECTIVES.coiiciiiiismismsiimsisssssssasssssssssssssasssssssmssasss s sssms sasssssssns nsnsasssmssnsmssnses 109
4.1 Contents of LiNK DireCtiVe.......cccccceiiiniiniiiiisrinsess s sssssss s s ssss s s ssmsssssssssesns 109
4.2 Description of Link DIir@CtiVecccciriirmmrimismmsmnissss s s snsssss s s ssssssssssssssssssasssas 110
CHAPTER 5 TRANSLATION LIMIT .coiieiiiiitrissrnsmsssssssnssssassssssssssassssnsssssssss sssssssassssasasssasss snsssssnssssnsas 113
APPENDIX INDEX ...uuciiiousiissnssmsissmssssssssssmssasassasssssasassasssssasassasssssasms sasnsssssns asas sassnssssnssnssnssnsnssnsanssssnnsns 114

12 Application Note U15653EJ1VOAN

LIST OF FIGURES

Figure No. Title Page
1-1 DeVelOPMENT PrOCEAUIEo ettt et s e e s e e e st e s s e e e e s nre e e e anne e e e nnneeesanneee s 17
2-1 RAM ImMage Of EXAMPIE Tcoiiiieeeiiie et e e e e e e e s e e e e s nre e e s en et e e nnn e e e s annnee s 49
2-2 RAM IMage Of EXAMPIE 2. ettt e e e e e et e e sne e e s nre e e e ann et e e nnn e e e s annnee s 50

Application Note U15653EJ1VOAN 13

LIST OF TABLES

Table No. Title Page
1-1 [o To [0 T2 NN F= T = R 15
1-2 PaCKAGE SOWAIE........eeiiiiiii ettt e e ekt e e st e e e e sa bt e e e e abe e e e sneeeesnnneeeean 16
2-1 CoMPIlEr-DEfINEA IMACTOSooueeititeiee ettt ettt ettt ettt et e et e s b bt eeae e e sa bt e saseesa b e e saneesabeesaneeabeeennneesbeeennneenns 18
2-2 HPrAgMA DIFECHIVESeeiiieiie ettt e e e e st e e e e e e b e e e e e e e e e ane e e e e e e e e e nnn e e e e e e e eannnnnee 19
2-3 o] T [=To [T= T o] o] o ISP PR 38
2-4 DifferenCeS IN SIZE Of TYPE ..c.eeiiiiie ittt sttt st e st e e s e e e eab e e st e e sabe e sareesareesaneenanis 47
2-5 Alignment ConditioNS (COT7BIKA)coi ittt s e s b e e e e aabe e e s aneeesrabeeeeenbeeesaes 48
2-6 Alignment ConditioNS (CABB0)......c.uueeiueeeiieeeiieeriee ettt ettt et e st e ebe e abe e e bt e e bt e ebe e e abeesbeesbeesaneeabeeeneean 48
2-7 Segments OULPUL DY COTBKAo ettt b e be e et e e rae e s be e e abe e e beeeanneesbreennnee e 61
2-8 SeCtions OUIPUL DY CABBO.........ueeiii ittt ettt et e e ettt s eaa e e s b b e e e e abe e e e eanee e e s bbeeesanbaeeesanneas 62
2-9 Library and HEadEr Fileo ettt e e s e s e e s e ean 63
3-1 Quasi-Directives and Control INSIIUCHIONSc.iiiiiiiiiie e e 65
4-1 [T S I T =T o7 1)Y= SRR 109
5-1 Translation LIMIt VAIUEcooo ettt et e e e e e e et e e e e e e e s e nnaeeeeaaeeesannnneeeeas 113
14 Application Note U15653EJ1VOAN

CHAPTER 1 OVERVIEW

This chapter gives an outline of the CC78K4, RA78K4, and CA850.

1.1 Product Form

The C compiler, CC78K4, and assembler and linker, RA78K4, are separated for the 78K/IV Series. In contrast, the
C compiler, assembler, and linker for the V850 Family are combined into one package, the CA850.

Table 1-1. Product Name

78K/IV Series V850 Family
C compiler package USxxxxCC78K4 USxxxxCA703000
Assembler package USxxxxRA78K4

Note, however, that the device file for both the 78K/IV Series and V850 Family must be purchased separately.

Application Note U15653EJ1VOAN

15

CHAPTER 1 OVERVIEW

1.2 Package Software
The CC78K4, RA78K4, and CA850 include the following programs.

Table 1-2. Package Software

Name"*® CC78K4, RA78K4 CA850
C compiler cc78k4 ca850
Assembler ra78k4 as850
Linker Ik78k4 |d850
ROMization processor - romp850
Object converter oc78k4 hx850
Hex converter
Librarian Ib78k4 ar850
Archiver
Structured assembler st78k4 -
List converter lcnv78k4 -
Dump directive - dump850
Disassembler - dis850
Section file generator - sf850
Performance checker - pc850
Cross-reference tool - cxref
Memory layout visualization tool - rammap

Note When two names are given, the name on the top is the one used in the RA78K4 and the name on the
bottom is the one used in the CA850.

16 Application Note U15653EJ1VOAN

CHAPTER 1 OVERVIEW

The development procedure of each program is as illustrated below.

Figure 1-1. Development Procedure

CC78K4/RA78K4 CA850
C source file Structured assemble C source file
source file i
| cc78k4 || st78k4 | | ca850

v

Assemble source file <

Assemble source file

| ra78kad as850
v
Object Object
| Ik78ka4 0850
Load module Load module
romp850
ROMization module
oc78k4 hx850
Hex code Hex code
| Ib78k4 | | arg50
| lenv78ka |
| dump850
| dis850
| 51850
| pc850
| cxref
| rammap

Application Note U15653EJ1VOAN

17

CHAPTER 2 C LANGUAGE

This chapter explains the points to be noted when rewriting a C source program for the CC78K4 into a program for
the CA850, and how to describe the program.
The CC78K4 and CA850 conform to the ANSI-C"*® Standard.
Note ANSI stands for American National Standards Institute
2.1 Compiler-Defined Macros

The following macros are defined in advance for the CC78K4 and CA850.

Table 2-1. Compiler-Defined Macros

CC78K4, RA78K4 CA850 Contents
_ LINE__ Line number of current source
__FILE__ Source file name
_ DATE__ Date of compiling source file (“mm dd yyyy”)
__TIME__ Time of compiling source file (“hh:mm:ss”)
__ STDC__ 1 in decimal numbers

(CC78K4: Defined when -ZA option is specified
CAB850: Defined when -ansi option is specified)

_ K4 _v850 1 in decimal numbers
_v850__ (macro indicating series name of devices)
CPU macro 1 in decimal numbers (macro indicating CPU of target)
 4038_ 3003 Examples of uPD784038 and uPD703003 are shown.

By using these compiler-defined macros, descriptions for the CC78K4 and those for the CA850 can exist together
in a C source program.

<Example>
#ifdef K4
#pragma sfr /* Description for CC78K4 */
#endif
#ifdef _ v850
pragma ioreg /* Description for CA850 */
#endif

18 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.2 #pragma Directive

The #pragma directives instruct the compiler to run using the method defined by the compiler. The CC78K4 and

CA850 have the following #pragma directives.

Table 2-2. #pragma Directives

No. Function CC78K4 CA850
1 Use of special function register name #pragma sfr #pragma ioreg
2 Description of assembler instruction #pragma asm #pragma asm
#pragma endasm
3 Interrupt function #pragma vect #pragma interrupt
#pragma interrupt
4 Specification of interrupt disabled Interrupts are disabled before #pragma block_interrupt
function preprocessing if DI(); is described at
the beginning of a function"".
5 Control of interrupt disabling (DI/EI) #pragma di #pragma directive is not necessary.
#pragma ei
6 CPU control instructions #pragma halt #pragma directive is not provided.
#pragma stop Description using assembler
#pragma nop instruction
#pragma brk
7 Absolute address access #pragma access None
8 Change of section name #pragma section #pragma section
#pragma text
9 Change of module name #pragma name None
10 Specification of inline expansion None #pragma inline
11 Use of rotate function #pragma rot None
12 Use of multiplication function #pragma mul None
13 Use of division function #pragma div None
14 Use of data insertion function #pragma opc #pragma directive is not provided.
Description by assembler instruction
15 Specification of interrupt handler #pragma rtos_interrupt #pragma directive is not provided.
supporting real-time OS Description by assembler instruction
16 Specification of real-time OS function #pragma rtos_task #pragma rtos_task
17 Specification of device type #pragma pc #pragma cpu
18 Structure packing None #pragma pack

Note To describe DI();, the #pragma di directive is necessary.

Application Note U15653EJ1VOAN

19

CHAPTER 2 C LANGUAGE

2.2.1 Use of special function register name (peripheral function register name)
To rewrite a description for the CC78K4 into one for the CA850, change “sfr” to “ioreg”.

[CC78K4]

Using the #pragma directive, declare that a special function register name is used in the C source.
#pragma sfr

[CA850]

Using the #pragma directive, declare that a peripheral function register name is used in the C source.
#pragma ioreg

2.2.2 Description of assembler instruction

There are two ways to describe assembler instructions in the C source program, for both the CC78K4 and CA850.

[CC78K4]
(1) Toinsert one line

Declare use of _asm using the #pragma directive.
#pragma asm

Describe the assembler instruction in the C source in the following format.
_asm (character string literal);

<Example>

#pragma asm
void main (void)
{

__asm("\tMOV\tA,B");

(2) To insert two or more lines

Indicate the start of the assembler instruction by #asm, and the end by #endasm.
Then, describe the assembler instruction between #asm and #endasm.
#asm
assembler instruction
#endasm

<Example>

#asm
MOV A,B

#endasm

20 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

[CA850]
(1) To insert one line
Describe the assembler instruction in the C source in the following format.
__asm (character string constant);
or,
_asm (character string constant);
When specifying the —ansi option, however, use the __asm format.

<Example>

__asm("\tmov\trl0,rll");

(2) To insert two or more lines

Indicate the start of the assembler instruction by #pragma asm, and the end by #pragma endasm.

Then, describe the assembler instruction between #pragma asm and #pragma endasm.
#pragma asm
assembler instruction
#pragma endasm

<Example>

#pragma asm
mov rl0,rll

#pragma endasm

Application Note U15653EJ1VOAN

21

CHAPTER 2 C LANGUAGE

2.2.3 Interrupt function

When defining an interrupt function using the #pragma directive, the address of the interrupt function is output to an
interrupt vector (handler) in the case of the CC78K4, and a branch instruction to the interrupt function is output to an
interrupt vector (handler) in the case of the CA850.

When replacing a description for the CC78K4 with one for the CA850, note the differences in interrupt request
names (which differ depending on the microcontroller).

[CC78K4]
Use the #pragma directive to specify an interrupt request name, function name, stack selection, register, and
saving/restoring the saddr2 area to be used.
#pragma vect interrupt request name function name [, stack selection specification]
stack use specification [{specification without change}] register bank specification
or,
#pragma interrupt interrupt request name function name [, stack selection specification]
stack use specification [{specification without change}] register bank specification
Two types of interrupt function qualifiers are available.
Non-maskable/maskable interrupt function
__interrupt function definition or function declaration
Software interrupt function
__interrupt_brk function definition or function declaration

<Example>

#pragma interrupt INTPO intl
#pragma vect INTP1l int2 sp=buff+10 RB1
#pragma interrupt BRK I int b RB2

__interrupt
void intl (void)

{

___interrupt

void int2 (void)

{

}
__interrupt brk

void int b (void)

{

22 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

[CA850]
Specify an interrupt request name, function name, and placement method using the #pragma directive.

#pragma interrupt interrupt request name function name [placement method]
The interrupt function qualifier is as follows.

__interrupt function definition or function declaration
However, the qualifier is as follows for multiple interrupts.

__multi_interrupt function definition or function declaration

<Example>

#pragma interrupt INTP110 intl
#pragma interrupt INTP111l int2 direct

#pragma interrupt INTP112 int3

__interrupt
void intl (void)

{

__interrupt

void int2 (void)

{

}

_ multi interrupt
void int3(void)

{

Application Note U15653EJ1VOAN

23

CHAPTER 2 C LANGUAGE

2.2.4 Specification of interrupt disabled function

The entire function is disabled from being interrupted.

When porting from the CC78K4 to the CA850, specify the name of the function to be disabled from being
interrupted using the #pragma directive, instead of using the interrupt functions DI() and EI().

[CC78K4]
Interrupts are disabled before preprocessing if DI() is described at the beginning of a function.

<Example>

#pragma DI
#pragma EI

void funcl (void)
{

DI();

EI();

[CA850]
Specify a function name using the #pragma directive.
#pragma block_interrupt function name

<Example>

#pragma block interrupt funcl

void funcl (void)

{

24 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.2.5 Control of interrupt disabling
Interrupt functions are provided in both the CC78K4 and CA850. To use these functions in the CC78K4, however,
the #pragma directive is necessary. The directive is not necessary in the CA850.

[CC78K4]
Specify that DI() and EI() are used as interrupt functions using the #pragma directive.
#pragma di
#pragma ei
Describe the functions in the C source in the same manner as calling a function.
DI();
EI();

<Example>

#pragma DI
#pragma EI

void func2 (void)

{

DI();

EI();

[CA850]
A function to control interrupt disabling is provided. The #pragma directive is not necessary.
__DI();
__EI);

<Example>

void func2 (void)

{

DI();

__EI();

Application Note U15653EJ1VOAN 25

CHAPTER 2 C LANGUAGE

2.2.6 CPU control instructions

The CC78K4 has CPU control instructions that control the CPU on the C source program (HALT, STOP, BRK, and
NOP).

The CA850 does not have such instructions. Describe assembler instructions instead.

[CC78K4]
Using the #pragma directive, specify that the HALT(), STOP(), BRK(), and NOP() instructions are used as
interrupt functions.
#pragma halt
#pragma stop
#pragma brk
#pragma nop
Describe the instructions in the C source in the same manner as calling a function.
HALT();
STOP();
BRK();
NOP();

<Example>

#pragma HALT
#pragma STOP
#pragma BRK
#pragma NOP

HALT () ;
STOP () ;
BRK() ;

NOP () ;

[CA850]
No CPU control instructions are available. Describe assembler instructions.

halt, trap, nop

<Example>

__asm("\thalt");
__asm("\ttrap\t0ox00") ;

__asm("\tnop") ;

26 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.2.7 Absolute address access

The CC78K4 has a function for accessing absolute addresses.

The CA850 does not have such a function. Access absolute addresses using a pointer.

[CC78K4]

Using the #pragma directive, specify that a function for absolute address access is used.

#pragma access

Describe the function in the C source in the same manner as calling a function.
The names of the functions for accessing absolute addresses are the following four.

peekb:
peekw:
pokeb:
pokew:

<Example>

Returns 1 byte of the contents of the address of the argument.
Returns 2 bytes of the contents of the address of the argument.
Writes 1 byte to the address of the argument.

Writes 2 bytes to the address of the argument.

#pragma access

int datal,data2;

char cdatal, cdata2;

cdatal = peekb
datal = peekw
pokeb (0xfe20

pokew (0xfe20

[CA850]

No function for accessing absolute addresses is available. Use a pointer as shown below.
Also use the sample in Example 2 for reference.

<Example 1>

int datal,data2;
char cdatal, cdata2;
char *p;

int *q;

cdatal = *((char *)0x1234);

datal = *((int *)0x1234);

p = (char *)0xffe000;
P o= 5;
q = (int *)0xffe000;

*q = Oxffff;

Application Note U15653EJ1VOAN

27

CHAPTER 2 C LANGUAGE

28

<Example 2>

unsigned char peekb (unsigned int) ;
unsigned short peekh(unsigned int) ;

unsigned int peekw (unsigned int) ;

void pokeb (unsigned int,unsigned char);
void pokeh (unsigned int,unsigned short) ;

void pokew (unsigned int,unsigned int) ;

unsigned char peekb (unsigned int adr)

{

return * ((unsigned char *)adr);

unsigned short peekh(unsigned int adr)

{

return *((unsigned short *)adr);

unsigned int peekw(unsigned int adr)

{

return *((unsigned int *)adr);

void pokeb (unsigned int adr,unsigned char val)

{

unsigned char *p;

p = (unsigned char *)adr;

*p = val;

void pokeh(unsigned int adr,unsigned short wval)

{

unsigned short *p;

p = (unsigned short *)adr;

*p = val;

void pokew (unsigned int adr,unsigned int val)

{

unsigned int *p;

p = (unsigned int *)adr;

*p = val;

Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.2.8 Change of section name
Although section of the #pragma directive is the same, the character string to be specified after that differs.

[CC78K4]
Specify the section name to be changed, a new section name, and the start address of the section using the
#pragma directive.
#pragma section compiler output section name section name to be changed [AT start address]

<Example>

#pragma section @@CODE CODESEG
/* Changes segment name @@CODE to CODESEG */
#pragma section @@DATA DATASEG AT OFFE1O0H

/* Changes segment name @@DATA to DATASEG and allocates it to address OFFE10H */

[CA850]

Using the #pragma directive, specify a section name for data or a module.
If no section name is specified, the default section name is assumed.
Data

#pragma section section type [“section name”] begin

declaration of variable/constant

#pragma section section type [“section name”] end
Module

#pragma text [“section name”] [function name]

Allocation can be specified for the following data section types.
tidata (.tidata section, .tibss section)
.data (.data section, .bss section)
.sdata (.sdata section, .sbss section)
.sedata (.sedata section, .sebss section)
.sidata section (.sidata section, .sibss section)
.sconst section
.const section
A section name can be specified for the following section types.
.data (.data section, .bss section)
.sdata (.sdata section, .sbss section)
.const section
.sconst section

Application Note U15653EJ1VOAN 29

CHAPTER 2 C LANGUAGE

<Example>

#pragma section sconst begin
const int const data=10;
#pragma section sconst end
/* Allocates const data variable to .sconst section */
#ipragma section data "dlsec" begin
int data_data;
#ipragma section data "dlsec" end

/* Allocates data_data variable to dlsec.bss section of data attribute */

#pragma text "flsec" funcl

/* Allocates funcl function to flsec.text section */

2.2.9 Change of module name
A module name cannot be changed in the CA850.

[CC78K4]
Specify a module name using the #pragma directive.

#pragma name module name

<Example>

#pragma name new_name

[CA850]
Not provided

2.2.10 Specification of inline expansion
With the CC78K4, a user-defined function cannot be expanded inline. With the CA850, inline expansion of a user
function can be specified by the #pragma directive.

[CC78K4]
Not provided

[CA850]
Using the #pragma directive, specify inline expansion of each function.

#pragma inline function name [,function name...]

<Example>

#pragma inline func

30 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.2.11 Use of rotate function

The V850 Family does not have an instruction that rotates data. Therefore, the CA850 does not have a rotate

function. To rotate data, create an assembler program by referring to the example below.

[CC78K4]

Using the #pragma directive, specify that a code to be rotated is directly expanded inline and output, instead of

calling a function.
#pragma rot

Describe the function name in the C source in the same manner as calling a function.

The rotate function names are the following four.
rorb
rolb
rorw
rolw

<Example>

#pragma rot

ucdata3 = rorb (ucdatal,ucdata2) ;
ucdata3d = rolb(ucdatal,ucdata2) ;
uidata3 = rorw(uidatal,ucdata2) ;

uidata3 = rolw(uidatal,ucdata2) ;

[CA850]

No rotate function is available. To rotate a variable, create a program by referring to the sample below.

However, inline expansion is not executed.

<Example>

Prototype declaration in C source

unsigned char rorb (unsigned char,unsigned char) ;
unsigned char rolb(unsigned char,unsigned char) ;
unsigned short rorh(unsigned short,unsigned char) ;
unsigned short rolh(unsigned short,unsigned char) ;
unsigned int rorw(unsigned int,unsigned char) ;

unsigned int rolw(unsigned int,unsigned char) ;

Application Note U15653EJ1VOAN

31

CHAPTER 2 C LANGUAGE

Assembler description (1/2)

.globl
.globl
.globl
.globl
.globl
.globl

.file

.text
-- lbyte variable

.align
_rorb:

shr

bnc

or
rorbl:

add

mov

bnz
jmp [1p]

.align
_rolb:

add
rolbl:

shl

st.h

tstl

or
rolb2:

add
mov
rolbl
4,sp

bnz
add

jmp [1p]

-- 2byte variable

.align
_rorh:

bnc
rorhl:

mov

jup [1p]

_rolh:

_rorb
_rolb
_rorh
_rolh
_rorw

_rolw

"rot.s"

rotation --
4

1,r6
rorbl
0x00000080,r6

-1,x7
r6,rl0
_rorb

-4,sp

1,r6

r6, [spl
0,1[sp]

rolb2
0x00000001, r6

-1,r7

r6,rl0

rotation --

4

shr 1,r6
rorhl

or 0x00008000, r6
add -1,r7
r6,rl0

bnz _rorh
.align 4

add -4,sp

32

Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

Assembler description (2/2)

rolhl:
shl 1,r6
st.w ré6, [spl]
tstl 0,2[spl
bz rolh2
or 0x00000001, r6
rolh2:
add -1,r7
mov r6,rl0
bnz rolhl
add 4,sp

jmp [1p]

-- 4byte variable rotation --

.align 4

_rorw:
shr 1,ré6

bnc rorwl

or 0x80000000,r6
rorwl:

add -1,r7

mov r6,rl0

bnz _rorw

jmp [1p]

.align 4
_rolw:

shl 1,r6

bnc rolwl

or 0x00000001, r6
rolwl:

add -1,r7

mov r6,rl0

bnz _rolw

jmp [1p]

Application Note U15653EJ1VOAN

33

CHAPTER 2 C LANGUAGE

2.2.12 Use of multiplication function
The CA850 does not have a multiplication function. Describe multiplication using the value of an expression.

[CC78K4]
Using the #pragma directive, specify that a code to be multiplied is directly expanded inline and output, instead
of calling a function.
#pragma mul
Describe the function name in the C source in the same manner as calling a function.
The multiplication function names are the following three.
mulu
muluw
mulw

<Description>

#pragma mul
uidata3 = mulu(ucdatal,ucdata2) ;
uldata3 = muluw(uidatal,uidata2) ;

ldata3 = mulw(idatal, idataz2) ;

[CA850]
No function for inline expansion is available.
Describe multiplication in the form of an expression (* operator), not in the form of a function.
Be careful of the size of the argument assigned as the argument of muluw or mulw because int type and long
type are 4 bytes (int type must be short type).

34 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.2.13 Use of division function
The CA850 does not have a division function. Describe division using the value of an expression.

[CC78K4]
Using the #pragma directive, specify that a code to be divided is directly expanded inline and output, instead of
calling a function.
#pragma div
Describe the function name in the C source in the same manner as calling a function.
The division function names are the following two.
divuw
moduw

<Example>

#pragma div
uidata3d = divuw(uidatal,ucdata2) ;

ucdata3 = moduw (uidatal,ucdata2) ;

[CA850]
No function for inline expansion is available.
Describe division in the form of an expression (/operator or %operator), not in the form of a function.

2.2.14 Use of data insertion function
The CA850 does not have a data insertion function. Describe data insertion using the assembler.

[CC78K4]
Using the #pragma directive, specify use of a function for data insertion.
#pragma opc
Describe the function in the C source in the same manner as calling a function.
__OPC (data value [, data value ...]

<Example>

#pragma opc

__OPC (0xBF, 0x12) ;

[CA850]

No function for data insertion is available. Describe data insertion using an assembler quasi-directives.

<Example>

__asm(".byte O0xBF,0x12");

Application Note U15653EJ1VOAN 35

CHAPTER 2 C LANGUAGE

2.2.15 Specification of interrupt handler supporting real-time OS
With the CA850, a directly activated interrupt handler cannot be described in C language. It must be described

using the assembiler.

[CC78K4]
Using the #pragma directive, specify an interrupt request name, function name, and stack selection.
#pragma rtos_interrupt interrupt function name function name [,stack selection specification]
The interrupt function qualifier is as follows.
Non-maskable/maskable interrupt function
__rtos_interrupt function definition or function declaration

<Example>

#pragma rtos_interrupt INTP3 int4 sp=buff+10
__rtos_interrupt
void int4 (void)

{

ret_int();

[CA850]
No #pragma directive is available. The handler must be described using the assembler.
The RX850 and RX850 Pro have macros for directly activated interrupt handlers. Describe a directly activated
interrupt handler as illustrated below.
The RX850 and RX850 Pro have more than one method of description, depending on the return processing.
For details, refer to the user's manual of the real-time OS.

<Example>

Return by reti in RX850

#include "stdrx.inc"
.section " INTP123"
jr _inthdr
.text
.align 4
.globl _inthdr

_inthdr:

RTOS_IntEntry

RTOS IntExit

36 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.2.16 Specification of real-time OS function
The description format is the same in the CC78K4 and CA850.

[CC78K4]

Using the #pragma directive, the function name specified is interpreted as a task for the real-time OS.

#pragma rtos_task task function name

[CA850]

Using the #pragma directive, the function name specified is interpreted as a task for the real-time OS.

#pragma rtos_task task function name

There is no difference between the CC78K4 and CA850.

<Example>

#ipragma rtos_task func4

void func4 (void)

{

ext_tsk();

2.2.17 Specification of device type
To replace a description for the CC78K4 with one for the CA850, change “pc” to “cpu”.
When specifying a device, use a blank instead of parentheses.

[CC78K4]
Specify a device type using the #pragma directive.

#pragma pc (device type)

<Example>

#pragma pc(4038)

[CA850]
Specify a device type using the #pragma directive.
#pragma cpu device type

<Example>

#pragma cpu 3003

Application Note U15653EJ1VOAN

37

CHAPTER 2 C LANGUAGE

2.2.18 Structure packing
The CC78K4 does not have a structure packing function. Structures are justified and an area is reserved.

[CC78K4]
Not provided

[CA850]
The value specified by the #pragma directive is used as the current packing value. The specified value is valid
until the next #pragma pack directive appears.
#pragma pack (packing value)

<Example>

#pragma pack (1)
struct{
char datal;
short data2;

char data3;

2.3 Extended Descriptions

Extended descriptions are used to realize functions peculiar to a device. The extended descriptions of the CC78K4
and CA850 are as follows.

Table 2-3. Extended Descriptions

No. Function CC78K4 CA850
1 callt function callt/ __callt None
2 Register variable register register
3 Use of saddr area sreg/__sreg/ __sregl None
4 noauto function noauto None
5 norec function norec None
6 Bit type variable bit/boolean / __boolean/ __boolean1 Bit field
7 Bit access Variable name. bit position Union and bit field
8 callf function callf / __callf None
9 Binary constant ObXXXXXXXX ObXXXXXXXX
10 Interrupt level None __set_l
11 Pascal function __pascal None

38 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.3.1 callt function
The CA850 has a callt instruction only for the V850E. However, use an ordinary function in the CA850.

[CC78K4]
callt/__callt stores the address of a function to be called in an area called callt (0x40 to 0x7f) to make it
possible to call a function with a code shorter than that used to directly call the function.
The callt instruction is used to call a function.
The description format is as follows.
callt type name function name
__callt type name function name

<Example>

callt void func (void)

{

[CA850]
The V850E has a callt instruction, but the compiler uses the callt instruction only during the runtime of the
prologue and epilogue of a function.
Therefore, use an ordinary function.

<Example>

void func(void)

{

2.3.2 Register variables

A register variable is described in the same manner in both the CC78K4 and CA850, but a variable is allocated to a
register differently. If optimization is specified in the CA850, even a variable declared by register may not be allocated
to a register.

[CC78K4]
Variables declared by register are allocated to a register (RP3 or VP) or the saddr2 area.
When the -ZO option is specified, the variables are allocated in the sequence in which they were declared. If
the -ZO option is not specified, they are allocated in the order of the number of times they were referenced.
The description format is as follows.
register type name variable name

Application Note U15653EJ1VOAN 39

CHAPTER 2 C LANGUAGE

[CA850]

Variables declared by register are allocated to registers for register variables in the sequence in which they
were declared. If optimization is specified, however, a variable that has been referenced fewer times may not
be allocated.
The description format is as follows.

register type name variable name

<Example>

int func(void)

{

register int reg a,reg b;

2.3.3 Using saddr area

It is recommended to locate the saddr2 area of the 78K/IV Series to the .tidata/.tibss section of the CA850. The

tidata section can be accessed by a 2-byte instruction (sld/sst).

40

[CC78K4]

External variables declared by sreg or __sreg and static variables in a function are relocatable and
automatically allocated to the saddr2 area.
Variables declared by __sreg1 are relocatable and automatically allocated to the saddr1 area.
The description format is as follows.
sreg type name variable name
__sreg type name variable name
__sreg1 type name variable name

<Example>

sreg intsreg datal,sreg datal,sreg_data2;

[CA850]

Not provided.
Using the #pragma section directive, allocate external variables to the .tidata/.tibss section of the internal RAM.
#pragma section tidata begin
type name variable name
#pragma section tidata end

<Example>

#pragma section tidata begin
int sreg data0l,sreg datal,sreg_data2;

#pragma section tidata end

Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.3.4 noauto function
The CA850 does not have a noauto function. Use an ordinary function.

[CC78K4]
The noauto function restricts an automatic variable from outputting a code for pre- and post-processing
(creation of stack frame).
The description format is as follows.
noauto type name function name

<Example>

noauto void func (void)

{

[CA850]
No noauto function is available.
Use an ordinary function.

<Example>

void func(void)

{

2.3.5 norec function
The CA850 does not have a norec function. Use an ordinary function.

[CC78K4]
A function that does not call an other function from itself can be used as a norec function.
The norec function does not output a code for pre- and post-processing of a function (creation of stack frame).
All arguments are allocated to the saddr2 area for register and norec function arguments.
The description format is as follows.
norec type name function name

<Example>

norec void func (void)

{

Application Note U15653EJ1VOAN 41

CHAPTER 2 C LANGUAGE

[CA850]
No norec function is available.
Use an ordinary function.

<Example>

void func (void)

{

2.3.6 Bit type variable
The CA850 cannot define bit type variables. Describe them by using a bit field.

[CC78K4]
bit, boolean, and __boolean type variables are treated as 1-bit data and allocated to the saddr2 area.
The __boolean1 type variable is treated as 1-bit data and allocated to the saddr1 area.
bit, boolean, __boolean, and __boolean1 type variables are treated in the same manner as an external
variable without a default value (undefined).
The description format is as follows.
bit variable name
boolean variable name
__boolean variable name
__boolean1 variable name

<Example>

boolean bitl,bit2,bit3;
void func (void)
{

bitl = 1;

bit2 = bit3;

42 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

[CA850]
Not provided.
Use a bit field.
structf{
unsigned char f0:1;
unsigned char f1:1;
unsigned char fo:1;
unsigned char 3:1;
unsigned char f4:1;
unsigned char 5:1;
unsigned char f6:1;
unsigned char f7:1;
2
<Example>

struct bitf{
unsigned int bitl:1;
unsigned int bit2:1;
unsigned int bit3:1;

}bitfield;

void func(void)

{
bitfield.bitl = 1;
bitfield.bit2 = bitfeeld.bit3;

2.3.7 Bit access
The CA850 cannot define a bit access using a type variable. Use a bit field to describe a bit access.

[CC78K4]
The description format is as follows.

variable name.bit position

<Example>

unsigned char data;
void func (void)
{
data = Oxff;
data.l = 0;

Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

[CA850]
Not provided.
Use a union and a bit field.

<Example>

union{
unsigned char cdata;
struct{
unsigned char bito0:

unsigned char bitl:

unsigned char bit2:

unsigned char bit3:

unsigned char bit4:
unsigned char bit5:

unsigned char bité:

[R R R =

unsigned char bit7:1;

}bitfield;
}data;

void func (void)

{

data.cdata = Oxff;

data.bitfield.bitl = 0;

2.3.8 callf function
The V850 Family does not have an instruction equivalent to the callt instruction. Use an ordinary function.

[CC78K4]
callf/__callf can call a function using the callf instruction with a code shorter than when using the call
instruction.
The description format is as follows.
callf type name function name
__callf type name function name

<Example>

callf void func(void)

{

44 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

[CA850]
No callf function is available.
Use an ordinary function.

<Example>

void func(void)

{

2.3.9 Binary constant
The description format is the same in both the CC78K4 and CA850.

[CC78K4] [CA850]
Binary constants can be described where integer constants can be described.
The description format is as follows.
Ob binary constant
OB binary constant

<Example>

ucdatal = 0b00010001;
ucdata2 = 0B11110000;

Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.3.10 Specification of interrupt level

The CA850 allows the description of an interrupt level specification.

[CC78K4]
Not provided

[CA850]
A function for controlling the interrupt level (INT level) is available.
An integer value of —1 to 8 can be specified as the interrupt priority level.
Specify an interrupt request name from the maskable interrupts defined in the device file under “interrupt
request name”.
If —1 is specified as the interrupt priority level, acknowledgement of maskable interrupts is disabled. If O is
specified, it is enabled.
The description format is as follows.
__set_il (interrupt priority level, “interrupt request name”)
The meaning of a value of the interrupt priority level is as follows.
—1: Disables acknowledgement of maskable interrupts.
0: Enables acknowledgement of maskable interrupts.
1t0 8: Sets interrupt priority level 0 to 7.
Note that the specified value is the value of the level plus 1.

<Example>

When the priority level of the interrupt request name INTP110 is 1

__set_il(2,"INTP110");

2.3.11 Pascal function

46

The CA850 does not have a Pascal function. Use an ordinary function.

[CC78K4]
The Pascal function generates a code to correct the stack used by piling up arguments when a function is
called on the called function side, instead of on the function calling side.
When a function is declared, the __pascal attribute is prefixed.

<Example>

pascal void func(void) ;

void func (void)

{

Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

[CA850]
No Pascal function is available.
Use an ordinary function.

<Example>

void func (void) ;

void func(void)

{

2.4 Size and Alignment Conditions of Variables

The CC78K4 and CA850 differ in the size of the area reserved by RAM and the alignment conditions of variables,
even when the type is the same.

2.4.1 Size of variable type
The differences in the size of the variable types in the CC78K4 and CA850 are as follows.

Table 2-4. Differences in Size of Type

Type CC78K4 CA850
char 1 byte 1 byte
short 2 bytes 2 bytes
int"* 2 bytes 4 bytes
long 4 bytes 4 bytes
float 4 bytes 4 bytes
double 4 bytes 4 bytes

Note Note that the size of the int type differs.

Application Note U15653EJ1VOAN 47

CHAPTER 2 C LANGUAGE

2.4.2 Alignment conditions

The alignment conditions of variables differ in the CC78K4 and CA850 as follows.

[CC78K4]
Table 2-5. Alignment Conditions (CC78K4)
Option Alignment Condition
Default Byte boundary alignment
-RA option 2-byte boundary alignment for external variables of 2 bytes or more (except
variables allocated to saddr area)
[CA850]
Table 2-6. Alignment Conditions (CA850)
Type Size Alignment Condition
Basic type | (unsigned) chart and its array Byte boundary

(unsigned) short and its array 2-byte boundary
Other basic types (including pointer) 4-byte boundary

Union 2 bytes < size 4-byte boundary
Size < 2 bytes Maximum member size boundary

Structure 2 bytes < size 4-byte boundary

Size < 2 bytes 4-byte boundary
If member of type greater than int type
exists
Size < 2 bytes 2-byte boundary
If member greater than int type does not
exist and if 1 byte < size of type < 2 bytes
Size < 2 bytes Byte boundary
If member greater than int type does not
exist and if size of type < 1 byte

<Example 1>

struct STO {
char
int
short

int

}STodata;

data00;
data01l;
data02;
data03;

48

Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

The image on RAM is as shown below.

Oxxxx10

OXXXXXC

OxxXXxx8

Oxxxxx4

Oxxxxx0

Figure 2-1. RAM Image of Example 1

[CC78K4]

data03

data02

data01

data00

[CA850]

data03

Align hole
(2 bytes)

data02

data01

Align hole
(3 bytes)

data00

Because the size of this structure includes an align hole, it is 7 bytes in the CC78K4 and 16 bytes in the

CA850.

The alignment condition of the structure is 1-byte alignment in the CC78K4 and 4-byte alignment in the CA850.
The number of align holes can be decreased by defining the size of variables, starting from the greatest, as

follows.

<Example 2>

struct STO
int
int
short

char

}STodata;

data01l;
data03;
data02;
data00;

Application Note U15653EJ1VOAN

49

CHAPTER 2 C LANGUAGE

The image on RAM is as shown below.

Figure 2-2. RAM Image of Example 2

[CC78K4] [CA850]
Oxxxx10
oxoxxe |]
___________ Align hole (1 byte)
___________ data00
U I data02
data00
Oxxxxx4 dataO2 | data03
data03
0xxxxx0 data0t | dataO1

The size of this structure is 7 bytes in the CC78K4 and 12 bytes in the CA850.

2.5 Startup Routine (Startup Module)

This section compares the large model of the CC78K4 with the contents of the default startup routine (startup
module) of the CA850 by function. Use this section for reference when customizing a startup routine.
For the flow of the program (whole program), refer to the manual of each compiler.

50 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.5.1 Setting module name and loading include file
The CC78K4 sets a module name and loads an include file. The CA850 does not have such processing.

[CC78K4]

NAME @cstart

SINCLUDE (mod.inc)

[CA850]
Not provided

2.5.2 Setting library switch

The CC78K4 allows the startup routine to be changed to accord with the library used. Therefore, symbols
corresponding to the library used are defined.

The CA850 does not have such processing.

[CC78K4]
BRKSW EQU 1 ;brk, sbrk,calloc, free,malloc,realloc function use
EXITSW EQU 1 ;exit,atexit function use
RANDSW EQU 1 ;rand,srand function use
DIVSW EQU 1 ;div function use
LDIVSW EQU 1 ;1div function use
STRTOKSW EQU 1 ;strtok function use

[CA850]
Not provided

2.5.3 Defining symbols

The CC78K4 has symbols that are used when the standard library is used, but the CA850 does not have such
symbols.

If the V850E is specified in the CA850, a symbol must be defined to specify the runtime library code of the
prologue/epilogue of a function.

[CC78K4]

Start/end symbols of startup routine
PUBLIC _@cstart,_ @cend
Symbols used when standard library is used
PUBLIC _errno, @BRKADR, @MEMTOP, @MEMBTM
PUBLIC _@FNCTBL, @FNCENT, @SEED, @DIVR, @LDIVR, @TOKPTR
Symbols for stack resolution
EXTRN _@STBEG
Symbols of main module
EXTRN _main, hdwinit, exit
Symbols for ROMization processing
EXTRN _?R_INIT, ?R_INIS, ?R INS1, ?DATS, ?DATS1, ?DATA

Application Note U15653EJ1VOAN 51

CHAPTER 2 C LANGUAGE

[CA850]

Start/end symbols of startup routine

.globl ___start
.globl _ exit
.globl ___startend

Symbols automatically generated by link editor
.extern _ tp TEXT, 4
.extern = gp DATA, 4
.extern = ep DATA, 4
Start/end symbols of section
.extern _ ssbss, 4
.extern __ esbss, 4
.extern _ sbss, 4
.extern _ ebss, 4
Symbol of main module
.extern _main

Symbols used to generate runtime library code of prologue/epilogue of function (V850E only)

.globl PROLOG_TABLE

2.5.4 Reserving area for library
With the CA850, a heap area must be reserved only when the storage area management library of the standard
library is used.

[CC78K4]
@@DATA DSEG
_@FNCTBL: DS 3*32
_@FNCENT: DS 2
_@SEED: DS 4
_@DIVR: DS 4
_@LDIVR: DS 8
_@TOKPTR: DS 3
_errno: DS 2
_@BRKADR: DS 3
_@MEMTOP: DS 48
_@MEMBTM:

[CA850]

Set a heap area as follows to use the storage area management library of the standard library. This
description can be made in the C source, instead of the startup routine.

.sbss

..comm ___sysheap, HEAPSIZE, 4
.sdata

.globl _ sizeof sysheap

sizeof sysheap:

.word HEAPSIZE

52 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.5.5 Reserving stack area
The CC78K4 can reserve a stack area using the linker but an area must be explicitly reserved for the CA850.

[CC78K4]
No description of a stack area is available.
By specifying the -S option using the linker, the maximum address area of the memory area is found and the
_@STBG and _@STEND symbols are generated.

[CA850]
.set STACKSIZE, 0x200
.bss
. lcomm __stack, STACKSIZE, 4

Caution Be sure to reserve a stack in 4-byte units.

2.5.6 Setting reset vector
Setting a reset vector cannot be described using the #pragma directive in either the CC78K4 or the CA850. The
startup routine therefore includes this description.

[CC78K4]
@@VECT00 CSEG AT OH
Dw _@cstart
[CA850]
.section "RESET", text
jr __start

2.5.7 Setting location

The location instruction of the 78K/IV Series is not provided in the V850 Family.

[CC78K4]

LOCATION OFH

[CA850]
Not provided

Application Note U15653EJ1VOAN

53

CHAPTER 2 C LANGUAGE

2.5.8 Setting register bank
The register bank of the 78K/IV Series is not provided in the V850 Family.

[CC78K4]
SEL RBO
[CA850]
Not provided

2.5.9 Setting stack pointer

The CC78K4 sets a symbol generated by the linker to the stack pointer.

The CA850 adds the size of the stack to the symbol at the beginning of the area explicitly reserved and sets the
result to the stack pointer.

[CC78K4]

MOVG SP,# @STBEG

[CA850]

mov # stack+STACKSIZE, sp

2.5.10 Setting general-purpose registers

The CA850 accesses a program and variables by using a relative address calculated from a register value.
Therefore, general-purpose registers must be set.

These registers must also be set when the mask register function is used.

[CC78K4]
The registers do not have to be set in the case of the large model. For the medium and small models, refer to
the sample below.

[CA850]
mov # tp TEXT, tp: -- Setting of text pointer
mov # gp DATA, gp: --
add tp, gp: -- Setting of global pointer
mov # ep DATA, ep: -- Setting of element pointer
mov Oxff, r20: -- Setting of mask register (byte)
mov Oxffff, r2l: - - Setting of mask register (halfword)

It is assumed that “use of the offset from the text pointer as the global pointer” is specified in the link directive
file. Therefore, tp and gp are added and substituted for gp.
The mask registers (r20 and r21) are necessary only when use of the mask registers is specified by an option.

54 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.5.11 Setting special registers
The CA850 requires special registers to be set only when the V850E generates the runtime library code of the
prologue/epilogue of a function.

[CC78K4]
Not provided

[CA850]
Set the CALLT table pointer as follows to generate the runtime library code of the prologue/epilogue of a
function (V850E only).

mov # PROLOG TABLE, rl2

ldsr rl2, 20

2.5.12 Calling hardware initialization function

The CC78K4 allows a hardware initialization function to be called so that customization can be made by the user,
but the CA850 does not. To initialize the hardware, call a function in the same manner as in the CC78K4, or describe
a function call in the startup routine.

[CC78K4]

CALL 11 _hdwinit

[CA850]
Not provided

Application Note U15653EJ1VOAN 55

CHAPTER 2 C LANGUAGE

2.5.13 Setting default value of standard library

The CC78K4 requires the default values of symbols to be set when the standard library is used, but the CA850
does not.

When using the standard library in the CA850, however, ROMization processing (romp850) is necessary because
variables with a default value exist.

[CC78K4]
SUBW AX,AX
MOVW !l _errno,AX ;errno <- 0
MOVW !'l_@FNCENT, AX ; FNCENT <- 0
MOVW !'l @SEED+2,AX
MOVW !l _@SEED, #1 ;SEED <- 1
MOVG WHL, # @MEMTOP
MOVG !'! @BRKADR, WHL ;BRKADR <- #MEMTOP
[CA850]
Not provided

2.5.14 ROMization processing

With the CC78K4, ROMization processing is described in the startup module. With the CA850, the ROMization
library must be called at the part of the C source that is executed first (beginning of the main function).

To expand the memory, set the necessary peripheral function registers before calling the ROMization library.

[CC78K4]
(1/2)
; copy external variables having initial value
MOVG TDE, # @INIT
MOVG WHL,# @R _INIT
LINIT1:
SUBG WHL,# ?R_INIT
BE SLINIT2
ADDG WHL, #_?R_INIT
MOV A, [HL+]
MOV [DE+],A
BR SLINIT1
LINIT2:

; copy external variables which doesn't have initial value

MOVG TDE, #_ @DATA

MOVG WHL, # ?DATA

MOV A, #0
LDATAL:

SUBG WHL, TDE

BE SLDATA2

ADDG WHL, TDE

56 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2/2)

MOV [DE+] ,A
BR $LDATAL
LDATA2:

; copy sreg variables having initial wvalue

MOVG TDE, # @INIS

MOVG WHL, # @R_INIS
LINIS1:

SUBG WHL, # ?R_INIS

BE $LINIS2

ADDG WHL, # ?R_INIS

MOV A, [HL+]

MOV [DE+] ,A

BR S$LINIS1
LINIS2:

; copy sreg variables which doesn't have initial value

MOVG TDE, #_@DATS

MOVG WHL, # ?DATS

MOV A, #0
LDATS1:

SUBG WHL, TDE

BE SLDATS2

ADDG WHL, TDE

MOV [DE+] ,A

BR SLDATS1
LDATS2:

; copy sregl variables having initial value

MOVG TDE, # @INIS1

MOVG WHL, # @R INS1
LINIS11:

SUBG WHL, # ?R_INS1

BE $SLINIS12

ADDG WHL, # ?R_INS1

MOV A, [HL+]

MoV [DE+],A

BR $LINIS11
LINIS12:

; copy sregl variables which doesn't have initial value

MOVG TDE, #_@DATS1

MOVG WHL, # ?DATS1

MOV A, #0
LDATS11:

SUBG WHL, TDE

BE SLDATS12

ADDG WHL, TDE

MOV [DE+] ,A

BR SLDATS11
LDATS12:

Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

[CA850]
Call a copy routine (_rcopy) at the beginning of the main function.
extern unsigned long S romp;
main ()
{
int ret;
ret = _rcopy (& S romp,-1);
}

2.5.15 Initializing variable area without default value
The CAB850 executes initialization by using a symbol that starts/ends a section without default value.

[CC78K4]
Not provided
[CA850]

mov # ssbss, ril3 -- clear sbss section
mov # esbss, ril2
cmp rl2, rl3
jnl .L11

Lil2
st.w r0, [rl3]
add 4, rl3
cmp rl2z, rl3
jl .L12

.L11:
mov # sbss, rl3 -- clear bss section
mov # ebss, ril2
cmp rl2, rl3
jnl .L14

L15
st.w r0, [rl3]
add 4, rl3
cmp rl2, rl3
1 .L15

L14

The above symbols are reserved words in the link editor.
__ssbss: Symbol starting .sbss section
__esbss: Symbol ending .sbss section
__sbss: Symbol starting .bss section
__ebss: Symbol ending .bss section

58 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.5.16 Calling main function
The main function is called.

[CC78K4]

CALL !l _main

[CA850]

jarl _main, 1p

2.5.17 Calling exit function
The CC78K4 calls the exit function but the CA850 calls the halt instruction to set the HALT mode.

[CC78K4]
SUBW AX, AX
CALL 11 exit
BR $S
[CA850]

Not provided. The HALT mode is set as is.

halt

Application Note U15653EJ1VOAN

59

CHAPTER 2 C LANGUAGE

2.5.18 Defining segment (section)
The CC78K4 defines segments and labels used for ROMization processing.
The CA850 defines a section without default value to initialize the section without default value.

[CC78K4]

@@R_INIT CSEG
_@R_INIT:

@@R_INIS CSEG

_@R_INIS:

@@R_INS1 CSEG

_@R_INS1:

@@INIT DSEG

_@INIT:

@@DATA DSEG

_@DATA:

@@INIS DSEG SADDR2
_@INIS:

@@DATS DSEG SADDR2
_@DATS:

@@INIS1 DSEG SADDR
_@INIS1:

@@DATS1 DSEG SADDR
_@DATS1:

@@CODE CSEG

@@CALF CSEG FIXED
@@CNST CSEG

@@CALT CSEG CALLTO
@@BITS BSEG SADDR2
@@BITS1 BSEG SADDR
[CA850]
.sbss
.lcomm _ sbss_dummy, 0, 0

60 Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.6 Segment (Section) Output by Compiler

This section explains the segment output by the CC78K4 and section output by the CA850.
For how to allocate the segment and section, refer to CHAPTER 4 LINK DIRECTIVES.

2.6.1 Segment Output by CC78K4
The CC78K4 outputs the following segments by default.

Table 2-7. Segments Output by CC78K4

Section Name Segment Type Usage

@ @BASE CSEG callt function, interrupt function segment

@@VECTnn CSEG Segment for interrupt vector table

@ @CODES CSEG Segment for ordinary function codes

@@CODE

@ @CNSTS CSEG Segment for const variable

@@CNSTM

@@CNST

@ @CALFS CSEG Segment for callf function

@ @CALF

@@CALT CSEG Segment for callt function table

@ @RSINIT CSEG Segment for variable with default value

@@R_INIT

@ @RSINS CSEG Segment for sreg variable with default value

@@R_INS

@ @RSINSH CSEG Segment for sreg1 variable with default value

@ @R_INS1

@@INITM DSEG Segment for temporary variable with default

@@INIT value

@ @DATAM DSEG Segment for variable without default value

@ @DATA

@ @INIS DSEG Segment for temporary sreg variable with
default value

@ @DATS DSEG Segment for temporary sreg variable without
default value

@ @INISH DSEG Segment for temporary sreg1 variable with
default value

@ @DATSH DSEG Segment for temporary sreg1 variable
without default value

@@BITS BSEG Segment for boolean/bit type variable

@ @BITS1 BSEG Segment for __boolean1 type variable

Application Note U15653EJ1VOAN

61

CHAPTER 2 C LANGUAGE

2.6.2 Section output by CA850

The CA850 outputs the following sections by default.

Table 2-8. Sections Output by CA850

Section Name

Type of Section

Usage

text text Section for function code
.pro_epi_runtime text Section for runtime library code of prologue/epilogue
.const const Section for const variable
Section that can be accessed by Id/st instructions (two instructions) of r0
relative
.sconst const Section for const variable
Section that can be accessed by Id/st instruction of r0 relative
(addresses 0x0 to 0x8000)
.data data Section for variable with default value
Section that can be accessed by Id/st instructions (two instructions) of gp
relative
.sdata sdata Section for variable with default value
Section that can be accessed by Id/st instruction of gp relative
.sedata sedata Section for variable with default value
Section that can be accessed by Id/st instruction of ep relative
(first address of internal RAM — 0x8000 to first address of internal RAM are
recommended)
.sidata sidata Section for variable with default value
Section that can be accessed by Id/st instruction of ep relative
(internal RAM is recommended)
tidata tidata Section for variable with default value
Section that can be accessed by sld/sst instruction of ep relative
(256 bytes starting from first address of internal RAM is recommended)
.bss bss Section for variable without default value
Section that can be accessed by Id/st instructions (two instructions) of gp
relative
.sbss sbss Section for variable without default value
Section that can be accessed by Id/st instruction of gp relative
.sebss sebss Section for variable without default value
Section that can be accessed by Id/st instruction of ep relative
(first address of internal RAM — 0x8000 to first address of internal RAM are
recommended)
.sibss sibss Section for variable without default value
Section that can be accessed by Id/st instruction of ep relative
(internal RAM is recommended)
tibss tibss Section for variable without default value
Section that can be accessed by sld/sst instruction of ep relative
(256 bytes starting from first address of internal RAM is recommended)
rompsec text Sections including data section with default value packed for copying data with

default value and section including address information of these sections

Application Note U15653EJ1VOAN

CHAPTER 2 C LANGUAGE

2.7 Library and Header File

This section explains the library and header file supported by the CC78K4 and CA850.
If a library that is supported by the CC78K4 but not by the CA850 is used, replace the library with one supported by

the CA850.

Table 2-9. Library and Header File (1/2)

Function

CC78K4

CA850

Character, character
string function

isalnum, isalpha, iscntrl, isdigit, isgragh,

islower, isprint, ispunct, isspace, isupper,
isxdigit, tolower, toupper, isascii, toascii,
_toupper, _tolower, tolow*, toup*

_tolower, _toupper, toascii, tolower,
toupper, isalnum, isalpha, isascii, iscntrl,
isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit

Program control
function

setjmp, longjmp

setjmp, longjmp

Special function

va_start, va_arg, va_end

va_start, va_arg, va_end

I/0 function

sprintf, sscanf, printf, scanf, vprintf, vsprintf,
getchar, gets, putchar, puts

sprintf, sscanf, fprintf*, fscanf, printf, scanf,
viprintf*, vprintf, vsprintf, fgetc*, fgets™,
fputc*, fputs*, getc*, getchar, gets, putc*,
putchar, puts, ungetc*, fread*, fwrite*,
rewind*, perror*

Utility function

atoi, atol, strtol, strtoul, calloc, free, malloc,
realloc, abort*, atexit*, exit*, abs, labs, div,
Idiv, brk*, sbrk*, atof*, strtod*, itoa, Itoa, ultoa,
rand, srand, bsearch, gsort, strbrk*, strsbrk*,
stritoa*, strltoa*, strultoa*

abs, labs, bsearch, div, Idiv, ecvtf*, gcvif*,
atoff*, strtodf*, atoi, atol, strtol, strtoul, rand,
srand, calloc, malloc, free, realloc, gsort,
itoa, Itoa, ultoa

Character string/

memory function

memcpy, memmove, strcpy, strnepy, strcat,
strncat, memcmp, strcmp, strncmp, memchr,
strchr, strrchr, strspn, strespn, strpbrk, strstr,
strtok, memset, strerror, strlen, strcoll, strxfrm

bcmp*, bcopy*, memchr, memcmp,
memcpy, memmove, memset, index*,
rindex*, strcat, strchr, strcmp, strcpy,
strcspn, strerror, strlen, strncat, strncmp,
strnepy, strpbrk, strrchr, strspn, strstr, strtok

Mathematical function

acos*, asin*, atan*, atan2*, cos*, sin*, tan*,
cosh*, sinh*, tanh*, exp*, frexp*, Idexp*, log*,
log10*, modf*, pow*, sqrt*, ceil*, fabs*, floor*,
fmod*, matherr, acosf, asinf, atanf, atan2f,
cosf, sinf, tanf, coshf, sinhf, tanhf, expf, frexpf,
Idexpf, logf, log10f, modff, powf, sqrtf, ceilf,
fabsf, floorf, fmodf, __assertfail*

jof*, j1f*, jnf*, yOf*, y1f*, ynf*, erff*, erfcf*,
expf, logf, log2f*, log10f, powf, sqrtf, ceilf,
fabsf, floorf, fmodf, frexpf, [dexpf, modff,
gammaf*, hypotf*, matherr, acoshf*,
asinhf*, atanhf*, coshf, sinhf, tanhf, acosf,
asinf, atanf, atan2f, cosf, sinf, tanf, cbrtf*

Application Note U15653EJ1VOAN

63

CHAPTER 2 C LANGUAGE

Table 2-9. Library and Header File (2/2)

Function CC78K4 CA850
Integer operation"™® Isinc*, luinc*, Isdec*, ludec*, Isrev*, lurev*, __mul*, __mulu*, __div*, __divu*,
Iscom*, lucom*, Isnot*, lunot*, Ismul*, lumul*, __mod*, __modu*

csdiv*, isdiv*, Isdiv*, ludiv*, csrem*, isrem*,
Isrem*, lurem*, Isadd*, luadd*, Issub*, lusub*,
Islsh*, lulsh*, Isrsh*, lursh*, Iscmp*, lucmp*,
Isband*, luband*, Isbor*, lubor*, Isbxor*,

lubxor*
Floating-point finc*, fdec*, frev*, fnot*, fmul*, fdiv*, fadd*, __addf.s*, __subf.s*, _ mulf.s*, __ divf.s*,
operation™™ fsub*, fcmp*, fand*, for*, ftols*, ftoul*, Istof*, __cmpf.s*, __cvt.ws*, __trnc.sw*
lutof*, btol*,
Copying ROMization None _rcopy*
default value data
Header file ctype.h, setimp.h, stdarg.h, stdio.h, stdlib.h, ctype.h, setjmp.h, stdarg.h,
string.h, error.h*, errno.h, limits.h, stddef.h, stdio.h, stdlib.h, string.h, errno.h, limits.h,
math.h, float.h, assert.h* stddef.h, math.h, float.h

Note Because these functions are those of a runtime library, they are not described in the C source program.

The functions marked “*” in the above table are supported only by either the CC78K4 or CA850. For the details of
the library, refer to the manual of each compiler.

64 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

This chapter explains the points to be noted when rewriting the quasi-directives and control instructions of the
assembler for the RA78K4 into those for the CA850 (as850), and how to describe a program.

The quasi-directives and control instructions of the RA78K4 and CA850 are as follows.

Table 3-1. Quasi-Directives and Control Instructions (1/3)

No. RA78K4

CA850

Function

Instruction

Function

Instruction

1 Segment quasi-directive

CSEG

DSEG

BSEG

None

Section definition quasi-directive

text
.const
.sconst

.bss

.data

.sbss
.sdata
.sebss
.sedata
.sibss
.Sidata
tibss
tidata
ibss.byte
tidata.byte
tibss.word
tidata.word

None

.previous
.section
.vdbstrtab
.vdebug
.vline

ORG

None

Location counter control quasi-directive

.org

.align

2 Symbol definition quasi-directive

EQU

None

SET

None

Symbol control quasi-directive

.set

.size
frame
file

3 Object module name declaration quasi-
directive

NAME

None

Application Note U15653EJ1VOAN

65

CHAPTER 3 ASSEMBLY LANGUAGE

Table 3-1. Quasi-Directives and Control Instructions (2/3)

No. RA78K4 CA850
Function Instruction Function Instruction
4 Memory initialization, area DB Area reservation quasi-directive .byte
reservation quasi-directive DW hword
DG None
None .word
DS comm
None .space
DBIT None
None float
5 Linkage quasi-directive PUBLIC Program linkage quasi-directive .globl
EXTRN .extern
EXTBIT None
None .comm
6 Automatic selection quasi-directive | BR None
CALL
7 General-purpose register selection | RSS None
quasi-directive
8 Macro quasi-directive MACRO Macro quasi-directive .macro
LOCAL .local
ENDM .endm
EXITM Skip quasi-directive .exitm
None .exitma
REPT Repeat assemble quasi-directive .repeat
IRP .irepeat
9 Assemble end quasi-directive END None
10 Assemble target model $PROCESSOR Assembler control quasi-directive .option cpu
specification control instruction
11 Debug information output control $DEBUG/ None
instruction $NODEBUG
$DEBUGA/
$NODEBUGA
12 Cross-reference list output $XREF/$NOXREF None
specification control instruction $SYMLIST/
$SNOSYMLIST
13 Include control instruction $INCLUDE File input control quasi-directive .include
None .binclude
66 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

Table 3-1. Quasi-Directives and Control Instructions (3/3)

No.

RA78K4 CA850

Function Instruction Function

Instruction

14

Assembile list control instruction $EJECT None
S$TITLE
$SUBTITLE
SLIST/$NOLIST
$GEN/$NOGEN
$COND/$NOCOND
$FORMFEED/
$NOFORMFEED
$SWIDTH
SLENGTH

$TAB

15

Conditional assembly control $SET None
instruction $RESET

$IF Conditional assembly quasi-directive

None
$ IF
None

$ELSEIF
$_ELSEIF

None

$ELSE
$ENDIF

.ifdef

.ifndef

if

.ifn

.elseif

.elseifn

.else

.endif

16

SFR area change control instruction | $CHGSFR None
$CHGSFRA

Application Note U15653EJ1VOAN

67

CHAPTER 3 ASSEMBLY LANGUAGE

3.1 Segment Quasi-Directive (Section Definition Quasi-Directive)
This section explains quasi-directives related to segments (sections).

3.1.1 CSEG, .text, .const, .sconst

These are quasi-directives that define the segments (sections) to be allocated to ROM.

The RA78K4 uses the CSEG quasi-directive to define the segment of a program and a variable that is only
referenced. The CA850 uses the .text quasi-directive to define a program section, and the .sconst or .const quasi-
directive to define the section of a variable that is only referenced.

[RA78K4]
CSEG: Indicates the start of a code segment.

The description format is as follows.

[segment name] CSEG [relocation attribute]

<Example>

CSEG UNIT
MOV A,B
CSEG BASE

DATACO: DB 12H

DATACl: DB 34H
CSEG

DATAC2: DW 5678H

68 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

[CA850]
text: Allocates generated codes to the .text section.
The description format is as follows.

text

.const: Allocates generated codes to the .const section.
The .const section is a section for constant data (read-only) and is located in memory that is
referenced by two instructions, using r0 and 32-bit displacement.
The description format is as follows.

.const

.sconst: Allocates generated codes to the .sconst section.
The .sconst section is a section for constant data (read-only) and is located in a memory range (up
to 32 KB in the plus direction from r0) that is referenced by one instruction, using r0 and 16-bit
displacement.
The description format is as follows.

.sconst
<Example>

.text
.align 4
mov rl0,rll
.const

DATACO :
.byte 0x12

DATAC1:
.byte 0x34
.sconst

DATAC2:
.hword 0x5678

Application Note U15653EJ1VOAN 69

CHAPTER 3 ASSEMBLY LANGUAGE

3.1.2 DSEG, .bss, .data, .sbss, .sdata, .sebss, .sedata, .sibss, .sidata, .tibss, .tidata, .tibss.byte, .tidata.byte,

tibss.word, .tidata.word
These quasi-directives define segments (sections) to be allocated to RAM.

The RA78K4 uses the DESG quasi-directive to define the segments of variables other than bit variables. In the
CAB850, bit variables do not have sections, and the section of a variable is defined by using the .bss and .data quasi-
directives, which are not dependent on the address to be located, or the .sbss and .sdata quasi-directives, which are
dependent on the GP register value. In addition, defining to the external RAM immediately before the internal RAM is
performed by the .sebss or .sedata quasi-directive. Defining to the internal RAM is performed by the .sibss, .sidata,

libss, .tidata, tibss.byte, .tidata.byte, tibss.word, or .tidata.word quasi-directive.

[RA78K4]

DSEG: Indicates the start of a data segment.
The description format is as follows.

[segment name] DSEG [relocation attribute]

<Example>
DSEG UNIT
DATADO: DS 1
DSEG UNITP
DATAD2: DS 2
DSEG
DATAD4: DS 2
DSEG SADDR
DATAD6: DS 2
DSEG SADDR2
DATAD8: DS 2
DSEG SADDR2
DATAD10: DS 1
DSEG SADDRP2
DATAD12: DS 2
[CA850]
.bss: Allocates generated codes to the .bss section.

The .bss section does not have a default value and is located in a memory range that is referenced

by two instructions, using gp and 32-bit displacement.
The description format is as follows.

.bss

.data: Allocates generated codes to the .data section.

The .data section has a default value and is located in a memory range that is referenced by two

instructions, using gp and 32-bit displacement.
The description format is as follows.

.data

70

Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

.sbss: Allocates generated codes to the .sbss section.
The .sbss section does not have a default value and is located in a memory range (up to 64 KB
including the .sdata section) that is referenced by one instruction, using gp and 16-bit displacement.
The description format is as follows.

.sbss

.sdata: Allocates generated codes to the .sdata section.
The .sdata section has a default value and is located in a memory range (up to 64 KB including
.sbss section) that is referenced by one instruction, using gp and 16-bit displacement.
The description format is as follows.

.sdata

.sebss: Allocates generated codes to the .sebss section.
The .sebss section does not have a default value and is located at the higher addresses equaling
the size of the .sedata section in the memory range (32 KB in the minus direction from ep) that is
referenced by one instruction, using ep and 16-bit displacement.
The description format is as follows.

.sebss

.sedata: Allocates generated codes to the .sedata section.
The .sedata section has a default value and is located at the lower addresses equaling the size of
the .sebss section in the memory range (32 KB in the minus direction from ep) that is referenced by
one instruction, using ep and 16-bit displacement.
The description format is as follows.

.sedata

.sibss: Allocates generated codes to the .sibss section.
The .sibss section does not have a default value and is located in the memory range (32 KB in the
plus direction from ep, i.e., internal RAM) that is referenced by one instruction, using ep and 16-bit
displacement.
The description format is as follows.

.sibss
.sidata: Allocates generated codes to the .sidata section.
The .sidata section has a default value and is located in the memory range (32 KB in the plus
direction from ep, i.e., internal RAM) that is referenced by one instruction, using ep and 16-bit
displacement.

The description format is as follows.

.sidata

Application Note U15653EJ1VOAN 71

CHAPTER 3 ASSEMBLY LANGUAGE

72

libss: Allocates generated codes to the .tibss section.
The .tibss section is a section of data without a default value and is assumed to be accessed by ep
relative, using the sld/sst instruction™. If both the .tibss.byte and .tibss.word sections are used,
tibss is located at the address indicated by ep to which the sum of the size of the both the sections
is added.
The description format is as follows.

libss

lidata: Allocates generated codes to the .tidata section.
The .tidata section is a section of data with a default value and is assumed to be accessed by ep
relative, using the sld/sst instruction™™. If both the .tidata.byte and .tidata.word sections are used,
.tidata is located at the address indicated by ep to which the sum of the size of both the sections is
added.
The description format is as follows.

lidata

libss.byte: Allocates generated codes to the .tibss.byte section.
The .tibss.byte section is a section of data without a default value and is assumed to be
accessed by ep relative, using the sld/sst instruction™. To effectively use the area that can be
accessed by the sld/sst instruction™, the section is divided into a .tibss.byte section and a
tibss.word section, depending on the size of the data, and the .tibss.byte section is allocated at
the address indicated by ep.

The description format is as follows.
tibss.byte

lidata.byte: Allocates generated codes to the .tidata.byte section.
The .tidata.byte section is a section of data with a default value and is assumed to be accessed
by ep relative, using the sld/sst instruction™™. To effectively use the area that can be accessed
by the sld/sst instruction™™, the section is divided into a .tidata.byte section and a .tidata.word
section, depending on the size of the data, and the .tidata.byte section is allocated at the
address indicated by ep.
The description format is as follows.

tidata.byte
Note The sld/sst instruction is a 2-byte instruction that can access an area of up to 128 bytes if the data to

be accessed is byte data, or an area of up to 256 bytes if the data to be accessed is a halfword or
larger data.

Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

tibss.word: Allocates generated codes to the .tibss.word section.

The .tibss.word section is a section of data without a default value and is assumed to be
accessed by ep relative, using the sld/sst instruction. To effectively use the area that can be
accessed by the sld/sst instruction®, the section is divided into a .tibss.byte section and a
tibss.word section, depending on the size of the data, and is located at the address indicated by
ep to which the size of the .tibss.byte section is added.

The description format is as follows.

tibss.word

tidata.word: Allocates generated codes to the .tidata.word section.

The .tidata.word section is a section of data with a default value and is assumed to be accessed

by ep relative, using the sld/sst instruction™®
Note

. To effectively use the area that can be accessed
by the sld/sst instruction™", the section is divided into a .tidata.byte section and a .tidata.word
section, depending on the size of the data, and is located at the address indicated by ep to
which the size of the .tidata.byte section is added.

The description format is as follows.

tidata.word

Note The sld/sst instruction is a 2-byte instruction that can access an area of up to 128 bytes if the data to
be accessed is byte data, or an area of up to 256 bytes if the data to be accessed is a halfword or

larger data.

Application Note U15653EJ1VOAN 73

CHAPTER 3 ASSEMBLY LANGUAGE

74

<Example>

.bss
. lcomm DATADO, 0x1,1
.data

DATAD1:
.byte 0xff
.sbss
. lcomm DATAD2, 0x2,2
.sdata

DATAD3 :
.hword OxEfff
.sebss
. lcomm DATAD4, 0x2, 2
.sedata

DATADS :
.hword Oxabcd
.sibss
. lcomm DATAD6, 0x2,2
.sidata

DATAD7 :
.hword Oxfedc
.tibss
. lcomm DATADS, 0x2, 2
.tidata

DATADO :
.hword 0x4321
.tibss.byte
. lcomm DATAD10,0x1,1
.tidata.byte

DATAD11:
.byte 0x21
.tibss.word
. lcomm DATAD12, 0x2, 2
.tidata.word

DATAD13:

.hword

0x5678

Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.1.3 BSEG

This quasi-directive defines a segment (section) to be allocated to RAM.

The RA78K4 uses the BSEG quasi-directive to define the segment of a bit variable, but in the CA850, a bit variable
does not have a section.

[RA78K4]

BSEG: Indicates the start of a bit segment.
The description format is as follows.

[segment name] BSEG [relocation attribute]

<Example>

BSEG

DATABO DBIT

DATAB1 DBIT
CSEG
SET1 DATABO
CLR1 DATAB1

[CA850]

Not provided.
Reserve an area in a size such as bytes, and access the area by specifying a bit position using the sett, clr1,

or tst1 instruction.

<Example>
.bss
. lcomm DATAR, 0x1,1
.text
setl 0, $DATAB [gp]
clrl 1, SDATAB [gp]

Application Note U15653EJ1VOAN

75

CHAPTER 3 ASSEMBLY LANGUAGE

3.1.4 _previous, .section

These quasi-directives define a segment (section).

The RA78K4 can specify a segment name using the CSEG, DSEG, or BSEG quasi-directive. The CA850 specifies
a section name using the .section quasi-directive. The CA850 can specify the section specified by the previous
section quasi-directive, by using .previous.

[RA78K4]
A quasi-directive equivalent to .previous is not available.
A segment name can be specified by CSEG, DSEG, or BSEG.

<Example>
SEG1 CSEG
MOV A,B
SEG2 DSEG
SEGLO: DS 2
[CA850]

.previous: Specifies (again) the section definition quasi-directive preceding the section definition quasi-directive
that specified the current section quasi-directive.
The description format is as follows.
.previous
.section: Allocates a code generated for the program as a section name specified by the first operand to the
type of the section specified by the second operand.
The description format is as follows.

.section “section name” [,type of section]

<Example>

.section "SEG1", text
mov rl0,rll
.section "SEG2",bss

. lcomm SEGLO0,2,2

76 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.1.5 ORG, .org
These quasi-directives define a segment (section).
The RA78K4 uses the ORG quasi-directive to specify the absolute address of a segment. The CA850 cannot

specify the absolute address of a section but only increments the location counter that indicates the current section.
To specify an absolute value, specify the location of the section using the link directive file.

[RA78K4]
ORG: Sets the value of an expression specified by the operand to the location counter.
After this quasi-directive, the segment is located starting from the address belonging to an absolute
segment and specified by the operand.
The description format is as follows.

[segment name] ORG absolute expression

<Example>
“MOV A,C” is allocated to the segment that is located at address 0x100.
CSEG
MOV A,B
ORG 0100H
MOV A,C
[CA850]
.org: Increments the value of the location counter for the current section specified by the previously
specified section definition quasi-directive to the value specified by the operand.
This quasi-directive does not specify the absolute address of a section. If a hole is generated as a
result of incrementing the value of the location counter, the hole is filled with 0.
The description format is as follows.
.org value
<Example>

“mov rl2,rll” is allocated to the address indicated by the location counter of the

.text section incremented by 0x100.

.text

mov rl0,rll
.org 0x100
mov rl2,rll

Application Note U15653EJ1VOAN 77

CHAPTER 3 ASSEMBLY LANGUAGE

3.1.6 .align

This quasi-directive specifies the alignment condition of a segment (section).

It is not provided in the RA78K4. The CA850 can specify the alignment condition of a section using the .align
quasi-directive.

[RA78K4]
Not provided
[CA850]
.align: Aligns the value of the location counter for the current section specified by the previously specified
section definition quasi-directive under the alignment condition specified by the first operand.
If a hole is generated as a result of aligning the location counter value, it is filled with the filling value
specified by the second operand or the default value 0.
The description format is as follows.
.align alignment condition [/filling value]
<Example>
.text
.align 4
.globl func
func:
jmp [1p]

3.2 Symbol Definition Quasi-Directives (Symbol Control Quasi-Directives)

This section explains the quasi-directives related to symbols.

78 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.2.1 EQU
The RA78K4 has the EQU and SET quasi-directives, which define a name. The CA850 supports only the .set

quasi-directive, which sets a value to a name.

[RA78K4]
EQU: Defines a name having the value of the expression specified by the operand.

The description format is as follows.
name EQU expression

<Example>

DATAE EQU OFEOOH

[CA850]
Not provided.
Use the .set quasi-directive to specify a numeric value.

3.2.2 SET, .set
The RA78K4 uses the SET quasi-directive to define a name, but the CA850 uses the .set quasi-directive to set a

value to a name.

[RA78K4]
SET: Defines a name having the value of the expression specified by the operand.

This quasi-directive can be re-defined in the same module.
The description format is as follows.

name SET absolute expression

<Example>
DATAS SET 100
[CA850]
.set: Defines a symbol having the symbol name specified by the first operand and the value (integer

value) specified by the second operand.
The description format is as follows.

.set symbol name, value

<Example>

.set DATAE, 0xfe00

Application Note U15653EJ1VOAN 79

CHAPTER 3 ASSEMBLY LANGUAGE

3.2.3 .size, .frame, .file
The CA850 has the .size quasi-directive, which gives a size to a label, the .frame quasi-directive for debugging at
the C language level, and the .file quasi-directive, which defines a file name.

[RA78K4]
Not provided
[CA850]
.Size: Specifies the size specified by the second operand as the size of the data indicated by the label

specified by the first operand.
The description format is as follows.

.Size label name, size
frame: Generates a symbol table entry having the size specified by the second operand and the type FUNC
when an object file is generated and when a symbol table entry for the label specified by the first
operand is generated.
This quasi-directive is used for debugging at the C language level.
The description format is as follows.

frame label name, size

file: Generates a symbol table entry having the file name specified by the operand and type FUNC when
an object file is generated.

file “file name”

<Example>

.file "main.s"

3.3 Object Module Name Declaration Quasi-Directives

This section explains the quasi-directives related to object module names.

80 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.3.1 NAME
The RA78K4 has the NAME quasi-directive, which defines the name of an object module, but the CA850 does not
have such a quasi-directive.

[RA78K4]
NAME: Assigns the object module name described as the operand to the object module output by the
assembler.
The description format is as follows.

NAME object module name
[CA850]
Not provided
3.4 Memory Initialization and Area Reservation Quasi-Directives (Area Reservation Quasi-
Directives)
This section explains the quasi-directives that initialize the memory or reserve a memory area.
3.4.1 DB, .byte

The RA78K4 uses the DB quasi-directive and the CA850 uses the .byte quasi-directive to reserve a 1-byte area of
memory

[RA78K4]
DB: Initializes a byte area (1 byte).
If the size is specified by the operand, an area of the specified size is initialized by 0.
If the default value is specified by the operand, the area is initialized by the specified default value.
The following two description formats are available.
DB (size)
DB default value [, ...]
<Example>
CSEG
DBDATAO : DB (1)
DBDATAl: DB OAAH, 0BBH

Application Note U15653EJ1VOAN 81

CHAPTER 3 ASSEMBLY LANGUAGE

[CA850]
.byte: The first format of this quasi-directive reserves an area of 1 byte for each operand, and stores the
lower byte of the specified value in the reserved area.
The second format reserves an area of the specified bit width, and stores the specified value in that
area.
The following two description formats are available.
.byte value [, value...]
.byte bit width: value [, bit width: value ...]
<Example>
.sdata
DBDATAO :
. space 1
DBDATAL:
.byte Oxaa, O0xbb

3.4.2 DW, .hword

The RA78K4 uses the DW quasi-directive and the CA850 uses the .hword quasi-directive to reserve a 2-byte area
of memory.

[RA78K4]
DW: Initializes a word area (2 bytes).
If the size is specified by the operand, an area of the specified size x 2 bytes is initialized by 0.
If the default value is specified by the operand, the area is initialized by the specified default value.
The following two description formats are available.
DW (size)

DW default value [, ...]

<Example>
CSEG
DWDATAO : DW (1)
DWDATAL: DW 0CCCCH, 0ODDDDH

82 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

[CA850]

.hword: The first format of this quasi-directive reserves an area of 1 halfword for each operand and stores

the lower halfword of the specified value in the reserved area.

The second format reserves an area of the specified bit width and stores the specified value in that

area.
The following two description formats are available.

.hword value [, value ...]
.hword bit width: value [, bit width: value ...]

<Example>
.sdata
DWDATAO :
.space 2
DWDATAL:
.hword Oxcccc, 0xdddd
3.4.3 DG

The RA78K4 uses the DG quasi-directive to reserve a 3-byte area of memory. The CA850 does not have a quasi-
directive that reserves a 3-byte area and supports only the .word quasi-directive that reserves a 4-byte area. For

details of the .word quasi-directive, refer to 3.4.4 .word.

[RA78K4]
DG: Initializes a 3-byte area.
If the size is specified by the operand, an area of the specified size x 3 bytes is initialized by 0.
If the default value is specified by the operand, the area is initialized by the specified default value.
The following two description formats are available.
DG (size)
DG default value [, ...]
<Example>
CSEG
DGDATAO: DG (1)
DGDATAL: DG 0123456H, 0789ABCH
[CA850]

Not provided

Application Note U15653EJ1VOAN

83

CHAPTER 3 ASSEMBLY LANGUAGE

3.4.4 .word
The CA850 uses the .word quasi-directive to reserve a 4-byte area of memory.

[RA78K4]
Not provided

[CA850]
.word: The first format of this quasi-directive reserves an area of 1 word for each operand and stores the
lower word of the specified area in that area.
The second format reserves an area of the specified bit width and stores the specified value in that
area.
The following two description formats are available.

.word value [, value ...]
.word bit width: value [, bit width: value ...]

<Example>
.sdata
DGDATAO :
. space 4
DGDATAL:
.word 0x123456,0x789%abc
3.4.5 .space

The CA850 uses the .space quasi-directive to reserve memory of specified size and fill that area with the specified
value. Filling the area with 0 is equivalent to specifying the size for DB, DW, or DG with the RA78K4.

[RA78K4]
Filling the specified area with 0 is equivalent to specifying the size for DB, DW, or DG.
For the description format and example, refer to the explanation of each quasi-directive.

[CA850]
.space: Reserves an area of the size specified by the first operand and fills the area with the filling value
specified by the second operand (the default value is 0).
The description format is as follows. Refer to the explanation of DB, DW, and DG for an example.

.space size [, filling value]

<Example>

.sdata

SPDATA:

.space 4

84 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.4.6 .shword

The CA850 uses the .shword quasi-directive to reserve a 2-byte area and store a specified value shifted 1 bit to the
right in that area.

This instruction is supported only by the V850E and is used when the switch instruction is used.

[RA78K4]
Not provided

[CA850] (VB50E only)
.shword: The first format of this quasi-directive reserves an area of 1 halfword for each operand and stores
the specified value shifted 1 bit to the right in that area.
The second format reserves an area of the specified bit width and stores the specified value shifted
1 bit to the right in that area.
The following two description formats are available.

.shword value [, value ...]
.shword bit width: value [, bit width; value ...]

<Example>

The value 0x2222, which is obtained as a result of shifting 0x4444 1 bit to the right, is stored in the area.

.sdata
SHDATAO :

.shword 0x4444

3.4.7 DS, .Icomm
The RA78K4 uses the DS quasi-directive and the CA850 uses the .Icomm quasi-directive to reserve memory of the
specified number of bytes.

[RA78K4]
DS: Reserves a memory area of the number of bytes specified by the operand.
The description format is as follows.

DS absolute expression

<Example>

DSEG

DSDATAO: DS 1

DSDATAl: DS 2

Application Note U15653EJ1VOAN 85

CHAPTER 3 ASSEMBLY LANGUAGE

[CA850]
lcomm: Aligns the location counter for the current section under the alignment condition specified by the
third operand, reserves an area of the size specified by the second operand, and defines a local
label having the label name specified by the first operand for the start address of that area.
The description format is as follows.

.lcomm label name, size, alignment condition

<Example>

.sbss
. lcomm DSDATAO,1,1

. lcomm DSDATAL, 2,2

3.4.8 DBIT

The RA78K4 defines reserving a 1-bit memory area using the DBIT quasi-directive.

The CA850 does not have a quasi-directive that reserves a 1-bit memory area. Reserve an area in a size such as
bytes, and access it by specifying a bit position using the set1, clr1, or tst1 instruction.

[RA78K4]
DBIT: Reserves a 1-bit memory area in a bit segment.
The description format is as follows.

name DBIT

<Example>

BSEG
DATABO DBIT

DATAB1 DBIT

CSEG
SET1 DATABO
CLR1 DATAB1
[CA850]
Not provided.
Reserve an area in a size such as bytes, and access it by specifying a bit position using the set1, clr1, or tst1
instruction.
<Example>

.bss

. lcomm DATAB, 0x1,1

.text
setl 0, SDATAB [gp]
clrl 1, $DATAB [gp]

86 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.4.9 .float, .str
The CA850 uses the .float quasi-directive to reserve a floating-point value and the .str quasi-directive to reserve a
character string. The RA78K4 does not have quasi-directives equivalent to these.

[RA78K4]
Not provided

[CA850]
float: Reserves an area of 1 word for each operand and stores a floating-point value in that area.
The description format is as follows.
float value [, value ...]
.str: Reserves an area of the specified character string for each operand and stores the specified
character string in that area.
The description format is as follows.
.str character string constant [, character string constant ...]
<Example>
.sdata
FDATA:
.float 1.234
STRDATA:
.str "NEC"

3.5 Linkage Quasi-Directives (Program Linkage Quasi-Directives)

This section explains the quasi-directives related to linkage.
3.5.1 PUBLIC, .globl

The RA78K4 uses the PUBLIC quasi-directive and the CA850 uses the .globl quasi-directive to define that a
symbol is a global symbol.

[RA78K4]

PUBLIC: Declares that the symbol described as the operand can be referenced by other modules.
The description format is as follows.

PUBLIC symbol name [, symbol name ...]

<Example>

PUBLIC PUBSYM

Application Note U15653EJ1VOAN 87

CHAPTER 3 ASSEMBLY LANGUAGE

[CA850]

.globl: Declares an external label of the same name as the label name specified by the first operand. If the
second operand is specified, the specified value is specified as the size of the data indicated by that
label.

The description format is as follows.
.globl label name [, size]
<Example>

.globl PUBSYM

3.5.2 EXTRN, .extern
The RA78K4 uses the EXTRN quasi-directive and the CA850 uses the .extern quasi-directive to declare that a

symbol is a global symbol defined by an other module.

[RA78K4]
EXTRN: Declares the symbol of an other module (except a bit symbol) referenced by this module.

The following three description formats are available.
EXTRN symbol name [, symbol name ...]
EXTRN SADDR2 (symbol name [, symbol name ...])
EXTRN BASE (symbol name [, symbol name ...])

<Example>

EXTRN EXSYMO

EXTRN SADDR2 (EXSYM1)

[CA850]
.extern: Declares a label name the same as the label name specified by the first operand as an external

label name. If the second operand is specified, the specified value is specified as the size of the
data indicated by that label.
The description format is as follows.

.extern label name [, size]

<Example>

.extern EXSYMO

.extern EXSYM1

88 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.5.3 EXTBIT
The RA78K4 uses the EXTBIT quasi-directive to declare that a symbol is a global bit symbol defined by an other
module. The CA850 does not have an equivalent quasi-directive because it does not have bit symbols.

[RA78K4]
EXTBIT: Declares the bit symbol of an other module referenced by this module.

The following two description formats are available.

EXTBIT symbol name [, symbol name ...]
EXTBIT SADDR2 (symbol name [, symbol name ...])

<Example>

EXTBIT EXBSYMO

EXTBIT SADDR2 (EXBSYM1)

[CA850]
Not provided.
Specify and reference an area of 1 byte or more using the .extern quasi-directive.

3.5.4 .comm
The CA850 uses the .comm quasi-directive to define an undefined external label.
The RA78K4 does not have a quasi-directive equivalent to .comm.

[RA78K4]
Not provided

[CA850]
.comm: Declares an undefined external label having the label name specified by the first operand, size
specified by the second operand, and alignment condition specified by the third operand.
The description format is as follows.

.comm label name, size, alignment condition

<Example>

.comm EXSYM1,1,1

Application Note U15653EJ1VOAN 89

CHAPTER 3 ASSEMBLY LANGUAGE

3.6 Automatic Selection Quasi-Directives

This section explains the automatic selection quasi-directives.

3.6.1 BR, CALL
In the RA78K4, the assembler can automatically select a branch instruction or a subroutine call instruction. The
CAB850 does not have quasi-directives equivalent to BR and CALL.

[RA78K4]

BR: The assembler automatically selects a BR branch instruction of 2 to 4 bytes according to the value
of the expression specified by the operand and outputs a corresponding object code.
The description format is as follows.

BR expression

CALL: The assembler automatically selects a CALL instruction of 3 or 4 bytes according to the value of the
expression specified by the operand and outputs a corresponding object code.
The description format is as follows.

CALL expression

<Example>

BR JLABELO

CALL JLABEL1

[CA850]
Not provided.
Describe a branch instruction by using the jr or jarl instruction. However, use the jmp instruction for a branch
that exceeds the displacement.

90 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.7 General-Purpose Register Selection Quasi-Directive
This section explains the general-purpose register selection quasi-directive.

3.7.1 RSS

The CA850 does not have a quasi-directive equivalent to the RSS quasi-directive.

[RA78K4]

RSS: Generates an object code based on the value of the register set selection flag specified by the
operand and by replacing the general-purpose register of the function name described in the
program with a general-purpose register of an absolute name.

The description format is as follows.
RSS 0or1
<Example>
RSS 0
[CA850]

Not provided.
The device does not have this function.

Application Note U15653EJ1VOAN

91

CHAPTER 3 ASSEMBLY LANGUAGE

3.8 Macro Quasi-Directives (Macro, Skip, Repeat Assemble Quasi-Directives)
This section explains the macro quasi-directives.

3.8.1 MACRO, .macro
The RA78K4 uses the MACRO quasi-directive and the CA850 uses the .macro quasi-directive to define a macro.

[RA78K4]
MACRO: Defines a macro by giving a macro name to a series of statements described between the MACRO
and ENDM quasi-directives.
The description format is as follows.

macro name MACRO [formal parameter [, ...]]
<Example>
ADDMAC MACRO PARA1, PARA2
MOV A, #PARAL
ADD A, #PARA2
ENDM

[CA850]
.macro: Defines statements enclosed between the .macro and .endm quasi-directives as the macro body of

the name specified by the first operand.
The description format is as follows.

.macro macro name [formal parameter,] ...

<Example>

.macro ADDMAC PARA1, PARA2

mov PARAl,r10
add PARA2,rl0
.endm

92 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.8.2 LOCAL, .local

The RA78K4 uses the LOCAL quasi-directive and the CA850 uses the .local quasi-directive to declare a local
symbol in a macro.

[RA78K4]
LOCAL: Declares that a symbol name specified in the operand field is a local symbol that is valid only in the
macro body.
The description format is as follows.
LOCAL symbol name [, ...]
<Example>
JMAC MACRO
LOCAL LAB
LAB:
BR SLAB
ENDM
[CA850]
local: Declares the specified character string as a local symbol that can be replaced by a specific
identifier.
The description format is as follows.
local Local symbol [, local symbal] ...
<Example>
.macro JMAC
.local LAB
LAB:
jr LAB
.endm

Application Note U15653EJ1VOAN 93

CHAPTER 3 ASSEMBLY LANGUAGE

3.8.3 REPT, .repeat
The RA78K4 uses the REPT quasi-directive and the CA850 uses the .repeat quasi-directive to repeatedly expand
a macro.

[RA78K4]

REPT: The assembler repeatedly expands the series of statements described between the REPT and
ENDM quasi-directives the number of times specified by the value of the expression specified by the
operand.

The description format is as follows.

REPT absolute expression

<Example>
REPT 3
NOP
ENDM
[CA850]

.repeat: Repeatedly assembles the series of statements enclosed by the .repeat and .endm quasi-directives
the number of times assigned by the absolute value expression specified by the first operand.
The description format is as follows.

.repeat absolute value expression

<Example>

.repeat 3
nop

.endm

94 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.8.4 IRP, .irepeat
The RA78K4 uses the IRP quasi-directive and the CA850 uses the .irepeat quasi-directive to expand a macro

repeatedly with a formal parameter.

[RA78K4]
IRP: Repeatedly expands the series of statements between the IRP and ENDM quasi-directives as many

times as the number of actual parameters, replacing the formal parameters with the actual
parameters specified by the first operand.
The description format is as follows.

IRP formal parameter, <actual parameter [, ...]>

<Example>

IRP PARA, <OAH, OBH, 0CH>
ADD A, #PARA
MOV [HL] ,A

INCW HL

ENDM

[CA850]
.irepeat: Repeatedly assembles statements enclosed by the .irepeat and .endm quasi-directives, replacing

the formal parameters specified by the first operand with the actual parameters specified by the

second operand.
The description format is as follows.

.irepeat formal parameter actual parameter [, actual parameter] ...

<Example>
.irepeat PARA Oxa, 0xb, 0xc
add PARA,r10
st.b rl0, [r1l1]
add 1,rll
.endm

Application Note U15653EJ1VOAN 95

CHAPTER 3 ASSEMBLY LANGUAGE

3.8.5 EXITM, .exitm, .exitma

The RA78K4 uses the EXITM quasi-directive to forcibly stop expansion of a macro body or repeated expansion of
a macro. The CA850 does not have a quasi-directive that forcibly stops expansion of a macro body. To forcibly stop
repeated expansion of a macro, however, the .exitm or.exitma quasi-directive is used.

[RA78K4]

EXITM: Forcibly returns the nesting level of macro body expansion, REPT quasi-directive, or IRP quasi-
directive to the nesting level when the macro body expansion, REPT quasi-directive, or IRP quasi-
directive was executed.

The description format is as follows.

EXITM

<Example>

REPT 10

$ IF(SW1 < 5)

DB OFH
EXITM
SELSE
DB 00H
SENDIF

$_IF(SW1 > 10)

DB 0AH
$ELSE

DB 05H
$ENDIF
ENDM

96 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

[CA850]

.exitm: Skips repeated assembly of the innermost quasi-directive of those that enclose this quasi-directive.
The description format is as follows.

.exitm

.exitma: Skips repeated assembly of the outermost quasi-directive of those that encloses this quasi-directive.

The description format is as follows.

.extima
<Example>
.sdata
.repeat 10
Lif SW1 < 5
.byte oxf
.exitm
.else
.byte 0x0
.endif
Lif SW1l > 10
.byte Oxa
.else
.byte 0x05
.endif
.endm
.repeat 5
Lif SW2 > 5
.byte oxf
Lif SW2 < 10
.byte O0xa
.exitma
.else
.byte 0x05
.endif
.else
.byte 0x0
.endif
.endm

Application Note U15653EJ1VOAN

97

CHAPTER 3 ASSEMBLY LANGUAGE

3.8.6 ENDM, .endm

The RA78K4 uses the ENDM quasi-directive and the CA850 uses the .endm quasi-directive to define the end of a
macro.

[RA78K4]
ENDM: Informs the assembler of the end of a series of statements defined as a macro function.
The description format is as follows.

ENDM
<Example>
ADDMAC MACRO PARA1, PARA2
MOV A, #PARA1
ADD A, #PARA2
ENDM

[CA850]
.endm: Indicates the end of a repeated zone or a macro body.
The description format is as follows.

.endm

<Example>

.macro ADDMAC PARA1, PARA2

mov PARA1l,r10
add PARA2,rl0
.endm

3.9 Assemble End Quasi-Directive

This section explains the assemble end quasi-directive.

3.9.1 END
The RA78K4 uses the END quasi-directive to declare the end of an assembler source module.

The CA850 does not have such a quasi-directive because it is not necessary to declare the end of the assembler
module using a quasi-directive.

[RA78K4]
END: Declares the end of the source module to the assembiler.
The description format is as follows.

END

98 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

[CA850]
Not provided.
It is not necessary to describe a keyword indicating the end at the end of the source file.

3.10 Assembler Target Model Specification Control Instructions
(Assembler Control Quasi-Directives)

This section explains the assembler target model specification control instructions (assembler control quasi-
directives).

3.10.1 $PROCESSOR, .option

The RA78K4 uses the $PROCESSOR control instruction and the CA850 uses the .option quasi-directive to
describe the model to be assembled in the assembler source file. However, the .option quasi-directive has functions
other than to specify the target model. For details, refer to CA850 Assembly Language (U15027E).

[RA78K4]
$PROCESSOR: Specifies the model to be assembled.
The description format is as follows.

$PROCESSOR (model name)
$PC (model name)

<Example>

SPROCESSOR (4038)

[CA850]
.option: Controls the assembler in accordance with the option specified as the operand.
Specify cpu to specify the model to be assembled.
The description format is as follows.

.option cpu model name

<Example>

.option cpu 3003

Application Note U15653EJ1VOAN 99

CHAPTER 3 ASSEMBLY LANGUAGE

3.11 Debug Information Output Control Instructions
This section explains the debug information output control instructions.

3.11.1 $DEBUG, $NODEBUG, $DEBUGA, $SNODEBUGA

The RA78K4 can specify control of debug information on the source file by using a control instruction.

The CA850 does not have a quasi-directive corresponding to such a control instruction. Specify debug information
using an option.

[RA78K4]
$DEBUG: Outputs local symbol information.
$SNODEBUG: Does not output local symbol information.
$DEBUGA: Outputs assembler source debug information.

SNODEBUGA: Does not output assembler source debug information.

[CA850]
Not provided.
To output debug information, specify it using an option.

3.12 Cross-Reference List Output Specification Control Instructions
This section explains the cross-reference list output specification control instructions.

3.12.1 $XREF, SNOXREF, $SYMLIST, SNOSYMLIST

The RA78K4 has control instructions that control output of a cross-reference list and a symbol list.

The CA850 cannot output a cross-reference list. Reference cross-reference information by using cxref. Also, the
CA850 cannot output a symbol list. Reference symbol information by using dump850 or rammap.

[RA78K4]
$XREF: Outputs a cross-reference list.
$NOXREF: Does not output a cross-reference list.
$SYMLIST: Outputs a symbol list.

SNOSYMLIST: Does not output a symbol list.

[CA850]
Not provided.
Reference a cross-reference list by using a cross-reference tool (cxref).
Reference symbols by using a dump tool (dump850) or memory visualization tool (rammap).

100 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.13 Include Control Instructions (File Input Control Quasi-Directives)
This section explains the include control instructions (file input control quasi-directives).
3.13.1 $INCLUDE, .include

The RA78K4 uses the $INCLUDE control instruction and the CA850 uses the .include quasi-directive to specify an
include file.

[RA78K4]
$INCLUDE: Inserts, expands, and assembles the contents of a specified file.
The description format is as follows.

$INCLUDE (file name)
$IC (file name)

<Example>

SINCLUDE (MAIN.H)

[CA850]
.include: Treats the contents of the file specified by the operand as if it were placed at the position of this
quasi-directive.
The description format is as follows.

.include “file name”

<Example>

.include "main.h"

3.13.2 .binclude
The CA850 can include a binary file.

[RA78K4]
Not provided

[CA850]
.binclude: Places the contents of the file specified by the operand at the position of this quasi-directive as
binary data unchanged.
The description format is as follows.

.binclude “file name”

<Example>

.binclude "sub.o"

Application Note U15653EJ1VOAN 101

CHAPTER 3 ASSEMBLY LANGUAGE

3.14 Assemble List Control Instructions

This section explains the assemble list control instructions.

3.14.1 $EJECT, $TITLE, $SUBTITLE, $LIST, SNOLIST, $GEN, SNOGEN, $SCOND, $SNOCOND, $FORMFEED,
$NOFORMFEED, $WIDTH, SLENGTH, $TAB
The RA78K4 has control instructions that control the number of characters on one line and the number of lines on

one page of an assembile list.

The CA850 does not have an instruction that controls the assemble list.

[RA78K4]

$EJECT:
$TITLE:

$SUBTITLE:

$LIST:
$NOLIST:
$GEN:
$NOGEN:
$COND:

$NOCOND:

$FORMFEED:
$NOFORMFEED:
$WIDTH:
$LENGTH:

$TAB:

[CA850]

102

Not provided.

Instructs the assembler to execute a page break of the assembile list.

Specifies a character string to be printed in the title field of the header of each page of the
assemble list.

Specifies a character string to be printed as the subtitle on each page header of the
assembile list.

Informs the assembler of the output start position of the assemble list.

Informs the assembler of the output stop position of the assemble list.

Instructs to output macro expansion to the assemble list.

Instructs not to output macro expansion to the assembile list.

Instructs to output the conditions not satisfied in conditional assembly to the assemble
list.

Instructs not to output the conditions not satisfied in conditional assembly to the assemble
list.

Instructs to output form feed at the end of the list file.

Instructs not to output form feed at the end of the list file.

Indicates the maximum number of characters on one line of a list file.

Indicates the number of lines on one page of a list file.

Indicates the number of characters to be expanded of the tab of a list file.

The assemble list file cannot be manipulated.

Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.15 Conditional Assembly Control Instructions (Conditional Assembly Quasi-Directives)
This section explains the conditional assembly control instructions (conditional assembly quasi-directives).
3.15.1 $SET, $SRESET
The RA78K4 uses the $SET control instruction and $RESET quasi-directive to define a value for a switch name of

conditional assembly.
The CA850 does not have such a control instruction. Define a switch name by using the .set quasi-directive.

[RA78K4]
$SET: Gives a true value (OFFH) to a switch name specified by the IF/ELSEIF control instruction.
The description format is as follows.

$SET (switch name [: switch name ...])

$RESET: Gives a false value (OH) to a switch name specified by the IF/ELSEIF control instruction.
The description format is as follows.

$RESET (switch name [: switch name ...])

<Example>

SSET (SWSYMO)

SRESET (SWSYM1)

[CA850]
Not provided.
Use the .set quasi-directive.

<Example>

.set SWSYMO, Oxff

.set SWSYM1, 0

Application Note U15653EJ1VOAN 103

CHAPTER 3 ASSEMBLY LANGUAGE

3.15.2 $IF, .ifdef
The RA78K4 performs assembly if the switch name specified by the $IF control instruction is true.
The CA850 performs assembly if the switch name specified by the .ifdef quasi-directive is defined.

[RA78K4]
SIF: Assembles until the next conditional assembly quasi-directive appears if the specified switch hame
is true (# 0). If it is false (= 0), does not assemble until the next conditional assembly quasi-directive
appears.

The description format is as follows.

$IF (switch name [: switch name ...])

<Example>

$IF (SWSYMO)

[CA850]

.ifdef: Assembles the blocks up to the corresponding .else, .elseif, .elseifn, or .endif quasi-directive if the
name specified by the operand is defined. If not, does not assemble the blocks up to the
corresponding .else, .elseif, .elseifn, or .endif quasi-directive.

The description format is as follows.

.ifdef name

<Example>

.ifdef SWSYMO

3.15.3 .ifndef
The CA850 performs assembly if the switch name specified by the .ifndef quasi-directive is not defined.

[RA78K4]
Not provided

[CA850]

.ifndef: Assembles the blocks up to the corresponding .else, elseif, elseifn, or .endif quasi-directive if the
name specified by the operand is not defined. If it is defined, does not assemble the blocks up to
the corresponding .else, .elseif, .elseifn, or .endif quasi-directive.

The description format is as follows.

.ifndef name

<Example>

.1fndef SWSYM3

104 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.15.4 $_IF, .if
The RA78K4 performs assembly if the conditional expression of the $_IF control instruction is true.
The CA850 performs assembly if the expression of the .if quasi-directive is true.

[RA78K4]
$_IF: Assembles until the next conditional assembly quasi-directive appears if the specified conditional
expression is true (= 0). If it is false (= 0), does not assemble until the next conditional assembly
quasi-directive appears.
The description format is as follows.
$_IF conditional expression
<Example>

$ IF SWSYM2 = 0

[CA850]

if: Assembles the blocks up to the corresponding .else, .elseif, .elseifn, or .endif quasi-directive if the
absolute expression specified by the operand is true (# 0). If it is false (= 0), does not assemble the
blocks up to the corresponding .else, .elseif, .elseifn, or .endif quasi-directive.
The description format is as follows.

.if absolute expression
<Example>
Jif SWSYM2==
3.15.5 .ifn

The CA850 performs assembly if the expression of the .ifn quasi-directive is false.

[RA78K4]
Not provided.

[CA850]

.ifn: Assembles the blocks up to the corresponding .else, .elseif, .elseifn, or .endif quasi-directive if the
absolute expression specified by the operand is false (= 0). If it is true (# 0), does not assemble the
blocks up to the corresponding .else, .elseif, .elseifn, or .endif quasi-directive.

The description format is as follows.
.ifn absolute expression
<Example>

.ifn SWSYM2==

Application Note U15653EJ1VOAN 105

CHAPTER 3 ASSEMBLY LANGUAGE

3.15.6 $ELSEIF, $_ELSEIF, .elseif

The RA78K4 uses the $ELSEIF control instruction for symbols and the $_ELSEIF control instruction for
expressions and the CA850 uses the .elseif quasi-directive to assemble if a condition is true when the conditions of
the previous assembly control instructions are not satisfied.

[RA78K4]
$ELSEIF: Judges a condition only if the conditions of all the previously described conditional assembly
control instructions are not satisfied.
If the specified switch name is true (= 0), assembles until the next conditional assembly quasi-
directive appears. If it is false (= 0), does not assemble until the next conditional assembly quasi-
directive appears.
The description format is as follows.

$ELSEIF (switch name [: switch name ...])

$_ELSEIF: Judges a condition only if the conditions of all the previously described conditional assembly
control instructions are not satisfied.
If the specified condition expression is true (# 0), assembles until the next conditional assembly
quasi-directive appears. If it is false (= 0), does not assemble until the next conditional assembly
quasi-directive appears.
The description format is as follows.

$_ELSEIF conditional expression

<Example>

SELSEIF (SWSYM1)

$ ELSEIF SWSYM2 = OFFH
[CA850]
.elseif: Judges a condition only if the conditions of all the previously described conditional assembly

quasi-directives are not satisfied.

If the absolute expression specified by the operand is true (# 0), assembles the blocks up to the
corresponding .else, .elseif, .elseifn, or .endif quasi-directive. If it is false (= 0), does not assemble
the blocks up to the corresponding .else, .elseif, .elseifn, or .endif quasi-directive.

The description format is as follows.

.elseif absolute expression

<Example>

.elseif SWSYM2==0xff

106 Application Note U15653EJ1VOAN

CHAPTER 3 ASSEMBLY LANGUAGE

3.15.7 .elseifn
The CA850 uses the .elseifn quasi-directive to judge a condition if the conditions of all the previous conditional
assembly control instructions are not satisfied, and assembles if the expression specified by the operand is false.

[RA78K4]
Not provided.

[CA850]

.elseifn: Judges a condition only if the condition of all the previously described conditional assembly quasi-
directives are not satisfied. If the absolute expression specified by the operand is false (= 0),
assembles the blocks up to the corresponding .else, .elseif, .elseifn, or .endif quasi-directive. If it is
true (= 0), does not assemble the blocks up to the corresponding .else, .elseif, .elseifn, or .endif
quasi-directive.

The description format is as follows.

.elseifn absolute expression

<Example>

.elseifn SWSYM2==0xff

3.15.8 $ELSE, .else
The RA78K4 uses the $ELSE control instruction and the CA850 uses the .else quasi-directive to specify
assembling if all previous conditional assembly control instructions are false.

[RA78K4]
$ELSE: If the conditions of all previously described conditional assembly control instructions are not
satisfied, assembles until the ENDIF control instruction appears after the ELSE control instruction.
The description format is as follows.

$ELSE
[CA850]
.else: If the conditions of all the previously described conditional assembly quasi-directives are not
satisfied, assembles statements enclosed by the .else quasi-directive and .endif quasi-directive
corresponding to this quasi-directive.

The description format is as follows.

.else

Application Note U15653EJ1VOAN 107

CHAPTER 3 ASSEMBLY LANGUAGE

3.15.9 SENDIF, .endif
The RA78K4 uses the SENDIF control instruction and the CA850 uses the .endif quasi-directive to define the end
of conditional assembly.

[RA78K4]
$ENDIF: Informs the assembler of the end of the source statement subject to conditional assembly.
The description format is as follows.

$ENDIF

[CA850]
.endif: Indicates the end of the range of control by a conditional assembly quasi-directive.
The description format is as follows.

.endif

3.16 SFR Area Change Control Instructions

This section explains the SFR area change control instructions.

3.16.1 $CHGSFR, SCHGSFRA

The 78K/IV Series can change the address of the SFR area by using the LOCATION instruction. At this time, the
SFR area whose address is to be changed is specified by the SFR area change control instruction.

The V850 Family does not have such a function and therefore does not have a quasi-directive equivalent to the
SFR area change control instruction.

[RA78K4]
$CHGSFR: Specifies an address of the SFR area by the absolute expression of the operand.
The description format is as follows.

$CHGSFR (absolute expression)

$CHGSFRA: Instructs to create an object that can be linked regardless of the SFR area.
The description format is as follows.

$CHGSFRA

[CA850]
Not provided

108 Application Note U15653EJ1VOAN

CHAPTER 4 LINK DIRECTIVES

This chapter explains the points to be noted about the link directives of the linker (link editor) and the basic method

of describing the link directives.

4.1 Contents of Link Directive

The contents described in the link directive file of the 1k78k4 of the RA78K4 and the 1d850 of the CA850 are as
follows.

Table 4-1. Link Directives

RA78K4 CA850
Memory directive Segment directive
Segment allocation directive Mapping directive
Symbol directive

In the RA78K4, the directives do not have to be described in the order of addresses, whereas they do in the
CA850.

The RA78K4 does not have a symbol directive that generates a symbol. The CA850 requires description of a
symbol directive to generate the TP, GP, and EP symbols.

Application Note U15653EJ1VOAN 109

CHAPTER 4 LINK DIRECTIVES

4.2 Description of Link Directive
The description format of the link directives of the RA78K4 and CA850 is as follows.

[RA78K4]
Memory directive
MEMORY memory area name: (start address value, size) [/[memory space name]

Segment allocation directive
MERGE segment name: [AT (start address)]
[= memory area name specification] [/memory space name]

<Example>
memory TBL (000000h , 00080h)
memory ROM (000080h , OBF80h)
memory RAM1 (OFF700h , 00600h)
memory STK (OFFDOOH, 00020h)
memory SDR (OFFD20h , 0OOEOh)
memory SDR1 (OFFEOOh , 00080h)
memory RAM (OFFE8Oh , 00180h)
merge @@INIT : = RAM1
merge @@DATA : = RAM1
merge @@INIS : = SDR
merge @@DATS : = SDR
merge @@BITS : = SDR
merge @@INIS1 : = SDR1
merge @@DATS1 : = SDR1
merge @@BITS1 : = SDR1
memory EXMEM : (050000H, 1000H)
merge DAT1 := EXMEM

110 Application Note U15653EJ1VOAN

CHAPTER 4 LINK DIRECTIVES

[CA850]
Segment directive
Segment name: Isegment type ?segment attribute [V address]
[L maximum memory size] [H hole size] [F filling value]
[A alignment condition] {mapping directive};

Mapping directive
section name = $section type ?section attribute [section name]
[V address] [H hole size] [A alignment condition]
[{file name [file name]...}];

Symbol directive

symbol name @ %symbol type [&base symbol name] [V address]
[A alignment condition] [{segment name[segment name]...}];

Application Note U15653EJ1VOAN 111

CHAPTER 4 LINK DIRECTIVES

<Example>

SCONST : !LOAD ?R
.sconst = SPROGBITS ?A .sconst;

}i

TEXT : ILOAD ?RX {
.pro_epi_runtime = $PROGBITS ?AX;
.text = S$SPROGBITS ?AX;

}i

DATA : !LOAD ?RW V0x100000 {
.data = SPROGBITS ?AW.data;
.sdata = SPROGBITS ?AWG.sdata;
.sbss = SNOBITS ?AWG.sbss;
.bss = SNOBITS ?AW.bss;

}i

CONST : ILOAD ?R {
.const = SPROGBITS ?A .const;

}i

SEDATA : !LOAD ?RW VOxf£f6000 {
.sedata = SPROGBITS ?AW .sedata;
.sebss = SNOBITS ?AW .sebss;

}i

SIDATA : ILOAD ?RW VOxffe000 {
.tidata.byte = $SPROGBITS ?AW .tidata.byte;
.tibss.byte = SNOBITS ?AW .tibss.byte;
.tidata.word = SPROGBITS ?AW .tidata.word;
.tibss.word = SNOBITS ?AW .tibss.word;
.tidata = S$PROGBITS ?AW .tidata;
.tibss = SNOBITS ?AW .tibss;
.sidata = SPROGBITS ?AW .sidata;
.sibss = SNOBITS ?AW .sibss;

i

__tp TEXT @ $%TP_SYMBOL;

__gp DATA @ %GP_SYMBOL & tp TEXT{DATA};

__ep DATA @ %EP_SYMBOL;

112 Application Note U15653EJ1VOAN

This chapter compares the translation limit values of the CC78K4 and CA850 during compilation.

CHAPTER 5 TRANSLATION LIMIT

The results of the comparison are as follows.

Table 5-1. Translation Limit Value

No. Item CC78K4 CA850
1 Nesting of compound, repeat control, and selection control statements 45 127
2 Nesting of conditional compiling 255 255
3 Number of pointers, arrays, and function declarators (or any combination of 12 16

these) qualifying one arithmetic type, structure type, union type, or incomplete
type in one declaration,
4 Number of levels of nesting declarators enclosed in parentheses in a complete 591 255
declarator
5 Number of levels of nesting expressions enclosed in parentheses in a 32 255
complete expression
6 Number of valid first characters in a macro name 31 1023
7 Number of valid first characters in an external symbol name 30 1022
8 Number of valid first characters in an internal symbol name 30 1023
9 Number of symbols in one source module file 1024 4095
10 Number of symbols having block scope in one block 255
11 Number of macros in one source module file 10000 2047""
12 Parameter of one function definition or one function call 39 255
13 Parameter of one macro definition or one macro call 31 127
14 Number of characters on one logic source line 509 32766
15 Number of characters in a character string literal after linking 509 32766
16 Nesting of include files 8 50
17 Number of case labels of a switch statement 257 1025
18 Number of members of one structure or union 127 1023
19 Number of enumeration constants of one enumeration 255 1023
20 Nesting of structures or unions in one structure or union 15 63

Note This can be changed by a C compiler option (-Xm) (up to 32767).

Application Note U15653EJ1VOAN

113

[A]

Assemble end quasi-directive
Assemble list control instruction.............

Assemble target model specification

control instructioncccooovviiiiiieiennnen.
Assembler control quasi-directive
Assembler instruction...........cccccceeeeeee

Binary constantcccoociiniiec e
Bit @CCESS....vviiiiiiiiiee e
Bit fieldccoviieeiiee e

APPENDIX

INDEX

CRAN ... i 47
Character string function............cccevvieiiennieeniieennen, 63
Character Stringcoocveiieeniie e 87
Character string/memory function............ccceecvvveennee. 63
Compiler-defined Macros............ccevcveeiieerier e, 18
Conditional assembly quasi-directive................ 67, 103
Conditional assembly control instruction........... 67, 103
Control iINStrUCtIONScoivieeeeiiee e 65
Control of interrupt disabling............ccccoovveieenee 19, 25
Copying ROMization default value data.................... 64
CPU control instructioncceevvveeveeeeeeeeeeeeennns 19, 26
Cross-reference list output specification control
INSTFUCHION ..o 66, 100
Cross-reference toolccocevevieeniic e, 16
(O] = 61, 65, 68
CXPEf e 16
BCHGSFR....cc e 67, 108
BCHGSFRA ..ot 67,108
SCOND ..ot 67, 102
(o7 11 1 0 TS 66, 89
CONST .. 62, 65, 68
@ @CALF ... 61
@ @CALT ..o e 61
@ @CNST ... 61
@ @CODE ..o 61
[D]

Debug information output control instruction66, 100

DeViICe fil€ ..oeeeiii e 15
DeVICE tYPe ... 19, 37
5 66, 83
Dl 24,25
[0 115321 O RS 16
Disassembler............eeiiiiiiiiiiee e 16
Division function...........cceeviiiiiiiiieei e 19, 35
AIVUW Lt e e e 35
AOUDIE ... 47
DS 66, 85
(15 = S 61, 65, 70
DUMP dir€CtiVe......veeeeeieie e 16
(o [T] o2= 1T 0 IR PP PPPPPRPIRE 16
5 66, 82

Application Note U15653EJ1VOAN

APPENDIX INDEX

SDEBUG ...ttt 66, 100 General-purpose registers.........ccoevveeeiiieeeeniiieeens 54
SDEBUGA ... 66, 100 Global POINET......coviiieie e 54
[0 1 - U 62, 65, 70 BGEN. ... 67, 102
@ @DATA e s 61 GIODI e 66, 87
@ @DATS e 61 [H]
@ @DATST e 61
DATE . oo e 18 HALT L 26
Hardware initialization function.............cccccevvierinnen. 55
[E] Header file ... 64
= R 24, 25 Heap area.........ccoeui oo 52
Element pointer.........couivviiiiiiiieiiiiiiiiiiieeererereveieneienen 54 [(oY oo] 1)Y= o (=] SRR 16
] N |5 PPN 66, 98 NX850...cueieieieieieieieieinieinrrrnrarer e —————————————— 16
ENDM ...ooeieieeeieieieieieieeeiecevsveeeeeeeeeeeseassesesesesannnnes 66, 98 11T o Nt 66, 82
EQU ... 65, 79 0l
exit fuNCioN... ... 59
EXITM oo 66, 96 1@ (V13 o3 o) o 63
EXTBIT oottt 66, 89 Include control iNStruction ..., 66, 101
Extended descriptions...........ccueueveveeeeevcerecrereeenennns 38 Inline eXpansion ..., 19, 30
EXTBN oo 66, 88 1 47
HENAASM ... 20 Integer operation ... 64
S ELSEIF oot 67, 106 Interrupt disabled function ... 19,24
SEUECT ot 67,102 Interrupt funCtion ... 19, 22,24
SELSE ..ottt 67,107 Interrupt handler supporting real-time OS 19, 36
= IS] = [= 67, 106 Interrupt [evel........ocooveiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 38, 46
SENDIF .o, 67,108 (o] (=Y R 20
LIS oo 67, 107 L1 1 R 66, 95
ISEIf v 67, 106 T | 67,105
IS oo 67, 107 Bl e 67, 104
NI oo 67, 108 BINCLUDE.......o it 66, 101
NGO e 66, 98 | 7N 67, 105
OXIY oo i 66, 96] (o [N 67, 104
XN oo 66, 96] { TN 67, 105
XYY e 66, 88 JfNdef . e 67, 104
ANCIUE ..o 66, 101
[F] drepeat ..o 66, 95
File input control quasi-directive 66, 101 @@INIS ... 61
L1 (0= L PR 47 @ @INIST oo 61
Floating-point operationcccccoeeeeiiiiieeiiiieeene 64 @ @INIT Lo e 61
Floating-point value..........ccccccoiiiiiiiiieieeeeen 87 interrupt .o 22,23
SFORMFEED.......ccccteeeiee e 67,102 _interrupt_blK......ccoooeeeee 22
{1 =R 65, 80 K]
L1 [7= | N 66, 87
TN ettt 65, 80 KA 18
L FILE e 18 [L]
[G] 078K s eeeeeeeee s eeeseseess s eeeeseees s eeeeeeee 16
General-purpose register selection 1A850......ei i 16
QUASI-IFECHIVE ... 66, 91 ICNVT78KA ... 16
Librarianeeoiiiiie e 16

Application Note U15653EJ1VOAN 115

APPENDIX INDEX

LiDrary ..ooooo oo 63
Link direCtiVecoooiiieiee e 109
[0 =T 1 (o] SRR 52, 58, 109
Linkage quasi-directiveccccccviiieeeiiiiiniiins 66, 87
[0] =] GO 16, 109
LiSt CONVEMEr.....ciiiiiiiee e 16
IK7BKA ... 16
I 17 O 66, 93
Location counter quasi-directive............ccccceeeeeeeenn. 65
Location insStructionccccooveiiiieeieiiiiiieeeee e 53
JONG 1o 47
BLENGTH. ..ot 67,102
BLIST e 67,102
[o70T 0 0o TR 66, 85
[0 o= F 66, 93
LINE s 18
[M]
Macro quasi-directiveccccoeeiiiiiiieenieieiee 66, 92
MACRO ... 66, 92
main funCtion ..o 59
MaSK regiSter...... ..o 54
Mathematical functioncccceeiniiiiiiii s 63

Memory initialization, area reservation

qQuasi-direCtiveeeeiiiiiiiee e 66, 81
Memory layout visualization toolcccccceeeen. 16
MEMORY ... 110
MERGE ..ot 110
MOAUIE ..o 19, 29, 30, 50
[T o [0 U 35
Multiplication function.........c.ccccoiiiiiiiiiiiinee 19, 34
IMUIU e 34
IMUIUW et 34
IMUIW e e e 34
[.07= (o] (o T 66, 92
__multi_interrupt ... 23
[N]

NAME ... 65, 81
10 = 10 | (LR 38
NOP . 26
NMOTEC ...ttt e ettt e et e e e e e e e e e e e e e e s 38
BNOCOND ..ottt s 67, 102
SNODEBUGoooiiieciee e 66, 100
SNODEBUGA........cueeiererireencieieieesesen e 66, 100
SNOFORMFEED.......cccceciiiieeiee e 67,102
BNOGEN.......oi e 67,102
SNOLIST .. 67, 102

SNOSYMLIST .. 66, 100
@)] = 66, 100
[O]

ODbjJECt CONVEMET ...t 16
Object module Name..........cccoveerieeriieeree e 80
Object module name declaration

(o [UE= TS R [T =T o (1Y TS 65, 80
OCTBKA ... 16
ORG e 65, 77
OPHION .o 66, 99
Lo (o PP 65, 77
L OPC 35
[P]

Pascal functionceeeiiiiiiiiiiiee e, 38, 46
PCBBO0 ... 16
Performance checker ... 16
Peripheral function register...........ccccoecviiiieee e, 16
Product Name ... 15
Program control function.........c.cccceeeviiieeiiiieee e, 63
Program linkage quasi-directivecc....... 66, 87
PUBLIC ...t 66, 87
H#Pragma @CCESS ..cceevireiuiiiriieeee et ee e e e 19, 27
H#Pragma @SM......eeeeeeeeeeeeeeneneeenennnnnennnernnnnnenes 19, 20, 21
#pragma block_interrupt.........ccccceviieeiiiiinenns 19, 24
#pragma brkoooviiiiiii e 19, 26
HPIrAgMA CPU...eeeeieeieeeeeeieeee e e e e e 19, 37
HPragma di.....ocoeceeeeiiieee e 19, 25
#pragma direCtivesc.oeeveeeiiiiiiiiiieecee e 19
HPragma diV......ccceeeeiireeeeiiee e e 19, 35
HPragma €i....eeeeeeeeeeiieee e e 19, 25
#pragma endasm........cccueveeeieeeeeiniiieeeee e 19, 21
#pragma halt........cccooeieiiii e 19, 26
#Pragma inlinecoeeeeviieeiieee e 19, 30
#pragma interrupt ... 19, 22, 23
HPragma iOr€Jceeveviureeeeiiieee e e sreeeeesreee e 19, 20
H#Pragma MuUl......ccoeveiieeeiiie e 19, 34
H#Pragma NaME......coeeeieiiiiiieieee e ee e e 19, 30
HPragMa NOP ..eeeveeeieeeieiiieee e e 19, 26
HPrAgMA OPC...eeeeeeeeeee e e e e e e e 19, 35
H#Pragma PACKceeeeireiiiieeieee e 19, 38
HPIrAgMA PO 19, 37
#Pragma Peekb.......cooveeiiiiieee e 27
H#Pragma PEEKWccoviiiiiiiiieee e 27
#pragma PoKEDcocveeiii e 27
H#Pragma POKEWcoceeeeiiiiieieieee e 27
H#Pragma roteeeeeviieiieeee e 19, 31

116 Application Note U15653EJ1VOAN

APPENDIX INDEX

#pragma rtos_interrupt.........cccocveeeeeiiniiiiieeeeeen. 19, 36
#pragma rtos_taskcccceeriiiiiiiiie e 19, 37
#pragma SeCtionccceeeiiiieeincee e 19, 29
HPragma Sfr.....eeeeeceie i 19, 20
#Pragma stop ... 19, 26
#pragma text. ... 19, 29
H#Pragma VecCtcceeveeeieeiiiieee e 19, 22
SPROCESSOR.......ooecieeieecee e 66, 99
JPFEVIOUS .ot 65, 76
Pro_epi_runtime ..o 62
[Q]
QUaSI-AIFECHIVESeeeeiie e 65
[R]
FATBKA ... 16
FAMIMAP ... 16
Real-time OS function.........cccoocoviiiiiiiiieeiiiiinnn. 19, 37
Register bank..........occooeiiiee e 54
Register variable ... 38, 39
FEQISTEN .. 38
Repeat assemble quasi-directive....................... 66, 92
REPT < 66, 94
Reserving memory area...........cccuveeeeeeeieiicineeeeneeenns 81
ReSEt VECION ... 53
0] | o PSSP 31
FOIW et 31
ROMization ProCesSsOrccocueirreernieienieeesieeeseee e 16
ROMIZAtioN ...ccooeeieeeeee e 56
FOMPB50. .. 16
FOMPSEC ..eeviiiiiniiiiii s 62
0] o PP 31
0] 4 PSP UPPPPR PP 31
Rotate function...........coooevvvieeeeiiiiicee e, 19, 31
RSS e 66, 91
Runtime library.........cooooiiiiieiiiieee e 62, 64
BRESET ..ot 67,103
FEPEAL. ... e 66, 94
@ @RB_INIT e e 61
@@RB_INS ... 61
@@R_INST .. 61
_ OS_INterrupt.. ... 36
(0707 0 58
[S]
[<T=To [0 | SN 38, 40
Section ..ooeeeeeeie 19, 29, 60
Section definition quasi-directive........................ 65, 68

Section file generator..........ccooveeiiiiic s 16
SEOMENT ... 60
Segment output by compiler...........ccocveieiiiiiiiinens 61
Segment quasi-directiveccccceeviiieeeniieeeens 65, 68
ST S 65, 79
L] =2 TS 16
SFR area change control instruction 67, 108
SEE e e 20
SO <. 47
Skip quasi-directivecccceeeeiiiiciie e 66, 92
Sl 72,73
Special functioncooveeiiiiii e 63
Special function register nameccccecveeeenee 19, 20
Special regiStersccuviiieriieiieeeee e 55
SIT i 38
(1] SRR 72,73
SETBKA ..ot 16
StACK @r€aeeeeieieeeeiiee e 53
StacK POINTETvviiieeeiic e 54
Startup MOdUIEcooiiiiii e 50
Startup routiNecooveiiii 50
STOP .. 26
Structure packingccccevieeerieiniieree e 19, 38
Structured assemblerccoooceeieicii i 16
Symbol control quasi-directive............ccccecueeenee 65, 78
Symbol definition quasi-directive.............cccc....... 65, 78
BSET oo s 67, 103
SSUBTITLE ..o 67, 102
BSYMLIST ..ot 66, 100
SDSS e 62, 65, 70
[<Yol0] 1] SR 62, 65, 68
Lo =1 = VN 62, 65, 70
SEDSS .ot 62, 65, 70
LSY=To3 ([] o 65, 76
Y=o =\ = TN 62, 65, 70
S 65, 79
SNWOI....eiiieiiieit e 85
SIDSS et 62, 65, 70
LS 1[0 F= 1 ¢= N 62, 65, 70
Sz i 65, 80
L] oF=T o] = PP 66, 84
L | PPN 87
(1<) S N 38, 46
SIEG T 38, 40
STDC e s 18
[T]
Text POINEEN ...coei i 54

Application Note U15653EJ1VOAN 117

APPENDIX INDEX

Translation limit........c.oooooiii 113
BTAB ... 67, 102
BTITLE ..o e 67, 102
teXt oo 62, 65, 68
BDSS e 62, 65, 70
dibss.byte ..o 65, 70
AIDSS.WOrd ..o, 65, 70
R (o P21 = 62, 65, 70
didata.byte...oeeeeeee 65, 70
didata.word......ooee i, 65, 70
B 1 S 18
[U]
Utility FUNCHION......eiiiiiiieee e 63
[Vl
VADSTAAD ... 65
VAEDUG .t 65
(V[T TR 65
@ @VECT ..o 61
AVZS 11O IR 18
VB850 i 18
[W]
SWIDTH .o 67, 102
11 o N 66, 84
[X]
ey = R 66, 100

118 Application Note U15653EJ1VOAN

NEC

Although NEC has taken all possible steps
essage to ensure thatthe documentation supplied
to our customers is complete, bug free

. and up-to-date, we readily accept that
From: P
errors may occur. Despite all the care and
precautions we've taken, you may
Name encounter problemsinthe documentation.
Please complete this form whenever
Company you'd like to report errors or suggest
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +65-250-3583

Fax: +1-800-729-9288
+1-408-588-6130

Europe Korea Japan
: NEC Electronics Hong Kong Ltd. NEC Semiconductor Technical Hotline
NEC EI E H
© Electronics (Europe) GmbH — o | Branch Fax: +81- 44-435-9608

Technical Documentation Dept.

Fax: +49-211-6503-274 Fax: +82-2-528-4411

South America Taiwan
NEC do Brasil S.A. NEC Electronics Taiwan Ltd.
Fax: +55-11-6462-6829 Fax: +886-2-2719-5951

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good Acceptable Poor
Clarity a a a a
Technical Accuracy a a a a
Organization a a a a

CS 01.2

	COVER
	INTRODUCTION
	CHAPTER 1 OVERVIEW
	1.1 Product Form
	1.2 Package Software

	CHAPTER 2 C LANGUAGE
	2.1 Compiler-Defined Macros
	2.2 #pragma Directive
	2.2.1 Use of special function register name (peripheral function register name)
	2.2.2 Description of assembler instruction
	2.2.3 Interrupt function
	2.2.4 Specification of interrupt disabled function
	2.2.5 Control of interrupt disabling
	2.2.6 CPU control instructions
	2.2.7 Absolute address access
	2.2.8 Change of section name
	2.2.9 Change of module name
	2.2.10 Specification of inline expansion
	2.2.11 Use of rotate function
	2.2.12 Use of multiplication function
	2.2.13 Use of division function
	2.2.14 Use of data insertion function
	2.2.15 Specification of interrupt handler supporting real-time OS
	2.2.16 Specification of real-time OS function
	2.2.17 Specification of device type
	2.2.18 Structure packing

	2.3 Extended Descriptions
	2.3.1 callt function
	2.3.2 Register variables
	2.3.3 Using saddr area
	2.3.4 noauto function
	2.3.5 norec function
	2.3.6 Bit type variable
	2.3.7 Bit access
	2.3.8 callf function
	2.3.9 Binary constant
	2.3.10 Specification of interrupt level
	2.3.11 Pascal function

	2.4 Size and Alignment Conditions of Variables
	2.4.1 Size of variable type
	2.4.2 Alignment conditions

	2.5 Startup Routine (Startup Module)
	2.5.1 Setting module name and loading include file
	2.5.2 Setting library switch
	2.5.3 Defining symbols
	2.5.4 Reserving area for library
	2.5.5 Reserving stack area
	2.5.6 Setting reset vector
	2.5.7 Setting location
	2.5.8 Setting register bank
	2.5.9 Setting stack pointer
	2.5.10 Setting general-purpose registers
	2.5.11 Setting special registers
	2.5.12 Calling hardware initialization function
	2.5.13 Setting default value of standard library
	2.5.14 ROMization processing
	2.5.15 Initializing variable area without default value
	2.5.16 Calling main function
	2.5.17 Calling exit function
	2.5.18 Defining segment (section)

	2.6 Segment (Section) Output by Compiler
	2.6.1 Segment Output by CC78K4
	2.6.2 Section output by CA850

	2.7 Library and Header File

	CHAPTER 3 ASSEMBLY LANGUAGE
	3.1 Segment Quasi-Directive (Section Definition Quasi-Directive)
	3.1.1 CSEG, .text, .const, .sconst
	3.1.2 DSEG, .bss, .data, .sbss, .sdata, .sebss, .sedata, .sibss, .sidata, .tibss, .tidata, .tibss.byte, .tidata.byte, .tibss
	3.1.3 BSEG
	3.1.4 .previous, .section
	3.1.5 ORG, .org
	3.1.6 .align

	3.2 Symbol Definition Quasi-Directives (Symbol Control Quasi-Directives)
	3.2.1 EQU
	3.2.2 SET, .set
	3.2.3 .size, .frame, .file

	3.3 Object Module Name Declaration Quasi-Directives
	3.3.1 NAME

	3.4 Memory Initialization and Area Reservation Quasi-Directives (Area Reservation Quasi-Directives)
	3.4.1 DB, .byte
	3.4.2 DW, .hword
	3.4.3 DG
	3.4.4 .word
	3.4.5 .space
	3.4.6 .shword
	3.4.7 DS, .lcomm
	3.4.8 DBIT
	3.4.9 .float, .str

	3.5 Linkage Quasi-Directives (Program Linkage Quasi-Directives)
	3.5.1 PUBLIC, .globl
	3.5.2 EXTRN, .extern
	3.5.3 EXTBIT
	3.5.4 .comm

	3.6 Automatic Selection Quasi-Directives
	3.6.1 BR, CALL

	3.7 General-Purpose Register Selection Quasi-Directive
	3.7.1 RSS

	3.8 Macro Quasi-Directives (Macro, Skip, Repeat Assemble Quasi-Directives)
	3.8.1 MACRO, .macro
	3.8.2 LOCAL, .local
	3.8.3 REPT, .repeat
	3.8.4 IRP, .irepeat
	3.8.5 EXITM, .exitm, .exitma
	3.8.6 ENDM, .endm

	3.9 Assemble End Quasi-Directive
	3.9.1 END

	3.10 Assembler Target Model Specification Control Instructions (Assembler Control Quasi-Directives)
	3.10.1 $PROCESSOR, .option

	3.11 Debug Information Output Control Instructions
	3.11.1 $DEBUG, $NODEBUG, $DEBUGA, $NODEBUGA

	3.12 Cross-Reference List Output Specification Control Instructions
	3.12.1 $XREF, $NOXREF, $SYMLIST, $NOSYMLIST

	3.13 Include Control Instructions (File Input Control Quasi-Directives)
	3.13.1 $INCLUDE, .include
	3.13.2 .binclude

	3.14 Assemble List Control Instructions
	3.14.1 $EJECT, $TITLE, $SUBTITLE, $LIST, $NOLIST, $GEN, $NOGEN, $COND, $NOCOND, $FORMFEED, $NOFORMFEED, $WIDTH, $LENGTH, $TAB

	3.15 Conditional Assembly Control Instructions (Conditional Assembly Quasi-Directives)
	3.15.1 $SET, $RESET
	3.15.2 $IF, .ifdef
	3.15.3 .ifndef
	3.15.4 $_IF, .if
	3.15.5 .ifn
	3.15.6 $ELSEIF, $_ELSEIF, .elseif
	3.15.7 .elseifn
	3.15.8 $ELSE, .else
	3.15.9 $ENDIF, .endif

	3.16 SFR Area Change Control Instructions
	3.16.1 $CHGSFR, $CHGSFRA

	CHAPTER 4 LINK DIRECTIVES
	4.1 Contents of Link Directive
	4.2 Description of Link Directive

	CHAPTER 5 TRANSLATION LIMIT
	APPENDIX INDEX

