Getting Started with Cloud Connectivity on the FSP DA16XXX MQTT On-chip Client This document demonstrates a quick cloud MQTT connectivity solution using the FSP DA16XXX MQTT On-chip Client driver with an EK-RA6M4 evaluation kit. The application example provided in the package uses Amazon AWS IoT to send temperature and humidity data from the EK-RA6M4 and to control the user LED on the EK-RA6M4 remotely. The steps in this document show the complete setup to run and test the application. ## **Target Devices** RA6M4 MCU Group ## **Required Resources** To build and run the MQTT application example, the following resources are required. Development tools and software: - Flexible Software Package (FSP) v5.3.0 (GitHub renesas/fsp: Flexible Software Package (FSP) for Renesas RA MCU Family) - SEGGER J-Link RTT Viewer (see segger.com) - e² studio version 2024-04 (Platform Installer) #### Hardware: - EK-RA6M4 Evaluation Kit for the RA6M4 MCU Group - Windows PC with any browser - Micro-USB cable - DA16200 or DA16600 Wi-Fi module # **Contents** | 1. | Setting Up the EK-RA6M4 Kit | | | | | |----|----------------------------------|---|--|--|--| | | 1.1
1.2 | Steps | | | | | 2. | Application Overview | | | | | | | 2.1
2.2
2.3 | Overview | | | | | 3. | Setting Up AWS IoT | | | | | | | 3.1
3.2 | Create an AWS IoT Account | | | | | 4. | Setti | Setting Up the FSP Project | | | | | | 4.1
4.2
4.3
4.4 | Import RA Project84.2 Configure FSP8Configure the User File10Set Up the MQTT AWS Certificates10 | | | | | 5. | Adding J-Link RTT for Monitoring | | | | | | | 5.1 | Configure J-Link RTT Application | | | | | 6. | Running the Application | | | | | | | 6.1
6.2 | Build and Debug the Application | | | | | 7. | Revi | sion History | | | | # 1. Setting Up the EK-RA6M4 Kit This section of the document covers the steps to set up the EK-RA6M4 kit and connect the hardware to the PC. ## 1.1 Steps - Attach the US159-DA16200MEVZ/US159-DA16600EVZ Wi-Fi Pmod module to PMOD2 (J25, upper right) on the EK-RA6M4. Ensure the DA16xxx module and components are facing up. - Connect the EK-RA6M4 dev kit to the PC using a USB Micro-B cable connected to DEBUG (J10) on the board (right side of the board above the Ethernet jack). - When completed, the LEDs should be illuminated as in Figure 1, and the board should appear as follows: - · LED4 (middle of board) Illuminating white - LED5 (right side, near USB debug port) Illuminating yellow #### 1.2 Connection Figure 1. EK-RA6M4 Connections # 2. Application Overview This section discusses the application overview, detailing the architecture and overall functionality of the MQTT cloud connectivity with AWS IoT. #### 2.1 Overview This application demonstrates the use of the Renesas FSP DA16XXX Wi-Fi APIs and Wi-Fi module to establish quick connectivity to the AWS IoT MQTT cloud service. This document provide an example that demonstrates Subscribe and Publish messaging with an MQTT broker. It provides periodic publication of temperature and humidity data and asynchronous publication of a **User Push Button** event from the MCU to the cloud. The device is also subscribed to receive actuation events (LED ON/OFF) from the cloud, showing two-way control. #### 2.2 Architecture Figure 2. Architecture Diagram # 2.3 Functional Flowchart Figure 3. Functional Flow Diagram # 3. Setting Up AWS IoT This section covers setting up AWS IoT, including instructions on creating an AWS account and setting up IoT things for MQTT. #### 3.1 Create an AWS IoT Account Sign up for a new AWS IoT account or log in to an existing account on the AWS website. ## 3.2 Create and Setup an IoT Thing Open AWS IoT Core and create an MQTT thing and generate certificates. Navigate to **Manage > All devices > Things** and click on the **Create things** button. Figure 4. AWS IoT Create Thing Settings Menu Reference: What is AWS IoT? - AWS IoT Core (amazon.com) Choose Create single thing and click Next. Provide a thing name and click on Next. Figure 5. AWS IoT Thing Creation Next, click on **Auto-generate a new certificate** to generate a new certificate and click **Next**. If there is no existing policy, create a new one by clicking on **Create policy**. Figure 6. AWS IoT Policy Creation Provide a name for the policy, select the JSON tab and give the policy statements as shown in Figure 7. *Note:* This opens a new tab, which can be closed after the policy is created. ``` Policy document Info Builder JSON An AWS IoT policy contains one or more policy statements. Each policy statement contains actions, resources, and an effect that grants or denies the actions by the resources. Policy document 1 ▼ { 2 "Version": "2012-10-17", 3 ▼ "Statement": [4 ▼ { "Effect": "Allow", 5 "Action": "*", "Resource": "*" 8 9] } 10 ``` Figure 7. AWS IoT Policy Statement Configuration Finally, select the created policy, click on **Create thing**, and download the certificates by clicking the three **Download** buttons with red boxes (see Figure 8). Figure 8. Certificates and Keys # 4. Setting Up the FSP Project This section details the process for setting up the FSP Project, including importing the RA project, configuring FSP, configuring user files, and setting up the MQTT AWS certificates. # 4.1 Import RA Project To import FSP projects, refer to the *Official Renesas RA Family Beginner's Guide* (PDF) and import the project from the provided zip file. # 4.2 4.2 Configure FSP Navigate to the Settings menu in AWS IoT core and copy the host name of the MQTT broker (Endpoint). Figure 9. FSP Configuration Double-click on the **configuration.xml** file to open the FSP configuration window. Next, click on the stacks pane to open the stacks. In the stacks window, click on the **Main thread** and click on **MQTT Client on DA 16XXX** and open the **Properties** tab and copy the host name of MQTT broker in the Host Name field. **Figure 10. MQTT Client Properties Settings** # 4.3 Configure the User File Modify the **user.h** file under the **src** folder and provide the Wi-Fi password and SSID information for the Access Point used. ``` #define WIFI_SSID "WIFI SSID" #define WIFI_PWD "WIFI PASSWORD" #define USER_LED_TOPIC "feeds/led" #define CLIENT_PUB_TOPIC "feeds/humidity" #define CLIENT_PUB_TOPIC_2 "feeds/temperature" ``` Figure 11. Reference for User File Configuration # 4.4 Set Up the MQTT AWS Certificates Copy the appropriate certificate files to a **mqtt_certs.h** header file under the **src** folder (see Figure 12 for formatting). Note: Actual certificates are longer than what is shown in Figure 12. ``` #ifndef MQTT_CERTS_H_ #define MQTT_CERTS_H_ #define ROOT_CA "-----BEGIN CERTIFICATE-----\n"\ "MIIDQTCCAimgAwIBAgITBmyfz5m/jAo54vB4ikPm1jZbyjANBgkqhkiG9w0BAQsF\n"\ "rqXRfboQnoZs64q5WTP468SQvvG5\n"\ "-----END CERTIFICATE-----\n" #define CLIENT_CERT "-----BEGIN CERTIFICATE-----\n"\ "MIIDWjCCAkKgAwIBAgIVAMKOUZEWubwgJlRYbJuP3srJYxMsMA0GCSqGSIb3DQEB\n"\ "-----END CERTIFICATE-----\n" #define PRIVATE_KEY "-----BEGIN RSA PRIVATE KEY-----\n"\ "MIIEpAIBAAKCAQEAuuJDQWv6GupvVGwPfp5GTUw6cbDqJP+v7oqabca3Pn7wVmC5\n"\ "0124iUGTBbL4zWqwwCdtAjCQri9/OidWbE6lKyER8AVKHCqF54TNmA==\n"\ "-----END RSA PRIVATE KEY-----\n" #endif /* MQTT_CERTS_H_ */ ``` Figure 12. Reference for MQTT Certificate File Setup # 5. Adding J-Link RTT for Monitoring This section explains adding J-Link RTT for monitoring and configuring the J-Link RTT application. # 5.1 Configure J-Link RTT Application When the MCU connections are made, open the SEGGER RTT Application. Before configuring the J-Link, open the map file present in the Debug folder, search for the "_SEGGER_RTT" keyword in the file and note down the address. Check the reference as shown below. Note: Do not copy this address. ``` .pss._acvownbutter 0x20000424 0x40 ./src/SEGGER_RTT/SEGGER_RTT.o .bss. acUpBuffer 0x20000464 0x800 ./src/SEGGER RTT/SEGGER RTT.o .bss. SEGGER RTT 0x20000c64 0xa8 ./src/SEGGER RTT/SEGGER RTT.o 0x20000c64 _SEGGER_RTT .bss.g_rm_mqtt_onchip_da16xxx_instance 0x20000d0c 0x40c ./src/main_thread_entry.o 0x20000d0c g_rm_mqtt_onchip_da16xxx_instance .bss.g_read_queue_queue_memory 0x20001118 0xa0 ./ra_gen/common_data.o 0x20001118 g_read_queue_queue_memory .bss.g read queue memory ``` Figure 13. Address for SEGGER RTT Next, open the J-Link application and set it up as in Figure 14 by pasting the address that was copied. The remaining fields should be the same as in Figure 14. Figure 14. SEGGER RTT Configuration # 6. Running the Application This section is focused on running the application, providing step-by-step guidance on building, debugging, and testing the application. The subsections cover (1) building and debugging the application and (2) testing the application, including checking published messages and subscribed LEDs. # 6.1 Build and Debug the Application The application is completely set up. Open the FSP configuration window by double-clicking the **configuration.xml** file and click on **Generate Project Content**. Now, click on the build button and, after it has finished building, click on the **Debug** button. Next, double-click the **Resume** button. # 6.2 Testing the Application ### 6.2.1 Checking the Published Messages Open the **MQTT test client** menu from the AWS IoT website, navigate to the Subscribe to a topic section. Next, provide the topic names from the **user.h** file and click **Subscribe**. Repeat the process for both subscribe topics. Finally, click on the **s1** button on the MCU. The data is published continuously to the topics every time the button is clicked. Figure 15. Testing MQTT Client Subscription ### 6.2.2 Checking the Subscribe LED Similarly, navigate to the **Publish to a topic** section. Enter the topic name for LED. Enter 1 in the payload to turn on the LED, or enter 0 to turn the LED off. Figure 16. Testing MQTT Client Publish ### 6.2.3 Monitoring RTT Viewer Logs can be monitored from the SEGGER RTT Viewer, the events are captured on the RTT viewer (see Figure 17). Figure 17. SEGGER RTT Logs # Website and Support Visit the following URLs to learn about key elements of the RA family, download components and related documentation, and get support: **RA Product Information** www.renesas.com/ra **RA Product Support Forum** https://community.renesas.com/mcu-mpu/ra/ RA Flexible Software Package www.renesas.com/FSP Renesas Support www.renesas.com/support #### **7**. **Revision History** | Revision | Date | Description | |----------|-------------|-----------------| | 1.00 | Aug 5, 2024 | Initial release | Page 14 # General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. 2. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified. 3. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation. 4. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. - 6. Voltage application waveform at input pin - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.). - 7. Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed. 8. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product. #### **Notice** - 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. - Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. - No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. - 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required. - 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. - 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document. - 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. - 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. - 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. - 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. - 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. - 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. - 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. - (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. - (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Disclaimer Rev.5.0-1 October 2020) #### **Corporate Headquarters** TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com #### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. #### **Contact Information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/